xref: /titanic_51/usr/src/uts/common/fs/zfs/vdev.c (revision 25c28e83beb90e7c80452a7c818c5e6f73a07dc8)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
25  * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
26  */
27 
28 #include <sys/zfs_context.h>
29 #include <sys/fm/fs/zfs.h>
30 #include <sys/spa.h>
31 #include <sys/spa_impl.h>
32 #include <sys/dmu.h>
33 #include <sys/dmu_tx.h>
34 #include <sys/vdev_impl.h>
35 #include <sys/uberblock_impl.h>
36 #include <sys/metaslab.h>
37 #include <sys/metaslab_impl.h>
38 #include <sys/space_map.h>
39 #include <sys/space_reftree.h>
40 #include <sys/zio.h>
41 #include <sys/zap.h>
42 #include <sys/fs/zfs.h>
43 #include <sys/arc.h>
44 #include <sys/zil.h>
45 #include <sys/dsl_scan.h>
46 
47 /*
48  * Virtual device management.
49  */
50 
51 static vdev_ops_t *vdev_ops_table[] = {
52 	&vdev_root_ops,
53 	&vdev_raidz_ops,
54 	&vdev_mirror_ops,
55 	&vdev_replacing_ops,
56 	&vdev_spare_ops,
57 	&vdev_disk_ops,
58 	&vdev_file_ops,
59 	&vdev_missing_ops,
60 	&vdev_hole_ops,
61 	NULL
62 };
63 
64 /* maximum scrub/resilver I/O queue per leaf vdev */
65 int zfs_scrub_limit = 10;
66 
67 /*
68  * When a vdev is added, it will be divided into approximately (but no
69  * more than) this number of metaslabs.
70  */
71 int metaslabs_per_vdev = 200;
72 
73 /*
74  * Given a vdev type, return the appropriate ops vector.
75  */
76 static vdev_ops_t *
77 vdev_getops(const char *type)
78 {
79 	vdev_ops_t *ops, **opspp;
80 
81 	for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
82 		if (strcmp(ops->vdev_op_type, type) == 0)
83 			break;
84 
85 	return (ops);
86 }
87 
88 /*
89  * Default asize function: return the MAX of psize with the asize of
90  * all children.  This is what's used by anything other than RAID-Z.
91  */
92 uint64_t
93 vdev_default_asize(vdev_t *vd, uint64_t psize)
94 {
95 	uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
96 	uint64_t csize;
97 
98 	for (int c = 0; c < vd->vdev_children; c++) {
99 		csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
100 		asize = MAX(asize, csize);
101 	}
102 
103 	return (asize);
104 }
105 
106 /*
107  * Get the minimum allocatable size. We define the allocatable size as
108  * the vdev's asize rounded to the nearest metaslab. This allows us to
109  * replace or attach devices which don't have the same physical size but
110  * can still satisfy the same number of allocations.
111  */
112 uint64_t
113 vdev_get_min_asize(vdev_t *vd)
114 {
115 	vdev_t *pvd = vd->vdev_parent;
116 
117 	/*
118 	 * If our parent is NULL (inactive spare or cache) or is the root,
119 	 * just return our own asize.
120 	 */
121 	if (pvd == NULL)
122 		return (vd->vdev_asize);
123 
124 	/*
125 	 * The top-level vdev just returns the allocatable size rounded
126 	 * to the nearest metaslab.
127 	 */
128 	if (vd == vd->vdev_top)
129 		return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
130 
131 	/*
132 	 * The allocatable space for a raidz vdev is N * sizeof(smallest child),
133 	 * so each child must provide at least 1/Nth of its asize.
134 	 */
135 	if (pvd->vdev_ops == &vdev_raidz_ops)
136 		return (pvd->vdev_min_asize / pvd->vdev_children);
137 
138 	return (pvd->vdev_min_asize);
139 }
140 
141 void
142 vdev_set_min_asize(vdev_t *vd)
143 {
144 	vd->vdev_min_asize = vdev_get_min_asize(vd);
145 
146 	for (int c = 0; c < vd->vdev_children; c++)
147 		vdev_set_min_asize(vd->vdev_child[c]);
148 }
149 
150 vdev_t *
151 vdev_lookup_top(spa_t *spa, uint64_t vdev)
152 {
153 	vdev_t *rvd = spa->spa_root_vdev;
154 
155 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
156 
157 	if (vdev < rvd->vdev_children) {
158 		ASSERT(rvd->vdev_child[vdev] != NULL);
159 		return (rvd->vdev_child[vdev]);
160 	}
161 
162 	return (NULL);
163 }
164 
165 vdev_t *
166 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
167 {
168 	vdev_t *mvd;
169 
170 	if (vd->vdev_guid == guid)
171 		return (vd);
172 
173 	for (int c = 0; c < vd->vdev_children; c++)
174 		if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
175 		    NULL)
176 			return (mvd);
177 
178 	return (NULL);
179 }
180 
181 void
182 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
183 {
184 	size_t oldsize, newsize;
185 	uint64_t id = cvd->vdev_id;
186 	vdev_t **newchild;
187 
188 	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
189 	ASSERT(cvd->vdev_parent == NULL);
190 
191 	cvd->vdev_parent = pvd;
192 
193 	if (pvd == NULL)
194 		return;
195 
196 	ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
197 
198 	oldsize = pvd->vdev_children * sizeof (vdev_t *);
199 	pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
200 	newsize = pvd->vdev_children * sizeof (vdev_t *);
201 
202 	newchild = kmem_zalloc(newsize, KM_SLEEP);
203 	if (pvd->vdev_child != NULL) {
204 		bcopy(pvd->vdev_child, newchild, oldsize);
205 		kmem_free(pvd->vdev_child, oldsize);
206 	}
207 
208 	pvd->vdev_child = newchild;
209 	pvd->vdev_child[id] = cvd;
210 
211 	cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
212 	ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
213 
214 	/*
215 	 * Walk up all ancestors to update guid sum.
216 	 */
217 	for (; pvd != NULL; pvd = pvd->vdev_parent)
218 		pvd->vdev_guid_sum += cvd->vdev_guid_sum;
219 }
220 
221 void
222 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
223 {
224 	int c;
225 	uint_t id = cvd->vdev_id;
226 
227 	ASSERT(cvd->vdev_parent == pvd);
228 
229 	if (pvd == NULL)
230 		return;
231 
232 	ASSERT(id < pvd->vdev_children);
233 	ASSERT(pvd->vdev_child[id] == cvd);
234 
235 	pvd->vdev_child[id] = NULL;
236 	cvd->vdev_parent = NULL;
237 
238 	for (c = 0; c < pvd->vdev_children; c++)
239 		if (pvd->vdev_child[c])
240 			break;
241 
242 	if (c == pvd->vdev_children) {
243 		kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
244 		pvd->vdev_child = NULL;
245 		pvd->vdev_children = 0;
246 	}
247 
248 	/*
249 	 * Walk up all ancestors to update guid sum.
250 	 */
251 	for (; pvd != NULL; pvd = pvd->vdev_parent)
252 		pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
253 }
254 
255 /*
256  * Remove any holes in the child array.
257  */
258 void
259 vdev_compact_children(vdev_t *pvd)
260 {
261 	vdev_t **newchild, *cvd;
262 	int oldc = pvd->vdev_children;
263 	int newc;
264 
265 	ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
266 
267 	for (int c = newc = 0; c < oldc; c++)
268 		if (pvd->vdev_child[c])
269 			newc++;
270 
271 	newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
272 
273 	for (int c = newc = 0; c < oldc; c++) {
274 		if ((cvd = pvd->vdev_child[c]) != NULL) {
275 			newchild[newc] = cvd;
276 			cvd->vdev_id = newc++;
277 		}
278 	}
279 
280 	kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
281 	pvd->vdev_child = newchild;
282 	pvd->vdev_children = newc;
283 }
284 
285 /*
286  * Allocate and minimally initialize a vdev_t.
287  */
288 vdev_t *
289 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
290 {
291 	vdev_t *vd;
292 
293 	vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
294 
295 	if (spa->spa_root_vdev == NULL) {
296 		ASSERT(ops == &vdev_root_ops);
297 		spa->spa_root_vdev = vd;
298 		spa->spa_load_guid = spa_generate_guid(NULL);
299 	}
300 
301 	if (guid == 0 && ops != &vdev_hole_ops) {
302 		if (spa->spa_root_vdev == vd) {
303 			/*
304 			 * The root vdev's guid will also be the pool guid,
305 			 * which must be unique among all pools.
306 			 */
307 			guid = spa_generate_guid(NULL);
308 		} else {
309 			/*
310 			 * Any other vdev's guid must be unique within the pool.
311 			 */
312 			guid = spa_generate_guid(spa);
313 		}
314 		ASSERT(!spa_guid_exists(spa_guid(spa), guid));
315 	}
316 
317 	vd->vdev_spa = spa;
318 	vd->vdev_id = id;
319 	vd->vdev_guid = guid;
320 	vd->vdev_guid_sum = guid;
321 	vd->vdev_ops = ops;
322 	vd->vdev_state = VDEV_STATE_CLOSED;
323 	vd->vdev_ishole = (ops == &vdev_hole_ops);
324 
325 	mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
326 	mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
327 	mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
328 	for (int t = 0; t < DTL_TYPES; t++) {
329 		vd->vdev_dtl[t] = range_tree_create(NULL, NULL,
330 		    &vd->vdev_dtl_lock);
331 	}
332 	txg_list_create(&vd->vdev_ms_list,
333 	    offsetof(struct metaslab, ms_txg_node));
334 	txg_list_create(&vd->vdev_dtl_list,
335 	    offsetof(struct vdev, vdev_dtl_node));
336 	vd->vdev_stat.vs_timestamp = gethrtime();
337 	vdev_queue_init(vd);
338 	vdev_cache_init(vd);
339 
340 	return (vd);
341 }
342 
343 /*
344  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
345  * creating a new vdev or loading an existing one - the behavior is slightly
346  * different for each case.
347  */
348 int
349 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
350     int alloctype)
351 {
352 	vdev_ops_t *ops;
353 	char *type;
354 	uint64_t guid = 0, islog, nparity;
355 	vdev_t *vd;
356 
357 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
358 
359 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
360 		return (SET_ERROR(EINVAL));
361 
362 	if ((ops = vdev_getops(type)) == NULL)
363 		return (SET_ERROR(EINVAL));
364 
365 	/*
366 	 * If this is a load, get the vdev guid from the nvlist.
367 	 * Otherwise, vdev_alloc_common() will generate one for us.
368 	 */
369 	if (alloctype == VDEV_ALLOC_LOAD) {
370 		uint64_t label_id;
371 
372 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
373 		    label_id != id)
374 			return (SET_ERROR(EINVAL));
375 
376 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
377 			return (SET_ERROR(EINVAL));
378 	} else if (alloctype == VDEV_ALLOC_SPARE) {
379 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
380 			return (SET_ERROR(EINVAL));
381 	} else if (alloctype == VDEV_ALLOC_L2CACHE) {
382 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
383 			return (SET_ERROR(EINVAL));
384 	} else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
385 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
386 			return (SET_ERROR(EINVAL));
387 	}
388 
389 	/*
390 	 * The first allocated vdev must be of type 'root'.
391 	 */
392 	if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
393 		return (SET_ERROR(EINVAL));
394 
395 	/*
396 	 * Determine whether we're a log vdev.
397 	 */
398 	islog = 0;
399 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
400 	if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
401 		return (SET_ERROR(ENOTSUP));
402 
403 	if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
404 		return (SET_ERROR(ENOTSUP));
405 
406 	/*
407 	 * Set the nparity property for RAID-Z vdevs.
408 	 */
409 	nparity = -1ULL;
410 	if (ops == &vdev_raidz_ops) {
411 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
412 		    &nparity) == 0) {
413 			if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
414 				return (SET_ERROR(EINVAL));
415 			/*
416 			 * Previous versions could only support 1 or 2 parity
417 			 * device.
418 			 */
419 			if (nparity > 1 &&
420 			    spa_version(spa) < SPA_VERSION_RAIDZ2)
421 				return (SET_ERROR(ENOTSUP));
422 			if (nparity > 2 &&
423 			    spa_version(spa) < SPA_VERSION_RAIDZ3)
424 				return (SET_ERROR(ENOTSUP));
425 		} else {
426 			/*
427 			 * We require the parity to be specified for SPAs that
428 			 * support multiple parity levels.
429 			 */
430 			if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
431 				return (SET_ERROR(EINVAL));
432 			/*
433 			 * Otherwise, we default to 1 parity device for RAID-Z.
434 			 */
435 			nparity = 1;
436 		}
437 	} else {
438 		nparity = 0;
439 	}
440 	ASSERT(nparity != -1ULL);
441 
442 	vd = vdev_alloc_common(spa, id, guid, ops);
443 
444 	vd->vdev_islog = islog;
445 	vd->vdev_nparity = nparity;
446 
447 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
448 		vd->vdev_path = spa_strdup(vd->vdev_path);
449 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
450 		vd->vdev_devid = spa_strdup(vd->vdev_devid);
451 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
452 	    &vd->vdev_physpath) == 0)
453 		vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
454 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
455 		vd->vdev_fru = spa_strdup(vd->vdev_fru);
456 
457 	/*
458 	 * Set the whole_disk property.  If it's not specified, leave the value
459 	 * as -1.
460 	 */
461 	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
462 	    &vd->vdev_wholedisk) != 0)
463 		vd->vdev_wholedisk = -1ULL;
464 
465 	/*
466 	 * Look for the 'not present' flag.  This will only be set if the device
467 	 * was not present at the time of import.
468 	 */
469 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
470 	    &vd->vdev_not_present);
471 
472 	/*
473 	 * Get the alignment requirement.
474 	 */
475 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
476 
477 	/*
478 	 * Retrieve the vdev creation time.
479 	 */
480 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
481 	    &vd->vdev_crtxg);
482 
483 	/*
484 	 * If we're a top-level vdev, try to load the allocation parameters.
485 	 */
486 	if (parent && !parent->vdev_parent &&
487 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
488 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
489 		    &vd->vdev_ms_array);
490 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
491 		    &vd->vdev_ms_shift);
492 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
493 		    &vd->vdev_asize);
494 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
495 		    &vd->vdev_removing);
496 	}
497 
498 	if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
499 		ASSERT(alloctype == VDEV_ALLOC_LOAD ||
500 		    alloctype == VDEV_ALLOC_ADD ||
501 		    alloctype == VDEV_ALLOC_SPLIT ||
502 		    alloctype == VDEV_ALLOC_ROOTPOOL);
503 		vd->vdev_mg = metaslab_group_create(islog ?
504 		    spa_log_class(spa) : spa_normal_class(spa), vd);
505 	}
506 
507 	/*
508 	 * If we're a leaf vdev, try to load the DTL object and other state.
509 	 */
510 	if (vd->vdev_ops->vdev_op_leaf &&
511 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
512 	    alloctype == VDEV_ALLOC_ROOTPOOL)) {
513 		if (alloctype == VDEV_ALLOC_LOAD) {
514 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
515 			    &vd->vdev_dtl_object);
516 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
517 			    &vd->vdev_unspare);
518 		}
519 
520 		if (alloctype == VDEV_ALLOC_ROOTPOOL) {
521 			uint64_t spare = 0;
522 
523 			if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
524 			    &spare) == 0 && spare)
525 				spa_spare_add(vd);
526 		}
527 
528 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
529 		    &vd->vdev_offline);
530 
531 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
532 		    &vd->vdev_resilver_txg);
533 
534 		/*
535 		 * When importing a pool, we want to ignore the persistent fault
536 		 * state, as the diagnosis made on another system may not be
537 		 * valid in the current context.  Local vdevs will
538 		 * remain in the faulted state.
539 		 */
540 		if (spa_load_state(spa) == SPA_LOAD_OPEN) {
541 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
542 			    &vd->vdev_faulted);
543 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
544 			    &vd->vdev_degraded);
545 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
546 			    &vd->vdev_removed);
547 
548 			if (vd->vdev_faulted || vd->vdev_degraded) {
549 				char *aux;
550 
551 				vd->vdev_label_aux =
552 				    VDEV_AUX_ERR_EXCEEDED;
553 				if (nvlist_lookup_string(nv,
554 				    ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
555 				    strcmp(aux, "external") == 0)
556 					vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
557 			}
558 		}
559 	}
560 
561 	/*
562 	 * Add ourselves to the parent's list of children.
563 	 */
564 	vdev_add_child(parent, vd);
565 
566 	*vdp = vd;
567 
568 	return (0);
569 }
570 
571 void
572 vdev_free(vdev_t *vd)
573 {
574 	spa_t *spa = vd->vdev_spa;
575 
576 	/*
577 	 * vdev_free() implies closing the vdev first.  This is simpler than
578 	 * trying to ensure complicated semantics for all callers.
579 	 */
580 	vdev_close(vd);
581 
582 	ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
583 	ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
584 
585 	/*
586 	 * Free all children.
587 	 */
588 	for (int c = 0; c < vd->vdev_children; c++)
589 		vdev_free(vd->vdev_child[c]);
590 
591 	ASSERT(vd->vdev_child == NULL);
592 	ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
593 
594 	/*
595 	 * Discard allocation state.
596 	 */
597 	if (vd->vdev_mg != NULL) {
598 		vdev_metaslab_fini(vd);
599 		metaslab_group_destroy(vd->vdev_mg);
600 	}
601 
602 	ASSERT0(vd->vdev_stat.vs_space);
603 	ASSERT0(vd->vdev_stat.vs_dspace);
604 	ASSERT0(vd->vdev_stat.vs_alloc);
605 
606 	/*
607 	 * Remove this vdev from its parent's child list.
608 	 */
609 	vdev_remove_child(vd->vdev_parent, vd);
610 
611 	ASSERT(vd->vdev_parent == NULL);
612 
613 	/*
614 	 * Clean up vdev structure.
615 	 */
616 	vdev_queue_fini(vd);
617 	vdev_cache_fini(vd);
618 
619 	if (vd->vdev_path)
620 		spa_strfree(vd->vdev_path);
621 	if (vd->vdev_devid)
622 		spa_strfree(vd->vdev_devid);
623 	if (vd->vdev_physpath)
624 		spa_strfree(vd->vdev_physpath);
625 	if (vd->vdev_fru)
626 		spa_strfree(vd->vdev_fru);
627 
628 	if (vd->vdev_isspare)
629 		spa_spare_remove(vd);
630 	if (vd->vdev_isl2cache)
631 		spa_l2cache_remove(vd);
632 
633 	txg_list_destroy(&vd->vdev_ms_list);
634 	txg_list_destroy(&vd->vdev_dtl_list);
635 
636 	mutex_enter(&vd->vdev_dtl_lock);
637 	space_map_close(vd->vdev_dtl_sm);
638 	for (int t = 0; t < DTL_TYPES; t++) {
639 		range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
640 		range_tree_destroy(vd->vdev_dtl[t]);
641 	}
642 	mutex_exit(&vd->vdev_dtl_lock);
643 
644 	mutex_destroy(&vd->vdev_dtl_lock);
645 	mutex_destroy(&vd->vdev_stat_lock);
646 	mutex_destroy(&vd->vdev_probe_lock);
647 
648 	if (vd == spa->spa_root_vdev)
649 		spa->spa_root_vdev = NULL;
650 
651 	kmem_free(vd, sizeof (vdev_t));
652 }
653 
654 /*
655  * Transfer top-level vdev state from svd to tvd.
656  */
657 static void
658 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
659 {
660 	spa_t *spa = svd->vdev_spa;
661 	metaslab_t *msp;
662 	vdev_t *vd;
663 	int t;
664 
665 	ASSERT(tvd == tvd->vdev_top);
666 
667 	tvd->vdev_ms_array = svd->vdev_ms_array;
668 	tvd->vdev_ms_shift = svd->vdev_ms_shift;
669 	tvd->vdev_ms_count = svd->vdev_ms_count;
670 
671 	svd->vdev_ms_array = 0;
672 	svd->vdev_ms_shift = 0;
673 	svd->vdev_ms_count = 0;
674 
675 	if (tvd->vdev_mg)
676 		ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
677 	tvd->vdev_mg = svd->vdev_mg;
678 	tvd->vdev_ms = svd->vdev_ms;
679 
680 	svd->vdev_mg = NULL;
681 	svd->vdev_ms = NULL;
682 
683 	if (tvd->vdev_mg != NULL)
684 		tvd->vdev_mg->mg_vd = tvd;
685 
686 	tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
687 	tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
688 	tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
689 
690 	svd->vdev_stat.vs_alloc = 0;
691 	svd->vdev_stat.vs_space = 0;
692 	svd->vdev_stat.vs_dspace = 0;
693 
694 	for (t = 0; t < TXG_SIZE; t++) {
695 		while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
696 			(void) txg_list_add(&tvd->vdev_ms_list, msp, t);
697 		while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
698 			(void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
699 		if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
700 			(void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
701 	}
702 
703 	if (list_link_active(&svd->vdev_config_dirty_node)) {
704 		vdev_config_clean(svd);
705 		vdev_config_dirty(tvd);
706 	}
707 
708 	if (list_link_active(&svd->vdev_state_dirty_node)) {
709 		vdev_state_clean(svd);
710 		vdev_state_dirty(tvd);
711 	}
712 
713 	tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
714 	svd->vdev_deflate_ratio = 0;
715 
716 	tvd->vdev_islog = svd->vdev_islog;
717 	svd->vdev_islog = 0;
718 }
719 
720 static void
721 vdev_top_update(vdev_t *tvd, vdev_t *vd)
722 {
723 	if (vd == NULL)
724 		return;
725 
726 	vd->vdev_top = tvd;
727 
728 	for (int c = 0; c < vd->vdev_children; c++)
729 		vdev_top_update(tvd, vd->vdev_child[c]);
730 }
731 
732 /*
733  * Add a mirror/replacing vdev above an existing vdev.
734  */
735 vdev_t *
736 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
737 {
738 	spa_t *spa = cvd->vdev_spa;
739 	vdev_t *pvd = cvd->vdev_parent;
740 	vdev_t *mvd;
741 
742 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
743 
744 	mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
745 
746 	mvd->vdev_asize = cvd->vdev_asize;
747 	mvd->vdev_min_asize = cvd->vdev_min_asize;
748 	mvd->vdev_max_asize = cvd->vdev_max_asize;
749 	mvd->vdev_ashift = cvd->vdev_ashift;
750 	mvd->vdev_state = cvd->vdev_state;
751 	mvd->vdev_crtxg = cvd->vdev_crtxg;
752 
753 	vdev_remove_child(pvd, cvd);
754 	vdev_add_child(pvd, mvd);
755 	cvd->vdev_id = mvd->vdev_children;
756 	vdev_add_child(mvd, cvd);
757 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
758 
759 	if (mvd == mvd->vdev_top)
760 		vdev_top_transfer(cvd, mvd);
761 
762 	return (mvd);
763 }
764 
765 /*
766  * Remove a 1-way mirror/replacing vdev from the tree.
767  */
768 void
769 vdev_remove_parent(vdev_t *cvd)
770 {
771 	vdev_t *mvd = cvd->vdev_parent;
772 	vdev_t *pvd = mvd->vdev_parent;
773 
774 	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
775 
776 	ASSERT(mvd->vdev_children == 1);
777 	ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
778 	    mvd->vdev_ops == &vdev_replacing_ops ||
779 	    mvd->vdev_ops == &vdev_spare_ops);
780 	cvd->vdev_ashift = mvd->vdev_ashift;
781 
782 	vdev_remove_child(mvd, cvd);
783 	vdev_remove_child(pvd, mvd);
784 
785 	/*
786 	 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
787 	 * Otherwise, we could have detached an offline device, and when we
788 	 * go to import the pool we'll think we have two top-level vdevs,
789 	 * instead of a different version of the same top-level vdev.
790 	 */
791 	if (mvd->vdev_top == mvd) {
792 		uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
793 		cvd->vdev_orig_guid = cvd->vdev_guid;
794 		cvd->vdev_guid += guid_delta;
795 		cvd->vdev_guid_sum += guid_delta;
796 	}
797 	cvd->vdev_id = mvd->vdev_id;
798 	vdev_add_child(pvd, cvd);
799 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
800 
801 	if (cvd == cvd->vdev_top)
802 		vdev_top_transfer(mvd, cvd);
803 
804 	ASSERT(mvd->vdev_children == 0);
805 	vdev_free(mvd);
806 }
807 
808 int
809 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
810 {
811 	spa_t *spa = vd->vdev_spa;
812 	objset_t *mos = spa->spa_meta_objset;
813 	uint64_t m;
814 	uint64_t oldc = vd->vdev_ms_count;
815 	uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
816 	metaslab_t **mspp;
817 	int error;
818 
819 	ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
820 
821 	/*
822 	 * This vdev is not being allocated from yet or is a hole.
823 	 */
824 	if (vd->vdev_ms_shift == 0)
825 		return (0);
826 
827 	ASSERT(!vd->vdev_ishole);
828 
829 	/*
830 	 * Compute the raidz-deflation ratio.  Note, we hard-code
831 	 * in 128k (1 << 17) because it is the current "typical" blocksize.
832 	 * Even if SPA_MAXBLOCKSIZE changes, this algorithm must never change,
833 	 * or we will inconsistently account for existing bp's.
834 	 */
835 	vd->vdev_deflate_ratio = (1 << 17) /
836 	    (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
837 
838 	ASSERT(oldc <= newc);
839 
840 	mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
841 
842 	if (oldc != 0) {
843 		bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
844 		kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
845 	}
846 
847 	vd->vdev_ms = mspp;
848 	vd->vdev_ms_count = newc;
849 
850 	for (m = oldc; m < newc; m++) {
851 		uint64_t object = 0;
852 
853 		if (txg == 0) {
854 			error = dmu_read(mos, vd->vdev_ms_array,
855 			    m * sizeof (uint64_t), sizeof (uint64_t), &object,
856 			    DMU_READ_PREFETCH);
857 			if (error)
858 				return (error);
859 		}
860 		vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, m, object, txg);
861 	}
862 
863 	if (txg == 0)
864 		spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
865 
866 	/*
867 	 * If the vdev is being removed we don't activate
868 	 * the metaslabs since we want to ensure that no new
869 	 * allocations are performed on this device.
870 	 */
871 	if (oldc == 0 && !vd->vdev_removing)
872 		metaslab_group_activate(vd->vdev_mg);
873 
874 	if (txg == 0)
875 		spa_config_exit(spa, SCL_ALLOC, FTAG);
876 
877 	return (0);
878 }
879 
880 void
881 vdev_metaslab_fini(vdev_t *vd)
882 {
883 	uint64_t m;
884 	uint64_t count = vd->vdev_ms_count;
885 
886 	if (vd->vdev_ms != NULL) {
887 		metaslab_group_passivate(vd->vdev_mg);
888 		for (m = 0; m < count; m++) {
889 			metaslab_t *msp = vd->vdev_ms[m];
890 
891 			if (msp != NULL)
892 				metaslab_fini(msp);
893 		}
894 		kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
895 		vd->vdev_ms = NULL;
896 	}
897 }
898 
899 typedef struct vdev_probe_stats {
900 	boolean_t	vps_readable;
901 	boolean_t	vps_writeable;
902 	int		vps_flags;
903 } vdev_probe_stats_t;
904 
905 static void
906 vdev_probe_done(zio_t *zio)
907 {
908 	spa_t *spa = zio->io_spa;
909 	vdev_t *vd = zio->io_vd;
910 	vdev_probe_stats_t *vps = zio->io_private;
911 
912 	ASSERT(vd->vdev_probe_zio != NULL);
913 
914 	if (zio->io_type == ZIO_TYPE_READ) {
915 		if (zio->io_error == 0)
916 			vps->vps_readable = 1;
917 		if (zio->io_error == 0 && spa_writeable(spa)) {
918 			zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
919 			    zio->io_offset, zio->io_size, zio->io_data,
920 			    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
921 			    ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
922 		} else {
923 			zio_buf_free(zio->io_data, zio->io_size);
924 		}
925 	} else if (zio->io_type == ZIO_TYPE_WRITE) {
926 		if (zio->io_error == 0)
927 			vps->vps_writeable = 1;
928 		zio_buf_free(zio->io_data, zio->io_size);
929 	} else if (zio->io_type == ZIO_TYPE_NULL) {
930 		zio_t *pio;
931 
932 		vd->vdev_cant_read |= !vps->vps_readable;
933 		vd->vdev_cant_write |= !vps->vps_writeable;
934 
935 		if (vdev_readable(vd) &&
936 		    (vdev_writeable(vd) || !spa_writeable(spa))) {
937 			zio->io_error = 0;
938 		} else {
939 			ASSERT(zio->io_error != 0);
940 			zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
941 			    spa, vd, NULL, 0, 0);
942 			zio->io_error = SET_ERROR(ENXIO);
943 		}
944 
945 		mutex_enter(&vd->vdev_probe_lock);
946 		ASSERT(vd->vdev_probe_zio == zio);
947 		vd->vdev_probe_zio = NULL;
948 		mutex_exit(&vd->vdev_probe_lock);
949 
950 		while ((pio = zio_walk_parents(zio)) != NULL)
951 			if (!vdev_accessible(vd, pio))
952 				pio->io_error = SET_ERROR(ENXIO);
953 
954 		kmem_free(vps, sizeof (*vps));
955 	}
956 }
957 
958 /*
959  * Determine whether this device is accessible.
960  *
961  * Read and write to several known locations: the pad regions of each
962  * vdev label but the first, which we leave alone in case it contains
963  * a VTOC.
964  */
965 zio_t *
966 vdev_probe(vdev_t *vd, zio_t *zio)
967 {
968 	spa_t *spa = vd->vdev_spa;
969 	vdev_probe_stats_t *vps = NULL;
970 	zio_t *pio;
971 
972 	ASSERT(vd->vdev_ops->vdev_op_leaf);
973 
974 	/*
975 	 * Don't probe the probe.
976 	 */
977 	if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
978 		return (NULL);
979 
980 	/*
981 	 * To prevent 'probe storms' when a device fails, we create
982 	 * just one probe i/o at a time.  All zios that want to probe
983 	 * this vdev will become parents of the probe io.
984 	 */
985 	mutex_enter(&vd->vdev_probe_lock);
986 
987 	if ((pio = vd->vdev_probe_zio) == NULL) {
988 		vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
989 
990 		vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
991 		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
992 		    ZIO_FLAG_TRYHARD;
993 
994 		if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
995 			/*
996 			 * vdev_cant_read and vdev_cant_write can only
997 			 * transition from TRUE to FALSE when we have the
998 			 * SCL_ZIO lock as writer; otherwise they can only
999 			 * transition from FALSE to TRUE.  This ensures that
1000 			 * any zio looking at these values can assume that
1001 			 * failures persist for the life of the I/O.  That's
1002 			 * important because when a device has intermittent
1003 			 * connectivity problems, we want to ensure that
1004 			 * they're ascribed to the device (ENXIO) and not
1005 			 * the zio (EIO).
1006 			 *
1007 			 * Since we hold SCL_ZIO as writer here, clear both
1008 			 * values so the probe can reevaluate from first
1009 			 * principles.
1010 			 */
1011 			vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1012 			vd->vdev_cant_read = B_FALSE;
1013 			vd->vdev_cant_write = B_FALSE;
1014 		}
1015 
1016 		vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1017 		    vdev_probe_done, vps,
1018 		    vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1019 
1020 		/*
1021 		 * We can't change the vdev state in this context, so we
1022 		 * kick off an async task to do it on our behalf.
1023 		 */
1024 		if (zio != NULL) {
1025 			vd->vdev_probe_wanted = B_TRUE;
1026 			spa_async_request(spa, SPA_ASYNC_PROBE);
1027 		}
1028 	}
1029 
1030 	if (zio != NULL)
1031 		zio_add_child(zio, pio);
1032 
1033 	mutex_exit(&vd->vdev_probe_lock);
1034 
1035 	if (vps == NULL) {
1036 		ASSERT(zio != NULL);
1037 		return (NULL);
1038 	}
1039 
1040 	for (int l = 1; l < VDEV_LABELS; l++) {
1041 		zio_nowait(zio_read_phys(pio, vd,
1042 		    vdev_label_offset(vd->vdev_psize, l,
1043 		    offsetof(vdev_label_t, vl_pad2)),
1044 		    VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
1045 		    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1046 		    ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1047 	}
1048 
1049 	if (zio == NULL)
1050 		return (pio);
1051 
1052 	zio_nowait(pio);
1053 	return (NULL);
1054 }
1055 
1056 static void
1057 vdev_open_child(void *arg)
1058 {
1059 	vdev_t *vd = arg;
1060 
1061 	vd->vdev_open_thread = curthread;
1062 	vd->vdev_open_error = vdev_open(vd);
1063 	vd->vdev_open_thread = NULL;
1064 }
1065 
1066 boolean_t
1067 vdev_uses_zvols(vdev_t *vd)
1068 {
1069 	if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1070 	    strlen(ZVOL_DIR)) == 0)
1071 		return (B_TRUE);
1072 	for (int c = 0; c < vd->vdev_children; c++)
1073 		if (vdev_uses_zvols(vd->vdev_child[c]))
1074 			return (B_TRUE);
1075 	return (B_FALSE);
1076 }
1077 
1078 void
1079 vdev_open_children(vdev_t *vd)
1080 {
1081 	taskq_t *tq;
1082 	int children = vd->vdev_children;
1083 
1084 	/*
1085 	 * in order to handle pools on top of zvols, do the opens
1086 	 * in a single thread so that the same thread holds the
1087 	 * spa_namespace_lock
1088 	 */
1089 	if (vdev_uses_zvols(vd)) {
1090 		for (int c = 0; c < children; c++)
1091 			vd->vdev_child[c]->vdev_open_error =
1092 			    vdev_open(vd->vdev_child[c]);
1093 		return;
1094 	}
1095 	tq = taskq_create("vdev_open", children, minclsyspri,
1096 	    children, children, TASKQ_PREPOPULATE);
1097 
1098 	for (int c = 0; c < children; c++)
1099 		VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1100 		    TQ_SLEEP) != NULL);
1101 
1102 	taskq_destroy(tq);
1103 }
1104 
1105 /*
1106  * Prepare a virtual device for access.
1107  */
1108 int
1109 vdev_open(vdev_t *vd)
1110 {
1111 	spa_t *spa = vd->vdev_spa;
1112 	int error;
1113 	uint64_t osize = 0;
1114 	uint64_t max_osize = 0;
1115 	uint64_t asize, max_asize, psize;
1116 	uint64_t ashift = 0;
1117 
1118 	ASSERT(vd->vdev_open_thread == curthread ||
1119 	    spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1120 	ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1121 	    vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1122 	    vd->vdev_state == VDEV_STATE_OFFLINE);
1123 
1124 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1125 	vd->vdev_cant_read = B_FALSE;
1126 	vd->vdev_cant_write = B_FALSE;
1127 	vd->vdev_min_asize = vdev_get_min_asize(vd);
1128 
1129 	/*
1130 	 * If this vdev is not removed, check its fault status.  If it's
1131 	 * faulted, bail out of the open.
1132 	 */
1133 	if (!vd->vdev_removed && vd->vdev_faulted) {
1134 		ASSERT(vd->vdev_children == 0);
1135 		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1136 		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1137 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1138 		    vd->vdev_label_aux);
1139 		return (SET_ERROR(ENXIO));
1140 	} else if (vd->vdev_offline) {
1141 		ASSERT(vd->vdev_children == 0);
1142 		vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1143 		return (SET_ERROR(ENXIO));
1144 	}
1145 
1146 	error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift);
1147 
1148 	/*
1149 	 * Reset the vdev_reopening flag so that we actually close
1150 	 * the vdev on error.
1151 	 */
1152 	vd->vdev_reopening = B_FALSE;
1153 	if (zio_injection_enabled && error == 0)
1154 		error = zio_handle_device_injection(vd, NULL, ENXIO);
1155 
1156 	if (error) {
1157 		if (vd->vdev_removed &&
1158 		    vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1159 			vd->vdev_removed = B_FALSE;
1160 
1161 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1162 		    vd->vdev_stat.vs_aux);
1163 		return (error);
1164 	}
1165 
1166 	vd->vdev_removed = B_FALSE;
1167 
1168 	/*
1169 	 * Recheck the faulted flag now that we have confirmed that
1170 	 * the vdev is accessible.  If we're faulted, bail.
1171 	 */
1172 	if (vd->vdev_faulted) {
1173 		ASSERT(vd->vdev_children == 0);
1174 		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1175 		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1176 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1177 		    vd->vdev_label_aux);
1178 		return (SET_ERROR(ENXIO));
1179 	}
1180 
1181 	if (vd->vdev_degraded) {
1182 		ASSERT(vd->vdev_children == 0);
1183 		vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1184 		    VDEV_AUX_ERR_EXCEEDED);
1185 	} else {
1186 		vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1187 	}
1188 
1189 	/*
1190 	 * For hole or missing vdevs we just return success.
1191 	 */
1192 	if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1193 		return (0);
1194 
1195 	for (int c = 0; c < vd->vdev_children; c++) {
1196 		if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1197 			vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1198 			    VDEV_AUX_NONE);
1199 			break;
1200 		}
1201 	}
1202 
1203 	osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1204 	max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1205 
1206 	if (vd->vdev_children == 0) {
1207 		if (osize < SPA_MINDEVSIZE) {
1208 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1209 			    VDEV_AUX_TOO_SMALL);
1210 			return (SET_ERROR(EOVERFLOW));
1211 		}
1212 		psize = osize;
1213 		asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1214 		max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1215 		    VDEV_LABEL_END_SIZE);
1216 	} else {
1217 		if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1218 		    (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1219 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1220 			    VDEV_AUX_TOO_SMALL);
1221 			return (SET_ERROR(EOVERFLOW));
1222 		}
1223 		psize = 0;
1224 		asize = osize;
1225 		max_asize = max_osize;
1226 	}
1227 
1228 	vd->vdev_psize = psize;
1229 
1230 	/*
1231 	 * Make sure the allocatable size hasn't shrunk.
1232 	 */
1233 	if (asize < vd->vdev_min_asize) {
1234 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1235 		    VDEV_AUX_BAD_LABEL);
1236 		return (SET_ERROR(EINVAL));
1237 	}
1238 
1239 	if (vd->vdev_asize == 0) {
1240 		/*
1241 		 * This is the first-ever open, so use the computed values.
1242 		 * For testing purposes, a higher ashift can be requested.
1243 		 */
1244 		vd->vdev_asize = asize;
1245 		vd->vdev_max_asize = max_asize;
1246 		vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
1247 	} else {
1248 		/*
1249 		 * Detect if the alignment requirement has increased.
1250 		 * We don't want to make the pool unavailable, just
1251 		 * issue a warning instead.
1252 		 */
1253 		if (ashift > vd->vdev_top->vdev_ashift &&
1254 		    vd->vdev_ops->vdev_op_leaf) {
1255 			cmn_err(CE_WARN,
1256 			    "Disk, '%s', has a block alignment that is "
1257 			    "larger than the pool's alignment\n",
1258 			    vd->vdev_path);
1259 		}
1260 		vd->vdev_max_asize = max_asize;
1261 	}
1262 
1263 	/*
1264 	 * If all children are healthy and the asize has increased,
1265 	 * then we've experienced dynamic LUN growth.  If automatic
1266 	 * expansion is enabled then use the additional space.
1267 	 */
1268 	if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1269 	    (vd->vdev_expanding || spa->spa_autoexpand))
1270 		vd->vdev_asize = asize;
1271 
1272 	vdev_set_min_asize(vd);
1273 
1274 	/*
1275 	 * Ensure we can issue some IO before declaring the
1276 	 * vdev open for business.
1277 	 */
1278 	if (vd->vdev_ops->vdev_op_leaf &&
1279 	    (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1280 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1281 		    VDEV_AUX_ERR_EXCEEDED);
1282 		return (error);
1283 	}
1284 
1285 	/*
1286 	 * If a leaf vdev has a DTL, and seems healthy, then kick off a
1287 	 * resilver.  But don't do this if we are doing a reopen for a scrub,
1288 	 * since this would just restart the scrub we are already doing.
1289 	 */
1290 	if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1291 	    vdev_resilver_needed(vd, NULL, NULL))
1292 		spa_async_request(spa, SPA_ASYNC_RESILVER);
1293 
1294 	return (0);
1295 }
1296 
1297 /*
1298  * Called once the vdevs are all opened, this routine validates the label
1299  * contents.  This needs to be done before vdev_load() so that we don't
1300  * inadvertently do repair I/Os to the wrong device.
1301  *
1302  * If 'strict' is false ignore the spa guid check. This is necessary because
1303  * if the machine crashed during a re-guid the new guid might have been written
1304  * to all of the vdev labels, but not the cached config. The strict check
1305  * will be performed when the pool is opened again using the mos config.
1306  *
1307  * This function will only return failure if one of the vdevs indicates that it
1308  * has since been destroyed or exported.  This is only possible if
1309  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1310  * will be updated but the function will return 0.
1311  */
1312 int
1313 vdev_validate(vdev_t *vd, boolean_t strict)
1314 {
1315 	spa_t *spa = vd->vdev_spa;
1316 	nvlist_t *label;
1317 	uint64_t guid = 0, top_guid;
1318 	uint64_t state;
1319 
1320 	for (int c = 0; c < vd->vdev_children; c++)
1321 		if (vdev_validate(vd->vdev_child[c], strict) != 0)
1322 			return (SET_ERROR(EBADF));
1323 
1324 	/*
1325 	 * If the device has already failed, or was marked offline, don't do
1326 	 * any further validation.  Otherwise, label I/O will fail and we will
1327 	 * overwrite the previous state.
1328 	 */
1329 	if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1330 		uint64_t aux_guid = 0;
1331 		nvlist_t *nvl;
1332 		uint64_t txg = spa_last_synced_txg(spa) != 0 ?
1333 		    spa_last_synced_txg(spa) : -1ULL;
1334 
1335 		if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1336 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1337 			    VDEV_AUX_BAD_LABEL);
1338 			return (0);
1339 		}
1340 
1341 		/*
1342 		 * Determine if this vdev has been split off into another
1343 		 * pool.  If so, then refuse to open it.
1344 		 */
1345 		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1346 		    &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1347 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1348 			    VDEV_AUX_SPLIT_POOL);
1349 			nvlist_free(label);
1350 			return (0);
1351 		}
1352 
1353 		if (strict && (nvlist_lookup_uint64(label,
1354 		    ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
1355 		    guid != spa_guid(spa))) {
1356 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1357 			    VDEV_AUX_CORRUPT_DATA);
1358 			nvlist_free(label);
1359 			return (0);
1360 		}
1361 
1362 		if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1363 		    != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1364 		    &aux_guid) != 0)
1365 			aux_guid = 0;
1366 
1367 		/*
1368 		 * If this vdev just became a top-level vdev because its
1369 		 * sibling was detached, it will have adopted the parent's
1370 		 * vdev guid -- but the label may or may not be on disk yet.
1371 		 * Fortunately, either version of the label will have the
1372 		 * same top guid, so if we're a top-level vdev, we can
1373 		 * safely compare to that instead.
1374 		 *
1375 		 * If we split this vdev off instead, then we also check the
1376 		 * original pool's guid.  We don't want to consider the vdev
1377 		 * corrupt if it is partway through a split operation.
1378 		 */
1379 		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1380 		    &guid) != 0 ||
1381 		    nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1382 		    &top_guid) != 0 ||
1383 		    ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1384 		    (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1385 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1386 			    VDEV_AUX_CORRUPT_DATA);
1387 			nvlist_free(label);
1388 			return (0);
1389 		}
1390 
1391 		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1392 		    &state) != 0) {
1393 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1394 			    VDEV_AUX_CORRUPT_DATA);
1395 			nvlist_free(label);
1396 			return (0);
1397 		}
1398 
1399 		nvlist_free(label);
1400 
1401 		/*
1402 		 * If this is a verbatim import, no need to check the
1403 		 * state of the pool.
1404 		 */
1405 		if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1406 		    spa_load_state(spa) == SPA_LOAD_OPEN &&
1407 		    state != POOL_STATE_ACTIVE)
1408 			return (SET_ERROR(EBADF));
1409 
1410 		/*
1411 		 * If we were able to open and validate a vdev that was
1412 		 * previously marked permanently unavailable, clear that state
1413 		 * now.
1414 		 */
1415 		if (vd->vdev_not_present)
1416 			vd->vdev_not_present = 0;
1417 	}
1418 
1419 	return (0);
1420 }
1421 
1422 /*
1423  * Close a virtual device.
1424  */
1425 void
1426 vdev_close(vdev_t *vd)
1427 {
1428 	spa_t *spa = vd->vdev_spa;
1429 	vdev_t *pvd = vd->vdev_parent;
1430 
1431 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1432 
1433 	/*
1434 	 * If our parent is reopening, then we are as well, unless we are
1435 	 * going offline.
1436 	 */
1437 	if (pvd != NULL && pvd->vdev_reopening)
1438 		vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1439 
1440 	vd->vdev_ops->vdev_op_close(vd);
1441 
1442 	vdev_cache_purge(vd);
1443 
1444 	/*
1445 	 * We record the previous state before we close it, so that if we are
1446 	 * doing a reopen(), we don't generate FMA ereports if we notice that
1447 	 * it's still faulted.
1448 	 */
1449 	vd->vdev_prevstate = vd->vdev_state;
1450 
1451 	if (vd->vdev_offline)
1452 		vd->vdev_state = VDEV_STATE_OFFLINE;
1453 	else
1454 		vd->vdev_state = VDEV_STATE_CLOSED;
1455 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1456 }
1457 
1458 void
1459 vdev_hold(vdev_t *vd)
1460 {
1461 	spa_t *spa = vd->vdev_spa;
1462 
1463 	ASSERT(spa_is_root(spa));
1464 	if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1465 		return;
1466 
1467 	for (int c = 0; c < vd->vdev_children; c++)
1468 		vdev_hold(vd->vdev_child[c]);
1469 
1470 	if (vd->vdev_ops->vdev_op_leaf)
1471 		vd->vdev_ops->vdev_op_hold(vd);
1472 }
1473 
1474 void
1475 vdev_rele(vdev_t *vd)
1476 {
1477 	spa_t *spa = vd->vdev_spa;
1478 
1479 	ASSERT(spa_is_root(spa));
1480 	for (int c = 0; c < vd->vdev_children; c++)
1481 		vdev_rele(vd->vdev_child[c]);
1482 
1483 	if (vd->vdev_ops->vdev_op_leaf)
1484 		vd->vdev_ops->vdev_op_rele(vd);
1485 }
1486 
1487 /*
1488  * Reopen all interior vdevs and any unopened leaves.  We don't actually
1489  * reopen leaf vdevs which had previously been opened as they might deadlock
1490  * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
1491  * If the leaf has never been opened then open it, as usual.
1492  */
1493 void
1494 vdev_reopen(vdev_t *vd)
1495 {
1496 	spa_t *spa = vd->vdev_spa;
1497 
1498 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1499 
1500 	/* set the reopening flag unless we're taking the vdev offline */
1501 	vd->vdev_reopening = !vd->vdev_offline;
1502 	vdev_close(vd);
1503 	(void) vdev_open(vd);
1504 
1505 	/*
1506 	 * Call vdev_validate() here to make sure we have the same device.
1507 	 * Otherwise, a device with an invalid label could be successfully
1508 	 * opened in response to vdev_reopen().
1509 	 */
1510 	if (vd->vdev_aux) {
1511 		(void) vdev_validate_aux(vd);
1512 		if (vdev_readable(vd) && vdev_writeable(vd) &&
1513 		    vd->vdev_aux == &spa->spa_l2cache &&
1514 		    !l2arc_vdev_present(vd))
1515 			l2arc_add_vdev(spa, vd);
1516 	} else {
1517 		(void) vdev_validate(vd, B_TRUE);
1518 	}
1519 
1520 	/*
1521 	 * Reassess parent vdev's health.
1522 	 */
1523 	vdev_propagate_state(vd);
1524 }
1525 
1526 int
1527 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1528 {
1529 	int error;
1530 
1531 	/*
1532 	 * Normally, partial opens (e.g. of a mirror) are allowed.
1533 	 * For a create, however, we want to fail the request if
1534 	 * there are any components we can't open.
1535 	 */
1536 	error = vdev_open(vd);
1537 
1538 	if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1539 		vdev_close(vd);
1540 		return (error ? error : ENXIO);
1541 	}
1542 
1543 	/*
1544 	 * Recursively load DTLs and initialize all labels.
1545 	 */
1546 	if ((error = vdev_dtl_load(vd)) != 0 ||
1547 	    (error = vdev_label_init(vd, txg, isreplacing ?
1548 	    VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1549 		vdev_close(vd);
1550 		return (error);
1551 	}
1552 
1553 	return (0);
1554 }
1555 
1556 void
1557 vdev_metaslab_set_size(vdev_t *vd)
1558 {
1559 	/*
1560 	 * Aim for roughly metaslabs_per_vdev (default 200) metaslabs per vdev.
1561 	 */
1562 	vd->vdev_ms_shift = highbit64(vd->vdev_asize / metaslabs_per_vdev);
1563 	vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1564 }
1565 
1566 void
1567 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1568 {
1569 	ASSERT(vd == vd->vdev_top);
1570 	ASSERT(!vd->vdev_ishole);
1571 	ASSERT(ISP2(flags));
1572 	ASSERT(spa_writeable(vd->vdev_spa));
1573 
1574 	if (flags & VDD_METASLAB)
1575 		(void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1576 
1577 	if (flags & VDD_DTL)
1578 		(void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1579 
1580 	(void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1581 }
1582 
1583 void
1584 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
1585 {
1586 	for (int c = 0; c < vd->vdev_children; c++)
1587 		vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
1588 
1589 	if (vd->vdev_ops->vdev_op_leaf)
1590 		vdev_dirty(vd->vdev_top, flags, vd, txg);
1591 }
1592 
1593 /*
1594  * DTLs.
1595  *
1596  * A vdev's DTL (dirty time log) is the set of transaction groups for which
1597  * the vdev has less than perfect replication.  There are four kinds of DTL:
1598  *
1599  * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1600  *
1601  * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1602  *
1603  * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1604  *	scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1605  *	txgs that was scrubbed.
1606  *
1607  * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1608  *	persistent errors or just some device being offline.
1609  *	Unlike the other three, the DTL_OUTAGE map is not generally
1610  *	maintained; it's only computed when needed, typically to
1611  *	determine whether a device can be detached.
1612  *
1613  * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1614  * either has the data or it doesn't.
1615  *
1616  * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1617  * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1618  * if any child is less than fully replicated, then so is its parent.
1619  * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1620  * comprising only those txgs which appear in 'maxfaults' or more children;
1621  * those are the txgs we don't have enough replication to read.  For example,
1622  * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1623  * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1624  * two child DTL_MISSING maps.
1625  *
1626  * It should be clear from the above that to compute the DTLs and outage maps
1627  * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1628  * Therefore, that is all we keep on disk.  When loading the pool, or after
1629  * a configuration change, we generate all other DTLs from first principles.
1630  */
1631 void
1632 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1633 {
1634 	range_tree_t *rt = vd->vdev_dtl[t];
1635 
1636 	ASSERT(t < DTL_TYPES);
1637 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1638 	ASSERT(spa_writeable(vd->vdev_spa));
1639 
1640 	mutex_enter(rt->rt_lock);
1641 	if (!range_tree_contains(rt, txg, size))
1642 		range_tree_add(rt, txg, size);
1643 	mutex_exit(rt->rt_lock);
1644 }
1645 
1646 boolean_t
1647 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1648 {
1649 	range_tree_t *rt = vd->vdev_dtl[t];
1650 	boolean_t dirty = B_FALSE;
1651 
1652 	ASSERT(t < DTL_TYPES);
1653 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1654 
1655 	mutex_enter(rt->rt_lock);
1656 	if (range_tree_space(rt) != 0)
1657 		dirty = range_tree_contains(rt, txg, size);
1658 	mutex_exit(rt->rt_lock);
1659 
1660 	return (dirty);
1661 }
1662 
1663 boolean_t
1664 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1665 {
1666 	range_tree_t *rt = vd->vdev_dtl[t];
1667 	boolean_t empty;
1668 
1669 	mutex_enter(rt->rt_lock);
1670 	empty = (range_tree_space(rt) == 0);
1671 	mutex_exit(rt->rt_lock);
1672 
1673 	return (empty);
1674 }
1675 
1676 /*
1677  * Returns the lowest txg in the DTL range.
1678  */
1679 static uint64_t
1680 vdev_dtl_min(vdev_t *vd)
1681 {
1682 	range_seg_t *rs;
1683 
1684 	ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1685 	ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1686 	ASSERT0(vd->vdev_children);
1687 
1688 	rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1689 	return (rs->rs_start - 1);
1690 }
1691 
1692 /*
1693  * Returns the highest txg in the DTL.
1694  */
1695 static uint64_t
1696 vdev_dtl_max(vdev_t *vd)
1697 {
1698 	range_seg_t *rs;
1699 
1700 	ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1701 	ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1702 	ASSERT0(vd->vdev_children);
1703 
1704 	rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1705 	return (rs->rs_end);
1706 }
1707 
1708 /*
1709  * Determine if a resilvering vdev should remove any DTL entries from
1710  * its range. If the vdev was resilvering for the entire duration of the
1711  * scan then it should excise that range from its DTLs. Otherwise, this
1712  * vdev is considered partially resilvered and should leave its DTL
1713  * entries intact. The comment in vdev_dtl_reassess() describes how we
1714  * excise the DTLs.
1715  */
1716 static boolean_t
1717 vdev_dtl_should_excise(vdev_t *vd)
1718 {
1719 	spa_t *spa = vd->vdev_spa;
1720 	dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1721 
1722 	ASSERT0(scn->scn_phys.scn_errors);
1723 	ASSERT0(vd->vdev_children);
1724 
1725 	if (vd->vdev_resilver_txg == 0 ||
1726 	    range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0)
1727 		return (B_TRUE);
1728 
1729 	/*
1730 	 * When a resilver is initiated the scan will assign the scn_max_txg
1731 	 * value to the highest txg value that exists in all DTLs. If this
1732 	 * device's max DTL is not part of this scan (i.e. it is not in
1733 	 * the range (scn_min_txg, scn_max_txg] then it is not eligible
1734 	 * for excision.
1735 	 */
1736 	if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
1737 		ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd));
1738 		ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg);
1739 		ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg);
1740 		return (B_TRUE);
1741 	}
1742 	return (B_FALSE);
1743 }
1744 
1745 /*
1746  * Reassess DTLs after a config change or scrub completion.
1747  */
1748 void
1749 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1750 {
1751 	spa_t *spa = vd->vdev_spa;
1752 	avl_tree_t reftree;
1753 	int minref;
1754 
1755 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1756 
1757 	for (int c = 0; c < vd->vdev_children; c++)
1758 		vdev_dtl_reassess(vd->vdev_child[c], txg,
1759 		    scrub_txg, scrub_done);
1760 
1761 	if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1762 		return;
1763 
1764 	if (vd->vdev_ops->vdev_op_leaf) {
1765 		dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1766 
1767 		mutex_enter(&vd->vdev_dtl_lock);
1768 
1769 		/*
1770 		 * If we've completed a scan cleanly then determine
1771 		 * if this vdev should remove any DTLs. We only want to
1772 		 * excise regions on vdevs that were available during
1773 		 * the entire duration of this scan.
1774 		 */
1775 		if (scrub_txg != 0 &&
1776 		    (spa->spa_scrub_started ||
1777 		    (scn != NULL && scn->scn_phys.scn_errors == 0)) &&
1778 		    vdev_dtl_should_excise(vd)) {
1779 			/*
1780 			 * We completed a scrub up to scrub_txg.  If we
1781 			 * did it without rebooting, then the scrub dtl
1782 			 * will be valid, so excise the old region and
1783 			 * fold in the scrub dtl.  Otherwise, leave the
1784 			 * dtl as-is if there was an error.
1785 			 *
1786 			 * There's little trick here: to excise the beginning
1787 			 * of the DTL_MISSING map, we put it into a reference
1788 			 * tree and then add a segment with refcnt -1 that
1789 			 * covers the range [0, scrub_txg).  This means
1790 			 * that each txg in that range has refcnt -1 or 0.
1791 			 * We then add DTL_SCRUB with a refcnt of 2, so that
1792 			 * entries in the range [0, scrub_txg) will have a
1793 			 * positive refcnt -- either 1 or 2.  We then convert
1794 			 * the reference tree into the new DTL_MISSING map.
1795 			 */
1796 			space_reftree_create(&reftree);
1797 			space_reftree_add_map(&reftree,
1798 			    vd->vdev_dtl[DTL_MISSING], 1);
1799 			space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
1800 			space_reftree_add_map(&reftree,
1801 			    vd->vdev_dtl[DTL_SCRUB], 2);
1802 			space_reftree_generate_map(&reftree,
1803 			    vd->vdev_dtl[DTL_MISSING], 1);
1804 			space_reftree_destroy(&reftree);
1805 		}
1806 		range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1807 		range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1808 		    range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
1809 		if (scrub_done)
1810 			range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1811 		range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1812 		if (!vdev_readable(vd))
1813 			range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1814 		else
1815 			range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1816 			    range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
1817 
1818 		/*
1819 		 * If the vdev was resilvering and no longer has any
1820 		 * DTLs then reset its resilvering flag.
1821 		 */
1822 		if (vd->vdev_resilver_txg != 0 &&
1823 		    range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0 &&
1824 		    range_tree_space(vd->vdev_dtl[DTL_OUTAGE]) == 0)
1825 			vd->vdev_resilver_txg = 0;
1826 
1827 		mutex_exit(&vd->vdev_dtl_lock);
1828 
1829 		if (txg != 0)
1830 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1831 		return;
1832 	}
1833 
1834 	mutex_enter(&vd->vdev_dtl_lock);
1835 	for (int t = 0; t < DTL_TYPES; t++) {
1836 		/* account for child's outage in parent's missing map */
1837 		int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
1838 		if (t == DTL_SCRUB)
1839 			continue;			/* leaf vdevs only */
1840 		if (t == DTL_PARTIAL)
1841 			minref = 1;			/* i.e. non-zero */
1842 		else if (vd->vdev_nparity != 0)
1843 			minref = vd->vdev_nparity + 1;	/* RAID-Z */
1844 		else
1845 			minref = vd->vdev_children;	/* any kind of mirror */
1846 		space_reftree_create(&reftree);
1847 		for (int c = 0; c < vd->vdev_children; c++) {
1848 			vdev_t *cvd = vd->vdev_child[c];
1849 			mutex_enter(&cvd->vdev_dtl_lock);
1850 			space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
1851 			mutex_exit(&cvd->vdev_dtl_lock);
1852 		}
1853 		space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
1854 		space_reftree_destroy(&reftree);
1855 	}
1856 	mutex_exit(&vd->vdev_dtl_lock);
1857 }
1858 
1859 int
1860 vdev_dtl_load(vdev_t *vd)
1861 {
1862 	spa_t *spa = vd->vdev_spa;
1863 	objset_t *mos = spa->spa_meta_objset;
1864 	int error = 0;
1865 
1866 	if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
1867 		ASSERT(!vd->vdev_ishole);
1868 
1869 		error = space_map_open(&vd->vdev_dtl_sm, mos,
1870 		    vd->vdev_dtl_object, 0, -1ULL, 0, &vd->vdev_dtl_lock);
1871 		if (error)
1872 			return (error);
1873 		ASSERT(vd->vdev_dtl_sm != NULL);
1874 
1875 		mutex_enter(&vd->vdev_dtl_lock);
1876 
1877 		/*
1878 		 * Now that we've opened the space_map we need to update
1879 		 * the in-core DTL.
1880 		 */
1881 		space_map_update(vd->vdev_dtl_sm);
1882 
1883 		error = space_map_load(vd->vdev_dtl_sm,
1884 		    vd->vdev_dtl[DTL_MISSING], SM_ALLOC);
1885 		mutex_exit(&vd->vdev_dtl_lock);
1886 
1887 		return (error);
1888 	}
1889 
1890 	for (int c = 0; c < vd->vdev_children; c++) {
1891 		error = vdev_dtl_load(vd->vdev_child[c]);
1892 		if (error != 0)
1893 			break;
1894 	}
1895 
1896 	return (error);
1897 }
1898 
1899 void
1900 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
1901 {
1902 	spa_t *spa = vd->vdev_spa;
1903 	range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
1904 	objset_t *mos = spa->spa_meta_objset;
1905 	range_tree_t *rtsync;
1906 	kmutex_t rtlock;
1907 	dmu_tx_t *tx;
1908 	uint64_t object = space_map_object(vd->vdev_dtl_sm);
1909 
1910 	ASSERT(!vd->vdev_ishole);
1911 	ASSERT(vd->vdev_ops->vdev_op_leaf);
1912 
1913 	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1914 
1915 	if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
1916 		mutex_enter(&vd->vdev_dtl_lock);
1917 		space_map_free(vd->vdev_dtl_sm, tx);
1918 		space_map_close(vd->vdev_dtl_sm);
1919 		vd->vdev_dtl_sm = NULL;
1920 		mutex_exit(&vd->vdev_dtl_lock);
1921 		dmu_tx_commit(tx);
1922 		return;
1923 	}
1924 
1925 	if (vd->vdev_dtl_sm == NULL) {
1926 		uint64_t new_object;
1927 
1928 		new_object = space_map_alloc(mos, tx);
1929 		VERIFY3U(new_object, !=, 0);
1930 
1931 		VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
1932 		    0, -1ULL, 0, &vd->vdev_dtl_lock));
1933 		ASSERT(vd->vdev_dtl_sm != NULL);
1934 	}
1935 
1936 	mutex_init(&rtlock, NULL, MUTEX_DEFAULT, NULL);
1937 
1938 	rtsync = range_tree_create(NULL, NULL, &rtlock);
1939 
1940 	mutex_enter(&rtlock);
1941 
1942 	mutex_enter(&vd->vdev_dtl_lock);
1943 	range_tree_walk(rt, range_tree_add, rtsync);
1944 	mutex_exit(&vd->vdev_dtl_lock);
1945 
1946 	space_map_truncate(vd->vdev_dtl_sm, tx);
1947 	space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, tx);
1948 	range_tree_vacate(rtsync, NULL, NULL);
1949 
1950 	range_tree_destroy(rtsync);
1951 
1952 	mutex_exit(&rtlock);
1953 	mutex_destroy(&rtlock);
1954 
1955 	/*
1956 	 * If the object for the space map has changed then dirty
1957 	 * the top level so that we update the config.
1958 	 */
1959 	if (object != space_map_object(vd->vdev_dtl_sm)) {
1960 		zfs_dbgmsg("txg %llu, spa %s, DTL old object %llu, "
1961 		    "new object %llu", txg, spa_name(spa), object,
1962 		    space_map_object(vd->vdev_dtl_sm));
1963 		vdev_config_dirty(vd->vdev_top);
1964 	}
1965 
1966 	dmu_tx_commit(tx);
1967 
1968 	mutex_enter(&vd->vdev_dtl_lock);
1969 	space_map_update(vd->vdev_dtl_sm);
1970 	mutex_exit(&vd->vdev_dtl_lock);
1971 }
1972 
1973 /*
1974  * Determine whether the specified vdev can be offlined/detached/removed
1975  * without losing data.
1976  */
1977 boolean_t
1978 vdev_dtl_required(vdev_t *vd)
1979 {
1980 	spa_t *spa = vd->vdev_spa;
1981 	vdev_t *tvd = vd->vdev_top;
1982 	uint8_t cant_read = vd->vdev_cant_read;
1983 	boolean_t required;
1984 
1985 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1986 
1987 	if (vd == spa->spa_root_vdev || vd == tvd)
1988 		return (B_TRUE);
1989 
1990 	/*
1991 	 * Temporarily mark the device as unreadable, and then determine
1992 	 * whether this results in any DTL outages in the top-level vdev.
1993 	 * If not, we can safely offline/detach/remove the device.
1994 	 */
1995 	vd->vdev_cant_read = B_TRUE;
1996 	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1997 	required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
1998 	vd->vdev_cant_read = cant_read;
1999 	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2000 
2001 	if (!required && zio_injection_enabled)
2002 		required = !!zio_handle_device_injection(vd, NULL, ECHILD);
2003 
2004 	return (required);
2005 }
2006 
2007 /*
2008  * Determine if resilver is needed, and if so the txg range.
2009  */
2010 boolean_t
2011 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
2012 {
2013 	boolean_t needed = B_FALSE;
2014 	uint64_t thismin = UINT64_MAX;
2015 	uint64_t thismax = 0;
2016 
2017 	if (vd->vdev_children == 0) {
2018 		mutex_enter(&vd->vdev_dtl_lock);
2019 		if (range_tree_space(vd->vdev_dtl[DTL_MISSING]) != 0 &&
2020 		    vdev_writeable(vd)) {
2021 
2022 			thismin = vdev_dtl_min(vd);
2023 			thismax = vdev_dtl_max(vd);
2024 			needed = B_TRUE;
2025 		}
2026 		mutex_exit(&vd->vdev_dtl_lock);
2027 	} else {
2028 		for (int c = 0; c < vd->vdev_children; c++) {
2029 			vdev_t *cvd = vd->vdev_child[c];
2030 			uint64_t cmin, cmax;
2031 
2032 			if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
2033 				thismin = MIN(thismin, cmin);
2034 				thismax = MAX(thismax, cmax);
2035 				needed = B_TRUE;
2036 			}
2037 		}
2038 	}
2039 
2040 	if (needed && minp) {
2041 		*minp = thismin;
2042 		*maxp = thismax;
2043 	}
2044 	return (needed);
2045 }
2046 
2047 void
2048 vdev_load(vdev_t *vd)
2049 {
2050 	/*
2051 	 * Recursively load all children.
2052 	 */
2053 	for (int c = 0; c < vd->vdev_children; c++)
2054 		vdev_load(vd->vdev_child[c]);
2055 
2056 	/*
2057 	 * If this is a top-level vdev, initialize its metaslabs.
2058 	 */
2059 	if (vd == vd->vdev_top && !vd->vdev_ishole &&
2060 	    (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
2061 	    vdev_metaslab_init(vd, 0) != 0))
2062 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2063 		    VDEV_AUX_CORRUPT_DATA);
2064 
2065 	/*
2066 	 * If this is a leaf vdev, load its DTL.
2067 	 */
2068 	if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
2069 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2070 		    VDEV_AUX_CORRUPT_DATA);
2071 }
2072 
2073 /*
2074  * The special vdev case is used for hot spares and l2cache devices.  Its
2075  * sole purpose it to set the vdev state for the associated vdev.  To do this,
2076  * we make sure that we can open the underlying device, then try to read the
2077  * label, and make sure that the label is sane and that it hasn't been
2078  * repurposed to another pool.
2079  */
2080 int
2081 vdev_validate_aux(vdev_t *vd)
2082 {
2083 	nvlist_t *label;
2084 	uint64_t guid, version;
2085 	uint64_t state;
2086 
2087 	if (!vdev_readable(vd))
2088 		return (0);
2089 
2090 	if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
2091 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2092 		    VDEV_AUX_CORRUPT_DATA);
2093 		return (-1);
2094 	}
2095 
2096 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
2097 	    !SPA_VERSION_IS_SUPPORTED(version) ||
2098 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
2099 	    guid != vd->vdev_guid ||
2100 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
2101 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2102 		    VDEV_AUX_CORRUPT_DATA);
2103 		nvlist_free(label);
2104 		return (-1);
2105 	}
2106 
2107 	/*
2108 	 * We don't actually check the pool state here.  If it's in fact in
2109 	 * use by another pool, we update this fact on the fly when requested.
2110 	 */
2111 	nvlist_free(label);
2112 	return (0);
2113 }
2114 
2115 void
2116 vdev_remove(vdev_t *vd, uint64_t txg)
2117 {
2118 	spa_t *spa = vd->vdev_spa;
2119 	objset_t *mos = spa->spa_meta_objset;
2120 	dmu_tx_t *tx;
2121 
2122 	tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2123 
2124 	if (vd->vdev_ms != NULL) {
2125 		metaslab_group_t *mg = vd->vdev_mg;
2126 
2127 		metaslab_group_histogram_verify(mg);
2128 		metaslab_class_histogram_verify(mg->mg_class);
2129 
2130 		for (int m = 0; m < vd->vdev_ms_count; m++) {
2131 			metaslab_t *msp = vd->vdev_ms[m];
2132 
2133 			if (msp == NULL || msp->ms_sm == NULL)
2134 				continue;
2135 
2136 			mutex_enter(&msp->ms_lock);
2137 			/*
2138 			 * If the metaslab was not loaded when the vdev
2139 			 * was removed then the histogram accounting may
2140 			 * not be accurate. Update the histogram information
2141 			 * here so that we ensure that the metaslab group
2142 			 * and metaslab class are up-to-date.
2143 			 */
2144 			metaslab_group_histogram_remove(mg, msp);
2145 
2146 			VERIFY0(space_map_allocated(msp->ms_sm));
2147 			space_map_free(msp->ms_sm, tx);
2148 			space_map_close(msp->ms_sm);
2149 			msp->ms_sm = NULL;
2150 			mutex_exit(&msp->ms_lock);
2151 		}
2152 
2153 		metaslab_group_histogram_verify(mg);
2154 		metaslab_class_histogram_verify(mg->mg_class);
2155 		for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
2156 			ASSERT0(mg->mg_histogram[i]);
2157 
2158 	}
2159 
2160 	if (vd->vdev_ms_array) {
2161 		(void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2162 		vd->vdev_ms_array = 0;
2163 	}
2164 	dmu_tx_commit(tx);
2165 }
2166 
2167 void
2168 vdev_sync_done(vdev_t *vd, uint64_t txg)
2169 {
2170 	metaslab_t *msp;
2171 	boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2172 
2173 	ASSERT(!vd->vdev_ishole);
2174 
2175 	while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
2176 		metaslab_sync_done(msp, txg);
2177 
2178 	if (reassess)
2179 		metaslab_sync_reassess(vd->vdev_mg);
2180 }
2181 
2182 void
2183 vdev_sync(vdev_t *vd, uint64_t txg)
2184 {
2185 	spa_t *spa = vd->vdev_spa;
2186 	vdev_t *lvd;
2187 	metaslab_t *msp;
2188 	dmu_tx_t *tx;
2189 
2190 	ASSERT(!vd->vdev_ishole);
2191 
2192 	if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2193 		ASSERT(vd == vd->vdev_top);
2194 		tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2195 		vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2196 		    DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2197 		ASSERT(vd->vdev_ms_array != 0);
2198 		vdev_config_dirty(vd);
2199 		dmu_tx_commit(tx);
2200 	}
2201 
2202 	/*
2203 	 * Remove the metadata associated with this vdev once it's empty.
2204 	 */
2205 	if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2206 		vdev_remove(vd, txg);
2207 
2208 	while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2209 		metaslab_sync(msp, txg);
2210 		(void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2211 	}
2212 
2213 	while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2214 		vdev_dtl_sync(lvd, txg);
2215 
2216 	(void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2217 }
2218 
2219 uint64_t
2220 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2221 {
2222 	return (vd->vdev_ops->vdev_op_asize(vd, psize));
2223 }
2224 
2225 /*
2226  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
2227  * not be opened, and no I/O is attempted.
2228  */
2229 int
2230 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2231 {
2232 	vdev_t *vd, *tvd;
2233 
2234 	spa_vdev_state_enter(spa, SCL_NONE);
2235 
2236 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2237 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2238 
2239 	if (!vd->vdev_ops->vdev_op_leaf)
2240 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2241 
2242 	tvd = vd->vdev_top;
2243 
2244 	/*
2245 	 * We don't directly use the aux state here, but if we do a
2246 	 * vdev_reopen(), we need this value to be present to remember why we
2247 	 * were faulted.
2248 	 */
2249 	vd->vdev_label_aux = aux;
2250 
2251 	/*
2252 	 * Faulted state takes precedence over degraded.
2253 	 */
2254 	vd->vdev_delayed_close = B_FALSE;
2255 	vd->vdev_faulted = 1ULL;
2256 	vd->vdev_degraded = 0ULL;
2257 	vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2258 
2259 	/*
2260 	 * If this device has the only valid copy of the data, then
2261 	 * back off and simply mark the vdev as degraded instead.
2262 	 */
2263 	if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2264 		vd->vdev_degraded = 1ULL;
2265 		vd->vdev_faulted = 0ULL;
2266 
2267 		/*
2268 		 * If we reopen the device and it's not dead, only then do we
2269 		 * mark it degraded.
2270 		 */
2271 		vdev_reopen(tvd);
2272 
2273 		if (vdev_readable(vd))
2274 			vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2275 	}
2276 
2277 	return (spa_vdev_state_exit(spa, vd, 0));
2278 }
2279 
2280 /*
2281  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
2282  * user that something is wrong.  The vdev continues to operate as normal as far
2283  * as I/O is concerned.
2284  */
2285 int
2286 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2287 {
2288 	vdev_t *vd;
2289 
2290 	spa_vdev_state_enter(spa, SCL_NONE);
2291 
2292 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2293 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2294 
2295 	if (!vd->vdev_ops->vdev_op_leaf)
2296 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2297 
2298 	/*
2299 	 * If the vdev is already faulted, then don't do anything.
2300 	 */
2301 	if (vd->vdev_faulted || vd->vdev_degraded)
2302 		return (spa_vdev_state_exit(spa, NULL, 0));
2303 
2304 	vd->vdev_degraded = 1ULL;
2305 	if (!vdev_is_dead(vd))
2306 		vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2307 		    aux);
2308 
2309 	return (spa_vdev_state_exit(spa, vd, 0));
2310 }
2311 
2312 /*
2313  * Online the given vdev.
2314  *
2315  * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things.  First, any attached
2316  * spare device should be detached when the device finishes resilvering.
2317  * Second, the online should be treated like a 'test' online case, so no FMA
2318  * events are generated if the device fails to open.
2319  */
2320 int
2321 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2322 {
2323 	vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2324 
2325 	spa_vdev_state_enter(spa, SCL_NONE);
2326 
2327 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2328 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2329 
2330 	if (!vd->vdev_ops->vdev_op_leaf)
2331 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2332 
2333 	tvd = vd->vdev_top;
2334 	vd->vdev_offline = B_FALSE;
2335 	vd->vdev_tmpoffline = B_FALSE;
2336 	vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2337 	vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2338 
2339 	/* XXX - L2ARC 1.0 does not support expansion */
2340 	if (!vd->vdev_aux) {
2341 		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2342 			pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2343 	}
2344 
2345 	vdev_reopen(tvd);
2346 	vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2347 
2348 	if (!vd->vdev_aux) {
2349 		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2350 			pvd->vdev_expanding = B_FALSE;
2351 	}
2352 
2353 	if (newstate)
2354 		*newstate = vd->vdev_state;
2355 	if ((flags & ZFS_ONLINE_UNSPARE) &&
2356 	    !vdev_is_dead(vd) && vd->vdev_parent &&
2357 	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2358 	    vd->vdev_parent->vdev_child[0] == vd)
2359 		vd->vdev_unspare = B_TRUE;
2360 
2361 	if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2362 
2363 		/* XXX - L2ARC 1.0 does not support expansion */
2364 		if (vd->vdev_aux)
2365 			return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2366 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2367 	}
2368 	return (spa_vdev_state_exit(spa, vd, 0));
2369 }
2370 
2371 static int
2372 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2373 {
2374 	vdev_t *vd, *tvd;
2375 	int error = 0;
2376 	uint64_t generation;
2377 	metaslab_group_t *mg;
2378 
2379 top:
2380 	spa_vdev_state_enter(spa, SCL_ALLOC);
2381 
2382 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2383 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2384 
2385 	if (!vd->vdev_ops->vdev_op_leaf)
2386 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2387 
2388 	tvd = vd->vdev_top;
2389 	mg = tvd->vdev_mg;
2390 	generation = spa->spa_config_generation + 1;
2391 
2392 	/*
2393 	 * If the device isn't already offline, try to offline it.
2394 	 */
2395 	if (!vd->vdev_offline) {
2396 		/*
2397 		 * If this device has the only valid copy of some data,
2398 		 * don't allow it to be offlined. Log devices are always
2399 		 * expendable.
2400 		 */
2401 		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2402 		    vdev_dtl_required(vd))
2403 			return (spa_vdev_state_exit(spa, NULL, EBUSY));
2404 
2405 		/*
2406 		 * If the top-level is a slog and it has had allocations
2407 		 * then proceed.  We check that the vdev's metaslab group
2408 		 * is not NULL since it's possible that we may have just
2409 		 * added this vdev but not yet initialized its metaslabs.
2410 		 */
2411 		if (tvd->vdev_islog && mg != NULL) {
2412 			/*
2413 			 * Prevent any future allocations.
2414 			 */
2415 			metaslab_group_passivate(mg);
2416 			(void) spa_vdev_state_exit(spa, vd, 0);
2417 
2418 			error = spa_offline_log(spa);
2419 
2420 			spa_vdev_state_enter(spa, SCL_ALLOC);
2421 
2422 			/*
2423 			 * Check to see if the config has changed.
2424 			 */
2425 			if (error || generation != spa->spa_config_generation) {
2426 				metaslab_group_activate(mg);
2427 				if (error)
2428 					return (spa_vdev_state_exit(spa,
2429 					    vd, error));
2430 				(void) spa_vdev_state_exit(spa, vd, 0);
2431 				goto top;
2432 			}
2433 			ASSERT0(tvd->vdev_stat.vs_alloc);
2434 		}
2435 
2436 		/*
2437 		 * Offline this device and reopen its top-level vdev.
2438 		 * If the top-level vdev is a log device then just offline
2439 		 * it. Otherwise, if this action results in the top-level
2440 		 * vdev becoming unusable, undo it and fail the request.
2441 		 */
2442 		vd->vdev_offline = B_TRUE;
2443 		vdev_reopen(tvd);
2444 
2445 		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2446 		    vdev_is_dead(tvd)) {
2447 			vd->vdev_offline = B_FALSE;
2448 			vdev_reopen(tvd);
2449 			return (spa_vdev_state_exit(spa, NULL, EBUSY));
2450 		}
2451 
2452 		/*
2453 		 * Add the device back into the metaslab rotor so that
2454 		 * once we online the device it's open for business.
2455 		 */
2456 		if (tvd->vdev_islog && mg != NULL)
2457 			metaslab_group_activate(mg);
2458 	}
2459 
2460 	vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2461 
2462 	return (spa_vdev_state_exit(spa, vd, 0));
2463 }
2464 
2465 int
2466 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2467 {
2468 	int error;
2469 
2470 	mutex_enter(&spa->spa_vdev_top_lock);
2471 	error = vdev_offline_locked(spa, guid, flags);
2472 	mutex_exit(&spa->spa_vdev_top_lock);
2473 
2474 	return (error);
2475 }
2476 
2477 /*
2478  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
2479  * vdev_offline(), we assume the spa config is locked.  We also clear all
2480  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
2481  */
2482 void
2483 vdev_clear(spa_t *spa, vdev_t *vd)
2484 {
2485 	vdev_t *rvd = spa->spa_root_vdev;
2486 
2487 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2488 
2489 	if (vd == NULL)
2490 		vd = rvd;
2491 
2492 	vd->vdev_stat.vs_read_errors = 0;
2493 	vd->vdev_stat.vs_write_errors = 0;
2494 	vd->vdev_stat.vs_checksum_errors = 0;
2495 
2496 	for (int c = 0; c < vd->vdev_children; c++)
2497 		vdev_clear(spa, vd->vdev_child[c]);
2498 
2499 	/*
2500 	 * If we're in the FAULTED state or have experienced failed I/O, then
2501 	 * clear the persistent state and attempt to reopen the device.  We
2502 	 * also mark the vdev config dirty, so that the new faulted state is
2503 	 * written out to disk.
2504 	 */
2505 	if (vd->vdev_faulted || vd->vdev_degraded ||
2506 	    !vdev_readable(vd) || !vdev_writeable(vd)) {
2507 
2508 		/*
2509 		 * When reopening in reponse to a clear event, it may be due to
2510 		 * a fmadm repair request.  In this case, if the device is
2511 		 * still broken, we want to still post the ereport again.
2512 		 */
2513 		vd->vdev_forcefault = B_TRUE;
2514 
2515 		vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2516 		vd->vdev_cant_read = B_FALSE;
2517 		vd->vdev_cant_write = B_FALSE;
2518 
2519 		vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
2520 
2521 		vd->vdev_forcefault = B_FALSE;
2522 
2523 		if (vd != rvd && vdev_writeable(vd->vdev_top))
2524 			vdev_state_dirty(vd->vdev_top);
2525 
2526 		if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2527 			spa_async_request(spa, SPA_ASYNC_RESILVER);
2528 
2529 		spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
2530 	}
2531 
2532 	/*
2533 	 * When clearing a FMA-diagnosed fault, we always want to
2534 	 * unspare the device, as we assume that the original spare was
2535 	 * done in response to the FMA fault.
2536 	 */
2537 	if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2538 	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2539 	    vd->vdev_parent->vdev_child[0] == vd)
2540 		vd->vdev_unspare = B_TRUE;
2541 }
2542 
2543 boolean_t
2544 vdev_is_dead(vdev_t *vd)
2545 {
2546 	/*
2547 	 * Holes and missing devices are always considered "dead".
2548 	 * This simplifies the code since we don't have to check for
2549 	 * these types of devices in the various code paths.
2550 	 * Instead we rely on the fact that we skip over dead devices
2551 	 * before issuing I/O to them.
2552 	 */
2553 	return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2554 	    vd->vdev_ops == &vdev_missing_ops);
2555 }
2556 
2557 boolean_t
2558 vdev_readable(vdev_t *vd)
2559 {
2560 	return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2561 }
2562 
2563 boolean_t
2564 vdev_writeable(vdev_t *vd)
2565 {
2566 	return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2567 }
2568 
2569 boolean_t
2570 vdev_allocatable(vdev_t *vd)
2571 {
2572 	uint64_t state = vd->vdev_state;
2573 
2574 	/*
2575 	 * We currently allow allocations from vdevs which may be in the
2576 	 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2577 	 * fails to reopen then we'll catch it later when we're holding
2578 	 * the proper locks.  Note that we have to get the vdev state
2579 	 * in a local variable because although it changes atomically,
2580 	 * we're asking two separate questions about it.
2581 	 */
2582 	return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2583 	    !vd->vdev_cant_write && !vd->vdev_ishole);
2584 }
2585 
2586 boolean_t
2587 vdev_accessible(vdev_t *vd, zio_t *zio)
2588 {
2589 	ASSERT(zio->io_vd == vd);
2590 
2591 	if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2592 		return (B_FALSE);
2593 
2594 	if (zio->io_type == ZIO_TYPE_READ)
2595 		return (!vd->vdev_cant_read);
2596 
2597 	if (zio->io_type == ZIO_TYPE_WRITE)
2598 		return (!vd->vdev_cant_write);
2599 
2600 	return (B_TRUE);
2601 }
2602 
2603 /*
2604  * Get statistics for the given vdev.
2605  */
2606 void
2607 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2608 {
2609 	spa_t *spa = vd->vdev_spa;
2610 	vdev_t *rvd = spa->spa_root_vdev;
2611 
2612 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2613 
2614 	mutex_enter(&vd->vdev_stat_lock);
2615 	bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2616 	vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2617 	vs->vs_state = vd->vdev_state;
2618 	vs->vs_rsize = vdev_get_min_asize(vd);
2619 	if (vd->vdev_ops->vdev_op_leaf)
2620 		vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2621 	vs->vs_esize = vd->vdev_max_asize - vd->vdev_asize;
2622 	if (vd->vdev_aux == NULL && vd == vd->vdev_top && !vd->vdev_ishole) {
2623 		vs->vs_fragmentation = vd->vdev_mg->mg_fragmentation;
2624 	}
2625 
2626 	/*
2627 	 * If we're getting stats on the root vdev, aggregate the I/O counts
2628 	 * over all top-level vdevs (i.e. the direct children of the root).
2629 	 */
2630 	if (vd == rvd) {
2631 		for (int c = 0; c < rvd->vdev_children; c++) {
2632 			vdev_t *cvd = rvd->vdev_child[c];
2633 			vdev_stat_t *cvs = &cvd->vdev_stat;
2634 
2635 			for (int t = 0; t < ZIO_TYPES; t++) {
2636 				vs->vs_ops[t] += cvs->vs_ops[t];
2637 				vs->vs_bytes[t] += cvs->vs_bytes[t];
2638 			}
2639 			cvs->vs_scan_removing = cvd->vdev_removing;
2640 		}
2641 	}
2642 	mutex_exit(&vd->vdev_stat_lock);
2643 }
2644 
2645 void
2646 vdev_clear_stats(vdev_t *vd)
2647 {
2648 	mutex_enter(&vd->vdev_stat_lock);
2649 	vd->vdev_stat.vs_space = 0;
2650 	vd->vdev_stat.vs_dspace = 0;
2651 	vd->vdev_stat.vs_alloc = 0;
2652 	mutex_exit(&vd->vdev_stat_lock);
2653 }
2654 
2655 void
2656 vdev_scan_stat_init(vdev_t *vd)
2657 {
2658 	vdev_stat_t *vs = &vd->vdev_stat;
2659 
2660 	for (int c = 0; c < vd->vdev_children; c++)
2661 		vdev_scan_stat_init(vd->vdev_child[c]);
2662 
2663 	mutex_enter(&vd->vdev_stat_lock);
2664 	vs->vs_scan_processed = 0;
2665 	mutex_exit(&vd->vdev_stat_lock);
2666 }
2667 
2668 void
2669 vdev_stat_update(zio_t *zio, uint64_t psize)
2670 {
2671 	spa_t *spa = zio->io_spa;
2672 	vdev_t *rvd = spa->spa_root_vdev;
2673 	vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2674 	vdev_t *pvd;
2675 	uint64_t txg = zio->io_txg;
2676 	vdev_stat_t *vs = &vd->vdev_stat;
2677 	zio_type_t type = zio->io_type;
2678 	int flags = zio->io_flags;
2679 
2680 	/*
2681 	 * If this i/o is a gang leader, it didn't do any actual work.
2682 	 */
2683 	if (zio->io_gang_tree)
2684 		return;
2685 
2686 	if (zio->io_error == 0) {
2687 		/*
2688 		 * If this is a root i/o, don't count it -- we've already
2689 		 * counted the top-level vdevs, and vdev_get_stats() will
2690 		 * aggregate them when asked.  This reduces contention on
2691 		 * the root vdev_stat_lock and implicitly handles blocks
2692 		 * that compress away to holes, for which there is no i/o.
2693 		 * (Holes never create vdev children, so all the counters
2694 		 * remain zero, which is what we want.)
2695 		 *
2696 		 * Note: this only applies to successful i/o (io_error == 0)
2697 		 * because unlike i/o counts, errors are not additive.
2698 		 * When reading a ditto block, for example, failure of
2699 		 * one top-level vdev does not imply a root-level error.
2700 		 */
2701 		if (vd == rvd)
2702 			return;
2703 
2704 		ASSERT(vd == zio->io_vd);
2705 
2706 		if (flags & ZIO_FLAG_IO_BYPASS)
2707 			return;
2708 
2709 		mutex_enter(&vd->vdev_stat_lock);
2710 
2711 		if (flags & ZIO_FLAG_IO_REPAIR) {
2712 			if (flags & ZIO_FLAG_SCAN_THREAD) {
2713 				dsl_scan_phys_t *scn_phys =
2714 				    &spa->spa_dsl_pool->dp_scan->scn_phys;
2715 				uint64_t *processed = &scn_phys->scn_processed;
2716 
2717 				/* XXX cleanup? */
2718 				if (vd->vdev_ops->vdev_op_leaf)
2719 					atomic_add_64(processed, psize);
2720 				vs->vs_scan_processed += psize;
2721 			}
2722 
2723 			if (flags & ZIO_FLAG_SELF_HEAL)
2724 				vs->vs_self_healed += psize;
2725 		}
2726 
2727 		vs->vs_ops[type]++;
2728 		vs->vs_bytes[type] += psize;
2729 
2730 		mutex_exit(&vd->vdev_stat_lock);
2731 		return;
2732 	}
2733 
2734 	if (flags & ZIO_FLAG_SPECULATIVE)
2735 		return;
2736 
2737 	/*
2738 	 * If this is an I/O error that is going to be retried, then ignore the
2739 	 * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
2740 	 * hard errors, when in reality they can happen for any number of
2741 	 * innocuous reasons (bus resets, MPxIO link failure, etc).
2742 	 */
2743 	if (zio->io_error == EIO &&
2744 	    !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2745 		return;
2746 
2747 	/*
2748 	 * Intent logs writes won't propagate their error to the root
2749 	 * I/O so don't mark these types of failures as pool-level
2750 	 * errors.
2751 	 */
2752 	if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
2753 		return;
2754 
2755 	mutex_enter(&vd->vdev_stat_lock);
2756 	if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
2757 		if (zio->io_error == ECKSUM)
2758 			vs->vs_checksum_errors++;
2759 		else
2760 			vs->vs_read_errors++;
2761 	}
2762 	if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
2763 		vs->vs_write_errors++;
2764 	mutex_exit(&vd->vdev_stat_lock);
2765 
2766 	if (type == ZIO_TYPE_WRITE && txg != 0 &&
2767 	    (!(flags & ZIO_FLAG_IO_REPAIR) ||
2768 	    (flags & ZIO_FLAG_SCAN_THREAD) ||
2769 	    spa->spa_claiming)) {
2770 		/*
2771 		 * This is either a normal write (not a repair), or it's
2772 		 * a repair induced by the scrub thread, or it's a repair
2773 		 * made by zil_claim() during spa_load() in the first txg.
2774 		 * In the normal case, we commit the DTL change in the same
2775 		 * txg as the block was born.  In the scrub-induced repair
2776 		 * case, we know that scrubs run in first-pass syncing context,
2777 		 * so we commit the DTL change in spa_syncing_txg(spa).
2778 		 * In the zil_claim() case, we commit in spa_first_txg(spa).
2779 		 *
2780 		 * We currently do not make DTL entries for failed spontaneous
2781 		 * self-healing writes triggered by normal (non-scrubbing)
2782 		 * reads, because we have no transactional context in which to
2783 		 * do so -- and it's not clear that it'd be desirable anyway.
2784 		 */
2785 		if (vd->vdev_ops->vdev_op_leaf) {
2786 			uint64_t commit_txg = txg;
2787 			if (flags & ZIO_FLAG_SCAN_THREAD) {
2788 				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2789 				ASSERT(spa_sync_pass(spa) == 1);
2790 				vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2791 				commit_txg = spa_syncing_txg(spa);
2792 			} else if (spa->spa_claiming) {
2793 				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2794 				commit_txg = spa_first_txg(spa);
2795 			}
2796 			ASSERT(commit_txg >= spa_syncing_txg(spa));
2797 			if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
2798 				return;
2799 			for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2800 				vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2801 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
2802 		}
2803 		if (vd != rvd)
2804 			vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
2805 	}
2806 }
2807 
2808 /*
2809  * Update the in-core space usage stats for this vdev, its metaslab class,
2810  * and the root vdev.
2811  */
2812 void
2813 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
2814     int64_t space_delta)
2815 {
2816 	int64_t dspace_delta = space_delta;
2817 	spa_t *spa = vd->vdev_spa;
2818 	vdev_t *rvd = spa->spa_root_vdev;
2819 	metaslab_group_t *mg = vd->vdev_mg;
2820 	metaslab_class_t *mc = mg ? mg->mg_class : NULL;
2821 
2822 	ASSERT(vd == vd->vdev_top);
2823 
2824 	/*
2825 	 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2826 	 * factor.  We must calculate this here and not at the root vdev
2827 	 * because the root vdev's psize-to-asize is simply the max of its
2828 	 * childrens', thus not accurate enough for us.
2829 	 */
2830 	ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
2831 	ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
2832 	dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2833 	    vd->vdev_deflate_ratio;
2834 
2835 	mutex_enter(&vd->vdev_stat_lock);
2836 	vd->vdev_stat.vs_alloc += alloc_delta;
2837 	vd->vdev_stat.vs_space += space_delta;
2838 	vd->vdev_stat.vs_dspace += dspace_delta;
2839 	mutex_exit(&vd->vdev_stat_lock);
2840 
2841 	if (mc == spa_normal_class(spa)) {
2842 		mutex_enter(&rvd->vdev_stat_lock);
2843 		rvd->vdev_stat.vs_alloc += alloc_delta;
2844 		rvd->vdev_stat.vs_space += space_delta;
2845 		rvd->vdev_stat.vs_dspace += dspace_delta;
2846 		mutex_exit(&rvd->vdev_stat_lock);
2847 	}
2848 
2849 	if (mc != NULL) {
2850 		ASSERT(rvd == vd->vdev_parent);
2851 		ASSERT(vd->vdev_ms_count != 0);
2852 
2853 		metaslab_class_space_update(mc,
2854 		    alloc_delta, defer_delta, space_delta, dspace_delta);
2855 	}
2856 }
2857 
2858 /*
2859  * Mark a top-level vdev's config as dirty, placing it on the dirty list
2860  * so that it will be written out next time the vdev configuration is synced.
2861  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
2862  */
2863 void
2864 vdev_config_dirty(vdev_t *vd)
2865 {
2866 	spa_t *spa = vd->vdev_spa;
2867 	vdev_t *rvd = spa->spa_root_vdev;
2868 	int c;
2869 
2870 	ASSERT(spa_writeable(spa));
2871 
2872 	/*
2873 	 * If this is an aux vdev (as with l2cache and spare devices), then we
2874 	 * update the vdev config manually and set the sync flag.
2875 	 */
2876 	if (vd->vdev_aux != NULL) {
2877 		spa_aux_vdev_t *sav = vd->vdev_aux;
2878 		nvlist_t **aux;
2879 		uint_t naux;
2880 
2881 		for (c = 0; c < sav->sav_count; c++) {
2882 			if (sav->sav_vdevs[c] == vd)
2883 				break;
2884 		}
2885 
2886 		if (c == sav->sav_count) {
2887 			/*
2888 			 * We're being removed.  There's nothing more to do.
2889 			 */
2890 			ASSERT(sav->sav_sync == B_TRUE);
2891 			return;
2892 		}
2893 
2894 		sav->sav_sync = B_TRUE;
2895 
2896 		if (nvlist_lookup_nvlist_array(sav->sav_config,
2897 		    ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
2898 			VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
2899 			    ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
2900 		}
2901 
2902 		ASSERT(c < naux);
2903 
2904 		/*
2905 		 * Setting the nvlist in the middle if the array is a little
2906 		 * sketchy, but it will work.
2907 		 */
2908 		nvlist_free(aux[c]);
2909 		aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
2910 
2911 		return;
2912 	}
2913 
2914 	/*
2915 	 * The dirty list is protected by the SCL_CONFIG lock.  The caller
2916 	 * must either hold SCL_CONFIG as writer, or must be the sync thread
2917 	 * (which holds SCL_CONFIG as reader).  There's only one sync thread,
2918 	 * so this is sufficient to ensure mutual exclusion.
2919 	 */
2920 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2921 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2922 	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
2923 
2924 	if (vd == rvd) {
2925 		for (c = 0; c < rvd->vdev_children; c++)
2926 			vdev_config_dirty(rvd->vdev_child[c]);
2927 	} else {
2928 		ASSERT(vd == vd->vdev_top);
2929 
2930 		if (!list_link_active(&vd->vdev_config_dirty_node) &&
2931 		    !vd->vdev_ishole)
2932 			list_insert_head(&spa->spa_config_dirty_list, vd);
2933 	}
2934 }
2935 
2936 void
2937 vdev_config_clean(vdev_t *vd)
2938 {
2939 	spa_t *spa = vd->vdev_spa;
2940 
2941 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2942 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2943 	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
2944 
2945 	ASSERT(list_link_active(&vd->vdev_config_dirty_node));
2946 	list_remove(&spa->spa_config_dirty_list, vd);
2947 }
2948 
2949 /*
2950  * Mark a top-level vdev's state as dirty, so that the next pass of
2951  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
2952  * the state changes from larger config changes because they require
2953  * much less locking, and are often needed for administrative actions.
2954  */
2955 void
2956 vdev_state_dirty(vdev_t *vd)
2957 {
2958 	spa_t *spa = vd->vdev_spa;
2959 
2960 	ASSERT(spa_writeable(spa));
2961 	ASSERT(vd == vd->vdev_top);
2962 
2963 	/*
2964 	 * The state list is protected by the SCL_STATE lock.  The caller
2965 	 * must either hold SCL_STATE as writer, or must be the sync thread
2966 	 * (which holds SCL_STATE as reader).  There's only one sync thread,
2967 	 * so this is sufficient to ensure mutual exclusion.
2968 	 */
2969 	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2970 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2971 	    spa_config_held(spa, SCL_STATE, RW_READER)));
2972 
2973 	if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
2974 		list_insert_head(&spa->spa_state_dirty_list, vd);
2975 }
2976 
2977 void
2978 vdev_state_clean(vdev_t *vd)
2979 {
2980 	spa_t *spa = vd->vdev_spa;
2981 
2982 	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2983 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2984 	    spa_config_held(spa, SCL_STATE, RW_READER)));
2985 
2986 	ASSERT(list_link_active(&vd->vdev_state_dirty_node));
2987 	list_remove(&spa->spa_state_dirty_list, vd);
2988 }
2989 
2990 /*
2991  * Propagate vdev state up from children to parent.
2992  */
2993 void
2994 vdev_propagate_state(vdev_t *vd)
2995 {
2996 	spa_t *spa = vd->vdev_spa;
2997 	vdev_t *rvd = spa->spa_root_vdev;
2998 	int degraded = 0, faulted = 0;
2999 	int corrupted = 0;
3000 	vdev_t *child;
3001 
3002 	if (vd->vdev_children > 0) {
3003 		for (int c = 0; c < vd->vdev_children; c++) {
3004 			child = vd->vdev_child[c];
3005 
3006 			/*
3007 			 * Don't factor holes into the decision.
3008 			 */
3009 			if (child->vdev_ishole)
3010 				continue;
3011 
3012 			if (!vdev_readable(child) ||
3013 			    (!vdev_writeable(child) && spa_writeable(spa))) {
3014 				/*
3015 				 * Root special: if there is a top-level log
3016 				 * device, treat the root vdev as if it were
3017 				 * degraded.
3018 				 */
3019 				if (child->vdev_islog && vd == rvd)
3020 					degraded++;
3021 				else
3022 					faulted++;
3023 			} else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
3024 				degraded++;
3025 			}
3026 
3027 			if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
3028 				corrupted++;
3029 		}
3030 
3031 		vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
3032 
3033 		/*
3034 		 * Root special: if there is a top-level vdev that cannot be
3035 		 * opened due to corrupted metadata, then propagate the root
3036 		 * vdev's aux state as 'corrupt' rather than 'insufficient
3037 		 * replicas'.
3038 		 */
3039 		if (corrupted && vd == rvd &&
3040 		    rvd->vdev_state == VDEV_STATE_CANT_OPEN)
3041 			vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
3042 			    VDEV_AUX_CORRUPT_DATA);
3043 	}
3044 
3045 	if (vd->vdev_parent)
3046 		vdev_propagate_state(vd->vdev_parent);
3047 }
3048 
3049 /*
3050  * Set a vdev's state.  If this is during an open, we don't update the parent
3051  * state, because we're in the process of opening children depth-first.
3052  * Otherwise, we propagate the change to the parent.
3053  *
3054  * If this routine places a device in a faulted state, an appropriate ereport is
3055  * generated.
3056  */
3057 void
3058 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
3059 {
3060 	uint64_t save_state;
3061 	spa_t *spa = vd->vdev_spa;
3062 
3063 	if (state == vd->vdev_state) {
3064 		vd->vdev_stat.vs_aux = aux;
3065 		return;
3066 	}
3067 
3068 	save_state = vd->vdev_state;
3069 
3070 	vd->vdev_state = state;
3071 	vd->vdev_stat.vs_aux = aux;
3072 
3073 	/*
3074 	 * If we are setting the vdev state to anything but an open state, then
3075 	 * always close the underlying device unless the device has requested
3076 	 * a delayed close (i.e. we're about to remove or fault the device).
3077 	 * Otherwise, we keep accessible but invalid devices open forever.
3078 	 * We don't call vdev_close() itself, because that implies some extra
3079 	 * checks (offline, etc) that we don't want here.  This is limited to
3080 	 * leaf devices, because otherwise closing the device will affect other
3081 	 * children.
3082 	 */
3083 	if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
3084 	    vd->vdev_ops->vdev_op_leaf)
3085 		vd->vdev_ops->vdev_op_close(vd);
3086 
3087 	/*
3088 	 * If we have brought this vdev back into service, we need
3089 	 * to notify fmd so that it can gracefully repair any outstanding
3090 	 * cases due to a missing device.  We do this in all cases, even those
3091 	 * that probably don't correlate to a repaired fault.  This is sure to
3092 	 * catch all cases, and we let the zfs-retire agent sort it out.  If
3093 	 * this is a transient state it's OK, as the retire agent will
3094 	 * double-check the state of the vdev before repairing it.
3095 	 */
3096 	if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
3097 	    vd->vdev_prevstate != state)
3098 		zfs_post_state_change(spa, vd);
3099 
3100 	if (vd->vdev_removed &&
3101 	    state == VDEV_STATE_CANT_OPEN &&
3102 	    (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
3103 		/*
3104 		 * If the previous state is set to VDEV_STATE_REMOVED, then this
3105 		 * device was previously marked removed and someone attempted to
3106 		 * reopen it.  If this failed due to a nonexistent device, then
3107 		 * keep the device in the REMOVED state.  We also let this be if
3108 		 * it is one of our special test online cases, which is only
3109 		 * attempting to online the device and shouldn't generate an FMA
3110 		 * fault.
3111 		 */
3112 		vd->vdev_state = VDEV_STATE_REMOVED;
3113 		vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
3114 	} else if (state == VDEV_STATE_REMOVED) {
3115 		vd->vdev_removed = B_TRUE;
3116 	} else if (state == VDEV_STATE_CANT_OPEN) {
3117 		/*
3118 		 * If we fail to open a vdev during an import or recovery, we
3119 		 * mark it as "not available", which signifies that it was
3120 		 * never there to begin with.  Failure to open such a device
3121 		 * is not considered an error.
3122 		 */
3123 		if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
3124 		    spa_load_state(spa) == SPA_LOAD_RECOVER) &&
3125 		    vd->vdev_ops->vdev_op_leaf)
3126 			vd->vdev_not_present = 1;
3127 
3128 		/*
3129 		 * Post the appropriate ereport.  If the 'prevstate' field is
3130 		 * set to something other than VDEV_STATE_UNKNOWN, it indicates
3131 		 * that this is part of a vdev_reopen().  In this case, we don't
3132 		 * want to post the ereport if the device was already in the
3133 		 * CANT_OPEN state beforehand.
3134 		 *
3135 		 * If the 'checkremove' flag is set, then this is an attempt to
3136 		 * online the device in response to an insertion event.  If we
3137 		 * hit this case, then we have detected an insertion event for a
3138 		 * faulted or offline device that wasn't in the removed state.
3139 		 * In this scenario, we don't post an ereport because we are
3140 		 * about to replace the device, or attempt an online with
3141 		 * vdev_forcefault, which will generate the fault for us.
3142 		 */
3143 		if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3144 		    !vd->vdev_not_present && !vd->vdev_checkremove &&
3145 		    vd != spa->spa_root_vdev) {
3146 			const char *class;
3147 
3148 			switch (aux) {
3149 			case VDEV_AUX_OPEN_FAILED:
3150 				class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3151 				break;
3152 			case VDEV_AUX_CORRUPT_DATA:
3153 				class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3154 				break;
3155 			case VDEV_AUX_NO_REPLICAS:
3156 				class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3157 				break;
3158 			case VDEV_AUX_BAD_GUID_SUM:
3159 				class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3160 				break;
3161 			case VDEV_AUX_TOO_SMALL:
3162 				class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3163 				break;
3164 			case VDEV_AUX_BAD_LABEL:
3165 				class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3166 				break;
3167 			default:
3168 				class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3169 			}
3170 
3171 			zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3172 		}
3173 
3174 		/* Erase any notion of persistent removed state */
3175 		vd->vdev_removed = B_FALSE;
3176 	} else {
3177 		vd->vdev_removed = B_FALSE;
3178 	}
3179 
3180 	if (!isopen && vd->vdev_parent)
3181 		vdev_propagate_state(vd->vdev_parent);
3182 }
3183 
3184 /*
3185  * Check the vdev configuration to ensure that it's capable of supporting
3186  * a root pool. Currently, we do not support RAID-Z or partial configuration.
3187  * In addition, only a single top-level vdev is allowed and none of the leaves
3188  * can be wholedisks.
3189  */
3190 boolean_t
3191 vdev_is_bootable(vdev_t *vd)
3192 {
3193 	if (!vd->vdev_ops->vdev_op_leaf) {
3194 		char *vdev_type = vd->vdev_ops->vdev_op_type;
3195 
3196 		if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3197 		    vd->vdev_children > 1) {
3198 			return (B_FALSE);
3199 		} else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
3200 		    strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3201 			return (B_FALSE);
3202 		}
3203 	} else if (vd->vdev_wholedisk == 1) {
3204 		return (B_FALSE);
3205 	}
3206 
3207 	for (int c = 0; c < vd->vdev_children; c++) {
3208 		if (!vdev_is_bootable(vd->vdev_child[c]))
3209 			return (B_FALSE);
3210 	}
3211 	return (B_TRUE);
3212 }
3213 
3214 /*
3215  * Load the state from the original vdev tree (ovd) which
3216  * we've retrieved from the MOS config object. If the original
3217  * vdev was offline or faulted then we transfer that state to the
3218  * device in the current vdev tree (nvd).
3219  */
3220 void
3221 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3222 {
3223 	spa_t *spa = nvd->vdev_spa;
3224 
3225 	ASSERT(nvd->vdev_top->vdev_islog);
3226 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3227 	ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3228 
3229 	for (int c = 0; c < nvd->vdev_children; c++)
3230 		vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3231 
3232 	if (nvd->vdev_ops->vdev_op_leaf) {
3233 		/*
3234 		 * Restore the persistent vdev state
3235 		 */
3236 		nvd->vdev_offline = ovd->vdev_offline;
3237 		nvd->vdev_faulted = ovd->vdev_faulted;
3238 		nvd->vdev_degraded = ovd->vdev_degraded;
3239 		nvd->vdev_removed = ovd->vdev_removed;
3240 	}
3241 }
3242 
3243 /*
3244  * Determine if a log device has valid content.  If the vdev was
3245  * removed or faulted in the MOS config then we know that
3246  * the content on the log device has already been written to the pool.
3247  */
3248 boolean_t
3249 vdev_log_state_valid(vdev_t *vd)
3250 {
3251 	if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3252 	    !vd->vdev_removed)
3253 		return (B_TRUE);
3254 
3255 	for (int c = 0; c < vd->vdev_children; c++)
3256 		if (vdev_log_state_valid(vd->vdev_child[c]))
3257 			return (B_TRUE);
3258 
3259 	return (B_FALSE);
3260 }
3261 
3262 /*
3263  * Expand a vdev if possible.
3264  */
3265 void
3266 vdev_expand(vdev_t *vd, uint64_t txg)
3267 {
3268 	ASSERT(vd->vdev_top == vd);
3269 	ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3270 
3271 	if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3272 		VERIFY(vdev_metaslab_init(vd, txg) == 0);
3273 		vdev_config_dirty(vd);
3274 	}
3275 }
3276 
3277 /*
3278  * Split a vdev.
3279  */
3280 void
3281 vdev_split(vdev_t *vd)
3282 {
3283 	vdev_t *cvd, *pvd = vd->vdev_parent;
3284 
3285 	vdev_remove_child(pvd, vd);
3286 	vdev_compact_children(pvd);
3287 
3288 	cvd = pvd->vdev_child[0];
3289 	if (pvd->vdev_children == 1) {
3290 		vdev_remove_parent(cvd);
3291 		cvd->vdev_splitting = B_TRUE;
3292 	}
3293 	vdev_propagate_state(cvd);
3294 }
3295 
3296 void
3297 vdev_deadman(vdev_t *vd)
3298 {
3299 	for (int c = 0; c < vd->vdev_children; c++) {
3300 		vdev_t *cvd = vd->vdev_child[c];
3301 
3302 		vdev_deadman(cvd);
3303 	}
3304 
3305 	if (vd->vdev_ops->vdev_op_leaf) {
3306 		vdev_queue_t *vq = &vd->vdev_queue;
3307 
3308 		mutex_enter(&vq->vq_lock);
3309 		if (avl_numnodes(&vq->vq_active_tree) > 0) {
3310 			spa_t *spa = vd->vdev_spa;
3311 			zio_t *fio;
3312 			uint64_t delta;
3313 
3314 			/*
3315 			 * Look at the head of all the pending queues,
3316 			 * if any I/O has been outstanding for longer than
3317 			 * the spa_deadman_synctime we panic the system.
3318 			 */
3319 			fio = avl_first(&vq->vq_active_tree);
3320 			delta = gethrtime() - fio->io_timestamp;
3321 			if (delta > spa_deadman_synctime(spa)) {
3322 				zfs_dbgmsg("SLOW IO: zio timestamp %lluns, "
3323 				    "delta %lluns, last io %lluns",
3324 				    fio->io_timestamp, delta,
3325 				    vq->vq_io_complete_ts);
3326 				fm_panic("I/O to pool '%s' appears to be "
3327 				    "hung.", spa_name(spa));
3328 			}
3329 		}
3330 		mutex_exit(&vq->vq_lock);
3331 	}
3332 }
3333