xref: /titanic_51/usr/src/uts/common/fs/zfs/space_map.c (revision 6ed9368a130d7c9a82e574da808d34034da33748)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 /*
26  * Copyright (c) 2012, 2014 by Delphix. All rights reserved.
27  */
28 
29 #include <sys/zfs_context.h>
30 #include <sys/spa.h>
31 #include <sys/dmu.h>
32 #include <sys/dmu_tx.h>
33 #include <sys/dnode.h>
34 #include <sys/dsl_pool.h>
35 #include <sys/zio.h>
36 #include <sys/space_map.h>
37 #include <sys/refcount.h>
38 #include <sys/zfeature.h>
39 
40 /*
41  * This value controls how the space map's block size is allowed to grow.
42  * If the value is set to the same size as SPACE_MAP_INITIAL_BLOCKSIZE then
43  * the space map block size will remain fixed. Setting this value to something
44  * greater than SPACE_MAP_INITIAL_BLOCKSIZE will allow the space map to
45  * increase its block size as needed. To maintain backwards compatibilty the
46  * space map's block size must be a power of 2 and SPACE_MAP_INITIAL_BLOCKSIZE
47  * or larger.
48  */
49 int space_map_max_blksz = (1 << 12);
50 
51 /*
52  * Load the space map disk into the specified range tree. Segments of maptype
53  * are added to the range tree, other segment types are removed.
54  *
55  * Note: space_map_load() will drop sm_lock across dmu_read() calls.
56  * The caller must be OK with this.
57  */
58 int
59 space_map_load(space_map_t *sm, range_tree_t *rt, maptype_t maptype)
60 {
61 	uint64_t *entry, *entry_map, *entry_map_end;
62 	uint64_t bufsize, size, offset, end, space;
63 	int error = 0;
64 
65 	ASSERT(MUTEX_HELD(sm->sm_lock));
66 
67 	end = space_map_length(sm);
68 	space = space_map_allocated(sm);
69 
70 	VERIFY0(range_tree_space(rt));
71 
72 	if (maptype == SM_FREE) {
73 		range_tree_add(rt, sm->sm_start, sm->sm_size);
74 		space = sm->sm_size - space;
75 	}
76 
77 	bufsize = MAX(sm->sm_blksz, SPA_MINBLOCKSIZE);
78 	entry_map = zio_buf_alloc(bufsize);
79 
80 	mutex_exit(sm->sm_lock);
81 	if (end > bufsize) {
82 		dmu_prefetch(sm->sm_os, space_map_object(sm), bufsize,
83 		    end - bufsize);
84 	}
85 	mutex_enter(sm->sm_lock);
86 
87 	for (offset = 0; offset < end; offset += bufsize) {
88 		size = MIN(end - offset, bufsize);
89 		VERIFY(P2PHASE(size, sizeof (uint64_t)) == 0);
90 		VERIFY(size != 0);
91 		ASSERT3U(sm->sm_blksz, !=, 0);
92 
93 		dprintf("object=%llu  offset=%llx  size=%llx\n",
94 		    space_map_object(sm), offset, size);
95 
96 		mutex_exit(sm->sm_lock);
97 		error = dmu_read(sm->sm_os, space_map_object(sm), offset, size,
98 		    entry_map, DMU_READ_PREFETCH);
99 		mutex_enter(sm->sm_lock);
100 		if (error != 0)
101 			break;
102 
103 		entry_map_end = entry_map + (size / sizeof (uint64_t));
104 		for (entry = entry_map; entry < entry_map_end; entry++) {
105 			uint64_t e = *entry;
106 			uint64_t offset, size;
107 
108 			if (SM_DEBUG_DECODE(e))		/* Skip debug entries */
109 				continue;
110 
111 			offset = (SM_OFFSET_DECODE(e) << sm->sm_shift) +
112 			    sm->sm_start;
113 			size = SM_RUN_DECODE(e) << sm->sm_shift;
114 
115 			VERIFY0(P2PHASE(offset, 1ULL << sm->sm_shift));
116 			VERIFY0(P2PHASE(size, 1ULL << sm->sm_shift));
117 			VERIFY3U(offset, >=, sm->sm_start);
118 			VERIFY3U(offset + size, <=, sm->sm_start + sm->sm_size);
119 			if (SM_TYPE_DECODE(e) == maptype) {
120 				VERIFY3U(range_tree_space(rt) + size, <=,
121 				    sm->sm_size);
122 				range_tree_add(rt, offset, size);
123 			} else {
124 				range_tree_remove(rt, offset, size);
125 			}
126 		}
127 	}
128 
129 	if (error == 0)
130 		VERIFY3U(range_tree_space(rt), ==, space);
131 	else
132 		range_tree_vacate(rt, NULL, NULL);
133 
134 	zio_buf_free(entry_map, bufsize);
135 	return (error);
136 }
137 
138 void
139 space_map_histogram_clear(space_map_t *sm)
140 {
141 	if (sm->sm_dbuf->db_size != sizeof (space_map_phys_t))
142 		return;
143 
144 	bzero(sm->sm_phys->smp_histogram, sizeof (sm->sm_phys->smp_histogram));
145 }
146 
147 boolean_t
148 space_map_histogram_verify(space_map_t *sm, range_tree_t *rt)
149 {
150 	/*
151 	 * Verify that the in-core range tree does not have any
152 	 * ranges smaller than our sm_shift size.
153 	 */
154 	for (int i = 0; i < sm->sm_shift; i++) {
155 		if (rt->rt_histogram[i] != 0)
156 			return (B_FALSE);
157 	}
158 	return (B_TRUE);
159 }
160 
161 void
162 space_map_histogram_add(space_map_t *sm, range_tree_t *rt, dmu_tx_t *tx)
163 {
164 	int idx = 0;
165 
166 	ASSERT(MUTEX_HELD(rt->rt_lock));
167 	ASSERT(dmu_tx_is_syncing(tx));
168 	VERIFY3U(space_map_object(sm), !=, 0);
169 
170 	if (sm->sm_dbuf->db_size != sizeof (space_map_phys_t))
171 		return;
172 
173 	dmu_buf_will_dirty(sm->sm_dbuf, tx);
174 
175 	ASSERT(space_map_histogram_verify(sm, rt));
176 
177 	/*
178 	 * Transfer the content of the range tree histogram to the space
179 	 * map histogram. The space map histogram contains 32 buckets ranging
180 	 * between 2^sm_shift to 2^(32+sm_shift-1). The range tree,
181 	 * however, can represent ranges from 2^0 to 2^63. Since the space
182 	 * map only cares about allocatable blocks (minimum of sm_shift) we
183 	 * can safely ignore all ranges in the range tree smaller than sm_shift.
184 	 */
185 	for (int i = sm->sm_shift; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
186 
187 		/*
188 		 * Since the largest histogram bucket in the space map is
189 		 * 2^(32+sm_shift-1), we need to normalize the values in
190 		 * the range tree for any bucket larger than that size. For
191 		 * example given an sm_shift of 9, ranges larger than 2^40
192 		 * would get normalized as if they were 1TB ranges. Assume
193 		 * the range tree had a count of 5 in the 2^44 (16TB) bucket,
194 		 * the calculation below would normalize this to 5 * 2^4 (16).
195 		 */
196 		ASSERT3U(i, >=, idx + sm->sm_shift);
197 		sm->sm_phys->smp_histogram[idx] +=
198 		    rt->rt_histogram[i] << (i - idx - sm->sm_shift);
199 
200 		/*
201 		 * Increment the space map's index as long as we haven't
202 		 * reached the maximum bucket size. Accumulate all ranges
203 		 * larger than the max bucket size into the last bucket.
204 		 */
205 		if (idx < SPACE_MAP_HISTOGRAM_SIZE - 1) {
206 			ASSERT3U(idx + sm->sm_shift, ==, i);
207 			idx++;
208 			ASSERT3U(idx, <, SPACE_MAP_HISTOGRAM_SIZE);
209 		}
210 	}
211 }
212 
213 uint64_t
214 space_map_entries(space_map_t *sm, range_tree_t *rt)
215 {
216 	avl_tree_t *t = &rt->rt_root;
217 	range_seg_t *rs;
218 	uint64_t size, entries;
219 
220 	/*
221 	 * All space_maps always have a debug entry so account for it here.
222 	 */
223 	entries = 1;
224 
225 	/*
226 	 * Traverse the range tree and calculate the number of space map
227 	 * entries that would be required to write out the range tree.
228 	 */
229 	for (rs = avl_first(t); rs != NULL; rs = AVL_NEXT(t, rs)) {
230 		size = (rs->rs_end - rs->rs_start) >> sm->sm_shift;
231 		entries += howmany(size, SM_RUN_MAX);
232 	}
233 	return (entries);
234 }
235 
236 void
237 space_map_set_blocksize(space_map_t *sm, uint64_t size, dmu_tx_t *tx)
238 {
239 	uint32_t blksz;
240 	u_longlong_t blocks;
241 
242 	ASSERT3U(sm->sm_blksz, !=, 0);
243 	ASSERT3U(space_map_object(sm), !=, 0);
244 	ASSERT(sm->sm_dbuf != NULL);
245 	VERIFY(ISP2(space_map_max_blksz));
246 
247 	if (sm->sm_blksz >= space_map_max_blksz)
248 		return;
249 
250 	/*
251 	 * The object contains more than one block so we can't adjust
252 	 * its size.
253 	 */
254 	if (sm->sm_phys->smp_objsize > sm->sm_blksz)
255 		return;
256 
257 	if (size > sm->sm_blksz) {
258 		uint64_t newsz;
259 
260 		/*
261 		 * Older software versions treat space map blocks as fixed
262 		 * entities. The DMU is capable of handling different block
263 		 * sizes making it possible for us to increase the
264 		 * block size and maintain backwards compatibility. The
265 		 * caveat is that the new block sizes must be a
266 		 * power of 2 so that old software can append to the file,
267 		 * adding more blocks. The block size can grow until it
268 		 * reaches space_map_max_blksz.
269 		 */
270 		newsz = ISP2(size) ? size : 1ULL << highbit64(size);
271 		if (newsz > space_map_max_blksz)
272 			newsz = space_map_max_blksz;
273 
274 		VERIFY0(dmu_object_set_blocksize(sm->sm_os,
275 		    space_map_object(sm), newsz, 0, tx));
276 		dmu_object_size_from_db(sm->sm_dbuf, &blksz, &blocks);
277 
278 		zfs_dbgmsg("txg %llu, spa %s, increasing blksz from %d to %d",
279 		    dmu_tx_get_txg(tx), spa_name(dmu_objset_spa(sm->sm_os)),
280 		    sm->sm_blksz, blksz);
281 
282 		VERIFY3U(newsz, ==, blksz);
283 		VERIFY3U(sm->sm_blksz, <, blksz);
284 		sm->sm_blksz = blksz;
285 	}
286 }
287 
288 /*
289  * Note: space_map_write() will drop sm_lock across dmu_write() calls.
290  */
291 void
292 space_map_write(space_map_t *sm, range_tree_t *rt, maptype_t maptype,
293     dmu_tx_t *tx)
294 {
295 	objset_t *os = sm->sm_os;
296 	spa_t *spa = dmu_objset_spa(os);
297 	avl_tree_t *t = &rt->rt_root;
298 	range_seg_t *rs;
299 	uint64_t size, total, rt_space, nodes;
300 	uint64_t *entry, *entry_map, *entry_map_end;
301 	uint64_t newsz, expected_entries, actual_entries = 1;
302 
303 	ASSERT(MUTEX_HELD(rt->rt_lock));
304 	ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
305 	VERIFY3U(space_map_object(sm), !=, 0);
306 	dmu_buf_will_dirty(sm->sm_dbuf, tx);
307 
308 	/*
309 	 * This field is no longer necessary since the in-core space map
310 	 * now contains the object number but is maintained for backwards
311 	 * compatibility.
312 	 */
313 	sm->sm_phys->smp_object = sm->sm_object;
314 
315 	if (range_tree_space(rt) == 0) {
316 		VERIFY3U(sm->sm_object, ==, sm->sm_phys->smp_object);
317 		return;
318 	}
319 
320 	if (maptype == SM_ALLOC)
321 		sm->sm_phys->smp_alloc += range_tree_space(rt);
322 	else
323 		sm->sm_phys->smp_alloc -= range_tree_space(rt);
324 
325 	expected_entries = space_map_entries(sm, rt);
326 
327 	/*
328 	 * Calculate the new size for the space map on-disk and see if
329 	 * we can grow the block size to accommodate the new size.
330 	 */
331 	newsz = sm->sm_phys->smp_objsize + expected_entries * sizeof (uint64_t);
332 	space_map_set_blocksize(sm, newsz, tx);
333 
334 	entry_map = zio_buf_alloc(sm->sm_blksz);
335 	entry_map_end = entry_map + (sm->sm_blksz / sizeof (uint64_t));
336 	entry = entry_map;
337 
338 	*entry++ = SM_DEBUG_ENCODE(1) |
339 	    SM_DEBUG_ACTION_ENCODE(maptype) |
340 	    SM_DEBUG_SYNCPASS_ENCODE(spa_sync_pass(spa)) |
341 	    SM_DEBUG_TXG_ENCODE(dmu_tx_get_txg(tx));
342 
343 	total = 0;
344 	nodes = avl_numnodes(&rt->rt_root);
345 	rt_space = range_tree_space(rt);
346 	for (rs = avl_first(t); rs != NULL; rs = AVL_NEXT(t, rs)) {
347 		uint64_t start;
348 
349 		size = (rs->rs_end - rs->rs_start) >> sm->sm_shift;
350 		start = (rs->rs_start - sm->sm_start) >> sm->sm_shift;
351 
352 		total += size << sm->sm_shift;
353 
354 		while (size != 0) {
355 			uint64_t run_len;
356 
357 			run_len = MIN(size, SM_RUN_MAX);
358 
359 			if (entry == entry_map_end) {
360 				mutex_exit(rt->rt_lock);
361 				dmu_write(os, space_map_object(sm),
362 				    sm->sm_phys->smp_objsize, sm->sm_blksz,
363 				    entry_map, tx);
364 				mutex_enter(rt->rt_lock);
365 				sm->sm_phys->smp_objsize += sm->sm_blksz;
366 				entry = entry_map;
367 			}
368 
369 			*entry++ = SM_OFFSET_ENCODE(start) |
370 			    SM_TYPE_ENCODE(maptype) |
371 			    SM_RUN_ENCODE(run_len);
372 
373 			start += run_len;
374 			size -= run_len;
375 			actual_entries++;
376 		}
377 	}
378 
379 	if (entry != entry_map) {
380 		size = (entry - entry_map) * sizeof (uint64_t);
381 		mutex_exit(rt->rt_lock);
382 		dmu_write(os, space_map_object(sm), sm->sm_phys->smp_objsize,
383 		    size, entry_map, tx);
384 		mutex_enter(rt->rt_lock);
385 		sm->sm_phys->smp_objsize += size;
386 	}
387 	ASSERT3U(expected_entries, ==, actual_entries);
388 
389 	/*
390 	 * Ensure that the space_map's accounting wasn't changed
391 	 * while we were in the middle of writing it out.
392 	 */
393 	VERIFY3U(nodes, ==, avl_numnodes(&rt->rt_root));
394 	VERIFY3U(range_tree_space(rt), ==, rt_space);
395 	VERIFY3U(range_tree_space(rt), ==, total);
396 
397 	zio_buf_free(entry_map, sm->sm_blksz);
398 }
399 
400 static int
401 space_map_open_impl(space_map_t *sm)
402 {
403 	int error;
404 	u_longlong_t blocks;
405 
406 	error = dmu_bonus_hold(sm->sm_os, sm->sm_object, sm, &sm->sm_dbuf);
407 	if (error)
408 		return (error);
409 
410 	dmu_object_size_from_db(sm->sm_dbuf, &sm->sm_blksz, &blocks);
411 	sm->sm_phys = sm->sm_dbuf->db_data;
412 	return (0);
413 }
414 
415 int
416 space_map_open(space_map_t **smp, objset_t *os, uint64_t object,
417     uint64_t start, uint64_t size, uint8_t shift, kmutex_t *lp)
418 {
419 	space_map_t *sm;
420 	int error;
421 
422 	ASSERT(*smp == NULL);
423 	ASSERT(os != NULL);
424 	ASSERT(object != 0);
425 
426 	sm = kmem_zalloc(sizeof (space_map_t), KM_SLEEP);
427 
428 	sm->sm_start = start;
429 	sm->sm_size = size;
430 	sm->sm_shift = shift;
431 	sm->sm_lock = lp;
432 	sm->sm_os = os;
433 	sm->sm_object = object;
434 
435 	error = space_map_open_impl(sm);
436 	if (error != 0) {
437 		space_map_close(sm);
438 		return (error);
439 	}
440 
441 	*smp = sm;
442 
443 	return (0);
444 }
445 
446 void
447 space_map_close(space_map_t *sm)
448 {
449 	if (sm == NULL)
450 		return;
451 
452 	if (sm->sm_dbuf != NULL)
453 		dmu_buf_rele(sm->sm_dbuf, sm);
454 	sm->sm_dbuf = NULL;
455 	sm->sm_phys = NULL;
456 
457 	kmem_free(sm, sizeof (*sm));
458 }
459 
460 static void
461 space_map_reallocate(space_map_t *sm, dmu_tx_t *tx)
462 {
463 	ASSERT(dmu_tx_is_syncing(tx));
464 
465 	space_map_free(sm, tx);
466 	dmu_buf_rele(sm->sm_dbuf, sm);
467 
468 	sm->sm_object = space_map_alloc(sm->sm_os, tx);
469 	VERIFY0(space_map_open_impl(sm));
470 }
471 
472 void
473 space_map_truncate(space_map_t *sm, dmu_tx_t *tx)
474 {
475 	objset_t *os = sm->sm_os;
476 	spa_t *spa = dmu_objset_spa(os);
477 	dmu_object_info_t doi;
478 	int bonuslen;
479 
480 	ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
481 	ASSERT(dmu_tx_is_syncing(tx));
482 
483 	VERIFY0(dmu_free_range(os, space_map_object(sm), 0, -1ULL, tx));
484 	dmu_object_info_from_db(sm->sm_dbuf, &doi);
485 
486 	if (spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM)) {
487 		bonuslen = sizeof (space_map_phys_t);
488 		ASSERT3U(bonuslen, <=, dmu_bonus_max());
489 	} else {
490 		bonuslen = SPACE_MAP_SIZE_V0;
491 	}
492 
493 	if (bonuslen != doi.doi_bonus_size ||
494 	    doi.doi_data_block_size != SPACE_MAP_INITIAL_BLOCKSIZE) {
495 		zfs_dbgmsg("txg %llu, spa %s, reallocating: "
496 		    "old bonus %u, old blocksz %u", dmu_tx_get_txg(tx),
497 		    spa_name(spa), doi.doi_bonus_size, doi.doi_data_block_size);
498 		space_map_reallocate(sm, tx);
499 		VERIFY3U(sm->sm_blksz, ==, SPACE_MAP_INITIAL_BLOCKSIZE);
500 	}
501 
502 	dmu_buf_will_dirty(sm->sm_dbuf, tx);
503 	sm->sm_phys->smp_objsize = 0;
504 	sm->sm_phys->smp_alloc = 0;
505 }
506 
507 /*
508  * Update the in-core space_map allocation and length values.
509  */
510 void
511 space_map_update(space_map_t *sm)
512 {
513 	if (sm == NULL)
514 		return;
515 
516 	ASSERT(MUTEX_HELD(sm->sm_lock));
517 
518 	sm->sm_alloc = sm->sm_phys->smp_alloc;
519 	sm->sm_length = sm->sm_phys->smp_objsize;
520 }
521 
522 uint64_t
523 space_map_alloc(objset_t *os, dmu_tx_t *tx)
524 {
525 	spa_t *spa = dmu_objset_spa(os);
526 	uint64_t object;
527 	int bonuslen;
528 
529 	if (spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM)) {
530 		spa_feature_incr(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM, tx);
531 		bonuslen = sizeof (space_map_phys_t);
532 		ASSERT3U(bonuslen, <=, dmu_bonus_max());
533 	} else {
534 		bonuslen = SPACE_MAP_SIZE_V0;
535 	}
536 
537 	object = dmu_object_alloc(os,
538 	    DMU_OT_SPACE_MAP, SPACE_MAP_INITIAL_BLOCKSIZE,
539 	    DMU_OT_SPACE_MAP_HEADER, bonuslen, tx);
540 
541 	return (object);
542 }
543 
544 void
545 space_map_free(space_map_t *sm, dmu_tx_t *tx)
546 {
547 	spa_t *spa;
548 
549 	if (sm == NULL)
550 		return;
551 
552 	spa = dmu_objset_spa(sm->sm_os);
553 	if (spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM)) {
554 		dmu_object_info_t doi;
555 
556 		dmu_object_info_from_db(sm->sm_dbuf, &doi);
557 		if (doi.doi_bonus_size != SPACE_MAP_SIZE_V0) {
558 			VERIFY(spa_feature_is_active(spa,
559 			    SPA_FEATURE_SPACEMAP_HISTOGRAM));
560 			spa_feature_decr(spa,
561 			    SPA_FEATURE_SPACEMAP_HISTOGRAM, tx);
562 		}
563 	}
564 
565 	VERIFY3U(dmu_object_free(sm->sm_os, space_map_object(sm), tx), ==, 0);
566 	sm->sm_object = 0;
567 }
568 
569 uint64_t
570 space_map_object(space_map_t *sm)
571 {
572 	return (sm != NULL ? sm->sm_object : 0);
573 }
574 
575 /*
576  * Returns the already synced, on-disk allocated space.
577  */
578 uint64_t
579 space_map_allocated(space_map_t *sm)
580 {
581 	return (sm != NULL ? sm->sm_alloc : 0);
582 }
583 
584 /*
585  * Returns the already synced, on-disk length;
586  */
587 uint64_t
588 space_map_length(space_map_t *sm)
589 {
590 	return (sm != NULL ? sm->sm_length : 0);
591 }
592 
593 /*
594  * Returns the allocated space that is currently syncing.
595  */
596 int64_t
597 space_map_alloc_delta(space_map_t *sm)
598 {
599 	if (sm == NULL)
600 		return (0);
601 	ASSERT(sm->sm_dbuf != NULL);
602 	return (sm->sm_phys->smp_alloc - space_map_allocated(sm));
603 }
604