1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2013 by Delphix. All rights reserved. 24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 25 */ 26 27 #include <sys/zfs_context.h> 28 #include <sys/spa_impl.h> 29 #include <sys/spa_boot.h> 30 #include <sys/zio.h> 31 #include <sys/zio_checksum.h> 32 #include <sys/zio_compress.h> 33 #include <sys/dmu.h> 34 #include <sys/dmu_tx.h> 35 #include <sys/zap.h> 36 #include <sys/zil.h> 37 #include <sys/vdev_impl.h> 38 #include <sys/metaslab.h> 39 #include <sys/uberblock_impl.h> 40 #include <sys/txg.h> 41 #include <sys/avl.h> 42 #include <sys/unique.h> 43 #include <sys/dsl_pool.h> 44 #include <sys/dsl_dir.h> 45 #include <sys/dsl_prop.h> 46 #include <sys/dsl_scan.h> 47 #include <sys/fs/zfs.h> 48 #include <sys/metaslab_impl.h> 49 #include <sys/arc.h> 50 #include <sys/ddt.h> 51 #include "zfs_prop.h" 52 #include "zfeature_common.h" 53 54 /* 55 * SPA locking 56 * 57 * There are four basic locks for managing spa_t structures: 58 * 59 * spa_namespace_lock (global mutex) 60 * 61 * This lock must be acquired to do any of the following: 62 * 63 * - Lookup a spa_t by name 64 * - Add or remove a spa_t from the namespace 65 * - Increase spa_refcount from non-zero 66 * - Check if spa_refcount is zero 67 * - Rename a spa_t 68 * - add/remove/attach/detach devices 69 * - Held for the duration of create/destroy/import/export 70 * 71 * It does not need to handle recursion. A create or destroy may 72 * reference objects (files or zvols) in other pools, but by 73 * definition they must have an existing reference, and will never need 74 * to lookup a spa_t by name. 75 * 76 * spa_refcount (per-spa refcount_t protected by mutex) 77 * 78 * This reference count keep track of any active users of the spa_t. The 79 * spa_t cannot be destroyed or freed while this is non-zero. Internally, 80 * the refcount is never really 'zero' - opening a pool implicitly keeps 81 * some references in the DMU. Internally we check against spa_minref, but 82 * present the image of a zero/non-zero value to consumers. 83 * 84 * spa_config_lock[] (per-spa array of rwlocks) 85 * 86 * This protects the spa_t from config changes, and must be held in 87 * the following circumstances: 88 * 89 * - RW_READER to perform I/O to the spa 90 * - RW_WRITER to change the vdev config 91 * 92 * The locking order is fairly straightforward: 93 * 94 * spa_namespace_lock -> spa_refcount 95 * 96 * The namespace lock must be acquired to increase the refcount from 0 97 * or to check if it is zero. 98 * 99 * spa_refcount -> spa_config_lock[] 100 * 101 * There must be at least one valid reference on the spa_t to acquire 102 * the config lock. 103 * 104 * spa_namespace_lock -> spa_config_lock[] 105 * 106 * The namespace lock must always be taken before the config lock. 107 * 108 * 109 * The spa_namespace_lock can be acquired directly and is globally visible. 110 * 111 * The namespace is manipulated using the following functions, all of which 112 * require the spa_namespace_lock to be held. 113 * 114 * spa_lookup() Lookup a spa_t by name. 115 * 116 * spa_add() Create a new spa_t in the namespace. 117 * 118 * spa_remove() Remove a spa_t from the namespace. This also 119 * frees up any memory associated with the spa_t. 120 * 121 * spa_next() Returns the next spa_t in the system, or the 122 * first if NULL is passed. 123 * 124 * spa_evict_all() Shutdown and remove all spa_t structures in 125 * the system. 126 * 127 * spa_guid_exists() Determine whether a pool/device guid exists. 128 * 129 * The spa_refcount is manipulated using the following functions: 130 * 131 * spa_open_ref() Adds a reference to the given spa_t. Must be 132 * called with spa_namespace_lock held if the 133 * refcount is currently zero. 134 * 135 * spa_close() Remove a reference from the spa_t. This will 136 * not free the spa_t or remove it from the 137 * namespace. No locking is required. 138 * 139 * spa_refcount_zero() Returns true if the refcount is currently 140 * zero. Must be called with spa_namespace_lock 141 * held. 142 * 143 * The spa_config_lock[] is an array of rwlocks, ordered as follows: 144 * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV. 145 * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}(). 146 * 147 * To read the configuration, it suffices to hold one of these locks as reader. 148 * To modify the configuration, you must hold all locks as writer. To modify 149 * vdev state without altering the vdev tree's topology (e.g. online/offline), 150 * you must hold SCL_STATE and SCL_ZIO as writer. 151 * 152 * We use these distinct config locks to avoid recursive lock entry. 153 * For example, spa_sync() (which holds SCL_CONFIG as reader) induces 154 * block allocations (SCL_ALLOC), which may require reading space maps 155 * from disk (dmu_read() -> zio_read() -> SCL_ZIO). 156 * 157 * The spa config locks cannot be normal rwlocks because we need the 158 * ability to hand off ownership. For example, SCL_ZIO is acquired 159 * by the issuing thread and later released by an interrupt thread. 160 * They do, however, obey the usual write-wanted semantics to prevent 161 * writer (i.e. system administrator) starvation. 162 * 163 * The lock acquisition rules are as follows: 164 * 165 * SCL_CONFIG 166 * Protects changes to the vdev tree topology, such as vdev 167 * add/remove/attach/detach. Protects the dirty config list 168 * (spa_config_dirty_list) and the set of spares and l2arc devices. 169 * 170 * SCL_STATE 171 * Protects changes to pool state and vdev state, such as vdev 172 * online/offline/fault/degrade/clear. Protects the dirty state list 173 * (spa_state_dirty_list) and global pool state (spa_state). 174 * 175 * SCL_ALLOC 176 * Protects changes to metaslab groups and classes. 177 * Held as reader by metaslab_alloc() and metaslab_claim(). 178 * 179 * SCL_ZIO 180 * Held by bp-level zios (those which have no io_vd upon entry) 181 * to prevent changes to the vdev tree. The bp-level zio implicitly 182 * protects all of its vdev child zios, which do not hold SCL_ZIO. 183 * 184 * SCL_FREE 185 * Protects changes to metaslab groups and classes. 186 * Held as reader by metaslab_free(). SCL_FREE is distinct from 187 * SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free 188 * blocks in zio_done() while another i/o that holds either 189 * SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete. 190 * 191 * SCL_VDEV 192 * Held as reader to prevent changes to the vdev tree during trivial 193 * inquiries such as bp_get_dsize(). SCL_VDEV is distinct from the 194 * other locks, and lower than all of them, to ensure that it's safe 195 * to acquire regardless of caller context. 196 * 197 * In addition, the following rules apply: 198 * 199 * (a) spa_props_lock protects pool properties, spa_config and spa_config_list. 200 * The lock ordering is SCL_CONFIG > spa_props_lock. 201 * 202 * (b) I/O operations on leaf vdevs. For any zio operation that takes 203 * an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(), 204 * or zio_write_phys() -- the caller must ensure that the config cannot 205 * cannot change in the interim, and that the vdev cannot be reopened. 206 * SCL_STATE as reader suffices for both. 207 * 208 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit(). 209 * 210 * spa_vdev_enter() Acquire the namespace lock and the config lock 211 * for writing. 212 * 213 * spa_vdev_exit() Release the config lock, wait for all I/O 214 * to complete, sync the updated configs to the 215 * cache, and release the namespace lock. 216 * 217 * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit(). 218 * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual 219 * locking is, always, based on spa_namespace_lock and spa_config_lock[]. 220 * 221 * spa_rename() is also implemented within this file since it requires 222 * manipulation of the namespace. 223 */ 224 225 static avl_tree_t spa_namespace_avl; 226 kmutex_t spa_namespace_lock; 227 static kcondvar_t spa_namespace_cv; 228 static int spa_active_count; 229 int spa_max_replication_override = SPA_DVAS_PER_BP; 230 231 static kmutex_t spa_spare_lock; 232 static avl_tree_t spa_spare_avl; 233 static kmutex_t spa_l2cache_lock; 234 static avl_tree_t spa_l2cache_avl; 235 236 kmem_cache_t *spa_buffer_pool; 237 int spa_mode_global; 238 239 #ifdef ZFS_DEBUG 240 /* Everything except dprintf and spa is on by default in debug builds */ 241 int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_SPA); 242 #else 243 int zfs_flags = 0; 244 #endif 245 246 /* 247 * zfs_recover can be set to nonzero to attempt to recover from 248 * otherwise-fatal errors, typically caused by on-disk corruption. When 249 * set, calls to zfs_panic_recover() will turn into warning messages. 250 */ 251 int zfs_recover = 0; 252 253 /* 254 * Expiration time in milliseconds. This value has two meanings. First it is 255 * used to determine when the spa_deadman() logic should fire. By default the 256 * spa_deadman() will fire if spa_sync() has not completed in 1000 seconds. 257 * Secondly, the value determines if an I/O is considered "hung". Any I/O that 258 * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting 259 * in a system panic. 260 */ 261 uint64_t zfs_deadman_synctime_ms = 1000000ULL; 262 263 /* 264 * Check time in milliseconds. This defines the frequency at which we check 265 * for hung I/O. 266 */ 267 uint64_t zfs_deadman_checktime_ms = 5000ULL; 268 269 /* 270 * Override the zfs deadman behavior via /etc/system. By default the 271 * deadman is enabled except on VMware and sparc deployments. 272 */ 273 int zfs_deadman_enabled = -1; 274 275 /* 276 * The worst case is single-sector max-parity RAID-Z blocks, in which 277 * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1) 278 * times the size; so just assume that. Add to this the fact that 279 * we can have up to 3 DVAs per bp, and one more factor of 2 because 280 * the block may be dittoed with up to 3 DVAs by ddt_sync(). All together, 281 * the worst case is: 282 * (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24 283 */ 284 int spa_asize_inflation = 24; 285 286 /* 287 * ========================================================================== 288 * SPA config locking 289 * ========================================================================== 290 */ 291 static void 292 spa_config_lock_init(spa_t *spa) 293 { 294 for (int i = 0; i < SCL_LOCKS; i++) { 295 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 296 mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL); 297 cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL); 298 refcount_create_untracked(&scl->scl_count); 299 scl->scl_writer = NULL; 300 scl->scl_write_wanted = 0; 301 } 302 } 303 304 static void 305 spa_config_lock_destroy(spa_t *spa) 306 { 307 for (int i = 0; i < SCL_LOCKS; i++) { 308 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 309 mutex_destroy(&scl->scl_lock); 310 cv_destroy(&scl->scl_cv); 311 refcount_destroy(&scl->scl_count); 312 ASSERT(scl->scl_writer == NULL); 313 ASSERT(scl->scl_write_wanted == 0); 314 } 315 } 316 317 int 318 spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw) 319 { 320 for (int i = 0; i < SCL_LOCKS; i++) { 321 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 322 if (!(locks & (1 << i))) 323 continue; 324 mutex_enter(&scl->scl_lock); 325 if (rw == RW_READER) { 326 if (scl->scl_writer || scl->scl_write_wanted) { 327 mutex_exit(&scl->scl_lock); 328 spa_config_exit(spa, locks ^ (1 << i), tag); 329 return (0); 330 } 331 } else { 332 ASSERT(scl->scl_writer != curthread); 333 if (!refcount_is_zero(&scl->scl_count)) { 334 mutex_exit(&scl->scl_lock); 335 spa_config_exit(spa, locks ^ (1 << i), tag); 336 return (0); 337 } 338 scl->scl_writer = curthread; 339 } 340 (void) refcount_add(&scl->scl_count, tag); 341 mutex_exit(&scl->scl_lock); 342 } 343 return (1); 344 } 345 346 void 347 spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw) 348 { 349 int wlocks_held = 0; 350 351 ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY); 352 353 for (int i = 0; i < SCL_LOCKS; i++) { 354 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 355 if (scl->scl_writer == curthread) 356 wlocks_held |= (1 << i); 357 if (!(locks & (1 << i))) 358 continue; 359 mutex_enter(&scl->scl_lock); 360 if (rw == RW_READER) { 361 while (scl->scl_writer || scl->scl_write_wanted) { 362 cv_wait(&scl->scl_cv, &scl->scl_lock); 363 } 364 } else { 365 ASSERT(scl->scl_writer != curthread); 366 while (!refcount_is_zero(&scl->scl_count)) { 367 scl->scl_write_wanted++; 368 cv_wait(&scl->scl_cv, &scl->scl_lock); 369 scl->scl_write_wanted--; 370 } 371 scl->scl_writer = curthread; 372 } 373 (void) refcount_add(&scl->scl_count, tag); 374 mutex_exit(&scl->scl_lock); 375 } 376 ASSERT(wlocks_held <= locks); 377 } 378 379 void 380 spa_config_exit(spa_t *spa, int locks, void *tag) 381 { 382 for (int i = SCL_LOCKS - 1; i >= 0; i--) { 383 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 384 if (!(locks & (1 << i))) 385 continue; 386 mutex_enter(&scl->scl_lock); 387 ASSERT(!refcount_is_zero(&scl->scl_count)); 388 if (refcount_remove(&scl->scl_count, tag) == 0) { 389 ASSERT(scl->scl_writer == NULL || 390 scl->scl_writer == curthread); 391 scl->scl_writer = NULL; /* OK in either case */ 392 cv_broadcast(&scl->scl_cv); 393 } 394 mutex_exit(&scl->scl_lock); 395 } 396 } 397 398 int 399 spa_config_held(spa_t *spa, int locks, krw_t rw) 400 { 401 int locks_held = 0; 402 403 for (int i = 0; i < SCL_LOCKS; i++) { 404 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 405 if (!(locks & (1 << i))) 406 continue; 407 if ((rw == RW_READER && !refcount_is_zero(&scl->scl_count)) || 408 (rw == RW_WRITER && scl->scl_writer == curthread)) 409 locks_held |= 1 << i; 410 } 411 412 return (locks_held); 413 } 414 415 /* 416 * ========================================================================== 417 * SPA namespace functions 418 * ========================================================================== 419 */ 420 421 /* 422 * Lookup the named spa_t in the AVL tree. The spa_namespace_lock must be held. 423 * Returns NULL if no matching spa_t is found. 424 */ 425 spa_t * 426 spa_lookup(const char *name) 427 { 428 static spa_t search; /* spa_t is large; don't allocate on stack */ 429 spa_t *spa; 430 avl_index_t where; 431 char *cp; 432 433 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 434 435 (void) strlcpy(search.spa_name, name, sizeof (search.spa_name)); 436 437 /* 438 * If it's a full dataset name, figure out the pool name and 439 * just use that. 440 */ 441 cp = strpbrk(search.spa_name, "/@"); 442 if (cp != NULL) 443 *cp = '\0'; 444 445 spa = avl_find(&spa_namespace_avl, &search, &where); 446 447 return (spa); 448 } 449 450 /* 451 * Fires when spa_sync has not completed within zfs_deadman_synctime_ms. 452 * If the zfs_deadman_enabled flag is set then it inspects all vdev queues 453 * looking for potentially hung I/Os. 454 */ 455 void 456 spa_deadman(void *arg) 457 { 458 spa_t *spa = arg; 459 460 zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu", 461 (gethrtime() - spa->spa_sync_starttime) / NANOSEC, 462 ++spa->spa_deadman_calls); 463 if (zfs_deadman_enabled) 464 vdev_deadman(spa->spa_root_vdev); 465 } 466 467 /* 468 * Create an uninitialized spa_t with the given name. Requires 469 * spa_namespace_lock. The caller must ensure that the spa_t doesn't already 470 * exist by calling spa_lookup() first. 471 */ 472 spa_t * 473 spa_add(const char *name, nvlist_t *config, const char *altroot) 474 { 475 spa_t *spa; 476 spa_config_dirent_t *dp; 477 cyc_handler_t hdlr; 478 cyc_time_t when; 479 480 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 481 482 spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP); 483 484 mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL); 485 mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL); 486 mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL); 487 mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL); 488 mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL); 489 mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL); 490 mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL); 491 mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL); 492 mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL); 493 mutex_init(&spa->spa_iokstat_lock, NULL, MUTEX_DEFAULT, NULL); 494 495 cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL); 496 cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL); 497 cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL); 498 cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL); 499 500 for (int t = 0; t < TXG_SIZE; t++) 501 bplist_create(&spa->spa_free_bplist[t]); 502 503 (void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name)); 504 spa->spa_state = POOL_STATE_UNINITIALIZED; 505 spa->spa_freeze_txg = UINT64_MAX; 506 spa->spa_final_txg = UINT64_MAX; 507 spa->spa_load_max_txg = UINT64_MAX; 508 spa->spa_proc = &p0; 509 spa->spa_proc_state = SPA_PROC_NONE; 510 511 hdlr.cyh_func = spa_deadman; 512 hdlr.cyh_arg = spa; 513 hdlr.cyh_level = CY_LOW_LEVEL; 514 515 spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms); 516 517 /* 518 * This determines how often we need to check for hung I/Os after 519 * the cyclic has already fired. Since checking for hung I/Os is 520 * an expensive operation we don't want to check too frequently. 521 * Instead wait for 5 seconds before checking again. 522 */ 523 when.cyt_interval = MSEC2NSEC(zfs_deadman_checktime_ms); 524 when.cyt_when = CY_INFINITY; 525 mutex_enter(&cpu_lock); 526 spa->spa_deadman_cycid = cyclic_add(&hdlr, &when); 527 mutex_exit(&cpu_lock); 528 529 refcount_create(&spa->spa_refcount); 530 spa_config_lock_init(spa); 531 532 avl_add(&spa_namespace_avl, spa); 533 534 /* 535 * Set the alternate root, if there is one. 536 */ 537 if (altroot) { 538 spa->spa_root = spa_strdup(altroot); 539 spa_active_count++; 540 } 541 542 /* 543 * Every pool starts with the default cachefile 544 */ 545 list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t), 546 offsetof(spa_config_dirent_t, scd_link)); 547 548 dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP); 549 dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path); 550 list_insert_head(&spa->spa_config_list, dp); 551 552 VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME, 553 KM_SLEEP) == 0); 554 555 if (config != NULL) { 556 nvlist_t *features; 557 558 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ, 559 &features) == 0) { 560 VERIFY(nvlist_dup(features, &spa->spa_label_features, 561 0) == 0); 562 } 563 564 VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0); 565 } 566 567 if (spa->spa_label_features == NULL) { 568 VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME, 569 KM_SLEEP) == 0); 570 } 571 572 spa->spa_iokstat = kstat_create("zfs", 0, name, 573 "disk", KSTAT_TYPE_IO, 1, 0); 574 if (spa->spa_iokstat) { 575 spa->spa_iokstat->ks_lock = &spa->spa_iokstat_lock; 576 kstat_install(spa->spa_iokstat); 577 } 578 579 spa->spa_debug = ((zfs_flags & ZFS_DEBUG_SPA) != 0); 580 581 return (spa); 582 } 583 584 /* 585 * Removes a spa_t from the namespace, freeing up any memory used. Requires 586 * spa_namespace_lock. This is called only after the spa_t has been closed and 587 * deactivated. 588 */ 589 void 590 spa_remove(spa_t *spa) 591 { 592 spa_config_dirent_t *dp; 593 594 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 595 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED); 596 597 nvlist_free(spa->spa_config_splitting); 598 599 avl_remove(&spa_namespace_avl, spa); 600 cv_broadcast(&spa_namespace_cv); 601 602 if (spa->spa_root) { 603 spa_strfree(spa->spa_root); 604 spa_active_count--; 605 } 606 607 while ((dp = list_head(&spa->spa_config_list)) != NULL) { 608 list_remove(&spa->spa_config_list, dp); 609 if (dp->scd_path != NULL) 610 spa_strfree(dp->scd_path); 611 kmem_free(dp, sizeof (spa_config_dirent_t)); 612 } 613 614 list_destroy(&spa->spa_config_list); 615 616 nvlist_free(spa->spa_label_features); 617 nvlist_free(spa->spa_load_info); 618 spa_config_set(spa, NULL); 619 620 mutex_enter(&cpu_lock); 621 if (spa->spa_deadman_cycid != CYCLIC_NONE) 622 cyclic_remove(spa->spa_deadman_cycid); 623 mutex_exit(&cpu_lock); 624 spa->spa_deadman_cycid = CYCLIC_NONE; 625 626 refcount_destroy(&spa->spa_refcount); 627 628 spa_config_lock_destroy(spa); 629 630 kstat_delete(spa->spa_iokstat); 631 spa->spa_iokstat = NULL; 632 633 for (int t = 0; t < TXG_SIZE; t++) 634 bplist_destroy(&spa->spa_free_bplist[t]); 635 636 cv_destroy(&spa->spa_async_cv); 637 cv_destroy(&spa->spa_proc_cv); 638 cv_destroy(&spa->spa_scrub_io_cv); 639 cv_destroy(&spa->spa_suspend_cv); 640 641 mutex_destroy(&spa->spa_async_lock); 642 mutex_destroy(&spa->spa_errlist_lock); 643 mutex_destroy(&spa->spa_errlog_lock); 644 mutex_destroy(&spa->spa_history_lock); 645 mutex_destroy(&spa->spa_proc_lock); 646 mutex_destroy(&spa->spa_props_lock); 647 mutex_destroy(&spa->spa_scrub_lock); 648 mutex_destroy(&spa->spa_suspend_lock); 649 mutex_destroy(&spa->spa_vdev_top_lock); 650 mutex_destroy(&spa->spa_iokstat_lock); 651 652 kmem_free(spa, sizeof (spa_t)); 653 } 654 655 /* 656 * Given a pool, return the next pool in the namespace, or NULL if there is 657 * none. If 'prev' is NULL, return the first pool. 658 */ 659 spa_t * 660 spa_next(spa_t *prev) 661 { 662 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 663 664 if (prev) 665 return (AVL_NEXT(&spa_namespace_avl, prev)); 666 else 667 return (avl_first(&spa_namespace_avl)); 668 } 669 670 /* 671 * ========================================================================== 672 * SPA refcount functions 673 * ========================================================================== 674 */ 675 676 /* 677 * Add a reference to the given spa_t. Must have at least one reference, or 678 * have the namespace lock held. 679 */ 680 void 681 spa_open_ref(spa_t *spa, void *tag) 682 { 683 ASSERT(refcount_count(&spa->spa_refcount) >= spa->spa_minref || 684 MUTEX_HELD(&spa_namespace_lock)); 685 (void) refcount_add(&spa->spa_refcount, tag); 686 } 687 688 /* 689 * Remove a reference to the given spa_t. Must have at least one reference, or 690 * have the namespace lock held. 691 */ 692 void 693 spa_close(spa_t *spa, void *tag) 694 { 695 ASSERT(refcount_count(&spa->spa_refcount) > spa->spa_minref || 696 MUTEX_HELD(&spa_namespace_lock)); 697 (void) refcount_remove(&spa->spa_refcount, tag); 698 } 699 700 /* 701 * Check to see if the spa refcount is zero. Must be called with 702 * spa_namespace_lock held. We really compare against spa_minref, which is the 703 * number of references acquired when opening a pool 704 */ 705 boolean_t 706 spa_refcount_zero(spa_t *spa) 707 { 708 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 709 710 return (refcount_count(&spa->spa_refcount) == spa->spa_minref); 711 } 712 713 /* 714 * ========================================================================== 715 * SPA spare and l2cache tracking 716 * ========================================================================== 717 */ 718 719 /* 720 * Hot spares and cache devices are tracked using the same code below, 721 * for 'auxiliary' devices. 722 */ 723 724 typedef struct spa_aux { 725 uint64_t aux_guid; 726 uint64_t aux_pool; 727 avl_node_t aux_avl; 728 int aux_count; 729 } spa_aux_t; 730 731 static int 732 spa_aux_compare(const void *a, const void *b) 733 { 734 const spa_aux_t *sa = a; 735 const spa_aux_t *sb = b; 736 737 if (sa->aux_guid < sb->aux_guid) 738 return (-1); 739 else if (sa->aux_guid > sb->aux_guid) 740 return (1); 741 else 742 return (0); 743 } 744 745 void 746 spa_aux_add(vdev_t *vd, avl_tree_t *avl) 747 { 748 avl_index_t where; 749 spa_aux_t search; 750 spa_aux_t *aux; 751 752 search.aux_guid = vd->vdev_guid; 753 if ((aux = avl_find(avl, &search, &where)) != NULL) { 754 aux->aux_count++; 755 } else { 756 aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP); 757 aux->aux_guid = vd->vdev_guid; 758 aux->aux_count = 1; 759 avl_insert(avl, aux, where); 760 } 761 } 762 763 void 764 spa_aux_remove(vdev_t *vd, avl_tree_t *avl) 765 { 766 spa_aux_t search; 767 spa_aux_t *aux; 768 avl_index_t where; 769 770 search.aux_guid = vd->vdev_guid; 771 aux = avl_find(avl, &search, &where); 772 773 ASSERT(aux != NULL); 774 775 if (--aux->aux_count == 0) { 776 avl_remove(avl, aux); 777 kmem_free(aux, sizeof (spa_aux_t)); 778 } else if (aux->aux_pool == spa_guid(vd->vdev_spa)) { 779 aux->aux_pool = 0ULL; 780 } 781 } 782 783 boolean_t 784 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl) 785 { 786 spa_aux_t search, *found; 787 788 search.aux_guid = guid; 789 found = avl_find(avl, &search, NULL); 790 791 if (pool) { 792 if (found) 793 *pool = found->aux_pool; 794 else 795 *pool = 0ULL; 796 } 797 798 if (refcnt) { 799 if (found) 800 *refcnt = found->aux_count; 801 else 802 *refcnt = 0; 803 } 804 805 return (found != NULL); 806 } 807 808 void 809 spa_aux_activate(vdev_t *vd, avl_tree_t *avl) 810 { 811 spa_aux_t search, *found; 812 avl_index_t where; 813 814 search.aux_guid = vd->vdev_guid; 815 found = avl_find(avl, &search, &where); 816 ASSERT(found != NULL); 817 ASSERT(found->aux_pool == 0ULL); 818 819 found->aux_pool = spa_guid(vd->vdev_spa); 820 } 821 822 /* 823 * Spares are tracked globally due to the following constraints: 824 * 825 * - A spare may be part of multiple pools. 826 * - A spare may be added to a pool even if it's actively in use within 827 * another pool. 828 * - A spare in use in any pool can only be the source of a replacement if 829 * the target is a spare in the same pool. 830 * 831 * We keep track of all spares on the system through the use of a reference 832 * counted AVL tree. When a vdev is added as a spare, or used as a replacement 833 * spare, then we bump the reference count in the AVL tree. In addition, we set 834 * the 'vdev_isspare' member to indicate that the device is a spare (active or 835 * inactive). When a spare is made active (used to replace a device in the 836 * pool), we also keep track of which pool its been made a part of. 837 * 838 * The 'spa_spare_lock' protects the AVL tree. These functions are normally 839 * called under the spa_namespace lock as part of vdev reconfiguration. The 840 * separate spare lock exists for the status query path, which does not need to 841 * be completely consistent with respect to other vdev configuration changes. 842 */ 843 844 static int 845 spa_spare_compare(const void *a, const void *b) 846 { 847 return (spa_aux_compare(a, b)); 848 } 849 850 void 851 spa_spare_add(vdev_t *vd) 852 { 853 mutex_enter(&spa_spare_lock); 854 ASSERT(!vd->vdev_isspare); 855 spa_aux_add(vd, &spa_spare_avl); 856 vd->vdev_isspare = B_TRUE; 857 mutex_exit(&spa_spare_lock); 858 } 859 860 void 861 spa_spare_remove(vdev_t *vd) 862 { 863 mutex_enter(&spa_spare_lock); 864 ASSERT(vd->vdev_isspare); 865 spa_aux_remove(vd, &spa_spare_avl); 866 vd->vdev_isspare = B_FALSE; 867 mutex_exit(&spa_spare_lock); 868 } 869 870 boolean_t 871 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt) 872 { 873 boolean_t found; 874 875 mutex_enter(&spa_spare_lock); 876 found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl); 877 mutex_exit(&spa_spare_lock); 878 879 return (found); 880 } 881 882 void 883 spa_spare_activate(vdev_t *vd) 884 { 885 mutex_enter(&spa_spare_lock); 886 ASSERT(vd->vdev_isspare); 887 spa_aux_activate(vd, &spa_spare_avl); 888 mutex_exit(&spa_spare_lock); 889 } 890 891 /* 892 * Level 2 ARC devices are tracked globally for the same reasons as spares. 893 * Cache devices currently only support one pool per cache device, and so 894 * for these devices the aux reference count is currently unused beyond 1. 895 */ 896 897 static int 898 spa_l2cache_compare(const void *a, const void *b) 899 { 900 return (spa_aux_compare(a, b)); 901 } 902 903 void 904 spa_l2cache_add(vdev_t *vd) 905 { 906 mutex_enter(&spa_l2cache_lock); 907 ASSERT(!vd->vdev_isl2cache); 908 spa_aux_add(vd, &spa_l2cache_avl); 909 vd->vdev_isl2cache = B_TRUE; 910 mutex_exit(&spa_l2cache_lock); 911 } 912 913 void 914 spa_l2cache_remove(vdev_t *vd) 915 { 916 mutex_enter(&spa_l2cache_lock); 917 ASSERT(vd->vdev_isl2cache); 918 spa_aux_remove(vd, &spa_l2cache_avl); 919 vd->vdev_isl2cache = B_FALSE; 920 mutex_exit(&spa_l2cache_lock); 921 } 922 923 boolean_t 924 spa_l2cache_exists(uint64_t guid, uint64_t *pool) 925 { 926 boolean_t found; 927 928 mutex_enter(&spa_l2cache_lock); 929 found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl); 930 mutex_exit(&spa_l2cache_lock); 931 932 return (found); 933 } 934 935 void 936 spa_l2cache_activate(vdev_t *vd) 937 { 938 mutex_enter(&spa_l2cache_lock); 939 ASSERT(vd->vdev_isl2cache); 940 spa_aux_activate(vd, &spa_l2cache_avl); 941 mutex_exit(&spa_l2cache_lock); 942 } 943 944 /* 945 * ========================================================================== 946 * SPA vdev locking 947 * ========================================================================== 948 */ 949 950 /* 951 * Lock the given spa_t for the purpose of adding or removing a vdev. 952 * Grabs the global spa_namespace_lock plus the spa config lock for writing. 953 * It returns the next transaction group for the spa_t. 954 */ 955 uint64_t 956 spa_vdev_enter(spa_t *spa) 957 { 958 mutex_enter(&spa->spa_vdev_top_lock); 959 mutex_enter(&spa_namespace_lock); 960 return (spa_vdev_config_enter(spa)); 961 } 962 963 /* 964 * Internal implementation for spa_vdev_enter(). Used when a vdev 965 * operation requires multiple syncs (i.e. removing a device) while 966 * keeping the spa_namespace_lock held. 967 */ 968 uint64_t 969 spa_vdev_config_enter(spa_t *spa) 970 { 971 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 972 973 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER); 974 975 return (spa_last_synced_txg(spa) + 1); 976 } 977 978 /* 979 * Used in combination with spa_vdev_config_enter() to allow the syncing 980 * of multiple transactions without releasing the spa_namespace_lock. 981 */ 982 void 983 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag) 984 { 985 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 986 987 int config_changed = B_FALSE; 988 989 ASSERT(txg > spa_last_synced_txg(spa)); 990 991 spa->spa_pending_vdev = NULL; 992 993 /* 994 * Reassess the DTLs. 995 */ 996 vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE); 997 998 if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) { 999 config_changed = B_TRUE; 1000 spa->spa_config_generation++; 1001 } 1002 1003 /* 1004 * Verify the metaslab classes. 1005 */ 1006 ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0); 1007 ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0); 1008 1009 spa_config_exit(spa, SCL_ALL, spa); 1010 1011 /* 1012 * Panic the system if the specified tag requires it. This 1013 * is useful for ensuring that configurations are updated 1014 * transactionally. 1015 */ 1016 if (zio_injection_enabled) 1017 zio_handle_panic_injection(spa, tag, 0); 1018 1019 /* 1020 * Note: this txg_wait_synced() is important because it ensures 1021 * that there won't be more than one config change per txg. 1022 * This allows us to use the txg as the generation number. 1023 */ 1024 if (error == 0) 1025 txg_wait_synced(spa->spa_dsl_pool, txg); 1026 1027 if (vd != NULL) { 1028 ASSERT(!vd->vdev_detached || vd->vdev_dtl_smo.smo_object == 0); 1029 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER); 1030 vdev_free(vd); 1031 spa_config_exit(spa, SCL_ALL, spa); 1032 } 1033 1034 /* 1035 * If the config changed, update the config cache. 1036 */ 1037 if (config_changed) 1038 spa_config_sync(spa, B_FALSE, B_TRUE); 1039 } 1040 1041 /* 1042 * Unlock the spa_t after adding or removing a vdev. Besides undoing the 1043 * locking of spa_vdev_enter(), we also want make sure the transactions have 1044 * synced to disk, and then update the global configuration cache with the new 1045 * information. 1046 */ 1047 int 1048 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error) 1049 { 1050 spa_vdev_config_exit(spa, vd, txg, error, FTAG); 1051 mutex_exit(&spa_namespace_lock); 1052 mutex_exit(&spa->spa_vdev_top_lock); 1053 1054 return (error); 1055 } 1056 1057 /* 1058 * Lock the given spa_t for the purpose of changing vdev state. 1059 */ 1060 void 1061 spa_vdev_state_enter(spa_t *spa, int oplocks) 1062 { 1063 int locks = SCL_STATE_ALL | oplocks; 1064 1065 /* 1066 * Root pools may need to read of the underlying devfs filesystem 1067 * when opening up a vdev. Unfortunately if we're holding the 1068 * SCL_ZIO lock it will result in a deadlock when we try to issue 1069 * the read from the root filesystem. Instead we "prefetch" 1070 * the associated vnodes that we need prior to opening the 1071 * underlying devices and cache them so that we can prevent 1072 * any I/O when we are doing the actual open. 1073 */ 1074 if (spa_is_root(spa)) { 1075 int low = locks & ~(SCL_ZIO - 1); 1076 int high = locks & ~low; 1077 1078 spa_config_enter(spa, high, spa, RW_WRITER); 1079 vdev_hold(spa->spa_root_vdev); 1080 spa_config_enter(spa, low, spa, RW_WRITER); 1081 } else { 1082 spa_config_enter(spa, locks, spa, RW_WRITER); 1083 } 1084 spa->spa_vdev_locks = locks; 1085 } 1086 1087 int 1088 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error) 1089 { 1090 boolean_t config_changed = B_FALSE; 1091 1092 if (vd != NULL || error == 0) 1093 vdev_dtl_reassess(vd ? vd->vdev_top : spa->spa_root_vdev, 1094 0, 0, B_FALSE); 1095 1096 if (vd != NULL) { 1097 vdev_state_dirty(vd->vdev_top); 1098 config_changed = B_TRUE; 1099 spa->spa_config_generation++; 1100 } 1101 1102 if (spa_is_root(spa)) 1103 vdev_rele(spa->spa_root_vdev); 1104 1105 ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL); 1106 spa_config_exit(spa, spa->spa_vdev_locks, spa); 1107 1108 /* 1109 * If anything changed, wait for it to sync. This ensures that, 1110 * from the system administrator's perspective, zpool(1M) commands 1111 * are synchronous. This is important for things like zpool offline: 1112 * when the command completes, you expect no further I/O from ZFS. 1113 */ 1114 if (vd != NULL) 1115 txg_wait_synced(spa->spa_dsl_pool, 0); 1116 1117 /* 1118 * If the config changed, update the config cache. 1119 */ 1120 if (config_changed) { 1121 mutex_enter(&spa_namespace_lock); 1122 spa_config_sync(spa, B_FALSE, B_TRUE); 1123 mutex_exit(&spa_namespace_lock); 1124 } 1125 1126 return (error); 1127 } 1128 1129 /* 1130 * ========================================================================== 1131 * Miscellaneous functions 1132 * ========================================================================== 1133 */ 1134 1135 void 1136 spa_activate_mos_feature(spa_t *spa, const char *feature) 1137 { 1138 (void) nvlist_add_boolean(spa->spa_label_features, feature); 1139 vdev_config_dirty(spa->spa_root_vdev); 1140 } 1141 1142 void 1143 spa_deactivate_mos_feature(spa_t *spa, const char *feature) 1144 { 1145 (void) nvlist_remove_all(spa->spa_label_features, feature); 1146 vdev_config_dirty(spa->spa_root_vdev); 1147 } 1148 1149 /* 1150 * Rename a spa_t. 1151 */ 1152 int 1153 spa_rename(const char *name, const char *newname) 1154 { 1155 spa_t *spa; 1156 int err; 1157 1158 /* 1159 * Lookup the spa_t and grab the config lock for writing. We need to 1160 * actually open the pool so that we can sync out the necessary labels. 1161 * It's OK to call spa_open() with the namespace lock held because we 1162 * allow recursive calls for other reasons. 1163 */ 1164 mutex_enter(&spa_namespace_lock); 1165 if ((err = spa_open(name, &spa, FTAG)) != 0) { 1166 mutex_exit(&spa_namespace_lock); 1167 return (err); 1168 } 1169 1170 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1171 1172 avl_remove(&spa_namespace_avl, spa); 1173 (void) strlcpy(spa->spa_name, newname, sizeof (spa->spa_name)); 1174 avl_add(&spa_namespace_avl, spa); 1175 1176 /* 1177 * Sync all labels to disk with the new names by marking the root vdev 1178 * dirty and waiting for it to sync. It will pick up the new pool name 1179 * during the sync. 1180 */ 1181 vdev_config_dirty(spa->spa_root_vdev); 1182 1183 spa_config_exit(spa, SCL_ALL, FTAG); 1184 1185 txg_wait_synced(spa->spa_dsl_pool, 0); 1186 1187 /* 1188 * Sync the updated config cache. 1189 */ 1190 spa_config_sync(spa, B_FALSE, B_TRUE); 1191 1192 spa_close(spa, FTAG); 1193 1194 mutex_exit(&spa_namespace_lock); 1195 1196 return (0); 1197 } 1198 1199 /* 1200 * Return the spa_t associated with given pool_guid, if it exists. If 1201 * device_guid is non-zero, determine whether the pool exists *and* contains 1202 * a device with the specified device_guid. 1203 */ 1204 spa_t * 1205 spa_by_guid(uint64_t pool_guid, uint64_t device_guid) 1206 { 1207 spa_t *spa; 1208 avl_tree_t *t = &spa_namespace_avl; 1209 1210 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1211 1212 for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) { 1213 if (spa->spa_state == POOL_STATE_UNINITIALIZED) 1214 continue; 1215 if (spa->spa_root_vdev == NULL) 1216 continue; 1217 if (spa_guid(spa) == pool_guid) { 1218 if (device_guid == 0) 1219 break; 1220 1221 if (vdev_lookup_by_guid(spa->spa_root_vdev, 1222 device_guid) != NULL) 1223 break; 1224 1225 /* 1226 * Check any devices we may be in the process of adding. 1227 */ 1228 if (spa->spa_pending_vdev) { 1229 if (vdev_lookup_by_guid(spa->spa_pending_vdev, 1230 device_guid) != NULL) 1231 break; 1232 } 1233 } 1234 } 1235 1236 return (spa); 1237 } 1238 1239 /* 1240 * Determine whether a pool with the given pool_guid exists. 1241 */ 1242 boolean_t 1243 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid) 1244 { 1245 return (spa_by_guid(pool_guid, device_guid) != NULL); 1246 } 1247 1248 char * 1249 spa_strdup(const char *s) 1250 { 1251 size_t len; 1252 char *new; 1253 1254 len = strlen(s); 1255 new = kmem_alloc(len + 1, KM_SLEEP); 1256 bcopy(s, new, len); 1257 new[len] = '\0'; 1258 1259 return (new); 1260 } 1261 1262 void 1263 spa_strfree(char *s) 1264 { 1265 kmem_free(s, strlen(s) + 1); 1266 } 1267 1268 uint64_t 1269 spa_get_random(uint64_t range) 1270 { 1271 uint64_t r; 1272 1273 ASSERT(range != 0); 1274 1275 (void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t)); 1276 1277 return (r % range); 1278 } 1279 1280 uint64_t 1281 spa_generate_guid(spa_t *spa) 1282 { 1283 uint64_t guid = spa_get_random(-1ULL); 1284 1285 if (spa != NULL) { 1286 while (guid == 0 || spa_guid_exists(spa_guid(spa), guid)) 1287 guid = spa_get_random(-1ULL); 1288 } else { 1289 while (guid == 0 || spa_guid_exists(guid, 0)) 1290 guid = spa_get_random(-1ULL); 1291 } 1292 1293 return (guid); 1294 } 1295 1296 void 1297 sprintf_blkptr(char *buf, const blkptr_t *bp) 1298 { 1299 char type[256]; 1300 char *checksum = NULL; 1301 char *compress = NULL; 1302 1303 if (bp != NULL) { 1304 if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) { 1305 dmu_object_byteswap_t bswap = 1306 DMU_OT_BYTESWAP(BP_GET_TYPE(bp)); 1307 (void) snprintf(type, sizeof (type), "bswap %s %s", 1308 DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ? 1309 "metadata" : "data", 1310 dmu_ot_byteswap[bswap].ob_name); 1311 } else { 1312 (void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name, 1313 sizeof (type)); 1314 } 1315 checksum = zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name; 1316 compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name; 1317 } 1318 1319 SPRINTF_BLKPTR(snprintf, ' ', buf, bp, type, checksum, compress); 1320 } 1321 1322 void 1323 spa_freeze(spa_t *spa) 1324 { 1325 uint64_t freeze_txg = 0; 1326 1327 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1328 if (spa->spa_freeze_txg == UINT64_MAX) { 1329 freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE; 1330 spa->spa_freeze_txg = freeze_txg; 1331 } 1332 spa_config_exit(spa, SCL_ALL, FTAG); 1333 if (freeze_txg != 0) 1334 txg_wait_synced(spa_get_dsl(spa), freeze_txg); 1335 } 1336 1337 void 1338 zfs_panic_recover(const char *fmt, ...) 1339 { 1340 va_list adx; 1341 1342 va_start(adx, fmt); 1343 vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx); 1344 va_end(adx); 1345 } 1346 1347 /* 1348 * This is a stripped-down version of strtoull, suitable only for converting 1349 * lowercase hexadecimal numbers that don't overflow. 1350 */ 1351 uint64_t 1352 strtonum(const char *str, char **nptr) 1353 { 1354 uint64_t val = 0; 1355 char c; 1356 int digit; 1357 1358 while ((c = *str) != '\0') { 1359 if (c >= '0' && c <= '9') 1360 digit = c - '0'; 1361 else if (c >= 'a' && c <= 'f') 1362 digit = 10 + c - 'a'; 1363 else 1364 break; 1365 1366 val *= 16; 1367 val += digit; 1368 1369 str++; 1370 } 1371 1372 if (nptr) 1373 *nptr = (char *)str; 1374 1375 return (val); 1376 } 1377 1378 /* 1379 * ========================================================================== 1380 * Accessor functions 1381 * ========================================================================== 1382 */ 1383 1384 boolean_t 1385 spa_shutting_down(spa_t *spa) 1386 { 1387 return (spa->spa_async_suspended); 1388 } 1389 1390 dsl_pool_t * 1391 spa_get_dsl(spa_t *spa) 1392 { 1393 return (spa->spa_dsl_pool); 1394 } 1395 1396 boolean_t 1397 spa_is_initializing(spa_t *spa) 1398 { 1399 return (spa->spa_is_initializing); 1400 } 1401 1402 blkptr_t * 1403 spa_get_rootblkptr(spa_t *spa) 1404 { 1405 return (&spa->spa_ubsync.ub_rootbp); 1406 } 1407 1408 void 1409 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp) 1410 { 1411 spa->spa_uberblock.ub_rootbp = *bp; 1412 } 1413 1414 void 1415 spa_altroot(spa_t *spa, char *buf, size_t buflen) 1416 { 1417 if (spa->spa_root == NULL) 1418 buf[0] = '\0'; 1419 else 1420 (void) strncpy(buf, spa->spa_root, buflen); 1421 } 1422 1423 int 1424 spa_sync_pass(spa_t *spa) 1425 { 1426 return (spa->spa_sync_pass); 1427 } 1428 1429 char * 1430 spa_name(spa_t *spa) 1431 { 1432 return (spa->spa_name); 1433 } 1434 1435 uint64_t 1436 spa_guid(spa_t *spa) 1437 { 1438 dsl_pool_t *dp = spa_get_dsl(spa); 1439 uint64_t guid; 1440 1441 /* 1442 * If we fail to parse the config during spa_load(), we can go through 1443 * the error path (which posts an ereport) and end up here with no root 1444 * vdev. We stash the original pool guid in 'spa_config_guid' to handle 1445 * this case. 1446 */ 1447 if (spa->spa_root_vdev == NULL) 1448 return (spa->spa_config_guid); 1449 1450 guid = spa->spa_last_synced_guid != 0 ? 1451 spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid; 1452 1453 /* 1454 * Return the most recently synced out guid unless we're 1455 * in syncing context. 1456 */ 1457 if (dp && dsl_pool_sync_context(dp)) 1458 return (spa->spa_root_vdev->vdev_guid); 1459 else 1460 return (guid); 1461 } 1462 1463 uint64_t 1464 spa_load_guid(spa_t *spa) 1465 { 1466 /* 1467 * This is a GUID that exists solely as a reference for the 1468 * purposes of the arc. It is generated at load time, and 1469 * is never written to persistent storage. 1470 */ 1471 return (spa->spa_load_guid); 1472 } 1473 1474 uint64_t 1475 spa_last_synced_txg(spa_t *spa) 1476 { 1477 return (spa->spa_ubsync.ub_txg); 1478 } 1479 1480 uint64_t 1481 spa_first_txg(spa_t *spa) 1482 { 1483 return (spa->spa_first_txg); 1484 } 1485 1486 uint64_t 1487 spa_syncing_txg(spa_t *spa) 1488 { 1489 return (spa->spa_syncing_txg); 1490 } 1491 1492 pool_state_t 1493 spa_state(spa_t *spa) 1494 { 1495 return (spa->spa_state); 1496 } 1497 1498 spa_load_state_t 1499 spa_load_state(spa_t *spa) 1500 { 1501 return (spa->spa_load_state); 1502 } 1503 1504 uint64_t 1505 spa_freeze_txg(spa_t *spa) 1506 { 1507 return (spa->spa_freeze_txg); 1508 } 1509 1510 /* ARGSUSED */ 1511 uint64_t 1512 spa_get_asize(spa_t *spa, uint64_t lsize) 1513 { 1514 return (lsize * spa_asize_inflation); 1515 } 1516 1517 uint64_t 1518 spa_get_dspace(spa_t *spa) 1519 { 1520 return (spa->spa_dspace); 1521 } 1522 1523 void 1524 spa_update_dspace(spa_t *spa) 1525 { 1526 spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) + 1527 ddt_get_dedup_dspace(spa); 1528 } 1529 1530 /* 1531 * Return the failure mode that has been set to this pool. The default 1532 * behavior will be to block all I/Os when a complete failure occurs. 1533 */ 1534 uint8_t 1535 spa_get_failmode(spa_t *spa) 1536 { 1537 return (spa->spa_failmode); 1538 } 1539 1540 boolean_t 1541 spa_suspended(spa_t *spa) 1542 { 1543 return (spa->spa_suspended); 1544 } 1545 1546 uint64_t 1547 spa_version(spa_t *spa) 1548 { 1549 return (spa->spa_ubsync.ub_version); 1550 } 1551 1552 boolean_t 1553 spa_deflate(spa_t *spa) 1554 { 1555 return (spa->spa_deflate); 1556 } 1557 1558 metaslab_class_t * 1559 spa_normal_class(spa_t *spa) 1560 { 1561 return (spa->spa_normal_class); 1562 } 1563 1564 metaslab_class_t * 1565 spa_log_class(spa_t *spa) 1566 { 1567 return (spa->spa_log_class); 1568 } 1569 1570 int 1571 spa_max_replication(spa_t *spa) 1572 { 1573 /* 1574 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to 1575 * handle BPs with more than one DVA allocated. Set our max 1576 * replication level accordingly. 1577 */ 1578 if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS) 1579 return (1); 1580 return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override)); 1581 } 1582 1583 int 1584 spa_prev_software_version(spa_t *spa) 1585 { 1586 return (spa->spa_prev_software_version); 1587 } 1588 1589 uint64_t 1590 spa_deadman_synctime(spa_t *spa) 1591 { 1592 return (spa->spa_deadman_synctime); 1593 } 1594 1595 uint64_t 1596 dva_get_dsize_sync(spa_t *spa, const dva_t *dva) 1597 { 1598 uint64_t asize = DVA_GET_ASIZE(dva); 1599 uint64_t dsize = asize; 1600 1601 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 1602 1603 if (asize != 0 && spa->spa_deflate) { 1604 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva)); 1605 dsize = (asize >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio; 1606 } 1607 1608 return (dsize); 1609 } 1610 1611 uint64_t 1612 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp) 1613 { 1614 uint64_t dsize = 0; 1615 1616 for (int d = 0; d < SPA_DVAS_PER_BP; d++) 1617 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]); 1618 1619 return (dsize); 1620 } 1621 1622 uint64_t 1623 bp_get_dsize(spa_t *spa, const blkptr_t *bp) 1624 { 1625 uint64_t dsize = 0; 1626 1627 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 1628 1629 for (int d = 0; d < SPA_DVAS_PER_BP; d++) 1630 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]); 1631 1632 spa_config_exit(spa, SCL_VDEV, FTAG); 1633 1634 return (dsize); 1635 } 1636 1637 /* 1638 * ========================================================================== 1639 * Initialization and Termination 1640 * ========================================================================== 1641 */ 1642 1643 static int 1644 spa_name_compare(const void *a1, const void *a2) 1645 { 1646 const spa_t *s1 = a1; 1647 const spa_t *s2 = a2; 1648 int s; 1649 1650 s = strcmp(s1->spa_name, s2->spa_name); 1651 if (s > 0) 1652 return (1); 1653 if (s < 0) 1654 return (-1); 1655 return (0); 1656 } 1657 1658 int 1659 spa_busy(void) 1660 { 1661 return (spa_active_count); 1662 } 1663 1664 void 1665 spa_boot_init() 1666 { 1667 spa_config_load(); 1668 } 1669 1670 void 1671 spa_init(int mode) 1672 { 1673 mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL); 1674 mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL); 1675 mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL); 1676 cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL); 1677 1678 avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t), 1679 offsetof(spa_t, spa_avl)); 1680 1681 avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t), 1682 offsetof(spa_aux_t, aux_avl)); 1683 1684 avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t), 1685 offsetof(spa_aux_t, aux_avl)); 1686 1687 spa_mode_global = mode; 1688 1689 #ifdef _KERNEL 1690 spa_arch_init(); 1691 #else 1692 if (spa_mode_global != FREAD && dprintf_find_string("watch")) { 1693 arc_procfd = open("/proc/self/ctl", O_WRONLY); 1694 if (arc_procfd == -1) { 1695 perror("could not enable watchpoints: " 1696 "opening /proc/self/ctl failed: "); 1697 } else { 1698 arc_watch = B_TRUE; 1699 } 1700 } 1701 #endif 1702 1703 refcount_init(); 1704 unique_init(); 1705 space_map_init(); 1706 zio_init(); 1707 dmu_init(); 1708 zil_init(); 1709 vdev_cache_stat_init(); 1710 zfs_prop_init(); 1711 zpool_prop_init(); 1712 zpool_feature_init(); 1713 spa_config_load(); 1714 l2arc_start(); 1715 } 1716 1717 void 1718 spa_fini(void) 1719 { 1720 l2arc_stop(); 1721 1722 spa_evict_all(); 1723 1724 vdev_cache_stat_fini(); 1725 zil_fini(); 1726 dmu_fini(); 1727 zio_fini(); 1728 space_map_fini(); 1729 unique_fini(); 1730 refcount_fini(); 1731 1732 avl_destroy(&spa_namespace_avl); 1733 avl_destroy(&spa_spare_avl); 1734 avl_destroy(&spa_l2cache_avl); 1735 1736 cv_destroy(&spa_namespace_cv); 1737 mutex_destroy(&spa_namespace_lock); 1738 mutex_destroy(&spa_spare_lock); 1739 mutex_destroy(&spa_l2cache_lock); 1740 } 1741 1742 /* 1743 * Return whether this pool has slogs. No locking needed. 1744 * It's not a problem if the wrong answer is returned as it's only for 1745 * performance and not correctness 1746 */ 1747 boolean_t 1748 spa_has_slogs(spa_t *spa) 1749 { 1750 return (spa->spa_log_class->mc_rotor != NULL); 1751 } 1752 1753 spa_log_state_t 1754 spa_get_log_state(spa_t *spa) 1755 { 1756 return (spa->spa_log_state); 1757 } 1758 1759 void 1760 spa_set_log_state(spa_t *spa, spa_log_state_t state) 1761 { 1762 spa->spa_log_state = state; 1763 } 1764 1765 boolean_t 1766 spa_is_root(spa_t *spa) 1767 { 1768 return (spa->spa_is_root); 1769 } 1770 1771 boolean_t 1772 spa_writeable(spa_t *spa) 1773 { 1774 return (!!(spa->spa_mode & FWRITE)); 1775 } 1776 1777 int 1778 spa_mode(spa_t *spa) 1779 { 1780 return (spa->spa_mode); 1781 } 1782 1783 uint64_t 1784 spa_bootfs(spa_t *spa) 1785 { 1786 return (spa->spa_bootfs); 1787 } 1788 1789 uint64_t 1790 spa_delegation(spa_t *spa) 1791 { 1792 return (spa->spa_delegation); 1793 } 1794 1795 objset_t * 1796 spa_meta_objset(spa_t *spa) 1797 { 1798 return (spa->spa_meta_objset); 1799 } 1800 1801 enum zio_checksum 1802 spa_dedup_checksum(spa_t *spa) 1803 { 1804 return (spa->spa_dedup_checksum); 1805 } 1806 1807 /* 1808 * Reset pool scan stat per scan pass (or reboot). 1809 */ 1810 void 1811 spa_scan_stat_init(spa_t *spa) 1812 { 1813 /* data not stored on disk */ 1814 spa->spa_scan_pass_start = gethrestime_sec(); 1815 spa->spa_scan_pass_exam = 0; 1816 vdev_scan_stat_init(spa->spa_root_vdev); 1817 } 1818 1819 /* 1820 * Get scan stats for zpool status reports 1821 */ 1822 int 1823 spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps) 1824 { 1825 dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL; 1826 1827 if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE) 1828 return (SET_ERROR(ENOENT)); 1829 bzero(ps, sizeof (pool_scan_stat_t)); 1830 1831 /* data stored on disk */ 1832 ps->pss_func = scn->scn_phys.scn_func; 1833 ps->pss_start_time = scn->scn_phys.scn_start_time; 1834 ps->pss_end_time = scn->scn_phys.scn_end_time; 1835 ps->pss_to_examine = scn->scn_phys.scn_to_examine; 1836 ps->pss_examined = scn->scn_phys.scn_examined; 1837 ps->pss_to_process = scn->scn_phys.scn_to_process; 1838 ps->pss_processed = scn->scn_phys.scn_processed; 1839 ps->pss_errors = scn->scn_phys.scn_errors; 1840 ps->pss_state = scn->scn_phys.scn_state; 1841 1842 /* data not stored on disk */ 1843 ps->pss_pass_start = spa->spa_scan_pass_start; 1844 ps->pss_pass_exam = spa->spa_scan_pass_exam; 1845 1846 return (0); 1847 } 1848 1849 boolean_t 1850 spa_debug_enabled(spa_t *spa) 1851 { 1852 return (spa->spa_debug); 1853 } 1854