1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/zfs_context.h> 27 #include <sys/spa_impl.h> 28 #include <sys/zio.h> 29 #include <sys/zio_checksum.h> 30 #include <sys/zio_compress.h> 31 #include <sys/dmu.h> 32 #include <sys/dmu_tx.h> 33 #include <sys/zap.h> 34 #include <sys/zil.h> 35 #include <sys/vdev_impl.h> 36 #include <sys/metaslab.h> 37 #include <sys/uberblock_impl.h> 38 #include <sys/txg.h> 39 #include <sys/avl.h> 40 #include <sys/unique.h> 41 #include <sys/dsl_pool.h> 42 #include <sys/dsl_dir.h> 43 #include <sys/dsl_prop.h> 44 #include <sys/fs/zfs.h> 45 #include <sys/metaslab_impl.h> 46 #include <sys/sunddi.h> 47 #include <sys/arc.h> 48 #include <sys/ddt.h> 49 #include "zfs_prop.h" 50 51 /* 52 * SPA locking 53 * 54 * There are four basic locks for managing spa_t structures: 55 * 56 * spa_namespace_lock (global mutex) 57 * 58 * This lock must be acquired to do any of the following: 59 * 60 * - Lookup a spa_t by name 61 * - Add or remove a spa_t from the namespace 62 * - Increase spa_refcount from non-zero 63 * - Check if spa_refcount is zero 64 * - Rename a spa_t 65 * - add/remove/attach/detach devices 66 * - Held for the duration of create/destroy/import/export 67 * 68 * It does not need to handle recursion. A create or destroy may 69 * reference objects (files or zvols) in other pools, but by 70 * definition they must have an existing reference, and will never need 71 * to lookup a spa_t by name. 72 * 73 * spa_refcount (per-spa refcount_t protected by mutex) 74 * 75 * This reference count keep track of any active users of the spa_t. The 76 * spa_t cannot be destroyed or freed while this is non-zero. Internally, 77 * the refcount is never really 'zero' - opening a pool implicitly keeps 78 * some references in the DMU. Internally we check against spa_minref, but 79 * present the image of a zero/non-zero value to consumers. 80 * 81 * spa_config_lock[] (per-spa array of rwlocks) 82 * 83 * This protects the spa_t from config changes, and must be held in 84 * the following circumstances: 85 * 86 * - RW_READER to perform I/O to the spa 87 * - RW_WRITER to change the vdev config 88 * 89 * The locking order is fairly straightforward: 90 * 91 * spa_namespace_lock -> spa_refcount 92 * 93 * The namespace lock must be acquired to increase the refcount from 0 94 * or to check if it is zero. 95 * 96 * spa_refcount -> spa_config_lock[] 97 * 98 * There must be at least one valid reference on the spa_t to acquire 99 * the config lock. 100 * 101 * spa_namespace_lock -> spa_config_lock[] 102 * 103 * The namespace lock must always be taken before the config lock. 104 * 105 * 106 * The spa_namespace_lock can be acquired directly and is globally visible. 107 * 108 * The namespace is manipulated using the following functions, all of which 109 * require the spa_namespace_lock to be held. 110 * 111 * spa_lookup() Lookup a spa_t by name. 112 * 113 * spa_add() Create a new spa_t in the namespace. 114 * 115 * spa_remove() Remove a spa_t from the namespace. This also 116 * frees up any memory associated with the spa_t. 117 * 118 * spa_next() Returns the next spa_t in the system, or the 119 * first if NULL is passed. 120 * 121 * spa_evict_all() Shutdown and remove all spa_t structures in 122 * the system. 123 * 124 * spa_guid_exists() Determine whether a pool/device guid exists. 125 * 126 * The spa_refcount is manipulated using the following functions: 127 * 128 * spa_open_ref() Adds a reference to the given spa_t. Must be 129 * called with spa_namespace_lock held if the 130 * refcount is currently zero. 131 * 132 * spa_close() Remove a reference from the spa_t. This will 133 * not free the spa_t or remove it from the 134 * namespace. No locking is required. 135 * 136 * spa_refcount_zero() Returns true if the refcount is currently 137 * zero. Must be called with spa_namespace_lock 138 * held. 139 * 140 * The spa_config_lock[] is an array of rwlocks, ordered as follows: 141 * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV. 142 * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}(). 143 * 144 * To read the configuration, it suffices to hold one of these locks as reader. 145 * To modify the configuration, you must hold all locks as writer. To modify 146 * vdev state without altering the vdev tree's topology (e.g. online/offline), 147 * you must hold SCL_STATE and SCL_ZIO as writer. 148 * 149 * We use these distinct config locks to avoid recursive lock entry. 150 * For example, spa_sync() (which holds SCL_CONFIG as reader) induces 151 * block allocations (SCL_ALLOC), which may require reading space maps 152 * from disk (dmu_read() -> zio_read() -> SCL_ZIO). 153 * 154 * The spa config locks cannot be normal rwlocks because we need the 155 * ability to hand off ownership. For example, SCL_ZIO is acquired 156 * by the issuing thread and later released by an interrupt thread. 157 * They do, however, obey the usual write-wanted semantics to prevent 158 * writer (i.e. system administrator) starvation. 159 * 160 * The lock acquisition rules are as follows: 161 * 162 * SCL_CONFIG 163 * Protects changes to the vdev tree topology, such as vdev 164 * add/remove/attach/detach. Protects the dirty config list 165 * (spa_config_dirty_list) and the set of spares and l2arc devices. 166 * 167 * SCL_STATE 168 * Protects changes to pool state and vdev state, such as vdev 169 * online/offline/fault/degrade/clear. Protects the dirty state list 170 * (spa_state_dirty_list) and global pool state (spa_state). 171 * 172 * SCL_ALLOC 173 * Protects changes to metaslab groups and classes. 174 * Held as reader by metaslab_alloc() and metaslab_claim(). 175 * 176 * SCL_ZIO 177 * Held by bp-level zios (those which have no io_vd upon entry) 178 * to prevent changes to the vdev tree. The bp-level zio implicitly 179 * protects all of its vdev child zios, which do not hold SCL_ZIO. 180 * 181 * SCL_FREE 182 * Protects changes to metaslab groups and classes. 183 * Held as reader by metaslab_free(). SCL_FREE is distinct from 184 * SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free 185 * blocks in zio_done() while another i/o that holds either 186 * SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete. 187 * 188 * SCL_VDEV 189 * Held as reader to prevent changes to the vdev tree during trivial 190 * inquiries such as bp_get_dsize(). SCL_VDEV is distinct from the 191 * other locks, and lower than all of them, to ensure that it's safe 192 * to acquire regardless of caller context. 193 * 194 * In addition, the following rules apply: 195 * 196 * (a) spa_props_lock protects pool properties, spa_config and spa_config_list. 197 * The lock ordering is SCL_CONFIG > spa_props_lock. 198 * 199 * (b) I/O operations on leaf vdevs. For any zio operation that takes 200 * an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(), 201 * or zio_write_phys() -- the caller must ensure that the config cannot 202 * cannot change in the interim, and that the vdev cannot be reopened. 203 * SCL_STATE as reader suffices for both. 204 * 205 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit(). 206 * 207 * spa_vdev_enter() Acquire the namespace lock and the config lock 208 * for writing. 209 * 210 * spa_vdev_exit() Release the config lock, wait for all I/O 211 * to complete, sync the updated configs to the 212 * cache, and release the namespace lock. 213 * 214 * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit(). 215 * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual 216 * locking is, always, based on spa_namespace_lock and spa_config_lock[]. 217 * 218 * spa_rename() is also implemented within this file since is requires 219 * manipulation of the namespace. 220 */ 221 222 static avl_tree_t spa_namespace_avl; 223 kmutex_t spa_namespace_lock; 224 static kcondvar_t spa_namespace_cv; 225 static int spa_active_count; 226 int spa_max_replication_override = SPA_DVAS_PER_BP; 227 228 static kmutex_t spa_spare_lock; 229 static avl_tree_t spa_spare_avl; 230 static kmutex_t spa_l2cache_lock; 231 static avl_tree_t spa_l2cache_avl; 232 233 kmem_cache_t *spa_buffer_pool; 234 int spa_mode_global; 235 236 #ifdef ZFS_DEBUG 237 /* Everything except dprintf is on by default in debug builds */ 238 int zfs_flags = ~ZFS_DEBUG_DPRINTF; 239 #else 240 int zfs_flags = 0; 241 #endif 242 243 /* 244 * zfs_recover can be set to nonzero to attempt to recover from 245 * otherwise-fatal errors, typically caused by on-disk corruption. When 246 * set, calls to zfs_panic_recover() will turn into warning messages. 247 */ 248 int zfs_recover = 0; 249 250 251 /* 252 * ========================================================================== 253 * SPA config locking 254 * ========================================================================== 255 */ 256 static void 257 spa_config_lock_init(spa_t *spa) 258 { 259 for (int i = 0; i < SCL_LOCKS; i++) { 260 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 261 mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL); 262 cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL); 263 refcount_create(&scl->scl_count); 264 scl->scl_writer = NULL; 265 scl->scl_write_wanted = 0; 266 } 267 } 268 269 static void 270 spa_config_lock_destroy(spa_t *spa) 271 { 272 for (int i = 0; i < SCL_LOCKS; i++) { 273 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 274 mutex_destroy(&scl->scl_lock); 275 cv_destroy(&scl->scl_cv); 276 refcount_destroy(&scl->scl_count); 277 ASSERT(scl->scl_writer == NULL); 278 ASSERT(scl->scl_write_wanted == 0); 279 } 280 } 281 282 int 283 spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw) 284 { 285 for (int i = 0; i < SCL_LOCKS; i++) { 286 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 287 if (!(locks & (1 << i))) 288 continue; 289 mutex_enter(&scl->scl_lock); 290 if (rw == RW_READER) { 291 if (scl->scl_writer || scl->scl_write_wanted) { 292 mutex_exit(&scl->scl_lock); 293 spa_config_exit(spa, locks ^ (1 << i), tag); 294 return (0); 295 } 296 } else { 297 ASSERT(scl->scl_writer != curthread); 298 if (!refcount_is_zero(&scl->scl_count)) { 299 mutex_exit(&scl->scl_lock); 300 spa_config_exit(spa, locks ^ (1 << i), tag); 301 return (0); 302 } 303 scl->scl_writer = curthread; 304 } 305 (void) refcount_add(&scl->scl_count, tag); 306 mutex_exit(&scl->scl_lock); 307 } 308 return (1); 309 } 310 311 void 312 spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw) 313 { 314 int wlocks_held = 0; 315 316 for (int i = 0; i < SCL_LOCKS; i++) { 317 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 318 if (scl->scl_writer == curthread) 319 wlocks_held |= (1 << i); 320 if (!(locks & (1 << i))) 321 continue; 322 mutex_enter(&scl->scl_lock); 323 if (rw == RW_READER) { 324 while (scl->scl_writer || scl->scl_write_wanted) { 325 cv_wait(&scl->scl_cv, &scl->scl_lock); 326 } 327 } else { 328 ASSERT(scl->scl_writer != curthread); 329 while (!refcount_is_zero(&scl->scl_count)) { 330 scl->scl_write_wanted++; 331 cv_wait(&scl->scl_cv, &scl->scl_lock); 332 scl->scl_write_wanted--; 333 } 334 scl->scl_writer = curthread; 335 } 336 (void) refcount_add(&scl->scl_count, tag); 337 mutex_exit(&scl->scl_lock); 338 } 339 ASSERT(wlocks_held <= locks); 340 } 341 342 void 343 spa_config_exit(spa_t *spa, int locks, void *tag) 344 { 345 for (int i = SCL_LOCKS - 1; i >= 0; i--) { 346 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 347 if (!(locks & (1 << i))) 348 continue; 349 mutex_enter(&scl->scl_lock); 350 ASSERT(!refcount_is_zero(&scl->scl_count)); 351 if (refcount_remove(&scl->scl_count, tag) == 0) { 352 ASSERT(scl->scl_writer == NULL || 353 scl->scl_writer == curthread); 354 scl->scl_writer = NULL; /* OK in either case */ 355 cv_broadcast(&scl->scl_cv); 356 } 357 mutex_exit(&scl->scl_lock); 358 } 359 } 360 361 int 362 spa_config_held(spa_t *spa, int locks, krw_t rw) 363 { 364 int locks_held = 0; 365 366 for (int i = 0; i < SCL_LOCKS; i++) { 367 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 368 if (!(locks & (1 << i))) 369 continue; 370 if ((rw == RW_READER && !refcount_is_zero(&scl->scl_count)) || 371 (rw == RW_WRITER && scl->scl_writer == curthread)) 372 locks_held |= 1 << i; 373 } 374 375 return (locks_held); 376 } 377 378 /* 379 * ========================================================================== 380 * SPA namespace functions 381 * ========================================================================== 382 */ 383 384 /* 385 * Lookup the named spa_t in the AVL tree. The spa_namespace_lock must be held. 386 * Returns NULL if no matching spa_t is found. 387 */ 388 spa_t * 389 spa_lookup(const char *name) 390 { 391 static spa_t search; /* spa_t is large; don't allocate on stack */ 392 spa_t *spa; 393 avl_index_t where; 394 char c; 395 char *cp; 396 397 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 398 399 /* 400 * If it's a full dataset name, figure out the pool name and 401 * just use that. 402 */ 403 cp = strpbrk(name, "/@"); 404 if (cp) { 405 c = *cp; 406 *cp = '\0'; 407 } 408 409 (void) strlcpy(search.spa_name, name, sizeof (search.spa_name)); 410 spa = avl_find(&spa_namespace_avl, &search, &where); 411 412 if (cp) 413 *cp = c; 414 415 return (spa); 416 } 417 418 /* 419 * Create an uninitialized spa_t with the given name. Requires 420 * spa_namespace_lock. The caller must ensure that the spa_t doesn't already 421 * exist by calling spa_lookup() first. 422 */ 423 spa_t * 424 spa_add(const char *name, nvlist_t *config, const char *altroot) 425 { 426 spa_t *spa; 427 spa_config_dirent_t *dp; 428 429 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 430 431 spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP); 432 433 mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL); 434 mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL); 435 mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL); 436 mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL); 437 mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL); 438 mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL); 439 440 cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL); 441 cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL); 442 cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL); 443 444 for (int t = 0; t < TXG_SIZE; t++) 445 bplist_init(&spa->spa_free_bplist[t]); 446 bplist_init(&spa->spa_deferred_bplist); 447 448 (void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name)); 449 spa->spa_state = POOL_STATE_UNINITIALIZED; 450 spa->spa_freeze_txg = UINT64_MAX; 451 spa->spa_final_txg = UINT64_MAX; 452 spa->spa_load_max_txg = UINT64_MAX; 453 454 refcount_create(&spa->spa_refcount); 455 spa_config_lock_init(spa); 456 457 avl_add(&spa_namespace_avl, spa); 458 459 mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL); 460 461 /* 462 * Set the alternate root, if there is one. 463 */ 464 if (altroot) { 465 spa->spa_root = spa_strdup(altroot); 466 spa_active_count++; 467 } 468 469 /* 470 * Every pool starts with the default cachefile 471 */ 472 list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t), 473 offsetof(spa_config_dirent_t, scd_link)); 474 475 dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP); 476 dp->scd_path = spa_strdup(spa_config_path); 477 list_insert_head(&spa->spa_config_list, dp); 478 479 if (config != NULL) 480 VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0); 481 482 return (spa); 483 } 484 485 /* 486 * Removes a spa_t from the namespace, freeing up any memory used. Requires 487 * spa_namespace_lock. This is called only after the spa_t has been closed and 488 * deactivated. 489 */ 490 void 491 spa_remove(spa_t *spa) 492 { 493 spa_config_dirent_t *dp; 494 495 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 496 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED); 497 498 avl_remove(&spa_namespace_avl, spa); 499 cv_broadcast(&spa_namespace_cv); 500 501 if (spa->spa_root) { 502 spa_strfree(spa->spa_root); 503 spa_active_count--; 504 } 505 506 while ((dp = list_head(&spa->spa_config_list)) != NULL) { 507 list_remove(&spa->spa_config_list, dp); 508 if (dp->scd_path != NULL) 509 spa_strfree(dp->scd_path); 510 kmem_free(dp, sizeof (spa_config_dirent_t)); 511 } 512 513 list_destroy(&spa->spa_config_list); 514 515 spa_config_set(spa, NULL); 516 517 refcount_destroy(&spa->spa_refcount); 518 519 spa_config_lock_destroy(spa); 520 521 for (int t = 0; t < TXG_SIZE; t++) 522 bplist_fini(&spa->spa_free_bplist[t]); 523 bplist_fini(&spa->spa_deferred_bplist); 524 525 cv_destroy(&spa->spa_async_cv); 526 cv_destroy(&spa->spa_scrub_io_cv); 527 cv_destroy(&spa->spa_suspend_cv); 528 529 mutex_destroy(&spa->spa_async_lock); 530 mutex_destroy(&spa->spa_scrub_lock); 531 mutex_destroy(&spa->spa_errlog_lock); 532 mutex_destroy(&spa->spa_errlist_lock); 533 mutex_destroy(&spa->spa_history_lock); 534 mutex_destroy(&spa->spa_props_lock); 535 mutex_destroy(&spa->spa_suspend_lock); 536 537 kmem_free(spa, sizeof (spa_t)); 538 } 539 540 /* 541 * Given a pool, return the next pool in the namespace, or NULL if there is 542 * none. If 'prev' is NULL, return the first pool. 543 */ 544 spa_t * 545 spa_next(spa_t *prev) 546 { 547 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 548 549 if (prev) 550 return (AVL_NEXT(&spa_namespace_avl, prev)); 551 else 552 return (avl_first(&spa_namespace_avl)); 553 } 554 555 /* 556 * ========================================================================== 557 * SPA refcount functions 558 * ========================================================================== 559 */ 560 561 /* 562 * Add a reference to the given spa_t. Must have at least one reference, or 563 * have the namespace lock held. 564 */ 565 void 566 spa_open_ref(spa_t *spa, void *tag) 567 { 568 ASSERT(refcount_count(&spa->spa_refcount) >= spa->spa_minref || 569 MUTEX_HELD(&spa_namespace_lock)); 570 (void) refcount_add(&spa->spa_refcount, tag); 571 } 572 573 /* 574 * Remove a reference to the given spa_t. Must have at least one reference, or 575 * have the namespace lock held. 576 */ 577 void 578 spa_close(spa_t *spa, void *tag) 579 { 580 ASSERT(refcount_count(&spa->spa_refcount) > spa->spa_minref || 581 MUTEX_HELD(&spa_namespace_lock)); 582 (void) refcount_remove(&spa->spa_refcount, tag); 583 } 584 585 /* 586 * Check to see if the spa refcount is zero. Must be called with 587 * spa_namespace_lock held. We really compare against spa_minref, which is the 588 * number of references acquired when opening a pool 589 */ 590 boolean_t 591 spa_refcount_zero(spa_t *spa) 592 { 593 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 594 595 return (refcount_count(&spa->spa_refcount) == spa->spa_minref); 596 } 597 598 /* 599 * ========================================================================== 600 * SPA spare and l2cache tracking 601 * ========================================================================== 602 */ 603 604 /* 605 * Hot spares and cache devices are tracked using the same code below, 606 * for 'auxiliary' devices. 607 */ 608 609 typedef struct spa_aux { 610 uint64_t aux_guid; 611 uint64_t aux_pool; 612 avl_node_t aux_avl; 613 int aux_count; 614 } spa_aux_t; 615 616 static int 617 spa_aux_compare(const void *a, const void *b) 618 { 619 const spa_aux_t *sa = a; 620 const spa_aux_t *sb = b; 621 622 if (sa->aux_guid < sb->aux_guid) 623 return (-1); 624 else if (sa->aux_guid > sb->aux_guid) 625 return (1); 626 else 627 return (0); 628 } 629 630 void 631 spa_aux_add(vdev_t *vd, avl_tree_t *avl) 632 { 633 avl_index_t where; 634 spa_aux_t search; 635 spa_aux_t *aux; 636 637 search.aux_guid = vd->vdev_guid; 638 if ((aux = avl_find(avl, &search, &where)) != NULL) { 639 aux->aux_count++; 640 } else { 641 aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP); 642 aux->aux_guid = vd->vdev_guid; 643 aux->aux_count = 1; 644 avl_insert(avl, aux, where); 645 } 646 } 647 648 void 649 spa_aux_remove(vdev_t *vd, avl_tree_t *avl) 650 { 651 spa_aux_t search; 652 spa_aux_t *aux; 653 avl_index_t where; 654 655 search.aux_guid = vd->vdev_guid; 656 aux = avl_find(avl, &search, &where); 657 658 ASSERT(aux != NULL); 659 660 if (--aux->aux_count == 0) { 661 avl_remove(avl, aux); 662 kmem_free(aux, sizeof (spa_aux_t)); 663 } else if (aux->aux_pool == spa_guid(vd->vdev_spa)) { 664 aux->aux_pool = 0ULL; 665 } 666 } 667 668 boolean_t 669 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl) 670 { 671 spa_aux_t search, *found; 672 673 search.aux_guid = guid; 674 found = avl_find(avl, &search, NULL); 675 676 if (pool) { 677 if (found) 678 *pool = found->aux_pool; 679 else 680 *pool = 0ULL; 681 } 682 683 if (refcnt) { 684 if (found) 685 *refcnt = found->aux_count; 686 else 687 *refcnt = 0; 688 } 689 690 return (found != NULL); 691 } 692 693 void 694 spa_aux_activate(vdev_t *vd, avl_tree_t *avl) 695 { 696 spa_aux_t search, *found; 697 avl_index_t where; 698 699 search.aux_guid = vd->vdev_guid; 700 found = avl_find(avl, &search, &where); 701 ASSERT(found != NULL); 702 ASSERT(found->aux_pool == 0ULL); 703 704 found->aux_pool = spa_guid(vd->vdev_spa); 705 } 706 707 /* 708 * Spares are tracked globally due to the following constraints: 709 * 710 * - A spare may be part of multiple pools. 711 * - A spare may be added to a pool even if it's actively in use within 712 * another pool. 713 * - A spare in use in any pool can only be the source of a replacement if 714 * the target is a spare in the same pool. 715 * 716 * We keep track of all spares on the system through the use of a reference 717 * counted AVL tree. When a vdev is added as a spare, or used as a replacement 718 * spare, then we bump the reference count in the AVL tree. In addition, we set 719 * the 'vdev_isspare' member to indicate that the device is a spare (active or 720 * inactive). When a spare is made active (used to replace a device in the 721 * pool), we also keep track of which pool its been made a part of. 722 * 723 * The 'spa_spare_lock' protects the AVL tree. These functions are normally 724 * called under the spa_namespace lock as part of vdev reconfiguration. The 725 * separate spare lock exists for the status query path, which does not need to 726 * be completely consistent with respect to other vdev configuration changes. 727 */ 728 729 static int 730 spa_spare_compare(const void *a, const void *b) 731 { 732 return (spa_aux_compare(a, b)); 733 } 734 735 void 736 spa_spare_add(vdev_t *vd) 737 { 738 mutex_enter(&spa_spare_lock); 739 ASSERT(!vd->vdev_isspare); 740 spa_aux_add(vd, &spa_spare_avl); 741 vd->vdev_isspare = B_TRUE; 742 mutex_exit(&spa_spare_lock); 743 } 744 745 void 746 spa_spare_remove(vdev_t *vd) 747 { 748 mutex_enter(&spa_spare_lock); 749 ASSERT(vd->vdev_isspare); 750 spa_aux_remove(vd, &spa_spare_avl); 751 vd->vdev_isspare = B_FALSE; 752 mutex_exit(&spa_spare_lock); 753 } 754 755 boolean_t 756 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt) 757 { 758 boolean_t found; 759 760 mutex_enter(&spa_spare_lock); 761 found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl); 762 mutex_exit(&spa_spare_lock); 763 764 return (found); 765 } 766 767 void 768 spa_spare_activate(vdev_t *vd) 769 { 770 mutex_enter(&spa_spare_lock); 771 ASSERT(vd->vdev_isspare); 772 spa_aux_activate(vd, &spa_spare_avl); 773 mutex_exit(&spa_spare_lock); 774 } 775 776 /* 777 * Level 2 ARC devices are tracked globally for the same reasons as spares. 778 * Cache devices currently only support one pool per cache device, and so 779 * for these devices the aux reference count is currently unused beyond 1. 780 */ 781 782 static int 783 spa_l2cache_compare(const void *a, const void *b) 784 { 785 return (spa_aux_compare(a, b)); 786 } 787 788 void 789 spa_l2cache_add(vdev_t *vd) 790 { 791 mutex_enter(&spa_l2cache_lock); 792 ASSERT(!vd->vdev_isl2cache); 793 spa_aux_add(vd, &spa_l2cache_avl); 794 vd->vdev_isl2cache = B_TRUE; 795 mutex_exit(&spa_l2cache_lock); 796 } 797 798 void 799 spa_l2cache_remove(vdev_t *vd) 800 { 801 mutex_enter(&spa_l2cache_lock); 802 ASSERT(vd->vdev_isl2cache); 803 spa_aux_remove(vd, &spa_l2cache_avl); 804 vd->vdev_isl2cache = B_FALSE; 805 mutex_exit(&spa_l2cache_lock); 806 } 807 808 boolean_t 809 spa_l2cache_exists(uint64_t guid, uint64_t *pool) 810 { 811 boolean_t found; 812 813 mutex_enter(&spa_l2cache_lock); 814 found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl); 815 mutex_exit(&spa_l2cache_lock); 816 817 return (found); 818 } 819 820 void 821 spa_l2cache_activate(vdev_t *vd) 822 { 823 mutex_enter(&spa_l2cache_lock); 824 ASSERT(vd->vdev_isl2cache); 825 spa_aux_activate(vd, &spa_l2cache_avl); 826 mutex_exit(&spa_l2cache_lock); 827 } 828 829 /* 830 * ========================================================================== 831 * SPA vdev locking 832 * ========================================================================== 833 */ 834 835 /* 836 * Lock the given spa_t for the purpose of adding or removing a vdev. 837 * Grabs the global spa_namespace_lock plus the spa config lock for writing. 838 * It returns the next transaction group for the spa_t. 839 */ 840 uint64_t 841 spa_vdev_enter(spa_t *spa) 842 { 843 mutex_enter(&spa_namespace_lock); 844 return (spa_vdev_config_enter(spa)); 845 } 846 847 /* 848 * Internal implementation for spa_vdev_enter(). Used when a vdev 849 * operation requires multiple syncs (i.e. removing a device) while 850 * keeping the spa_namespace_lock held. 851 */ 852 uint64_t 853 spa_vdev_config_enter(spa_t *spa) 854 { 855 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 856 857 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER); 858 859 return (spa_last_synced_txg(spa) + 1); 860 } 861 862 /* 863 * Used in combination with spa_vdev_config_enter() to allow the syncing 864 * of multiple transactions without releasing the spa_namespace_lock. 865 */ 866 void 867 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag) 868 { 869 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 870 871 int config_changed = B_FALSE; 872 873 ASSERT(txg > spa_last_synced_txg(spa)); 874 875 spa->spa_pending_vdev = NULL; 876 877 /* 878 * Reassess the DTLs. 879 */ 880 vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE); 881 882 /* 883 * If the config changed, notify the scrub thread that it must restart. 884 */ 885 if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) { 886 dsl_pool_scrub_restart(spa->spa_dsl_pool); 887 config_changed = B_TRUE; 888 spa->spa_config_generation++; 889 } 890 891 /* 892 * Verify the metaslab classes. 893 */ 894 ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0); 895 ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0); 896 897 spa_config_exit(spa, SCL_ALL, spa); 898 899 /* 900 * Panic the system if the specified tag requires it. This 901 * is useful for ensuring that configurations are updated 902 * transactionally. 903 */ 904 if (zio_injection_enabled) 905 zio_handle_panic_injection(spa, tag); 906 907 /* 908 * Note: this txg_wait_synced() is important because it ensures 909 * that there won't be more than one config change per txg. 910 * This allows us to use the txg as the generation number. 911 */ 912 if (error == 0) 913 txg_wait_synced(spa->spa_dsl_pool, txg); 914 915 if (vd != NULL) { 916 ASSERT(!vd->vdev_detached || vd->vdev_dtl_smo.smo_object == 0); 917 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER); 918 vdev_free(vd); 919 spa_config_exit(spa, SCL_ALL, spa); 920 } 921 922 /* 923 * If the config changed, update the config cache. 924 */ 925 if (config_changed) 926 spa_config_sync(spa, B_FALSE, B_TRUE); 927 } 928 929 /* 930 * Unlock the spa_t after adding or removing a vdev. Besides undoing the 931 * locking of spa_vdev_enter(), we also want make sure the transactions have 932 * synced to disk, and then update the global configuration cache with the new 933 * information. 934 */ 935 int 936 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error) 937 { 938 spa_vdev_config_exit(spa, vd, txg, error, FTAG); 939 mutex_exit(&spa_namespace_lock); 940 941 return (error); 942 } 943 944 /* 945 * Lock the given spa_t for the purpose of changing vdev state. 946 */ 947 void 948 spa_vdev_state_enter(spa_t *spa, int oplocks) 949 { 950 int locks = SCL_STATE_ALL | oplocks; 951 952 spa_config_enter(spa, locks, spa, RW_WRITER); 953 spa->spa_vdev_locks = locks; 954 } 955 956 int 957 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error) 958 { 959 if (vd != NULL || error == 0) 960 vdev_dtl_reassess(vd ? vd->vdev_top : spa->spa_root_vdev, 961 0, 0, B_FALSE); 962 963 if (vd != NULL) { 964 vdev_state_dirty(vd->vdev_top); 965 spa->spa_config_generation++; 966 } 967 968 ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL); 969 spa_config_exit(spa, spa->spa_vdev_locks, spa); 970 971 /* 972 * If anything changed, wait for it to sync. This ensures that, 973 * from the system administrator's perspective, zpool(1M) commands 974 * are synchronous. This is important for things like zpool offline: 975 * when the command completes, you expect no further I/O from ZFS. 976 */ 977 if (vd != NULL) 978 txg_wait_synced(spa->spa_dsl_pool, 0); 979 980 return (error); 981 } 982 983 /* 984 * ========================================================================== 985 * Miscellaneous functions 986 * ========================================================================== 987 */ 988 989 /* 990 * Rename a spa_t. 991 */ 992 int 993 spa_rename(const char *name, const char *newname) 994 { 995 spa_t *spa; 996 int err; 997 998 /* 999 * Lookup the spa_t and grab the config lock for writing. We need to 1000 * actually open the pool so that we can sync out the necessary labels. 1001 * It's OK to call spa_open() with the namespace lock held because we 1002 * allow recursive calls for other reasons. 1003 */ 1004 mutex_enter(&spa_namespace_lock); 1005 if ((err = spa_open(name, &spa, FTAG)) != 0) { 1006 mutex_exit(&spa_namespace_lock); 1007 return (err); 1008 } 1009 1010 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1011 1012 avl_remove(&spa_namespace_avl, spa); 1013 (void) strlcpy(spa->spa_name, newname, sizeof (spa->spa_name)); 1014 avl_add(&spa_namespace_avl, spa); 1015 1016 /* 1017 * Sync all labels to disk with the new names by marking the root vdev 1018 * dirty and waiting for it to sync. It will pick up the new pool name 1019 * during the sync. 1020 */ 1021 vdev_config_dirty(spa->spa_root_vdev); 1022 1023 spa_config_exit(spa, SCL_ALL, FTAG); 1024 1025 txg_wait_synced(spa->spa_dsl_pool, 0); 1026 1027 /* 1028 * Sync the updated config cache. 1029 */ 1030 spa_config_sync(spa, B_FALSE, B_TRUE); 1031 1032 spa_close(spa, FTAG); 1033 1034 mutex_exit(&spa_namespace_lock); 1035 1036 return (0); 1037 } 1038 1039 1040 /* 1041 * Determine whether a pool with given pool_guid exists. If device_guid is 1042 * non-zero, determine whether the pool exists *and* contains a device with the 1043 * specified device_guid. 1044 */ 1045 boolean_t 1046 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid) 1047 { 1048 spa_t *spa; 1049 avl_tree_t *t = &spa_namespace_avl; 1050 1051 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1052 1053 for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) { 1054 if (spa->spa_state == POOL_STATE_UNINITIALIZED) 1055 continue; 1056 if (spa->spa_root_vdev == NULL) 1057 continue; 1058 if (spa_guid(spa) == pool_guid) { 1059 if (device_guid == 0) 1060 break; 1061 1062 if (vdev_lookup_by_guid(spa->spa_root_vdev, 1063 device_guid) != NULL) 1064 break; 1065 1066 /* 1067 * Check any devices we may be in the process of adding. 1068 */ 1069 if (spa->spa_pending_vdev) { 1070 if (vdev_lookup_by_guid(spa->spa_pending_vdev, 1071 device_guid) != NULL) 1072 break; 1073 } 1074 } 1075 } 1076 1077 return (spa != NULL); 1078 } 1079 1080 char * 1081 spa_strdup(const char *s) 1082 { 1083 size_t len; 1084 char *new; 1085 1086 len = strlen(s); 1087 new = kmem_alloc(len + 1, KM_SLEEP); 1088 bcopy(s, new, len); 1089 new[len] = '\0'; 1090 1091 return (new); 1092 } 1093 1094 void 1095 spa_strfree(char *s) 1096 { 1097 kmem_free(s, strlen(s) + 1); 1098 } 1099 1100 uint64_t 1101 spa_get_random(uint64_t range) 1102 { 1103 uint64_t r; 1104 1105 ASSERT(range != 0); 1106 1107 (void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t)); 1108 1109 return (r % range); 1110 } 1111 1112 void 1113 sprintf_blkptr(char *buf, const blkptr_t *bp) 1114 { 1115 char *type = dmu_ot[BP_GET_TYPE(bp)].ot_name; 1116 char *checksum = zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name; 1117 char *compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name; 1118 1119 SPRINTF_BLKPTR(snprintf, ' ', buf, bp, type, checksum, compress); 1120 } 1121 1122 void 1123 spa_freeze(spa_t *spa) 1124 { 1125 uint64_t freeze_txg = 0; 1126 1127 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1128 if (spa->spa_freeze_txg == UINT64_MAX) { 1129 freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE; 1130 spa->spa_freeze_txg = freeze_txg; 1131 } 1132 spa_config_exit(spa, SCL_ALL, FTAG); 1133 if (freeze_txg != 0) 1134 txg_wait_synced(spa_get_dsl(spa), freeze_txg); 1135 } 1136 1137 void 1138 zfs_panic_recover(const char *fmt, ...) 1139 { 1140 va_list adx; 1141 1142 va_start(adx, fmt); 1143 vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx); 1144 va_end(adx); 1145 } 1146 1147 /* 1148 * ========================================================================== 1149 * Accessor functions 1150 * ========================================================================== 1151 */ 1152 1153 boolean_t 1154 spa_shutting_down(spa_t *spa) 1155 { 1156 return (spa->spa_async_suspended); 1157 } 1158 1159 dsl_pool_t * 1160 spa_get_dsl(spa_t *spa) 1161 { 1162 return (spa->spa_dsl_pool); 1163 } 1164 1165 blkptr_t * 1166 spa_get_rootblkptr(spa_t *spa) 1167 { 1168 return (&spa->spa_ubsync.ub_rootbp); 1169 } 1170 1171 void 1172 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp) 1173 { 1174 spa->spa_uberblock.ub_rootbp = *bp; 1175 } 1176 1177 void 1178 spa_altroot(spa_t *spa, char *buf, size_t buflen) 1179 { 1180 if (spa->spa_root == NULL) 1181 buf[0] = '\0'; 1182 else 1183 (void) strncpy(buf, spa->spa_root, buflen); 1184 } 1185 1186 int 1187 spa_sync_pass(spa_t *spa) 1188 { 1189 return (spa->spa_sync_pass); 1190 } 1191 1192 char * 1193 spa_name(spa_t *spa) 1194 { 1195 return (spa->spa_name); 1196 } 1197 1198 uint64_t 1199 spa_guid(spa_t *spa) 1200 { 1201 /* 1202 * If we fail to parse the config during spa_load(), we can go through 1203 * the error path (which posts an ereport) and end up here with no root 1204 * vdev. We stash the original pool guid in 'spa_load_guid' to handle 1205 * this case. 1206 */ 1207 if (spa->spa_root_vdev != NULL) 1208 return (spa->spa_root_vdev->vdev_guid); 1209 else 1210 return (spa->spa_load_guid); 1211 } 1212 1213 uint64_t 1214 spa_last_synced_txg(spa_t *spa) 1215 { 1216 return (spa->spa_ubsync.ub_txg); 1217 } 1218 1219 uint64_t 1220 spa_first_txg(spa_t *spa) 1221 { 1222 return (spa->spa_first_txg); 1223 } 1224 1225 uint64_t 1226 spa_syncing_txg(spa_t *spa) 1227 { 1228 return (spa->spa_syncing_txg); 1229 } 1230 1231 pool_state_t 1232 spa_state(spa_t *spa) 1233 { 1234 return (spa->spa_state); 1235 } 1236 1237 uint64_t 1238 spa_freeze_txg(spa_t *spa) 1239 { 1240 return (spa->spa_freeze_txg); 1241 } 1242 1243 /* ARGSUSED */ 1244 uint64_t 1245 spa_get_asize(spa_t *spa, uint64_t lsize) 1246 { 1247 /* 1248 * The worst case is single-sector max-parity RAID-Z blocks, in which 1249 * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1) 1250 * times the size; so just assume that. Add to this the fact that 1251 * we can have up to 3 DVAs per bp, and one more factor of 2 because 1252 * the block may be dittoed with up to 3 DVAs by ddt_sync(). 1253 */ 1254 return (lsize * (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2); 1255 } 1256 1257 uint64_t 1258 spa_get_dspace(spa_t *spa) 1259 { 1260 return (spa->spa_dspace); 1261 } 1262 1263 void 1264 spa_update_dspace(spa_t *spa) 1265 { 1266 spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) + 1267 ddt_get_dedup_dspace(spa); 1268 } 1269 1270 /* 1271 * Return the failure mode that has been set to this pool. The default 1272 * behavior will be to block all I/Os when a complete failure occurs. 1273 */ 1274 uint8_t 1275 spa_get_failmode(spa_t *spa) 1276 { 1277 return (spa->spa_failmode); 1278 } 1279 1280 boolean_t 1281 spa_suspended(spa_t *spa) 1282 { 1283 return (spa->spa_suspended); 1284 } 1285 1286 uint64_t 1287 spa_version(spa_t *spa) 1288 { 1289 return (spa->spa_ubsync.ub_version); 1290 } 1291 1292 boolean_t 1293 spa_deflate(spa_t *spa) 1294 { 1295 return (spa->spa_deflate); 1296 } 1297 1298 metaslab_class_t * 1299 spa_normal_class(spa_t *spa) 1300 { 1301 return (spa->spa_normal_class); 1302 } 1303 1304 metaslab_class_t * 1305 spa_log_class(spa_t *spa) 1306 { 1307 return (spa->spa_log_class); 1308 } 1309 1310 int 1311 spa_max_replication(spa_t *spa) 1312 { 1313 /* 1314 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to 1315 * handle BPs with more than one DVA allocated. Set our max 1316 * replication level accordingly. 1317 */ 1318 if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS) 1319 return (1); 1320 return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override)); 1321 } 1322 1323 uint64_t 1324 dva_get_dsize_sync(spa_t *spa, const dva_t *dva) 1325 { 1326 uint64_t asize = DVA_GET_ASIZE(dva); 1327 uint64_t dsize = asize; 1328 1329 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 1330 1331 if (asize != 0 && spa->spa_deflate) { 1332 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva)); 1333 dsize = (asize >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio; 1334 } 1335 1336 return (dsize); 1337 } 1338 1339 uint64_t 1340 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp) 1341 { 1342 uint64_t dsize = 0; 1343 1344 for (int d = 0; d < SPA_DVAS_PER_BP; d++) 1345 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]); 1346 1347 return (dsize); 1348 } 1349 1350 uint64_t 1351 bp_get_dsize(spa_t *spa, const blkptr_t *bp) 1352 { 1353 uint64_t dsize = 0; 1354 1355 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 1356 1357 for (int d = 0; d < SPA_DVAS_PER_BP; d++) 1358 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]); 1359 1360 spa_config_exit(spa, SCL_VDEV, FTAG); 1361 1362 return (dsize); 1363 } 1364 1365 /* 1366 * ========================================================================== 1367 * Initialization and Termination 1368 * ========================================================================== 1369 */ 1370 1371 static int 1372 spa_name_compare(const void *a1, const void *a2) 1373 { 1374 const spa_t *s1 = a1; 1375 const spa_t *s2 = a2; 1376 int s; 1377 1378 s = strcmp(s1->spa_name, s2->spa_name); 1379 if (s > 0) 1380 return (1); 1381 if (s < 0) 1382 return (-1); 1383 return (0); 1384 } 1385 1386 int 1387 spa_busy(void) 1388 { 1389 return (spa_active_count); 1390 } 1391 1392 void 1393 spa_boot_init() 1394 { 1395 spa_config_load(); 1396 } 1397 1398 void 1399 spa_init(int mode) 1400 { 1401 mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL); 1402 mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL); 1403 mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL); 1404 cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL); 1405 1406 avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t), 1407 offsetof(spa_t, spa_avl)); 1408 1409 avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t), 1410 offsetof(spa_aux_t, aux_avl)); 1411 1412 avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t), 1413 offsetof(spa_aux_t, aux_avl)); 1414 1415 spa_mode_global = mode; 1416 1417 refcount_init(); 1418 unique_init(); 1419 zio_init(); 1420 dmu_init(); 1421 zil_init(); 1422 vdev_cache_stat_init(); 1423 zfs_prop_init(); 1424 zpool_prop_init(); 1425 spa_config_load(); 1426 l2arc_start(); 1427 } 1428 1429 void 1430 spa_fini(void) 1431 { 1432 l2arc_stop(); 1433 1434 spa_evict_all(); 1435 1436 vdev_cache_stat_fini(); 1437 zil_fini(); 1438 dmu_fini(); 1439 zio_fini(); 1440 unique_fini(); 1441 refcount_fini(); 1442 1443 avl_destroy(&spa_namespace_avl); 1444 avl_destroy(&spa_spare_avl); 1445 avl_destroy(&spa_l2cache_avl); 1446 1447 cv_destroy(&spa_namespace_cv); 1448 mutex_destroy(&spa_namespace_lock); 1449 mutex_destroy(&spa_spare_lock); 1450 mutex_destroy(&spa_l2cache_lock); 1451 } 1452 1453 /* 1454 * Return whether this pool has slogs. No locking needed. 1455 * It's not a problem if the wrong answer is returned as it's only for 1456 * performance and not correctness 1457 */ 1458 boolean_t 1459 spa_has_slogs(spa_t *spa) 1460 { 1461 return (spa->spa_log_class->mc_rotor != NULL); 1462 } 1463 1464 spa_log_state_t 1465 spa_get_log_state(spa_t *spa) 1466 { 1467 return (spa->spa_log_state); 1468 } 1469 1470 void 1471 spa_set_log_state(spa_t *spa, spa_log_state_t state) 1472 { 1473 spa->spa_log_state = state; 1474 } 1475 1476 boolean_t 1477 spa_is_root(spa_t *spa) 1478 { 1479 return (spa->spa_is_root); 1480 } 1481 1482 boolean_t 1483 spa_writeable(spa_t *spa) 1484 { 1485 return (!!(spa->spa_mode & FWRITE)); 1486 } 1487 1488 int 1489 spa_mode(spa_t *spa) 1490 { 1491 return (spa->spa_mode); 1492 } 1493 1494 uint64_t 1495 spa_bootfs(spa_t *spa) 1496 { 1497 return (spa->spa_bootfs); 1498 } 1499 1500 uint64_t 1501 spa_delegation(spa_t *spa) 1502 { 1503 return (spa->spa_delegation); 1504 } 1505 1506 objset_t * 1507 spa_meta_objset(spa_t *spa) 1508 { 1509 return (spa->spa_meta_objset); 1510 } 1511 1512 enum zio_checksum 1513 spa_dedup_checksum(spa_t *spa) 1514 { 1515 return (spa->spa_dedup_checksum); 1516 } 1517