1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/zfs_context.h> 27 #include <sys/spa_impl.h> 28 #include <sys/zio.h> 29 #include <sys/zio_checksum.h> 30 #include <sys/zio_compress.h> 31 #include <sys/dmu.h> 32 #include <sys/dmu_tx.h> 33 #include <sys/zap.h> 34 #include <sys/zil.h> 35 #include <sys/vdev_impl.h> 36 #include <sys/metaslab.h> 37 #include <sys/uberblock_impl.h> 38 #include <sys/txg.h> 39 #include <sys/avl.h> 40 #include <sys/unique.h> 41 #include <sys/dsl_pool.h> 42 #include <sys/dsl_dir.h> 43 #include <sys/dsl_prop.h> 44 #include <sys/fs/zfs.h> 45 #include <sys/metaslab_impl.h> 46 #include <sys/sunddi.h> 47 #include <sys/arc.h> 48 #include <sys/ddt.h> 49 #include "zfs_prop.h" 50 51 /* 52 * SPA locking 53 * 54 * There are four basic locks for managing spa_t structures: 55 * 56 * spa_namespace_lock (global mutex) 57 * 58 * This lock must be acquired to do any of the following: 59 * 60 * - Lookup a spa_t by name 61 * - Add or remove a spa_t from the namespace 62 * - Increase spa_refcount from non-zero 63 * - Check if spa_refcount is zero 64 * - Rename a spa_t 65 * - add/remove/attach/detach devices 66 * - Held for the duration of create/destroy/import/export 67 * 68 * It does not need to handle recursion. A create or destroy may 69 * reference objects (files or zvols) in other pools, but by 70 * definition they must have an existing reference, and will never need 71 * to lookup a spa_t by name. 72 * 73 * spa_refcount (per-spa refcount_t protected by mutex) 74 * 75 * This reference count keep track of any active users of the spa_t. The 76 * spa_t cannot be destroyed or freed while this is non-zero. Internally, 77 * the refcount is never really 'zero' - opening a pool implicitly keeps 78 * some references in the DMU. Internally we check against spa_minref, but 79 * present the image of a zero/non-zero value to consumers. 80 * 81 * spa_config_lock[] (per-spa array of rwlocks) 82 * 83 * This protects the spa_t from config changes, and must be held in 84 * the following circumstances: 85 * 86 * - RW_READER to perform I/O to the spa 87 * - RW_WRITER to change the vdev config 88 * 89 * The locking order is fairly straightforward: 90 * 91 * spa_namespace_lock -> spa_refcount 92 * 93 * The namespace lock must be acquired to increase the refcount from 0 94 * or to check if it is zero. 95 * 96 * spa_refcount -> spa_config_lock[] 97 * 98 * There must be at least one valid reference on the spa_t to acquire 99 * the config lock. 100 * 101 * spa_namespace_lock -> spa_config_lock[] 102 * 103 * The namespace lock must always be taken before the config lock. 104 * 105 * 106 * The spa_namespace_lock can be acquired directly and is globally visible. 107 * 108 * The namespace is manipulated using the following functions, all of which 109 * require the spa_namespace_lock to be held. 110 * 111 * spa_lookup() Lookup a spa_t by name. 112 * 113 * spa_add() Create a new spa_t in the namespace. 114 * 115 * spa_remove() Remove a spa_t from the namespace. This also 116 * frees up any memory associated with the spa_t. 117 * 118 * spa_next() Returns the next spa_t in the system, or the 119 * first if NULL is passed. 120 * 121 * spa_evict_all() Shutdown and remove all spa_t structures in 122 * the system. 123 * 124 * spa_guid_exists() Determine whether a pool/device guid exists. 125 * 126 * The spa_refcount is manipulated using the following functions: 127 * 128 * spa_open_ref() Adds a reference to the given spa_t. Must be 129 * called with spa_namespace_lock held if the 130 * refcount is currently zero. 131 * 132 * spa_close() Remove a reference from the spa_t. This will 133 * not free the spa_t or remove it from the 134 * namespace. No locking is required. 135 * 136 * spa_refcount_zero() Returns true if the refcount is currently 137 * zero. Must be called with spa_namespace_lock 138 * held. 139 * 140 * The spa_config_lock[] is an array of rwlocks, ordered as follows: 141 * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV. 142 * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}(). 143 * 144 * To read the configuration, it suffices to hold one of these locks as reader. 145 * To modify the configuration, you must hold all locks as writer. To modify 146 * vdev state without altering the vdev tree's topology (e.g. online/offline), 147 * you must hold SCL_STATE and SCL_ZIO as writer. 148 * 149 * We use these distinct config locks to avoid recursive lock entry. 150 * For example, spa_sync() (which holds SCL_CONFIG as reader) induces 151 * block allocations (SCL_ALLOC), which may require reading space maps 152 * from disk (dmu_read() -> zio_read() -> SCL_ZIO). 153 * 154 * The spa config locks cannot be normal rwlocks because we need the 155 * ability to hand off ownership. For example, SCL_ZIO is acquired 156 * by the issuing thread and later released by an interrupt thread. 157 * They do, however, obey the usual write-wanted semantics to prevent 158 * writer (i.e. system administrator) starvation. 159 * 160 * The lock acquisition rules are as follows: 161 * 162 * SCL_CONFIG 163 * Protects changes to the vdev tree topology, such as vdev 164 * add/remove/attach/detach. Protects the dirty config list 165 * (spa_config_dirty_list) and the set of spares and l2arc devices. 166 * 167 * SCL_STATE 168 * Protects changes to pool state and vdev state, such as vdev 169 * online/offline/fault/degrade/clear. Protects the dirty state list 170 * (spa_state_dirty_list) and global pool state (spa_state). 171 * 172 * SCL_ALLOC 173 * Protects changes to metaslab groups and classes. 174 * Held as reader by metaslab_alloc() and metaslab_claim(). 175 * 176 * SCL_ZIO 177 * Held by bp-level zios (those which have no io_vd upon entry) 178 * to prevent changes to the vdev tree. The bp-level zio implicitly 179 * protects all of its vdev child zios, which do not hold SCL_ZIO. 180 * 181 * SCL_FREE 182 * Protects changes to metaslab groups and classes. 183 * Held as reader by metaslab_free(). SCL_FREE is distinct from 184 * SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free 185 * blocks in zio_done() while another i/o that holds either 186 * SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete. 187 * 188 * SCL_VDEV 189 * Held as reader to prevent changes to the vdev tree during trivial 190 * inquiries such as bp_get_dsize(). SCL_VDEV is distinct from the 191 * other locks, and lower than all of them, to ensure that it's safe 192 * to acquire regardless of caller context. 193 * 194 * In addition, the following rules apply: 195 * 196 * (a) spa_props_lock protects pool properties, spa_config and spa_config_list. 197 * The lock ordering is SCL_CONFIG > spa_props_lock. 198 * 199 * (b) I/O operations on leaf vdevs. For any zio operation that takes 200 * an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(), 201 * or zio_write_phys() -- the caller must ensure that the config cannot 202 * cannot change in the interim, and that the vdev cannot be reopened. 203 * SCL_STATE as reader suffices for both. 204 * 205 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit(). 206 * 207 * spa_vdev_enter() Acquire the namespace lock and the config lock 208 * for writing. 209 * 210 * spa_vdev_exit() Release the config lock, wait for all I/O 211 * to complete, sync the updated configs to the 212 * cache, and release the namespace lock. 213 * 214 * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit(). 215 * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual 216 * locking is, always, based on spa_namespace_lock and spa_config_lock[]. 217 * 218 * spa_rename() is also implemented within this file since is requires 219 * manipulation of the namespace. 220 */ 221 222 static avl_tree_t spa_namespace_avl; 223 kmutex_t spa_namespace_lock; 224 static kcondvar_t spa_namespace_cv; 225 static int spa_active_count; 226 int spa_max_replication_override = SPA_DVAS_PER_BP; 227 228 static kmutex_t spa_spare_lock; 229 static avl_tree_t spa_spare_avl; 230 static kmutex_t spa_l2cache_lock; 231 static avl_tree_t spa_l2cache_avl; 232 233 kmem_cache_t *spa_buffer_pool; 234 int spa_mode_global; 235 236 #ifdef ZFS_DEBUG 237 /* Everything except dprintf is on by default in debug builds */ 238 int zfs_flags = ~ZFS_DEBUG_DPRINTF; 239 #else 240 int zfs_flags = 0; 241 #endif 242 243 /* 244 * zfs_recover can be set to nonzero to attempt to recover from 245 * otherwise-fatal errors, typically caused by on-disk corruption. When 246 * set, calls to zfs_panic_recover() will turn into warning messages. 247 */ 248 int zfs_recover = 0; 249 250 251 /* 252 * ========================================================================== 253 * SPA config locking 254 * ========================================================================== 255 */ 256 static void 257 spa_config_lock_init(spa_t *spa) 258 { 259 for (int i = 0; i < SCL_LOCKS; i++) { 260 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 261 mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL); 262 cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL); 263 refcount_create(&scl->scl_count); 264 scl->scl_writer = NULL; 265 scl->scl_write_wanted = 0; 266 } 267 } 268 269 static void 270 spa_config_lock_destroy(spa_t *spa) 271 { 272 for (int i = 0; i < SCL_LOCKS; i++) { 273 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 274 mutex_destroy(&scl->scl_lock); 275 cv_destroy(&scl->scl_cv); 276 refcount_destroy(&scl->scl_count); 277 ASSERT(scl->scl_writer == NULL); 278 ASSERT(scl->scl_write_wanted == 0); 279 } 280 } 281 282 int 283 spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw) 284 { 285 for (int i = 0; i < SCL_LOCKS; i++) { 286 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 287 if (!(locks & (1 << i))) 288 continue; 289 mutex_enter(&scl->scl_lock); 290 if (rw == RW_READER) { 291 if (scl->scl_writer || scl->scl_write_wanted) { 292 mutex_exit(&scl->scl_lock); 293 spa_config_exit(spa, locks ^ (1 << i), tag); 294 return (0); 295 } 296 } else { 297 ASSERT(scl->scl_writer != curthread); 298 if (!refcount_is_zero(&scl->scl_count)) { 299 mutex_exit(&scl->scl_lock); 300 spa_config_exit(spa, locks ^ (1 << i), tag); 301 return (0); 302 } 303 scl->scl_writer = curthread; 304 } 305 (void) refcount_add(&scl->scl_count, tag); 306 mutex_exit(&scl->scl_lock); 307 } 308 return (1); 309 } 310 311 void 312 spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw) 313 { 314 int wlocks_held = 0; 315 316 for (int i = 0; i < SCL_LOCKS; i++) { 317 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 318 if (scl->scl_writer == curthread) 319 wlocks_held |= (1 << i); 320 if (!(locks & (1 << i))) 321 continue; 322 mutex_enter(&scl->scl_lock); 323 if (rw == RW_READER) { 324 while (scl->scl_writer || scl->scl_write_wanted) { 325 cv_wait(&scl->scl_cv, &scl->scl_lock); 326 } 327 } else { 328 ASSERT(scl->scl_writer != curthread); 329 while (!refcount_is_zero(&scl->scl_count)) { 330 scl->scl_write_wanted++; 331 cv_wait(&scl->scl_cv, &scl->scl_lock); 332 scl->scl_write_wanted--; 333 } 334 scl->scl_writer = curthread; 335 } 336 (void) refcount_add(&scl->scl_count, tag); 337 mutex_exit(&scl->scl_lock); 338 } 339 ASSERT(wlocks_held <= locks); 340 } 341 342 void 343 spa_config_exit(spa_t *spa, int locks, void *tag) 344 { 345 for (int i = SCL_LOCKS - 1; i >= 0; i--) { 346 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 347 if (!(locks & (1 << i))) 348 continue; 349 mutex_enter(&scl->scl_lock); 350 ASSERT(!refcount_is_zero(&scl->scl_count)); 351 if (refcount_remove(&scl->scl_count, tag) == 0) { 352 ASSERT(scl->scl_writer == NULL || 353 scl->scl_writer == curthread); 354 scl->scl_writer = NULL; /* OK in either case */ 355 cv_broadcast(&scl->scl_cv); 356 } 357 mutex_exit(&scl->scl_lock); 358 } 359 } 360 361 int 362 spa_config_held(spa_t *spa, int locks, krw_t rw) 363 { 364 int locks_held = 0; 365 366 for (int i = 0; i < SCL_LOCKS; i++) { 367 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 368 if (!(locks & (1 << i))) 369 continue; 370 if ((rw == RW_READER && !refcount_is_zero(&scl->scl_count)) || 371 (rw == RW_WRITER && scl->scl_writer == curthread)) 372 locks_held |= 1 << i; 373 } 374 375 return (locks_held); 376 } 377 378 /* 379 * ========================================================================== 380 * SPA namespace functions 381 * ========================================================================== 382 */ 383 384 /* 385 * Lookup the named spa_t in the AVL tree. The spa_namespace_lock must be held. 386 * Returns NULL if no matching spa_t is found. 387 */ 388 spa_t * 389 spa_lookup(const char *name) 390 { 391 static spa_t search; /* spa_t is large; don't allocate on stack */ 392 spa_t *spa; 393 avl_index_t where; 394 char c; 395 char *cp; 396 397 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 398 399 /* 400 * If it's a full dataset name, figure out the pool name and 401 * just use that. 402 */ 403 cp = strpbrk(name, "/@"); 404 if (cp) { 405 c = *cp; 406 *cp = '\0'; 407 } 408 409 (void) strlcpy(search.spa_name, name, sizeof (search.spa_name)); 410 spa = avl_find(&spa_namespace_avl, &search, &where); 411 412 if (cp) 413 *cp = c; 414 415 return (spa); 416 } 417 418 /* 419 * Create an uninitialized spa_t with the given name. Requires 420 * spa_namespace_lock. The caller must ensure that the spa_t doesn't already 421 * exist by calling spa_lookup() first. 422 */ 423 spa_t * 424 spa_add(const char *name, nvlist_t *config, const char *altroot) 425 { 426 spa_t *spa; 427 spa_config_dirent_t *dp; 428 429 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 430 431 spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP); 432 433 mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL); 434 mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL); 435 mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL); 436 mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL); 437 mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL); 438 mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL); 439 mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL); 440 mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL); 441 442 cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL); 443 cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL); 444 cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL); 445 446 for (int t = 0; t < TXG_SIZE; t++) 447 bplist_init(&spa->spa_free_bplist[t]); 448 bplist_init(&spa->spa_deferred_bplist); 449 450 (void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name)); 451 spa->spa_state = POOL_STATE_UNINITIALIZED; 452 spa->spa_freeze_txg = UINT64_MAX; 453 spa->spa_final_txg = UINT64_MAX; 454 spa->spa_load_max_txg = UINT64_MAX; 455 456 refcount_create(&spa->spa_refcount); 457 spa_config_lock_init(spa); 458 459 avl_add(&spa_namespace_avl, spa); 460 461 /* 462 * Set the alternate root, if there is one. 463 */ 464 if (altroot) { 465 spa->spa_root = spa_strdup(altroot); 466 spa_active_count++; 467 } 468 469 /* 470 * Every pool starts with the default cachefile 471 */ 472 list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t), 473 offsetof(spa_config_dirent_t, scd_link)); 474 475 dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP); 476 dp->scd_path = spa_strdup(spa_config_path); 477 list_insert_head(&spa->spa_config_list, dp); 478 479 if (config != NULL) 480 VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0); 481 482 return (spa); 483 } 484 485 /* 486 * Removes a spa_t from the namespace, freeing up any memory used. Requires 487 * spa_namespace_lock. This is called only after the spa_t has been closed and 488 * deactivated. 489 */ 490 void 491 spa_remove(spa_t *spa) 492 { 493 spa_config_dirent_t *dp; 494 495 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 496 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED); 497 498 avl_remove(&spa_namespace_avl, spa); 499 cv_broadcast(&spa_namespace_cv); 500 501 if (spa->spa_root) { 502 spa_strfree(spa->spa_root); 503 spa_active_count--; 504 } 505 506 while ((dp = list_head(&spa->spa_config_list)) != NULL) { 507 list_remove(&spa->spa_config_list, dp); 508 if (dp->scd_path != NULL) 509 spa_strfree(dp->scd_path); 510 kmem_free(dp, sizeof (spa_config_dirent_t)); 511 } 512 513 list_destroy(&spa->spa_config_list); 514 515 spa_config_set(spa, NULL); 516 517 refcount_destroy(&spa->spa_refcount); 518 519 spa_config_lock_destroy(spa); 520 521 for (int t = 0; t < TXG_SIZE; t++) 522 bplist_fini(&spa->spa_free_bplist[t]); 523 bplist_fini(&spa->spa_deferred_bplist); 524 525 cv_destroy(&spa->spa_async_cv); 526 cv_destroy(&spa->spa_scrub_io_cv); 527 cv_destroy(&spa->spa_suspend_cv); 528 529 mutex_destroy(&spa->spa_async_lock); 530 mutex_destroy(&spa->spa_scrub_lock); 531 mutex_destroy(&spa->spa_errlog_lock); 532 mutex_destroy(&spa->spa_errlist_lock); 533 mutex_destroy(&spa->spa_history_lock); 534 mutex_destroy(&spa->spa_props_lock); 535 mutex_destroy(&spa->spa_suspend_lock); 536 mutex_destroy(&spa->spa_vdev_top_lock); 537 538 kmem_free(spa, sizeof (spa_t)); 539 } 540 541 /* 542 * Given a pool, return the next pool in the namespace, or NULL if there is 543 * none. If 'prev' is NULL, return the first pool. 544 */ 545 spa_t * 546 spa_next(spa_t *prev) 547 { 548 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 549 550 if (prev) 551 return (AVL_NEXT(&spa_namespace_avl, prev)); 552 else 553 return (avl_first(&spa_namespace_avl)); 554 } 555 556 /* 557 * ========================================================================== 558 * SPA refcount functions 559 * ========================================================================== 560 */ 561 562 /* 563 * Add a reference to the given spa_t. Must have at least one reference, or 564 * have the namespace lock held. 565 */ 566 void 567 spa_open_ref(spa_t *spa, void *tag) 568 { 569 ASSERT(refcount_count(&spa->spa_refcount) >= spa->spa_minref || 570 MUTEX_HELD(&spa_namespace_lock)); 571 (void) refcount_add(&spa->spa_refcount, tag); 572 } 573 574 /* 575 * Remove a reference to the given spa_t. Must have at least one reference, or 576 * have the namespace lock held. 577 */ 578 void 579 spa_close(spa_t *spa, void *tag) 580 { 581 ASSERT(refcount_count(&spa->spa_refcount) > spa->spa_minref || 582 MUTEX_HELD(&spa_namespace_lock)); 583 (void) refcount_remove(&spa->spa_refcount, tag); 584 } 585 586 /* 587 * Check to see if the spa refcount is zero. Must be called with 588 * spa_namespace_lock held. We really compare against spa_minref, which is the 589 * number of references acquired when opening a pool 590 */ 591 boolean_t 592 spa_refcount_zero(spa_t *spa) 593 { 594 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 595 596 return (refcount_count(&spa->spa_refcount) == spa->spa_minref); 597 } 598 599 /* 600 * ========================================================================== 601 * SPA spare and l2cache tracking 602 * ========================================================================== 603 */ 604 605 /* 606 * Hot spares and cache devices are tracked using the same code below, 607 * for 'auxiliary' devices. 608 */ 609 610 typedef struct spa_aux { 611 uint64_t aux_guid; 612 uint64_t aux_pool; 613 avl_node_t aux_avl; 614 int aux_count; 615 } spa_aux_t; 616 617 static int 618 spa_aux_compare(const void *a, const void *b) 619 { 620 const spa_aux_t *sa = a; 621 const spa_aux_t *sb = b; 622 623 if (sa->aux_guid < sb->aux_guid) 624 return (-1); 625 else if (sa->aux_guid > sb->aux_guid) 626 return (1); 627 else 628 return (0); 629 } 630 631 void 632 spa_aux_add(vdev_t *vd, avl_tree_t *avl) 633 { 634 avl_index_t where; 635 spa_aux_t search; 636 spa_aux_t *aux; 637 638 search.aux_guid = vd->vdev_guid; 639 if ((aux = avl_find(avl, &search, &where)) != NULL) { 640 aux->aux_count++; 641 } else { 642 aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP); 643 aux->aux_guid = vd->vdev_guid; 644 aux->aux_count = 1; 645 avl_insert(avl, aux, where); 646 } 647 } 648 649 void 650 spa_aux_remove(vdev_t *vd, avl_tree_t *avl) 651 { 652 spa_aux_t search; 653 spa_aux_t *aux; 654 avl_index_t where; 655 656 search.aux_guid = vd->vdev_guid; 657 aux = avl_find(avl, &search, &where); 658 659 ASSERT(aux != NULL); 660 661 if (--aux->aux_count == 0) { 662 avl_remove(avl, aux); 663 kmem_free(aux, sizeof (spa_aux_t)); 664 } else if (aux->aux_pool == spa_guid(vd->vdev_spa)) { 665 aux->aux_pool = 0ULL; 666 } 667 } 668 669 boolean_t 670 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl) 671 { 672 spa_aux_t search, *found; 673 674 search.aux_guid = guid; 675 found = avl_find(avl, &search, NULL); 676 677 if (pool) { 678 if (found) 679 *pool = found->aux_pool; 680 else 681 *pool = 0ULL; 682 } 683 684 if (refcnt) { 685 if (found) 686 *refcnt = found->aux_count; 687 else 688 *refcnt = 0; 689 } 690 691 return (found != NULL); 692 } 693 694 void 695 spa_aux_activate(vdev_t *vd, avl_tree_t *avl) 696 { 697 spa_aux_t search, *found; 698 avl_index_t where; 699 700 search.aux_guid = vd->vdev_guid; 701 found = avl_find(avl, &search, &where); 702 ASSERT(found != NULL); 703 ASSERT(found->aux_pool == 0ULL); 704 705 found->aux_pool = spa_guid(vd->vdev_spa); 706 } 707 708 /* 709 * Spares are tracked globally due to the following constraints: 710 * 711 * - A spare may be part of multiple pools. 712 * - A spare may be added to a pool even if it's actively in use within 713 * another pool. 714 * - A spare in use in any pool can only be the source of a replacement if 715 * the target is a spare in the same pool. 716 * 717 * We keep track of all spares on the system through the use of a reference 718 * counted AVL tree. When a vdev is added as a spare, or used as a replacement 719 * spare, then we bump the reference count in the AVL tree. In addition, we set 720 * the 'vdev_isspare' member to indicate that the device is a spare (active or 721 * inactive). When a spare is made active (used to replace a device in the 722 * pool), we also keep track of which pool its been made a part of. 723 * 724 * The 'spa_spare_lock' protects the AVL tree. These functions are normally 725 * called under the spa_namespace lock as part of vdev reconfiguration. The 726 * separate spare lock exists for the status query path, which does not need to 727 * be completely consistent with respect to other vdev configuration changes. 728 */ 729 730 static int 731 spa_spare_compare(const void *a, const void *b) 732 { 733 return (spa_aux_compare(a, b)); 734 } 735 736 void 737 spa_spare_add(vdev_t *vd) 738 { 739 mutex_enter(&spa_spare_lock); 740 ASSERT(!vd->vdev_isspare); 741 spa_aux_add(vd, &spa_spare_avl); 742 vd->vdev_isspare = B_TRUE; 743 mutex_exit(&spa_spare_lock); 744 } 745 746 void 747 spa_spare_remove(vdev_t *vd) 748 { 749 mutex_enter(&spa_spare_lock); 750 ASSERT(vd->vdev_isspare); 751 spa_aux_remove(vd, &spa_spare_avl); 752 vd->vdev_isspare = B_FALSE; 753 mutex_exit(&spa_spare_lock); 754 } 755 756 boolean_t 757 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt) 758 { 759 boolean_t found; 760 761 mutex_enter(&spa_spare_lock); 762 found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl); 763 mutex_exit(&spa_spare_lock); 764 765 return (found); 766 } 767 768 void 769 spa_spare_activate(vdev_t *vd) 770 { 771 mutex_enter(&spa_spare_lock); 772 ASSERT(vd->vdev_isspare); 773 spa_aux_activate(vd, &spa_spare_avl); 774 mutex_exit(&spa_spare_lock); 775 } 776 777 /* 778 * Level 2 ARC devices are tracked globally for the same reasons as spares. 779 * Cache devices currently only support one pool per cache device, and so 780 * for these devices the aux reference count is currently unused beyond 1. 781 */ 782 783 static int 784 spa_l2cache_compare(const void *a, const void *b) 785 { 786 return (spa_aux_compare(a, b)); 787 } 788 789 void 790 spa_l2cache_add(vdev_t *vd) 791 { 792 mutex_enter(&spa_l2cache_lock); 793 ASSERT(!vd->vdev_isl2cache); 794 spa_aux_add(vd, &spa_l2cache_avl); 795 vd->vdev_isl2cache = B_TRUE; 796 mutex_exit(&spa_l2cache_lock); 797 } 798 799 void 800 spa_l2cache_remove(vdev_t *vd) 801 { 802 mutex_enter(&spa_l2cache_lock); 803 ASSERT(vd->vdev_isl2cache); 804 spa_aux_remove(vd, &spa_l2cache_avl); 805 vd->vdev_isl2cache = B_FALSE; 806 mutex_exit(&spa_l2cache_lock); 807 } 808 809 boolean_t 810 spa_l2cache_exists(uint64_t guid, uint64_t *pool) 811 { 812 boolean_t found; 813 814 mutex_enter(&spa_l2cache_lock); 815 found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl); 816 mutex_exit(&spa_l2cache_lock); 817 818 return (found); 819 } 820 821 void 822 spa_l2cache_activate(vdev_t *vd) 823 { 824 mutex_enter(&spa_l2cache_lock); 825 ASSERT(vd->vdev_isl2cache); 826 spa_aux_activate(vd, &spa_l2cache_avl); 827 mutex_exit(&spa_l2cache_lock); 828 } 829 830 /* 831 * ========================================================================== 832 * SPA vdev locking 833 * ========================================================================== 834 */ 835 836 /* 837 * Lock the given spa_t for the purpose of adding or removing a vdev. 838 * Grabs the global spa_namespace_lock plus the spa config lock for writing. 839 * It returns the next transaction group for the spa_t. 840 */ 841 uint64_t 842 spa_vdev_enter(spa_t *spa) 843 { 844 mutex_enter(&spa_namespace_lock); 845 mutex_enter(&spa->spa_vdev_top_lock); 846 return (spa_vdev_config_enter(spa)); 847 } 848 849 /* 850 * Internal implementation for spa_vdev_enter(). Used when a vdev 851 * operation requires multiple syncs (i.e. removing a device) while 852 * keeping the spa_namespace_lock held. 853 */ 854 uint64_t 855 spa_vdev_config_enter(spa_t *spa) 856 { 857 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 858 859 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER); 860 861 return (spa_last_synced_txg(spa) + 1); 862 } 863 864 /* 865 * Used in combination with spa_vdev_config_enter() to allow the syncing 866 * of multiple transactions without releasing the spa_namespace_lock. 867 */ 868 void 869 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag) 870 { 871 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 872 873 int config_changed = B_FALSE; 874 875 ASSERT(txg > spa_last_synced_txg(spa)); 876 877 spa->spa_pending_vdev = NULL; 878 879 /* 880 * Reassess the DTLs. 881 */ 882 vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE); 883 884 /* 885 * If the config changed, notify the scrub thread that it must restart. 886 */ 887 if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) { 888 dsl_pool_scrub_restart(spa->spa_dsl_pool); 889 config_changed = B_TRUE; 890 spa->spa_config_generation++; 891 } 892 893 /* 894 * Verify the metaslab classes. 895 */ 896 ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0); 897 ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0); 898 899 spa_config_exit(spa, SCL_ALL, spa); 900 901 /* 902 * Panic the system if the specified tag requires it. This 903 * is useful for ensuring that configurations are updated 904 * transactionally. 905 */ 906 if (zio_injection_enabled) 907 zio_handle_panic_injection(spa, tag); 908 909 /* 910 * Note: this txg_wait_synced() is important because it ensures 911 * that there won't be more than one config change per txg. 912 * This allows us to use the txg as the generation number. 913 */ 914 if (error == 0) 915 txg_wait_synced(spa->spa_dsl_pool, txg); 916 917 if (vd != NULL) { 918 ASSERT(!vd->vdev_detached || vd->vdev_dtl_smo.smo_object == 0); 919 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER); 920 vdev_free(vd); 921 spa_config_exit(spa, SCL_ALL, spa); 922 } 923 924 /* 925 * If the config changed, update the config cache. 926 */ 927 if (config_changed) 928 spa_config_sync(spa, B_FALSE, B_TRUE); 929 } 930 931 /* 932 * Unlock the spa_t after adding or removing a vdev. Besides undoing the 933 * locking of spa_vdev_enter(), we also want make sure the transactions have 934 * synced to disk, and then update the global configuration cache with the new 935 * information. 936 */ 937 int 938 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error) 939 { 940 spa_vdev_config_exit(spa, vd, txg, error, FTAG); 941 mutex_exit(&spa->spa_vdev_top_lock); 942 mutex_exit(&spa_namespace_lock); 943 944 return (error); 945 } 946 947 /* 948 * Lock the given spa_t for the purpose of changing vdev state. 949 */ 950 void 951 spa_vdev_state_enter(spa_t *spa, int oplocks) 952 { 953 int locks = SCL_STATE_ALL | oplocks; 954 955 spa_config_enter(spa, locks, spa, RW_WRITER); 956 spa->spa_vdev_locks = locks; 957 } 958 959 int 960 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error) 961 { 962 if (vd != NULL || error == 0) 963 vdev_dtl_reassess(vd ? vd->vdev_top : spa->spa_root_vdev, 964 0, 0, B_FALSE); 965 966 if (vd != NULL) { 967 vdev_state_dirty(vd->vdev_top); 968 spa->spa_config_generation++; 969 } 970 971 ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL); 972 spa_config_exit(spa, spa->spa_vdev_locks, spa); 973 974 /* 975 * If anything changed, wait for it to sync. This ensures that, 976 * from the system administrator's perspective, zpool(1M) commands 977 * are synchronous. This is important for things like zpool offline: 978 * when the command completes, you expect no further I/O from ZFS. 979 */ 980 if (vd != NULL) 981 txg_wait_synced(spa->spa_dsl_pool, 0); 982 983 return (error); 984 } 985 986 /* 987 * ========================================================================== 988 * Miscellaneous functions 989 * ========================================================================== 990 */ 991 992 /* 993 * Rename a spa_t. 994 */ 995 int 996 spa_rename(const char *name, const char *newname) 997 { 998 spa_t *spa; 999 int err; 1000 1001 /* 1002 * Lookup the spa_t and grab the config lock for writing. We need to 1003 * actually open the pool so that we can sync out the necessary labels. 1004 * It's OK to call spa_open() with the namespace lock held because we 1005 * allow recursive calls for other reasons. 1006 */ 1007 mutex_enter(&spa_namespace_lock); 1008 if ((err = spa_open(name, &spa, FTAG)) != 0) { 1009 mutex_exit(&spa_namespace_lock); 1010 return (err); 1011 } 1012 1013 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1014 1015 avl_remove(&spa_namespace_avl, spa); 1016 (void) strlcpy(spa->spa_name, newname, sizeof (spa->spa_name)); 1017 avl_add(&spa_namespace_avl, spa); 1018 1019 /* 1020 * Sync all labels to disk with the new names by marking the root vdev 1021 * dirty and waiting for it to sync. It will pick up the new pool name 1022 * during the sync. 1023 */ 1024 vdev_config_dirty(spa->spa_root_vdev); 1025 1026 spa_config_exit(spa, SCL_ALL, FTAG); 1027 1028 txg_wait_synced(spa->spa_dsl_pool, 0); 1029 1030 /* 1031 * Sync the updated config cache. 1032 */ 1033 spa_config_sync(spa, B_FALSE, B_TRUE); 1034 1035 spa_close(spa, FTAG); 1036 1037 mutex_exit(&spa_namespace_lock); 1038 1039 return (0); 1040 } 1041 1042 1043 /* 1044 * Determine whether a pool with given pool_guid exists. If device_guid is 1045 * non-zero, determine whether the pool exists *and* contains a device with the 1046 * specified device_guid. 1047 */ 1048 boolean_t 1049 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid) 1050 { 1051 spa_t *spa; 1052 avl_tree_t *t = &spa_namespace_avl; 1053 1054 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1055 1056 for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) { 1057 if (spa->spa_state == POOL_STATE_UNINITIALIZED) 1058 continue; 1059 if (spa->spa_root_vdev == NULL) 1060 continue; 1061 if (spa_guid(spa) == pool_guid) { 1062 if (device_guid == 0) 1063 break; 1064 1065 if (vdev_lookup_by_guid(spa->spa_root_vdev, 1066 device_guid) != NULL) 1067 break; 1068 1069 /* 1070 * Check any devices we may be in the process of adding. 1071 */ 1072 if (spa->spa_pending_vdev) { 1073 if (vdev_lookup_by_guid(spa->spa_pending_vdev, 1074 device_guid) != NULL) 1075 break; 1076 } 1077 } 1078 } 1079 1080 return (spa != NULL); 1081 } 1082 1083 char * 1084 spa_strdup(const char *s) 1085 { 1086 size_t len; 1087 char *new; 1088 1089 len = strlen(s); 1090 new = kmem_alloc(len + 1, KM_SLEEP); 1091 bcopy(s, new, len); 1092 new[len] = '\0'; 1093 1094 return (new); 1095 } 1096 1097 void 1098 spa_strfree(char *s) 1099 { 1100 kmem_free(s, strlen(s) + 1); 1101 } 1102 1103 uint64_t 1104 spa_get_random(uint64_t range) 1105 { 1106 uint64_t r; 1107 1108 ASSERT(range != 0); 1109 1110 (void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t)); 1111 1112 return (r % range); 1113 } 1114 1115 void 1116 sprintf_blkptr(char *buf, const blkptr_t *bp) 1117 { 1118 char *type = dmu_ot[BP_GET_TYPE(bp)].ot_name; 1119 char *checksum = zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name; 1120 char *compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name; 1121 1122 SPRINTF_BLKPTR(snprintf, ' ', buf, bp, type, checksum, compress); 1123 } 1124 1125 void 1126 spa_freeze(spa_t *spa) 1127 { 1128 uint64_t freeze_txg = 0; 1129 1130 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1131 if (spa->spa_freeze_txg == UINT64_MAX) { 1132 freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE; 1133 spa->spa_freeze_txg = freeze_txg; 1134 } 1135 spa_config_exit(spa, SCL_ALL, FTAG); 1136 if (freeze_txg != 0) 1137 txg_wait_synced(spa_get_dsl(spa), freeze_txg); 1138 } 1139 1140 void 1141 zfs_panic_recover(const char *fmt, ...) 1142 { 1143 va_list adx; 1144 1145 va_start(adx, fmt); 1146 vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx); 1147 va_end(adx); 1148 } 1149 1150 /* 1151 * ========================================================================== 1152 * Accessor functions 1153 * ========================================================================== 1154 */ 1155 1156 boolean_t 1157 spa_shutting_down(spa_t *spa) 1158 { 1159 return (spa->spa_async_suspended); 1160 } 1161 1162 dsl_pool_t * 1163 spa_get_dsl(spa_t *spa) 1164 { 1165 return (spa->spa_dsl_pool); 1166 } 1167 1168 blkptr_t * 1169 spa_get_rootblkptr(spa_t *spa) 1170 { 1171 return (&spa->spa_ubsync.ub_rootbp); 1172 } 1173 1174 void 1175 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp) 1176 { 1177 spa->spa_uberblock.ub_rootbp = *bp; 1178 } 1179 1180 void 1181 spa_altroot(spa_t *spa, char *buf, size_t buflen) 1182 { 1183 if (spa->spa_root == NULL) 1184 buf[0] = '\0'; 1185 else 1186 (void) strncpy(buf, spa->spa_root, buflen); 1187 } 1188 1189 int 1190 spa_sync_pass(spa_t *spa) 1191 { 1192 return (spa->spa_sync_pass); 1193 } 1194 1195 char * 1196 spa_name(spa_t *spa) 1197 { 1198 return (spa->spa_name); 1199 } 1200 1201 uint64_t 1202 spa_guid(spa_t *spa) 1203 { 1204 /* 1205 * If we fail to parse the config during spa_load(), we can go through 1206 * the error path (which posts an ereport) and end up here with no root 1207 * vdev. We stash the original pool guid in 'spa_load_guid' to handle 1208 * this case. 1209 */ 1210 if (spa->spa_root_vdev != NULL) 1211 return (spa->spa_root_vdev->vdev_guid); 1212 else 1213 return (spa->spa_load_guid); 1214 } 1215 1216 uint64_t 1217 spa_last_synced_txg(spa_t *spa) 1218 { 1219 return (spa->spa_ubsync.ub_txg); 1220 } 1221 1222 uint64_t 1223 spa_first_txg(spa_t *spa) 1224 { 1225 return (spa->spa_first_txg); 1226 } 1227 1228 uint64_t 1229 spa_syncing_txg(spa_t *spa) 1230 { 1231 return (spa->spa_syncing_txg); 1232 } 1233 1234 pool_state_t 1235 spa_state(spa_t *spa) 1236 { 1237 return (spa->spa_state); 1238 } 1239 1240 uint64_t 1241 spa_freeze_txg(spa_t *spa) 1242 { 1243 return (spa->spa_freeze_txg); 1244 } 1245 1246 /* ARGSUSED */ 1247 uint64_t 1248 spa_get_asize(spa_t *spa, uint64_t lsize) 1249 { 1250 /* 1251 * The worst case is single-sector max-parity RAID-Z blocks, in which 1252 * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1) 1253 * times the size; so just assume that. Add to this the fact that 1254 * we can have up to 3 DVAs per bp, and one more factor of 2 because 1255 * the block may be dittoed with up to 3 DVAs by ddt_sync(). 1256 */ 1257 return (lsize * (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2); 1258 } 1259 1260 uint64_t 1261 spa_get_dspace(spa_t *spa) 1262 { 1263 return (spa->spa_dspace); 1264 } 1265 1266 void 1267 spa_update_dspace(spa_t *spa) 1268 { 1269 spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) + 1270 ddt_get_dedup_dspace(spa); 1271 } 1272 1273 /* 1274 * Return the failure mode that has been set to this pool. The default 1275 * behavior will be to block all I/Os when a complete failure occurs. 1276 */ 1277 uint8_t 1278 spa_get_failmode(spa_t *spa) 1279 { 1280 return (spa->spa_failmode); 1281 } 1282 1283 boolean_t 1284 spa_suspended(spa_t *spa) 1285 { 1286 return (spa->spa_suspended); 1287 } 1288 1289 uint64_t 1290 spa_version(spa_t *spa) 1291 { 1292 return (spa->spa_ubsync.ub_version); 1293 } 1294 1295 boolean_t 1296 spa_deflate(spa_t *spa) 1297 { 1298 return (spa->spa_deflate); 1299 } 1300 1301 metaslab_class_t * 1302 spa_normal_class(spa_t *spa) 1303 { 1304 return (spa->spa_normal_class); 1305 } 1306 1307 metaslab_class_t * 1308 spa_log_class(spa_t *spa) 1309 { 1310 return (spa->spa_log_class); 1311 } 1312 1313 int 1314 spa_max_replication(spa_t *spa) 1315 { 1316 /* 1317 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to 1318 * handle BPs with more than one DVA allocated. Set our max 1319 * replication level accordingly. 1320 */ 1321 if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS) 1322 return (1); 1323 return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override)); 1324 } 1325 1326 uint64_t 1327 dva_get_dsize_sync(spa_t *spa, const dva_t *dva) 1328 { 1329 uint64_t asize = DVA_GET_ASIZE(dva); 1330 uint64_t dsize = asize; 1331 1332 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 1333 1334 if (asize != 0 && spa->spa_deflate) { 1335 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva)); 1336 dsize = (asize >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio; 1337 } 1338 1339 return (dsize); 1340 } 1341 1342 uint64_t 1343 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp) 1344 { 1345 uint64_t dsize = 0; 1346 1347 for (int d = 0; d < SPA_DVAS_PER_BP; d++) 1348 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]); 1349 1350 return (dsize); 1351 } 1352 1353 uint64_t 1354 bp_get_dsize(spa_t *spa, const blkptr_t *bp) 1355 { 1356 uint64_t dsize = 0; 1357 1358 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 1359 1360 for (int d = 0; d < SPA_DVAS_PER_BP; d++) 1361 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]); 1362 1363 spa_config_exit(spa, SCL_VDEV, FTAG); 1364 1365 return (dsize); 1366 } 1367 1368 /* 1369 * ========================================================================== 1370 * Initialization and Termination 1371 * ========================================================================== 1372 */ 1373 1374 static int 1375 spa_name_compare(const void *a1, const void *a2) 1376 { 1377 const spa_t *s1 = a1; 1378 const spa_t *s2 = a2; 1379 int s; 1380 1381 s = strcmp(s1->spa_name, s2->spa_name); 1382 if (s > 0) 1383 return (1); 1384 if (s < 0) 1385 return (-1); 1386 return (0); 1387 } 1388 1389 int 1390 spa_busy(void) 1391 { 1392 return (spa_active_count); 1393 } 1394 1395 void 1396 spa_boot_init() 1397 { 1398 spa_config_load(); 1399 } 1400 1401 void 1402 spa_init(int mode) 1403 { 1404 mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL); 1405 mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL); 1406 mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL); 1407 cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL); 1408 1409 avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t), 1410 offsetof(spa_t, spa_avl)); 1411 1412 avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t), 1413 offsetof(spa_aux_t, aux_avl)); 1414 1415 avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t), 1416 offsetof(spa_aux_t, aux_avl)); 1417 1418 spa_mode_global = mode; 1419 1420 refcount_init(); 1421 unique_init(); 1422 zio_init(); 1423 dmu_init(); 1424 zil_init(); 1425 vdev_cache_stat_init(); 1426 zfs_prop_init(); 1427 zpool_prop_init(); 1428 spa_config_load(); 1429 l2arc_start(); 1430 } 1431 1432 void 1433 spa_fini(void) 1434 { 1435 l2arc_stop(); 1436 1437 spa_evict_all(); 1438 1439 vdev_cache_stat_fini(); 1440 zil_fini(); 1441 dmu_fini(); 1442 zio_fini(); 1443 unique_fini(); 1444 refcount_fini(); 1445 1446 avl_destroy(&spa_namespace_avl); 1447 avl_destroy(&spa_spare_avl); 1448 avl_destroy(&spa_l2cache_avl); 1449 1450 cv_destroy(&spa_namespace_cv); 1451 mutex_destroy(&spa_namespace_lock); 1452 mutex_destroy(&spa_spare_lock); 1453 mutex_destroy(&spa_l2cache_lock); 1454 } 1455 1456 /* 1457 * Return whether this pool has slogs. No locking needed. 1458 * It's not a problem if the wrong answer is returned as it's only for 1459 * performance and not correctness 1460 */ 1461 boolean_t 1462 spa_has_slogs(spa_t *spa) 1463 { 1464 return (spa->spa_log_class->mc_rotor != NULL); 1465 } 1466 1467 spa_log_state_t 1468 spa_get_log_state(spa_t *spa) 1469 { 1470 return (spa->spa_log_state); 1471 } 1472 1473 void 1474 spa_set_log_state(spa_t *spa, spa_log_state_t state) 1475 { 1476 spa->spa_log_state = state; 1477 } 1478 1479 boolean_t 1480 spa_is_root(spa_t *spa) 1481 { 1482 return (spa->spa_is_root); 1483 } 1484 1485 boolean_t 1486 spa_writeable(spa_t *spa) 1487 { 1488 return (!!(spa->spa_mode & FWRITE)); 1489 } 1490 1491 int 1492 spa_mode(spa_t *spa) 1493 { 1494 return (spa->spa_mode); 1495 } 1496 1497 uint64_t 1498 spa_bootfs(spa_t *spa) 1499 { 1500 return (spa->spa_bootfs); 1501 } 1502 1503 uint64_t 1504 spa_delegation(spa_t *spa) 1505 { 1506 return (spa->spa_delegation); 1507 } 1508 1509 objset_t * 1510 spa_meta_objset(spa_t *spa) 1511 { 1512 return (spa->spa_meta_objset); 1513 } 1514 1515 enum zio_checksum 1516 spa_dedup_checksum(spa_t *spa) 1517 { 1518 return (spa->spa_dedup_checksum); 1519 } 1520