xref: /titanic_51/usr/src/uts/common/fs/zfs/spa_misc.c (revision 12f7d0bd7debcebd2530b87d591f183ba5136537)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2012 by Delphix. All rights reserved.
24  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
25  */
26 
27 #include <sys/zfs_context.h>
28 #include <sys/spa_impl.h>
29 #include <sys/zio.h>
30 #include <sys/zio_checksum.h>
31 #include <sys/zio_compress.h>
32 #include <sys/dmu.h>
33 #include <sys/dmu_tx.h>
34 #include <sys/zap.h>
35 #include <sys/zil.h>
36 #include <sys/vdev_impl.h>
37 #include <sys/metaslab.h>
38 #include <sys/uberblock_impl.h>
39 #include <sys/txg.h>
40 #include <sys/avl.h>
41 #include <sys/unique.h>
42 #include <sys/dsl_pool.h>
43 #include <sys/dsl_dir.h>
44 #include <sys/dsl_prop.h>
45 #include <sys/dsl_scan.h>
46 #include <sys/fs/zfs.h>
47 #include <sys/metaslab_impl.h>
48 #include <sys/arc.h>
49 #include <sys/ddt.h>
50 #include "zfs_prop.h"
51 #include "zfeature_common.h"
52 
53 /*
54  * SPA locking
55  *
56  * There are four basic locks for managing spa_t structures:
57  *
58  * spa_namespace_lock (global mutex)
59  *
60  *	This lock must be acquired to do any of the following:
61  *
62  *		- Lookup a spa_t by name
63  *		- Add or remove a spa_t from the namespace
64  *		- Increase spa_refcount from non-zero
65  *		- Check if spa_refcount is zero
66  *		- Rename a spa_t
67  *		- add/remove/attach/detach devices
68  *		- Held for the duration of create/destroy/import/export
69  *
70  *	It does not need to handle recursion.  A create or destroy may
71  *	reference objects (files or zvols) in other pools, but by
72  *	definition they must have an existing reference, and will never need
73  *	to lookup a spa_t by name.
74  *
75  * spa_refcount (per-spa refcount_t protected by mutex)
76  *
77  *	This reference count keep track of any active users of the spa_t.  The
78  *	spa_t cannot be destroyed or freed while this is non-zero.  Internally,
79  *	the refcount is never really 'zero' - opening a pool implicitly keeps
80  *	some references in the DMU.  Internally we check against spa_minref, but
81  *	present the image of a zero/non-zero value to consumers.
82  *
83  * spa_config_lock[] (per-spa array of rwlocks)
84  *
85  *	This protects the spa_t from config changes, and must be held in
86  *	the following circumstances:
87  *
88  *		- RW_READER to perform I/O to the spa
89  *		- RW_WRITER to change the vdev config
90  *
91  * The locking order is fairly straightforward:
92  *
93  *		spa_namespace_lock	->	spa_refcount
94  *
95  *	The namespace lock must be acquired to increase the refcount from 0
96  *	or to check if it is zero.
97  *
98  *		spa_refcount		->	spa_config_lock[]
99  *
100  *	There must be at least one valid reference on the spa_t to acquire
101  *	the config lock.
102  *
103  *		spa_namespace_lock	->	spa_config_lock[]
104  *
105  *	The namespace lock must always be taken before the config lock.
106  *
107  *
108  * The spa_namespace_lock can be acquired directly and is globally visible.
109  *
110  * The namespace is manipulated using the following functions, all of which
111  * require the spa_namespace_lock to be held.
112  *
113  *	spa_lookup()		Lookup a spa_t by name.
114  *
115  *	spa_add()		Create a new spa_t in the namespace.
116  *
117  *	spa_remove()		Remove a spa_t from the namespace.  This also
118  *				frees up any memory associated with the spa_t.
119  *
120  *	spa_next()		Returns the next spa_t in the system, or the
121  *				first if NULL is passed.
122  *
123  *	spa_evict_all()		Shutdown and remove all spa_t structures in
124  *				the system.
125  *
126  *	spa_guid_exists()	Determine whether a pool/device guid exists.
127  *
128  * The spa_refcount is manipulated using the following functions:
129  *
130  *	spa_open_ref()		Adds a reference to the given spa_t.  Must be
131  *				called with spa_namespace_lock held if the
132  *				refcount is currently zero.
133  *
134  *	spa_close()		Remove a reference from the spa_t.  This will
135  *				not free the spa_t or remove it from the
136  *				namespace.  No locking is required.
137  *
138  *	spa_refcount_zero()	Returns true if the refcount is currently
139  *				zero.  Must be called with spa_namespace_lock
140  *				held.
141  *
142  * The spa_config_lock[] is an array of rwlocks, ordered as follows:
143  * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
144  * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
145  *
146  * To read the configuration, it suffices to hold one of these locks as reader.
147  * To modify the configuration, you must hold all locks as writer.  To modify
148  * vdev state without altering the vdev tree's topology (e.g. online/offline),
149  * you must hold SCL_STATE and SCL_ZIO as writer.
150  *
151  * We use these distinct config locks to avoid recursive lock entry.
152  * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
153  * block allocations (SCL_ALLOC), which may require reading space maps
154  * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
155  *
156  * The spa config locks cannot be normal rwlocks because we need the
157  * ability to hand off ownership.  For example, SCL_ZIO is acquired
158  * by the issuing thread and later released by an interrupt thread.
159  * They do, however, obey the usual write-wanted semantics to prevent
160  * writer (i.e. system administrator) starvation.
161  *
162  * The lock acquisition rules are as follows:
163  *
164  * SCL_CONFIG
165  *	Protects changes to the vdev tree topology, such as vdev
166  *	add/remove/attach/detach.  Protects the dirty config list
167  *	(spa_config_dirty_list) and the set of spares and l2arc devices.
168  *
169  * SCL_STATE
170  *	Protects changes to pool state and vdev state, such as vdev
171  *	online/offline/fault/degrade/clear.  Protects the dirty state list
172  *	(spa_state_dirty_list) and global pool state (spa_state).
173  *
174  * SCL_ALLOC
175  *	Protects changes to metaslab groups and classes.
176  *	Held as reader by metaslab_alloc() and metaslab_claim().
177  *
178  * SCL_ZIO
179  *	Held by bp-level zios (those which have no io_vd upon entry)
180  *	to prevent changes to the vdev tree.  The bp-level zio implicitly
181  *	protects all of its vdev child zios, which do not hold SCL_ZIO.
182  *
183  * SCL_FREE
184  *	Protects changes to metaslab groups and classes.
185  *	Held as reader by metaslab_free().  SCL_FREE is distinct from
186  *	SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
187  *	blocks in zio_done() while another i/o that holds either
188  *	SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
189  *
190  * SCL_VDEV
191  *	Held as reader to prevent changes to the vdev tree during trivial
192  *	inquiries such as bp_get_dsize().  SCL_VDEV is distinct from the
193  *	other locks, and lower than all of them, to ensure that it's safe
194  *	to acquire regardless of caller context.
195  *
196  * In addition, the following rules apply:
197  *
198  * (a)	spa_props_lock protects pool properties, spa_config and spa_config_list.
199  *	The lock ordering is SCL_CONFIG > spa_props_lock.
200  *
201  * (b)	I/O operations on leaf vdevs.  For any zio operation that takes
202  *	an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
203  *	or zio_write_phys() -- the caller must ensure that the config cannot
204  *	cannot change in the interim, and that the vdev cannot be reopened.
205  *	SCL_STATE as reader suffices for both.
206  *
207  * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
208  *
209  *	spa_vdev_enter()	Acquire the namespace lock and the config lock
210  *				for writing.
211  *
212  *	spa_vdev_exit()		Release the config lock, wait for all I/O
213  *				to complete, sync the updated configs to the
214  *				cache, and release the namespace lock.
215  *
216  * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
217  * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
218  * locking is, always, based on spa_namespace_lock and spa_config_lock[].
219  *
220  * spa_rename() is also implemented within this file since it requires
221  * manipulation of the namespace.
222  */
223 
224 static avl_tree_t spa_namespace_avl;
225 kmutex_t spa_namespace_lock;
226 static kcondvar_t spa_namespace_cv;
227 static int spa_active_count;
228 int spa_max_replication_override = SPA_DVAS_PER_BP;
229 
230 static kmutex_t spa_spare_lock;
231 static avl_tree_t spa_spare_avl;
232 static kmutex_t spa_l2cache_lock;
233 static avl_tree_t spa_l2cache_avl;
234 
235 kmem_cache_t *spa_buffer_pool;
236 int spa_mode_global;
237 
238 #ifdef ZFS_DEBUG
239 /* Everything except dprintf is on by default in debug builds */
240 int zfs_flags = ~ZFS_DEBUG_DPRINTF;
241 #else
242 int zfs_flags = 0;
243 #endif
244 
245 /*
246  * zfs_recover can be set to nonzero to attempt to recover from
247  * otherwise-fatal errors, typically caused by on-disk corruption.  When
248  * set, calls to zfs_panic_recover() will turn into warning messages.
249  */
250 int zfs_recover = 0;
251 
252 
253 /*
254  * ==========================================================================
255  * SPA config locking
256  * ==========================================================================
257  */
258 static void
259 spa_config_lock_init(spa_t *spa)
260 {
261 	for (int i = 0; i < SCL_LOCKS; i++) {
262 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
263 		mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
264 		cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
265 		refcount_create(&scl->scl_count);
266 		scl->scl_writer = NULL;
267 		scl->scl_write_wanted = 0;
268 	}
269 }
270 
271 static void
272 spa_config_lock_destroy(spa_t *spa)
273 {
274 	for (int i = 0; i < SCL_LOCKS; i++) {
275 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
276 		mutex_destroy(&scl->scl_lock);
277 		cv_destroy(&scl->scl_cv);
278 		refcount_destroy(&scl->scl_count);
279 		ASSERT(scl->scl_writer == NULL);
280 		ASSERT(scl->scl_write_wanted == 0);
281 	}
282 }
283 
284 int
285 spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw)
286 {
287 	for (int i = 0; i < SCL_LOCKS; i++) {
288 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
289 		if (!(locks & (1 << i)))
290 			continue;
291 		mutex_enter(&scl->scl_lock);
292 		if (rw == RW_READER) {
293 			if (scl->scl_writer || scl->scl_write_wanted) {
294 				mutex_exit(&scl->scl_lock);
295 				spa_config_exit(spa, locks ^ (1 << i), tag);
296 				return (0);
297 			}
298 		} else {
299 			ASSERT(scl->scl_writer != curthread);
300 			if (!refcount_is_zero(&scl->scl_count)) {
301 				mutex_exit(&scl->scl_lock);
302 				spa_config_exit(spa, locks ^ (1 << i), tag);
303 				return (0);
304 			}
305 			scl->scl_writer = curthread;
306 		}
307 		(void) refcount_add(&scl->scl_count, tag);
308 		mutex_exit(&scl->scl_lock);
309 	}
310 	return (1);
311 }
312 
313 void
314 spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw)
315 {
316 	int wlocks_held = 0;
317 
318 	for (int i = 0; i < SCL_LOCKS; i++) {
319 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
320 		if (scl->scl_writer == curthread)
321 			wlocks_held |= (1 << i);
322 		if (!(locks & (1 << i)))
323 			continue;
324 		mutex_enter(&scl->scl_lock);
325 		if (rw == RW_READER) {
326 			while (scl->scl_writer || scl->scl_write_wanted) {
327 				cv_wait(&scl->scl_cv, &scl->scl_lock);
328 			}
329 		} else {
330 			ASSERT(scl->scl_writer != curthread);
331 			while (!refcount_is_zero(&scl->scl_count)) {
332 				scl->scl_write_wanted++;
333 				cv_wait(&scl->scl_cv, &scl->scl_lock);
334 				scl->scl_write_wanted--;
335 			}
336 			scl->scl_writer = curthread;
337 		}
338 		(void) refcount_add(&scl->scl_count, tag);
339 		mutex_exit(&scl->scl_lock);
340 	}
341 	ASSERT(wlocks_held <= locks);
342 }
343 
344 void
345 spa_config_exit(spa_t *spa, int locks, void *tag)
346 {
347 	for (int i = SCL_LOCKS - 1; i >= 0; i--) {
348 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
349 		if (!(locks & (1 << i)))
350 			continue;
351 		mutex_enter(&scl->scl_lock);
352 		ASSERT(!refcount_is_zero(&scl->scl_count));
353 		if (refcount_remove(&scl->scl_count, tag) == 0) {
354 			ASSERT(scl->scl_writer == NULL ||
355 			    scl->scl_writer == curthread);
356 			scl->scl_writer = NULL;	/* OK in either case */
357 			cv_broadcast(&scl->scl_cv);
358 		}
359 		mutex_exit(&scl->scl_lock);
360 	}
361 }
362 
363 int
364 spa_config_held(spa_t *spa, int locks, krw_t rw)
365 {
366 	int locks_held = 0;
367 
368 	for (int i = 0; i < SCL_LOCKS; i++) {
369 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
370 		if (!(locks & (1 << i)))
371 			continue;
372 		if ((rw == RW_READER && !refcount_is_zero(&scl->scl_count)) ||
373 		    (rw == RW_WRITER && scl->scl_writer == curthread))
374 			locks_held |= 1 << i;
375 	}
376 
377 	return (locks_held);
378 }
379 
380 /*
381  * ==========================================================================
382  * SPA namespace functions
383  * ==========================================================================
384  */
385 
386 /*
387  * Lookup the named spa_t in the AVL tree.  The spa_namespace_lock must be held.
388  * Returns NULL if no matching spa_t is found.
389  */
390 spa_t *
391 spa_lookup(const char *name)
392 {
393 	static spa_t search;	/* spa_t is large; don't allocate on stack */
394 	spa_t *spa;
395 	avl_index_t where;
396 	char c;
397 	char *cp;
398 
399 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
400 
401 	/*
402 	 * If it's a full dataset name, figure out the pool name and
403 	 * just use that.
404 	 */
405 	cp = strpbrk(name, "/@");
406 	if (cp) {
407 		c = *cp;
408 		*cp = '\0';
409 	}
410 
411 	(void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
412 	spa = avl_find(&spa_namespace_avl, &search, &where);
413 
414 	if (cp)
415 		*cp = c;
416 
417 	return (spa);
418 }
419 
420 /*
421  * Create an uninitialized spa_t with the given name.  Requires
422  * spa_namespace_lock.  The caller must ensure that the spa_t doesn't already
423  * exist by calling spa_lookup() first.
424  */
425 spa_t *
426 spa_add(const char *name, nvlist_t *config, const char *altroot)
427 {
428 	spa_t *spa;
429 	spa_config_dirent_t *dp;
430 
431 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
432 
433 	spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
434 
435 	mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
436 	mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
437 	mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
438 	mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
439 	mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL);
440 	mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
441 	mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
442 	mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
443 	mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL);
444 
445 	cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
446 	cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL);
447 	cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
448 	cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
449 
450 	for (int t = 0; t < TXG_SIZE; t++)
451 		bplist_create(&spa->spa_free_bplist[t]);
452 
453 	(void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
454 	spa->spa_state = POOL_STATE_UNINITIALIZED;
455 	spa->spa_freeze_txg = UINT64_MAX;
456 	spa->spa_final_txg = UINT64_MAX;
457 	spa->spa_load_max_txg = UINT64_MAX;
458 	spa->spa_proc = &p0;
459 	spa->spa_proc_state = SPA_PROC_NONE;
460 
461 	refcount_create(&spa->spa_refcount);
462 	spa_config_lock_init(spa);
463 
464 	avl_add(&spa_namespace_avl, spa);
465 
466 	/*
467 	 * Set the alternate root, if there is one.
468 	 */
469 	if (altroot) {
470 		spa->spa_root = spa_strdup(altroot);
471 		spa_active_count++;
472 	}
473 
474 	/*
475 	 * Every pool starts with the default cachefile
476 	 */
477 	list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
478 	    offsetof(spa_config_dirent_t, scd_link));
479 
480 	dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
481 	dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path);
482 	list_insert_head(&spa->spa_config_list, dp);
483 
484 	VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME,
485 	    KM_SLEEP) == 0);
486 
487 	if (config != NULL) {
488 		nvlist_t *features;
489 
490 		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ,
491 		    &features) == 0) {
492 			VERIFY(nvlist_dup(features, &spa->spa_label_features,
493 			    0) == 0);
494 		}
495 
496 		VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
497 	}
498 
499 	if (spa->spa_label_features == NULL) {
500 		VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME,
501 		    KM_SLEEP) == 0);
502 	}
503 
504 	return (spa);
505 }
506 
507 /*
508  * Removes a spa_t from the namespace, freeing up any memory used.  Requires
509  * spa_namespace_lock.  This is called only after the spa_t has been closed and
510  * deactivated.
511  */
512 void
513 spa_remove(spa_t *spa)
514 {
515 	spa_config_dirent_t *dp;
516 
517 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
518 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
519 
520 	nvlist_free(spa->spa_config_splitting);
521 
522 	avl_remove(&spa_namespace_avl, spa);
523 	cv_broadcast(&spa_namespace_cv);
524 
525 	if (spa->spa_root) {
526 		spa_strfree(spa->spa_root);
527 		spa_active_count--;
528 	}
529 
530 	while ((dp = list_head(&spa->spa_config_list)) != NULL) {
531 		list_remove(&spa->spa_config_list, dp);
532 		if (dp->scd_path != NULL)
533 			spa_strfree(dp->scd_path);
534 		kmem_free(dp, sizeof (spa_config_dirent_t));
535 	}
536 
537 	list_destroy(&spa->spa_config_list);
538 
539 	nvlist_free(spa->spa_label_features);
540 	nvlist_free(spa->spa_load_info);
541 	spa_config_set(spa, NULL);
542 
543 	refcount_destroy(&spa->spa_refcount);
544 
545 	spa_config_lock_destroy(spa);
546 
547 	for (int t = 0; t < TXG_SIZE; t++)
548 		bplist_destroy(&spa->spa_free_bplist[t]);
549 
550 	cv_destroy(&spa->spa_async_cv);
551 	cv_destroy(&spa->spa_proc_cv);
552 	cv_destroy(&spa->spa_scrub_io_cv);
553 	cv_destroy(&spa->spa_suspend_cv);
554 
555 	mutex_destroy(&spa->spa_async_lock);
556 	mutex_destroy(&spa->spa_errlist_lock);
557 	mutex_destroy(&spa->spa_errlog_lock);
558 	mutex_destroy(&spa->spa_history_lock);
559 	mutex_destroy(&spa->spa_proc_lock);
560 	mutex_destroy(&spa->spa_props_lock);
561 	mutex_destroy(&spa->spa_scrub_lock);
562 	mutex_destroy(&spa->spa_suspend_lock);
563 	mutex_destroy(&spa->spa_vdev_top_lock);
564 
565 	kmem_free(spa, sizeof (spa_t));
566 }
567 
568 /*
569  * Given a pool, return the next pool in the namespace, or NULL if there is
570  * none.  If 'prev' is NULL, return the first pool.
571  */
572 spa_t *
573 spa_next(spa_t *prev)
574 {
575 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
576 
577 	if (prev)
578 		return (AVL_NEXT(&spa_namespace_avl, prev));
579 	else
580 		return (avl_first(&spa_namespace_avl));
581 }
582 
583 /*
584  * ==========================================================================
585  * SPA refcount functions
586  * ==========================================================================
587  */
588 
589 /*
590  * Add a reference to the given spa_t.  Must have at least one reference, or
591  * have the namespace lock held.
592  */
593 void
594 spa_open_ref(spa_t *spa, void *tag)
595 {
596 	ASSERT(refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
597 	    MUTEX_HELD(&spa_namespace_lock));
598 	(void) refcount_add(&spa->spa_refcount, tag);
599 }
600 
601 /*
602  * Remove a reference to the given spa_t.  Must have at least one reference, or
603  * have the namespace lock held.
604  */
605 void
606 spa_close(spa_t *spa, void *tag)
607 {
608 	ASSERT(refcount_count(&spa->spa_refcount) > spa->spa_minref ||
609 	    MUTEX_HELD(&spa_namespace_lock));
610 	(void) refcount_remove(&spa->spa_refcount, tag);
611 }
612 
613 /*
614  * Check to see if the spa refcount is zero.  Must be called with
615  * spa_namespace_lock held.  We really compare against spa_minref, which is the
616  * number of references acquired when opening a pool
617  */
618 boolean_t
619 spa_refcount_zero(spa_t *spa)
620 {
621 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
622 
623 	return (refcount_count(&spa->spa_refcount) == spa->spa_minref);
624 }
625 
626 /*
627  * ==========================================================================
628  * SPA spare and l2cache tracking
629  * ==========================================================================
630  */
631 
632 /*
633  * Hot spares and cache devices are tracked using the same code below,
634  * for 'auxiliary' devices.
635  */
636 
637 typedef struct spa_aux {
638 	uint64_t	aux_guid;
639 	uint64_t	aux_pool;
640 	avl_node_t	aux_avl;
641 	int		aux_count;
642 } spa_aux_t;
643 
644 static int
645 spa_aux_compare(const void *a, const void *b)
646 {
647 	const spa_aux_t *sa = a;
648 	const spa_aux_t *sb = b;
649 
650 	if (sa->aux_guid < sb->aux_guid)
651 		return (-1);
652 	else if (sa->aux_guid > sb->aux_guid)
653 		return (1);
654 	else
655 		return (0);
656 }
657 
658 void
659 spa_aux_add(vdev_t *vd, avl_tree_t *avl)
660 {
661 	avl_index_t where;
662 	spa_aux_t search;
663 	spa_aux_t *aux;
664 
665 	search.aux_guid = vd->vdev_guid;
666 	if ((aux = avl_find(avl, &search, &where)) != NULL) {
667 		aux->aux_count++;
668 	} else {
669 		aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
670 		aux->aux_guid = vd->vdev_guid;
671 		aux->aux_count = 1;
672 		avl_insert(avl, aux, where);
673 	}
674 }
675 
676 void
677 spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
678 {
679 	spa_aux_t search;
680 	spa_aux_t *aux;
681 	avl_index_t where;
682 
683 	search.aux_guid = vd->vdev_guid;
684 	aux = avl_find(avl, &search, &where);
685 
686 	ASSERT(aux != NULL);
687 
688 	if (--aux->aux_count == 0) {
689 		avl_remove(avl, aux);
690 		kmem_free(aux, sizeof (spa_aux_t));
691 	} else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
692 		aux->aux_pool = 0ULL;
693 	}
694 }
695 
696 boolean_t
697 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
698 {
699 	spa_aux_t search, *found;
700 
701 	search.aux_guid = guid;
702 	found = avl_find(avl, &search, NULL);
703 
704 	if (pool) {
705 		if (found)
706 			*pool = found->aux_pool;
707 		else
708 			*pool = 0ULL;
709 	}
710 
711 	if (refcnt) {
712 		if (found)
713 			*refcnt = found->aux_count;
714 		else
715 			*refcnt = 0;
716 	}
717 
718 	return (found != NULL);
719 }
720 
721 void
722 spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
723 {
724 	spa_aux_t search, *found;
725 	avl_index_t where;
726 
727 	search.aux_guid = vd->vdev_guid;
728 	found = avl_find(avl, &search, &where);
729 	ASSERT(found != NULL);
730 	ASSERT(found->aux_pool == 0ULL);
731 
732 	found->aux_pool = spa_guid(vd->vdev_spa);
733 }
734 
735 /*
736  * Spares are tracked globally due to the following constraints:
737  *
738  * 	- A spare may be part of multiple pools.
739  * 	- A spare may be added to a pool even if it's actively in use within
740  *	  another pool.
741  * 	- A spare in use in any pool can only be the source of a replacement if
742  *	  the target is a spare in the same pool.
743  *
744  * We keep track of all spares on the system through the use of a reference
745  * counted AVL tree.  When a vdev is added as a spare, or used as a replacement
746  * spare, then we bump the reference count in the AVL tree.  In addition, we set
747  * the 'vdev_isspare' member to indicate that the device is a spare (active or
748  * inactive).  When a spare is made active (used to replace a device in the
749  * pool), we also keep track of which pool its been made a part of.
750  *
751  * The 'spa_spare_lock' protects the AVL tree.  These functions are normally
752  * called under the spa_namespace lock as part of vdev reconfiguration.  The
753  * separate spare lock exists for the status query path, which does not need to
754  * be completely consistent with respect to other vdev configuration changes.
755  */
756 
757 static int
758 spa_spare_compare(const void *a, const void *b)
759 {
760 	return (spa_aux_compare(a, b));
761 }
762 
763 void
764 spa_spare_add(vdev_t *vd)
765 {
766 	mutex_enter(&spa_spare_lock);
767 	ASSERT(!vd->vdev_isspare);
768 	spa_aux_add(vd, &spa_spare_avl);
769 	vd->vdev_isspare = B_TRUE;
770 	mutex_exit(&spa_spare_lock);
771 }
772 
773 void
774 spa_spare_remove(vdev_t *vd)
775 {
776 	mutex_enter(&spa_spare_lock);
777 	ASSERT(vd->vdev_isspare);
778 	spa_aux_remove(vd, &spa_spare_avl);
779 	vd->vdev_isspare = B_FALSE;
780 	mutex_exit(&spa_spare_lock);
781 }
782 
783 boolean_t
784 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
785 {
786 	boolean_t found;
787 
788 	mutex_enter(&spa_spare_lock);
789 	found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
790 	mutex_exit(&spa_spare_lock);
791 
792 	return (found);
793 }
794 
795 void
796 spa_spare_activate(vdev_t *vd)
797 {
798 	mutex_enter(&spa_spare_lock);
799 	ASSERT(vd->vdev_isspare);
800 	spa_aux_activate(vd, &spa_spare_avl);
801 	mutex_exit(&spa_spare_lock);
802 }
803 
804 /*
805  * Level 2 ARC devices are tracked globally for the same reasons as spares.
806  * Cache devices currently only support one pool per cache device, and so
807  * for these devices the aux reference count is currently unused beyond 1.
808  */
809 
810 static int
811 spa_l2cache_compare(const void *a, const void *b)
812 {
813 	return (spa_aux_compare(a, b));
814 }
815 
816 void
817 spa_l2cache_add(vdev_t *vd)
818 {
819 	mutex_enter(&spa_l2cache_lock);
820 	ASSERT(!vd->vdev_isl2cache);
821 	spa_aux_add(vd, &spa_l2cache_avl);
822 	vd->vdev_isl2cache = B_TRUE;
823 	mutex_exit(&spa_l2cache_lock);
824 }
825 
826 void
827 spa_l2cache_remove(vdev_t *vd)
828 {
829 	mutex_enter(&spa_l2cache_lock);
830 	ASSERT(vd->vdev_isl2cache);
831 	spa_aux_remove(vd, &spa_l2cache_avl);
832 	vd->vdev_isl2cache = B_FALSE;
833 	mutex_exit(&spa_l2cache_lock);
834 }
835 
836 boolean_t
837 spa_l2cache_exists(uint64_t guid, uint64_t *pool)
838 {
839 	boolean_t found;
840 
841 	mutex_enter(&spa_l2cache_lock);
842 	found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
843 	mutex_exit(&spa_l2cache_lock);
844 
845 	return (found);
846 }
847 
848 void
849 spa_l2cache_activate(vdev_t *vd)
850 {
851 	mutex_enter(&spa_l2cache_lock);
852 	ASSERT(vd->vdev_isl2cache);
853 	spa_aux_activate(vd, &spa_l2cache_avl);
854 	mutex_exit(&spa_l2cache_lock);
855 }
856 
857 /*
858  * ==========================================================================
859  * SPA vdev locking
860  * ==========================================================================
861  */
862 
863 /*
864  * Lock the given spa_t for the purpose of adding or removing a vdev.
865  * Grabs the global spa_namespace_lock plus the spa config lock for writing.
866  * It returns the next transaction group for the spa_t.
867  */
868 uint64_t
869 spa_vdev_enter(spa_t *spa)
870 {
871 	mutex_enter(&spa->spa_vdev_top_lock);
872 	mutex_enter(&spa_namespace_lock);
873 	return (spa_vdev_config_enter(spa));
874 }
875 
876 /*
877  * Internal implementation for spa_vdev_enter().  Used when a vdev
878  * operation requires multiple syncs (i.e. removing a device) while
879  * keeping the spa_namespace_lock held.
880  */
881 uint64_t
882 spa_vdev_config_enter(spa_t *spa)
883 {
884 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
885 
886 	spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
887 
888 	return (spa_last_synced_txg(spa) + 1);
889 }
890 
891 /*
892  * Used in combination with spa_vdev_config_enter() to allow the syncing
893  * of multiple transactions without releasing the spa_namespace_lock.
894  */
895 void
896 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag)
897 {
898 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
899 
900 	int config_changed = B_FALSE;
901 
902 	ASSERT(txg > spa_last_synced_txg(spa));
903 
904 	spa->spa_pending_vdev = NULL;
905 
906 	/*
907 	 * Reassess the DTLs.
908 	 */
909 	vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE);
910 
911 	if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
912 		config_changed = B_TRUE;
913 		spa->spa_config_generation++;
914 	}
915 
916 	/*
917 	 * Verify the metaslab classes.
918 	 */
919 	ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0);
920 	ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0);
921 
922 	spa_config_exit(spa, SCL_ALL, spa);
923 
924 	/*
925 	 * Panic the system if the specified tag requires it.  This
926 	 * is useful for ensuring that configurations are updated
927 	 * transactionally.
928 	 */
929 	if (zio_injection_enabled)
930 		zio_handle_panic_injection(spa, tag, 0);
931 
932 	/*
933 	 * Note: this txg_wait_synced() is important because it ensures
934 	 * that there won't be more than one config change per txg.
935 	 * This allows us to use the txg as the generation number.
936 	 */
937 	if (error == 0)
938 		txg_wait_synced(spa->spa_dsl_pool, txg);
939 
940 	if (vd != NULL) {
941 		ASSERT(!vd->vdev_detached || vd->vdev_dtl_smo.smo_object == 0);
942 		spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
943 		vdev_free(vd);
944 		spa_config_exit(spa, SCL_ALL, spa);
945 	}
946 
947 	/*
948 	 * If the config changed, update the config cache.
949 	 */
950 	if (config_changed)
951 		spa_config_sync(spa, B_FALSE, B_TRUE);
952 }
953 
954 /*
955  * Unlock the spa_t after adding or removing a vdev.  Besides undoing the
956  * locking of spa_vdev_enter(), we also want make sure the transactions have
957  * synced to disk, and then update the global configuration cache with the new
958  * information.
959  */
960 int
961 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
962 {
963 	spa_vdev_config_exit(spa, vd, txg, error, FTAG);
964 	mutex_exit(&spa_namespace_lock);
965 	mutex_exit(&spa->spa_vdev_top_lock);
966 
967 	return (error);
968 }
969 
970 /*
971  * Lock the given spa_t for the purpose of changing vdev state.
972  */
973 void
974 spa_vdev_state_enter(spa_t *spa, int oplocks)
975 {
976 	int locks = SCL_STATE_ALL | oplocks;
977 
978 	/*
979 	 * Root pools may need to read of the underlying devfs filesystem
980 	 * when opening up a vdev.  Unfortunately if we're holding the
981 	 * SCL_ZIO lock it will result in a deadlock when we try to issue
982 	 * the read from the root filesystem.  Instead we "prefetch"
983 	 * the associated vnodes that we need prior to opening the
984 	 * underlying devices and cache them so that we can prevent
985 	 * any I/O when we are doing the actual open.
986 	 */
987 	if (spa_is_root(spa)) {
988 		int low = locks & ~(SCL_ZIO - 1);
989 		int high = locks & ~low;
990 
991 		spa_config_enter(spa, high, spa, RW_WRITER);
992 		vdev_hold(spa->spa_root_vdev);
993 		spa_config_enter(spa, low, spa, RW_WRITER);
994 	} else {
995 		spa_config_enter(spa, locks, spa, RW_WRITER);
996 	}
997 	spa->spa_vdev_locks = locks;
998 }
999 
1000 int
1001 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
1002 {
1003 	boolean_t config_changed = B_FALSE;
1004 
1005 	if (vd != NULL || error == 0)
1006 		vdev_dtl_reassess(vd ? vd->vdev_top : spa->spa_root_vdev,
1007 		    0, 0, B_FALSE);
1008 
1009 	if (vd != NULL) {
1010 		vdev_state_dirty(vd->vdev_top);
1011 		config_changed = B_TRUE;
1012 		spa->spa_config_generation++;
1013 	}
1014 
1015 	if (spa_is_root(spa))
1016 		vdev_rele(spa->spa_root_vdev);
1017 
1018 	ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
1019 	spa_config_exit(spa, spa->spa_vdev_locks, spa);
1020 
1021 	/*
1022 	 * If anything changed, wait for it to sync.  This ensures that,
1023 	 * from the system administrator's perspective, zpool(1M) commands
1024 	 * are synchronous.  This is important for things like zpool offline:
1025 	 * when the command completes, you expect no further I/O from ZFS.
1026 	 */
1027 	if (vd != NULL)
1028 		txg_wait_synced(spa->spa_dsl_pool, 0);
1029 
1030 	/*
1031 	 * If the config changed, update the config cache.
1032 	 */
1033 	if (config_changed) {
1034 		mutex_enter(&spa_namespace_lock);
1035 		spa_config_sync(spa, B_FALSE, B_TRUE);
1036 		mutex_exit(&spa_namespace_lock);
1037 	}
1038 
1039 	return (error);
1040 }
1041 
1042 /*
1043  * ==========================================================================
1044  * Miscellaneous functions
1045  * ==========================================================================
1046  */
1047 
1048 void
1049 spa_activate_mos_feature(spa_t *spa, const char *feature)
1050 {
1051 	(void) nvlist_add_boolean(spa->spa_label_features, feature);
1052 	vdev_config_dirty(spa->spa_root_vdev);
1053 }
1054 
1055 void
1056 spa_deactivate_mos_feature(spa_t *spa, const char *feature)
1057 {
1058 	(void) nvlist_remove_all(spa->spa_label_features, feature);
1059 	vdev_config_dirty(spa->spa_root_vdev);
1060 }
1061 
1062 /*
1063  * Rename a spa_t.
1064  */
1065 int
1066 spa_rename(const char *name, const char *newname)
1067 {
1068 	spa_t *spa;
1069 	int err;
1070 
1071 	/*
1072 	 * Lookup the spa_t and grab the config lock for writing.  We need to
1073 	 * actually open the pool so that we can sync out the necessary labels.
1074 	 * It's OK to call spa_open() with the namespace lock held because we
1075 	 * allow recursive calls for other reasons.
1076 	 */
1077 	mutex_enter(&spa_namespace_lock);
1078 	if ((err = spa_open(name, &spa, FTAG)) != 0) {
1079 		mutex_exit(&spa_namespace_lock);
1080 		return (err);
1081 	}
1082 
1083 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1084 
1085 	avl_remove(&spa_namespace_avl, spa);
1086 	(void) strlcpy(spa->spa_name, newname, sizeof (spa->spa_name));
1087 	avl_add(&spa_namespace_avl, spa);
1088 
1089 	/*
1090 	 * Sync all labels to disk with the new names by marking the root vdev
1091 	 * dirty and waiting for it to sync.  It will pick up the new pool name
1092 	 * during the sync.
1093 	 */
1094 	vdev_config_dirty(spa->spa_root_vdev);
1095 
1096 	spa_config_exit(spa, SCL_ALL, FTAG);
1097 
1098 	txg_wait_synced(spa->spa_dsl_pool, 0);
1099 
1100 	/*
1101 	 * Sync the updated config cache.
1102 	 */
1103 	spa_config_sync(spa, B_FALSE, B_TRUE);
1104 
1105 	spa_close(spa, FTAG);
1106 
1107 	mutex_exit(&spa_namespace_lock);
1108 
1109 	return (0);
1110 }
1111 
1112 /*
1113  * Return the spa_t associated with given pool_guid, if it exists.  If
1114  * device_guid is non-zero, determine whether the pool exists *and* contains
1115  * a device with the specified device_guid.
1116  */
1117 spa_t *
1118 spa_by_guid(uint64_t pool_guid, uint64_t device_guid)
1119 {
1120 	spa_t *spa;
1121 	avl_tree_t *t = &spa_namespace_avl;
1122 
1123 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1124 
1125 	for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1126 		if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1127 			continue;
1128 		if (spa->spa_root_vdev == NULL)
1129 			continue;
1130 		if (spa_guid(spa) == pool_guid) {
1131 			if (device_guid == 0)
1132 				break;
1133 
1134 			if (vdev_lookup_by_guid(spa->spa_root_vdev,
1135 			    device_guid) != NULL)
1136 				break;
1137 
1138 			/*
1139 			 * Check any devices we may be in the process of adding.
1140 			 */
1141 			if (spa->spa_pending_vdev) {
1142 				if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1143 				    device_guid) != NULL)
1144 					break;
1145 			}
1146 		}
1147 	}
1148 
1149 	return (spa);
1150 }
1151 
1152 /*
1153  * Determine whether a pool with the given pool_guid exists.
1154  */
1155 boolean_t
1156 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
1157 {
1158 	return (spa_by_guid(pool_guid, device_guid) != NULL);
1159 }
1160 
1161 char *
1162 spa_strdup(const char *s)
1163 {
1164 	size_t len;
1165 	char *new;
1166 
1167 	len = strlen(s);
1168 	new = kmem_alloc(len + 1, KM_SLEEP);
1169 	bcopy(s, new, len);
1170 	new[len] = '\0';
1171 
1172 	return (new);
1173 }
1174 
1175 void
1176 spa_strfree(char *s)
1177 {
1178 	kmem_free(s, strlen(s) + 1);
1179 }
1180 
1181 uint64_t
1182 spa_get_random(uint64_t range)
1183 {
1184 	uint64_t r;
1185 
1186 	ASSERT(range != 0);
1187 
1188 	(void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));
1189 
1190 	return (r % range);
1191 }
1192 
1193 uint64_t
1194 spa_generate_guid(spa_t *spa)
1195 {
1196 	uint64_t guid = spa_get_random(-1ULL);
1197 
1198 	if (spa != NULL) {
1199 		while (guid == 0 || spa_guid_exists(spa_guid(spa), guid))
1200 			guid = spa_get_random(-1ULL);
1201 	} else {
1202 		while (guid == 0 || spa_guid_exists(guid, 0))
1203 			guid = spa_get_random(-1ULL);
1204 	}
1205 
1206 	return (guid);
1207 }
1208 
1209 void
1210 sprintf_blkptr(char *buf, const blkptr_t *bp)
1211 {
1212 	char type[256];
1213 	char *checksum = NULL;
1214 	char *compress = NULL;
1215 
1216 	if (bp != NULL) {
1217 		if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) {
1218 			dmu_object_byteswap_t bswap =
1219 			    DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
1220 			(void) snprintf(type, sizeof (type), "bswap %s %s",
1221 			    DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ?
1222 			    "metadata" : "data",
1223 			    dmu_ot_byteswap[bswap].ob_name);
1224 		} else {
1225 			(void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name,
1226 			    sizeof (type));
1227 		}
1228 		checksum = zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name;
1229 		compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name;
1230 	}
1231 
1232 	SPRINTF_BLKPTR(snprintf, ' ', buf, bp, type, checksum, compress);
1233 }
1234 
1235 void
1236 spa_freeze(spa_t *spa)
1237 {
1238 	uint64_t freeze_txg = 0;
1239 
1240 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1241 	if (spa->spa_freeze_txg == UINT64_MAX) {
1242 		freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1243 		spa->spa_freeze_txg = freeze_txg;
1244 	}
1245 	spa_config_exit(spa, SCL_ALL, FTAG);
1246 	if (freeze_txg != 0)
1247 		txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1248 }
1249 
1250 void
1251 zfs_panic_recover(const char *fmt, ...)
1252 {
1253 	va_list adx;
1254 
1255 	va_start(adx, fmt);
1256 	vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
1257 	va_end(adx);
1258 }
1259 
1260 /*
1261  * This is a stripped-down version of strtoull, suitable only for converting
1262  * lowercase hexidecimal numbers that don't overflow.
1263  */
1264 uint64_t
1265 strtonum(const char *str, char **nptr)
1266 {
1267 	uint64_t val = 0;
1268 	char c;
1269 	int digit;
1270 
1271 	while ((c = *str) != '\0') {
1272 		if (c >= '0' && c <= '9')
1273 			digit = c - '0';
1274 		else if (c >= 'a' && c <= 'f')
1275 			digit = 10 + c - 'a';
1276 		else
1277 			break;
1278 
1279 		val *= 16;
1280 		val += digit;
1281 
1282 		str++;
1283 	}
1284 
1285 	if (nptr)
1286 		*nptr = (char *)str;
1287 
1288 	return (val);
1289 }
1290 
1291 /*
1292  * ==========================================================================
1293  * Accessor functions
1294  * ==========================================================================
1295  */
1296 
1297 boolean_t
1298 spa_shutting_down(spa_t *spa)
1299 {
1300 	return (spa->spa_async_suspended);
1301 }
1302 
1303 dsl_pool_t *
1304 spa_get_dsl(spa_t *spa)
1305 {
1306 	return (spa->spa_dsl_pool);
1307 }
1308 
1309 boolean_t
1310 spa_is_initializing(spa_t *spa)
1311 {
1312 	return (spa->spa_is_initializing);
1313 }
1314 
1315 blkptr_t *
1316 spa_get_rootblkptr(spa_t *spa)
1317 {
1318 	return (&spa->spa_ubsync.ub_rootbp);
1319 }
1320 
1321 void
1322 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1323 {
1324 	spa->spa_uberblock.ub_rootbp = *bp;
1325 }
1326 
1327 void
1328 spa_altroot(spa_t *spa, char *buf, size_t buflen)
1329 {
1330 	if (spa->spa_root == NULL)
1331 		buf[0] = '\0';
1332 	else
1333 		(void) strncpy(buf, spa->spa_root, buflen);
1334 }
1335 
1336 int
1337 spa_sync_pass(spa_t *spa)
1338 {
1339 	return (spa->spa_sync_pass);
1340 }
1341 
1342 char *
1343 spa_name(spa_t *spa)
1344 {
1345 	return (spa->spa_name);
1346 }
1347 
1348 uint64_t
1349 spa_guid(spa_t *spa)
1350 {
1351 	/*
1352 	 * If we fail to parse the config during spa_load(), we can go through
1353 	 * the error path (which posts an ereport) and end up here with no root
1354 	 * vdev.  We stash the original pool guid in 'spa_config_guid' to handle
1355 	 * this case.
1356 	 */
1357 	if (spa->spa_root_vdev != NULL)
1358 		return (spa->spa_root_vdev->vdev_guid);
1359 	else
1360 		return (spa->spa_config_guid);
1361 }
1362 
1363 uint64_t
1364 spa_load_guid(spa_t *spa)
1365 {
1366 	/*
1367 	 * This is a GUID that exists solely as a reference for the
1368 	 * purposes of the arc.  It is generated at load time, and
1369 	 * is never written to persistent storage.
1370 	 */
1371 	return (spa->spa_load_guid);
1372 }
1373 
1374 uint64_t
1375 spa_last_synced_txg(spa_t *spa)
1376 {
1377 	return (spa->spa_ubsync.ub_txg);
1378 }
1379 
1380 uint64_t
1381 spa_first_txg(spa_t *spa)
1382 {
1383 	return (spa->spa_first_txg);
1384 }
1385 
1386 uint64_t
1387 spa_syncing_txg(spa_t *spa)
1388 {
1389 	return (spa->spa_syncing_txg);
1390 }
1391 
1392 pool_state_t
1393 spa_state(spa_t *spa)
1394 {
1395 	return (spa->spa_state);
1396 }
1397 
1398 spa_load_state_t
1399 spa_load_state(spa_t *spa)
1400 {
1401 	return (spa->spa_load_state);
1402 }
1403 
1404 uint64_t
1405 spa_freeze_txg(spa_t *spa)
1406 {
1407 	return (spa->spa_freeze_txg);
1408 }
1409 
1410 /* ARGSUSED */
1411 uint64_t
1412 spa_get_asize(spa_t *spa, uint64_t lsize)
1413 {
1414 	/*
1415 	 * The worst case is single-sector max-parity RAID-Z blocks, in which
1416 	 * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
1417 	 * times the size; so just assume that.  Add to this the fact that
1418 	 * we can have up to 3 DVAs per bp, and one more factor of 2 because
1419 	 * the block may be dittoed with up to 3 DVAs by ddt_sync().
1420 	 */
1421 	return (lsize * (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2);
1422 }
1423 
1424 uint64_t
1425 spa_get_dspace(spa_t *spa)
1426 {
1427 	return (spa->spa_dspace);
1428 }
1429 
1430 void
1431 spa_update_dspace(spa_t *spa)
1432 {
1433 	spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) +
1434 	    ddt_get_dedup_dspace(spa);
1435 }
1436 
1437 /*
1438  * Return the failure mode that has been set to this pool. The default
1439  * behavior will be to block all I/Os when a complete failure occurs.
1440  */
1441 uint8_t
1442 spa_get_failmode(spa_t *spa)
1443 {
1444 	return (spa->spa_failmode);
1445 }
1446 
1447 boolean_t
1448 spa_suspended(spa_t *spa)
1449 {
1450 	return (spa->spa_suspended);
1451 }
1452 
1453 uint64_t
1454 spa_version(spa_t *spa)
1455 {
1456 	return (spa->spa_ubsync.ub_version);
1457 }
1458 
1459 boolean_t
1460 spa_deflate(spa_t *spa)
1461 {
1462 	return (spa->spa_deflate);
1463 }
1464 
1465 metaslab_class_t *
1466 spa_normal_class(spa_t *spa)
1467 {
1468 	return (spa->spa_normal_class);
1469 }
1470 
1471 metaslab_class_t *
1472 spa_log_class(spa_t *spa)
1473 {
1474 	return (spa->spa_log_class);
1475 }
1476 
1477 int
1478 spa_max_replication(spa_t *spa)
1479 {
1480 	/*
1481 	 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
1482 	 * handle BPs with more than one DVA allocated.  Set our max
1483 	 * replication level accordingly.
1484 	 */
1485 	if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
1486 		return (1);
1487 	return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
1488 }
1489 
1490 int
1491 spa_prev_software_version(spa_t *spa)
1492 {
1493 	return (spa->spa_prev_software_version);
1494 }
1495 
1496 uint64_t
1497 dva_get_dsize_sync(spa_t *spa, const dva_t *dva)
1498 {
1499 	uint64_t asize = DVA_GET_ASIZE(dva);
1500 	uint64_t dsize = asize;
1501 
1502 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1503 
1504 	if (asize != 0 && spa->spa_deflate) {
1505 		vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
1506 		dsize = (asize >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio;
1507 	}
1508 
1509 	return (dsize);
1510 }
1511 
1512 uint64_t
1513 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp)
1514 {
1515 	uint64_t dsize = 0;
1516 
1517 	for (int d = 0; d < SPA_DVAS_PER_BP; d++)
1518 		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1519 
1520 	return (dsize);
1521 }
1522 
1523 uint64_t
1524 bp_get_dsize(spa_t *spa, const blkptr_t *bp)
1525 {
1526 	uint64_t dsize = 0;
1527 
1528 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1529 
1530 	for (int d = 0; d < SPA_DVAS_PER_BP; d++)
1531 		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1532 
1533 	spa_config_exit(spa, SCL_VDEV, FTAG);
1534 
1535 	return (dsize);
1536 }
1537 
1538 /*
1539  * ==========================================================================
1540  * Initialization and Termination
1541  * ==========================================================================
1542  */
1543 
1544 static int
1545 spa_name_compare(const void *a1, const void *a2)
1546 {
1547 	const spa_t *s1 = a1;
1548 	const spa_t *s2 = a2;
1549 	int s;
1550 
1551 	s = strcmp(s1->spa_name, s2->spa_name);
1552 	if (s > 0)
1553 		return (1);
1554 	if (s < 0)
1555 		return (-1);
1556 	return (0);
1557 }
1558 
1559 int
1560 spa_busy(void)
1561 {
1562 	return (spa_active_count);
1563 }
1564 
1565 void
1566 spa_boot_init()
1567 {
1568 	spa_config_load();
1569 }
1570 
1571 void
1572 spa_init(int mode)
1573 {
1574 	mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
1575 	mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
1576 	mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
1577 	cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
1578 
1579 	avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
1580 	    offsetof(spa_t, spa_avl));
1581 
1582 	avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
1583 	    offsetof(spa_aux_t, aux_avl));
1584 
1585 	avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
1586 	    offsetof(spa_aux_t, aux_avl));
1587 
1588 	spa_mode_global = mode;
1589 
1590 	refcount_init();
1591 	unique_init();
1592 	zio_init();
1593 	dmu_init();
1594 	zil_init();
1595 	vdev_cache_stat_init();
1596 	zfs_prop_init();
1597 	zpool_prop_init();
1598 	zpool_feature_init();
1599 	spa_config_load();
1600 	l2arc_start();
1601 }
1602 
1603 void
1604 spa_fini(void)
1605 {
1606 	l2arc_stop();
1607 
1608 	spa_evict_all();
1609 
1610 	vdev_cache_stat_fini();
1611 	zil_fini();
1612 	dmu_fini();
1613 	zio_fini();
1614 	unique_fini();
1615 	refcount_fini();
1616 
1617 	avl_destroy(&spa_namespace_avl);
1618 	avl_destroy(&spa_spare_avl);
1619 	avl_destroy(&spa_l2cache_avl);
1620 
1621 	cv_destroy(&spa_namespace_cv);
1622 	mutex_destroy(&spa_namespace_lock);
1623 	mutex_destroy(&spa_spare_lock);
1624 	mutex_destroy(&spa_l2cache_lock);
1625 }
1626 
1627 /*
1628  * Return whether this pool has slogs. No locking needed.
1629  * It's not a problem if the wrong answer is returned as it's only for
1630  * performance and not correctness
1631  */
1632 boolean_t
1633 spa_has_slogs(spa_t *spa)
1634 {
1635 	return (spa->spa_log_class->mc_rotor != NULL);
1636 }
1637 
1638 spa_log_state_t
1639 spa_get_log_state(spa_t *spa)
1640 {
1641 	return (spa->spa_log_state);
1642 }
1643 
1644 void
1645 spa_set_log_state(spa_t *spa, spa_log_state_t state)
1646 {
1647 	spa->spa_log_state = state;
1648 }
1649 
1650 boolean_t
1651 spa_is_root(spa_t *spa)
1652 {
1653 	return (spa->spa_is_root);
1654 }
1655 
1656 boolean_t
1657 spa_writeable(spa_t *spa)
1658 {
1659 	return (!!(spa->spa_mode & FWRITE));
1660 }
1661 
1662 int
1663 spa_mode(spa_t *spa)
1664 {
1665 	return (spa->spa_mode);
1666 }
1667 
1668 uint64_t
1669 spa_bootfs(spa_t *spa)
1670 {
1671 	return (spa->spa_bootfs);
1672 }
1673 
1674 uint64_t
1675 spa_delegation(spa_t *spa)
1676 {
1677 	return (spa->spa_delegation);
1678 }
1679 
1680 objset_t *
1681 spa_meta_objset(spa_t *spa)
1682 {
1683 	return (spa->spa_meta_objset);
1684 }
1685 
1686 enum zio_checksum
1687 spa_dedup_checksum(spa_t *spa)
1688 {
1689 	return (spa->spa_dedup_checksum);
1690 }
1691 
1692 /*
1693  * Reset pool scan stat per scan pass (or reboot).
1694  */
1695 void
1696 spa_scan_stat_init(spa_t *spa)
1697 {
1698 	/* data not stored on disk */
1699 	spa->spa_scan_pass_start = gethrestime_sec();
1700 	spa->spa_scan_pass_exam = 0;
1701 	vdev_scan_stat_init(spa->spa_root_vdev);
1702 }
1703 
1704 /*
1705  * Get scan stats for zpool status reports
1706  */
1707 int
1708 spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps)
1709 {
1710 	dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL;
1711 
1712 	if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE)
1713 		return (ENOENT);
1714 	bzero(ps, sizeof (pool_scan_stat_t));
1715 
1716 	/* data stored on disk */
1717 	ps->pss_func = scn->scn_phys.scn_func;
1718 	ps->pss_start_time = scn->scn_phys.scn_start_time;
1719 	ps->pss_end_time = scn->scn_phys.scn_end_time;
1720 	ps->pss_to_examine = scn->scn_phys.scn_to_examine;
1721 	ps->pss_examined = scn->scn_phys.scn_examined;
1722 	ps->pss_to_process = scn->scn_phys.scn_to_process;
1723 	ps->pss_processed = scn->scn_phys.scn_processed;
1724 	ps->pss_errors = scn->scn_phys.scn_errors;
1725 	ps->pss_state = scn->scn_phys.scn_state;
1726 
1727 	/* data not stored on disk */
1728 	ps->pss_pass_start = spa->spa_scan_pass_start;
1729 	ps->pss_pass_exam = spa->spa_scan_pass_exam;
1730 
1731 	return (0);
1732 }
1733 
1734 boolean_t
1735 spa_debug_enabled(spa_t *spa)
1736 {
1737 	return (spa->spa_debug);
1738 }
1739