1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011 by Delphix. All rights reserved. 24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 25 */ 26 27 #include <sys/zfs_context.h> 28 #include <sys/spa_impl.h> 29 #include <sys/zio.h> 30 #include <sys/zio_checksum.h> 31 #include <sys/zio_compress.h> 32 #include <sys/dmu.h> 33 #include <sys/dmu_tx.h> 34 #include <sys/zap.h> 35 #include <sys/zil.h> 36 #include <sys/vdev_impl.h> 37 #include <sys/metaslab.h> 38 #include <sys/uberblock_impl.h> 39 #include <sys/txg.h> 40 #include <sys/avl.h> 41 #include <sys/unique.h> 42 #include <sys/dsl_pool.h> 43 #include <sys/dsl_dir.h> 44 #include <sys/dsl_prop.h> 45 #include <sys/dsl_scan.h> 46 #include <sys/fs/zfs.h> 47 #include <sys/metaslab_impl.h> 48 #include <sys/arc.h> 49 #include <sys/ddt.h> 50 #include "zfs_prop.h" 51 52 /* 53 * SPA locking 54 * 55 * There are four basic locks for managing spa_t structures: 56 * 57 * spa_namespace_lock (global mutex) 58 * 59 * This lock must be acquired to do any of the following: 60 * 61 * - Lookup a spa_t by name 62 * - Add or remove a spa_t from the namespace 63 * - Increase spa_refcount from non-zero 64 * - Check if spa_refcount is zero 65 * - Rename a spa_t 66 * - add/remove/attach/detach devices 67 * - Held for the duration of create/destroy/import/export 68 * 69 * It does not need to handle recursion. A create or destroy may 70 * reference objects (files or zvols) in other pools, but by 71 * definition they must have an existing reference, and will never need 72 * to lookup a spa_t by name. 73 * 74 * spa_refcount (per-spa refcount_t protected by mutex) 75 * 76 * This reference count keep track of any active users of the spa_t. The 77 * spa_t cannot be destroyed or freed while this is non-zero. Internally, 78 * the refcount is never really 'zero' - opening a pool implicitly keeps 79 * some references in the DMU. Internally we check against spa_minref, but 80 * present the image of a zero/non-zero value to consumers. 81 * 82 * spa_config_lock[] (per-spa array of rwlocks) 83 * 84 * This protects the spa_t from config changes, and must be held in 85 * the following circumstances: 86 * 87 * - RW_READER to perform I/O to the spa 88 * - RW_WRITER to change the vdev config 89 * 90 * The locking order is fairly straightforward: 91 * 92 * spa_namespace_lock -> spa_refcount 93 * 94 * The namespace lock must be acquired to increase the refcount from 0 95 * or to check if it is zero. 96 * 97 * spa_refcount -> spa_config_lock[] 98 * 99 * There must be at least one valid reference on the spa_t to acquire 100 * the config lock. 101 * 102 * spa_namespace_lock -> spa_config_lock[] 103 * 104 * The namespace lock must always be taken before the config lock. 105 * 106 * 107 * The spa_namespace_lock can be acquired directly and is globally visible. 108 * 109 * The namespace is manipulated using the following functions, all of which 110 * require the spa_namespace_lock to be held. 111 * 112 * spa_lookup() Lookup a spa_t by name. 113 * 114 * spa_add() Create a new spa_t in the namespace. 115 * 116 * spa_remove() Remove a spa_t from the namespace. This also 117 * frees up any memory associated with the spa_t. 118 * 119 * spa_next() Returns the next spa_t in the system, or the 120 * first if NULL is passed. 121 * 122 * spa_evict_all() Shutdown and remove all spa_t structures in 123 * the system. 124 * 125 * spa_guid_exists() Determine whether a pool/device guid exists. 126 * 127 * The spa_refcount is manipulated using the following functions: 128 * 129 * spa_open_ref() Adds a reference to the given spa_t. Must be 130 * called with spa_namespace_lock held if the 131 * refcount is currently zero. 132 * 133 * spa_close() Remove a reference from the spa_t. This will 134 * not free the spa_t or remove it from the 135 * namespace. No locking is required. 136 * 137 * spa_refcount_zero() Returns true if the refcount is currently 138 * zero. Must be called with spa_namespace_lock 139 * held. 140 * 141 * The spa_config_lock[] is an array of rwlocks, ordered as follows: 142 * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV. 143 * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}(). 144 * 145 * To read the configuration, it suffices to hold one of these locks as reader. 146 * To modify the configuration, you must hold all locks as writer. To modify 147 * vdev state without altering the vdev tree's topology (e.g. online/offline), 148 * you must hold SCL_STATE and SCL_ZIO as writer. 149 * 150 * We use these distinct config locks to avoid recursive lock entry. 151 * For example, spa_sync() (which holds SCL_CONFIG as reader) induces 152 * block allocations (SCL_ALLOC), which may require reading space maps 153 * from disk (dmu_read() -> zio_read() -> SCL_ZIO). 154 * 155 * The spa config locks cannot be normal rwlocks because we need the 156 * ability to hand off ownership. For example, SCL_ZIO is acquired 157 * by the issuing thread and later released by an interrupt thread. 158 * They do, however, obey the usual write-wanted semantics to prevent 159 * writer (i.e. system administrator) starvation. 160 * 161 * The lock acquisition rules are as follows: 162 * 163 * SCL_CONFIG 164 * Protects changes to the vdev tree topology, such as vdev 165 * add/remove/attach/detach. Protects the dirty config list 166 * (spa_config_dirty_list) and the set of spares and l2arc devices. 167 * 168 * SCL_STATE 169 * Protects changes to pool state and vdev state, such as vdev 170 * online/offline/fault/degrade/clear. Protects the dirty state list 171 * (spa_state_dirty_list) and global pool state (spa_state). 172 * 173 * SCL_ALLOC 174 * Protects changes to metaslab groups and classes. 175 * Held as reader by metaslab_alloc() and metaslab_claim(). 176 * 177 * SCL_ZIO 178 * Held by bp-level zios (those which have no io_vd upon entry) 179 * to prevent changes to the vdev tree. The bp-level zio implicitly 180 * protects all of its vdev child zios, which do not hold SCL_ZIO. 181 * 182 * SCL_FREE 183 * Protects changes to metaslab groups and classes. 184 * Held as reader by metaslab_free(). SCL_FREE is distinct from 185 * SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free 186 * blocks in zio_done() while another i/o that holds either 187 * SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete. 188 * 189 * SCL_VDEV 190 * Held as reader to prevent changes to the vdev tree during trivial 191 * inquiries such as bp_get_dsize(). SCL_VDEV is distinct from the 192 * other locks, and lower than all of them, to ensure that it's safe 193 * to acquire regardless of caller context. 194 * 195 * In addition, the following rules apply: 196 * 197 * (a) spa_props_lock protects pool properties, spa_config and spa_config_list. 198 * The lock ordering is SCL_CONFIG > spa_props_lock. 199 * 200 * (b) I/O operations on leaf vdevs. For any zio operation that takes 201 * an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(), 202 * or zio_write_phys() -- the caller must ensure that the config cannot 203 * cannot change in the interim, and that the vdev cannot be reopened. 204 * SCL_STATE as reader suffices for both. 205 * 206 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit(). 207 * 208 * spa_vdev_enter() Acquire the namespace lock and the config lock 209 * for writing. 210 * 211 * spa_vdev_exit() Release the config lock, wait for all I/O 212 * to complete, sync the updated configs to the 213 * cache, and release the namespace lock. 214 * 215 * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit(). 216 * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual 217 * locking is, always, based on spa_namespace_lock and spa_config_lock[]. 218 * 219 * spa_rename() is also implemented within this file since is requires 220 * manipulation of the namespace. 221 */ 222 223 static avl_tree_t spa_namespace_avl; 224 kmutex_t spa_namespace_lock; 225 static kcondvar_t spa_namespace_cv; 226 static int spa_active_count; 227 int spa_max_replication_override = SPA_DVAS_PER_BP; 228 229 static kmutex_t spa_spare_lock; 230 static avl_tree_t spa_spare_avl; 231 static kmutex_t spa_l2cache_lock; 232 static avl_tree_t spa_l2cache_avl; 233 234 kmem_cache_t *spa_buffer_pool; 235 int spa_mode_global; 236 237 #ifdef ZFS_DEBUG 238 /* Everything except dprintf is on by default in debug builds */ 239 int zfs_flags = ~ZFS_DEBUG_DPRINTF; 240 #else 241 int zfs_flags = 0; 242 #endif 243 244 /* 245 * zfs_recover can be set to nonzero to attempt to recover from 246 * otherwise-fatal errors, typically caused by on-disk corruption. When 247 * set, calls to zfs_panic_recover() will turn into warning messages. 248 */ 249 int zfs_recover = 0; 250 251 252 /* 253 * ========================================================================== 254 * SPA config locking 255 * ========================================================================== 256 */ 257 static void 258 spa_config_lock_init(spa_t *spa) 259 { 260 for (int i = 0; i < SCL_LOCKS; i++) { 261 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 262 mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL); 263 cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL); 264 refcount_create(&scl->scl_count); 265 scl->scl_writer = NULL; 266 scl->scl_write_wanted = 0; 267 } 268 } 269 270 static void 271 spa_config_lock_destroy(spa_t *spa) 272 { 273 for (int i = 0; i < SCL_LOCKS; i++) { 274 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 275 mutex_destroy(&scl->scl_lock); 276 cv_destroy(&scl->scl_cv); 277 refcount_destroy(&scl->scl_count); 278 ASSERT(scl->scl_writer == NULL); 279 ASSERT(scl->scl_write_wanted == 0); 280 } 281 } 282 283 int 284 spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw) 285 { 286 for (int i = 0; i < SCL_LOCKS; i++) { 287 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 288 if (!(locks & (1 << i))) 289 continue; 290 mutex_enter(&scl->scl_lock); 291 if (rw == RW_READER) { 292 if (scl->scl_writer || scl->scl_write_wanted) { 293 mutex_exit(&scl->scl_lock); 294 spa_config_exit(spa, locks ^ (1 << i), tag); 295 return (0); 296 } 297 } else { 298 ASSERT(scl->scl_writer != curthread); 299 if (!refcount_is_zero(&scl->scl_count)) { 300 mutex_exit(&scl->scl_lock); 301 spa_config_exit(spa, locks ^ (1 << i), tag); 302 return (0); 303 } 304 scl->scl_writer = curthread; 305 } 306 (void) refcount_add(&scl->scl_count, tag); 307 mutex_exit(&scl->scl_lock); 308 } 309 return (1); 310 } 311 312 void 313 spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw) 314 { 315 int wlocks_held = 0; 316 317 for (int i = 0; i < SCL_LOCKS; i++) { 318 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 319 if (scl->scl_writer == curthread) 320 wlocks_held |= (1 << i); 321 if (!(locks & (1 << i))) 322 continue; 323 mutex_enter(&scl->scl_lock); 324 if (rw == RW_READER) { 325 while (scl->scl_writer || scl->scl_write_wanted) { 326 cv_wait(&scl->scl_cv, &scl->scl_lock); 327 } 328 } else { 329 ASSERT(scl->scl_writer != curthread); 330 while (!refcount_is_zero(&scl->scl_count)) { 331 scl->scl_write_wanted++; 332 cv_wait(&scl->scl_cv, &scl->scl_lock); 333 scl->scl_write_wanted--; 334 } 335 scl->scl_writer = curthread; 336 } 337 (void) refcount_add(&scl->scl_count, tag); 338 mutex_exit(&scl->scl_lock); 339 } 340 ASSERT(wlocks_held <= locks); 341 } 342 343 void 344 spa_config_exit(spa_t *spa, int locks, void *tag) 345 { 346 for (int i = SCL_LOCKS - 1; i >= 0; i--) { 347 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 348 if (!(locks & (1 << i))) 349 continue; 350 mutex_enter(&scl->scl_lock); 351 ASSERT(!refcount_is_zero(&scl->scl_count)); 352 if (refcount_remove(&scl->scl_count, tag) == 0) { 353 ASSERT(scl->scl_writer == NULL || 354 scl->scl_writer == curthread); 355 scl->scl_writer = NULL; /* OK in either case */ 356 cv_broadcast(&scl->scl_cv); 357 } 358 mutex_exit(&scl->scl_lock); 359 } 360 } 361 362 int 363 spa_config_held(spa_t *spa, int locks, krw_t rw) 364 { 365 int locks_held = 0; 366 367 for (int i = 0; i < SCL_LOCKS; i++) { 368 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 369 if (!(locks & (1 << i))) 370 continue; 371 if ((rw == RW_READER && !refcount_is_zero(&scl->scl_count)) || 372 (rw == RW_WRITER && scl->scl_writer == curthread)) 373 locks_held |= 1 << i; 374 } 375 376 return (locks_held); 377 } 378 379 /* 380 * ========================================================================== 381 * SPA namespace functions 382 * ========================================================================== 383 */ 384 385 /* 386 * Lookup the named spa_t in the AVL tree. The spa_namespace_lock must be held. 387 * Returns NULL if no matching spa_t is found. 388 */ 389 spa_t * 390 spa_lookup(const char *name) 391 { 392 static spa_t search; /* spa_t is large; don't allocate on stack */ 393 spa_t *spa; 394 avl_index_t where; 395 char c; 396 char *cp; 397 398 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 399 400 /* 401 * If it's a full dataset name, figure out the pool name and 402 * just use that. 403 */ 404 cp = strpbrk(name, "/@"); 405 if (cp) { 406 c = *cp; 407 *cp = '\0'; 408 } 409 410 (void) strlcpy(search.spa_name, name, sizeof (search.spa_name)); 411 spa = avl_find(&spa_namespace_avl, &search, &where); 412 413 if (cp) 414 *cp = c; 415 416 return (spa); 417 } 418 419 /* 420 * Create an uninitialized spa_t with the given name. Requires 421 * spa_namespace_lock. The caller must ensure that the spa_t doesn't already 422 * exist by calling spa_lookup() first. 423 */ 424 spa_t * 425 spa_add(const char *name, nvlist_t *config, const char *altroot) 426 { 427 spa_t *spa; 428 spa_config_dirent_t *dp; 429 430 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 431 432 spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP); 433 434 mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL); 435 mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL); 436 mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL); 437 mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL); 438 mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL); 439 mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL); 440 mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL); 441 mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL); 442 mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL); 443 444 cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL); 445 cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL); 446 cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL); 447 cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL); 448 449 for (int t = 0; t < TXG_SIZE; t++) 450 bplist_create(&spa->spa_free_bplist[t]); 451 452 (void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name)); 453 spa->spa_state = POOL_STATE_UNINITIALIZED; 454 spa->spa_freeze_txg = UINT64_MAX; 455 spa->spa_final_txg = UINT64_MAX; 456 spa->spa_load_max_txg = UINT64_MAX; 457 spa->spa_proc = &p0; 458 spa->spa_proc_state = SPA_PROC_NONE; 459 460 refcount_create(&spa->spa_refcount); 461 spa_config_lock_init(spa); 462 463 avl_add(&spa_namespace_avl, spa); 464 465 /* 466 * Set the alternate root, if there is one. 467 */ 468 if (altroot) { 469 spa->spa_root = spa_strdup(altroot); 470 spa_active_count++; 471 } 472 473 /* 474 * Every pool starts with the default cachefile 475 */ 476 list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t), 477 offsetof(spa_config_dirent_t, scd_link)); 478 479 dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP); 480 dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path); 481 list_insert_head(&spa->spa_config_list, dp); 482 483 VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME, 484 KM_SLEEP) == 0); 485 486 if (config != NULL) 487 VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0); 488 489 return (spa); 490 } 491 492 /* 493 * Removes a spa_t from the namespace, freeing up any memory used. Requires 494 * spa_namespace_lock. This is called only after the spa_t has been closed and 495 * deactivated. 496 */ 497 void 498 spa_remove(spa_t *spa) 499 { 500 spa_config_dirent_t *dp; 501 502 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 503 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED); 504 505 nvlist_free(spa->spa_config_splitting); 506 507 avl_remove(&spa_namespace_avl, spa); 508 cv_broadcast(&spa_namespace_cv); 509 510 if (spa->spa_root) { 511 spa_strfree(spa->spa_root); 512 spa_active_count--; 513 } 514 515 while ((dp = list_head(&spa->spa_config_list)) != NULL) { 516 list_remove(&spa->spa_config_list, dp); 517 if (dp->scd_path != NULL) 518 spa_strfree(dp->scd_path); 519 kmem_free(dp, sizeof (spa_config_dirent_t)); 520 } 521 522 list_destroy(&spa->spa_config_list); 523 524 nvlist_free(spa->spa_load_info); 525 spa_config_set(spa, NULL); 526 527 refcount_destroy(&spa->spa_refcount); 528 529 spa_config_lock_destroy(spa); 530 531 for (int t = 0; t < TXG_SIZE; t++) 532 bplist_destroy(&spa->spa_free_bplist[t]); 533 534 cv_destroy(&spa->spa_async_cv); 535 cv_destroy(&spa->spa_proc_cv); 536 cv_destroy(&spa->spa_scrub_io_cv); 537 cv_destroy(&spa->spa_suspend_cv); 538 539 mutex_destroy(&spa->spa_async_lock); 540 mutex_destroy(&spa->spa_errlist_lock); 541 mutex_destroy(&spa->spa_errlog_lock); 542 mutex_destroy(&spa->spa_history_lock); 543 mutex_destroy(&spa->spa_proc_lock); 544 mutex_destroy(&spa->spa_props_lock); 545 mutex_destroy(&spa->spa_scrub_lock); 546 mutex_destroy(&spa->spa_suspend_lock); 547 mutex_destroy(&spa->spa_vdev_top_lock); 548 549 kmem_free(spa, sizeof (spa_t)); 550 } 551 552 /* 553 * Given a pool, return the next pool in the namespace, or NULL if there is 554 * none. If 'prev' is NULL, return the first pool. 555 */ 556 spa_t * 557 spa_next(spa_t *prev) 558 { 559 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 560 561 if (prev) 562 return (AVL_NEXT(&spa_namespace_avl, prev)); 563 else 564 return (avl_first(&spa_namespace_avl)); 565 } 566 567 /* 568 * ========================================================================== 569 * SPA refcount functions 570 * ========================================================================== 571 */ 572 573 /* 574 * Add a reference to the given spa_t. Must have at least one reference, or 575 * have the namespace lock held. 576 */ 577 void 578 spa_open_ref(spa_t *spa, void *tag) 579 { 580 ASSERT(refcount_count(&spa->spa_refcount) >= spa->spa_minref || 581 MUTEX_HELD(&spa_namespace_lock)); 582 (void) refcount_add(&spa->spa_refcount, tag); 583 } 584 585 /* 586 * Remove a reference to the given spa_t. Must have at least one reference, or 587 * have the namespace lock held. 588 */ 589 void 590 spa_close(spa_t *spa, void *tag) 591 { 592 ASSERT(refcount_count(&spa->spa_refcount) > spa->spa_minref || 593 MUTEX_HELD(&spa_namespace_lock)); 594 (void) refcount_remove(&spa->spa_refcount, tag); 595 } 596 597 /* 598 * Check to see if the spa refcount is zero. Must be called with 599 * spa_namespace_lock held. We really compare against spa_minref, which is the 600 * number of references acquired when opening a pool 601 */ 602 boolean_t 603 spa_refcount_zero(spa_t *spa) 604 { 605 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 606 607 return (refcount_count(&spa->spa_refcount) == spa->spa_minref); 608 } 609 610 /* 611 * ========================================================================== 612 * SPA spare and l2cache tracking 613 * ========================================================================== 614 */ 615 616 /* 617 * Hot spares and cache devices are tracked using the same code below, 618 * for 'auxiliary' devices. 619 */ 620 621 typedef struct spa_aux { 622 uint64_t aux_guid; 623 uint64_t aux_pool; 624 avl_node_t aux_avl; 625 int aux_count; 626 } spa_aux_t; 627 628 static int 629 spa_aux_compare(const void *a, const void *b) 630 { 631 const spa_aux_t *sa = a; 632 const spa_aux_t *sb = b; 633 634 if (sa->aux_guid < sb->aux_guid) 635 return (-1); 636 else if (sa->aux_guid > sb->aux_guid) 637 return (1); 638 else 639 return (0); 640 } 641 642 void 643 spa_aux_add(vdev_t *vd, avl_tree_t *avl) 644 { 645 avl_index_t where; 646 spa_aux_t search; 647 spa_aux_t *aux; 648 649 search.aux_guid = vd->vdev_guid; 650 if ((aux = avl_find(avl, &search, &where)) != NULL) { 651 aux->aux_count++; 652 } else { 653 aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP); 654 aux->aux_guid = vd->vdev_guid; 655 aux->aux_count = 1; 656 avl_insert(avl, aux, where); 657 } 658 } 659 660 void 661 spa_aux_remove(vdev_t *vd, avl_tree_t *avl) 662 { 663 spa_aux_t search; 664 spa_aux_t *aux; 665 avl_index_t where; 666 667 search.aux_guid = vd->vdev_guid; 668 aux = avl_find(avl, &search, &where); 669 670 ASSERT(aux != NULL); 671 672 if (--aux->aux_count == 0) { 673 avl_remove(avl, aux); 674 kmem_free(aux, sizeof (spa_aux_t)); 675 } else if (aux->aux_pool == spa_guid(vd->vdev_spa)) { 676 aux->aux_pool = 0ULL; 677 } 678 } 679 680 boolean_t 681 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl) 682 { 683 spa_aux_t search, *found; 684 685 search.aux_guid = guid; 686 found = avl_find(avl, &search, NULL); 687 688 if (pool) { 689 if (found) 690 *pool = found->aux_pool; 691 else 692 *pool = 0ULL; 693 } 694 695 if (refcnt) { 696 if (found) 697 *refcnt = found->aux_count; 698 else 699 *refcnt = 0; 700 } 701 702 return (found != NULL); 703 } 704 705 void 706 spa_aux_activate(vdev_t *vd, avl_tree_t *avl) 707 { 708 spa_aux_t search, *found; 709 avl_index_t where; 710 711 search.aux_guid = vd->vdev_guid; 712 found = avl_find(avl, &search, &where); 713 ASSERT(found != NULL); 714 ASSERT(found->aux_pool == 0ULL); 715 716 found->aux_pool = spa_guid(vd->vdev_spa); 717 } 718 719 /* 720 * Spares are tracked globally due to the following constraints: 721 * 722 * - A spare may be part of multiple pools. 723 * - A spare may be added to a pool even if it's actively in use within 724 * another pool. 725 * - A spare in use in any pool can only be the source of a replacement if 726 * the target is a spare in the same pool. 727 * 728 * We keep track of all spares on the system through the use of a reference 729 * counted AVL tree. When a vdev is added as a spare, or used as a replacement 730 * spare, then we bump the reference count in the AVL tree. In addition, we set 731 * the 'vdev_isspare' member to indicate that the device is a spare (active or 732 * inactive). When a spare is made active (used to replace a device in the 733 * pool), we also keep track of which pool its been made a part of. 734 * 735 * The 'spa_spare_lock' protects the AVL tree. These functions are normally 736 * called under the spa_namespace lock as part of vdev reconfiguration. The 737 * separate spare lock exists for the status query path, which does not need to 738 * be completely consistent with respect to other vdev configuration changes. 739 */ 740 741 static int 742 spa_spare_compare(const void *a, const void *b) 743 { 744 return (spa_aux_compare(a, b)); 745 } 746 747 void 748 spa_spare_add(vdev_t *vd) 749 { 750 mutex_enter(&spa_spare_lock); 751 ASSERT(!vd->vdev_isspare); 752 spa_aux_add(vd, &spa_spare_avl); 753 vd->vdev_isspare = B_TRUE; 754 mutex_exit(&spa_spare_lock); 755 } 756 757 void 758 spa_spare_remove(vdev_t *vd) 759 { 760 mutex_enter(&spa_spare_lock); 761 ASSERT(vd->vdev_isspare); 762 spa_aux_remove(vd, &spa_spare_avl); 763 vd->vdev_isspare = B_FALSE; 764 mutex_exit(&spa_spare_lock); 765 } 766 767 boolean_t 768 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt) 769 { 770 boolean_t found; 771 772 mutex_enter(&spa_spare_lock); 773 found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl); 774 mutex_exit(&spa_spare_lock); 775 776 return (found); 777 } 778 779 void 780 spa_spare_activate(vdev_t *vd) 781 { 782 mutex_enter(&spa_spare_lock); 783 ASSERT(vd->vdev_isspare); 784 spa_aux_activate(vd, &spa_spare_avl); 785 mutex_exit(&spa_spare_lock); 786 } 787 788 /* 789 * Level 2 ARC devices are tracked globally for the same reasons as spares. 790 * Cache devices currently only support one pool per cache device, and so 791 * for these devices the aux reference count is currently unused beyond 1. 792 */ 793 794 static int 795 spa_l2cache_compare(const void *a, const void *b) 796 { 797 return (spa_aux_compare(a, b)); 798 } 799 800 void 801 spa_l2cache_add(vdev_t *vd) 802 { 803 mutex_enter(&spa_l2cache_lock); 804 ASSERT(!vd->vdev_isl2cache); 805 spa_aux_add(vd, &spa_l2cache_avl); 806 vd->vdev_isl2cache = B_TRUE; 807 mutex_exit(&spa_l2cache_lock); 808 } 809 810 void 811 spa_l2cache_remove(vdev_t *vd) 812 { 813 mutex_enter(&spa_l2cache_lock); 814 ASSERT(vd->vdev_isl2cache); 815 spa_aux_remove(vd, &spa_l2cache_avl); 816 vd->vdev_isl2cache = B_FALSE; 817 mutex_exit(&spa_l2cache_lock); 818 } 819 820 boolean_t 821 spa_l2cache_exists(uint64_t guid, uint64_t *pool) 822 { 823 boolean_t found; 824 825 mutex_enter(&spa_l2cache_lock); 826 found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl); 827 mutex_exit(&spa_l2cache_lock); 828 829 return (found); 830 } 831 832 void 833 spa_l2cache_activate(vdev_t *vd) 834 { 835 mutex_enter(&spa_l2cache_lock); 836 ASSERT(vd->vdev_isl2cache); 837 spa_aux_activate(vd, &spa_l2cache_avl); 838 mutex_exit(&spa_l2cache_lock); 839 } 840 841 /* 842 * ========================================================================== 843 * SPA vdev locking 844 * ========================================================================== 845 */ 846 847 /* 848 * Lock the given spa_t for the purpose of adding or removing a vdev. 849 * Grabs the global spa_namespace_lock plus the spa config lock for writing. 850 * It returns the next transaction group for the spa_t. 851 */ 852 uint64_t 853 spa_vdev_enter(spa_t *spa) 854 { 855 mutex_enter(&spa->spa_vdev_top_lock); 856 mutex_enter(&spa_namespace_lock); 857 return (spa_vdev_config_enter(spa)); 858 } 859 860 /* 861 * Internal implementation for spa_vdev_enter(). Used when a vdev 862 * operation requires multiple syncs (i.e. removing a device) while 863 * keeping the spa_namespace_lock held. 864 */ 865 uint64_t 866 spa_vdev_config_enter(spa_t *spa) 867 { 868 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 869 870 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER); 871 872 return (spa_last_synced_txg(spa) + 1); 873 } 874 875 /* 876 * Used in combination with spa_vdev_config_enter() to allow the syncing 877 * of multiple transactions without releasing the spa_namespace_lock. 878 */ 879 void 880 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag) 881 { 882 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 883 884 int config_changed = B_FALSE; 885 886 ASSERT(txg > spa_last_synced_txg(spa)); 887 888 spa->spa_pending_vdev = NULL; 889 890 /* 891 * Reassess the DTLs. 892 */ 893 vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE); 894 895 if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) { 896 config_changed = B_TRUE; 897 spa->spa_config_generation++; 898 } 899 900 /* 901 * Verify the metaslab classes. 902 */ 903 ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0); 904 ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0); 905 906 spa_config_exit(spa, SCL_ALL, spa); 907 908 /* 909 * Panic the system if the specified tag requires it. This 910 * is useful for ensuring that configurations are updated 911 * transactionally. 912 */ 913 if (zio_injection_enabled) 914 zio_handle_panic_injection(spa, tag, 0); 915 916 /* 917 * Note: this txg_wait_synced() is important because it ensures 918 * that there won't be more than one config change per txg. 919 * This allows us to use the txg as the generation number. 920 */ 921 if (error == 0) 922 txg_wait_synced(spa->spa_dsl_pool, txg); 923 924 if (vd != NULL) { 925 ASSERT(!vd->vdev_detached || vd->vdev_dtl_smo.smo_object == 0); 926 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER); 927 vdev_free(vd); 928 spa_config_exit(spa, SCL_ALL, spa); 929 } 930 931 /* 932 * If the config changed, update the config cache. 933 */ 934 if (config_changed) 935 spa_config_sync(spa, B_FALSE, B_TRUE); 936 } 937 938 /* 939 * Unlock the spa_t after adding or removing a vdev. Besides undoing the 940 * locking of spa_vdev_enter(), we also want make sure the transactions have 941 * synced to disk, and then update the global configuration cache with the new 942 * information. 943 */ 944 int 945 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error) 946 { 947 spa_vdev_config_exit(spa, vd, txg, error, FTAG); 948 mutex_exit(&spa_namespace_lock); 949 mutex_exit(&spa->spa_vdev_top_lock); 950 951 return (error); 952 } 953 954 /* 955 * Lock the given spa_t for the purpose of changing vdev state. 956 */ 957 void 958 spa_vdev_state_enter(spa_t *spa, int oplocks) 959 { 960 int locks = SCL_STATE_ALL | oplocks; 961 962 /* 963 * Root pools may need to read of the underlying devfs filesystem 964 * when opening up a vdev. Unfortunately if we're holding the 965 * SCL_ZIO lock it will result in a deadlock when we try to issue 966 * the read from the root filesystem. Instead we "prefetch" 967 * the associated vnodes that we need prior to opening the 968 * underlying devices and cache them so that we can prevent 969 * any I/O when we are doing the actual open. 970 */ 971 if (spa_is_root(spa)) { 972 int low = locks & ~(SCL_ZIO - 1); 973 int high = locks & ~low; 974 975 spa_config_enter(spa, high, spa, RW_WRITER); 976 vdev_hold(spa->spa_root_vdev); 977 spa_config_enter(spa, low, spa, RW_WRITER); 978 } else { 979 spa_config_enter(spa, locks, spa, RW_WRITER); 980 } 981 spa->spa_vdev_locks = locks; 982 } 983 984 int 985 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error) 986 { 987 boolean_t config_changed = B_FALSE; 988 989 if (vd != NULL || error == 0) 990 vdev_dtl_reassess(vd ? vd->vdev_top : spa->spa_root_vdev, 991 0, 0, B_FALSE); 992 993 if (vd != NULL) { 994 vdev_state_dirty(vd->vdev_top); 995 config_changed = B_TRUE; 996 spa->spa_config_generation++; 997 } 998 999 if (spa_is_root(spa)) 1000 vdev_rele(spa->spa_root_vdev); 1001 1002 ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL); 1003 spa_config_exit(spa, spa->spa_vdev_locks, spa); 1004 1005 /* 1006 * If anything changed, wait for it to sync. This ensures that, 1007 * from the system administrator's perspective, zpool(1M) commands 1008 * are synchronous. This is important for things like zpool offline: 1009 * when the command completes, you expect no further I/O from ZFS. 1010 */ 1011 if (vd != NULL) 1012 txg_wait_synced(spa->spa_dsl_pool, 0); 1013 1014 /* 1015 * If the config changed, update the config cache. 1016 */ 1017 if (config_changed) { 1018 mutex_enter(&spa_namespace_lock); 1019 spa_config_sync(spa, B_FALSE, B_TRUE); 1020 mutex_exit(&spa_namespace_lock); 1021 } 1022 1023 return (error); 1024 } 1025 1026 /* 1027 * ========================================================================== 1028 * Miscellaneous functions 1029 * ========================================================================== 1030 */ 1031 1032 /* 1033 * Rename a spa_t. 1034 */ 1035 int 1036 spa_rename(const char *name, const char *newname) 1037 { 1038 spa_t *spa; 1039 int err; 1040 1041 /* 1042 * Lookup the spa_t and grab the config lock for writing. We need to 1043 * actually open the pool so that we can sync out the necessary labels. 1044 * It's OK to call spa_open() with the namespace lock held because we 1045 * allow recursive calls for other reasons. 1046 */ 1047 mutex_enter(&spa_namespace_lock); 1048 if ((err = spa_open(name, &spa, FTAG)) != 0) { 1049 mutex_exit(&spa_namespace_lock); 1050 return (err); 1051 } 1052 1053 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1054 1055 avl_remove(&spa_namespace_avl, spa); 1056 (void) strlcpy(spa->spa_name, newname, sizeof (spa->spa_name)); 1057 avl_add(&spa_namespace_avl, spa); 1058 1059 /* 1060 * Sync all labels to disk with the new names by marking the root vdev 1061 * dirty and waiting for it to sync. It will pick up the new pool name 1062 * during the sync. 1063 */ 1064 vdev_config_dirty(spa->spa_root_vdev); 1065 1066 spa_config_exit(spa, SCL_ALL, FTAG); 1067 1068 txg_wait_synced(spa->spa_dsl_pool, 0); 1069 1070 /* 1071 * Sync the updated config cache. 1072 */ 1073 spa_config_sync(spa, B_FALSE, B_TRUE); 1074 1075 spa_close(spa, FTAG); 1076 1077 mutex_exit(&spa_namespace_lock); 1078 1079 return (0); 1080 } 1081 1082 /* 1083 * Return the spa_t associated with given pool_guid, if it exists. If 1084 * device_guid is non-zero, determine whether the pool exists *and* contains 1085 * a device with the specified device_guid. 1086 */ 1087 spa_t * 1088 spa_by_guid(uint64_t pool_guid, uint64_t device_guid) 1089 { 1090 spa_t *spa; 1091 avl_tree_t *t = &spa_namespace_avl; 1092 1093 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1094 1095 for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) { 1096 if (spa->spa_state == POOL_STATE_UNINITIALIZED) 1097 continue; 1098 if (spa->spa_root_vdev == NULL) 1099 continue; 1100 if (spa_guid(spa) == pool_guid) { 1101 if (device_guid == 0) 1102 break; 1103 1104 if (vdev_lookup_by_guid(spa->spa_root_vdev, 1105 device_guid) != NULL) 1106 break; 1107 1108 /* 1109 * Check any devices we may be in the process of adding. 1110 */ 1111 if (spa->spa_pending_vdev) { 1112 if (vdev_lookup_by_guid(spa->spa_pending_vdev, 1113 device_guid) != NULL) 1114 break; 1115 } 1116 } 1117 } 1118 1119 return (spa); 1120 } 1121 1122 /* 1123 * Determine whether a pool with the given pool_guid exists. 1124 */ 1125 boolean_t 1126 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid) 1127 { 1128 return (spa_by_guid(pool_guid, device_guid) != NULL); 1129 } 1130 1131 char * 1132 spa_strdup(const char *s) 1133 { 1134 size_t len; 1135 char *new; 1136 1137 len = strlen(s); 1138 new = kmem_alloc(len + 1, KM_SLEEP); 1139 bcopy(s, new, len); 1140 new[len] = '\0'; 1141 1142 return (new); 1143 } 1144 1145 void 1146 spa_strfree(char *s) 1147 { 1148 kmem_free(s, strlen(s) + 1); 1149 } 1150 1151 uint64_t 1152 spa_get_random(uint64_t range) 1153 { 1154 uint64_t r; 1155 1156 ASSERT(range != 0); 1157 1158 (void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t)); 1159 1160 return (r % range); 1161 } 1162 1163 uint64_t 1164 spa_generate_guid(spa_t *spa) 1165 { 1166 uint64_t guid = spa_get_random(-1ULL); 1167 1168 if (spa != NULL) { 1169 while (guid == 0 || spa_guid_exists(spa_guid(spa), guid)) 1170 guid = spa_get_random(-1ULL); 1171 } else { 1172 while (guid == 0 || spa_guid_exists(guid, 0)) 1173 guid = spa_get_random(-1ULL); 1174 } 1175 1176 return (guid); 1177 } 1178 1179 void 1180 sprintf_blkptr(char *buf, const blkptr_t *bp) 1181 { 1182 char *type = NULL; 1183 char *checksum = NULL; 1184 char *compress = NULL; 1185 1186 if (bp != NULL) { 1187 type = dmu_ot[BP_GET_TYPE(bp)].ot_name; 1188 checksum = zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name; 1189 compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name; 1190 } 1191 1192 SPRINTF_BLKPTR(snprintf, ' ', buf, bp, type, checksum, compress); 1193 } 1194 1195 void 1196 spa_freeze(spa_t *spa) 1197 { 1198 uint64_t freeze_txg = 0; 1199 1200 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1201 if (spa->spa_freeze_txg == UINT64_MAX) { 1202 freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE; 1203 spa->spa_freeze_txg = freeze_txg; 1204 } 1205 spa_config_exit(spa, SCL_ALL, FTAG); 1206 if (freeze_txg != 0) 1207 txg_wait_synced(spa_get_dsl(spa), freeze_txg); 1208 } 1209 1210 void 1211 zfs_panic_recover(const char *fmt, ...) 1212 { 1213 va_list adx; 1214 1215 va_start(adx, fmt); 1216 vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx); 1217 va_end(adx); 1218 } 1219 1220 /* 1221 * This is a stripped-down version of strtoull, suitable only for converting 1222 * lowercase hexidecimal numbers that don't overflow. 1223 */ 1224 uint64_t 1225 strtonum(const char *str, char **nptr) 1226 { 1227 uint64_t val = 0; 1228 char c; 1229 int digit; 1230 1231 while ((c = *str) != '\0') { 1232 if (c >= '0' && c <= '9') 1233 digit = c - '0'; 1234 else if (c >= 'a' && c <= 'f') 1235 digit = 10 + c - 'a'; 1236 else 1237 break; 1238 1239 val *= 16; 1240 val += digit; 1241 1242 str++; 1243 } 1244 1245 if (nptr) 1246 *nptr = (char *)str; 1247 1248 return (val); 1249 } 1250 1251 /* 1252 * ========================================================================== 1253 * Accessor functions 1254 * ========================================================================== 1255 */ 1256 1257 boolean_t 1258 spa_shutting_down(spa_t *spa) 1259 { 1260 return (spa->spa_async_suspended); 1261 } 1262 1263 dsl_pool_t * 1264 spa_get_dsl(spa_t *spa) 1265 { 1266 return (spa->spa_dsl_pool); 1267 } 1268 1269 blkptr_t * 1270 spa_get_rootblkptr(spa_t *spa) 1271 { 1272 return (&spa->spa_ubsync.ub_rootbp); 1273 } 1274 1275 void 1276 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp) 1277 { 1278 spa->spa_uberblock.ub_rootbp = *bp; 1279 } 1280 1281 void 1282 spa_altroot(spa_t *spa, char *buf, size_t buflen) 1283 { 1284 if (spa->spa_root == NULL) 1285 buf[0] = '\0'; 1286 else 1287 (void) strncpy(buf, spa->spa_root, buflen); 1288 } 1289 1290 int 1291 spa_sync_pass(spa_t *spa) 1292 { 1293 return (spa->spa_sync_pass); 1294 } 1295 1296 char * 1297 spa_name(spa_t *spa) 1298 { 1299 return (spa->spa_name); 1300 } 1301 1302 uint64_t 1303 spa_guid(spa_t *spa) 1304 { 1305 /* 1306 * If we fail to parse the config during spa_load(), we can go through 1307 * the error path (which posts an ereport) and end up here with no root 1308 * vdev. We stash the original pool guid in 'spa_config_guid' to handle 1309 * this case. 1310 */ 1311 if (spa->spa_root_vdev != NULL) 1312 return (spa->spa_root_vdev->vdev_guid); 1313 else 1314 return (spa->spa_config_guid); 1315 } 1316 1317 uint64_t 1318 spa_load_guid(spa_t *spa) 1319 { 1320 /* 1321 * This is a GUID that exists solely as a reference for the 1322 * purposes of the arc. It is generated at load time, and 1323 * is never written to persistent storage. 1324 */ 1325 return (spa->spa_load_guid); 1326 } 1327 1328 uint64_t 1329 spa_last_synced_txg(spa_t *spa) 1330 { 1331 return (spa->spa_ubsync.ub_txg); 1332 } 1333 1334 uint64_t 1335 spa_first_txg(spa_t *spa) 1336 { 1337 return (spa->spa_first_txg); 1338 } 1339 1340 uint64_t 1341 spa_syncing_txg(spa_t *spa) 1342 { 1343 return (spa->spa_syncing_txg); 1344 } 1345 1346 pool_state_t 1347 spa_state(spa_t *spa) 1348 { 1349 return (spa->spa_state); 1350 } 1351 1352 spa_load_state_t 1353 spa_load_state(spa_t *spa) 1354 { 1355 return (spa->spa_load_state); 1356 } 1357 1358 uint64_t 1359 spa_freeze_txg(spa_t *spa) 1360 { 1361 return (spa->spa_freeze_txg); 1362 } 1363 1364 /* ARGSUSED */ 1365 uint64_t 1366 spa_get_asize(spa_t *spa, uint64_t lsize) 1367 { 1368 /* 1369 * The worst case is single-sector max-parity RAID-Z blocks, in which 1370 * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1) 1371 * times the size; so just assume that. Add to this the fact that 1372 * we can have up to 3 DVAs per bp, and one more factor of 2 because 1373 * the block may be dittoed with up to 3 DVAs by ddt_sync(). 1374 */ 1375 return (lsize * (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2); 1376 } 1377 1378 uint64_t 1379 spa_get_dspace(spa_t *spa) 1380 { 1381 return (spa->spa_dspace); 1382 } 1383 1384 void 1385 spa_update_dspace(spa_t *spa) 1386 { 1387 spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) + 1388 ddt_get_dedup_dspace(spa); 1389 } 1390 1391 /* 1392 * Return the failure mode that has been set to this pool. The default 1393 * behavior will be to block all I/Os when a complete failure occurs. 1394 */ 1395 uint8_t 1396 spa_get_failmode(spa_t *spa) 1397 { 1398 return (spa->spa_failmode); 1399 } 1400 1401 boolean_t 1402 spa_suspended(spa_t *spa) 1403 { 1404 return (spa->spa_suspended); 1405 } 1406 1407 uint64_t 1408 spa_version(spa_t *spa) 1409 { 1410 return (spa->spa_ubsync.ub_version); 1411 } 1412 1413 boolean_t 1414 spa_deflate(spa_t *spa) 1415 { 1416 return (spa->spa_deflate); 1417 } 1418 1419 metaslab_class_t * 1420 spa_normal_class(spa_t *spa) 1421 { 1422 return (spa->spa_normal_class); 1423 } 1424 1425 metaslab_class_t * 1426 spa_log_class(spa_t *spa) 1427 { 1428 return (spa->spa_log_class); 1429 } 1430 1431 int 1432 spa_max_replication(spa_t *spa) 1433 { 1434 /* 1435 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to 1436 * handle BPs with more than one DVA allocated. Set our max 1437 * replication level accordingly. 1438 */ 1439 if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS) 1440 return (1); 1441 return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override)); 1442 } 1443 1444 int 1445 spa_prev_software_version(spa_t *spa) 1446 { 1447 return (spa->spa_prev_software_version); 1448 } 1449 1450 uint64_t 1451 dva_get_dsize_sync(spa_t *spa, const dva_t *dva) 1452 { 1453 uint64_t asize = DVA_GET_ASIZE(dva); 1454 uint64_t dsize = asize; 1455 1456 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 1457 1458 if (asize != 0 && spa->spa_deflate) { 1459 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva)); 1460 dsize = (asize >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio; 1461 } 1462 1463 return (dsize); 1464 } 1465 1466 uint64_t 1467 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp) 1468 { 1469 uint64_t dsize = 0; 1470 1471 for (int d = 0; d < SPA_DVAS_PER_BP; d++) 1472 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]); 1473 1474 return (dsize); 1475 } 1476 1477 uint64_t 1478 bp_get_dsize(spa_t *spa, const blkptr_t *bp) 1479 { 1480 uint64_t dsize = 0; 1481 1482 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 1483 1484 for (int d = 0; d < SPA_DVAS_PER_BP; d++) 1485 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]); 1486 1487 spa_config_exit(spa, SCL_VDEV, FTAG); 1488 1489 return (dsize); 1490 } 1491 1492 /* 1493 * ========================================================================== 1494 * Initialization and Termination 1495 * ========================================================================== 1496 */ 1497 1498 static int 1499 spa_name_compare(const void *a1, const void *a2) 1500 { 1501 const spa_t *s1 = a1; 1502 const spa_t *s2 = a2; 1503 int s; 1504 1505 s = strcmp(s1->spa_name, s2->spa_name); 1506 if (s > 0) 1507 return (1); 1508 if (s < 0) 1509 return (-1); 1510 return (0); 1511 } 1512 1513 int 1514 spa_busy(void) 1515 { 1516 return (spa_active_count); 1517 } 1518 1519 void 1520 spa_boot_init() 1521 { 1522 spa_config_load(); 1523 } 1524 1525 void 1526 spa_init(int mode) 1527 { 1528 mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL); 1529 mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL); 1530 mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL); 1531 cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL); 1532 1533 avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t), 1534 offsetof(spa_t, spa_avl)); 1535 1536 avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t), 1537 offsetof(spa_aux_t, aux_avl)); 1538 1539 avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t), 1540 offsetof(spa_aux_t, aux_avl)); 1541 1542 spa_mode_global = mode; 1543 1544 refcount_init(); 1545 unique_init(); 1546 zio_init(); 1547 dmu_init(); 1548 zil_init(); 1549 vdev_cache_stat_init(); 1550 zfs_prop_init(); 1551 zpool_prop_init(); 1552 spa_config_load(); 1553 l2arc_start(); 1554 } 1555 1556 void 1557 spa_fini(void) 1558 { 1559 l2arc_stop(); 1560 1561 spa_evict_all(); 1562 1563 vdev_cache_stat_fini(); 1564 zil_fini(); 1565 dmu_fini(); 1566 zio_fini(); 1567 unique_fini(); 1568 refcount_fini(); 1569 1570 avl_destroy(&spa_namespace_avl); 1571 avl_destroy(&spa_spare_avl); 1572 avl_destroy(&spa_l2cache_avl); 1573 1574 cv_destroy(&spa_namespace_cv); 1575 mutex_destroy(&spa_namespace_lock); 1576 mutex_destroy(&spa_spare_lock); 1577 mutex_destroy(&spa_l2cache_lock); 1578 } 1579 1580 /* 1581 * Return whether this pool has slogs. No locking needed. 1582 * It's not a problem if the wrong answer is returned as it's only for 1583 * performance and not correctness 1584 */ 1585 boolean_t 1586 spa_has_slogs(spa_t *spa) 1587 { 1588 return (spa->spa_log_class->mc_rotor != NULL); 1589 } 1590 1591 spa_log_state_t 1592 spa_get_log_state(spa_t *spa) 1593 { 1594 return (spa->spa_log_state); 1595 } 1596 1597 void 1598 spa_set_log_state(spa_t *spa, spa_log_state_t state) 1599 { 1600 spa->spa_log_state = state; 1601 } 1602 1603 boolean_t 1604 spa_is_root(spa_t *spa) 1605 { 1606 return (spa->spa_is_root); 1607 } 1608 1609 boolean_t 1610 spa_writeable(spa_t *spa) 1611 { 1612 return (!!(spa->spa_mode & FWRITE)); 1613 } 1614 1615 int 1616 spa_mode(spa_t *spa) 1617 { 1618 return (spa->spa_mode); 1619 } 1620 1621 uint64_t 1622 spa_bootfs(spa_t *spa) 1623 { 1624 return (spa->spa_bootfs); 1625 } 1626 1627 uint64_t 1628 spa_delegation(spa_t *spa) 1629 { 1630 return (spa->spa_delegation); 1631 } 1632 1633 objset_t * 1634 spa_meta_objset(spa_t *spa) 1635 { 1636 return (spa->spa_meta_objset); 1637 } 1638 1639 enum zio_checksum 1640 spa_dedup_checksum(spa_t *spa) 1641 { 1642 return (spa->spa_dedup_checksum); 1643 } 1644 1645 /* 1646 * Reset pool scan stat per scan pass (or reboot). 1647 */ 1648 void 1649 spa_scan_stat_init(spa_t *spa) 1650 { 1651 /* data not stored on disk */ 1652 spa->spa_scan_pass_start = gethrestime_sec(); 1653 spa->spa_scan_pass_exam = 0; 1654 vdev_scan_stat_init(spa->spa_root_vdev); 1655 } 1656 1657 /* 1658 * Get scan stats for zpool status reports 1659 */ 1660 int 1661 spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps) 1662 { 1663 dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL; 1664 1665 if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE) 1666 return (ENOENT); 1667 bzero(ps, sizeof (pool_scan_stat_t)); 1668 1669 /* data stored on disk */ 1670 ps->pss_func = scn->scn_phys.scn_func; 1671 ps->pss_start_time = scn->scn_phys.scn_start_time; 1672 ps->pss_end_time = scn->scn_phys.scn_end_time; 1673 ps->pss_to_examine = scn->scn_phys.scn_to_examine; 1674 ps->pss_examined = scn->scn_phys.scn_examined; 1675 ps->pss_to_process = scn->scn_phys.scn_to_process; 1676 ps->pss_processed = scn->scn_phys.scn_processed; 1677 ps->pss_errors = scn->scn_phys.scn_errors; 1678 ps->pss_state = scn->scn_phys.scn_state; 1679 1680 /* data not stored on disk */ 1681 ps->pss_pass_start = spa->spa_scan_pass_start; 1682 ps->pss_pass_exam = spa->spa_scan_pass_exam; 1683 1684 return (0); 1685 } 1686 1687 boolean_t 1688 spa_debug_enabled(spa_t *spa) 1689 { 1690 return (spa->spa_debug); 1691 } 1692