xref: /titanic_51/usr/src/uts/common/fs/zfs/spa_misc.c (revision 071ca66ea5e45078699d3a2ade8c6ca5c00bba2c)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
24  * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
25  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26  * Copyright 2013 Saso Kiselkov. All rights reserved.
27  * Copyright (c) 2014 Integros [integros.com]
28  */
29 
30 #include <sys/zfs_context.h>
31 #include <sys/spa_impl.h>
32 #include <sys/spa_boot.h>
33 #include <sys/zio.h>
34 #include <sys/zio_checksum.h>
35 #include <sys/zio_compress.h>
36 #include <sys/dmu.h>
37 #include <sys/dmu_tx.h>
38 #include <sys/zap.h>
39 #include <sys/zil.h>
40 #include <sys/vdev_impl.h>
41 #include <sys/metaslab.h>
42 #include <sys/uberblock_impl.h>
43 #include <sys/txg.h>
44 #include <sys/avl.h>
45 #include <sys/unique.h>
46 #include <sys/dsl_pool.h>
47 #include <sys/dsl_dir.h>
48 #include <sys/dsl_prop.h>
49 #include <sys/dsl_scan.h>
50 #include <sys/fs/zfs.h>
51 #include <sys/metaslab_impl.h>
52 #include <sys/arc.h>
53 #include <sys/ddt.h>
54 #include "zfs_prop.h"
55 #include <sys/zfeature.h>
56 
57 /*
58  * SPA locking
59  *
60  * There are four basic locks for managing spa_t structures:
61  *
62  * spa_namespace_lock (global mutex)
63  *
64  *	This lock must be acquired to do any of the following:
65  *
66  *		- Lookup a spa_t by name
67  *		- Add or remove a spa_t from the namespace
68  *		- Increase spa_refcount from non-zero
69  *		- Check if spa_refcount is zero
70  *		- Rename a spa_t
71  *		- add/remove/attach/detach devices
72  *		- Held for the duration of create/destroy/import/export
73  *
74  *	It does not need to handle recursion.  A create or destroy may
75  *	reference objects (files or zvols) in other pools, but by
76  *	definition they must have an existing reference, and will never need
77  *	to lookup a spa_t by name.
78  *
79  * spa_refcount (per-spa refcount_t protected by mutex)
80  *
81  *	This reference count keep track of any active users of the spa_t.  The
82  *	spa_t cannot be destroyed or freed while this is non-zero.  Internally,
83  *	the refcount is never really 'zero' - opening a pool implicitly keeps
84  *	some references in the DMU.  Internally we check against spa_minref, but
85  *	present the image of a zero/non-zero value to consumers.
86  *
87  * spa_config_lock[] (per-spa array of rwlocks)
88  *
89  *	This protects the spa_t from config changes, and must be held in
90  *	the following circumstances:
91  *
92  *		- RW_READER to perform I/O to the spa
93  *		- RW_WRITER to change the vdev config
94  *
95  * The locking order is fairly straightforward:
96  *
97  *		spa_namespace_lock	->	spa_refcount
98  *
99  *	The namespace lock must be acquired to increase the refcount from 0
100  *	or to check if it is zero.
101  *
102  *		spa_refcount		->	spa_config_lock[]
103  *
104  *	There must be at least one valid reference on the spa_t to acquire
105  *	the config lock.
106  *
107  *		spa_namespace_lock	->	spa_config_lock[]
108  *
109  *	The namespace lock must always be taken before the config lock.
110  *
111  *
112  * The spa_namespace_lock can be acquired directly and is globally visible.
113  *
114  * The namespace is manipulated using the following functions, all of which
115  * require the spa_namespace_lock to be held.
116  *
117  *	spa_lookup()		Lookup a spa_t by name.
118  *
119  *	spa_add()		Create a new spa_t in the namespace.
120  *
121  *	spa_remove()		Remove a spa_t from the namespace.  This also
122  *				frees up any memory associated with the spa_t.
123  *
124  *	spa_next()		Returns the next spa_t in the system, or the
125  *				first if NULL is passed.
126  *
127  *	spa_evict_all()		Shutdown and remove all spa_t structures in
128  *				the system.
129  *
130  *	spa_guid_exists()	Determine whether a pool/device guid exists.
131  *
132  * The spa_refcount is manipulated using the following functions:
133  *
134  *	spa_open_ref()		Adds a reference to the given spa_t.  Must be
135  *				called with spa_namespace_lock held if the
136  *				refcount is currently zero.
137  *
138  *	spa_close()		Remove a reference from the spa_t.  This will
139  *				not free the spa_t or remove it from the
140  *				namespace.  No locking is required.
141  *
142  *	spa_refcount_zero()	Returns true if the refcount is currently
143  *				zero.  Must be called with spa_namespace_lock
144  *				held.
145  *
146  * The spa_config_lock[] is an array of rwlocks, ordered as follows:
147  * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
148  * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
149  *
150  * To read the configuration, it suffices to hold one of these locks as reader.
151  * To modify the configuration, you must hold all locks as writer.  To modify
152  * vdev state without altering the vdev tree's topology (e.g. online/offline),
153  * you must hold SCL_STATE and SCL_ZIO as writer.
154  *
155  * We use these distinct config locks to avoid recursive lock entry.
156  * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
157  * block allocations (SCL_ALLOC), which may require reading space maps
158  * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
159  *
160  * The spa config locks cannot be normal rwlocks because we need the
161  * ability to hand off ownership.  For example, SCL_ZIO is acquired
162  * by the issuing thread and later released by an interrupt thread.
163  * They do, however, obey the usual write-wanted semantics to prevent
164  * writer (i.e. system administrator) starvation.
165  *
166  * The lock acquisition rules are as follows:
167  *
168  * SCL_CONFIG
169  *	Protects changes to the vdev tree topology, such as vdev
170  *	add/remove/attach/detach.  Protects the dirty config list
171  *	(spa_config_dirty_list) and the set of spares and l2arc devices.
172  *
173  * SCL_STATE
174  *	Protects changes to pool state and vdev state, such as vdev
175  *	online/offline/fault/degrade/clear.  Protects the dirty state list
176  *	(spa_state_dirty_list) and global pool state (spa_state).
177  *
178  * SCL_ALLOC
179  *	Protects changes to metaslab groups and classes.
180  *	Held as reader by metaslab_alloc() and metaslab_claim().
181  *
182  * SCL_ZIO
183  *	Held by bp-level zios (those which have no io_vd upon entry)
184  *	to prevent changes to the vdev tree.  The bp-level zio implicitly
185  *	protects all of its vdev child zios, which do not hold SCL_ZIO.
186  *
187  * SCL_FREE
188  *	Protects changes to metaslab groups and classes.
189  *	Held as reader by metaslab_free().  SCL_FREE is distinct from
190  *	SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
191  *	blocks in zio_done() while another i/o that holds either
192  *	SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
193  *
194  * SCL_VDEV
195  *	Held as reader to prevent changes to the vdev tree during trivial
196  *	inquiries such as bp_get_dsize().  SCL_VDEV is distinct from the
197  *	other locks, and lower than all of them, to ensure that it's safe
198  *	to acquire regardless of caller context.
199  *
200  * In addition, the following rules apply:
201  *
202  * (a)	spa_props_lock protects pool properties, spa_config and spa_config_list.
203  *	The lock ordering is SCL_CONFIG > spa_props_lock.
204  *
205  * (b)	I/O operations on leaf vdevs.  For any zio operation that takes
206  *	an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
207  *	or zio_write_phys() -- the caller must ensure that the config cannot
208  *	cannot change in the interim, and that the vdev cannot be reopened.
209  *	SCL_STATE as reader suffices for both.
210  *
211  * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
212  *
213  *	spa_vdev_enter()	Acquire the namespace lock and the config lock
214  *				for writing.
215  *
216  *	spa_vdev_exit()		Release the config lock, wait for all I/O
217  *				to complete, sync the updated configs to the
218  *				cache, and release the namespace lock.
219  *
220  * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
221  * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
222  * locking is, always, based on spa_namespace_lock and spa_config_lock[].
223  *
224  * spa_rename() is also implemented within this file since it requires
225  * manipulation of the namespace.
226  */
227 
228 static avl_tree_t spa_namespace_avl;
229 kmutex_t spa_namespace_lock;
230 static kcondvar_t spa_namespace_cv;
231 static int spa_active_count;
232 int spa_max_replication_override = SPA_DVAS_PER_BP;
233 
234 static kmutex_t spa_spare_lock;
235 static avl_tree_t spa_spare_avl;
236 static kmutex_t spa_l2cache_lock;
237 static avl_tree_t spa_l2cache_avl;
238 
239 kmem_cache_t *spa_buffer_pool;
240 int spa_mode_global;
241 
242 #ifdef ZFS_DEBUG
243 /* Everything except dprintf and spa is on by default in debug builds */
244 int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_SPA);
245 #else
246 int zfs_flags = 0;
247 #endif
248 
249 /*
250  * zfs_recover can be set to nonzero to attempt to recover from
251  * otherwise-fatal errors, typically caused by on-disk corruption.  When
252  * set, calls to zfs_panic_recover() will turn into warning messages.
253  * This should only be used as a last resort, as it typically results
254  * in leaked space, or worse.
255  */
256 boolean_t zfs_recover = B_FALSE;
257 
258 /*
259  * If destroy encounters an EIO while reading metadata (e.g. indirect
260  * blocks), space referenced by the missing metadata can not be freed.
261  * Normally this causes the background destroy to become "stalled", as
262  * it is unable to make forward progress.  While in this stalled state,
263  * all remaining space to free from the error-encountering filesystem is
264  * "temporarily leaked".  Set this flag to cause it to ignore the EIO,
265  * permanently leak the space from indirect blocks that can not be read,
266  * and continue to free everything else that it can.
267  *
268  * The default, "stalling" behavior is useful if the storage partially
269  * fails (i.e. some but not all i/os fail), and then later recovers.  In
270  * this case, we will be able to continue pool operations while it is
271  * partially failed, and when it recovers, we can continue to free the
272  * space, with no leaks.  However, note that this case is actually
273  * fairly rare.
274  *
275  * Typically pools either (a) fail completely (but perhaps temporarily,
276  * e.g. a top-level vdev going offline), or (b) have localized,
277  * permanent errors (e.g. disk returns the wrong data due to bit flip or
278  * firmware bug).  In case (a), this setting does not matter because the
279  * pool will be suspended and the sync thread will not be able to make
280  * forward progress regardless.  In case (b), because the error is
281  * permanent, the best we can do is leak the minimum amount of space,
282  * which is what setting this flag will do.  Therefore, it is reasonable
283  * for this flag to normally be set, but we chose the more conservative
284  * approach of not setting it, so that there is no possibility of
285  * leaking space in the "partial temporary" failure case.
286  */
287 boolean_t zfs_free_leak_on_eio = B_FALSE;
288 
289 /*
290  * Expiration time in milliseconds. This value has two meanings. First it is
291  * used to determine when the spa_deadman() logic should fire. By default the
292  * spa_deadman() will fire if spa_sync() has not completed in 1000 seconds.
293  * Secondly, the value determines if an I/O is considered "hung". Any I/O that
294  * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting
295  * in a system panic.
296  */
297 uint64_t zfs_deadman_synctime_ms = 1000000ULL;
298 
299 /*
300  * Check time in milliseconds. This defines the frequency at which we check
301  * for hung I/O.
302  */
303 uint64_t zfs_deadman_checktime_ms = 5000ULL;
304 
305 /*
306  * Override the zfs deadman behavior via /etc/system. By default the
307  * deadman is enabled except on VMware and sparc deployments.
308  */
309 int zfs_deadman_enabled = -1;
310 
311 /*
312  * The worst case is single-sector max-parity RAID-Z blocks, in which
313  * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
314  * times the size; so just assume that.  Add to this the fact that
315  * we can have up to 3 DVAs per bp, and one more factor of 2 because
316  * the block may be dittoed with up to 3 DVAs by ddt_sync().  All together,
317  * the worst case is:
318  *     (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24
319  */
320 int spa_asize_inflation = 24;
321 
322 /*
323  * Normally, we don't allow the last 3.2% (1/(2^spa_slop_shift)) of space in
324  * the pool to be consumed.  This ensures that we don't run the pool
325  * completely out of space, due to unaccounted changes (e.g. to the MOS).
326  * It also limits the worst-case time to allocate space.  If we have
327  * less than this amount of free space, most ZPL operations (e.g. write,
328  * create) will return ENOSPC.
329  *
330  * Certain operations (e.g. file removal, most administrative actions) can
331  * use half the slop space.  They will only return ENOSPC if less than half
332  * the slop space is free.  Typically, once the pool has less than the slop
333  * space free, the user will use these operations to free up space in the pool.
334  * These are the operations that call dsl_pool_adjustedsize() with the netfree
335  * argument set to TRUE.
336  *
337  * A very restricted set of operations are always permitted, regardless of
338  * the amount of free space.  These are the operations that call
339  * dsl_sync_task(ZFS_SPACE_CHECK_NONE), e.g. "zfs destroy".  If these
340  * operations result in a net increase in the amount of space used,
341  * it is possible to run the pool completely out of space, causing it to
342  * be permanently read-only.
343  *
344  * See also the comments in zfs_space_check_t.
345  */
346 int spa_slop_shift = 5;
347 
348 /*
349  * ==========================================================================
350  * SPA config locking
351  * ==========================================================================
352  */
353 static void
354 spa_config_lock_init(spa_t *spa)
355 {
356 	for (int i = 0; i < SCL_LOCKS; i++) {
357 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
358 		mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
359 		cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
360 		refcount_create_untracked(&scl->scl_count);
361 		scl->scl_writer = NULL;
362 		scl->scl_write_wanted = 0;
363 	}
364 }
365 
366 static void
367 spa_config_lock_destroy(spa_t *spa)
368 {
369 	for (int i = 0; i < SCL_LOCKS; i++) {
370 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
371 		mutex_destroy(&scl->scl_lock);
372 		cv_destroy(&scl->scl_cv);
373 		refcount_destroy(&scl->scl_count);
374 		ASSERT(scl->scl_writer == NULL);
375 		ASSERT(scl->scl_write_wanted == 0);
376 	}
377 }
378 
379 int
380 spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw)
381 {
382 	for (int i = 0; i < SCL_LOCKS; i++) {
383 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
384 		if (!(locks & (1 << i)))
385 			continue;
386 		mutex_enter(&scl->scl_lock);
387 		if (rw == RW_READER) {
388 			if (scl->scl_writer || scl->scl_write_wanted) {
389 				mutex_exit(&scl->scl_lock);
390 				spa_config_exit(spa, locks & ((1 << i) - 1),
391 				    tag);
392 				return (0);
393 			}
394 		} else {
395 			ASSERT(scl->scl_writer != curthread);
396 			if (!refcount_is_zero(&scl->scl_count)) {
397 				mutex_exit(&scl->scl_lock);
398 				spa_config_exit(spa, locks & ((1 << i) - 1),
399 				    tag);
400 				return (0);
401 			}
402 			scl->scl_writer = curthread;
403 		}
404 		(void) refcount_add(&scl->scl_count, tag);
405 		mutex_exit(&scl->scl_lock);
406 	}
407 	return (1);
408 }
409 
410 void
411 spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw)
412 {
413 	int wlocks_held = 0;
414 
415 	ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY);
416 
417 	for (int i = 0; i < SCL_LOCKS; i++) {
418 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
419 		if (scl->scl_writer == curthread)
420 			wlocks_held |= (1 << i);
421 		if (!(locks & (1 << i)))
422 			continue;
423 		mutex_enter(&scl->scl_lock);
424 		if (rw == RW_READER) {
425 			while (scl->scl_writer || scl->scl_write_wanted) {
426 				cv_wait(&scl->scl_cv, &scl->scl_lock);
427 			}
428 		} else {
429 			ASSERT(scl->scl_writer != curthread);
430 			while (!refcount_is_zero(&scl->scl_count)) {
431 				scl->scl_write_wanted++;
432 				cv_wait(&scl->scl_cv, &scl->scl_lock);
433 				scl->scl_write_wanted--;
434 			}
435 			scl->scl_writer = curthread;
436 		}
437 		(void) refcount_add(&scl->scl_count, tag);
438 		mutex_exit(&scl->scl_lock);
439 	}
440 	ASSERT(wlocks_held <= locks);
441 }
442 
443 void
444 spa_config_exit(spa_t *spa, int locks, void *tag)
445 {
446 	for (int i = SCL_LOCKS - 1; i >= 0; i--) {
447 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
448 		if (!(locks & (1 << i)))
449 			continue;
450 		mutex_enter(&scl->scl_lock);
451 		ASSERT(!refcount_is_zero(&scl->scl_count));
452 		if (refcount_remove(&scl->scl_count, tag) == 0) {
453 			ASSERT(scl->scl_writer == NULL ||
454 			    scl->scl_writer == curthread);
455 			scl->scl_writer = NULL;	/* OK in either case */
456 			cv_broadcast(&scl->scl_cv);
457 		}
458 		mutex_exit(&scl->scl_lock);
459 	}
460 }
461 
462 int
463 spa_config_held(spa_t *spa, int locks, krw_t rw)
464 {
465 	int locks_held = 0;
466 
467 	for (int i = 0; i < SCL_LOCKS; i++) {
468 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
469 		if (!(locks & (1 << i)))
470 			continue;
471 		if ((rw == RW_READER && !refcount_is_zero(&scl->scl_count)) ||
472 		    (rw == RW_WRITER && scl->scl_writer == curthread))
473 			locks_held |= 1 << i;
474 	}
475 
476 	return (locks_held);
477 }
478 
479 /*
480  * ==========================================================================
481  * SPA namespace functions
482  * ==========================================================================
483  */
484 
485 /*
486  * Lookup the named spa_t in the AVL tree.  The spa_namespace_lock must be held.
487  * Returns NULL if no matching spa_t is found.
488  */
489 spa_t *
490 spa_lookup(const char *name)
491 {
492 	static spa_t search;	/* spa_t is large; don't allocate on stack */
493 	spa_t *spa;
494 	avl_index_t where;
495 	char *cp;
496 
497 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
498 
499 	(void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
500 
501 	/*
502 	 * If it's a full dataset name, figure out the pool name and
503 	 * just use that.
504 	 */
505 	cp = strpbrk(search.spa_name, "/@#");
506 	if (cp != NULL)
507 		*cp = '\0';
508 
509 	spa = avl_find(&spa_namespace_avl, &search, &where);
510 
511 	return (spa);
512 }
513 
514 /*
515  * Fires when spa_sync has not completed within zfs_deadman_synctime_ms.
516  * If the zfs_deadman_enabled flag is set then it inspects all vdev queues
517  * looking for potentially hung I/Os.
518  */
519 void
520 spa_deadman(void *arg)
521 {
522 	spa_t *spa = arg;
523 
524 	/*
525 	 * Disable the deadman timer if the pool is suspended.
526 	 */
527 	if (spa_suspended(spa)) {
528 		VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
529 		return;
530 	}
531 
532 	zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu",
533 	    (gethrtime() - spa->spa_sync_starttime) / NANOSEC,
534 	    ++spa->spa_deadman_calls);
535 	if (zfs_deadman_enabled)
536 		vdev_deadman(spa->spa_root_vdev);
537 }
538 
539 /*
540  * Create an uninitialized spa_t with the given name.  Requires
541  * spa_namespace_lock.  The caller must ensure that the spa_t doesn't already
542  * exist by calling spa_lookup() first.
543  */
544 spa_t *
545 spa_add(const char *name, nvlist_t *config, const char *altroot)
546 {
547 	spa_t *spa;
548 	spa_config_dirent_t *dp;
549 	cyc_handler_t hdlr;
550 	cyc_time_t when;
551 
552 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
553 
554 	spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
555 
556 	mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
557 	mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
558 	mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
559 	mutex_init(&spa->spa_evicting_os_lock, NULL, MUTEX_DEFAULT, NULL);
560 	mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
561 	mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL);
562 	mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
563 	mutex_init(&spa->spa_cksum_tmpls_lock, NULL, MUTEX_DEFAULT, NULL);
564 	mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
565 	mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
566 	mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL);
567 	mutex_init(&spa->spa_iokstat_lock, NULL, MUTEX_DEFAULT, NULL);
568 
569 	cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
570 	cv_init(&spa->spa_evicting_os_cv, NULL, CV_DEFAULT, NULL);
571 	cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL);
572 	cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
573 	cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
574 
575 	for (int t = 0; t < TXG_SIZE; t++)
576 		bplist_create(&spa->spa_free_bplist[t]);
577 
578 	(void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
579 	spa->spa_state = POOL_STATE_UNINITIALIZED;
580 	spa->spa_freeze_txg = UINT64_MAX;
581 	spa->spa_final_txg = UINT64_MAX;
582 	spa->spa_load_max_txg = UINT64_MAX;
583 	spa->spa_proc = &p0;
584 	spa->spa_proc_state = SPA_PROC_NONE;
585 
586 	hdlr.cyh_func = spa_deadman;
587 	hdlr.cyh_arg = spa;
588 	hdlr.cyh_level = CY_LOW_LEVEL;
589 
590 	spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms);
591 
592 	/*
593 	 * This determines how often we need to check for hung I/Os after
594 	 * the cyclic has already fired. Since checking for hung I/Os is
595 	 * an expensive operation we don't want to check too frequently.
596 	 * Instead wait for 5 seconds before checking again.
597 	 */
598 	when.cyt_interval = MSEC2NSEC(zfs_deadman_checktime_ms);
599 	when.cyt_when = CY_INFINITY;
600 	mutex_enter(&cpu_lock);
601 	spa->spa_deadman_cycid = cyclic_add(&hdlr, &when);
602 	mutex_exit(&cpu_lock);
603 
604 	refcount_create(&spa->spa_refcount);
605 	spa_config_lock_init(spa);
606 
607 	avl_add(&spa_namespace_avl, spa);
608 
609 	/*
610 	 * Set the alternate root, if there is one.
611 	 */
612 	if (altroot) {
613 		spa->spa_root = spa_strdup(altroot);
614 		spa_active_count++;
615 	}
616 
617 	/*
618 	 * Every pool starts with the default cachefile
619 	 */
620 	list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
621 	    offsetof(spa_config_dirent_t, scd_link));
622 
623 	dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
624 	dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path);
625 	list_insert_head(&spa->spa_config_list, dp);
626 
627 	VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME,
628 	    KM_SLEEP) == 0);
629 
630 	if (config != NULL) {
631 		nvlist_t *features;
632 
633 		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ,
634 		    &features) == 0) {
635 			VERIFY(nvlist_dup(features, &spa->spa_label_features,
636 			    0) == 0);
637 		}
638 
639 		VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
640 	}
641 
642 	if (spa->spa_label_features == NULL) {
643 		VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME,
644 		    KM_SLEEP) == 0);
645 	}
646 
647 	spa->spa_iokstat = kstat_create("zfs", 0, name,
648 	    "disk", KSTAT_TYPE_IO, 1, 0);
649 	if (spa->spa_iokstat) {
650 		spa->spa_iokstat->ks_lock = &spa->spa_iokstat_lock;
651 		kstat_install(spa->spa_iokstat);
652 	}
653 
654 	spa->spa_debug = ((zfs_flags & ZFS_DEBUG_SPA) != 0);
655 
656 	spa->spa_min_ashift = INT_MAX;
657 	spa->spa_max_ashift = 0;
658 
659 	/*
660 	 * As a pool is being created, treat all features as disabled by
661 	 * setting SPA_FEATURE_DISABLED for all entries in the feature
662 	 * refcount cache.
663 	 */
664 	for (int i = 0; i < SPA_FEATURES; i++) {
665 		spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED;
666 	}
667 
668 	return (spa);
669 }
670 
671 /*
672  * Removes a spa_t from the namespace, freeing up any memory used.  Requires
673  * spa_namespace_lock.  This is called only after the spa_t has been closed and
674  * deactivated.
675  */
676 void
677 spa_remove(spa_t *spa)
678 {
679 	spa_config_dirent_t *dp;
680 
681 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
682 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
683 	ASSERT3U(refcount_count(&spa->spa_refcount), ==, 0);
684 
685 	nvlist_free(spa->spa_config_splitting);
686 
687 	avl_remove(&spa_namespace_avl, spa);
688 	cv_broadcast(&spa_namespace_cv);
689 
690 	if (spa->spa_root) {
691 		spa_strfree(spa->spa_root);
692 		spa_active_count--;
693 	}
694 
695 	while ((dp = list_head(&spa->spa_config_list)) != NULL) {
696 		list_remove(&spa->spa_config_list, dp);
697 		if (dp->scd_path != NULL)
698 			spa_strfree(dp->scd_path);
699 		kmem_free(dp, sizeof (spa_config_dirent_t));
700 	}
701 
702 	list_destroy(&spa->spa_config_list);
703 
704 	nvlist_free(spa->spa_label_features);
705 	nvlist_free(spa->spa_load_info);
706 	spa_config_set(spa, NULL);
707 
708 	mutex_enter(&cpu_lock);
709 	if (spa->spa_deadman_cycid != CYCLIC_NONE)
710 		cyclic_remove(spa->spa_deadman_cycid);
711 	mutex_exit(&cpu_lock);
712 	spa->spa_deadman_cycid = CYCLIC_NONE;
713 
714 	refcount_destroy(&spa->spa_refcount);
715 
716 	spa_config_lock_destroy(spa);
717 
718 	kstat_delete(spa->spa_iokstat);
719 	spa->spa_iokstat = NULL;
720 
721 	for (int t = 0; t < TXG_SIZE; t++)
722 		bplist_destroy(&spa->spa_free_bplist[t]);
723 
724 	zio_checksum_templates_free(spa);
725 
726 	cv_destroy(&spa->spa_async_cv);
727 	cv_destroy(&spa->spa_evicting_os_cv);
728 	cv_destroy(&spa->spa_proc_cv);
729 	cv_destroy(&spa->spa_scrub_io_cv);
730 	cv_destroy(&spa->spa_suspend_cv);
731 
732 	mutex_destroy(&spa->spa_async_lock);
733 	mutex_destroy(&spa->spa_errlist_lock);
734 	mutex_destroy(&spa->spa_errlog_lock);
735 	mutex_destroy(&spa->spa_evicting_os_lock);
736 	mutex_destroy(&spa->spa_history_lock);
737 	mutex_destroy(&spa->spa_proc_lock);
738 	mutex_destroy(&spa->spa_props_lock);
739 	mutex_destroy(&spa->spa_cksum_tmpls_lock);
740 	mutex_destroy(&spa->spa_scrub_lock);
741 	mutex_destroy(&spa->spa_suspend_lock);
742 	mutex_destroy(&spa->spa_vdev_top_lock);
743 	mutex_destroy(&spa->spa_iokstat_lock);
744 
745 	kmem_free(spa, sizeof (spa_t));
746 }
747 
748 /*
749  * Given a pool, return the next pool in the namespace, or NULL if there is
750  * none.  If 'prev' is NULL, return the first pool.
751  */
752 spa_t *
753 spa_next(spa_t *prev)
754 {
755 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
756 
757 	if (prev)
758 		return (AVL_NEXT(&spa_namespace_avl, prev));
759 	else
760 		return (avl_first(&spa_namespace_avl));
761 }
762 
763 /*
764  * ==========================================================================
765  * SPA refcount functions
766  * ==========================================================================
767  */
768 
769 /*
770  * Add a reference to the given spa_t.  Must have at least one reference, or
771  * have the namespace lock held.
772  */
773 void
774 spa_open_ref(spa_t *spa, void *tag)
775 {
776 	ASSERT(refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
777 	    MUTEX_HELD(&spa_namespace_lock));
778 	(void) refcount_add(&spa->spa_refcount, tag);
779 }
780 
781 /*
782  * Remove a reference to the given spa_t.  Must have at least one reference, or
783  * have the namespace lock held.
784  */
785 void
786 spa_close(spa_t *spa, void *tag)
787 {
788 	ASSERT(refcount_count(&spa->spa_refcount) > spa->spa_minref ||
789 	    MUTEX_HELD(&spa_namespace_lock));
790 	(void) refcount_remove(&spa->spa_refcount, tag);
791 }
792 
793 /*
794  * Remove a reference to the given spa_t held by a dsl dir that is
795  * being asynchronously released.  Async releases occur from a taskq
796  * performing eviction of dsl datasets and dirs.  The namespace lock
797  * isn't held and the hold by the object being evicted may contribute to
798  * spa_minref (e.g. dataset or directory released during pool export),
799  * so the asserts in spa_close() do not apply.
800  */
801 void
802 spa_async_close(spa_t *spa, void *tag)
803 {
804 	(void) refcount_remove(&spa->spa_refcount, tag);
805 }
806 
807 /*
808  * Check to see if the spa refcount is zero.  Must be called with
809  * spa_namespace_lock held.  We really compare against spa_minref, which is the
810  * number of references acquired when opening a pool
811  */
812 boolean_t
813 spa_refcount_zero(spa_t *spa)
814 {
815 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
816 
817 	return (refcount_count(&spa->spa_refcount) == spa->spa_minref);
818 }
819 
820 /*
821  * ==========================================================================
822  * SPA spare and l2cache tracking
823  * ==========================================================================
824  */
825 
826 /*
827  * Hot spares and cache devices are tracked using the same code below,
828  * for 'auxiliary' devices.
829  */
830 
831 typedef struct spa_aux {
832 	uint64_t	aux_guid;
833 	uint64_t	aux_pool;
834 	avl_node_t	aux_avl;
835 	int		aux_count;
836 } spa_aux_t;
837 
838 static int
839 spa_aux_compare(const void *a, const void *b)
840 {
841 	const spa_aux_t *sa = a;
842 	const spa_aux_t *sb = b;
843 
844 	if (sa->aux_guid < sb->aux_guid)
845 		return (-1);
846 	else if (sa->aux_guid > sb->aux_guid)
847 		return (1);
848 	else
849 		return (0);
850 }
851 
852 void
853 spa_aux_add(vdev_t *vd, avl_tree_t *avl)
854 {
855 	avl_index_t where;
856 	spa_aux_t search;
857 	spa_aux_t *aux;
858 
859 	search.aux_guid = vd->vdev_guid;
860 	if ((aux = avl_find(avl, &search, &where)) != NULL) {
861 		aux->aux_count++;
862 	} else {
863 		aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
864 		aux->aux_guid = vd->vdev_guid;
865 		aux->aux_count = 1;
866 		avl_insert(avl, aux, where);
867 	}
868 }
869 
870 void
871 spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
872 {
873 	spa_aux_t search;
874 	spa_aux_t *aux;
875 	avl_index_t where;
876 
877 	search.aux_guid = vd->vdev_guid;
878 	aux = avl_find(avl, &search, &where);
879 
880 	ASSERT(aux != NULL);
881 
882 	if (--aux->aux_count == 0) {
883 		avl_remove(avl, aux);
884 		kmem_free(aux, sizeof (spa_aux_t));
885 	} else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
886 		aux->aux_pool = 0ULL;
887 	}
888 }
889 
890 boolean_t
891 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
892 {
893 	spa_aux_t search, *found;
894 
895 	search.aux_guid = guid;
896 	found = avl_find(avl, &search, NULL);
897 
898 	if (pool) {
899 		if (found)
900 			*pool = found->aux_pool;
901 		else
902 			*pool = 0ULL;
903 	}
904 
905 	if (refcnt) {
906 		if (found)
907 			*refcnt = found->aux_count;
908 		else
909 			*refcnt = 0;
910 	}
911 
912 	return (found != NULL);
913 }
914 
915 void
916 spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
917 {
918 	spa_aux_t search, *found;
919 	avl_index_t where;
920 
921 	search.aux_guid = vd->vdev_guid;
922 	found = avl_find(avl, &search, &where);
923 	ASSERT(found != NULL);
924 	ASSERT(found->aux_pool == 0ULL);
925 
926 	found->aux_pool = spa_guid(vd->vdev_spa);
927 }
928 
929 /*
930  * Spares are tracked globally due to the following constraints:
931  *
932  * 	- A spare may be part of multiple pools.
933  * 	- A spare may be added to a pool even if it's actively in use within
934  *	  another pool.
935  * 	- A spare in use in any pool can only be the source of a replacement if
936  *	  the target is a spare in the same pool.
937  *
938  * We keep track of all spares on the system through the use of a reference
939  * counted AVL tree.  When a vdev is added as a spare, or used as a replacement
940  * spare, then we bump the reference count in the AVL tree.  In addition, we set
941  * the 'vdev_isspare' member to indicate that the device is a spare (active or
942  * inactive).  When a spare is made active (used to replace a device in the
943  * pool), we also keep track of which pool its been made a part of.
944  *
945  * The 'spa_spare_lock' protects the AVL tree.  These functions are normally
946  * called under the spa_namespace lock as part of vdev reconfiguration.  The
947  * separate spare lock exists for the status query path, which does not need to
948  * be completely consistent with respect to other vdev configuration changes.
949  */
950 
951 static int
952 spa_spare_compare(const void *a, const void *b)
953 {
954 	return (spa_aux_compare(a, b));
955 }
956 
957 void
958 spa_spare_add(vdev_t *vd)
959 {
960 	mutex_enter(&spa_spare_lock);
961 	ASSERT(!vd->vdev_isspare);
962 	spa_aux_add(vd, &spa_spare_avl);
963 	vd->vdev_isspare = B_TRUE;
964 	mutex_exit(&spa_spare_lock);
965 }
966 
967 void
968 spa_spare_remove(vdev_t *vd)
969 {
970 	mutex_enter(&spa_spare_lock);
971 	ASSERT(vd->vdev_isspare);
972 	spa_aux_remove(vd, &spa_spare_avl);
973 	vd->vdev_isspare = B_FALSE;
974 	mutex_exit(&spa_spare_lock);
975 }
976 
977 boolean_t
978 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
979 {
980 	boolean_t found;
981 
982 	mutex_enter(&spa_spare_lock);
983 	found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
984 	mutex_exit(&spa_spare_lock);
985 
986 	return (found);
987 }
988 
989 void
990 spa_spare_activate(vdev_t *vd)
991 {
992 	mutex_enter(&spa_spare_lock);
993 	ASSERT(vd->vdev_isspare);
994 	spa_aux_activate(vd, &spa_spare_avl);
995 	mutex_exit(&spa_spare_lock);
996 }
997 
998 /*
999  * Level 2 ARC devices are tracked globally for the same reasons as spares.
1000  * Cache devices currently only support one pool per cache device, and so
1001  * for these devices the aux reference count is currently unused beyond 1.
1002  */
1003 
1004 static int
1005 spa_l2cache_compare(const void *a, const void *b)
1006 {
1007 	return (spa_aux_compare(a, b));
1008 }
1009 
1010 void
1011 spa_l2cache_add(vdev_t *vd)
1012 {
1013 	mutex_enter(&spa_l2cache_lock);
1014 	ASSERT(!vd->vdev_isl2cache);
1015 	spa_aux_add(vd, &spa_l2cache_avl);
1016 	vd->vdev_isl2cache = B_TRUE;
1017 	mutex_exit(&spa_l2cache_lock);
1018 }
1019 
1020 void
1021 spa_l2cache_remove(vdev_t *vd)
1022 {
1023 	mutex_enter(&spa_l2cache_lock);
1024 	ASSERT(vd->vdev_isl2cache);
1025 	spa_aux_remove(vd, &spa_l2cache_avl);
1026 	vd->vdev_isl2cache = B_FALSE;
1027 	mutex_exit(&spa_l2cache_lock);
1028 }
1029 
1030 boolean_t
1031 spa_l2cache_exists(uint64_t guid, uint64_t *pool)
1032 {
1033 	boolean_t found;
1034 
1035 	mutex_enter(&spa_l2cache_lock);
1036 	found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
1037 	mutex_exit(&spa_l2cache_lock);
1038 
1039 	return (found);
1040 }
1041 
1042 void
1043 spa_l2cache_activate(vdev_t *vd)
1044 {
1045 	mutex_enter(&spa_l2cache_lock);
1046 	ASSERT(vd->vdev_isl2cache);
1047 	spa_aux_activate(vd, &spa_l2cache_avl);
1048 	mutex_exit(&spa_l2cache_lock);
1049 }
1050 
1051 /*
1052  * ==========================================================================
1053  * SPA vdev locking
1054  * ==========================================================================
1055  */
1056 
1057 /*
1058  * Lock the given spa_t for the purpose of adding or removing a vdev.
1059  * Grabs the global spa_namespace_lock plus the spa config lock for writing.
1060  * It returns the next transaction group for the spa_t.
1061  */
1062 uint64_t
1063 spa_vdev_enter(spa_t *spa)
1064 {
1065 	mutex_enter(&spa->spa_vdev_top_lock);
1066 	mutex_enter(&spa_namespace_lock);
1067 	return (spa_vdev_config_enter(spa));
1068 }
1069 
1070 /*
1071  * Internal implementation for spa_vdev_enter().  Used when a vdev
1072  * operation requires multiple syncs (i.e. removing a device) while
1073  * keeping the spa_namespace_lock held.
1074  */
1075 uint64_t
1076 spa_vdev_config_enter(spa_t *spa)
1077 {
1078 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1079 
1080 	spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1081 
1082 	return (spa_last_synced_txg(spa) + 1);
1083 }
1084 
1085 /*
1086  * Used in combination with spa_vdev_config_enter() to allow the syncing
1087  * of multiple transactions without releasing the spa_namespace_lock.
1088  */
1089 void
1090 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag)
1091 {
1092 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1093 
1094 	int config_changed = B_FALSE;
1095 
1096 	ASSERT(txg > spa_last_synced_txg(spa));
1097 
1098 	spa->spa_pending_vdev = NULL;
1099 
1100 	/*
1101 	 * Reassess the DTLs.
1102 	 */
1103 	vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE);
1104 
1105 	if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
1106 		config_changed = B_TRUE;
1107 		spa->spa_config_generation++;
1108 	}
1109 
1110 	/*
1111 	 * Verify the metaslab classes.
1112 	 */
1113 	ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0);
1114 	ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0);
1115 
1116 	spa_config_exit(spa, SCL_ALL, spa);
1117 
1118 	/*
1119 	 * Panic the system if the specified tag requires it.  This
1120 	 * is useful for ensuring that configurations are updated
1121 	 * transactionally.
1122 	 */
1123 	if (zio_injection_enabled)
1124 		zio_handle_panic_injection(spa, tag, 0);
1125 
1126 	/*
1127 	 * Note: this txg_wait_synced() is important because it ensures
1128 	 * that there won't be more than one config change per txg.
1129 	 * This allows us to use the txg as the generation number.
1130 	 */
1131 	if (error == 0)
1132 		txg_wait_synced(spa->spa_dsl_pool, txg);
1133 
1134 	if (vd != NULL) {
1135 		ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL);
1136 		spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1137 		vdev_free(vd);
1138 		spa_config_exit(spa, SCL_ALL, spa);
1139 	}
1140 
1141 	/*
1142 	 * If the config changed, update the config cache.
1143 	 */
1144 	if (config_changed)
1145 		spa_config_sync(spa, B_FALSE, B_TRUE);
1146 }
1147 
1148 /*
1149  * Unlock the spa_t after adding or removing a vdev.  Besides undoing the
1150  * locking of spa_vdev_enter(), we also want make sure the transactions have
1151  * synced to disk, and then update the global configuration cache with the new
1152  * information.
1153  */
1154 int
1155 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
1156 {
1157 	spa_vdev_config_exit(spa, vd, txg, error, FTAG);
1158 	mutex_exit(&spa_namespace_lock);
1159 	mutex_exit(&spa->spa_vdev_top_lock);
1160 
1161 	return (error);
1162 }
1163 
1164 /*
1165  * Lock the given spa_t for the purpose of changing vdev state.
1166  */
1167 void
1168 spa_vdev_state_enter(spa_t *spa, int oplocks)
1169 {
1170 	int locks = SCL_STATE_ALL | oplocks;
1171 
1172 	/*
1173 	 * Root pools may need to read of the underlying devfs filesystem
1174 	 * when opening up a vdev.  Unfortunately if we're holding the
1175 	 * SCL_ZIO lock it will result in a deadlock when we try to issue
1176 	 * the read from the root filesystem.  Instead we "prefetch"
1177 	 * the associated vnodes that we need prior to opening the
1178 	 * underlying devices and cache them so that we can prevent
1179 	 * any I/O when we are doing the actual open.
1180 	 */
1181 	if (spa_is_root(spa)) {
1182 		int low = locks & ~(SCL_ZIO - 1);
1183 		int high = locks & ~low;
1184 
1185 		spa_config_enter(spa, high, spa, RW_WRITER);
1186 		vdev_hold(spa->spa_root_vdev);
1187 		spa_config_enter(spa, low, spa, RW_WRITER);
1188 	} else {
1189 		spa_config_enter(spa, locks, spa, RW_WRITER);
1190 	}
1191 	spa->spa_vdev_locks = locks;
1192 }
1193 
1194 int
1195 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
1196 {
1197 	boolean_t config_changed = B_FALSE;
1198 
1199 	if (vd != NULL || error == 0)
1200 		vdev_dtl_reassess(vd ? vd->vdev_top : spa->spa_root_vdev,
1201 		    0, 0, B_FALSE);
1202 
1203 	if (vd != NULL) {
1204 		vdev_state_dirty(vd->vdev_top);
1205 		config_changed = B_TRUE;
1206 		spa->spa_config_generation++;
1207 	}
1208 
1209 	if (spa_is_root(spa))
1210 		vdev_rele(spa->spa_root_vdev);
1211 
1212 	ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
1213 	spa_config_exit(spa, spa->spa_vdev_locks, spa);
1214 
1215 	/*
1216 	 * If anything changed, wait for it to sync.  This ensures that,
1217 	 * from the system administrator's perspective, zpool(1M) commands
1218 	 * are synchronous.  This is important for things like zpool offline:
1219 	 * when the command completes, you expect no further I/O from ZFS.
1220 	 */
1221 	if (vd != NULL)
1222 		txg_wait_synced(spa->spa_dsl_pool, 0);
1223 
1224 	/*
1225 	 * If the config changed, update the config cache.
1226 	 */
1227 	if (config_changed) {
1228 		mutex_enter(&spa_namespace_lock);
1229 		spa_config_sync(spa, B_FALSE, B_TRUE);
1230 		mutex_exit(&spa_namespace_lock);
1231 	}
1232 
1233 	return (error);
1234 }
1235 
1236 /*
1237  * ==========================================================================
1238  * Miscellaneous functions
1239  * ==========================================================================
1240  */
1241 
1242 void
1243 spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx)
1244 {
1245 	if (!nvlist_exists(spa->spa_label_features, feature)) {
1246 		fnvlist_add_boolean(spa->spa_label_features, feature);
1247 		/*
1248 		 * When we are creating the pool (tx_txg==TXG_INITIAL), we can't
1249 		 * dirty the vdev config because lock SCL_CONFIG is not held.
1250 		 * Thankfully, in this case we don't need to dirty the config
1251 		 * because it will be written out anyway when we finish
1252 		 * creating the pool.
1253 		 */
1254 		if (tx->tx_txg != TXG_INITIAL)
1255 			vdev_config_dirty(spa->spa_root_vdev);
1256 	}
1257 }
1258 
1259 void
1260 spa_deactivate_mos_feature(spa_t *spa, const char *feature)
1261 {
1262 	if (nvlist_remove_all(spa->spa_label_features, feature) == 0)
1263 		vdev_config_dirty(spa->spa_root_vdev);
1264 }
1265 
1266 /*
1267  * Rename a spa_t.
1268  */
1269 int
1270 spa_rename(const char *name, const char *newname)
1271 {
1272 	spa_t *spa;
1273 	int err;
1274 
1275 	/*
1276 	 * Lookup the spa_t and grab the config lock for writing.  We need to
1277 	 * actually open the pool so that we can sync out the necessary labels.
1278 	 * It's OK to call spa_open() with the namespace lock held because we
1279 	 * allow recursive calls for other reasons.
1280 	 */
1281 	mutex_enter(&spa_namespace_lock);
1282 	if ((err = spa_open(name, &spa, FTAG)) != 0) {
1283 		mutex_exit(&spa_namespace_lock);
1284 		return (err);
1285 	}
1286 
1287 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1288 
1289 	avl_remove(&spa_namespace_avl, spa);
1290 	(void) strlcpy(spa->spa_name, newname, sizeof (spa->spa_name));
1291 	avl_add(&spa_namespace_avl, spa);
1292 
1293 	/*
1294 	 * Sync all labels to disk with the new names by marking the root vdev
1295 	 * dirty and waiting for it to sync.  It will pick up the new pool name
1296 	 * during the sync.
1297 	 */
1298 	vdev_config_dirty(spa->spa_root_vdev);
1299 
1300 	spa_config_exit(spa, SCL_ALL, FTAG);
1301 
1302 	txg_wait_synced(spa->spa_dsl_pool, 0);
1303 
1304 	/*
1305 	 * Sync the updated config cache.
1306 	 */
1307 	spa_config_sync(spa, B_FALSE, B_TRUE);
1308 
1309 	spa_close(spa, FTAG);
1310 
1311 	mutex_exit(&spa_namespace_lock);
1312 
1313 	return (0);
1314 }
1315 
1316 /*
1317  * Return the spa_t associated with given pool_guid, if it exists.  If
1318  * device_guid is non-zero, determine whether the pool exists *and* contains
1319  * a device with the specified device_guid.
1320  */
1321 spa_t *
1322 spa_by_guid(uint64_t pool_guid, uint64_t device_guid)
1323 {
1324 	spa_t *spa;
1325 	avl_tree_t *t = &spa_namespace_avl;
1326 
1327 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1328 
1329 	for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1330 		if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1331 			continue;
1332 		if (spa->spa_root_vdev == NULL)
1333 			continue;
1334 		if (spa_guid(spa) == pool_guid) {
1335 			if (device_guid == 0)
1336 				break;
1337 
1338 			if (vdev_lookup_by_guid(spa->spa_root_vdev,
1339 			    device_guid) != NULL)
1340 				break;
1341 
1342 			/*
1343 			 * Check any devices we may be in the process of adding.
1344 			 */
1345 			if (spa->spa_pending_vdev) {
1346 				if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1347 				    device_guid) != NULL)
1348 					break;
1349 			}
1350 		}
1351 	}
1352 
1353 	return (spa);
1354 }
1355 
1356 /*
1357  * Determine whether a pool with the given pool_guid exists.
1358  */
1359 boolean_t
1360 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
1361 {
1362 	return (spa_by_guid(pool_guid, device_guid) != NULL);
1363 }
1364 
1365 char *
1366 spa_strdup(const char *s)
1367 {
1368 	size_t len;
1369 	char *new;
1370 
1371 	len = strlen(s);
1372 	new = kmem_alloc(len + 1, KM_SLEEP);
1373 	bcopy(s, new, len);
1374 	new[len] = '\0';
1375 
1376 	return (new);
1377 }
1378 
1379 void
1380 spa_strfree(char *s)
1381 {
1382 	kmem_free(s, strlen(s) + 1);
1383 }
1384 
1385 uint64_t
1386 spa_get_random(uint64_t range)
1387 {
1388 	uint64_t r;
1389 
1390 	ASSERT(range != 0);
1391 
1392 	(void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));
1393 
1394 	return (r % range);
1395 }
1396 
1397 uint64_t
1398 spa_generate_guid(spa_t *spa)
1399 {
1400 	uint64_t guid = spa_get_random(-1ULL);
1401 
1402 	if (spa != NULL) {
1403 		while (guid == 0 || spa_guid_exists(spa_guid(spa), guid))
1404 			guid = spa_get_random(-1ULL);
1405 	} else {
1406 		while (guid == 0 || spa_guid_exists(guid, 0))
1407 			guid = spa_get_random(-1ULL);
1408 	}
1409 
1410 	return (guid);
1411 }
1412 
1413 void
1414 snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp)
1415 {
1416 	char type[256];
1417 	char *checksum = NULL;
1418 	char *compress = NULL;
1419 
1420 	if (bp != NULL) {
1421 		if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) {
1422 			dmu_object_byteswap_t bswap =
1423 			    DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
1424 			(void) snprintf(type, sizeof (type), "bswap %s %s",
1425 			    DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ?
1426 			    "metadata" : "data",
1427 			    dmu_ot_byteswap[bswap].ob_name);
1428 		} else {
1429 			(void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name,
1430 			    sizeof (type));
1431 		}
1432 		if (!BP_IS_EMBEDDED(bp)) {
1433 			checksum =
1434 			    zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name;
1435 		}
1436 		compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name;
1437 	}
1438 
1439 	SNPRINTF_BLKPTR(snprintf, ' ', buf, buflen, bp, type, checksum,
1440 	    compress);
1441 }
1442 
1443 void
1444 spa_freeze(spa_t *spa)
1445 {
1446 	uint64_t freeze_txg = 0;
1447 
1448 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1449 	if (spa->spa_freeze_txg == UINT64_MAX) {
1450 		freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1451 		spa->spa_freeze_txg = freeze_txg;
1452 	}
1453 	spa_config_exit(spa, SCL_ALL, FTAG);
1454 	if (freeze_txg != 0)
1455 		txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1456 }
1457 
1458 void
1459 zfs_panic_recover(const char *fmt, ...)
1460 {
1461 	va_list adx;
1462 
1463 	va_start(adx, fmt);
1464 	vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
1465 	va_end(adx);
1466 }
1467 
1468 /*
1469  * This is a stripped-down version of strtoull, suitable only for converting
1470  * lowercase hexadecimal numbers that don't overflow.
1471  */
1472 uint64_t
1473 strtonum(const char *str, char **nptr)
1474 {
1475 	uint64_t val = 0;
1476 	char c;
1477 	int digit;
1478 
1479 	while ((c = *str) != '\0') {
1480 		if (c >= '0' && c <= '9')
1481 			digit = c - '0';
1482 		else if (c >= 'a' && c <= 'f')
1483 			digit = 10 + c - 'a';
1484 		else
1485 			break;
1486 
1487 		val *= 16;
1488 		val += digit;
1489 
1490 		str++;
1491 	}
1492 
1493 	if (nptr)
1494 		*nptr = (char *)str;
1495 
1496 	return (val);
1497 }
1498 
1499 /*
1500  * ==========================================================================
1501  * Accessor functions
1502  * ==========================================================================
1503  */
1504 
1505 boolean_t
1506 spa_shutting_down(spa_t *spa)
1507 {
1508 	return (spa->spa_async_suspended);
1509 }
1510 
1511 dsl_pool_t *
1512 spa_get_dsl(spa_t *spa)
1513 {
1514 	return (spa->spa_dsl_pool);
1515 }
1516 
1517 boolean_t
1518 spa_is_initializing(spa_t *spa)
1519 {
1520 	return (spa->spa_is_initializing);
1521 }
1522 
1523 blkptr_t *
1524 spa_get_rootblkptr(spa_t *spa)
1525 {
1526 	return (&spa->spa_ubsync.ub_rootbp);
1527 }
1528 
1529 void
1530 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1531 {
1532 	spa->spa_uberblock.ub_rootbp = *bp;
1533 }
1534 
1535 void
1536 spa_altroot(spa_t *spa, char *buf, size_t buflen)
1537 {
1538 	if (spa->spa_root == NULL)
1539 		buf[0] = '\0';
1540 	else
1541 		(void) strncpy(buf, spa->spa_root, buflen);
1542 }
1543 
1544 int
1545 spa_sync_pass(spa_t *spa)
1546 {
1547 	return (spa->spa_sync_pass);
1548 }
1549 
1550 char *
1551 spa_name(spa_t *spa)
1552 {
1553 	return (spa->spa_name);
1554 }
1555 
1556 uint64_t
1557 spa_guid(spa_t *spa)
1558 {
1559 	dsl_pool_t *dp = spa_get_dsl(spa);
1560 	uint64_t guid;
1561 
1562 	/*
1563 	 * If we fail to parse the config during spa_load(), we can go through
1564 	 * the error path (which posts an ereport) and end up here with no root
1565 	 * vdev.  We stash the original pool guid in 'spa_config_guid' to handle
1566 	 * this case.
1567 	 */
1568 	if (spa->spa_root_vdev == NULL)
1569 		return (spa->spa_config_guid);
1570 
1571 	guid = spa->spa_last_synced_guid != 0 ?
1572 	    spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid;
1573 
1574 	/*
1575 	 * Return the most recently synced out guid unless we're
1576 	 * in syncing context.
1577 	 */
1578 	if (dp && dsl_pool_sync_context(dp))
1579 		return (spa->spa_root_vdev->vdev_guid);
1580 	else
1581 		return (guid);
1582 }
1583 
1584 uint64_t
1585 spa_load_guid(spa_t *spa)
1586 {
1587 	/*
1588 	 * This is a GUID that exists solely as a reference for the
1589 	 * purposes of the arc.  It is generated at load time, and
1590 	 * is never written to persistent storage.
1591 	 */
1592 	return (spa->spa_load_guid);
1593 }
1594 
1595 uint64_t
1596 spa_last_synced_txg(spa_t *spa)
1597 {
1598 	return (spa->spa_ubsync.ub_txg);
1599 }
1600 
1601 uint64_t
1602 spa_first_txg(spa_t *spa)
1603 {
1604 	return (spa->spa_first_txg);
1605 }
1606 
1607 uint64_t
1608 spa_syncing_txg(spa_t *spa)
1609 {
1610 	return (spa->spa_syncing_txg);
1611 }
1612 
1613 pool_state_t
1614 spa_state(spa_t *spa)
1615 {
1616 	return (spa->spa_state);
1617 }
1618 
1619 spa_load_state_t
1620 spa_load_state(spa_t *spa)
1621 {
1622 	return (spa->spa_load_state);
1623 }
1624 
1625 uint64_t
1626 spa_freeze_txg(spa_t *spa)
1627 {
1628 	return (spa->spa_freeze_txg);
1629 }
1630 
1631 /* ARGSUSED */
1632 uint64_t
1633 spa_get_asize(spa_t *spa, uint64_t lsize)
1634 {
1635 	return (lsize * spa_asize_inflation);
1636 }
1637 
1638 /*
1639  * Return the amount of slop space in bytes.  It is 1/32 of the pool (3.2%),
1640  * or at least 32MB.
1641  *
1642  * See the comment above spa_slop_shift for details.
1643  */
1644 uint64_t
1645 spa_get_slop_space(spa_t *spa) {
1646 	uint64_t space = spa_get_dspace(spa);
1647 	return (MAX(space >> spa_slop_shift, SPA_MINDEVSIZE >> 1));
1648 }
1649 
1650 uint64_t
1651 spa_get_dspace(spa_t *spa)
1652 {
1653 	return (spa->spa_dspace);
1654 }
1655 
1656 void
1657 spa_update_dspace(spa_t *spa)
1658 {
1659 	spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) +
1660 	    ddt_get_dedup_dspace(spa);
1661 }
1662 
1663 /*
1664  * Return the failure mode that has been set to this pool. The default
1665  * behavior will be to block all I/Os when a complete failure occurs.
1666  */
1667 uint8_t
1668 spa_get_failmode(spa_t *spa)
1669 {
1670 	return (spa->spa_failmode);
1671 }
1672 
1673 boolean_t
1674 spa_suspended(spa_t *spa)
1675 {
1676 	return (spa->spa_suspended);
1677 }
1678 
1679 uint64_t
1680 spa_version(spa_t *spa)
1681 {
1682 	return (spa->spa_ubsync.ub_version);
1683 }
1684 
1685 boolean_t
1686 spa_deflate(spa_t *spa)
1687 {
1688 	return (spa->spa_deflate);
1689 }
1690 
1691 metaslab_class_t *
1692 spa_normal_class(spa_t *spa)
1693 {
1694 	return (spa->spa_normal_class);
1695 }
1696 
1697 metaslab_class_t *
1698 spa_log_class(spa_t *spa)
1699 {
1700 	return (spa->spa_log_class);
1701 }
1702 
1703 void
1704 spa_evicting_os_register(spa_t *spa, objset_t *os)
1705 {
1706 	mutex_enter(&spa->spa_evicting_os_lock);
1707 	list_insert_head(&spa->spa_evicting_os_list, os);
1708 	mutex_exit(&spa->spa_evicting_os_lock);
1709 }
1710 
1711 void
1712 spa_evicting_os_deregister(spa_t *spa, objset_t *os)
1713 {
1714 	mutex_enter(&spa->spa_evicting_os_lock);
1715 	list_remove(&spa->spa_evicting_os_list, os);
1716 	cv_broadcast(&spa->spa_evicting_os_cv);
1717 	mutex_exit(&spa->spa_evicting_os_lock);
1718 }
1719 
1720 void
1721 spa_evicting_os_wait(spa_t *spa)
1722 {
1723 	mutex_enter(&spa->spa_evicting_os_lock);
1724 	while (!list_is_empty(&spa->spa_evicting_os_list))
1725 		cv_wait(&spa->spa_evicting_os_cv, &spa->spa_evicting_os_lock);
1726 	mutex_exit(&spa->spa_evicting_os_lock);
1727 
1728 	dmu_buf_user_evict_wait();
1729 }
1730 
1731 int
1732 spa_max_replication(spa_t *spa)
1733 {
1734 	/*
1735 	 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
1736 	 * handle BPs with more than one DVA allocated.  Set our max
1737 	 * replication level accordingly.
1738 	 */
1739 	if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
1740 		return (1);
1741 	return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
1742 }
1743 
1744 int
1745 spa_prev_software_version(spa_t *spa)
1746 {
1747 	return (spa->spa_prev_software_version);
1748 }
1749 
1750 uint64_t
1751 spa_deadman_synctime(spa_t *spa)
1752 {
1753 	return (spa->spa_deadman_synctime);
1754 }
1755 
1756 uint64_t
1757 dva_get_dsize_sync(spa_t *spa, const dva_t *dva)
1758 {
1759 	uint64_t asize = DVA_GET_ASIZE(dva);
1760 	uint64_t dsize = asize;
1761 
1762 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1763 
1764 	if (asize != 0 && spa->spa_deflate) {
1765 		vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
1766 		dsize = (asize >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio;
1767 	}
1768 
1769 	return (dsize);
1770 }
1771 
1772 uint64_t
1773 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp)
1774 {
1775 	uint64_t dsize = 0;
1776 
1777 	for (int d = 0; d < BP_GET_NDVAS(bp); d++)
1778 		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1779 
1780 	return (dsize);
1781 }
1782 
1783 uint64_t
1784 bp_get_dsize(spa_t *spa, const blkptr_t *bp)
1785 {
1786 	uint64_t dsize = 0;
1787 
1788 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1789 
1790 	for (int d = 0; d < BP_GET_NDVAS(bp); d++)
1791 		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1792 
1793 	spa_config_exit(spa, SCL_VDEV, FTAG);
1794 
1795 	return (dsize);
1796 }
1797 
1798 /*
1799  * ==========================================================================
1800  * Initialization and Termination
1801  * ==========================================================================
1802  */
1803 
1804 static int
1805 spa_name_compare(const void *a1, const void *a2)
1806 {
1807 	const spa_t *s1 = a1;
1808 	const spa_t *s2 = a2;
1809 	int s;
1810 
1811 	s = strcmp(s1->spa_name, s2->spa_name);
1812 	if (s > 0)
1813 		return (1);
1814 	if (s < 0)
1815 		return (-1);
1816 	return (0);
1817 }
1818 
1819 int
1820 spa_busy(void)
1821 {
1822 	return (spa_active_count);
1823 }
1824 
1825 void
1826 spa_boot_init()
1827 {
1828 	spa_config_load();
1829 }
1830 
1831 void
1832 spa_init(int mode)
1833 {
1834 	mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
1835 	mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
1836 	mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
1837 	cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
1838 
1839 	avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
1840 	    offsetof(spa_t, spa_avl));
1841 
1842 	avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
1843 	    offsetof(spa_aux_t, aux_avl));
1844 
1845 	avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
1846 	    offsetof(spa_aux_t, aux_avl));
1847 
1848 	spa_mode_global = mode;
1849 
1850 #ifdef _KERNEL
1851 	spa_arch_init();
1852 #else
1853 	if (spa_mode_global != FREAD && dprintf_find_string("watch")) {
1854 		arc_procfd = open("/proc/self/ctl", O_WRONLY);
1855 		if (arc_procfd == -1) {
1856 			perror("could not enable watchpoints: "
1857 			    "opening /proc/self/ctl failed: ");
1858 		} else {
1859 			arc_watch = B_TRUE;
1860 		}
1861 	}
1862 #endif
1863 
1864 	refcount_init();
1865 	unique_init();
1866 	range_tree_init();
1867 	zio_init();
1868 	dmu_init();
1869 	zil_init();
1870 	vdev_cache_stat_init();
1871 	zfs_prop_init();
1872 	zpool_prop_init();
1873 	zpool_feature_init();
1874 	spa_config_load();
1875 	l2arc_start();
1876 }
1877 
1878 void
1879 spa_fini(void)
1880 {
1881 	l2arc_stop();
1882 
1883 	spa_evict_all();
1884 
1885 	vdev_cache_stat_fini();
1886 	zil_fini();
1887 	dmu_fini();
1888 	zio_fini();
1889 	range_tree_fini();
1890 	unique_fini();
1891 	refcount_fini();
1892 
1893 	avl_destroy(&spa_namespace_avl);
1894 	avl_destroy(&spa_spare_avl);
1895 	avl_destroy(&spa_l2cache_avl);
1896 
1897 	cv_destroy(&spa_namespace_cv);
1898 	mutex_destroy(&spa_namespace_lock);
1899 	mutex_destroy(&spa_spare_lock);
1900 	mutex_destroy(&spa_l2cache_lock);
1901 }
1902 
1903 /*
1904  * Return whether this pool has slogs. No locking needed.
1905  * It's not a problem if the wrong answer is returned as it's only for
1906  * performance and not correctness
1907  */
1908 boolean_t
1909 spa_has_slogs(spa_t *spa)
1910 {
1911 	return (spa->spa_log_class->mc_rotor != NULL);
1912 }
1913 
1914 spa_log_state_t
1915 spa_get_log_state(spa_t *spa)
1916 {
1917 	return (spa->spa_log_state);
1918 }
1919 
1920 void
1921 spa_set_log_state(spa_t *spa, spa_log_state_t state)
1922 {
1923 	spa->spa_log_state = state;
1924 }
1925 
1926 boolean_t
1927 spa_is_root(spa_t *spa)
1928 {
1929 	return (spa->spa_is_root);
1930 }
1931 
1932 boolean_t
1933 spa_writeable(spa_t *spa)
1934 {
1935 	return (!!(spa->spa_mode & FWRITE));
1936 }
1937 
1938 /*
1939  * Returns true if there is a pending sync task in any of the current
1940  * syncing txg, the current quiescing txg, or the current open txg.
1941  */
1942 boolean_t
1943 spa_has_pending_synctask(spa_t *spa)
1944 {
1945 	return (!txg_all_lists_empty(&spa->spa_dsl_pool->dp_sync_tasks));
1946 }
1947 
1948 int
1949 spa_mode(spa_t *spa)
1950 {
1951 	return (spa->spa_mode);
1952 }
1953 
1954 uint64_t
1955 spa_bootfs(spa_t *spa)
1956 {
1957 	return (spa->spa_bootfs);
1958 }
1959 
1960 uint64_t
1961 spa_delegation(spa_t *spa)
1962 {
1963 	return (spa->spa_delegation);
1964 }
1965 
1966 objset_t *
1967 spa_meta_objset(spa_t *spa)
1968 {
1969 	return (spa->spa_meta_objset);
1970 }
1971 
1972 enum zio_checksum
1973 spa_dedup_checksum(spa_t *spa)
1974 {
1975 	return (spa->spa_dedup_checksum);
1976 }
1977 
1978 /*
1979  * Reset pool scan stat per scan pass (or reboot).
1980  */
1981 void
1982 spa_scan_stat_init(spa_t *spa)
1983 {
1984 	/* data not stored on disk */
1985 	spa->spa_scan_pass_start = gethrestime_sec();
1986 	spa->spa_scan_pass_exam = 0;
1987 	vdev_scan_stat_init(spa->spa_root_vdev);
1988 }
1989 
1990 /*
1991  * Get scan stats for zpool status reports
1992  */
1993 int
1994 spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps)
1995 {
1996 	dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL;
1997 
1998 	if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE)
1999 		return (SET_ERROR(ENOENT));
2000 	bzero(ps, sizeof (pool_scan_stat_t));
2001 
2002 	/* data stored on disk */
2003 	ps->pss_func = scn->scn_phys.scn_func;
2004 	ps->pss_start_time = scn->scn_phys.scn_start_time;
2005 	ps->pss_end_time = scn->scn_phys.scn_end_time;
2006 	ps->pss_to_examine = scn->scn_phys.scn_to_examine;
2007 	ps->pss_examined = scn->scn_phys.scn_examined;
2008 	ps->pss_to_process = scn->scn_phys.scn_to_process;
2009 	ps->pss_processed = scn->scn_phys.scn_processed;
2010 	ps->pss_errors = scn->scn_phys.scn_errors;
2011 	ps->pss_state = scn->scn_phys.scn_state;
2012 
2013 	/* data not stored on disk */
2014 	ps->pss_pass_start = spa->spa_scan_pass_start;
2015 	ps->pss_pass_exam = spa->spa_scan_pass_exam;
2016 
2017 	return (0);
2018 }
2019 
2020 boolean_t
2021 spa_debug_enabled(spa_t *spa)
2022 {
2023 	return (spa->spa_debug);
2024 }
2025 
2026 int
2027 spa_maxblocksize(spa_t *spa)
2028 {
2029 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS))
2030 		return (SPA_MAXBLOCKSIZE);
2031 	else
2032 		return (SPA_OLD_MAXBLOCKSIZE);
2033 }
2034