xref: /titanic_51/usr/src/uts/common/fs/zfs/spa_misc.c (revision 02bc52be7430b2f7fafe1a2c981bff49ef11d6fa)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include <sys/zfs_context.h>
29 #include <sys/spa_impl.h>
30 #include <sys/zio.h>
31 #include <sys/zio_checksum.h>
32 #include <sys/zio_compress.h>
33 #include <sys/dmu.h>
34 #include <sys/dmu_tx.h>
35 #include <sys/zap.h>
36 #include <sys/zil.h>
37 #include <sys/vdev_impl.h>
38 #include <sys/metaslab.h>
39 #include <sys/uberblock_impl.h>
40 #include <sys/txg.h>
41 #include <sys/avl.h>
42 #include <sys/unique.h>
43 #include <sys/dsl_pool.h>
44 #include <sys/dsl_dir.h>
45 #include <sys/dsl_prop.h>
46 #include <sys/fs/zfs.h>
47 #include <sys/metaslab_impl.h>
48 #include "zfs_prop.h"
49 
50 /*
51  * SPA locking
52  *
53  * There are four basic locks for managing spa_t structures:
54  *
55  * spa_namespace_lock (global mutex)
56  *
57  *	This lock must be acquired to do any of the following:
58  *
59  *		- Lookup a spa_t by name
60  *		- Add or remove a spa_t from the namespace
61  *		- Increase spa_refcount from non-zero
62  *		- Check if spa_refcount is zero
63  *		- Rename a spa_t
64  *		- add/remove/attach/detach devices
65  *		- Held for the duration of create/destroy/import/export
66  *
67  *	It does not need to handle recursion.  A create or destroy may
68  *	reference objects (files or zvols) in other pools, but by
69  *	definition they must have an existing reference, and will never need
70  *	to lookup a spa_t by name.
71  *
72  * spa_refcount (per-spa refcount_t protected by mutex)
73  *
74  *	This reference count keep track of any active users of the spa_t.  The
75  *	spa_t cannot be destroyed or freed while this is non-zero.  Internally,
76  *	the refcount is never really 'zero' - opening a pool implicitly keeps
77  *	some references in the DMU.  Internally we check against SPA_MINREF, but
78  *	present the image of a zero/non-zero value to consumers.
79  *
80  * spa_config_lock (per-spa read-priority rwlock)
81  *
82  *	This protects the spa_t from config changes, and must be held in
83  *	the following circumstances:
84  *
85  *		- RW_READER to perform I/O to the spa
86  *		- RW_WRITER to change the vdev config
87  *
88  * spa_config_cache_lock (per-spa mutex)
89  *
90  *	This mutex prevents the spa_config nvlist from being updated.  No
91  *      other locks are required to obtain this lock, although implicitly you
92  *      must have the namespace lock or non-zero refcount to have any kind
93  *      of spa_t pointer at all.
94  *
95  * The locking order is fairly straightforward:
96  *
97  *		spa_namespace_lock	->	spa_refcount
98  *
99  *	The namespace lock must be acquired to increase the refcount from 0
100  *	or to check if it is zero.
101  *
102  *		spa_refcount		->	spa_config_lock
103  *
104  *	There must be at least one valid reference on the spa_t to acquire
105  *	the config lock.
106  *
107  *		spa_namespace_lock	->	spa_config_lock
108  *
109  *	The namespace lock must always be taken before the config lock.
110  *
111  *
112  * The spa_namespace_lock and spa_config_cache_lock can be acquired directly and
113  * are globally visible.
114  *
115  * The namespace is manipulated using the following functions, all which require
116  * the spa_namespace_lock to be held.
117  *
118  *	spa_lookup()		Lookup a spa_t by name.
119  *
120  *	spa_add()		Create a new spa_t in the namespace.
121  *
122  *	spa_remove()		Remove a spa_t from the namespace.  This also
123  *				frees up any memory associated with the spa_t.
124  *
125  *	spa_next()		Returns the next spa_t in the system, or the
126  *				first if NULL is passed.
127  *
128  *	spa_evict_all()		Shutdown and remove all spa_t structures in
129  *				the system.
130  *
131  *	spa_guid_exists()	Determine whether a pool/device guid exists.
132  *
133  * The spa_refcount is manipulated using the following functions:
134  *
135  *	spa_open_ref()		Adds a reference to the given spa_t.  Must be
136  *				called with spa_namespace_lock held if the
137  *				refcount is currently zero.
138  *
139  *	spa_close()		Remove a reference from the spa_t.  This will
140  *				not free the spa_t or remove it from the
141  *				namespace.  No locking is required.
142  *
143  *	spa_refcount_zero()	Returns true if the refcount is currently
144  *				zero.  Must be called with spa_namespace_lock
145  *				held.
146  *
147  * The spa_config_lock is manipulated using the following functions:
148  *
149  *	spa_config_enter()	Acquire the config lock as RW_READER or
150  *				RW_WRITER.  At least one reference on the spa_t
151  *				must exist.
152  *
153  *	spa_config_exit()	Release the config lock.
154  *
155  *	spa_config_held()	Returns true if the config lock is currently
156  *				held in the given state.
157  *
158  * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
159  *
160  *	spa_vdev_enter()	Acquire the namespace lock and the config lock
161  *				for writing.
162  *
163  *	spa_vdev_exit()		Release the config lock, wait for all I/O
164  *				to complete, sync the updated configs to the
165  *				cache, and release the namespace lock.
166  *
167  * The spa_name() function also requires either the spa_namespace_lock
168  * or the spa_config_lock, as both are needed to do a rename.  spa_rename() is
169  * also implemented within this file since is requires manipulation of the
170  * namespace.
171  */
172 
173 static avl_tree_t spa_namespace_avl;
174 kmutex_t spa_namespace_lock;
175 static kcondvar_t spa_namespace_cv;
176 static int spa_active_count;
177 int spa_max_replication_override = SPA_DVAS_PER_BP;
178 
179 static kmutex_t spa_spare_lock;
180 static avl_tree_t spa_spare_avl;
181 
182 kmem_cache_t *spa_buffer_pool;
183 int spa_mode;
184 
185 #ifdef ZFS_DEBUG
186 /* Everything except dprintf is on by default in debug builds */
187 int zfs_flags = ~ZFS_DEBUG_DPRINTF;
188 #else
189 int zfs_flags = 0;
190 #endif
191 
192 /*
193  * zfs_recover can be set to nonzero to attempt to recover from
194  * otherwise-fatal errors, typically caused by on-disk corruption.  When
195  * set, calls to zfs_panic_recover() will turn into warning messages.
196  */
197 int zfs_recover = 0;
198 
199 #define	SPA_MINREF	5	/* spa_refcnt for an open-but-idle pool */
200 
201 /*
202  * ==========================================================================
203  * SPA namespace functions
204  * ==========================================================================
205  */
206 
207 /*
208  * Lookup the named spa_t in the AVL tree.  The spa_namespace_lock must be held.
209  * Returns NULL if no matching spa_t is found.
210  */
211 spa_t *
212 spa_lookup(const char *name)
213 {
214 	spa_t search, *spa;
215 	avl_index_t where;
216 	char c;
217 	char *cp;
218 
219 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
220 
221 	/*
222 	 * If it's a full dataset name, figure out the pool name and
223 	 * just use that.
224 	 */
225 	cp = strpbrk(name, "/@");
226 	if (cp) {
227 		c = *cp;
228 		*cp = '\0';
229 	}
230 
231 	search.spa_name = (char *)name;
232 	spa = avl_find(&spa_namespace_avl, &search, &where);
233 
234 	if (cp)
235 		*cp = c;
236 
237 	return (spa);
238 }
239 
240 /*
241  * Create an uninitialized spa_t with the given name.  Requires
242  * spa_namespace_lock.  The caller must ensure that the spa_t doesn't already
243  * exist by calling spa_lookup() first.
244  */
245 spa_t *
246 spa_add(const char *name, const char *altroot)
247 {
248 	spa_t *spa;
249 
250 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
251 
252 	spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
253 
254 	rw_init(&spa->spa_traverse_lock, NULL, RW_DEFAULT, NULL);
255 
256 	mutex_init(&spa->spa_uberblock_lock, NULL, MUTEX_DEFAULT, NULL);
257 	mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
258 	mutex_init(&spa->spa_config_cache_lock, NULL, MUTEX_DEFAULT, NULL);
259 	mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
260 	mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
261 	mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
262 	mutex_init(&spa->spa_sync_bplist.bpl_lock, NULL, MUTEX_DEFAULT, NULL);
263 	mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
264 	mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
265 
266 	cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
267 	cv_init(&spa->spa_scrub_cv, NULL, CV_DEFAULT, NULL);
268 	cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
269 
270 	spa->spa_name = spa_strdup(name);
271 	spa->spa_state = POOL_STATE_UNINITIALIZED;
272 	spa->spa_freeze_txg = UINT64_MAX;
273 	spa->spa_final_txg = UINT64_MAX;
274 
275 	refcount_create(&spa->spa_refcount);
276 	rprw_init(&spa->spa_config_lock);
277 
278 	avl_add(&spa_namespace_avl, spa);
279 
280 	mutex_init(&spa->spa_zio_lock, NULL, MUTEX_DEFAULT, NULL);
281 
282 	/*
283 	 * Set the alternate root, if there is one.
284 	 */
285 	if (altroot) {
286 		spa->spa_root = spa_strdup(altroot);
287 		spa_active_count++;
288 	}
289 
290 	return (spa);
291 }
292 
293 /*
294  * Removes a spa_t from the namespace, freeing up any memory used.  Requires
295  * spa_namespace_lock.  This is called only after the spa_t has been closed and
296  * deactivated.
297  */
298 void
299 spa_remove(spa_t *spa)
300 {
301 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
302 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
303 	ASSERT(spa->spa_scrub_thread == NULL);
304 
305 	avl_remove(&spa_namespace_avl, spa);
306 	cv_broadcast(&spa_namespace_cv);
307 
308 	if (spa->spa_root) {
309 		spa_strfree(spa->spa_root);
310 		spa_active_count--;
311 	}
312 
313 	if (spa->spa_name)
314 		spa_strfree(spa->spa_name);
315 
316 	spa_config_set(spa, NULL);
317 
318 	refcount_destroy(&spa->spa_refcount);
319 
320 	rprw_destroy(&spa->spa_config_lock);
321 
322 	rw_destroy(&spa->spa_traverse_lock);
323 
324 	cv_destroy(&spa->spa_async_cv);
325 	cv_destroy(&spa->spa_scrub_cv);
326 	cv_destroy(&spa->spa_scrub_io_cv);
327 
328 	mutex_destroy(&spa->spa_uberblock_lock);
329 	mutex_destroy(&spa->spa_async_lock);
330 	mutex_destroy(&spa->spa_config_cache_lock);
331 	mutex_destroy(&spa->spa_scrub_lock);
332 	mutex_destroy(&spa->spa_errlog_lock);
333 	mutex_destroy(&spa->spa_errlist_lock);
334 	mutex_destroy(&spa->spa_sync_bplist.bpl_lock);
335 	mutex_destroy(&spa->spa_history_lock);
336 	mutex_destroy(&spa->spa_props_lock);
337 	mutex_destroy(&spa->spa_zio_lock);
338 
339 	kmem_free(spa, sizeof (spa_t));
340 }
341 
342 /*
343  * Given a pool, return the next pool in the namespace, or NULL if there is
344  * none.  If 'prev' is NULL, return the first pool.
345  */
346 spa_t *
347 spa_next(spa_t *prev)
348 {
349 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
350 
351 	if (prev)
352 		return (AVL_NEXT(&spa_namespace_avl, prev));
353 	else
354 		return (avl_first(&spa_namespace_avl));
355 }
356 
357 /*
358  * ==========================================================================
359  * SPA refcount functions
360  * ==========================================================================
361  */
362 
363 /*
364  * Add a reference to the given spa_t.  Must have at least one reference, or
365  * have the namespace lock held.
366  */
367 void
368 spa_open_ref(spa_t *spa, void *tag)
369 {
370 	ASSERT(refcount_count(&spa->spa_refcount) > SPA_MINREF ||
371 	    MUTEX_HELD(&spa_namespace_lock));
372 
373 	(void) refcount_add(&spa->spa_refcount, tag);
374 }
375 
376 /*
377  * Remove a reference to the given spa_t.  Must have at least one reference, or
378  * have the namespace lock held.
379  */
380 void
381 spa_close(spa_t *spa, void *tag)
382 {
383 	ASSERT(refcount_count(&spa->spa_refcount) > SPA_MINREF ||
384 	    MUTEX_HELD(&spa_namespace_lock));
385 
386 	(void) refcount_remove(&spa->spa_refcount, tag);
387 }
388 
389 /*
390  * Check to see if the spa refcount is zero.  Must be called with
391  * spa_namespace_lock held.  We really compare against SPA_MINREF, which is the
392  * number of references acquired when opening a pool
393  */
394 boolean_t
395 spa_refcount_zero(spa_t *spa)
396 {
397 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
398 
399 	return (refcount_count(&spa->spa_refcount) == SPA_MINREF);
400 }
401 
402 /*
403  * ==========================================================================
404  * SPA spare tracking
405  * ==========================================================================
406  */
407 
408 /*
409  * Spares are tracked globally due to the following constraints:
410  *
411  * 	- A spare may be part of multiple pools.
412  * 	- A spare may be added to a pool even if it's actively in use within
413  *	  another pool.
414  * 	- A spare in use in any pool can only be the source of a replacement if
415  *	  the target is a spare in the same pool.
416  *
417  * We keep track of all spares on the system through the use of a reference
418  * counted AVL tree.  When a vdev is added as a spare, or used as a replacement
419  * spare, then we bump the reference count in the AVL tree.  In addition, we set
420  * the 'vdev_isspare' member to indicate that the device is a spare (active or
421  * inactive).  When a spare is made active (used to replace a device in the
422  * pool), we also keep track of which pool its been made a part of.
423  *
424  * The 'spa_spare_lock' protects the AVL tree.  These functions are normally
425  * called under the spa_namespace lock as part of vdev reconfiguration.  The
426  * separate spare lock exists for the status query path, which does not need to
427  * be completely consistent with respect to other vdev configuration changes.
428  */
429 
430 typedef struct spa_spare {
431 	uint64_t	spare_guid;
432 	uint64_t	spare_pool;
433 	avl_node_t	spare_avl;
434 	int		spare_count;
435 } spa_spare_t;
436 
437 static int
438 spa_spare_compare(const void *a, const void *b)
439 {
440 	const spa_spare_t *sa = a;
441 	const spa_spare_t *sb = b;
442 
443 	if (sa->spare_guid < sb->spare_guid)
444 		return (-1);
445 	else if (sa->spare_guid > sb->spare_guid)
446 		return (1);
447 	else
448 		return (0);
449 }
450 
451 void
452 spa_spare_add(vdev_t *vd)
453 {
454 	avl_index_t where;
455 	spa_spare_t search;
456 	spa_spare_t *spare;
457 
458 	mutex_enter(&spa_spare_lock);
459 	ASSERT(!vd->vdev_isspare);
460 
461 	search.spare_guid = vd->vdev_guid;
462 	if ((spare = avl_find(&spa_spare_avl, &search, &where)) != NULL) {
463 		spare->spare_count++;
464 	} else {
465 		spare = kmem_zalloc(sizeof (spa_spare_t), KM_SLEEP);
466 		spare->spare_guid = vd->vdev_guid;
467 		spare->spare_count = 1;
468 		avl_insert(&spa_spare_avl, spare, where);
469 	}
470 	vd->vdev_isspare = B_TRUE;
471 
472 	mutex_exit(&spa_spare_lock);
473 }
474 
475 void
476 spa_spare_remove(vdev_t *vd)
477 {
478 	spa_spare_t search;
479 	spa_spare_t *spare;
480 	avl_index_t where;
481 
482 	mutex_enter(&spa_spare_lock);
483 
484 	search.spare_guid = vd->vdev_guid;
485 	spare = avl_find(&spa_spare_avl, &search, &where);
486 
487 	ASSERT(vd->vdev_isspare);
488 	ASSERT(spare != NULL);
489 
490 	if (--spare->spare_count == 0) {
491 		avl_remove(&spa_spare_avl, spare);
492 		kmem_free(spare, sizeof (spa_spare_t));
493 	} else if (spare->spare_pool == spa_guid(vd->vdev_spa)) {
494 		spare->spare_pool = 0ULL;
495 	}
496 
497 	vd->vdev_isspare = B_FALSE;
498 	mutex_exit(&spa_spare_lock);
499 }
500 
501 boolean_t
502 spa_spare_exists(uint64_t guid, uint64_t *pool)
503 {
504 	spa_spare_t search, *found;
505 	avl_index_t where;
506 
507 	mutex_enter(&spa_spare_lock);
508 
509 	search.spare_guid = guid;
510 	found = avl_find(&spa_spare_avl, &search, &where);
511 
512 	if (pool) {
513 		if (found)
514 			*pool = found->spare_pool;
515 		else
516 			*pool = 0ULL;
517 	}
518 
519 	mutex_exit(&spa_spare_lock);
520 
521 	return (found != NULL);
522 }
523 
524 void
525 spa_spare_activate(vdev_t *vd)
526 {
527 	spa_spare_t search, *found;
528 	avl_index_t where;
529 
530 	mutex_enter(&spa_spare_lock);
531 	ASSERT(vd->vdev_isspare);
532 
533 	search.spare_guid = vd->vdev_guid;
534 	found = avl_find(&spa_spare_avl, &search, &where);
535 	ASSERT(found != NULL);
536 	ASSERT(found->spare_pool == 0ULL);
537 
538 	found->spare_pool = spa_guid(vd->vdev_spa);
539 	mutex_exit(&spa_spare_lock);
540 }
541 
542 /*
543  * ==========================================================================
544  * SPA config locking
545  * ==========================================================================
546  */
547 void
548 spa_config_enter(spa_t *spa, krw_t rw, void *tag)
549 {
550 	rprw_enter(&spa->spa_config_lock, rw, tag);
551 }
552 
553 void
554 spa_config_exit(spa_t *spa, void *tag)
555 {
556 	rprw_exit(&spa->spa_config_lock, tag);
557 }
558 
559 boolean_t
560 spa_config_held(spa_t *spa, krw_t rw)
561 {
562 	return (rprw_held(&spa->spa_config_lock, rw));
563 }
564 
565 /*
566  * ==========================================================================
567  * SPA vdev locking
568  * ==========================================================================
569  */
570 
571 /*
572  * Lock the given spa_t for the purpose of adding or removing a vdev.
573  * Grabs the global spa_namespace_lock plus the spa config lock for writing.
574  * It returns the next transaction group for the spa_t.
575  */
576 uint64_t
577 spa_vdev_enter(spa_t *spa)
578 {
579 	mutex_enter(&spa_namespace_lock);
580 
581 	/*
582 	 * Suspend scrub activity while we mess with the config.  We must do
583 	 * this after acquiring the namespace lock to avoid a 3-way deadlock
584 	 * with spa_scrub_stop() and the scrub thread.
585 	 */
586 	spa_scrub_suspend(spa);
587 
588 	spa_config_enter(spa, RW_WRITER, spa);
589 
590 	return (spa_last_synced_txg(spa) + 1);
591 }
592 
593 /*
594  * Unlock the spa_t after adding or removing a vdev.  Besides undoing the
595  * locking of spa_vdev_enter(), we also want make sure the transactions have
596  * synced to disk, and then update the global configuration cache with the new
597  * information.
598  */
599 int
600 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
601 {
602 	int config_changed = B_FALSE;
603 
604 	ASSERT(txg > spa_last_synced_txg(spa));
605 
606 	/*
607 	 * Reassess the DTLs.
608 	 */
609 	vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE);
610 
611 	/*
612 	 * If the config changed, notify the scrub thread that it must restart.
613 	 */
614 	if (error == 0 && !list_is_empty(&spa->spa_dirty_list)) {
615 		config_changed = B_TRUE;
616 		spa_scrub_restart(spa, txg);
617 	}
618 
619 	spa_config_exit(spa, spa);
620 
621 	/*
622 	 * Allow scrubbing to resume.
623 	 */
624 	spa_scrub_resume(spa);
625 
626 	/*
627 	 * Note: this txg_wait_synced() is important because it ensures
628 	 * that there won't be more than one config change per txg.
629 	 * This allows us to use the txg as the generation number.
630 	 */
631 	if (error == 0)
632 		txg_wait_synced(spa->spa_dsl_pool, txg);
633 
634 	if (vd != NULL) {
635 		ASSERT(!vd->vdev_detached || vd->vdev_dtl.smo_object == 0);
636 		vdev_free(vd);
637 	}
638 
639 	/*
640 	 * If the config changed, update the config cache.
641 	 */
642 	if (config_changed)
643 		spa_config_sync();
644 
645 	mutex_exit(&spa_namespace_lock);
646 
647 	return (error);
648 }
649 
650 /*
651  * ==========================================================================
652  * Miscellaneous functions
653  * ==========================================================================
654  */
655 
656 /*
657  * Rename a spa_t.
658  */
659 int
660 spa_rename(const char *name, const char *newname)
661 {
662 	spa_t *spa;
663 	int err;
664 
665 	/*
666 	 * Lookup the spa_t and grab the config lock for writing.  We need to
667 	 * actually open the pool so that we can sync out the necessary labels.
668 	 * It's OK to call spa_open() with the namespace lock held because we
669 	 * allow recursive calls for other reasons.
670 	 */
671 	mutex_enter(&spa_namespace_lock);
672 	if ((err = spa_open(name, &spa, FTAG)) != 0) {
673 		mutex_exit(&spa_namespace_lock);
674 		return (err);
675 	}
676 
677 	spa_config_enter(spa, RW_WRITER, FTAG);
678 
679 	avl_remove(&spa_namespace_avl, spa);
680 	spa_strfree(spa->spa_name);
681 	spa->spa_name = spa_strdup(newname);
682 	avl_add(&spa_namespace_avl, spa);
683 
684 	/*
685 	 * Sync all labels to disk with the new names by marking the root vdev
686 	 * dirty and waiting for it to sync.  It will pick up the new pool name
687 	 * during the sync.
688 	 */
689 	vdev_config_dirty(spa->spa_root_vdev);
690 
691 	spa_config_exit(spa, FTAG);
692 
693 	txg_wait_synced(spa->spa_dsl_pool, 0);
694 
695 	/*
696 	 * Sync the updated config cache.
697 	 */
698 	spa_config_sync();
699 
700 	spa_close(spa, FTAG);
701 
702 	mutex_exit(&spa_namespace_lock);
703 
704 	return (0);
705 }
706 
707 
708 /*
709  * Determine whether a pool with given pool_guid exists.  If device_guid is
710  * non-zero, determine whether the pool exists *and* contains a device with the
711  * specified device_guid.
712  */
713 boolean_t
714 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
715 {
716 	spa_t *spa;
717 	avl_tree_t *t = &spa_namespace_avl;
718 
719 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
720 
721 	for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
722 		if (spa->spa_state == POOL_STATE_UNINITIALIZED)
723 			continue;
724 		if (spa->spa_root_vdev == NULL)
725 			continue;
726 		if (spa_guid(spa) == pool_guid) {
727 			if (device_guid == 0)
728 				break;
729 
730 			if (vdev_lookup_by_guid(spa->spa_root_vdev,
731 			    device_guid) != NULL)
732 				break;
733 
734 			/*
735 			 * Check any devices we may be in the process of adding.
736 			 */
737 			if (spa->spa_pending_vdev) {
738 				if (vdev_lookup_by_guid(spa->spa_pending_vdev,
739 				    device_guid) != NULL)
740 					break;
741 			}
742 		}
743 	}
744 
745 	return (spa != NULL);
746 }
747 
748 char *
749 spa_strdup(const char *s)
750 {
751 	size_t len;
752 	char *new;
753 
754 	len = strlen(s);
755 	new = kmem_alloc(len + 1, KM_SLEEP);
756 	bcopy(s, new, len);
757 	new[len] = '\0';
758 
759 	return (new);
760 }
761 
762 void
763 spa_strfree(char *s)
764 {
765 	kmem_free(s, strlen(s) + 1);
766 }
767 
768 uint64_t
769 spa_get_random(uint64_t range)
770 {
771 	uint64_t r;
772 
773 	ASSERT(range != 0);
774 
775 	(void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));
776 
777 	return (r % range);
778 }
779 
780 void
781 sprintf_blkptr(char *buf, int len, const blkptr_t *bp)
782 {
783 	int d;
784 
785 	if (bp == NULL) {
786 		(void) snprintf(buf, len, "<NULL>");
787 		return;
788 	}
789 
790 	if (BP_IS_HOLE(bp)) {
791 		(void) snprintf(buf, len, "<hole>");
792 		return;
793 	}
794 
795 	(void) snprintf(buf, len, "[L%llu %s] %llxL/%llxP ",
796 	    (u_longlong_t)BP_GET_LEVEL(bp),
797 	    dmu_ot[BP_GET_TYPE(bp)].ot_name,
798 	    (u_longlong_t)BP_GET_LSIZE(bp),
799 	    (u_longlong_t)BP_GET_PSIZE(bp));
800 
801 	for (d = 0; d < BP_GET_NDVAS(bp); d++) {
802 		const dva_t *dva = &bp->blk_dva[d];
803 		(void) snprintf(buf + strlen(buf), len - strlen(buf),
804 		    "DVA[%d]=<%llu:%llx:%llx> ", d,
805 		    (u_longlong_t)DVA_GET_VDEV(dva),
806 		    (u_longlong_t)DVA_GET_OFFSET(dva),
807 		    (u_longlong_t)DVA_GET_ASIZE(dva));
808 	}
809 
810 	(void) snprintf(buf + strlen(buf), len - strlen(buf),
811 	    "%s %s %s %s birth=%llu fill=%llu cksum=%llx:%llx:%llx:%llx",
812 	    zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name,
813 	    zio_compress_table[BP_GET_COMPRESS(bp)].ci_name,
814 	    BP_GET_BYTEORDER(bp) == 0 ? "BE" : "LE",
815 	    BP_IS_GANG(bp) ? "gang" : "contiguous",
816 	    (u_longlong_t)bp->blk_birth,
817 	    (u_longlong_t)bp->blk_fill,
818 	    (u_longlong_t)bp->blk_cksum.zc_word[0],
819 	    (u_longlong_t)bp->blk_cksum.zc_word[1],
820 	    (u_longlong_t)bp->blk_cksum.zc_word[2],
821 	    (u_longlong_t)bp->blk_cksum.zc_word[3]);
822 }
823 
824 void
825 spa_freeze(spa_t *spa)
826 {
827 	uint64_t freeze_txg = 0;
828 
829 	spa_config_enter(spa, RW_WRITER, FTAG);
830 	if (spa->spa_freeze_txg == UINT64_MAX) {
831 		freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
832 		spa->spa_freeze_txg = freeze_txg;
833 	}
834 	spa_config_exit(spa, FTAG);
835 	if (freeze_txg != 0)
836 		txg_wait_synced(spa_get_dsl(spa), freeze_txg);
837 }
838 
839 void
840 zfs_panic_recover(const char *fmt, ...)
841 {
842 	va_list adx;
843 
844 	va_start(adx, fmt);
845 	vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
846 	va_end(adx);
847 }
848 
849 /*
850  * ==========================================================================
851  * Accessor functions
852  * ==========================================================================
853  */
854 
855 krwlock_t *
856 spa_traverse_rwlock(spa_t *spa)
857 {
858 	return (&spa->spa_traverse_lock);
859 }
860 
861 int
862 spa_traverse_wanted(spa_t *spa)
863 {
864 	return (spa->spa_traverse_wanted);
865 }
866 
867 dsl_pool_t *
868 spa_get_dsl(spa_t *spa)
869 {
870 	return (spa->spa_dsl_pool);
871 }
872 
873 blkptr_t *
874 spa_get_rootblkptr(spa_t *spa)
875 {
876 	return (&spa->spa_ubsync.ub_rootbp);
877 }
878 
879 void
880 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
881 {
882 	spa->spa_uberblock.ub_rootbp = *bp;
883 }
884 
885 void
886 spa_altroot(spa_t *spa, char *buf, size_t buflen)
887 {
888 	if (spa->spa_root == NULL)
889 		buf[0] = '\0';
890 	else
891 		(void) strncpy(buf, spa->spa_root, buflen);
892 }
893 
894 int
895 spa_sync_pass(spa_t *spa)
896 {
897 	return (spa->spa_sync_pass);
898 }
899 
900 char *
901 spa_name(spa_t *spa)
902 {
903 	/*
904 	 * Accessing the name requires holding either the namespace lock or the
905 	 * config lock, both of which are required to do a rename.
906 	 */
907 	ASSERT(MUTEX_HELD(&spa_namespace_lock) ||
908 	    spa_config_held(spa, RW_READER) || spa_config_held(spa, RW_WRITER));
909 
910 	return (spa->spa_name);
911 }
912 
913 uint64_t
914 spa_guid(spa_t *spa)
915 {
916 	/*
917 	 * If we fail to parse the config during spa_load(), we can go through
918 	 * the error path (which posts an ereport) and end up here with no root
919 	 * vdev.  We stash the original pool guid in 'spa_load_guid' to handle
920 	 * this case.
921 	 */
922 	if (spa->spa_root_vdev != NULL)
923 		return (spa->spa_root_vdev->vdev_guid);
924 	else
925 		return (spa->spa_load_guid);
926 }
927 
928 uint64_t
929 spa_last_synced_txg(spa_t *spa)
930 {
931 	return (spa->spa_ubsync.ub_txg);
932 }
933 
934 uint64_t
935 spa_first_txg(spa_t *spa)
936 {
937 	return (spa->spa_first_txg);
938 }
939 
940 int
941 spa_state(spa_t *spa)
942 {
943 	return (spa->spa_state);
944 }
945 
946 uint64_t
947 spa_freeze_txg(spa_t *spa)
948 {
949 	return (spa->spa_freeze_txg);
950 }
951 
952 /*
953  * Return how much space is allocated in the pool (ie. sum of all asize)
954  */
955 uint64_t
956 spa_get_alloc(spa_t *spa)
957 {
958 	return (spa->spa_root_vdev->vdev_stat.vs_alloc);
959 }
960 
961 /*
962  * Return how much (raid-z inflated) space there is in the pool.
963  */
964 uint64_t
965 spa_get_space(spa_t *spa)
966 {
967 	return (spa->spa_root_vdev->vdev_stat.vs_space);
968 }
969 
970 /*
971  * Return the amount of raid-z-deflated space in the pool.
972  */
973 uint64_t
974 spa_get_dspace(spa_t *spa)
975 {
976 	if (spa->spa_deflate)
977 		return (spa->spa_root_vdev->vdev_stat.vs_dspace);
978 	else
979 		return (spa->spa_root_vdev->vdev_stat.vs_space);
980 }
981 
982 /* ARGSUSED */
983 uint64_t
984 spa_get_asize(spa_t *spa, uint64_t lsize)
985 {
986 	/*
987 	 * For now, the worst case is 512-byte RAID-Z blocks, in which
988 	 * case the space requirement is exactly 2x; so just assume that.
989 	 * Add to this the fact that we can have up to 3 DVAs per bp, and
990 	 * we have to multiply by a total of 6x.
991 	 */
992 	return (lsize * 6);
993 }
994 
995 /*
996  * Return the failure mode that has been set to this pool. The default
997  * behavior will be to block all I/Os when a complete failure occurs.
998  */
999 uint8_t
1000 spa_get_failmode(spa_t *spa)
1001 {
1002 	return (spa->spa_failmode);
1003 }
1004 
1005 uint64_t
1006 spa_version(spa_t *spa)
1007 {
1008 	return (spa->spa_ubsync.ub_version);
1009 }
1010 
1011 int
1012 spa_max_replication(spa_t *spa)
1013 {
1014 	/*
1015 	 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
1016 	 * handle BPs with more than one DVA allocated.  Set our max
1017 	 * replication level accordingly.
1018 	 */
1019 	if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
1020 		return (1);
1021 	return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
1022 }
1023 
1024 uint64_t
1025 bp_get_dasize(spa_t *spa, const blkptr_t *bp)
1026 {
1027 	int sz = 0, i;
1028 
1029 	if (!spa->spa_deflate)
1030 		return (BP_GET_ASIZE(bp));
1031 
1032 	spa_config_enter(spa, RW_READER, FTAG);
1033 	for (i = 0; i < SPA_DVAS_PER_BP; i++) {
1034 		vdev_t *vd =
1035 		    vdev_lookup_top(spa, DVA_GET_VDEV(&bp->blk_dva[i]));
1036 		if (vd)
1037 			sz += (DVA_GET_ASIZE(&bp->blk_dva[i]) >>
1038 			    SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio;
1039 	}
1040 	spa_config_exit(spa, FTAG);
1041 	return (sz);
1042 }
1043 
1044 /*
1045  * ==========================================================================
1046  * Initialization and Termination
1047  * ==========================================================================
1048  */
1049 
1050 static int
1051 spa_name_compare(const void *a1, const void *a2)
1052 {
1053 	const spa_t *s1 = a1;
1054 	const spa_t *s2 = a2;
1055 	int s;
1056 
1057 	s = strcmp(s1->spa_name, s2->spa_name);
1058 	if (s > 0)
1059 		return (1);
1060 	if (s < 0)
1061 		return (-1);
1062 	return (0);
1063 }
1064 
1065 int
1066 spa_busy(void)
1067 {
1068 	return (spa_active_count);
1069 }
1070 
1071 void
1072 spa_init(int mode)
1073 {
1074 	mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
1075 	mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
1076 	cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
1077 
1078 	avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
1079 	    offsetof(spa_t, spa_avl));
1080 
1081 	avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_spare_t),
1082 	    offsetof(spa_spare_t, spare_avl));
1083 
1084 	spa_mode = mode;
1085 
1086 	refcount_init();
1087 	unique_init();
1088 	zio_init();
1089 	dmu_init();
1090 	zil_init();
1091 	zfs_prop_init();
1092 	zpool_prop_init();
1093 	spa_config_load();
1094 }
1095 
1096 void
1097 spa_fini(void)
1098 {
1099 	spa_evict_all();
1100 
1101 	zil_fini();
1102 	dmu_fini();
1103 	zio_fini();
1104 	unique_fini();
1105 	refcount_fini();
1106 
1107 	avl_destroy(&spa_namespace_avl);
1108 	avl_destroy(&spa_spare_avl);
1109 
1110 	cv_destroy(&spa_namespace_cv);
1111 	mutex_destroy(&spa_namespace_lock);
1112 	mutex_destroy(&spa_spare_lock);
1113 }
1114 
1115 /*
1116  * Return whether this pool has slogs. No locking needed.
1117  * It's not a problem if the wrong answer is returned as it's only for
1118  * performance and not correctness
1119  */
1120 boolean_t
1121 spa_has_slogs(spa_t *spa)
1122 {
1123 	return (spa->spa_log_class->mc_rotor != NULL);
1124 }
1125