1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* 28 * This file contains all the routines used when modifying on-disk SPA state. 29 * This includes opening, importing, destroying, exporting a pool, and syncing a 30 * pool. 31 */ 32 33 #include <sys/zfs_context.h> 34 #include <sys/fm/fs/zfs.h> 35 #include <sys/spa_impl.h> 36 #include <sys/zio.h> 37 #include <sys/zio_checksum.h> 38 #include <sys/dmu.h> 39 #include <sys/dmu_tx.h> 40 #include <sys/zap.h> 41 #include <sys/zil.h> 42 #include <sys/ddt.h> 43 #include <sys/vdev_impl.h> 44 #include <sys/metaslab.h> 45 #include <sys/metaslab_impl.h> 46 #include <sys/uberblock_impl.h> 47 #include <sys/txg.h> 48 #include <sys/avl.h> 49 #include <sys/dmu_traverse.h> 50 #include <sys/dmu_objset.h> 51 #include <sys/unique.h> 52 #include <sys/dsl_pool.h> 53 #include <sys/dsl_dataset.h> 54 #include <sys/dsl_dir.h> 55 #include <sys/dsl_prop.h> 56 #include <sys/dsl_synctask.h> 57 #include <sys/fs/zfs.h> 58 #include <sys/arc.h> 59 #include <sys/callb.h> 60 #include <sys/systeminfo.h> 61 #include <sys/sunddi.h> 62 #include <sys/spa_boot.h> 63 #include <sys/zfs_ioctl.h> 64 65 #ifdef _KERNEL 66 #include <sys/zone.h> 67 #include <sys/bootprops.h> 68 #endif /* _KERNEL */ 69 70 #include "zfs_prop.h" 71 #include "zfs_comutil.h" 72 73 enum zti_modes { 74 zti_mode_fixed, /* value is # of threads (min 1) */ 75 zti_mode_online_percent, /* value is % of online CPUs */ 76 zti_mode_tune, /* fill from zio_taskq_tune_* */ 77 zti_nmodes 78 }; 79 80 #define ZTI_THREAD_FIX(n) { zti_mode_fixed, (n) } 81 #define ZTI_THREAD_PCT(n) { zti_mode_online_percent, (n) } 82 #define ZTI_THREAD_TUNE { zti_mode_tune, 0 } 83 84 #define ZTI_THREAD_ONE ZTI_THREAD_FIX(1) 85 86 typedef struct zio_taskq_info { 87 const char *zti_name; 88 struct { 89 enum zti_modes zti_mode; 90 uint_t zti_value; 91 } zti_nthreads[ZIO_TASKQ_TYPES]; 92 } zio_taskq_info_t; 93 94 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = { 95 "issue", "intr" 96 }; 97 98 const zio_taskq_info_t zio_taskqs[ZIO_TYPES] = { 99 /* ISSUE INTR */ 100 { "spa_zio_null", { ZTI_THREAD_ONE, ZTI_THREAD_ONE } }, 101 { "spa_zio_read", { ZTI_THREAD_FIX(8), ZTI_THREAD_TUNE } }, 102 { "spa_zio_write", { ZTI_THREAD_TUNE, ZTI_THREAD_FIX(8) } }, 103 { "spa_zio_free", { ZTI_THREAD_ONE, ZTI_THREAD_ONE } }, 104 { "spa_zio_claim", { ZTI_THREAD_ONE, ZTI_THREAD_ONE } }, 105 { "spa_zio_ioctl", { ZTI_THREAD_ONE, ZTI_THREAD_ONE } }, 106 }; 107 108 enum zti_modes zio_taskq_tune_mode = zti_mode_online_percent; 109 uint_t zio_taskq_tune_value = 80; /* #threads = 80% of # online CPUs */ 110 111 static void spa_sync_props(void *arg1, void *arg2, cred_t *cr, dmu_tx_t *tx); 112 static boolean_t spa_has_active_shared_spare(spa_t *spa); 113 114 /* 115 * ========================================================================== 116 * SPA properties routines 117 * ========================================================================== 118 */ 119 120 /* 121 * Add a (source=src, propname=propval) list to an nvlist. 122 */ 123 static void 124 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval, 125 uint64_t intval, zprop_source_t src) 126 { 127 const char *propname = zpool_prop_to_name(prop); 128 nvlist_t *propval; 129 130 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0); 131 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0); 132 133 if (strval != NULL) 134 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0); 135 else 136 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0); 137 138 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0); 139 nvlist_free(propval); 140 } 141 142 /* 143 * Get property values from the spa configuration. 144 */ 145 static void 146 spa_prop_get_config(spa_t *spa, nvlist_t **nvp) 147 { 148 uint64_t size; 149 uint64_t used; 150 uint64_t cap, version; 151 zprop_source_t src = ZPROP_SRC_NONE; 152 spa_config_dirent_t *dp; 153 154 ASSERT(MUTEX_HELD(&spa->spa_props_lock)); 155 156 if (spa->spa_root_vdev != NULL) { 157 used = metaslab_class_get_alloc(spa_normal_class(spa)); 158 size = metaslab_class_get_space(spa_normal_class(spa)); 159 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src); 160 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src); 161 spa_prop_add_list(*nvp, ZPOOL_PROP_USED, NULL, used, src); 162 spa_prop_add_list(*nvp, ZPOOL_PROP_AVAILABLE, NULL, 163 size - used, src); 164 165 cap = (size == 0) ? 0 : (used * 100 / size); 166 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src); 167 168 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL, 169 ddt_get_pool_dedup_ratio(spa), src); 170 171 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL, 172 spa->spa_root_vdev->vdev_state, src); 173 174 version = spa_version(spa); 175 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) 176 src = ZPROP_SRC_DEFAULT; 177 else 178 src = ZPROP_SRC_LOCAL; 179 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src); 180 } 181 182 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src); 183 184 if (spa->spa_root != NULL) 185 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root, 186 0, ZPROP_SRC_LOCAL); 187 188 if ((dp = list_head(&spa->spa_config_list)) != NULL) { 189 if (dp->scd_path == NULL) { 190 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 191 "none", 0, ZPROP_SRC_LOCAL); 192 } else if (strcmp(dp->scd_path, spa_config_path) != 0) { 193 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 194 dp->scd_path, 0, ZPROP_SRC_LOCAL); 195 } 196 } 197 } 198 199 /* 200 * Get zpool property values. 201 */ 202 int 203 spa_prop_get(spa_t *spa, nvlist_t **nvp) 204 { 205 objset_t *mos = spa->spa_meta_objset; 206 zap_cursor_t zc; 207 zap_attribute_t za; 208 int err; 209 210 VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0); 211 212 mutex_enter(&spa->spa_props_lock); 213 214 /* 215 * Get properties from the spa config. 216 */ 217 spa_prop_get_config(spa, nvp); 218 219 /* If no pool property object, no more prop to get. */ 220 if (spa->spa_pool_props_object == 0) { 221 mutex_exit(&spa->spa_props_lock); 222 return (0); 223 } 224 225 /* 226 * Get properties from the MOS pool property object. 227 */ 228 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object); 229 (err = zap_cursor_retrieve(&zc, &za)) == 0; 230 zap_cursor_advance(&zc)) { 231 uint64_t intval = 0; 232 char *strval = NULL; 233 zprop_source_t src = ZPROP_SRC_DEFAULT; 234 zpool_prop_t prop; 235 236 if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL) 237 continue; 238 239 switch (za.za_integer_length) { 240 case 8: 241 /* integer property */ 242 if (za.za_first_integer != 243 zpool_prop_default_numeric(prop)) 244 src = ZPROP_SRC_LOCAL; 245 246 if (prop == ZPOOL_PROP_BOOTFS) { 247 dsl_pool_t *dp; 248 dsl_dataset_t *ds = NULL; 249 250 dp = spa_get_dsl(spa); 251 rw_enter(&dp->dp_config_rwlock, RW_READER); 252 if (err = dsl_dataset_hold_obj(dp, 253 za.za_first_integer, FTAG, &ds)) { 254 rw_exit(&dp->dp_config_rwlock); 255 break; 256 } 257 258 strval = kmem_alloc( 259 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1, 260 KM_SLEEP); 261 dsl_dataset_name(ds, strval); 262 dsl_dataset_rele(ds, FTAG); 263 rw_exit(&dp->dp_config_rwlock); 264 } else { 265 strval = NULL; 266 intval = za.za_first_integer; 267 } 268 269 spa_prop_add_list(*nvp, prop, strval, intval, src); 270 271 if (strval != NULL) 272 kmem_free(strval, 273 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1); 274 275 break; 276 277 case 1: 278 /* string property */ 279 strval = kmem_alloc(za.za_num_integers, KM_SLEEP); 280 err = zap_lookup(mos, spa->spa_pool_props_object, 281 za.za_name, 1, za.za_num_integers, strval); 282 if (err) { 283 kmem_free(strval, za.za_num_integers); 284 break; 285 } 286 spa_prop_add_list(*nvp, prop, strval, 0, src); 287 kmem_free(strval, za.za_num_integers); 288 break; 289 290 default: 291 break; 292 } 293 } 294 zap_cursor_fini(&zc); 295 mutex_exit(&spa->spa_props_lock); 296 out: 297 if (err && err != ENOENT) { 298 nvlist_free(*nvp); 299 *nvp = NULL; 300 return (err); 301 } 302 303 return (0); 304 } 305 306 /* 307 * Validate the given pool properties nvlist and modify the list 308 * for the property values to be set. 309 */ 310 static int 311 spa_prop_validate(spa_t *spa, nvlist_t *props) 312 { 313 nvpair_t *elem; 314 int error = 0, reset_bootfs = 0; 315 uint64_t objnum; 316 317 elem = NULL; 318 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) { 319 zpool_prop_t prop; 320 char *propname, *strval; 321 uint64_t intval; 322 objset_t *os; 323 char *slash; 324 325 propname = nvpair_name(elem); 326 327 if ((prop = zpool_name_to_prop(propname)) == ZPROP_INVAL) 328 return (EINVAL); 329 330 switch (prop) { 331 case ZPOOL_PROP_VERSION: 332 error = nvpair_value_uint64(elem, &intval); 333 if (!error && 334 (intval < spa_version(spa) || intval > SPA_VERSION)) 335 error = EINVAL; 336 break; 337 338 case ZPOOL_PROP_DELEGATION: 339 case ZPOOL_PROP_AUTOREPLACE: 340 case ZPOOL_PROP_LISTSNAPS: 341 case ZPOOL_PROP_AUTOEXPAND: 342 error = nvpair_value_uint64(elem, &intval); 343 if (!error && intval > 1) 344 error = EINVAL; 345 break; 346 347 case ZPOOL_PROP_BOOTFS: 348 /* 349 * If the pool version is less than SPA_VERSION_BOOTFS, 350 * or the pool is still being created (version == 0), 351 * the bootfs property cannot be set. 352 */ 353 if (spa_version(spa) < SPA_VERSION_BOOTFS) { 354 error = ENOTSUP; 355 break; 356 } 357 358 /* 359 * Make sure the vdev config is bootable 360 */ 361 if (!vdev_is_bootable(spa->spa_root_vdev)) { 362 error = ENOTSUP; 363 break; 364 } 365 366 reset_bootfs = 1; 367 368 error = nvpair_value_string(elem, &strval); 369 370 if (!error) { 371 uint64_t compress; 372 373 if (strval == NULL || strval[0] == '\0') { 374 objnum = zpool_prop_default_numeric( 375 ZPOOL_PROP_BOOTFS); 376 break; 377 } 378 379 if (error = dmu_objset_hold(strval, FTAG, &os)) 380 break; 381 382 /* Must be ZPL and not gzip compressed. */ 383 384 if (dmu_objset_type(os) != DMU_OST_ZFS) { 385 error = ENOTSUP; 386 } else if ((error = dsl_prop_get_integer(strval, 387 zfs_prop_to_name(ZFS_PROP_COMPRESSION), 388 &compress, NULL)) == 0 && 389 !BOOTFS_COMPRESS_VALID(compress)) { 390 error = ENOTSUP; 391 } else { 392 objnum = dmu_objset_id(os); 393 } 394 dmu_objset_rele(os, FTAG); 395 } 396 break; 397 398 case ZPOOL_PROP_FAILUREMODE: 399 error = nvpair_value_uint64(elem, &intval); 400 if (!error && (intval < ZIO_FAILURE_MODE_WAIT || 401 intval > ZIO_FAILURE_MODE_PANIC)) 402 error = EINVAL; 403 404 /* 405 * This is a special case which only occurs when 406 * the pool has completely failed. This allows 407 * the user to change the in-core failmode property 408 * without syncing it out to disk (I/Os might 409 * currently be blocked). We do this by returning 410 * EIO to the caller (spa_prop_set) to trick it 411 * into thinking we encountered a property validation 412 * error. 413 */ 414 if (!error && spa_suspended(spa)) { 415 spa->spa_failmode = intval; 416 error = EIO; 417 } 418 break; 419 420 case ZPOOL_PROP_CACHEFILE: 421 if ((error = nvpair_value_string(elem, &strval)) != 0) 422 break; 423 424 if (strval[0] == '\0') 425 break; 426 427 if (strcmp(strval, "none") == 0) 428 break; 429 430 if (strval[0] != '/') { 431 error = EINVAL; 432 break; 433 } 434 435 slash = strrchr(strval, '/'); 436 ASSERT(slash != NULL); 437 438 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 || 439 strcmp(slash, "/..") == 0) 440 error = EINVAL; 441 break; 442 443 case ZPOOL_PROP_DEDUPDITTO: 444 if (spa_version(spa) < SPA_VERSION_DEDUP) 445 error = ENOTSUP; 446 else 447 error = nvpair_value_uint64(elem, &intval); 448 if (error == 0 && 449 intval != 0 && intval < ZIO_DEDUPDITTO_MIN) 450 error = EINVAL; 451 break; 452 } 453 454 if (error) 455 break; 456 } 457 458 if (!error && reset_bootfs) { 459 error = nvlist_remove(props, 460 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING); 461 462 if (!error) { 463 error = nvlist_add_uint64(props, 464 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum); 465 } 466 } 467 468 return (error); 469 } 470 471 void 472 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync) 473 { 474 char *cachefile; 475 spa_config_dirent_t *dp; 476 477 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE), 478 &cachefile) != 0) 479 return; 480 481 dp = kmem_alloc(sizeof (spa_config_dirent_t), 482 KM_SLEEP); 483 484 if (cachefile[0] == '\0') 485 dp->scd_path = spa_strdup(spa_config_path); 486 else if (strcmp(cachefile, "none") == 0) 487 dp->scd_path = NULL; 488 else 489 dp->scd_path = spa_strdup(cachefile); 490 491 list_insert_head(&spa->spa_config_list, dp); 492 if (need_sync) 493 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 494 } 495 496 int 497 spa_prop_set(spa_t *spa, nvlist_t *nvp) 498 { 499 int error; 500 nvpair_t *elem; 501 boolean_t need_sync = B_FALSE; 502 zpool_prop_t prop; 503 504 if ((error = spa_prop_validate(spa, nvp)) != 0) 505 return (error); 506 507 elem = NULL; 508 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) { 509 if ((prop = zpool_name_to_prop( 510 nvpair_name(elem))) == ZPROP_INVAL) 511 return (EINVAL); 512 513 if (prop == ZPOOL_PROP_CACHEFILE || prop == ZPOOL_PROP_ALTROOT) 514 continue; 515 516 need_sync = B_TRUE; 517 break; 518 } 519 520 if (need_sync) 521 return (dsl_sync_task_do(spa_get_dsl(spa), NULL, spa_sync_props, 522 spa, nvp, 3)); 523 else 524 return (0); 525 } 526 527 /* 528 * If the bootfs property value is dsobj, clear it. 529 */ 530 void 531 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx) 532 { 533 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) { 534 VERIFY(zap_remove(spa->spa_meta_objset, 535 spa->spa_pool_props_object, 536 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0); 537 spa->spa_bootfs = 0; 538 } 539 } 540 541 /* 542 * ========================================================================== 543 * SPA state manipulation (open/create/destroy/import/export) 544 * ========================================================================== 545 */ 546 547 static int 548 spa_error_entry_compare(const void *a, const void *b) 549 { 550 spa_error_entry_t *sa = (spa_error_entry_t *)a; 551 spa_error_entry_t *sb = (spa_error_entry_t *)b; 552 int ret; 553 554 ret = bcmp(&sa->se_bookmark, &sb->se_bookmark, 555 sizeof (zbookmark_t)); 556 557 if (ret < 0) 558 return (-1); 559 else if (ret > 0) 560 return (1); 561 else 562 return (0); 563 } 564 565 /* 566 * Utility function which retrieves copies of the current logs and 567 * re-initializes them in the process. 568 */ 569 void 570 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub) 571 { 572 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock)); 573 574 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t)); 575 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t)); 576 577 avl_create(&spa->spa_errlist_scrub, 578 spa_error_entry_compare, sizeof (spa_error_entry_t), 579 offsetof(spa_error_entry_t, se_avl)); 580 avl_create(&spa->spa_errlist_last, 581 spa_error_entry_compare, sizeof (spa_error_entry_t), 582 offsetof(spa_error_entry_t, se_avl)); 583 } 584 585 /* 586 * Activate an uninitialized pool. 587 */ 588 static void 589 spa_activate(spa_t *spa, int mode) 590 { 591 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED); 592 593 spa->spa_state = POOL_STATE_ACTIVE; 594 spa->spa_mode = mode; 595 596 spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops); 597 spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops); 598 599 for (int t = 0; t < ZIO_TYPES; t++) { 600 const zio_taskq_info_t *ztip = &zio_taskqs[t]; 601 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 602 enum zti_modes mode = ztip->zti_nthreads[q].zti_mode; 603 uint_t value = ztip->zti_nthreads[q].zti_value; 604 char name[32]; 605 606 (void) snprintf(name, sizeof (name), 607 "%s_%s", ztip->zti_name, zio_taskq_types[q]); 608 609 if (mode == zti_mode_tune) { 610 mode = zio_taskq_tune_mode; 611 value = zio_taskq_tune_value; 612 if (mode == zti_mode_tune) 613 mode = zti_mode_online_percent; 614 } 615 616 switch (mode) { 617 case zti_mode_fixed: 618 ASSERT3U(value, >=, 1); 619 value = MAX(value, 1); 620 621 spa->spa_zio_taskq[t][q] = taskq_create(name, 622 value, maxclsyspri, 50, INT_MAX, 623 TASKQ_PREPOPULATE); 624 break; 625 626 case zti_mode_online_percent: 627 spa->spa_zio_taskq[t][q] = taskq_create(name, 628 value, maxclsyspri, 50, INT_MAX, 629 TASKQ_PREPOPULATE | TASKQ_THREADS_CPU_PCT); 630 break; 631 632 case zti_mode_tune: 633 default: 634 panic("unrecognized mode for " 635 "zio_taskqs[%u]->zti_nthreads[%u] (%u:%u) " 636 "in spa_activate()", 637 t, q, mode, value); 638 break; 639 } 640 } 641 } 642 643 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t), 644 offsetof(vdev_t, vdev_config_dirty_node)); 645 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t), 646 offsetof(vdev_t, vdev_state_dirty_node)); 647 648 txg_list_create(&spa->spa_vdev_txg_list, 649 offsetof(struct vdev, vdev_txg_node)); 650 651 avl_create(&spa->spa_errlist_scrub, 652 spa_error_entry_compare, sizeof (spa_error_entry_t), 653 offsetof(spa_error_entry_t, se_avl)); 654 avl_create(&spa->spa_errlist_last, 655 spa_error_entry_compare, sizeof (spa_error_entry_t), 656 offsetof(spa_error_entry_t, se_avl)); 657 } 658 659 /* 660 * Opposite of spa_activate(). 661 */ 662 static void 663 spa_deactivate(spa_t *spa) 664 { 665 ASSERT(spa->spa_sync_on == B_FALSE); 666 ASSERT(spa->spa_dsl_pool == NULL); 667 ASSERT(spa->spa_root_vdev == NULL); 668 ASSERT(spa->spa_async_zio_root == NULL); 669 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED); 670 671 txg_list_destroy(&spa->spa_vdev_txg_list); 672 673 list_destroy(&spa->spa_config_dirty_list); 674 list_destroy(&spa->spa_state_dirty_list); 675 676 for (int t = 0; t < ZIO_TYPES; t++) { 677 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 678 taskq_destroy(spa->spa_zio_taskq[t][q]); 679 spa->spa_zio_taskq[t][q] = NULL; 680 } 681 } 682 683 metaslab_class_destroy(spa->spa_normal_class); 684 spa->spa_normal_class = NULL; 685 686 metaslab_class_destroy(spa->spa_log_class); 687 spa->spa_log_class = NULL; 688 689 /* 690 * If this was part of an import or the open otherwise failed, we may 691 * still have errors left in the queues. Empty them just in case. 692 */ 693 spa_errlog_drain(spa); 694 695 avl_destroy(&spa->spa_errlist_scrub); 696 avl_destroy(&spa->spa_errlist_last); 697 698 spa->spa_state = POOL_STATE_UNINITIALIZED; 699 } 700 701 /* 702 * Verify a pool configuration, and construct the vdev tree appropriately. This 703 * will create all the necessary vdevs in the appropriate layout, with each vdev 704 * in the CLOSED state. This will prep the pool before open/creation/import. 705 * All vdev validation is done by the vdev_alloc() routine. 706 */ 707 static int 708 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, 709 uint_t id, int atype) 710 { 711 nvlist_t **child; 712 uint_t children; 713 int error; 714 715 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0) 716 return (error); 717 718 if ((*vdp)->vdev_ops->vdev_op_leaf) 719 return (0); 720 721 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 722 &child, &children); 723 724 if (error == ENOENT) 725 return (0); 726 727 if (error) { 728 vdev_free(*vdp); 729 *vdp = NULL; 730 return (EINVAL); 731 } 732 733 for (int c = 0; c < children; c++) { 734 vdev_t *vd; 735 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c, 736 atype)) != 0) { 737 vdev_free(*vdp); 738 *vdp = NULL; 739 return (error); 740 } 741 } 742 743 ASSERT(*vdp != NULL); 744 745 return (0); 746 } 747 748 /* 749 * Opposite of spa_load(). 750 */ 751 static void 752 spa_unload(spa_t *spa) 753 { 754 int i; 755 756 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 757 758 /* 759 * Stop async tasks. 760 */ 761 spa_async_suspend(spa); 762 763 /* 764 * Stop syncing. 765 */ 766 if (spa->spa_sync_on) { 767 txg_sync_stop(spa->spa_dsl_pool); 768 spa->spa_sync_on = B_FALSE; 769 } 770 771 /* 772 * Wait for any outstanding async I/O to complete. 773 */ 774 if (spa->spa_async_zio_root != NULL) { 775 (void) zio_wait(spa->spa_async_zio_root); 776 spa->spa_async_zio_root = NULL; 777 } 778 779 /* 780 * Close the dsl pool. 781 */ 782 if (spa->spa_dsl_pool) { 783 dsl_pool_close(spa->spa_dsl_pool); 784 spa->spa_dsl_pool = NULL; 785 } 786 787 ddt_unload(spa); 788 789 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 790 791 /* 792 * Drop and purge level 2 cache 793 */ 794 spa_l2cache_drop(spa); 795 796 /* 797 * Close all vdevs. 798 */ 799 if (spa->spa_root_vdev) 800 vdev_free(spa->spa_root_vdev); 801 ASSERT(spa->spa_root_vdev == NULL); 802 803 for (i = 0; i < spa->spa_spares.sav_count; i++) 804 vdev_free(spa->spa_spares.sav_vdevs[i]); 805 if (spa->spa_spares.sav_vdevs) { 806 kmem_free(spa->spa_spares.sav_vdevs, 807 spa->spa_spares.sav_count * sizeof (void *)); 808 spa->spa_spares.sav_vdevs = NULL; 809 } 810 if (spa->spa_spares.sav_config) { 811 nvlist_free(spa->spa_spares.sav_config); 812 spa->spa_spares.sav_config = NULL; 813 } 814 spa->spa_spares.sav_count = 0; 815 816 for (i = 0; i < spa->spa_l2cache.sav_count; i++) 817 vdev_free(spa->spa_l2cache.sav_vdevs[i]); 818 if (spa->spa_l2cache.sav_vdevs) { 819 kmem_free(spa->spa_l2cache.sav_vdevs, 820 spa->spa_l2cache.sav_count * sizeof (void *)); 821 spa->spa_l2cache.sav_vdevs = NULL; 822 } 823 if (spa->spa_l2cache.sav_config) { 824 nvlist_free(spa->spa_l2cache.sav_config); 825 spa->spa_l2cache.sav_config = NULL; 826 } 827 spa->spa_l2cache.sav_count = 0; 828 829 spa->spa_async_suspended = 0; 830 831 spa_config_exit(spa, SCL_ALL, FTAG); 832 } 833 834 /* 835 * Load (or re-load) the current list of vdevs describing the active spares for 836 * this pool. When this is called, we have some form of basic information in 837 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and 838 * then re-generate a more complete list including status information. 839 */ 840 static void 841 spa_load_spares(spa_t *spa) 842 { 843 nvlist_t **spares; 844 uint_t nspares; 845 int i; 846 vdev_t *vd, *tvd; 847 848 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 849 850 /* 851 * First, close and free any existing spare vdevs. 852 */ 853 for (i = 0; i < spa->spa_spares.sav_count; i++) { 854 vd = spa->spa_spares.sav_vdevs[i]; 855 856 /* Undo the call to spa_activate() below */ 857 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 858 B_FALSE)) != NULL && tvd->vdev_isspare) 859 spa_spare_remove(tvd); 860 vdev_close(vd); 861 vdev_free(vd); 862 } 863 864 if (spa->spa_spares.sav_vdevs) 865 kmem_free(spa->spa_spares.sav_vdevs, 866 spa->spa_spares.sav_count * sizeof (void *)); 867 868 if (spa->spa_spares.sav_config == NULL) 869 nspares = 0; 870 else 871 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 872 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 873 874 spa->spa_spares.sav_count = (int)nspares; 875 spa->spa_spares.sav_vdevs = NULL; 876 877 if (nspares == 0) 878 return; 879 880 /* 881 * Construct the array of vdevs, opening them to get status in the 882 * process. For each spare, there is potentially two different vdev_t 883 * structures associated with it: one in the list of spares (used only 884 * for basic validation purposes) and one in the active vdev 885 * configuration (if it's spared in). During this phase we open and 886 * validate each vdev on the spare list. If the vdev also exists in the 887 * active configuration, then we also mark this vdev as an active spare. 888 */ 889 spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *), 890 KM_SLEEP); 891 for (i = 0; i < spa->spa_spares.sav_count; i++) { 892 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0, 893 VDEV_ALLOC_SPARE) == 0); 894 ASSERT(vd != NULL); 895 896 spa->spa_spares.sav_vdevs[i] = vd; 897 898 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 899 B_FALSE)) != NULL) { 900 if (!tvd->vdev_isspare) 901 spa_spare_add(tvd); 902 903 /* 904 * We only mark the spare active if we were successfully 905 * able to load the vdev. Otherwise, importing a pool 906 * with a bad active spare would result in strange 907 * behavior, because multiple pool would think the spare 908 * is actively in use. 909 * 910 * There is a vulnerability here to an equally bizarre 911 * circumstance, where a dead active spare is later 912 * brought back to life (onlined or otherwise). Given 913 * the rarity of this scenario, and the extra complexity 914 * it adds, we ignore the possibility. 915 */ 916 if (!vdev_is_dead(tvd)) 917 spa_spare_activate(tvd); 918 } 919 920 vd->vdev_top = vd; 921 vd->vdev_aux = &spa->spa_spares; 922 923 if (vdev_open(vd) != 0) 924 continue; 925 926 if (vdev_validate_aux(vd) == 0) 927 spa_spare_add(vd); 928 } 929 930 /* 931 * Recompute the stashed list of spares, with status information 932 * this time. 933 */ 934 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, 935 DATA_TYPE_NVLIST_ARRAY) == 0); 936 937 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *), 938 KM_SLEEP); 939 for (i = 0; i < spa->spa_spares.sav_count; i++) 940 spares[i] = vdev_config_generate(spa, 941 spa->spa_spares.sav_vdevs[i], B_TRUE, B_TRUE, B_FALSE); 942 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 943 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0); 944 for (i = 0; i < spa->spa_spares.sav_count; i++) 945 nvlist_free(spares[i]); 946 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *)); 947 } 948 949 /* 950 * Load (or re-load) the current list of vdevs describing the active l2cache for 951 * this pool. When this is called, we have some form of basic information in 952 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and 953 * then re-generate a more complete list including status information. 954 * Devices which are already active have their details maintained, and are 955 * not re-opened. 956 */ 957 static void 958 spa_load_l2cache(spa_t *spa) 959 { 960 nvlist_t **l2cache; 961 uint_t nl2cache; 962 int i, j, oldnvdevs; 963 uint64_t guid; 964 vdev_t *vd, **oldvdevs, **newvdevs; 965 spa_aux_vdev_t *sav = &spa->spa_l2cache; 966 967 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 968 969 if (sav->sav_config != NULL) { 970 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 971 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 972 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP); 973 } else { 974 nl2cache = 0; 975 } 976 977 oldvdevs = sav->sav_vdevs; 978 oldnvdevs = sav->sav_count; 979 sav->sav_vdevs = NULL; 980 sav->sav_count = 0; 981 982 /* 983 * Process new nvlist of vdevs. 984 */ 985 for (i = 0; i < nl2cache; i++) { 986 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID, 987 &guid) == 0); 988 989 newvdevs[i] = NULL; 990 for (j = 0; j < oldnvdevs; j++) { 991 vd = oldvdevs[j]; 992 if (vd != NULL && guid == vd->vdev_guid) { 993 /* 994 * Retain previous vdev for add/remove ops. 995 */ 996 newvdevs[i] = vd; 997 oldvdevs[j] = NULL; 998 break; 999 } 1000 } 1001 1002 if (newvdevs[i] == NULL) { 1003 /* 1004 * Create new vdev 1005 */ 1006 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0, 1007 VDEV_ALLOC_L2CACHE) == 0); 1008 ASSERT(vd != NULL); 1009 newvdevs[i] = vd; 1010 1011 /* 1012 * Commit this vdev as an l2cache device, 1013 * even if it fails to open. 1014 */ 1015 spa_l2cache_add(vd); 1016 1017 vd->vdev_top = vd; 1018 vd->vdev_aux = sav; 1019 1020 spa_l2cache_activate(vd); 1021 1022 if (vdev_open(vd) != 0) 1023 continue; 1024 1025 (void) vdev_validate_aux(vd); 1026 1027 if (!vdev_is_dead(vd)) 1028 l2arc_add_vdev(spa, vd); 1029 } 1030 } 1031 1032 /* 1033 * Purge vdevs that were dropped 1034 */ 1035 for (i = 0; i < oldnvdevs; i++) { 1036 uint64_t pool; 1037 1038 vd = oldvdevs[i]; 1039 if (vd != NULL) { 1040 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 1041 pool != 0ULL && l2arc_vdev_present(vd)) 1042 l2arc_remove_vdev(vd); 1043 (void) vdev_close(vd); 1044 spa_l2cache_remove(vd); 1045 } 1046 } 1047 1048 if (oldvdevs) 1049 kmem_free(oldvdevs, oldnvdevs * sizeof (void *)); 1050 1051 if (sav->sav_config == NULL) 1052 goto out; 1053 1054 sav->sav_vdevs = newvdevs; 1055 sav->sav_count = (int)nl2cache; 1056 1057 /* 1058 * Recompute the stashed list of l2cache devices, with status 1059 * information this time. 1060 */ 1061 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE, 1062 DATA_TYPE_NVLIST_ARRAY) == 0); 1063 1064 l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 1065 for (i = 0; i < sav->sav_count; i++) 1066 l2cache[i] = vdev_config_generate(spa, 1067 sav->sav_vdevs[i], B_TRUE, B_FALSE, B_TRUE); 1068 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 1069 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0); 1070 out: 1071 for (i = 0; i < sav->sav_count; i++) 1072 nvlist_free(l2cache[i]); 1073 if (sav->sav_count) 1074 kmem_free(l2cache, sav->sav_count * sizeof (void *)); 1075 } 1076 1077 static int 1078 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value) 1079 { 1080 dmu_buf_t *db; 1081 char *packed = NULL; 1082 size_t nvsize = 0; 1083 int error; 1084 *value = NULL; 1085 1086 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 1087 nvsize = *(uint64_t *)db->db_data; 1088 dmu_buf_rele(db, FTAG); 1089 1090 packed = kmem_alloc(nvsize, KM_SLEEP); 1091 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed, 1092 DMU_READ_PREFETCH); 1093 if (error == 0) 1094 error = nvlist_unpack(packed, nvsize, value, 0); 1095 kmem_free(packed, nvsize); 1096 1097 return (error); 1098 } 1099 1100 /* 1101 * Checks to see if the given vdev could not be opened, in which case we post a 1102 * sysevent to notify the autoreplace code that the device has been removed. 1103 */ 1104 static void 1105 spa_check_removed(vdev_t *vd) 1106 { 1107 for (int c = 0; c < vd->vdev_children; c++) 1108 spa_check_removed(vd->vdev_child[c]); 1109 1110 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd)) { 1111 zfs_post_autoreplace(vd->vdev_spa, vd); 1112 spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK); 1113 } 1114 } 1115 1116 /* 1117 * Load the slog device state from the config object since it's possible 1118 * that the label does not contain the most up-to-date information. 1119 */ 1120 void 1121 spa_load_log_state(spa_t *spa, nvlist_t *nv) 1122 { 1123 vdev_t *ovd, *rvd = spa->spa_root_vdev; 1124 1125 /* 1126 * Load the original root vdev tree from the passed config. 1127 */ 1128 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1129 VERIFY(spa_config_parse(spa, &ovd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0); 1130 1131 for (int c = 0; c < rvd->vdev_children; c++) { 1132 vdev_t *cvd = rvd->vdev_child[c]; 1133 if (cvd->vdev_islog) 1134 vdev_load_log_state(cvd, ovd->vdev_child[c]); 1135 } 1136 vdev_free(ovd); 1137 spa_config_exit(spa, SCL_ALL, FTAG); 1138 } 1139 1140 /* 1141 * Check for missing log devices 1142 */ 1143 int 1144 spa_check_logs(spa_t *spa) 1145 { 1146 switch (spa->spa_log_state) { 1147 case SPA_LOG_MISSING: 1148 /* need to recheck in case slog has been restored */ 1149 case SPA_LOG_UNKNOWN: 1150 if (dmu_objset_find(spa->spa_name, zil_check_log_chain, NULL, 1151 DS_FIND_CHILDREN)) { 1152 spa->spa_log_state = SPA_LOG_MISSING; 1153 return (1); 1154 } 1155 break; 1156 } 1157 return (0); 1158 } 1159 1160 static void 1161 spa_aux_check_removed(spa_aux_vdev_t *sav) 1162 { 1163 for (int i = 0; i < sav->sav_count; i++) 1164 spa_check_removed(sav->sav_vdevs[i]); 1165 } 1166 1167 void 1168 spa_claim_notify(zio_t *zio) 1169 { 1170 spa_t *spa = zio->io_spa; 1171 1172 if (zio->io_error) 1173 return; 1174 1175 mutex_enter(&spa->spa_props_lock); /* any mutex will do */ 1176 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth) 1177 spa->spa_claim_max_txg = zio->io_bp->blk_birth; 1178 mutex_exit(&spa->spa_props_lock); 1179 } 1180 1181 typedef struct spa_load_error { 1182 uint64_t sle_metadata_count; 1183 uint64_t sle_data_count; 1184 } spa_load_error_t; 1185 1186 static void 1187 spa_load_verify_done(zio_t *zio) 1188 { 1189 blkptr_t *bp = zio->io_bp; 1190 spa_load_error_t *sle = zio->io_private; 1191 dmu_object_type_t type = BP_GET_TYPE(bp); 1192 int error = zio->io_error; 1193 1194 if (error) { 1195 if ((BP_GET_LEVEL(bp) != 0 || dmu_ot[type].ot_metadata) && 1196 type != DMU_OT_INTENT_LOG) 1197 atomic_add_64(&sle->sle_metadata_count, 1); 1198 else 1199 atomic_add_64(&sle->sle_data_count, 1); 1200 } 1201 zio_data_buf_free(zio->io_data, zio->io_size); 1202 } 1203 1204 /*ARGSUSED*/ 1205 static int 1206 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 1207 const zbookmark_t *zb, const dnode_phys_t *dnp, void *arg) 1208 { 1209 if (bp != NULL) { 1210 zio_t *rio = arg; 1211 size_t size = BP_GET_PSIZE(bp); 1212 void *data = zio_data_buf_alloc(size); 1213 1214 zio_nowait(zio_read(rio, spa, bp, data, size, 1215 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB, 1216 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL | 1217 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb)); 1218 } 1219 return (0); 1220 } 1221 1222 static int 1223 spa_load_verify(spa_t *spa) 1224 { 1225 zio_t *rio; 1226 spa_load_error_t sle = { 0 }; 1227 zpool_rewind_policy_t policy; 1228 boolean_t verify_ok = B_FALSE; 1229 int error; 1230 1231 rio = zio_root(spa, NULL, &sle, 1232 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE); 1233 1234 error = traverse_pool(spa, spa_load_verify_cb, rio, 1235 spa->spa_verify_min_txg); 1236 1237 (void) zio_wait(rio); 1238 1239 zpool_get_rewind_policy(spa->spa_config, &policy); 1240 1241 spa->spa_load_meta_errors = sle.sle_metadata_count; 1242 spa->spa_load_data_errors = sle.sle_data_count; 1243 1244 if (!error && sle.sle_metadata_count <= policy.zrp_maxmeta && 1245 sle.sle_data_count <= policy.zrp_maxdata) { 1246 verify_ok = B_TRUE; 1247 spa->spa_load_txg = spa->spa_uberblock.ub_txg; 1248 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp; 1249 } 1250 1251 if (error) { 1252 if (error != ENXIO && error != EIO) 1253 error = EIO; 1254 return (error); 1255 } 1256 1257 return (verify_ok ? 0 : EIO); 1258 } 1259 1260 /* 1261 * Load an existing storage pool, using the pool's builtin spa_config as a 1262 * source of configuration information. 1263 */ 1264 static int 1265 spa_load(spa_t *spa, spa_load_state_t state, int mosconfig) 1266 { 1267 int error = 0; 1268 nvlist_t *nvconfig, *nvroot = NULL; 1269 vdev_t *rvd; 1270 uberblock_t *ub = &spa->spa_uberblock; 1271 uint64_t config_cache_txg = spa->spa_config_txg; 1272 uint64_t pool_guid; 1273 uint64_t version; 1274 uint64_t autoreplace = 0; 1275 int orig_mode = spa->spa_mode; 1276 char *ereport = FM_EREPORT_ZFS_POOL; 1277 nvlist_t *config = spa->spa_config; 1278 1279 /* 1280 * If this is an untrusted config, access the pool in read-only mode. 1281 * This prevents things like resilvering recently removed devices. 1282 */ 1283 if (!mosconfig) 1284 spa->spa_mode = FREAD; 1285 1286 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1287 1288 spa->spa_load_state = state; 1289 1290 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) || 1291 nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) { 1292 error = EINVAL; 1293 goto out; 1294 } 1295 1296 /* 1297 * Versioning wasn't explicitly added to the label until later, so if 1298 * it's not present treat it as the initial version. 1299 */ 1300 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, &version) != 0) 1301 version = SPA_VERSION_INITIAL; 1302 1303 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, 1304 &spa->spa_config_txg); 1305 1306 if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) && 1307 spa_guid_exists(pool_guid, 0)) { 1308 error = EEXIST; 1309 goto out; 1310 } 1311 1312 spa->spa_load_guid = pool_guid; 1313 1314 /* 1315 * Create "The Godfather" zio to hold all async IOs 1316 */ 1317 spa->spa_async_zio_root = zio_root(spa, NULL, NULL, 1318 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER); 1319 1320 /* 1321 * Parse the configuration into a vdev tree. We explicitly set the 1322 * value that will be returned by spa_version() since parsing the 1323 * configuration requires knowing the version number. 1324 */ 1325 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1326 spa->spa_ubsync.ub_version = version; 1327 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_LOAD); 1328 spa_config_exit(spa, SCL_ALL, FTAG); 1329 1330 if (error != 0) 1331 goto out; 1332 1333 ASSERT(spa->spa_root_vdev == rvd); 1334 ASSERT(spa_guid(spa) == pool_guid); 1335 1336 /* 1337 * Try to open all vdevs, loading each label in the process. 1338 */ 1339 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1340 error = vdev_open(rvd); 1341 spa_config_exit(spa, SCL_ALL, FTAG); 1342 if (error != 0) 1343 goto out; 1344 1345 /* 1346 * We need to validate the vdev labels against the configuration that 1347 * we have in hand, which is dependent on the setting of mosconfig. If 1348 * mosconfig is true then we're validating the vdev labels based on 1349 * that config. Otherwise, we're validating against the cached config 1350 * (zpool.cache) that was read when we loaded the zfs module, and then 1351 * later we will recursively call spa_load() and validate against 1352 * the vdev config. 1353 */ 1354 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1355 error = vdev_validate(rvd); 1356 spa_config_exit(spa, SCL_ALL, FTAG); 1357 if (error != 0) 1358 goto out; 1359 1360 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) { 1361 error = ENXIO; 1362 goto out; 1363 } 1364 1365 /* 1366 * Find the best uberblock. 1367 */ 1368 vdev_uberblock_load(NULL, rvd, ub); 1369 1370 /* 1371 * If we weren't able to find a single valid uberblock, return failure. 1372 */ 1373 if (ub->ub_txg == 0) { 1374 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1375 VDEV_AUX_CORRUPT_DATA); 1376 error = ENXIO; 1377 goto out; 1378 } 1379 1380 /* 1381 * If the pool is newer than the code, we can't open it. 1382 */ 1383 if (ub->ub_version > SPA_VERSION) { 1384 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1385 VDEV_AUX_VERSION_NEWER); 1386 error = ENOTSUP; 1387 goto out; 1388 } 1389 1390 /* 1391 * If the vdev guid sum doesn't match the uberblock, we have an 1392 * incomplete configuration. 1393 */ 1394 if (rvd->vdev_guid_sum != ub->ub_guid_sum && mosconfig) { 1395 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1396 VDEV_AUX_BAD_GUID_SUM); 1397 error = ENXIO; 1398 goto out; 1399 } 1400 1401 /* 1402 * Initialize internal SPA structures. 1403 */ 1404 spa->spa_state = POOL_STATE_ACTIVE; 1405 spa->spa_ubsync = spa->spa_uberblock; 1406 spa->spa_verify_min_txg = spa->spa_extreme_rewind ? 1407 TXG_INITIAL : spa_last_synced_txg(spa) - TXG_DEFER_SIZE; 1408 spa->spa_first_txg = spa->spa_last_ubsync_txg ? 1409 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1; 1410 spa->spa_claim_max_txg = spa->spa_first_txg; 1411 1412 error = dsl_pool_open(spa, spa->spa_first_txg, &spa->spa_dsl_pool); 1413 if (error) { 1414 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1415 VDEV_AUX_CORRUPT_DATA); 1416 error = EIO; 1417 goto out; 1418 } 1419 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset; 1420 1421 if (zap_lookup(spa->spa_meta_objset, 1422 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG, 1423 sizeof (uint64_t), 1, &spa->spa_config_object) != 0) { 1424 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1425 VDEV_AUX_CORRUPT_DATA); 1426 error = EIO; 1427 goto out; 1428 } 1429 1430 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0) { 1431 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1432 VDEV_AUX_CORRUPT_DATA); 1433 error = EIO; 1434 goto out; 1435 } 1436 1437 if (!mosconfig) { 1438 uint64_t hostid; 1439 1440 if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig, 1441 ZPOOL_CONFIG_HOSTID, &hostid) == 0) { 1442 char *hostname; 1443 unsigned long myhostid = 0; 1444 1445 VERIFY(nvlist_lookup_string(nvconfig, 1446 ZPOOL_CONFIG_HOSTNAME, &hostname) == 0); 1447 1448 #ifdef _KERNEL 1449 myhostid = zone_get_hostid(NULL); 1450 #else /* _KERNEL */ 1451 /* 1452 * We're emulating the system's hostid in userland, so 1453 * we can't use zone_get_hostid(). 1454 */ 1455 (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid); 1456 #endif /* _KERNEL */ 1457 if (hostid != 0 && myhostid != 0 && 1458 hostid != myhostid) { 1459 cmn_err(CE_WARN, "pool '%s' could not be " 1460 "loaded as it was last accessed by " 1461 "another system (host: %s hostid: 0x%lx). " 1462 "See: http://www.sun.com/msg/ZFS-8000-EY", 1463 spa_name(spa), hostname, 1464 (unsigned long)hostid); 1465 error = EBADF; 1466 goto out; 1467 } 1468 } 1469 1470 spa_config_set(spa, nvconfig); 1471 spa_unload(spa); 1472 spa_deactivate(spa); 1473 spa_activate(spa, orig_mode); 1474 1475 return (spa_load(spa, state, B_TRUE)); 1476 } 1477 1478 if (zap_lookup(spa->spa_meta_objset, 1479 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST, 1480 sizeof (uint64_t), 1, &spa->spa_deferred_bplist_obj) != 0) { 1481 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1482 VDEV_AUX_CORRUPT_DATA); 1483 error = EIO; 1484 goto out; 1485 } 1486 1487 /* 1488 * Load the bit that tells us to use the new accounting function 1489 * (raid-z deflation). If we have an older pool, this will not 1490 * be present. 1491 */ 1492 error = zap_lookup(spa->spa_meta_objset, 1493 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 1494 sizeof (uint64_t), 1, &spa->spa_deflate); 1495 if (error != 0 && error != ENOENT) { 1496 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1497 VDEV_AUX_CORRUPT_DATA); 1498 error = EIO; 1499 goto out; 1500 } 1501 1502 /* 1503 * Load the persistent error log. If we have an older pool, this will 1504 * not be present. 1505 */ 1506 error = zap_lookup(spa->spa_meta_objset, 1507 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_LAST, 1508 sizeof (uint64_t), 1, &spa->spa_errlog_last); 1509 if (error != 0 && error != ENOENT) { 1510 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1511 VDEV_AUX_CORRUPT_DATA); 1512 error = EIO; 1513 goto out; 1514 } 1515 1516 error = zap_lookup(spa->spa_meta_objset, 1517 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_SCRUB, 1518 sizeof (uint64_t), 1, &spa->spa_errlog_scrub); 1519 if (error != 0 && error != ENOENT) { 1520 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1521 VDEV_AUX_CORRUPT_DATA); 1522 error = EIO; 1523 goto out; 1524 } 1525 1526 /* 1527 * Load the history object. If we have an older pool, this 1528 * will not be present. 1529 */ 1530 error = zap_lookup(spa->spa_meta_objset, 1531 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_HISTORY, 1532 sizeof (uint64_t), 1, &spa->spa_history); 1533 if (error != 0 && error != ENOENT) { 1534 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1535 VDEV_AUX_CORRUPT_DATA); 1536 error = EIO; 1537 goto out; 1538 } 1539 1540 /* 1541 * Load any hot spares for this pool. 1542 */ 1543 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 1544 DMU_POOL_SPARES, sizeof (uint64_t), 1, &spa->spa_spares.sav_object); 1545 if (error != 0 && error != ENOENT) { 1546 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1547 VDEV_AUX_CORRUPT_DATA); 1548 error = EIO; 1549 goto out; 1550 } 1551 if (error == 0) { 1552 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES); 1553 if (load_nvlist(spa, spa->spa_spares.sav_object, 1554 &spa->spa_spares.sav_config) != 0) { 1555 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1556 VDEV_AUX_CORRUPT_DATA); 1557 error = EIO; 1558 goto out; 1559 } 1560 1561 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1562 spa_load_spares(spa); 1563 spa_config_exit(spa, SCL_ALL, FTAG); 1564 } 1565 1566 /* 1567 * Load any level 2 ARC devices for this pool. 1568 */ 1569 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 1570 DMU_POOL_L2CACHE, sizeof (uint64_t), 1, 1571 &spa->spa_l2cache.sav_object); 1572 if (error != 0 && error != ENOENT) { 1573 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1574 VDEV_AUX_CORRUPT_DATA); 1575 error = EIO; 1576 goto out; 1577 } 1578 if (error == 0) { 1579 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE); 1580 if (load_nvlist(spa, spa->spa_l2cache.sav_object, 1581 &spa->spa_l2cache.sav_config) != 0) { 1582 vdev_set_state(rvd, B_TRUE, 1583 VDEV_STATE_CANT_OPEN, 1584 VDEV_AUX_CORRUPT_DATA); 1585 error = EIO; 1586 goto out; 1587 } 1588 1589 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1590 spa_load_l2cache(spa); 1591 spa_config_exit(spa, SCL_ALL, FTAG); 1592 } 1593 1594 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 1595 1596 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 1597 DMU_POOL_PROPS, sizeof (uint64_t), 1, &spa->spa_pool_props_object); 1598 1599 if (error && error != ENOENT) { 1600 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1601 VDEV_AUX_CORRUPT_DATA); 1602 error = EIO; 1603 goto out; 1604 } 1605 1606 if (error == 0) { 1607 (void) zap_lookup(spa->spa_meta_objset, 1608 spa->spa_pool_props_object, 1609 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), 1610 sizeof (uint64_t), 1, &spa->spa_bootfs); 1611 (void) zap_lookup(spa->spa_meta_objset, 1612 spa->spa_pool_props_object, 1613 zpool_prop_to_name(ZPOOL_PROP_AUTOREPLACE), 1614 sizeof (uint64_t), 1, &autoreplace); 1615 spa->spa_autoreplace = (autoreplace != 0); 1616 (void) zap_lookup(spa->spa_meta_objset, 1617 spa->spa_pool_props_object, 1618 zpool_prop_to_name(ZPOOL_PROP_DELEGATION), 1619 sizeof (uint64_t), 1, &spa->spa_delegation); 1620 (void) zap_lookup(spa->spa_meta_objset, 1621 spa->spa_pool_props_object, 1622 zpool_prop_to_name(ZPOOL_PROP_FAILUREMODE), 1623 sizeof (uint64_t), 1, &spa->spa_failmode); 1624 (void) zap_lookup(spa->spa_meta_objset, 1625 spa->spa_pool_props_object, 1626 zpool_prop_to_name(ZPOOL_PROP_AUTOEXPAND), 1627 sizeof (uint64_t), 1, &spa->spa_autoexpand); 1628 (void) zap_lookup(spa->spa_meta_objset, 1629 spa->spa_pool_props_object, 1630 zpool_prop_to_name(ZPOOL_PROP_DEDUPDITTO), 1631 sizeof (uint64_t), 1, &spa->spa_dedup_ditto); 1632 } 1633 1634 /* 1635 * If the 'autoreplace' property is set, then post a resource notifying 1636 * the ZFS DE that it should not issue any faults for unopenable 1637 * devices. We also iterate over the vdevs, and post a sysevent for any 1638 * unopenable vdevs so that the normal autoreplace handler can take 1639 * over. 1640 */ 1641 if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) { 1642 spa_check_removed(spa->spa_root_vdev); 1643 /* 1644 * For the import case, this is done in spa_import(), because 1645 * at this point we're using the spare definitions from 1646 * the MOS config, not necessarily from the userland config. 1647 */ 1648 if (state != SPA_LOAD_IMPORT) { 1649 spa_aux_check_removed(&spa->spa_spares); 1650 spa_aux_check_removed(&spa->spa_l2cache); 1651 } 1652 } 1653 1654 /* 1655 * Load the vdev state for all toplevel vdevs. 1656 */ 1657 vdev_load(rvd); 1658 1659 /* 1660 * Propagate the leaf DTLs we just loaded all the way up the tree. 1661 */ 1662 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1663 vdev_dtl_reassess(rvd, 0, 0, B_FALSE); 1664 spa_config_exit(spa, SCL_ALL, FTAG); 1665 1666 /* 1667 * Check the state of the root vdev. If it can't be opened, it 1668 * indicates one or more toplevel vdevs are faulted. 1669 */ 1670 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) { 1671 error = ENXIO; 1672 goto out; 1673 } 1674 1675 /* 1676 * Load the DDTs (dedup tables). 1677 */ 1678 error = ddt_load(spa); 1679 if (error != 0) { 1680 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1681 VDEV_AUX_CORRUPT_DATA); 1682 error = EIO; 1683 goto out; 1684 } 1685 1686 if (state != SPA_LOAD_TRYIMPORT) { 1687 error = spa_load_verify(spa); 1688 if (error) { 1689 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1690 VDEV_AUX_CORRUPT_DATA); 1691 goto out; 1692 } 1693 } 1694 1695 /* 1696 * Load the intent log state and check log integrity. 1697 */ 1698 VERIFY(nvlist_lookup_nvlist(nvconfig, ZPOOL_CONFIG_VDEV_TREE, 1699 &nvroot) == 0); 1700 spa_load_log_state(spa, nvroot); 1701 nvlist_free(nvconfig); 1702 1703 if (spa_check_logs(spa)) { 1704 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1705 VDEV_AUX_BAD_LOG); 1706 error = ENXIO; 1707 ereport = FM_EREPORT_ZFS_LOG_REPLAY; 1708 goto out; 1709 } 1710 1711 if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER || 1712 spa->spa_load_max_txg == UINT64_MAX)) { 1713 dmu_tx_t *tx; 1714 int need_update = B_FALSE; 1715 1716 ASSERT(state != SPA_LOAD_TRYIMPORT); 1717 1718 /* 1719 * Claim log blocks that haven't been committed yet. 1720 * This must all happen in a single txg. 1721 * Note: spa_claim_max_txg is updated by spa_claim_notify(), 1722 * invoked from zil_claim_log_block()'s i/o done callback. 1723 * Price of rollback is that we abandon the log. 1724 */ 1725 spa->spa_claiming = B_TRUE; 1726 1727 tx = dmu_tx_create_assigned(spa_get_dsl(spa), 1728 spa_first_txg(spa)); 1729 (void) dmu_objset_find(spa_name(spa), 1730 zil_claim, tx, DS_FIND_CHILDREN); 1731 dmu_tx_commit(tx); 1732 1733 spa->spa_claiming = B_FALSE; 1734 1735 spa->spa_log_state = SPA_LOG_GOOD; 1736 spa->spa_sync_on = B_TRUE; 1737 txg_sync_start(spa->spa_dsl_pool); 1738 1739 /* 1740 * Wait for all claims to sync. We sync up to the highest 1741 * claimed log block birth time so that claimed log blocks 1742 * don't appear to be from the future. spa_claim_max_txg 1743 * will have been set for us by either zil_check_log_chain() 1744 * (invoked from spa_check_logs()) or zil_claim() above. 1745 */ 1746 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg); 1747 1748 /* 1749 * If the config cache is stale, or we have uninitialized 1750 * metaslabs (see spa_vdev_add()), then update the config. 1751 * 1752 * If spa_load_verbatim is true, trust the current 1753 * in-core spa_config and update the disk labels. 1754 */ 1755 if (config_cache_txg != spa->spa_config_txg || 1756 state == SPA_LOAD_IMPORT || spa->spa_load_verbatim || 1757 state == SPA_LOAD_RECOVER) 1758 need_update = B_TRUE; 1759 1760 for (int c = 0; c < rvd->vdev_children; c++) 1761 if (rvd->vdev_child[c]->vdev_ms_array == 0) 1762 need_update = B_TRUE; 1763 1764 /* 1765 * Update the config cache asychronously in case we're the 1766 * root pool, in which case the config cache isn't writable yet. 1767 */ 1768 if (need_update) 1769 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 1770 1771 /* 1772 * Check all DTLs to see if anything needs resilvering. 1773 */ 1774 if (vdev_resilver_needed(rvd, NULL, NULL)) 1775 spa_async_request(spa, SPA_ASYNC_RESILVER); 1776 1777 /* 1778 * Delete any inconsistent datasets. 1779 */ 1780 (void) dmu_objset_find(spa_name(spa), 1781 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN); 1782 1783 /* 1784 * Clean up any stale temporary dataset userrefs. 1785 */ 1786 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool); 1787 } 1788 1789 error = 0; 1790 out: 1791 1792 spa->spa_minref = refcount_count(&spa->spa_refcount); 1793 if (error && error != EBADF) 1794 zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0); 1795 spa->spa_load_state = SPA_LOAD_NONE; 1796 spa->spa_ena = 0; 1797 1798 return (error); 1799 } 1800 1801 static int 1802 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig) 1803 { 1804 spa_unload(spa); 1805 spa_deactivate(spa); 1806 1807 spa->spa_load_max_txg--; 1808 1809 spa_activate(spa, spa_mode_global); 1810 spa_async_suspend(spa); 1811 1812 return (spa_load(spa, state, mosconfig)); 1813 } 1814 1815 static int 1816 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig, 1817 uint64_t max_request, boolean_t extreme) 1818 { 1819 nvlist_t *config = NULL; 1820 int load_error, rewind_error; 1821 uint64_t safe_rollback_txg; 1822 uint64_t min_txg; 1823 1824 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) 1825 spa->spa_load_max_txg = spa->spa_load_txg; 1826 else 1827 spa->spa_load_max_txg = max_request; 1828 1829 load_error = rewind_error = spa_load(spa, state, mosconfig); 1830 if (load_error == 0) 1831 return (0); 1832 1833 if (spa->spa_root_vdev != NULL) 1834 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 1835 1836 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg; 1837 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp; 1838 1839 /* specific txg requested */ 1840 if (spa->spa_load_max_txg != UINT64_MAX && !extreme) { 1841 nvlist_free(config); 1842 return (load_error); 1843 } 1844 1845 /* Price of rolling back is discarding txgs, including log */ 1846 if (state == SPA_LOAD_RECOVER) 1847 spa->spa_log_state = SPA_LOG_CLEAR; 1848 1849 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg; 1850 safe_rollback_txg = spa->spa_uberblock.ub_txg - TXG_DEFER_SIZE; 1851 1852 min_txg = extreme ? TXG_INITIAL : safe_rollback_txg; 1853 while (rewind_error && (spa->spa_uberblock.ub_txg >= min_txg)) { 1854 if (spa->spa_load_max_txg < safe_rollback_txg) 1855 spa->spa_extreme_rewind = B_TRUE; 1856 rewind_error = spa_load_retry(spa, state, mosconfig); 1857 } 1858 1859 if (config) 1860 spa_rewind_data_to_nvlist(spa, config); 1861 1862 spa->spa_extreme_rewind = B_FALSE; 1863 spa->spa_load_max_txg = UINT64_MAX; 1864 1865 if (config && (rewind_error || state != SPA_LOAD_RECOVER)) 1866 spa_config_set(spa, config); 1867 1868 return (state == SPA_LOAD_RECOVER ? rewind_error : load_error); 1869 } 1870 1871 /* 1872 * Pool Open/Import 1873 * 1874 * The import case is identical to an open except that the configuration is sent 1875 * down from userland, instead of grabbed from the configuration cache. For the 1876 * case of an open, the pool configuration will exist in the 1877 * POOL_STATE_UNINITIALIZED state. 1878 * 1879 * The stats information (gen/count/ustats) is used to gather vdev statistics at 1880 * the same time open the pool, without having to keep around the spa_t in some 1881 * ambiguous state. 1882 */ 1883 static int 1884 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy, 1885 nvlist_t **config) 1886 { 1887 spa_t *spa; 1888 boolean_t norewind; 1889 boolean_t extreme; 1890 zpool_rewind_policy_t policy; 1891 spa_load_state_t state = SPA_LOAD_OPEN; 1892 int error; 1893 int locked = B_FALSE; 1894 1895 *spapp = NULL; 1896 1897 zpool_get_rewind_policy(nvpolicy, &policy); 1898 if (policy.zrp_request & ZPOOL_DO_REWIND) 1899 state = SPA_LOAD_RECOVER; 1900 norewind = (policy.zrp_request == ZPOOL_NO_REWIND); 1901 extreme = ((policy.zrp_request & ZPOOL_EXTREME_REWIND) != 0); 1902 1903 /* 1904 * As disgusting as this is, we need to support recursive calls to this 1905 * function because dsl_dir_open() is called during spa_load(), and ends 1906 * up calling spa_open() again. The real fix is to figure out how to 1907 * avoid dsl_dir_open() calling this in the first place. 1908 */ 1909 if (mutex_owner(&spa_namespace_lock) != curthread) { 1910 mutex_enter(&spa_namespace_lock); 1911 locked = B_TRUE; 1912 } 1913 1914 if ((spa = spa_lookup(pool)) == NULL) { 1915 if (locked) 1916 mutex_exit(&spa_namespace_lock); 1917 return (ENOENT); 1918 } 1919 1920 if (spa->spa_state == POOL_STATE_UNINITIALIZED) { 1921 1922 spa_activate(spa, spa_mode_global); 1923 1924 if (spa->spa_last_open_failed && norewind) { 1925 if (config != NULL && spa->spa_config) 1926 VERIFY(nvlist_dup(spa->spa_config, 1927 config, KM_SLEEP) == 0); 1928 spa_deactivate(spa); 1929 if (locked) 1930 mutex_exit(&spa_namespace_lock); 1931 return (spa->spa_last_open_failed); 1932 } 1933 1934 if (state != SPA_LOAD_RECOVER) 1935 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 1936 1937 error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg, 1938 extreme); 1939 1940 if (error == EBADF) { 1941 /* 1942 * If vdev_validate() returns failure (indicated by 1943 * EBADF), it indicates that one of the vdevs indicates 1944 * that the pool has been exported or destroyed. If 1945 * this is the case, the config cache is out of sync and 1946 * we should remove the pool from the namespace. 1947 */ 1948 spa_unload(spa); 1949 spa_deactivate(spa); 1950 spa_config_sync(spa, B_TRUE, B_TRUE); 1951 spa_remove(spa); 1952 if (locked) 1953 mutex_exit(&spa_namespace_lock); 1954 return (ENOENT); 1955 } 1956 1957 if (error) { 1958 /* 1959 * We can't open the pool, but we still have useful 1960 * information: the state of each vdev after the 1961 * attempted vdev_open(). Return this to the user. 1962 */ 1963 if (config != NULL && spa->spa_config) 1964 VERIFY(nvlist_dup(spa->spa_config, config, 1965 KM_SLEEP) == 0); 1966 spa_unload(spa); 1967 spa_deactivate(spa); 1968 spa->spa_last_open_failed = error; 1969 if (locked) 1970 mutex_exit(&spa_namespace_lock); 1971 *spapp = NULL; 1972 return (error); 1973 } 1974 1975 } 1976 1977 spa_open_ref(spa, tag); 1978 1979 spa->spa_last_open_failed = 0; 1980 1981 if (config != NULL) 1982 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 1983 1984 spa->spa_last_ubsync_txg = 0; 1985 spa->spa_load_txg = 0; 1986 1987 if (locked) 1988 mutex_exit(&spa_namespace_lock); 1989 1990 *spapp = spa; 1991 1992 return (0); 1993 } 1994 1995 int 1996 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy, 1997 nvlist_t **config) 1998 { 1999 return (spa_open_common(name, spapp, tag, policy, config)); 2000 } 2001 2002 int 2003 spa_open(const char *name, spa_t **spapp, void *tag) 2004 { 2005 return (spa_open_common(name, spapp, tag, NULL, NULL)); 2006 } 2007 2008 /* 2009 * Lookup the given spa_t, incrementing the inject count in the process, 2010 * preventing it from being exported or destroyed. 2011 */ 2012 spa_t * 2013 spa_inject_addref(char *name) 2014 { 2015 spa_t *spa; 2016 2017 mutex_enter(&spa_namespace_lock); 2018 if ((spa = spa_lookup(name)) == NULL) { 2019 mutex_exit(&spa_namespace_lock); 2020 return (NULL); 2021 } 2022 spa->spa_inject_ref++; 2023 mutex_exit(&spa_namespace_lock); 2024 2025 return (spa); 2026 } 2027 2028 void 2029 spa_inject_delref(spa_t *spa) 2030 { 2031 mutex_enter(&spa_namespace_lock); 2032 spa->spa_inject_ref--; 2033 mutex_exit(&spa_namespace_lock); 2034 } 2035 2036 /* 2037 * Add spares device information to the nvlist. 2038 */ 2039 static void 2040 spa_add_spares(spa_t *spa, nvlist_t *config) 2041 { 2042 nvlist_t **spares; 2043 uint_t i, nspares; 2044 nvlist_t *nvroot; 2045 uint64_t guid; 2046 vdev_stat_t *vs; 2047 uint_t vsc; 2048 uint64_t pool; 2049 2050 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 2051 2052 if (spa->spa_spares.sav_count == 0) 2053 return; 2054 2055 VERIFY(nvlist_lookup_nvlist(config, 2056 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 2057 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 2058 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 2059 if (nspares != 0) { 2060 VERIFY(nvlist_add_nvlist_array(nvroot, 2061 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 2062 VERIFY(nvlist_lookup_nvlist_array(nvroot, 2063 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 2064 2065 /* 2066 * Go through and find any spares which have since been 2067 * repurposed as an active spare. If this is the case, update 2068 * their status appropriately. 2069 */ 2070 for (i = 0; i < nspares; i++) { 2071 VERIFY(nvlist_lookup_uint64(spares[i], 2072 ZPOOL_CONFIG_GUID, &guid) == 0); 2073 if (spa_spare_exists(guid, &pool, NULL) && 2074 pool != 0ULL) { 2075 VERIFY(nvlist_lookup_uint64_array( 2076 spares[i], ZPOOL_CONFIG_STATS, 2077 (uint64_t **)&vs, &vsc) == 0); 2078 vs->vs_state = VDEV_STATE_CANT_OPEN; 2079 vs->vs_aux = VDEV_AUX_SPARED; 2080 } 2081 } 2082 } 2083 } 2084 2085 /* 2086 * Add l2cache device information to the nvlist, including vdev stats. 2087 */ 2088 static void 2089 spa_add_l2cache(spa_t *spa, nvlist_t *config) 2090 { 2091 nvlist_t **l2cache; 2092 uint_t i, j, nl2cache; 2093 nvlist_t *nvroot; 2094 uint64_t guid; 2095 vdev_t *vd; 2096 vdev_stat_t *vs; 2097 uint_t vsc; 2098 2099 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 2100 2101 if (spa->spa_l2cache.sav_count == 0) 2102 return; 2103 2104 VERIFY(nvlist_lookup_nvlist(config, 2105 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 2106 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 2107 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 2108 if (nl2cache != 0) { 2109 VERIFY(nvlist_add_nvlist_array(nvroot, 2110 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 2111 VERIFY(nvlist_lookup_nvlist_array(nvroot, 2112 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 2113 2114 /* 2115 * Update level 2 cache device stats. 2116 */ 2117 2118 for (i = 0; i < nl2cache; i++) { 2119 VERIFY(nvlist_lookup_uint64(l2cache[i], 2120 ZPOOL_CONFIG_GUID, &guid) == 0); 2121 2122 vd = NULL; 2123 for (j = 0; j < spa->spa_l2cache.sav_count; j++) { 2124 if (guid == 2125 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) { 2126 vd = spa->spa_l2cache.sav_vdevs[j]; 2127 break; 2128 } 2129 } 2130 ASSERT(vd != NULL); 2131 2132 VERIFY(nvlist_lookup_uint64_array(l2cache[i], 2133 ZPOOL_CONFIG_STATS, (uint64_t **)&vs, &vsc) == 0); 2134 vdev_get_stats(vd, vs); 2135 } 2136 } 2137 } 2138 2139 int 2140 spa_get_stats(const char *name, nvlist_t **config, char *altroot, size_t buflen) 2141 { 2142 int error; 2143 spa_t *spa; 2144 2145 *config = NULL; 2146 error = spa_open_common(name, &spa, FTAG, NULL, config); 2147 2148 if (spa != NULL) { 2149 /* 2150 * This still leaves a window of inconsistency where the spares 2151 * or l2cache devices could change and the config would be 2152 * self-inconsistent. 2153 */ 2154 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 2155 2156 if (*config != NULL) { 2157 VERIFY(nvlist_add_uint64(*config, 2158 ZPOOL_CONFIG_ERRCOUNT, 2159 spa_get_errlog_size(spa)) == 0); 2160 2161 if (spa_suspended(spa)) 2162 VERIFY(nvlist_add_uint64(*config, 2163 ZPOOL_CONFIG_SUSPENDED, 2164 spa->spa_failmode) == 0); 2165 2166 spa_add_spares(spa, *config); 2167 spa_add_l2cache(spa, *config); 2168 } 2169 } 2170 2171 /* 2172 * We want to get the alternate root even for faulted pools, so we cheat 2173 * and call spa_lookup() directly. 2174 */ 2175 if (altroot) { 2176 if (spa == NULL) { 2177 mutex_enter(&spa_namespace_lock); 2178 spa = spa_lookup(name); 2179 if (spa) 2180 spa_altroot(spa, altroot, buflen); 2181 else 2182 altroot[0] = '\0'; 2183 spa = NULL; 2184 mutex_exit(&spa_namespace_lock); 2185 } else { 2186 spa_altroot(spa, altroot, buflen); 2187 } 2188 } 2189 2190 if (spa != NULL) { 2191 spa_config_exit(spa, SCL_CONFIG, FTAG); 2192 spa_close(spa, FTAG); 2193 } 2194 2195 return (error); 2196 } 2197 2198 /* 2199 * Validate that the auxiliary device array is well formed. We must have an 2200 * array of nvlists, each which describes a valid leaf vdev. If this is an 2201 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be 2202 * specified, as long as they are well-formed. 2203 */ 2204 static int 2205 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode, 2206 spa_aux_vdev_t *sav, const char *config, uint64_t version, 2207 vdev_labeltype_t label) 2208 { 2209 nvlist_t **dev; 2210 uint_t i, ndev; 2211 vdev_t *vd; 2212 int error; 2213 2214 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 2215 2216 /* 2217 * It's acceptable to have no devs specified. 2218 */ 2219 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0) 2220 return (0); 2221 2222 if (ndev == 0) 2223 return (EINVAL); 2224 2225 /* 2226 * Make sure the pool is formatted with a version that supports this 2227 * device type. 2228 */ 2229 if (spa_version(spa) < version) 2230 return (ENOTSUP); 2231 2232 /* 2233 * Set the pending device list so we correctly handle device in-use 2234 * checking. 2235 */ 2236 sav->sav_pending = dev; 2237 sav->sav_npending = ndev; 2238 2239 for (i = 0; i < ndev; i++) { 2240 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0, 2241 mode)) != 0) 2242 goto out; 2243 2244 if (!vd->vdev_ops->vdev_op_leaf) { 2245 vdev_free(vd); 2246 error = EINVAL; 2247 goto out; 2248 } 2249 2250 /* 2251 * The L2ARC currently only supports disk devices in 2252 * kernel context. For user-level testing, we allow it. 2253 */ 2254 #ifdef _KERNEL 2255 if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) && 2256 strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) { 2257 error = ENOTBLK; 2258 goto out; 2259 } 2260 #endif 2261 vd->vdev_top = vd; 2262 2263 if ((error = vdev_open(vd)) == 0 && 2264 (error = vdev_label_init(vd, crtxg, label)) == 0) { 2265 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID, 2266 vd->vdev_guid) == 0); 2267 } 2268 2269 vdev_free(vd); 2270 2271 if (error && 2272 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE)) 2273 goto out; 2274 else 2275 error = 0; 2276 } 2277 2278 out: 2279 sav->sav_pending = NULL; 2280 sav->sav_npending = 0; 2281 return (error); 2282 } 2283 2284 static int 2285 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode) 2286 { 2287 int error; 2288 2289 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 2290 2291 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode, 2292 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES, 2293 VDEV_LABEL_SPARE)) != 0) { 2294 return (error); 2295 } 2296 2297 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode, 2298 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE, 2299 VDEV_LABEL_L2CACHE)); 2300 } 2301 2302 static void 2303 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs, 2304 const char *config) 2305 { 2306 int i; 2307 2308 if (sav->sav_config != NULL) { 2309 nvlist_t **olddevs; 2310 uint_t oldndevs; 2311 nvlist_t **newdevs; 2312 2313 /* 2314 * Generate new dev list by concatentating with the 2315 * current dev list. 2316 */ 2317 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config, 2318 &olddevs, &oldndevs) == 0); 2319 2320 newdevs = kmem_alloc(sizeof (void *) * 2321 (ndevs + oldndevs), KM_SLEEP); 2322 for (i = 0; i < oldndevs; i++) 2323 VERIFY(nvlist_dup(olddevs[i], &newdevs[i], 2324 KM_SLEEP) == 0); 2325 for (i = 0; i < ndevs; i++) 2326 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs], 2327 KM_SLEEP) == 0); 2328 2329 VERIFY(nvlist_remove(sav->sav_config, config, 2330 DATA_TYPE_NVLIST_ARRAY) == 0); 2331 2332 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 2333 config, newdevs, ndevs + oldndevs) == 0); 2334 for (i = 0; i < oldndevs + ndevs; i++) 2335 nvlist_free(newdevs[i]); 2336 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *)); 2337 } else { 2338 /* 2339 * Generate a new dev list. 2340 */ 2341 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME, 2342 KM_SLEEP) == 0); 2343 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config, 2344 devs, ndevs) == 0); 2345 } 2346 } 2347 2348 /* 2349 * Stop and drop level 2 ARC devices 2350 */ 2351 void 2352 spa_l2cache_drop(spa_t *spa) 2353 { 2354 vdev_t *vd; 2355 int i; 2356 spa_aux_vdev_t *sav = &spa->spa_l2cache; 2357 2358 for (i = 0; i < sav->sav_count; i++) { 2359 uint64_t pool; 2360 2361 vd = sav->sav_vdevs[i]; 2362 ASSERT(vd != NULL); 2363 2364 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 2365 pool != 0ULL && l2arc_vdev_present(vd)) 2366 l2arc_remove_vdev(vd); 2367 if (vd->vdev_isl2cache) 2368 spa_l2cache_remove(vd); 2369 vdev_clear_stats(vd); 2370 (void) vdev_close(vd); 2371 } 2372 } 2373 2374 /* 2375 * Pool Creation 2376 */ 2377 int 2378 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props, 2379 const char *history_str, nvlist_t *zplprops) 2380 { 2381 spa_t *spa; 2382 char *altroot = NULL; 2383 vdev_t *rvd; 2384 dsl_pool_t *dp; 2385 dmu_tx_t *tx; 2386 int error = 0; 2387 uint64_t txg = TXG_INITIAL; 2388 nvlist_t **spares, **l2cache; 2389 uint_t nspares, nl2cache; 2390 uint64_t version; 2391 2392 /* 2393 * If this pool already exists, return failure. 2394 */ 2395 mutex_enter(&spa_namespace_lock); 2396 if (spa_lookup(pool) != NULL) { 2397 mutex_exit(&spa_namespace_lock); 2398 return (EEXIST); 2399 } 2400 2401 /* 2402 * Allocate a new spa_t structure. 2403 */ 2404 (void) nvlist_lookup_string(props, 2405 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 2406 spa = spa_add(pool, NULL, altroot); 2407 spa_activate(spa, spa_mode_global); 2408 2409 if (props && (error = spa_prop_validate(spa, props))) { 2410 spa_deactivate(spa); 2411 spa_remove(spa); 2412 mutex_exit(&spa_namespace_lock); 2413 return (error); 2414 } 2415 2416 if (nvlist_lookup_uint64(props, zpool_prop_to_name(ZPOOL_PROP_VERSION), 2417 &version) != 0) 2418 version = SPA_VERSION; 2419 ASSERT(version <= SPA_VERSION); 2420 2421 spa->spa_first_txg = txg; 2422 spa->spa_uberblock.ub_txg = txg - 1; 2423 spa->spa_uberblock.ub_version = version; 2424 spa->spa_ubsync = spa->spa_uberblock; 2425 2426 /* 2427 * Create "The Godfather" zio to hold all async IOs 2428 */ 2429 spa->spa_async_zio_root = zio_root(spa, NULL, NULL, 2430 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER); 2431 2432 /* 2433 * Create the root vdev. 2434 */ 2435 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2436 2437 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD); 2438 2439 ASSERT(error != 0 || rvd != NULL); 2440 ASSERT(error != 0 || spa->spa_root_vdev == rvd); 2441 2442 if (error == 0 && !zfs_allocatable_devs(nvroot)) 2443 error = EINVAL; 2444 2445 if (error == 0 && 2446 (error = vdev_create(rvd, txg, B_FALSE)) == 0 && 2447 (error = spa_validate_aux(spa, nvroot, txg, 2448 VDEV_ALLOC_ADD)) == 0) { 2449 for (int c = 0; c < rvd->vdev_children; c++) { 2450 vdev_metaslab_set_size(rvd->vdev_child[c]); 2451 vdev_expand(rvd->vdev_child[c], txg); 2452 } 2453 } 2454 2455 spa_config_exit(spa, SCL_ALL, FTAG); 2456 2457 if (error != 0) { 2458 spa_unload(spa); 2459 spa_deactivate(spa); 2460 spa_remove(spa); 2461 mutex_exit(&spa_namespace_lock); 2462 return (error); 2463 } 2464 2465 /* 2466 * Get the list of spares, if specified. 2467 */ 2468 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 2469 &spares, &nspares) == 0) { 2470 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME, 2471 KM_SLEEP) == 0); 2472 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 2473 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 2474 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2475 spa_load_spares(spa); 2476 spa_config_exit(spa, SCL_ALL, FTAG); 2477 spa->spa_spares.sav_sync = B_TRUE; 2478 } 2479 2480 /* 2481 * Get the list of level 2 cache devices, if specified. 2482 */ 2483 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 2484 &l2cache, &nl2cache) == 0) { 2485 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 2486 NV_UNIQUE_NAME, KM_SLEEP) == 0); 2487 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 2488 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 2489 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2490 spa_load_l2cache(spa); 2491 spa_config_exit(spa, SCL_ALL, FTAG); 2492 spa->spa_l2cache.sav_sync = B_TRUE; 2493 } 2494 2495 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg); 2496 spa->spa_meta_objset = dp->dp_meta_objset; 2497 2498 tx = dmu_tx_create_assigned(dp, txg); 2499 2500 /* 2501 * Create the pool config object. 2502 */ 2503 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset, 2504 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE, 2505 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx); 2506 2507 if (zap_add(spa->spa_meta_objset, 2508 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG, 2509 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) { 2510 cmn_err(CE_PANIC, "failed to add pool config"); 2511 } 2512 2513 /* Newly created pools with the right version are always deflated. */ 2514 if (version >= SPA_VERSION_RAIDZ_DEFLATE) { 2515 spa->spa_deflate = TRUE; 2516 if (zap_add(spa->spa_meta_objset, 2517 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 2518 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) { 2519 cmn_err(CE_PANIC, "failed to add deflate"); 2520 } 2521 } 2522 2523 /* 2524 * Create the deferred-free bplist object. Turn off compression 2525 * because sync-to-convergence takes longer if the blocksize 2526 * keeps changing. 2527 */ 2528 spa->spa_deferred_bplist_obj = bplist_create(spa->spa_meta_objset, 2529 1 << 14, tx); 2530 dmu_object_set_compress(spa->spa_meta_objset, 2531 spa->spa_deferred_bplist_obj, ZIO_COMPRESS_OFF, tx); 2532 2533 if (zap_add(spa->spa_meta_objset, 2534 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST, 2535 sizeof (uint64_t), 1, &spa->spa_deferred_bplist_obj, tx) != 0) { 2536 cmn_err(CE_PANIC, "failed to add bplist"); 2537 } 2538 2539 /* 2540 * Create the pool's history object. 2541 */ 2542 if (version >= SPA_VERSION_ZPOOL_HISTORY) 2543 spa_history_create_obj(spa, tx); 2544 2545 /* 2546 * Set pool properties. 2547 */ 2548 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS); 2549 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 2550 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE); 2551 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND); 2552 2553 if (props != NULL) { 2554 spa_configfile_set(spa, props, B_FALSE); 2555 spa_sync_props(spa, props, CRED(), tx); 2556 } 2557 2558 /* 2559 * Create DDTs (dedup tables). 2560 */ 2561 ddt_create(spa); 2562 2563 dmu_tx_commit(tx); 2564 2565 spa->spa_sync_on = B_TRUE; 2566 txg_sync_start(spa->spa_dsl_pool); 2567 2568 /* 2569 * We explicitly wait for the first transaction to complete so that our 2570 * bean counters are appropriately updated. 2571 */ 2572 txg_wait_synced(spa->spa_dsl_pool, txg); 2573 2574 spa_config_sync(spa, B_FALSE, B_TRUE); 2575 2576 if (version >= SPA_VERSION_ZPOOL_HISTORY && history_str != NULL) 2577 (void) spa_history_log(spa, history_str, LOG_CMD_POOL_CREATE); 2578 spa_history_log_version(spa, LOG_POOL_CREATE); 2579 2580 spa->spa_minref = refcount_count(&spa->spa_refcount); 2581 2582 mutex_exit(&spa_namespace_lock); 2583 2584 return (0); 2585 } 2586 2587 #ifdef _KERNEL 2588 /* 2589 * Get the root pool information from the root disk, then import the root pool 2590 * during the system boot up time. 2591 */ 2592 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **); 2593 2594 static nvlist_t * 2595 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid) 2596 { 2597 nvlist_t *config; 2598 nvlist_t *nvtop, *nvroot; 2599 uint64_t pgid; 2600 2601 if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0) 2602 return (NULL); 2603 2604 /* 2605 * Add this top-level vdev to the child array. 2606 */ 2607 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 2608 &nvtop) == 0); 2609 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 2610 &pgid) == 0); 2611 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0); 2612 2613 /* 2614 * Put this pool's top-level vdevs into a root vdev. 2615 */ 2616 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 2617 VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, 2618 VDEV_TYPE_ROOT) == 0); 2619 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0); 2620 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0); 2621 VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 2622 &nvtop, 1) == 0); 2623 2624 /* 2625 * Replace the existing vdev_tree with the new root vdev in 2626 * this pool's configuration (remove the old, add the new). 2627 */ 2628 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0); 2629 nvlist_free(nvroot); 2630 return (config); 2631 } 2632 2633 /* 2634 * Walk the vdev tree and see if we can find a device with "better" 2635 * configuration. A configuration is "better" if the label on that 2636 * device has a more recent txg. 2637 */ 2638 static void 2639 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg) 2640 { 2641 for (int c = 0; c < vd->vdev_children; c++) 2642 spa_alt_rootvdev(vd->vdev_child[c], avd, txg); 2643 2644 if (vd->vdev_ops->vdev_op_leaf) { 2645 nvlist_t *label; 2646 uint64_t label_txg; 2647 2648 if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid, 2649 &label) != 0) 2650 return; 2651 2652 VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG, 2653 &label_txg) == 0); 2654 2655 /* 2656 * Do we have a better boot device? 2657 */ 2658 if (label_txg > *txg) { 2659 *txg = label_txg; 2660 *avd = vd; 2661 } 2662 nvlist_free(label); 2663 } 2664 } 2665 2666 /* 2667 * Import a root pool. 2668 * 2669 * For x86. devpath_list will consist of devid and/or physpath name of 2670 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a"). 2671 * The GRUB "findroot" command will return the vdev we should boot. 2672 * 2673 * For Sparc, devpath_list consists the physpath name of the booting device 2674 * no matter the rootpool is a single device pool or a mirrored pool. 2675 * e.g. 2676 * "/pci@1f,0/ide@d/disk@0,0:a" 2677 */ 2678 int 2679 spa_import_rootpool(char *devpath, char *devid) 2680 { 2681 spa_t *spa; 2682 vdev_t *rvd, *bvd, *avd = NULL; 2683 nvlist_t *config, *nvtop; 2684 uint64_t guid, txg; 2685 char *pname; 2686 int error; 2687 2688 /* 2689 * Read the label from the boot device and generate a configuration. 2690 */ 2691 config = spa_generate_rootconf(devpath, devid, &guid); 2692 #if defined(_OBP) && defined(_KERNEL) 2693 if (config == NULL) { 2694 if (strstr(devpath, "/iscsi/ssd") != NULL) { 2695 /* iscsi boot */ 2696 get_iscsi_bootpath_phy(devpath); 2697 config = spa_generate_rootconf(devpath, devid, &guid); 2698 } 2699 } 2700 #endif 2701 if (config == NULL) { 2702 cmn_err(CE_NOTE, "Can not read the pool label from '%s'", 2703 devpath); 2704 return (EIO); 2705 } 2706 2707 VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 2708 &pname) == 0); 2709 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0); 2710 2711 mutex_enter(&spa_namespace_lock); 2712 if ((spa = spa_lookup(pname)) != NULL) { 2713 /* 2714 * Remove the existing root pool from the namespace so that we 2715 * can replace it with the correct config we just read in. 2716 */ 2717 spa_remove(spa); 2718 } 2719 2720 spa = spa_add(pname, config, NULL); 2721 spa->spa_is_root = B_TRUE; 2722 spa->spa_load_verbatim = B_TRUE; 2723 2724 /* 2725 * Build up a vdev tree based on the boot device's label config. 2726 */ 2727 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 2728 &nvtop) == 0); 2729 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2730 error = spa_config_parse(spa, &rvd, nvtop, NULL, 0, 2731 VDEV_ALLOC_ROOTPOOL); 2732 spa_config_exit(spa, SCL_ALL, FTAG); 2733 if (error) { 2734 mutex_exit(&spa_namespace_lock); 2735 nvlist_free(config); 2736 cmn_err(CE_NOTE, "Can not parse the config for pool '%s'", 2737 pname); 2738 return (error); 2739 } 2740 2741 /* 2742 * Get the boot vdev. 2743 */ 2744 if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) { 2745 cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu", 2746 (u_longlong_t)guid); 2747 error = ENOENT; 2748 goto out; 2749 } 2750 2751 /* 2752 * Determine if there is a better boot device. 2753 */ 2754 avd = bvd; 2755 spa_alt_rootvdev(rvd, &avd, &txg); 2756 if (avd != bvd) { 2757 cmn_err(CE_NOTE, "The boot device is 'degraded'. Please " 2758 "try booting from '%s'", avd->vdev_path); 2759 error = EINVAL; 2760 goto out; 2761 } 2762 2763 /* 2764 * If the boot device is part of a spare vdev then ensure that 2765 * we're booting off the active spare. 2766 */ 2767 if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops && 2768 !bvd->vdev_isspare) { 2769 cmn_err(CE_NOTE, "The boot device is currently spared. Please " 2770 "try booting from '%s'", 2771 bvd->vdev_parent->vdev_child[1]->vdev_path); 2772 error = EINVAL; 2773 goto out; 2774 } 2775 2776 VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0); 2777 error = 0; 2778 spa_history_log_version(spa, LOG_POOL_IMPORT); 2779 out: 2780 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2781 vdev_free(rvd); 2782 spa_config_exit(spa, SCL_ALL, FTAG); 2783 mutex_exit(&spa_namespace_lock); 2784 2785 nvlist_free(config); 2786 return (error); 2787 } 2788 2789 #endif 2790 2791 /* 2792 * Take a pool and insert it into the namespace as if it had been loaded at 2793 * boot. 2794 */ 2795 int 2796 spa_import_verbatim(const char *pool, nvlist_t *config, nvlist_t *props) 2797 { 2798 spa_t *spa; 2799 zpool_rewind_policy_t policy; 2800 char *altroot = NULL; 2801 2802 mutex_enter(&spa_namespace_lock); 2803 if (spa_lookup(pool) != NULL) { 2804 mutex_exit(&spa_namespace_lock); 2805 return (EEXIST); 2806 } 2807 2808 (void) nvlist_lookup_string(props, 2809 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 2810 spa = spa_add(pool, config, altroot); 2811 2812 zpool_get_rewind_policy(config, &policy); 2813 spa->spa_load_max_txg = policy.zrp_txg; 2814 2815 spa->spa_load_verbatim = B_TRUE; 2816 2817 if (props != NULL) 2818 spa_configfile_set(spa, props, B_FALSE); 2819 2820 spa_config_sync(spa, B_FALSE, B_TRUE); 2821 2822 mutex_exit(&spa_namespace_lock); 2823 spa_history_log_version(spa, LOG_POOL_IMPORT); 2824 2825 return (0); 2826 } 2827 2828 /* 2829 * Import a non-root pool into the system. 2830 */ 2831 int 2832 spa_import(const char *pool, nvlist_t *config, nvlist_t *props) 2833 { 2834 spa_t *spa; 2835 char *altroot = NULL; 2836 spa_load_state_t state = SPA_LOAD_IMPORT; 2837 zpool_rewind_policy_t policy; 2838 int error; 2839 nvlist_t *nvroot; 2840 nvlist_t **spares, **l2cache; 2841 uint_t nspares, nl2cache; 2842 2843 /* 2844 * If a pool with this name exists, return failure. 2845 */ 2846 mutex_enter(&spa_namespace_lock); 2847 if ((spa = spa_lookup(pool)) != NULL) { 2848 mutex_exit(&spa_namespace_lock); 2849 return (EEXIST); 2850 } 2851 2852 zpool_get_rewind_policy(config, &policy); 2853 if (policy.zrp_request & ZPOOL_DO_REWIND) 2854 state = SPA_LOAD_RECOVER; 2855 2856 /* 2857 * Create and initialize the spa structure. 2858 */ 2859 (void) nvlist_lookup_string(props, 2860 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 2861 spa = spa_add(pool, config, altroot); 2862 spa_activate(spa, spa_mode_global); 2863 2864 /* 2865 * Don't start async tasks until we know everything is healthy. 2866 */ 2867 spa_async_suspend(spa); 2868 2869 /* 2870 * Pass off the heavy lifting to spa_load(). Pass TRUE for mosconfig 2871 * because the user-supplied config is actually the one to trust when 2872 * doing an import. 2873 */ 2874 if (state != SPA_LOAD_RECOVER) 2875 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 2876 error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg, 2877 ((policy.zrp_request & ZPOOL_EXTREME_REWIND) != 0)); 2878 2879 /* 2880 * Propagate anything learned about failing or best txgs 2881 * back to caller 2882 */ 2883 spa_rewind_data_to_nvlist(spa, config); 2884 2885 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2886 /* 2887 * Toss any existing sparelist, as it doesn't have any validity 2888 * anymore, and conflicts with spa_has_spare(). 2889 */ 2890 if (spa->spa_spares.sav_config) { 2891 nvlist_free(spa->spa_spares.sav_config); 2892 spa->spa_spares.sav_config = NULL; 2893 spa_load_spares(spa); 2894 } 2895 if (spa->spa_l2cache.sav_config) { 2896 nvlist_free(spa->spa_l2cache.sav_config); 2897 spa->spa_l2cache.sav_config = NULL; 2898 spa_load_l2cache(spa); 2899 } 2900 2901 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 2902 &nvroot) == 0); 2903 if (error == 0) 2904 error = spa_validate_aux(spa, nvroot, -1ULL, 2905 VDEV_ALLOC_SPARE); 2906 if (error == 0) 2907 error = spa_validate_aux(spa, nvroot, -1ULL, 2908 VDEV_ALLOC_L2CACHE); 2909 spa_config_exit(spa, SCL_ALL, FTAG); 2910 2911 if (props != NULL) 2912 spa_configfile_set(spa, props, B_FALSE); 2913 2914 if (error != 0 || (props && spa_writeable(spa) && 2915 (error = spa_prop_set(spa, props)))) { 2916 spa_unload(spa); 2917 spa_deactivate(spa); 2918 spa_remove(spa); 2919 mutex_exit(&spa_namespace_lock); 2920 return (error); 2921 } 2922 2923 spa_async_resume(spa); 2924 2925 /* 2926 * Override any spares and level 2 cache devices as specified by 2927 * the user, as these may have correct device names/devids, etc. 2928 */ 2929 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 2930 &spares, &nspares) == 0) { 2931 if (spa->spa_spares.sav_config) 2932 VERIFY(nvlist_remove(spa->spa_spares.sav_config, 2933 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0); 2934 else 2935 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, 2936 NV_UNIQUE_NAME, KM_SLEEP) == 0); 2937 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 2938 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 2939 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2940 spa_load_spares(spa); 2941 spa_config_exit(spa, SCL_ALL, FTAG); 2942 spa->spa_spares.sav_sync = B_TRUE; 2943 } 2944 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 2945 &l2cache, &nl2cache) == 0) { 2946 if (spa->spa_l2cache.sav_config) 2947 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config, 2948 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0); 2949 else 2950 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 2951 NV_UNIQUE_NAME, KM_SLEEP) == 0); 2952 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 2953 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 2954 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2955 spa_load_l2cache(spa); 2956 spa_config_exit(spa, SCL_ALL, FTAG); 2957 spa->spa_l2cache.sav_sync = B_TRUE; 2958 } 2959 2960 /* 2961 * Check for any removed devices. 2962 */ 2963 if (spa->spa_autoreplace) { 2964 spa_aux_check_removed(&spa->spa_spares); 2965 spa_aux_check_removed(&spa->spa_l2cache); 2966 } 2967 2968 if (spa_writeable(spa)) { 2969 /* 2970 * Update the config cache to include the newly-imported pool. 2971 */ 2972 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 2973 } 2974 2975 /* 2976 * It's possible that the pool was expanded while it was exported. 2977 * We kick off an async task to handle this for us. 2978 */ 2979 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND); 2980 2981 mutex_exit(&spa_namespace_lock); 2982 spa_history_log_version(spa, LOG_POOL_IMPORT); 2983 2984 return (0); 2985 } 2986 2987 2988 /* 2989 * This (illegal) pool name is used when temporarily importing a spa_t in order 2990 * to get the vdev stats associated with the imported devices. 2991 */ 2992 #define TRYIMPORT_NAME "$import" 2993 2994 nvlist_t * 2995 spa_tryimport(nvlist_t *tryconfig) 2996 { 2997 nvlist_t *config = NULL; 2998 char *poolname; 2999 spa_t *spa; 3000 uint64_t state; 3001 int error; 3002 3003 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname)) 3004 return (NULL); 3005 3006 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state)) 3007 return (NULL); 3008 3009 /* 3010 * Create and initialize the spa structure. 3011 */ 3012 mutex_enter(&spa_namespace_lock); 3013 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL); 3014 spa_activate(spa, FREAD); 3015 3016 /* 3017 * Pass off the heavy lifting to spa_load(). 3018 * Pass TRUE for mosconfig because the user-supplied config 3019 * is actually the one to trust when doing an import. 3020 */ 3021 error = spa_load(spa, SPA_LOAD_TRYIMPORT, B_TRUE); 3022 3023 /* 3024 * If 'tryconfig' was at least parsable, return the current config. 3025 */ 3026 if (spa->spa_root_vdev != NULL) { 3027 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 3028 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, 3029 poolname) == 0); 3030 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 3031 state) == 0); 3032 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP, 3033 spa->spa_uberblock.ub_timestamp) == 0); 3034 3035 /* 3036 * If the bootfs property exists on this pool then we 3037 * copy it out so that external consumers can tell which 3038 * pools are bootable. 3039 */ 3040 if ((!error || error == EEXIST) && spa->spa_bootfs) { 3041 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 3042 3043 /* 3044 * We have to play games with the name since the 3045 * pool was opened as TRYIMPORT_NAME. 3046 */ 3047 if (dsl_dsobj_to_dsname(spa_name(spa), 3048 spa->spa_bootfs, tmpname) == 0) { 3049 char *cp; 3050 char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 3051 3052 cp = strchr(tmpname, '/'); 3053 if (cp == NULL) { 3054 (void) strlcpy(dsname, tmpname, 3055 MAXPATHLEN); 3056 } else { 3057 (void) snprintf(dsname, MAXPATHLEN, 3058 "%s/%s", poolname, ++cp); 3059 } 3060 VERIFY(nvlist_add_string(config, 3061 ZPOOL_CONFIG_BOOTFS, dsname) == 0); 3062 kmem_free(dsname, MAXPATHLEN); 3063 } 3064 kmem_free(tmpname, MAXPATHLEN); 3065 } 3066 3067 /* 3068 * Add the list of hot spares and level 2 cache devices. 3069 */ 3070 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 3071 spa_add_spares(spa, config); 3072 spa_add_l2cache(spa, config); 3073 spa_config_exit(spa, SCL_CONFIG, FTAG); 3074 } 3075 3076 spa_unload(spa); 3077 spa_deactivate(spa); 3078 spa_remove(spa); 3079 mutex_exit(&spa_namespace_lock); 3080 3081 return (config); 3082 } 3083 3084 /* 3085 * Pool export/destroy 3086 * 3087 * The act of destroying or exporting a pool is very simple. We make sure there 3088 * is no more pending I/O and any references to the pool are gone. Then, we 3089 * update the pool state and sync all the labels to disk, removing the 3090 * configuration from the cache afterwards. If the 'hardforce' flag is set, then 3091 * we don't sync the labels or remove the configuration cache. 3092 */ 3093 static int 3094 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig, 3095 boolean_t force, boolean_t hardforce) 3096 { 3097 spa_t *spa; 3098 3099 if (oldconfig) 3100 *oldconfig = NULL; 3101 3102 if (!(spa_mode_global & FWRITE)) 3103 return (EROFS); 3104 3105 mutex_enter(&spa_namespace_lock); 3106 if ((spa = spa_lookup(pool)) == NULL) { 3107 mutex_exit(&spa_namespace_lock); 3108 return (ENOENT); 3109 } 3110 3111 /* 3112 * Put a hold on the pool, drop the namespace lock, stop async tasks, 3113 * reacquire the namespace lock, and see if we can export. 3114 */ 3115 spa_open_ref(spa, FTAG); 3116 mutex_exit(&spa_namespace_lock); 3117 spa_async_suspend(spa); 3118 mutex_enter(&spa_namespace_lock); 3119 spa_close(spa, FTAG); 3120 3121 /* 3122 * The pool will be in core if it's openable, 3123 * in which case we can modify its state. 3124 */ 3125 if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) { 3126 /* 3127 * Objsets may be open only because they're dirty, so we 3128 * have to force it to sync before checking spa_refcnt. 3129 */ 3130 txg_wait_synced(spa->spa_dsl_pool, 0); 3131 3132 /* 3133 * A pool cannot be exported or destroyed if there are active 3134 * references. If we are resetting a pool, allow references by 3135 * fault injection handlers. 3136 */ 3137 if (!spa_refcount_zero(spa) || 3138 (spa->spa_inject_ref != 0 && 3139 new_state != POOL_STATE_UNINITIALIZED)) { 3140 spa_async_resume(spa); 3141 mutex_exit(&spa_namespace_lock); 3142 return (EBUSY); 3143 } 3144 3145 /* 3146 * A pool cannot be exported if it has an active shared spare. 3147 * This is to prevent other pools stealing the active spare 3148 * from an exported pool. At user's own will, such pool can 3149 * be forcedly exported. 3150 */ 3151 if (!force && new_state == POOL_STATE_EXPORTED && 3152 spa_has_active_shared_spare(spa)) { 3153 spa_async_resume(spa); 3154 mutex_exit(&spa_namespace_lock); 3155 return (EXDEV); 3156 } 3157 3158 /* 3159 * We want this to be reflected on every label, 3160 * so mark them all dirty. spa_unload() will do the 3161 * final sync that pushes these changes out. 3162 */ 3163 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) { 3164 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3165 spa->spa_state = new_state; 3166 spa->spa_final_txg = spa_last_synced_txg(spa) + 1; 3167 vdev_config_dirty(spa->spa_root_vdev); 3168 spa_config_exit(spa, SCL_ALL, FTAG); 3169 } 3170 } 3171 3172 spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY); 3173 3174 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 3175 spa_unload(spa); 3176 spa_deactivate(spa); 3177 } 3178 3179 if (oldconfig && spa->spa_config) 3180 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0); 3181 3182 if (new_state != POOL_STATE_UNINITIALIZED) { 3183 if (!hardforce) 3184 spa_config_sync(spa, B_TRUE, B_TRUE); 3185 spa_remove(spa); 3186 } 3187 mutex_exit(&spa_namespace_lock); 3188 3189 return (0); 3190 } 3191 3192 /* 3193 * Destroy a storage pool. 3194 */ 3195 int 3196 spa_destroy(char *pool) 3197 { 3198 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL, 3199 B_FALSE, B_FALSE)); 3200 } 3201 3202 /* 3203 * Export a storage pool. 3204 */ 3205 int 3206 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force, 3207 boolean_t hardforce) 3208 { 3209 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig, 3210 force, hardforce)); 3211 } 3212 3213 /* 3214 * Similar to spa_export(), this unloads the spa_t without actually removing it 3215 * from the namespace in any way. 3216 */ 3217 int 3218 spa_reset(char *pool) 3219 { 3220 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL, 3221 B_FALSE, B_FALSE)); 3222 } 3223 3224 /* 3225 * ========================================================================== 3226 * Device manipulation 3227 * ========================================================================== 3228 */ 3229 3230 /* 3231 * Add a device to a storage pool. 3232 */ 3233 int 3234 spa_vdev_add(spa_t *spa, nvlist_t *nvroot) 3235 { 3236 uint64_t txg, id; 3237 int error; 3238 vdev_t *rvd = spa->spa_root_vdev; 3239 vdev_t *vd, *tvd; 3240 nvlist_t **spares, **l2cache; 3241 uint_t nspares, nl2cache; 3242 3243 txg = spa_vdev_enter(spa); 3244 3245 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0, 3246 VDEV_ALLOC_ADD)) != 0) 3247 return (spa_vdev_exit(spa, NULL, txg, error)); 3248 3249 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */ 3250 3251 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, 3252 &nspares) != 0) 3253 nspares = 0; 3254 3255 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache, 3256 &nl2cache) != 0) 3257 nl2cache = 0; 3258 3259 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0) 3260 return (spa_vdev_exit(spa, vd, txg, EINVAL)); 3261 3262 if (vd->vdev_children != 0 && 3263 (error = vdev_create(vd, txg, B_FALSE)) != 0) 3264 return (spa_vdev_exit(spa, vd, txg, error)); 3265 3266 /* 3267 * We must validate the spares and l2cache devices after checking the 3268 * children. Otherwise, vdev_inuse() will blindly overwrite the spare. 3269 */ 3270 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0) 3271 return (spa_vdev_exit(spa, vd, txg, error)); 3272 3273 /* 3274 * Transfer each new top-level vdev from vd to rvd. 3275 */ 3276 for (int c = 0; c < vd->vdev_children; c++) { 3277 3278 /* 3279 * Set the vdev id to the first hole, if one exists. 3280 */ 3281 for (id = 0; id < rvd->vdev_children; id++) { 3282 if (rvd->vdev_child[id]->vdev_ishole) { 3283 vdev_free(rvd->vdev_child[id]); 3284 break; 3285 } 3286 } 3287 tvd = vd->vdev_child[c]; 3288 vdev_remove_child(vd, tvd); 3289 tvd->vdev_id = id; 3290 vdev_add_child(rvd, tvd); 3291 vdev_config_dirty(tvd); 3292 } 3293 3294 if (nspares != 0) { 3295 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares, 3296 ZPOOL_CONFIG_SPARES); 3297 spa_load_spares(spa); 3298 spa->spa_spares.sav_sync = B_TRUE; 3299 } 3300 3301 if (nl2cache != 0) { 3302 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache, 3303 ZPOOL_CONFIG_L2CACHE); 3304 spa_load_l2cache(spa); 3305 spa->spa_l2cache.sav_sync = B_TRUE; 3306 } 3307 3308 /* 3309 * We have to be careful when adding new vdevs to an existing pool. 3310 * If other threads start allocating from these vdevs before we 3311 * sync the config cache, and we lose power, then upon reboot we may 3312 * fail to open the pool because there are DVAs that the config cache 3313 * can't translate. Therefore, we first add the vdevs without 3314 * initializing metaslabs; sync the config cache (via spa_vdev_exit()); 3315 * and then let spa_config_update() initialize the new metaslabs. 3316 * 3317 * spa_load() checks for added-but-not-initialized vdevs, so that 3318 * if we lose power at any point in this sequence, the remaining 3319 * steps will be completed the next time we load the pool. 3320 */ 3321 (void) spa_vdev_exit(spa, vd, txg, 0); 3322 3323 mutex_enter(&spa_namespace_lock); 3324 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 3325 mutex_exit(&spa_namespace_lock); 3326 3327 return (0); 3328 } 3329 3330 /* 3331 * Attach a device to a mirror. The arguments are the path to any device 3332 * in the mirror, and the nvroot for the new device. If the path specifies 3333 * a device that is not mirrored, we automatically insert the mirror vdev. 3334 * 3335 * If 'replacing' is specified, the new device is intended to replace the 3336 * existing device; in this case the two devices are made into their own 3337 * mirror using the 'replacing' vdev, which is functionally identical to 3338 * the mirror vdev (it actually reuses all the same ops) but has a few 3339 * extra rules: you can't attach to it after it's been created, and upon 3340 * completion of resilvering, the first disk (the one being replaced) 3341 * is automatically detached. 3342 */ 3343 int 3344 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing) 3345 { 3346 uint64_t txg, open_txg; 3347 vdev_t *rvd = spa->spa_root_vdev; 3348 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd; 3349 vdev_ops_t *pvops; 3350 char *oldvdpath, *newvdpath; 3351 int newvd_isspare; 3352 int error; 3353 3354 txg = spa_vdev_enter(spa); 3355 3356 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE); 3357 3358 if (oldvd == NULL) 3359 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 3360 3361 if (!oldvd->vdev_ops->vdev_op_leaf) 3362 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 3363 3364 pvd = oldvd->vdev_parent; 3365 3366 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0, 3367 VDEV_ALLOC_ADD)) != 0) 3368 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 3369 3370 if (newrootvd->vdev_children != 1) 3371 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 3372 3373 newvd = newrootvd->vdev_child[0]; 3374 3375 if (!newvd->vdev_ops->vdev_op_leaf) 3376 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 3377 3378 if ((error = vdev_create(newrootvd, txg, replacing)) != 0) 3379 return (spa_vdev_exit(spa, newrootvd, txg, error)); 3380 3381 /* 3382 * Spares can't replace logs 3383 */ 3384 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare) 3385 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 3386 3387 if (!replacing) { 3388 /* 3389 * For attach, the only allowable parent is a mirror or the root 3390 * vdev. 3391 */ 3392 if (pvd->vdev_ops != &vdev_mirror_ops && 3393 pvd->vdev_ops != &vdev_root_ops) 3394 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 3395 3396 pvops = &vdev_mirror_ops; 3397 } else { 3398 /* 3399 * Active hot spares can only be replaced by inactive hot 3400 * spares. 3401 */ 3402 if (pvd->vdev_ops == &vdev_spare_ops && 3403 pvd->vdev_child[1] == oldvd && 3404 !spa_has_spare(spa, newvd->vdev_guid)) 3405 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 3406 3407 /* 3408 * If the source is a hot spare, and the parent isn't already a 3409 * spare, then we want to create a new hot spare. Otherwise, we 3410 * want to create a replacing vdev. The user is not allowed to 3411 * attach to a spared vdev child unless the 'isspare' state is 3412 * the same (spare replaces spare, non-spare replaces 3413 * non-spare). 3414 */ 3415 if (pvd->vdev_ops == &vdev_replacing_ops) 3416 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 3417 else if (pvd->vdev_ops == &vdev_spare_ops && 3418 newvd->vdev_isspare != oldvd->vdev_isspare) 3419 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 3420 else if (pvd->vdev_ops != &vdev_spare_ops && 3421 newvd->vdev_isspare) 3422 pvops = &vdev_spare_ops; 3423 else 3424 pvops = &vdev_replacing_ops; 3425 } 3426 3427 /* 3428 * Make sure the new device is big enough. 3429 */ 3430 if (newvd->vdev_asize < vdev_get_min_asize(oldvd)) 3431 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW)); 3432 3433 /* 3434 * The new device cannot have a higher alignment requirement 3435 * than the top-level vdev. 3436 */ 3437 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift) 3438 return (spa_vdev_exit(spa, newrootvd, txg, EDOM)); 3439 3440 /* 3441 * If this is an in-place replacement, update oldvd's path and devid 3442 * to make it distinguishable from newvd, and unopenable from now on. 3443 */ 3444 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) { 3445 spa_strfree(oldvd->vdev_path); 3446 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5, 3447 KM_SLEEP); 3448 (void) sprintf(oldvd->vdev_path, "%s/%s", 3449 newvd->vdev_path, "old"); 3450 if (oldvd->vdev_devid != NULL) { 3451 spa_strfree(oldvd->vdev_devid); 3452 oldvd->vdev_devid = NULL; 3453 } 3454 } 3455 3456 /* 3457 * If the parent is not a mirror, or if we're replacing, insert the new 3458 * mirror/replacing/spare vdev above oldvd. 3459 */ 3460 if (pvd->vdev_ops != pvops) 3461 pvd = vdev_add_parent(oldvd, pvops); 3462 3463 ASSERT(pvd->vdev_top->vdev_parent == rvd); 3464 ASSERT(pvd->vdev_ops == pvops); 3465 ASSERT(oldvd->vdev_parent == pvd); 3466 3467 /* 3468 * Extract the new device from its root and add it to pvd. 3469 */ 3470 vdev_remove_child(newrootvd, newvd); 3471 newvd->vdev_id = pvd->vdev_children; 3472 newvd->vdev_crtxg = oldvd->vdev_crtxg; 3473 vdev_add_child(pvd, newvd); 3474 3475 tvd = newvd->vdev_top; 3476 ASSERT(pvd->vdev_top == tvd); 3477 ASSERT(tvd->vdev_parent == rvd); 3478 3479 vdev_config_dirty(tvd); 3480 3481 /* 3482 * Set newvd's DTL to [TXG_INITIAL, open_txg]. It will propagate 3483 * upward when spa_vdev_exit() calls vdev_dtl_reassess(). 3484 */ 3485 open_txg = txg + TXG_CONCURRENT_STATES - 1; 3486 3487 vdev_dtl_dirty(newvd, DTL_MISSING, 3488 TXG_INITIAL, open_txg - TXG_INITIAL + 1); 3489 3490 if (newvd->vdev_isspare) { 3491 spa_spare_activate(newvd); 3492 spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE); 3493 } 3494 3495 oldvdpath = spa_strdup(oldvd->vdev_path); 3496 newvdpath = spa_strdup(newvd->vdev_path); 3497 newvd_isspare = newvd->vdev_isspare; 3498 3499 /* 3500 * Mark newvd's DTL dirty in this txg. 3501 */ 3502 vdev_dirty(tvd, VDD_DTL, newvd, txg); 3503 3504 (void) spa_vdev_exit(spa, newrootvd, open_txg, 0); 3505 3506 spa_history_internal_log(LOG_POOL_VDEV_ATTACH, spa, NULL, 3507 CRED(), "%s vdev=%s %s vdev=%s", 3508 replacing && newvd_isspare ? "spare in" : 3509 replacing ? "replace" : "attach", newvdpath, 3510 replacing ? "for" : "to", oldvdpath); 3511 3512 spa_strfree(oldvdpath); 3513 spa_strfree(newvdpath); 3514 3515 /* 3516 * Kick off a resilver to update newvd. 3517 */ 3518 VERIFY3U(spa_scrub(spa, POOL_SCRUB_RESILVER), ==, 0); 3519 3520 return (0); 3521 } 3522 3523 /* 3524 * Detach a device from a mirror or replacing vdev. 3525 * If 'replace_done' is specified, only detach if the parent 3526 * is a replacing vdev. 3527 */ 3528 int 3529 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done) 3530 { 3531 uint64_t txg; 3532 int error; 3533 vdev_t *rvd = spa->spa_root_vdev; 3534 vdev_t *vd, *pvd, *cvd, *tvd; 3535 boolean_t unspare = B_FALSE; 3536 uint64_t unspare_guid; 3537 size_t len; 3538 3539 txg = spa_vdev_enter(spa); 3540 3541 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 3542 3543 if (vd == NULL) 3544 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 3545 3546 if (!vd->vdev_ops->vdev_op_leaf) 3547 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 3548 3549 pvd = vd->vdev_parent; 3550 3551 /* 3552 * If the parent/child relationship is not as expected, don't do it. 3553 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing 3554 * vdev that's replacing B with C. The user's intent in replacing 3555 * is to go from M(A,B) to M(A,C). If the user decides to cancel 3556 * the replace by detaching C, the expected behavior is to end up 3557 * M(A,B). But suppose that right after deciding to detach C, 3558 * the replacement of B completes. We would have M(A,C), and then 3559 * ask to detach C, which would leave us with just A -- not what 3560 * the user wanted. To prevent this, we make sure that the 3561 * parent/child relationship hasn't changed -- in this example, 3562 * that C's parent is still the replacing vdev R. 3563 */ 3564 if (pvd->vdev_guid != pguid && pguid != 0) 3565 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 3566 3567 /* 3568 * If replace_done is specified, only remove this device if it's 3569 * the first child of a replacing vdev. For the 'spare' vdev, either 3570 * disk can be removed. 3571 */ 3572 if (replace_done) { 3573 if (pvd->vdev_ops == &vdev_replacing_ops) { 3574 if (vd->vdev_id != 0) 3575 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 3576 } else if (pvd->vdev_ops != &vdev_spare_ops) { 3577 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 3578 } 3579 } 3580 3581 ASSERT(pvd->vdev_ops != &vdev_spare_ops || 3582 spa_version(spa) >= SPA_VERSION_SPARES); 3583 3584 /* 3585 * Only mirror, replacing, and spare vdevs support detach. 3586 */ 3587 if (pvd->vdev_ops != &vdev_replacing_ops && 3588 pvd->vdev_ops != &vdev_mirror_ops && 3589 pvd->vdev_ops != &vdev_spare_ops) 3590 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 3591 3592 /* 3593 * If this device has the only valid copy of some data, 3594 * we cannot safely detach it. 3595 */ 3596 if (vdev_dtl_required(vd)) 3597 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 3598 3599 ASSERT(pvd->vdev_children >= 2); 3600 3601 /* 3602 * If we are detaching the second disk from a replacing vdev, then 3603 * check to see if we changed the original vdev's path to have "/old" 3604 * at the end in spa_vdev_attach(). If so, undo that change now. 3605 */ 3606 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id == 1 && 3607 pvd->vdev_child[0]->vdev_path != NULL && 3608 pvd->vdev_child[1]->vdev_path != NULL) { 3609 ASSERT(pvd->vdev_child[1] == vd); 3610 cvd = pvd->vdev_child[0]; 3611 len = strlen(vd->vdev_path); 3612 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 && 3613 strcmp(cvd->vdev_path + len, "/old") == 0) { 3614 spa_strfree(cvd->vdev_path); 3615 cvd->vdev_path = spa_strdup(vd->vdev_path); 3616 } 3617 } 3618 3619 /* 3620 * If we are detaching the original disk from a spare, then it implies 3621 * that the spare should become a real disk, and be removed from the 3622 * active spare list for the pool. 3623 */ 3624 if (pvd->vdev_ops == &vdev_spare_ops && 3625 vd->vdev_id == 0 && pvd->vdev_child[1]->vdev_isspare) 3626 unspare = B_TRUE; 3627 3628 /* 3629 * Erase the disk labels so the disk can be used for other things. 3630 * This must be done after all other error cases are handled, 3631 * but before we disembowel vd (so we can still do I/O to it). 3632 * But if we can't do it, don't treat the error as fatal -- 3633 * it may be that the unwritability of the disk is the reason 3634 * it's being detached! 3635 */ 3636 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 3637 3638 /* 3639 * Remove vd from its parent and compact the parent's children. 3640 */ 3641 vdev_remove_child(pvd, vd); 3642 vdev_compact_children(pvd); 3643 3644 /* 3645 * Remember one of the remaining children so we can get tvd below. 3646 */ 3647 cvd = pvd->vdev_child[0]; 3648 3649 /* 3650 * If we need to remove the remaining child from the list of hot spares, 3651 * do it now, marking the vdev as no longer a spare in the process. 3652 * We must do this before vdev_remove_parent(), because that can 3653 * change the GUID if it creates a new toplevel GUID. For a similar 3654 * reason, we must remove the spare now, in the same txg as the detach; 3655 * otherwise someone could attach a new sibling, change the GUID, and 3656 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail. 3657 */ 3658 if (unspare) { 3659 ASSERT(cvd->vdev_isspare); 3660 spa_spare_remove(cvd); 3661 unspare_guid = cvd->vdev_guid; 3662 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE); 3663 } 3664 3665 /* 3666 * If the parent mirror/replacing vdev only has one child, 3667 * the parent is no longer needed. Remove it from the tree. 3668 */ 3669 if (pvd->vdev_children == 1) 3670 vdev_remove_parent(cvd); 3671 3672 /* 3673 * We don't set tvd until now because the parent we just removed 3674 * may have been the previous top-level vdev. 3675 */ 3676 tvd = cvd->vdev_top; 3677 ASSERT(tvd->vdev_parent == rvd); 3678 3679 /* 3680 * Reevaluate the parent vdev state. 3681 */ 3682 vdev_propagate_state(cvd); 3683 3684 /* 3685 * If the 'autoexpand' property is set on the pool then automatically 3686 * try to expand the size of the pool. For example if the device we 3687 * just detached was smaller than the others, it may be possible to 3688 * add metaslabs (i.e. grow the pool). We need to reopen the vdev 3689 * first so that we can obtain the updated sizes of the leaf vdevs. 3690 */ 3691 if (spa->spa_autoexpand) { 3692 vdev_reopen(tvd); 3693 vdev_expand(tvd, txg); 3694 } 3695 3696 vdev_config_dirty(tvd); 3697 3698 /* 3699 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that 3700 * vd->vdev_detached is set and free vd's DTL object in syncing context. 3701 * But first make sure we're not on any *other* txg's DTL list, to 3702 * prevent vd from being accessed after it's freed. 3703 */ 3704 for (int t = 0; t < TXG_SIZE; t++) 3705 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t); 3706 vd->vdev_detached = B_TRUE; 3707 vdev_dirty(tvd, VDD_DTL, vd, txg); 3708 3709 spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE); 3710 3711 error = spa_vdev_exit(spa, vd, txg, 0); 3712 3713 /* 3714 * If this was the removal of the original device in a hot spare vdev, 3715 * then we want to go through and remove the device from the hot spare 3716 * list of every other pool. 3717 */ 3718 if (unspare) { 3719 spa_t *myspa = spa; 3720 spa = NULL; 3721 mutex_enter(&spa_namespace_lock); 3722 while ((spa = spa_next(spa)) != NULL) { 3723 if (spa->spa_state != POOL_STATE_ACTIVE) 3724 continue; 3725 if (spa == myspa) 3726 continue; 3727 spa_open_ref(spa, FTAG); 3728 mutex_exit(&spa_namespace_lock); 3729 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE); 3730 mutex_enter(&spa_namespace_lock); 3731 spa_close(spa, FTAG); 3732 } 3733 mutex_exit(&spa_namespace_lock); 3734 } 3735 3736 return (error); 3737 } 3738 3739 static nvlist_t * 3740 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid) 3741 { 3742 for (int i = 0; i < count; i++) { 3743 uint64_t guid; 3744 3745 VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID, 3746 &guid) == 0); 3747 3748 if (guid == target_guid) 3749 return (nvpp[i]); 3750 } 3751 3752 return (NULL); 3753 } 3754 3755 static void 3756 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count, 3757 nvlist_t *dev_to_remove) 3758 { 3759 nvlist_t **newdev = NULL; 3760 3761 if (count > 1) 3762 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP); 3763 3764 for (int i = 0, j = 0; i < count; i++) { 3765 if (dev[i] == dev_to_remove) 3766 continue; 3767 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0); 3768 } 3769 3770 VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0); 3771 VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0); 3772 3773 for (int i = 0; i < count - 1; i++) 3774 nvlist_free(newdev[i]); 3775 3776 if (count > 1) 3777 kmem_free(newdev, (count - 1) * sizeof (void *)); 3778 } 3779 3780 /* 3781 * Removing a device from the vdev namespace requires several steps 3782 * and can take a significant amount of time. As a result we use 3783 * the spa_vdev_config_[enter/exit] functions which allow us to 3784 * grab and release the spa_config_lock while still holding the namespace 3785 * lock. During each step the configuration is synced out. 3786 */ 3787 3788 /* 3789 * Initial phase of device removal - stop future allocations from this device. 3790 */ 3791 void 3792 spa_vdev_remove_start(spa_t *spa, vdev_t *vd) 3793 { 3794 metaslab_group_t *mg = vd->vdev_mg; 3795 3796 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 3797 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 3798 ASSERT(vd == vd->vdev_top); 3799 3800 /* 3801 * Remove our vdev from the allocatable vdevs 3802 */ 3803 if (mg) 3804 metaslab_class_remove(mg->mg_class, mg); 3805 } 3806 3807 /* 3808 * Evacuate the device. 3809 */ 3810 int 3811 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd) 3812 { 3813 uint64_t txg; 3814 int error; 3815 3816 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 3817 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 3818 ASSERT(vd == vd->vdev_top); 3819 3820 /* 3821 * Evacuate the device. We don't hold the config lock as writer 3822 * since we need to do I/O but we do keep the 3823 * spa_namespace_lock held. Once this completes the device 3824 * should no longer have any blocks allocated on it. 3825 */ 3826 if (vd->vdev_islog) { 3827 /* 3828 * Evacuate the device. 3829 */ 3830 if (error = dmu_objset_find(spa_name(spa), 3831 zil_vdev_offline, NULL, DS_FIND_CHILDREN)) { 3832 uint64_t txg; 3833 3834 txg = spa_vdev_config_enter(spa); 3835 metaslab_class_add(spa->spa_log_class, 3836 vd->vdev_mg); 3837 return (spa_vdev_exit(spa, NULL, txg, error)); 3838 } 3839 txg_wait_synced(spa_get_dsl(spa), 0); 3840 } 3841 3842 /* 3843 * Remove any remaining MOS metadata associated with the device. 3844 */ 3845 txg = spa_vdev_config_enter(spa); 3846 vd->vdev_removing = B_TRUE; 3847 vdev_dirty(vd, 0, NULL, txg); 3848 vdev_config_dirty(vd); 3849 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 3850 3851 return (0); 3852 } 3853 3854 /* 3855 * Complete the removal by cleaning up the namespace. 3856 */ 3857 void 3858 spa_vdev_remove_done(spa_t *spa, vdev_t *vd) 3859 { 3860 vdev_t *rvd = spa->spa_root_vdev; 3861 metaslab_group_t *mg = vd->vdev_mg; 3862 uint64_t id = vd->vdev_id; 3863 boolean_t last_vdev = (id == (rvd->vdev_children - 1)); 3864 3865 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 3866 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 3867 ASSERT(vd == vd->vdev_top); 3868 3869 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 3870 3871 if (list_link_active(&vd->vdev_state_dirty_node)) 3872 vdev_state_clean(vd); 3873 if (list_link_active(&vd->vdev_config_dirty_node)) 3874 vdev_config_clean(vd); 3875 3876 vdev_free(vd); 3877 3878 /* 3879 * It's possible that another thread is trying todo a spa_vdev_add() 3880 * at the same time we're trying remove it. As a result the 3881 * added vdev may not have initialized its metaslabs yet. 3882 */ 3883 if (mg != NULL) 3884 metaslab_group_destroy(mg); 3885 3886 if (last_vdev) { 3887 vdev_compact_children(rvd); 3888 } else { 3889 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops); 3890 vdev_add_child(rvd, vd); 3891 } 3892 vdev_config_dirty(rvd); 3893 3894 /* 3895 * Reassess the health of our root vdev. 3896 */ 3897 vdev_reopen(rvd); 3898 } 3899 3900 /* 3901 * Remove a device from the pool. Currently, this supports removing only hot 3902 * spares, slogs, and level 2 ARC devices. 3903 */ 3904 int 3905 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare) 3906 { 3907 vdev_t *vd; 3908 nvlist_t **spares, **l2cache, *nv; 3909 uint64_t txg = 0; 3910 uint_t nspares, nl2cache; 3911 int error = 0; 3912 boolean_t locked = MUTEX_HELD(&spa_namespace_lock); 3913 3914 if (!locked) 3915 txg = spa_vdev_enter(spa); 3916 3917 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 3918 3919 if (spa->spa_spares.sav_vdevs != NULL && 3920 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 3921 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 && 3922 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) { 3923 /* 3924 * Only remove the hot spare if it's not currently in use 3925 * in this pool. 3926 */ 3927 if (vd == NULL || unspare) { 3928 spa_vdev_remove_aux(spa->spa_spares.sav_config, 3929 ZPOOL_CONFIG_SPARES, spares, nspares, nv); 3930 spa_load_spares(spa); 3931 spa->spa_spares.sav_sync = B_TRUE; 3932 } else { 3933 error = EBUSY; 3934 } 3935 } else if (spa->spa_l2cache.sav_vdevs != NULL && 3936 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 3937 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 && 3938 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) { 3939 /* 3940 * Cache devices can always be removed. 3941 */ 3942 spa_vdev_remove_aux(spa->spa_l2cache.sav_config, 3943 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv); 3944 spa_load_l2cache(spa); 3945 spa->spa_l2cache.sav_sync = B_TRUE; 3946 } else if (vd != NULL && vd->vdev_islog) { 3947 ASSERT(!locked); 3948 ASSERT(vd == vd->vdev_top); 3949 3950 /* 3951 * XXX - Once we have bp-rewrite this should 3952 * become the common case. 3953 */ 3954 3955 /* 3956 * 1. Stop allocations 3957 * 2. Evacuate the device (i.e. kill off stubby and 3958 * metadata) and wait for it to complete (i.e. sync). 3959 * 3. Cleanup the vdev namespace. 3960 */ 3961 spa_vdev_remove_start(spa, vd); 3962 3963 /* 3964 * Wait for the youngest allocations and frees to sync, 3965 * and then wait for the deferral of those frees to finish. 3966 */ 3967 spa_vdev_config_exit(spa, NULL, 3968 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG); 3969 3970 if ((error = spa_vdev_remove_evacuate(spa, vd)) != 0) 3971 return (error); 3972 txg = spa_vdev_config_enter(spa); 3973 3974 spa_vdev_remove_done(spa, vd); 3975 3976 } else if (vd != NULL) { 3977 /* 3978 * Normal vdevs cannot be removed (yet). 3979 */ 3980 error = ENOTSUP; 3981 } else { 3982 /* 3983 * There is no vdev of any kind with the specified guid. 3984 */ 3985 error = ENOENT; 3986 } 3987 3988 if (!locked) 3989 return (spa_vdev_exit(spa, NULL, txg, error)); 3990 3991 return (error); 3992 } 3993 3994 /* 3995 * Find any device that's done replacing, or a vdev marked 'unspare' that's 3996 * current spared, so we can detach it. 3997 */ 3998 static vdev_t * 3999 spa_vdev_resilver_done_hunt(vdev_t *vd) 4000 { 4001 vdev_t *newvd, *oldvd; 4002 4003 for (int c = 0; c < vd->vdev_children; c++) { 4004 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]); 4005 if (oldvd != NULL) 4006 return (oldvd); 4007 } 4008 4009 /* 4010 * Check for a completed replacement. 4011 */ 4012 if (vd->vdev_ops == &vdev_replacing_ops && vd->vdev_children == 2) { 4013 oldvd = vd->vdev_child[0]; 4014 newvd = vd->vdev_child[1]; 4015 4016 if (vdev_dtl_empty(newvd, DTL_MISSING) && 4017 !vdev_dtl_required(oldvd)) 4018 return (oldvd); 4019 } 4020 4021 /* 4022 * Check for a completed resilver with the 'unspare' flag set. 4023 */ 4024 if (vd->vdev_ops == &vdev_spare_ops && vd->vdev_children == 2) { 4025 newvd = vd->vdev_child[0]; 4026 oldvd = vd->vdev_child[1]; 4027 4028 if (newvd->vdev_unspare && 4029 vdev_dtl_empty(newvd, DTL_MISSING) && 4030 !vdev_dtl_required(oldvd)) { 4031 newvd->vdev_unspare = 0; 4032 return (oldvd); 4033 } 4034 } 4035 4036 return (NULL); 4037 } 4038 4039 static void 4040 spa_vdev_resilver_done(spa_t *spa) 4041 { 4042 vdev_t *vd, *pvd, *ppvd; 4043 uint64_t guid, sguid, pguid, ppguid; 4044 4045 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4046 4047 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) { 4048 pvd = vd->vdev_parent; 4049 ppvd = pvd->vdev_parent; 4050 guid = vd->vdev_guid; 4051 pguid = pvd->vdev_guid; 4052 ppguid = ppvd->vdev_guid; 4053 sguid = 0; 4054 /* 4055 * If we have just finished replacing a hot spared device, then 4056 * we need to detach the parent's first child (the original hot 4057 * spare) as well. 4058 */ 4059 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0) { 4060 ASSERT(pvd->vdev_ops == &vdev_replacing_ops); 4061 ASSERT(ppvd->vdev_children == 2); 4062 sguid = ppvd->vdev_child[1]->vdev_guid; 4063 } 4064 spa_config_exit(spa, SCL_ALL, FTAG); 4065 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0) 4066 return; 4067 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0) 4068 return; 4069 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4070 } 4071 4072 spa_config_exit(spa, SCL_ALL, FTAG); 4073 } 4074 4075 /* 4076 * Update the stored path or FRU for this vdev. Dirty the vdev configuration, 4077 * relying on spa_vdev_enter/exit() to synchronize the labels and cache. 4078 */ 4079 int 4080 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value, 4081 boolean_t ispath) 4082 { 4083 vdev_t *vd; 4084 uint64_t txg; 4085 4086 txg = spa_vdev_enter(spa); 4087 4088 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 4089 return (spa_vdev_exit(spa, NULL, txg, ENOENT)); 4090 4091 if (!vd->vdev_ops->vdev_op_leaf) 4092 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4093 4094 if (ispath) { 4095 spa_strfree(vd->vdev_path); 4096 vd->vdev_path = spa_strdup(value); 4097 } else { 4098 if (vd->vdev_fru != NULL) 4099 spa_strfree(vd->vdev_fru); 4100 vd->vdev_fru = spa_strdup(value); 4101 } 4102 4103 vdev_config_dirty(vd->vdev_top); 4104 4105 return (spa_vdev_exit(spa, NULL, txg, 0)); 4106 } 4107 4108 int 4109 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath) 4110 { 4111 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE)); 4112 } 4113 4114 int 4115 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru) 4116 { 4117 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE)); 4118 } 4119 4120 /* 4121 * ========================================================================== 4122 * SPA Scrubbing 4123 * ========================================================================== 4124 */ 4125 4126 int 4127 spa_scrub(spa_t *spa, pool_scrub_type_t type) 4128 { 4129 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 4130 4131 if ((uint_t)type >= POOL_SCRUB_TYPES) 4132 return (ENOTSUP); 4133 4134 /* 4135 * If a resilver was requested, but there is no DTL on a 4136 * writeable leaf device, we have nothing to do. 4137 */ 4138 if (type == POOL_SCRUB_RESILVER && 4139 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) { 4140 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 4141 return (0); 4142 } 4143 4144 if (type == POOL_SCRUB_EVERYTHING && 4145 spa->spa_dsl_pool->dp_scrub_func != SCRUB_FUNC_NONE && 4146 spa->spa_dsl_pool->dp_scrub_isresilver) 4147 return (EBUSY); 4148 4149 if (type == POOL_SCRUB_EVERYTHING || type == POOL_SCRUB_RESILVER) { 4150 return (dsl_pool_scrub_clean(spa->spa_dsl_pool)); 4151 } else if (type == POOL_SCRUB_NONE) { 4152 return (dsl_pool_scrub_cancel(spa->spa_dsl_pool)); 4153 } else { 4154 return (EINVAL); 4155 } 4156 } 4157 4158 /* 4159 * ========================================================================== 4160 * SPA async task processing 4161 * ========================================================================== 4162 */ 4163 4164 static void 4165 spa_async_remove(spa_t *spa, vdev_t *vd) 4166 { 4167 if (vd->vdev_remove_wanted) { 4168 vd->vdev_remove_wanted = 0; 4169 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE); 4170 4171 /* 4172 * We want to clear the stats, but we don't want to do a full 4173 * vdev_clear() as that will cause us to throw away 4174 * degraded/faulted state as well as attempt to reopen the 4175 * device, all of which is a waste. 4176 */ 4177 vd->vdev_stat.vs_read_errors = 0; 4178 vd->vdev_stat.vs_write_errors = 0; 4179 vd->vdev_stat.vs_checksum_errors = 0; 4180 4181 vdev_state_dirty(vd->vdev_top); 4182 } 4183 4184 for (int c = 0; c < vd->vdev_children; c++) 4185 spa_async_remove(spa, vd->vdev_child[c]); 4186 } 4187 4188 static void 4189 spa_async_probe(spa_t *spa, vdev_t *vd) 4190 { 4191 if (vd->vdev_probe_wanted) { 4192 vd->vdev_probe_wanted = 0; 4193 vdev_reopen(vd); /* vdev_open() does the actual probe */ 4194 } 4195 4196 for (int c = 0; c < vd->vdev_children; c++) 4197 spa_async_probe(spa, vd->vdev_child[c]); 4198 } 4199 4200 static void 4201 spa_async_autoexpand(spa_t *spa, vdev_t *vd) 4202 { 4203 sysevent_id_t eid; 4204 nvlist_t *attr; 4205 char *physpath; 4206 4207 if (!spa->spa_autoexpand) 4208 return; 4209 4210 for (int c = 0; c < vd->vdev_children; c++) { 4211 vdev_t *cvd = vd->vdev_child[c]; 4212 spa_async_autoexpand(spa, cvd); 4213 } 4214 4215 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL) 4216 return; 4217 4218 physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP); 4219 (void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath); 4220 4221 VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0); 4222 VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0); 4223 4224 (void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS, 4225 ESC_DEV_DLE, attr, &eid, DDI_SLEEP); 4226 4227 nvlist_free(attr); 4228 kmem_free(physpath, MAXPATHLEN); 4229 } 4230 4231 static void 4232 spa_async_thread(spa_t *spa) 4233 { 4234 int tasks; 4235 4236 ASSERT(spa->spa_sync_on); 4237 4238 mutex_enter(&spa->spa_async_lock); 4239 tasks = spa->spa_async_tasks; 4240 spa->spa_async_tasks = 0; 4241 mutex_exit(&spa->spa_async_lock); 4242 4243 /* 4244 * See if the config needs to be updated. 4245 */ 4246 if (tasks & SPA_ASYNC_CONFIG_UPDATE) { 4247 uint64_t old_space, new_space; 4248 4249 mutex_enter(&spa_namespace_lock); 4250 old_space = metaslab_class_get_space(spa_normal_class(spa)); 4251 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 4252 new_space = metaslab_class_get_space(spa_normal_class(spa)); 4253 mutex_exit(&spa_namespace_lock); 4254 4255 /* 4256 * If the pool grew as a result of the config update, 4257 * then log an internal history event. 4258 */ 4259 if (new_space != old_space) { 4260 spa_history_internal_log(LOG_POOL_VDEV_ONLINE, 4261 spa, NULL, CRED(), 4262 "pool '%s' size: %llu(+%llu)", 4263 spa_name(spa), new_space, new_space - old_space); 4264 } 4265 } 4266 4267 /* 4268 * See if any devices need to be marked REMOVED. 4269 */ 4270 if (tasks & SPA_ASYNC_REMOVE) { 4271 spa_vdev_state_enter(spa, SCL_NONE); 4272 spa_async_remove(spa, spa->spa_root_vdev); 4273 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) 4274 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]); 4275 for (int i = 0; i < spa->spa_spares.sav_count; i++) 4276 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]); 4277 (void) spa_vdev_state_exit(spa, NULL, 0); 4278 } 4279 4280 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) { 4281 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 4282 spa_async_autoexpand(spa, spa->spa_root_vdev); 4283 spa_config_exit(spa, SCL_CONFIG, FTAG); 4284 } 4285 4286 /* 4287 * See if any devices need to be probed. 4288 */ 4289 if (tasks & SPA_ASYNC_PROBE) { 4290 spa_vdev_state_enter(spa, SCL_NONE); 4291 spa_async_probe(spa, spa->spa_root_vdev); 4292 (void) spa_vdev_state_exit(spa, NULL, 0); 4293 } 4294 4295 /* 4296 * If any devices are done replacing, detach them. 4297 */ 4298 if (tasks & SPA_ASYNC_RESILVER_DONE) 4299 spa_vdev_resilver_done(spa); 4300 4301 /* 4302 * Kick off a resilver. 4303 */ 4304 if (tasks & SPA_ASYNC_RESILVER) 4305 VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER) == 0); 4306 4307 /* 4308 * Let the world know that we're done. 4309 */ 4310 mutex_enter(&spa->spa_async_lock); 4311 spa->spa_async_thread = NULL; 4312 cv_broadcast(&spa->spa_async_cv); 4313 mutex_exit(&spa->spa_async_lock); 4314 thread_exit(); 4315 } 4316 4317 void 4318 spa_async_suspend(spa_t *spa) 4319 { 4320 mutex_enter(&spa->spa_async_lock); 4321 spa->spa_async_suspended++; 4322 while (spa->spa_async_thread != NULL) 4323 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock); 4324 mutex_exit(&spa->spa_async_lock); 4325 } 4326 4327 void 4328 spa_async_resume(spa_t *spa) 4329 { 4330 mutex_enter(&spa->spa_async_lock); 4331 ASSERT(spa->spa_async_suspended != 0); 4332 spa->spa_async_suspended--; 4333 mutex_exit(&spa->spa_async_lock); 4334 } 4335 4336 static void 4337 spa_async_dispatch(spa_t *spa) 4338 { 4339 mutex_enter(&spa->spa_async_lock); 4340 if (spa->spa_async_tasks && !spa->spa_async_suspended && 4341 spa->spa_async_thread == NULL && 4342 rootdir != NULL && !vn_is_readonly(rootdir)) 4343 spa->spa_async_thread = thread_create(NULL, 0, 4344 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri); 4345 mutex_exit(&spa->spa_async_lock); 4346 } 4347 4348 void 4349 spa_async_request(spa_t *spa, int task) 4350 { 4351 mutex_enter(&spa->spa_async_lock); 4352 spa->spa_async_tasks |= task; 4353 mutex_exit(&spa->spa_async_lock); 4354 } 4355 4356 /* 4357 * ========================================================================== 4358 * SPA syncing routines 4359 * ========================================================================== 4360 */ 4361 static void 4362 spa_sync_deferred_bplist(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx, uint64_t txg) 4363 { 4364 blkptr_t blk; 4365 uint64_t itor = 0; 4366 uint8_t c = 1; 4367 4368 while (bplist_iterate(bpl, &itor, &blk) == 0) { 4369 ASSERT(blk.blk_birth < txg); 4370 zio_free(spa, txg, &blk); 4371 } 4372 4373 bplist_vacate(bpl, tx); 4374 4375 /* 4376 * Pre-dirty the first block so we sync to convergence faster. 4377 * (Usually only the first block is needed.) 4378 */ 4379 dmu_write(bpl->bpl_mos, spa->spa_deferred_bplist_obj, 0, 1, &c, tx); 4380 } 4381 4382 static void 4383 spa_sync_free(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 4384 { 4385 zio_t *zio = arg; 4386 4387 zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp, 4388 zio->io_flags)); 4389 } 4390 4391 static void 4392 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx) 4393 { 4394 char *packed = NULL; 4395 size_t bufsize; 4396 size_t nvsize = 0; 4397 dmu_buf_t *db; 4398 4399 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0); 4400 4401 /* 4402 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration 4403 * information. This avoids the dbuf_will_dirty() path and 4404 * saves us a pre-read to get data we don't actually care about. 4405 */ 4406 bufsize = P2ROUNDUP(nvsize, SPA_CONFIG_BLOCKSIZE); 4407 packed = kmem_alloc(bufsize, KM_SLEEP); 4408 4409 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR, 4410 KM_SLEEP) == 0); 4411 bzero(packed + nvsize, bufsize - nvsize); 4412 4413 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx); 4414 4415 kmem_free(packed, bufsize); 4416 4417 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 4418 dmu_buf_will_dirty(db, tx); 4419 *(uint64_t *)db->db_data = nvsize; 4420 dmu_buf_rele(db, FTAG); 4421 } 4422 4423 static void 4424 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx, 4425 const char *config, const char *entry) 4426 { 4427 nvlist_t *nvroot; 4428 nvlist_t **list; 4429 int i; 4430 4431 if (!sav->sav_sync) 4432 return; 4433 4434 /* 4435 * Update the MOS nvlist describing the list of available devices. 4436 * spa_validate_aux() will have already made sure this nvlist is 4437 * valid and the vdevs are labeled appropriately. 4438 */ 4439 if (sav->sav_object == 0) { 4440 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset, 4441 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE, 4442 sizeof (uint64_t), tx); 4443 VERIFY(zap_update(spa->spa_meta_objset, 4444 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1, 4445 &sav->sav_object, tx) == 0); 4446 } 4447 4448 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 4449 if (sav->sav_count == 0) { 4450 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0); 4451 } else { 4452 list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 4453 for (i = 0; i < sav->sav_count; i++) 4454 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i], 4455 B_FALSE, B_FALSE, B_TRUE); 4456 VERIFY(nvlist_add_nvlist_array(nvroot, config, list, 4457 sav->sav_count) == 0); 4458 for (i = 0; i < sav->sav_count; i++) 4459 nvlist_free(list[i]); 4460 kmem_free(list, sav->sav_count * sizeof (void *)); 4461 } 4462 4463 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx); 4464 nvlist_free(nvroot); 4465 4466 sav->sav_sync = B_FALSE; 4467 } 4468 4469 static void 4470 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx) 4471 { 4472 nvlist_t *config; 4473 4474 if (list_is_empty(&spa->spa_config_dirty_list)) 4475 return; 4476 4477 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 4478 4479 config = spa_config_generate(spa, spa->spa_root_vdev, 4480 dmu_tx_get_txg(tx), B_FALSE); 4481 4482 spa_config_exit(spa, SCL_STATE, FTAG); 4483 4484 if (spa->spa_config_syncing) 4485 nvlist_free(spa->spa_config_syncing); 4486 spa->spa_config_syncing = config; 4487 4488 spa_sync_nvlist(spa, spa->spa_config_object, config, tx); 4489 } 4490 4491 /* 4492 * Set zpool properties. 4493 */ 4494 static void 4495 spa_sync_props(void *arg1, void *arg2, cred_t *cr, dmu_tx_t *tx) 4496 { 4497 spa_t *spa = arg1; 4498 objset_t *mos = spa->spa_meta_objset; 4499 nvlist_t *nvp = arg2; 4500 nvpair_t *elem; 4501 uint64_t intval; 4502 char *strval; 4503 zpool_prop_t prop; 4504 const char *propname; 4505 zprop_type_t proptype; 4506 4507 mutex_enter(&spa->spa_props_lock); 4508 4509 elem = NULL; 4510 while ((elem = nvlist_next_nvpair(nvp, elem))) { 4511 switch (prop = zpool_name_to_prop(nvpair_name(elem))) { 4512 case ZPOOL_PROP_VERSION: 4513 /* 4514 * Only set version for non-zpool-creation cases 4515 * (set/import). spa_create() needs special care 4516 * for version setting. 4517 */ 4518 if (tx->tx_txg != TXG_INITIAL) { 4519 VERIFY(nvpair_value_uint64(elem, 4520 &intval) == 0); 4521 ASSERT(intval <= SPA_VERSION); 4522 ASSERT(intval >= spa_version(spa)); 4523 spa->spa_uberblock.ub_version = intval; 4524 vdev_config_dirty(spa->spa_root_vdev); 4525 } 4526 break; 4527 4528 case ZPOOL_PROP_ALTROOT: 4529 /* 4530 * 'altroot' is a non-persistent property. It should 4531 * have been set temporarily at creation or import time. 4532 */ 4533 ASSERT(spa->spa_root != NULL); 4534 break; 4535 4536 case ZPOOL_PROP_CACHEFILE: 4537 /* 4538 * 'cachefile' is also a non-persisitent property. 4539 */ 4540 break; 4541 default: 4542 /* 4543 * Set pool property values in the poolprops mos object. 4544 */ 4545 if (spa->spa_pool_props_object == 0) { 4546 VERIFY((spa->spa_pool_props_object = 4547 zap_create(mos, DMU_OT_POOL_PROPS, 4548 DMU_OT_NONE, 0, tx)) > 0); 4549 4550 VERIFY(zap_update(mos, 4551 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS, 4552 8, 1, &spa->spa_pool_props_object, tx) 4553 == 0); 4554 } 4555 4556 /* normalize the property name */ 4557 propname = zpool_prop_to_name(prop); 4558 proptype = zpool_prop_get_type(prop); 4559 4560 if (nvpair_type(elem) == DATA_TYPE_STRING) { 4561 ASSERT(proptype == PROP_TYPE_STRING); 4562 VERIFY(nvpair_value_string(elem, &strval) == 0); 4563 VERIFY(zap_update(mos, 4564 spa->spa_pool_props_object, propname, 4565 1, strlen(strval) + 1, strval, tx) == 0); 4566 4567 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) { 4568 VERIFY(nvpair_value_uint64(elem, &intval) == 0); 4569 4570 if (proptype == PROP_TYPE_INDEX) { 4571 const char *unused; 4572 VERIFY(zpool_prop_index_to_string( 4573 prop, intval, &unused) == 0); 4574 } 4575 VERIFY(zap_update(mos, 4576 spa->spa_pool_props_object, propname, 4577 8, 1, &intval, tx) == 0); 4578 } else { 4579 ASSERT(0); /* not allowed */ 4580 } 4581 4582 switch (prop) { 4583 case ZPOOL_PROP_DELEGATION: 4584 spa->spa_delegation = intval; 4585 break; 4586 case ZPOOL_PROP_BOOTFS: 4587 spa->spa_bootfs = intval; 4588 break; 4589 case ZPOOL_PROP_FAILUREMODE: 4590 spa->spa_failmode = intval; 4591 break; 4592 case ZPOOL_PROP_AUTOEXPAND: 4593 spa->spa_autoexpand = intval; 4594 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND); 4595 break; 4596 case ZPOOL_PROP_DEDUPDITTO: 4597 spa->spa_dedup_ditto = intval; 4598 break; 4599 default: 4600 break; 4601 } 4602 } 4603 4604 /* log internal history if this is not a zpool create */ 4605 if (spa_version(spa) >= SPA_VERSION_ZPOOL_HISTORY && 4606 tx->tx_txg != TXG_INITIAL) { 4607 spa_history_internal_log(LOG_POOL_PROPSET, 4608 spa, tx, cr, "%s %lld %s", 4609 nvpair_name(elem), intval, spa_name(spa)); 4610 } 4611 } 4612 4613 mutex_exit(&spa->spa_props_lock); 4614 } 4615 4616 /* 4617 * Sync the specified transaction group. New blocks may be dirtied as 4618 * part of the process, so we iterate until it converges. 4619 */ 4620 void 4621 spa_sync(spa_t *spa, uint64_t txg) 4622 { 4623 dsl_pool_t *dp = spa->spa_dsl_pool; 4624 objset_t *mos = spa->spa_meta_objset; 4625 bplist_t *defer_bpl = &spa->spa_deferred_bplist; 4626 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK]; 4627 vdev_t *rvd = spa->spa_root_vdev; 4628 vdev_t *vd; 4629 dmu_tx_t *tx; 4630 int error; 4631 4632 /* 4633 * Lock out configuration changes. 4634 */ 4635 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 4636 4637 spa->spa_syncing_txg = txg; 4638 spa->spa_sync_pass = 0; 4639 4640 /* 4641 * If there are any pending vdev state changes, convert them 4642 * into config changes that go out with this transaction group. 4643 */ 4644 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 4645 while (list_head(&spa->spa_state_dirty_list) != NULL) { 4646 /* 4647 * We need the write lock here because, for aux vdevs, 4648 * calling vdev_config_dirty() modifies sav_config. 4649 * This is ugly and will become unnecessary when we 4650 * eliminate the aux vdev wart by integrating all vdevs 4651 * into the root vdev tree. 4652 */ 4653 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 4654 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER); 4655 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) { 4656 vdev_state_clean(vd); 4657 vdev_config_dirty(vd); 4658 } 4659 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 4660 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 4661 } 4662 spa_config_exit(spa, SCL_STATE, FTAG); 4663 4664 VERIFY(0 == bplist_open(defer_bpl, mos, spa->spa_deferred_bplist_obj)); 4665 4666 tx = dmu_tx_create_assigned(dp, txg); 4667 4668 /* 4669 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg, 4670 * set spa_deflate if we have no raid-z vdevs. 4671 */ 4672 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE && 4673 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) { 4674 int i; 4675 4676 for (i = 0; i < rvd->vdev_children; i++) { 4677 vd = rvd->vdev_child[i]; 4678 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE) 4679 break; 4680 } 4681 if (i == rvd->vdev_children) { 4682 spa->spa_deflate = TRUE; 4683 VERIFY(0 == zap_add(spa->spa_meta_objset, 4684 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 4685 sizeof (uint64_t), 1, &spa->spa_deflate, tx)); 4686 } 4687 } 4688 4689 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN && 4690 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) { 4691 dsl_pool_create_origin(dp, tx); 4692 4693 /* Keeping the origin open increases spa_minref */ 4694 spa->spa_minref += 3; 4695 } 4696 4697 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES && 4698 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) { 4699 dsl_pool_upgrade_clones(dp, tx); 4700 } 4701 4702 /* 4703 * If anything has changed in this txg, push the deferred frees 4704 * from the previous txg. If not, leave them alone so that we 4705 * don't generate work on an otherwise idle system. 4706 */ 4707 if (!txg_list_empty(&dp->dp_dirty_datasets, txg) || 4708 !txg_list_empty(&dp->dp_dirty_dirs, txg) || 4709 !txg_list_empty(&dp->dp_sync_tasks, txg)) 4710 spa_sync_deferred_bplist(spa, defer_bpl, tx, txg); 4711 4712 /* 4713 * Iterate to convergence. 4714 */ 4715 do { 4716 int pass = ++spa->spa_sync_pass; 4717 4718 spa_sync_config_object(spa, tx); 4719 spa_sync_aux_dev(spa, &spa->spa_spares, tx, 4720 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES); 4721 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx, 4722 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE); 4723 spa_errlog_sync(spa, txg); 4724 dsl_pool_sync(dp, txg); 4725 4726 if (pass <= SYNC_PASS_DEFERRED_FREE) { 4727 zio_t *zio = zio_root(spa, NULL, NULL, 0); 4728 bplist_sync(free_bpl, spa_sync_free, zio, tx); 4729 VERIFY(zio_wait(zio) == 0); 4730 } else { 4731 bplist_sync(free_bpl, bplist_enqueue_cb, defer_bpl, tx); 4732 } 4733 4734 ddt_sync(spa, txg); 4735 4736 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) 4737 vdev_sync(vd, txg); 4738 4739 } while (dmu_objset_is_dirty(mos, txg)); 4740 4741 ASSERT(free_bpl->bpl_queue == NULL); 4742 4743 bplist_close(defer_bpl); 4744 4745 /* 4746 * Rewrite the vdev configuration (which includes the uberblock) 4747 * to commit the transaction group. 4748 * 4749 * If there are no dirty vdevs, we sync the uberblock to a few 4750 * random top-level vdevs that are known to be visible in the 4751 * config cache (see spa_vdev_add() for a complete description). 4752 * If there *are* dirty vdevs, sync the uberblock to all vdevs. 4753 */ 4754 for (;;) { 4755 /* 4756 * We hold SCL_STATE to prevent vdev open/close/etc. 4757 * while we're attempting to write the vdev labels. 4758 */ 4759 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 4760 4761 if (list_is_empty(&spa->spa_config_dirty_list)) { 4762 vdev_t *svd[SPA_DVAS_PER_BP]; 4763 int svdcount = 0; 4764 int children = rvd->vdev_children; 4765 int c0 = spa_get_random(children); 4766 4767 for (int c = 0; c < children; c++) { 4768 vd = rvd->vdev_child[(c0 + c) % children]; 4769 if (vd->vdev_ms_array == 0 || vd->vdev_islog) 4770 continue; 4771 svd[svdcount++] = vd; 4772 if (svdcount == SPA_DVAS_PER_BP) 4773 break; 4774 } 4775 error = vdev_config_sync(svd, svdcount, txg, B_FALSE); 4776 if (error != 0) 4777 error = vdev_config_sync(svd, svdcount, txg, 4778 B_TRUE); 4779 } else { 4780 error = vdev_config_sync(rvd->vdev_child, 4781 rvd->vdev_children, txg, B_FALSE); 4782 if (error != 0) 4783 error = vdev_config_sync(rvd->vdev_child, 4784 rvd->vdev_children, txg, B_TRUE); 4785 } 4786 4787 spa_config_exit(spa, SCL_STATE, FTAG); 4788 4789 if (error == 0) 4790 break; 4791 zio_suspend(spa, NULL); 4792 zio_resume_wait(spa); 4793 } 4794 dmu_tx_commit(tx); 4795 4796 /* 4797 * Clear the dirty config list. 4798 */ 4799 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL) 4800 vdev_config_clean(vd); 4801 4802 /* 4803 * Now that the new config has synced transactionally, 4804 * let it become visible to the config cache. 4805 */ 4806 if (spa->spa_config_syncing != NULL) { 4807 spa_config_set(spa, spa->spa_config_syncing); 4808 spa->spa_config_txg = txg; 4809 spa->spa_config_syncing = NULL; 4810 } 4811 4812 spa->spa_ubsync = spa->spa_uberblock; 4813 4814 dsl_pool_sync_done(dp, txg); 4815 4816 /* 4817 * Update usable space statistics. 4818 */ 4819 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg))) 4820 vdev_sync_done(vd, txg); 4821 4822 /* 4823 * It had better be the case that we didn't dirty anything 4824 * since vdev_config_sync(). 4825 */ 4826 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg)); 4827 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); 4828 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg)); 4829 ASSERT(defer_bpl->bpl_queue == NULL); 4830 ASSERT(free_bpl->bpl_queue == NULL); 4831 4832 spa->spa_sync_pass = 0; 4833 4834 spa_config_exit(spa, SCL_CONFIG, FTAG); 4835 4836 spa_handle_ignored_writes(spa); 4837 4838 /* 4839 * If any async tasks have been requested, kick them off. 4840 */ 4841 spa_async_dispatch(spa); 4842 } 4843 4844 /* 4845 * Sync all pools. We don't want to hold the namespace lock across these 4846 * operations, so we take a reference on the spa_t and drop the lock during the 4847 * sync. 4848 */ 4849 void 4850 spa_sync_allpools(void) 4851 { 4852 spa_t *spa = NULL; 4853 mutex_enter(&spa_namespace_lock); 4854 while ((spa = spa_next(spa)) != NULL) { 4855 if (spa_state(spa) != POOL_STATE_ACTIVE || spa_suspended(spa)) 4856 continue; 4857 spa_open_ref(spa, FTAG); 4858 mutex_exit(&spa_namespace_lock); 4859 txg_wait_synced(spa_get_dsl(spa), 0); 4860 mutex_enter(&spa_namespace_lock); 4861 spa_close(spa, FTAG); 4862 } 4863 mutex_exit(&spa_namespace_lock); 4864 } 4865 4866 /* 4867 * ========================================================================== 4868 * Miscellaneous routines 4869 * ========================================================================== 4870 */ 4871 4872 /* 4873 * Remove all pools in the system. 4874 */ 4875 void 4876 spa_evict_all(void) 4877 { 4878 spa_t *spa; 4879 4880 /* 4881 * Remove all cached state. All pools should be closed now, 4882 * so every spa in the AVL tree should be unreferenced. 4883 */ 4884 mutex_enter(&spa_namespace_lock); 4885 while ((spa = spa_next(NULL)) != NULL) { 4886 /* 4887 * Stop async tasks. The async thread may need to detach 4888 * a device that's been replaced, which requires grabbing 4889 * spa_namespace_lock, so we must drop it here. 4890 */ 4891 spa_open_ref(spa, FTAG); 4892 mutex_exit(&spa_namespace_lock); 4893 spa_async_suspend(spa); 4894 mutex_enter(&spa_namespace_lock); 4895 spa_close(spa, FTAG); 4896 4897 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 4898 spa_unload(spa); 4899 spa_deactivate(spa); 4900 } 4901 spa_remove(spa); 4902 } 4903 mutex_exit(&spa_namespace_lock); 4904 } 4905 4906 vdev_t * 4907 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux) 4908 { 4909 vdev_t *vd; 4910 int i; 4911 4912 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL) 4913 return (vd); 4914 4915 if (aux) { 4916 for (i = 0; i < spa->spa_l2cache.sav_count; i++) { 4917 vd = spa->spa_l2cache.sav_vdevs[i]; 4918 if (vd->vdev_guid == guid) 4919 return (vd); 4920 } 4921 4922 for (i = 0; i < spa->spa_spares.sav_count; i++) { 4923 vd = spa->spa_spares.sav_vdevs[i]; 4924 if (vd->vdev_guid == guid) 4925 return (vd); 4926 } 4927 } 4928 4929 return (NULL); 4930 } 4931 4932 void 4933 spa_upgrade(spa_t *spa, uint64_t version) 4934 { 4935 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4936 4937 /* 4938 * This should only be called for a non-faulted pool, and since a 4939 * future version would result in an unopenable pool, this shouldn't be 4940 * possible. 4941 */ 4942 ASSERT(spa->spa_uberblock.ub_version <= SPA_VERSION); 4943 ASSERT(version >= spa->spa_uberblock.ub_version); 4944 4945 spa->spa_uberblock.ub_version = version; 4946 vdev_config_dirty(spa->spa_root_vdev); 4947 4948 spa_config_exit(spa, SCL_ALL, FTAG); 4949 4950 txg_wait_synced(spa_get_dsl(spa), 0); 4951 } 4952 4953 boolean_t 4954 spa_has_spare(spa_t *spa, uint64_t guid) 4955 { 4956 int i; 4957 uint64_t spareguid; 4958 spa_aux_vdev_t *sav = &spa->spa_spares; 4959 4960 for (i = 0; i < sav->sav_count; i++) 4961 if (sav->sav_vdevs[i]->vdev_guid == guid) 4962 return (B_TRUE); 4963 4964 for (i = 0; i < sav->sav_npending; i++) { 4965 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID, 4966 &spareguid) == 0 && spareguid == guid) 4967 return (B_TRUE); 4968 } 4969 4970 return (B_FALSE); 4971 } 4972 4973 /* 4974 * Check if a pool has an active shared spare device. 4975 * Note: reference count of an active spare is 2, as a spare and as a replace 4976 */ 4977 static boolean_t 4978 spa_has_active_shared_spare(spa_t *spa) 4979 { 4980 int i, refcnt; 4981 uint64_t pool; 4982 spa_aux_vdev_t *sav = &spa->spa_spares; 4983 4984 for (i = 0; i < sav->sav_count; i++) { 4985 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool, 4986 &refcnt) && pool != 0ULL && pool == spa_guid(spa) && 4987 refcnt > 2) 4988 return (B_TRUE); 4989 } 4990 4991 return (B_FALSE); 4992 } 4993 4994 /* 4995 * Post a sysevent corresponding to the given event. The 'name' must be one of 4996 * the event definitions in sys/sysevent/eventdefs.h. The payload will be 4997 * filled in from the spa and (optionally) the vdev. This doesn't do anything 4998 * in the userland libzpool, as we don't want consumers to misinterpret ztest 4999 * or zdb as real changes. 5000 */ 5001 void 5002 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name) 5003 { 5004 #ifdef _KERNEL 5005 sysevent_t *ev; 5006 sysevent_attr_list_t *attr = NULL; 5007 sysevent_value_t value; 5008 sysevent_id_t eid; 5009 5010 ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs", 5011 SE_SLEEP); 5012 5013 value.value_type = SE_DATA_TYPE_STRING; 5014 value.value.sv_string = spa_name(spa); 5015 if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0) 5016 goto done; 5017 5018 value.value_type = SE_DATA_TYPE_UINT64; 5019 value.value.sv_uint64 = spa_guid(spa); 5020 if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0) 5021 goto done; 5022 5023 if (vd) { 5024 value.value_type = SE_DATA_TYPE_UINT64; 5025 value.value.sv_uint64 = vd->vdev_guid; 5026 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value, 5027 SE_SLEEP) != 0) 5028 goto done; 5029 5030 if (vd->vdev_path) { 5031 value.value_type = SE_DATA_TYPE_STRING; 5032 value.value.sv_string = vd->vdev_path; 5033 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH, 5034 &value, SE_SLEEP) != 0) 5035 goto done; 5036 } 5037 } 5038 5039 if (sysevent_attach_attributes(ev, attr) != 0) 5040 goto done; 5041 attr = NULL; 5042 5043 (void) log_sysevent(ev, SE_SLEEP, &eid); 5044 5045 done: 5046 if (attr) 5047 sysevent_free_attr(attr); 5048 sysevent_free(ev); 5049 #endif 5050 } 5051