1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2014 by Delphix. All rights reserved. 25 * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved. 26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 27 * Copyright 2013 Saso Kiselkov. All rights reserved. 28 * Copyright (c) 2014 Integros [integros.com] 29 */ 30 31 /* 32 * SPA: Storage Pool Allocator 33 * 34 * This file contains all the routines used when modifying on-disk SPA state. 35 * This includes opening, importing, destroying, exporting a pool, and syncing a 36 * pool. 37 */ 38 39 #include <sys/zfs_context.h> 40 #include <sys/fm/fs/zfs.h> 41 #include <sys/spa_impl.h> 42 #include <sys/zio.h> 43 #include <sys/zio_checksum.h> 44 #include <sys/dmu.h> 45 #include <sys/dmu_tx.h> 46 #include <sys/zap.h> 47 #include <sys/zil.h> 48 #include <sys/ddt.h> 49 #include <sys/vdev_impl.h> 50 #include <sys/metaslab.h> 51 #include <sys/metaslab_impl.h> 52 #include <sys/uberblock_impl.h> 53 #include <sys/txg.h> 54 #include <sys/avl.h> 55 #include <sys/dmu_traverse.h> 56 #include <sys/dmu_objset.h> 57 #include <sys/unique.h> 58 #include <sys/dsl_pool.h> 59 #include <sys/dsl_dataset.h> 60 #include <sys/dsl_dir.h> 61 #include <sys/dsl_prop.h> 62 #include <sys/dsl_synctask.h> 63 #include <sys/fs/zfs.h> 64 #include <sys/arc.h> 65 #include <sys/callb.h> 66 #include <sys/systeminfo.h> 67 #include <sys/spa_boot.h> 68 #include <sys/zfs_ioctl.h> 69 #include <sys/dsl_scan.h> 70 #include <sys/zfeature.h> 71 #include <sys/dsl_destroy.h> 72 73 #ifdef _KERNEL 74 #include <sys/bootprops.h> 75 #include <sys/callb.h> 76 #include <sys/cpupart.h> 77 #include <sys/pool.h> 78 #include <sys/sysdc.h> 79 #include <sys/zone.h> 80 #endif /* _KERNEL */ 81 82 #include "zfs_prop.h" 83 #include "zfs_comutil.h" 84 85 /* 86 * The interval, in seconds, at which failed configuration cache file writes 87 * should be retried. 88 */ 89 static int zfs_ccw_retry_interval = 300; 90 91 typedef enum zti_modes { 92 ZTI_MODE_FIXED, /* value is # of threads (min 1) */ 93 ZTI_MODE_BATCH, /* cpu-intensive; value is ignored */ 94 ZTI_MODE_NULL, /* don't create a taskq */ 95 ZTI_NMODES 96 } zti_modes_t; 97 98 #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) } 99 #define ZTI_BATCH { ZTI_MODE_BATCH, 0, 1 } 100 #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 } 101 102 #define ZTI_N(n) ZTI_P(n, 1) 103 #define ZTI_ONE ZTI_N(1) 104 105 typedef struct zio_taskq_info { 106 zti_modes_t zti_mode; 107 uint_t zti_value; 108 uint_t zti_count; 109 } zio_taskq_info_t; 110 111 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = { 112 "issue", "issue_high", "intr", "intr_high" 113 }; 114 115 /* 116 * This table defines the taskq settings for each ZFS I/O type. When 117 * initializing a pool, we use this table to create an appropriately sized 118 * taskq. Some operations are low volume and therefore have a small, static 119 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE 120 * macros. Other operations process a large amount of data; the ZTI_BATCH 121 * macro causes us to create a taskq oriented for throughput. Some operations 122 * are so high frequency and short-lived that the taskq itself can become a a 123 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an 124 * additional degree of parallelism specified by the number of threads per- 125 * taskq and the number of taskqs; when dispatching an event in this case, the 126 * particular taskq is chosen at random. 127 * 128 * The different taskq priorities are to handle the different contexts (issue 129 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that 130 * need to be handled with minimum delay. 131 */ 132 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = { 133 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */ 134 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */ 135 { ZTI_N(8), ZTI_NULL, ZTI_P(12, 8), ZTI_NULL }, /* READ */ 136 { ZTI_BATCH, ZTI_N(5), ZTI_N(8), ZTI_N(5) }, /* WRITE */ 137 { ZTI_P(12, 8), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */ 138 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */ 139 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* IOCTL */ 140 }; 141 142 static void spa_sync_version(void *arg, dmu_tx_t *tx); 143 static void spa_sync_props(void *arg, dmu_tx_t *tx); 144 static boolean_t spa_has_active_shared_spare(spa_t *spa); 145 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config, 146 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig, 147 char **ereport); 148 static void spa_vdev_resilver_done(spa_t *spa); 149 150 uint_t zio_taskq_batch_pct = 75; /* 1 thread per cpu in pset */ 151 id_t zio_taskq_psrset_bind = PS_NONE; 152 boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */ 153 uint_t zio_taskq_basedc = 80; /* base duty cycle */ 154 155 boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */ 156 extern int zfs_sync_pass_deferred_free; 157 158 /* 159 * This (illegal) pool name is used when temporarily importing a spa_t in order 160 * to get the vdev stats associated with the imported devices. 161 */ 162 #define TRYIMPORT_NAME "$import" 163 164 /* 165 * ========================================================================== 166 * SPA properties routines 167 * ========================================================================== 168 */ 169 170 /* 171 * Add a (source=src, propname=propval) list to an nvlist. 172 */ 173 static void 174 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval, 175 uint64_t intval, zprop_source_t src) 176 { 177 const char *propname = zpool_prop_to_name(prop); 178 nvlist_t *propval; 179 180 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0); 181 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0); 182 183 if (strval != NULL) 184 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0); 185 else 186 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0); 187 188 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0); 189 nvlist_free(propval); 190 } 191 192 /* 193 * Get property values from the spa configuration. 194 */ 195 static void 196 spa_prop_get_config(spa_t *spa, nvlist_t **nvp) 197 { 198 vdev_t *rvd = spa->spa_root_vdev; 199 dsl_pool_t *pool = spa->spa_dsl_pool; 200 uint64_t size, alloc, cap, version; 201 zprop_source_t src = ZPROP_SRC_NONE; 202 spa_config_dirent_t *dp; 203 metaslab_class_t *mc = spa_normal_class(spa); 204 205 ASSERT(MUTEX_HELD(&spa->spa_props_lock)); 206 207 if (rvd != NULL) { 208 alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 209 size = metaslab_class_get_space(spa_normal_class(spa)); 210 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src); 211 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src); 212 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src); 213 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL, 214 size - alloc, src); 215 216 spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL, 217 metaslab_class_fragmentation(mc), src); 218 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL, 219 metaslab_class_expandable_space(mc), src); 220 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL, 221 (spa_mode(spa) == FREAD), src); 222 223 cap = (size == 0) ? 0 : (alloc * 100 / size); 224 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src); 225 226 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL, 227 ddt_get_pool_dedup_ratio(spa), src); 228 229 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL, 230 rvd->vdev_state, src); 231 232 version = spa_version(spa); 233 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) 234 src = ZPROP_SRC_DEFAULT; 235 else 236 src = ZPROP_SRC_LOCAL; 237 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src); 238 } 239 240 if (pool != NULL) { 241 /* 242 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS, 243 * when opening pools before this version freedir will be NULL. 244 */ 245 if (pool->dp_free_dir != NULL) { 246 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL, 247 dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes, 248 src); 249 } else { 250 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, 251 NULL, 0, src); 252 } 253 254 if (pool->dp_leak_dir != NULL) { 255 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL, 256 dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes, 257 src); 258 } else { 259 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, 260 NULL, 0, src); 261 } 262 } 263 264 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src); 265 266 if (spa->spa_comment != NULL) { 267 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment, 268 0, ZPROP_SRC_LOCAL); 269 } 270 271 if (spa->spa_root != NULL) 272 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root, 273 0, ZPROP_SRC_LOCAL); 274 275 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) { 276 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL, 277 MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE); 278 } else { 279 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL, 280 SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE); 281 } 282 283 if ((dp = list_head(&spa->spa_config_list)) != NULL) { 284 if (dp->scd_path == NULL) { 285 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 286 "none", 0, ZPROP_SRC_LOCAL); 287 } else if (strcmp(dp->scd_path, spa_config_path) != 0) { 288 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 289 dp->scd_path, 0, ZPROP_SRC_LOCAL); 290 } 291 } 292 } 293 294 /* 295 * Get zpool property values. 296 */ 297 int 298 spa_prop_get(spa_t *spa, nvlist_t **nvp) 299 { 300 objset_t *mos = spa->spa_meta_objset; 301 zap_cursor_t zc; 302 zap_attribute_t za; 303 int err; 304 305 VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0); 306 307 mutex_enter(&spa->spa_props_lock); 308 309 /* 310 * Get properties from the spa config. 311 */ 312 spa_prop_get_config(spa, nvp); 313 314 /* If no pool property object, no more prop to get. */ 315 if (mos == NULL || spa->spa_pool_props_object == 0) { 316 mutex_exit(&spa->spa_props_lock); 317 return (0); 318 } 319 320 /* 321 * Get properties from the MOS pool property object. 322 */ 323 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object); 324 (err = zap_cursor_retrieve(&zc, &za)) == 0; 325 zap_cursor_advance(&zc)) { 326 uint64_t intval = 0; 327 char *strval = NULL; 328 zprop_source_t src = ZPROP_SRC_DEFAULT; 329 zpool_prop_t prop; 330 331 if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL) 332 continue; 333 334 switch (za.za_integer_length) { 335 case 8: 336 /* integer property */ 337 if (za.za_first_integer != 338 zpool_prop_default_numeric(prop)) 339 src = ZPROP_SRC_LOCAL; 340 341 if (prop == ZPOOL_PROP_BOOTFS) { 342 dsl_pool_t *dp; 343 dsl_dataset_t *ds = NULL; 344 345 dp = spa_get_dsl(spa); 346 dsl_pool_config_enter(dp, FTAG); 347 if (err = dsl_dataset_hold_obj(dp, 348 za.za_first_integer, FTAG, &ds)) { 349 dsl_pool_config_exit(dp, FTAG); 350 break; 351 } 352 353 strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, 354 KM_SLEEP); 355 dsl_dataset_name(ds, strval); 356 dsl_dataset_rele(ds, FTAG); 357 dsl_pool_config_exit(dp, FTAG); 358 } else { 359 strval = NULL; 360 intval = za.za_first_integer; 361 } 362 363 spa_prop_add_list(*nvp, prop, strval, intval, src); 364 365 if (strval != NULL) 366 kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN); 367 368 break; 369 370 case 1: 371 /* string property */ 372 strval = kmem_alloc(za.za_num_integers, KM_SLEEP); 373 err = zap_lookup(mos, spa->spa_pool_props_object, 374 za.za_name, 1, za.za_num_integers, strval); 375 if (err) { 376 kmem_free(strval, za.za_num_integers); 377 break; 378 } 379 spa_prop_add_list(*nvp, prop, strval, 0, src); 380 kmem_free(strval, za.za_num_integers); 381 break; 382 383 default: 384 break; 385 } 386 } 387 zap_cursor_fini(&zc); 388 mutex_exit(&spa->spa_props_lock); 389 out: 390 if (err && err != ENOENT) { 391 nvlist_free(*nvp); 392 *nvp = NULL; 393 return (err); 394 } 395 396 return (0); 397 } 398 399 /* 400 * Validate the given pool properties nvlist and modify the list 401 * for the property values to be set. 402 */ 403 static int 404 spa_prop_validate(spa_t *spa, nvlist_t *props) 405 { 406 nvpair_t *elem; 407 int error = 0, reset_bootfs = 0; 408 uint64_t objnum = 0; 409 boolean_t has_feature = B_FALSE; 410 411 elem = NULL; 412 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) { 413 uint64_t intval; 414 char *strval, *slash, *check, *fname; 415 const char *propname = nvpair_name(elem); 416 zpool_prop_t prop = zpool_name_to_prop(propname); 417 418 switch (prop) { 419 case ZPROP_INVAL: 420 if (!zpool_prop_feature(propname)) { 421 error = SET_ERROR(EINVAL); 422 break; 423 } 424 425 /* 426 * Sanitize the input. 427 */ 428 if (nvpair_type(elem) != DATA_TYPE_UINT64) { 429 error = SET_ERROR(EINVAL); 430 break; 431 } 432 433 if (nvpair_value_uint64(elem, &intval) != 0) { 434 error = SET_ERROR(EINVAL); 435 break; 436 } 437 438 if (intval != 0) { 439 error = SET_ERROR(EINVAL); 440 break; 441 } 442 443 fname = strchr(propname, '@') + 1; 444 if (zfeature_lookup_name(fname, NULL) != 0) { 445 error = SET_ERROR(EINVAL); 446 break; 447 } 448 449 has_feature = B_TRUE; 450 break; 451 452 case ZPOOL_PROP_VERSION: 453 error = nvpair_value_uint64(elem, &intval); 454 if (!error && 455 (intval < spa_version(spa) || 456 intval > SPA_VERSION_BEFORE_FEATURES || 457 has_feature)) 458 error = SET_ERROR(EINVAL); 459 break; 460 461 case ZPOOL_PROP_DELEGATION: 462 case ZPOOL_PROP_AUTOREPLACE: 463 case ZPOOL_PROP_LISTSNAPS: 464 case ZPOOL_PROP_AUTOEXPAND: 465 error = nvpair_value_uint64(elem, &intval); 466 if (!error && intval > 1) 467 error = SET_ERROR(EINVAL); 468 break; 469 470 case ZPOOL_PROP_BOOTFS: 471 /* 472 * If the pool version is less than SPA_VERSION_BOOTFS, 473 * or the pool is still being created (version == 0), 474 * the bootfs property cannot be set. 475 */ 476 if (spa_version(spa) < SPA_VERSION_BOOTFS) { 477 error = SET_ERROR(ENOTSUP); 478 break; 479 } 480 481 /* 482 * Make sure the vdev config is bootable 483 */ 484 if (!vdev_is_bootable(spa->spa_root_vdev)) { 485 error = SET_ERROR(ENOTSUP); 486 break; 487 } 488 489 reset_bootfs = 1; 490 491 error = nvpair_value_string(elem, &strval); 492 493 if (!error) { 494 objset_t *os; 495 uint64_t propval; 496 497 if (strval == NULL || strval[0] == '\0') { 498 objnum = zpool_prop_default_numeric( 499 ZPOOL_PROP_BOOTFS); 500 break; 501 } 502 503 if (error = dmu_objset_hold(strval, FTAG, &os)) 504 break; 505 506 /* 507 * Must be ZPL, and its property settings 508 * must be supported by GRUB (compression 509 * is not gzip, and large blocks are not used). 510 */ 511 512 if (dmu_objset_type(os) != DMU_OST_ZFS) { 513 error = SET_ERROR(ENOTSUP); 514 } else if ((error = 515 dsl_prop_get_int_ds(dmu_objset_ds(os), 516 zfs_prop_to_name(ZFS_PROP_COMPRESSION), 517 &propval)) == 0 && 518 !BOOTFS_COMPRESS_VALID(propval)) { 519 error = SET_ERROR(ENOTSUP); 520 } else if ((error = 521 dsl_prop_get_int_ds(dmu_objset_ds(os), 522 zfs_prop_to_name(ZFS_PROP_RECORDSIZE), 523 &propval)) == 0 && 524 propval > SPA_OLD_MAXBLOCKSIZE) { 525 error = SET_ERROR(ENOTSUP); 526 } else { 527 objnum = dmu_objset_id(os); 528 } 529 dmu_objset_rele(os, FTAG); 530 } 531 break; 532 533 case ZPOOL_PROP_FAILUREMODE: 534 error = nvpair_value_uint64(elem, &intval); 535 if (!error && (intval < ZIO_FAILURE_MODE_WAIT || 536 intval > ZIO_FAILURE_MODE_PANIC)) 537 error = SET_ERROR(EINVAL); 538 539 /* 540 * This is a special case which only occurs when 541 * the pool has completely failed. This allows 542 * the user to change the in-core failmode property 543 * without syncing it out to disk (I/Os might 544 * currently be blocked). We do this by returning 545 * EIO to the caller (spa_prop_set) to trick it 546 * into thinking we encountered a property validation 547 * error. 548 */ 549 if (!error && spa_suspended(spa)) { 550 spa->spa_failmode = intval; 551 error = SET_ERROR(EIO); 552 } 553 break; 554 555 case ZPOOL_PROP_CACHEFILE: 556 if ((error = nvpair_value_string(elem, &strval)) != 0) 557 break; 558 559 if (strval[0] == '\0') 560 break; 561 562 if (strcmp(strval, "none") == 0) 563 break; 564 565 if (strval[0] != '/') { 566 error = SET_ERROR(EINVAL); 567 break; 568 } 569 570 slash = strrchr(strval, '/'); 571 ASSERT(slash != NULL); 572 573 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 || 574 strcmp(slash, "/..") == 0) 575 error = SET_ERROR(EINVAL); 576 break; 577 578 case ZPOOL_PROP_COMMENT: 579 if ((error = nvpair_value_string(elem, &strval)) != 0) 580 break; 581 for (check = strval; *check != '\0'; check++) { 582 /* 583 * The kernel doesn't have an easy isprint() 584 * check. For this kernel check, we merely 585 * check ASCII apart from DEL. Fix this if 586 * there is an easy-to-use kernel isprint(). 587 */ 588 if (*check >= 0x7f) { 589 error = SET_ERROR(EINVAL); 590 break; 591 } 592 } 593 if (strlen(strval) > ZPROP_MAX_COMMENT) 594 error = E2BIG; 595 break; 596 597 case ZPOOL_PROP_DEDUPDITTO: 598 if (spa_version(spa) < SPA_VERSION_DEDUP) 599 error = SET_ERROR(ENOTSUP); 600 else 601 error = nvpair_value_uint64(elem, &intval); 602 if (error == 0 && 603 intval != 0 && intval < ZIO_DEDUPDITTO_MIN) 604 error = SET_ERROR(EINVAL); 605 break; 606 } 607 608 if (error) 609 break; 610 } 611 612 if (!error && reset_bootfs) { 613 error = nvlist_remove(props, 614 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING); 615 616 if (!error) { 617 error = nvlist_add_uint64(props, 618 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum); 619 } 620 } 621 622 return (error); 623 } 624 625 void 626 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync) 627 { 628 char *cachefile; 629 spa_config_dirent_t *dp; 630 631 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE), 632 &cachefile) != 0) 633 return; 634 635 dp = kmem_alloc(sizeof (spa_config_dirent_t), 636 KM_SLEEP); 637 638 if (cachefile[0] == '\0') 639 dp->scd_path = spa_strdup(spa_config_path); 640 else if (strcmp(cachefile, "none") == 0) 641 dp->scd_path = NULL; 642 else 643 dp->scd_path = spa_strdup(cachefile); 644 645 list_insert_head(&spa->spa_config_list, dp); 646 if (need_sync) 647 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 648 } 649 650 int 651 spa_prop_set(spa_t *spa, nvlist_t *nvp) 652 { 653 int error; 654 nvpair_t *elem = NULL; 655 boolean_t need_sync = B_FALSE; 656 657 if ((error = spa_prop_validate(spa, nvp)) != 0) 658 return (error); 659 660 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) { 661 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem)); 662 663 if (prop == ZPOOL_PROP_CACHEFILE || 664 prop == ZPOOL_PROP_ALTROOT || 665 prop == ZPOOL_PROP_READONLY) 666 continue; 667 668 if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) { 669 uint64_t ver; 670 671 if (prop == ZPOOL_PROP_VERSION) { 672 VERIFY(nvpair_value_uint64(elem, &ver) == 0); 673 } else { 674 ASSERT(zpool_prop_feature(nvpair_name(elem))); 675 ver = SPA_VERSION_FEATURES; 676 need_sync = B_TRUE; 677 } 678 679 /* Save time if the version is already set. */ 680 if (ver == spa_version(spa)) 681 continue; 682 683 /* 684 * In addition to the pool directory object, we might 685 * create the pool properties object, the features for 686 * read object, the features for write object, or the 687 * feature descriptions object. 688 */ 689 error = dsl_sync_task(spa->spa_name, NULL, 690 spa_sync_version, &ver, 691 6, ZFS_SPACE_CHECK_RESERVED); 692 if (error) 693 return (error); 694 continue; 695 } 696 697 need_sync = B_TRUE; 698 break; 699 } 700 701 if (need_sync) { 702 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props, 703 nvp, 6, ZFS_SPACE_CHECK_RESERVED)); 704 } 705 706 return (0); 707 } 708 709 /* 710 * If the bootfs property value is dsobj, clear it. 711 */ 712 void 713 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx) 714 { 715 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) { 716 VERIFY(zap_remove(spa->spa_meta_objset, 717 spa->spa_pool_props_object, 718 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0); 719 spa->spa_bootfs = 0; 720 } 721 } 722 723 /*ARGSUSED*/ 724 static int 725 spa_change_guid_check(void *arg, dmu_tx_t *tx) 726 { 727 uint64_t *newguid = arg; 728 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 729 vdev_t *rvd = spa->spa_root_vdev; 730 uint64_t vdev_state; 731 732 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 733 vdev_state = rvd->vdev_state; 734 spa_config_exit(spa, SCL_STATE, FTAG); 735 736 if (vdev_state != VDEV_STATE_HEALTHY) 737 return (SET_ERROR(ENXIO)); 738 739 ASSERT3U(spa_guid(spa), !=, *newguid); 740 741 return (0); 742 } 743 744 static void 745 spa_change_guid_sync(void *arg, dmu_tx_t *tx) 746 { 747 uint64_t *newguid = arg; 748 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 749 uint64_t oldguid; 750 vdev_t *rvd = spa->spa_root_vdev; 751 752 oldguid = spa_guid(spa); 753 754 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 755 rvd->vdev_guid = *newguid; 756 rvd->vdev_guid_sum += (*newguid - oldguid); 757 vdev_config_dirty(rvd); 758 spa_config_exit(spa, SCL_STATE, FTAG); 759 760 spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu", 761 oldguid, *newguid); 762 } 763 764 /* 765 * Change the GUID for the pool. This is done so that we can later 766 * re-import a pool built from a clone of our own vdevs. We will modify 767 * the root vdev's guid, our own pool guid, and then mark all of our 768 * vdevs dirty. Note that we must make sure that all our vdevs are 769 * online when we do this, or else any vdevs that weren't present 770 * would be orphaned from our pool. We are also going to issue a 771 * sysevent to update any watchers. 772 */ 773 int 774 spa_change_guid(spa_t *spa) 775 { 776 int error; 777 uint64_t guid; 778 779 mutex_enter(&spa->spa_vdev_top_lock); 780 mutex_enter(&spa_namespace_lock); 781 guid = spa_generate_guid(NULL); 782 783 error = dsl_sync_task(spa->spa_name, spa_change_guid_check, 784 spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED); 785 786 if (error == 0) { 787 spa_config_sync(spa, B_FALSE, B_TRUE); 788 spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID); 789 } 790 791 mutex_exit(&spa_namespace_lock); 792 mutex_exit(&spa->spa_vdev_top_lock); 793 794 return (error); 795 } 796 797 /* 798 * ========================================================================== 799 * SPA state manipulation (open/create/destroy/import/export) 800 * ========================================================================== 801 */ 802 803 static int 804 spa_error_entry_compare(const void *a, const void *b) 805 { 806 spa_error_entry_t *sa = (spa_error_entry_t *)a; 807 spa_error_entry_t *sb = (spa_error_entry_t *)b; 808 int ret; 809 810 ret = bcmp(&sa->se_bookmark, &sb->se_bookmark, 811 sizeof (zbookmark_phys_t)); 812 813 if (ret < 0) 814 return (-1); 815 else if (ret > 0) 816 return (1); 817 else 818 return (0); 819 } 820 821 /* 822 * Utility function which retrieves copies of the current logs and 823 * re-initializes them in the process. 824 */ 825 void 826 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub) 827 { 828 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock)); 829 830 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t)); 831 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t)); 832 833 avl_create(&spa->spa_errlist_scrub, 834 spa_error_entry_compare, sizeof (spa_error_entry_t), 835 offsetof(spa_error_entry_t, se_avl)); 836 avl_create(&spa->spa_errlist_last, 837 spa_error_entry_compare, sizeof (spa_error_entry_t), 838 offsetof(spa_error_entry_t, se_avl)); 839 } 840 841 static void 842 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q) 843 { 844 const zio_taskq_info_t *ztip = &zio_taskqs[t][q]; 845 enum zti_modes mode = ztip->zti_mode; 846 uint_t value = ztip->zti_value; 847 uint_t count = ztip->zti_count; 848 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 849 char name[32]; 850 uint_t flags = 0; 851 boolean_t batch = B_FALSE; 852 853 if (mode == ZTI_MODE_NULL) { 854 tqs->stqs_count = 0; 855 tqs->stqs_taskq = NULL; 856 return; 857 } 858 859 ASSERT3U(count, >, 0); 860 861 tqs->stqs_count = count; 862 tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP); 863 864 switch (mode) { 865 case ZTI_MODE_FIXED: 866 ASSERT3U(value, >=, 1); 867 value = MAX(value, 1); 868 break; 869 870 case ZTI_MODE_BATCH: 871 batch = B_TRUE; 872 flags |= TASKQ_THREADS_CPU_PCT; 873 value = zio_taskq_batch_pct; 874 break; 875 876 default: 877 panic("unrecognized mode for %s_%s taskq (%u:%u) in " 878 "spa_activate()", 879 zio_type_name[t], zio_taskq_types[q], mode, value); 880 break; 881 } 882 883 for (uint_t i = 0; i < count; i++) { 884 taskq_t *tq; 885 886 if (count > 1) { 887 (void) snprintf(name, sizeof (name), "%s_%s_%u", 888 zio_type_name[t], zio_taskq_types[q], i); 889 } else { 890 (void) snprintf(name, sizeof (name), "%s_%s", 891 zio_type_name[t], zio_taskq_types[q]); 892 } 893 894 if (zio_taskq_sysdc && spa->spa_proc != &p0) { 895 if (batch) 896 flags |= TASKQ_DC_BATCH; 897 898 tq = taskq_create_sysdc(name, value, 50, INT_MAX, 899 spa->spa_proc, zio_taskq_basedc, flags); 900 } else { 901 pri_t pri = maxclsyspri; 902 /* 903 * The write issue taskq can be extremely CPU 904 * intensive. Run it at slightly lower priority 905 * than the other taskqs. 906 */ 907 if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE) 908 pri--; 909 910 tq = taskq_create_proc(name, value, pri, 50, 911 INT_MAX, spa->spa_proc, flags); 912 } 913 914 tqs->stqs_taskq[i] = tq; 915 } 916 } 917 918 static void 919 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q) 920 { 921 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 922 923 if (tqs->stqs_taskq == NULL) { 924 ASSERT0(tqs->stqs_count); 925 return; 926 } 927 928 for (uint_t i = 0; i < tqs->stqs_count; i++) { 929 ASSERT3P(tqs->stqs_taskq[i], !=, NULL); 930 taskq_destroy(tqs->stqs_taskq[i]); 931 } 932 933 kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *)); 934 tqs->stqs_taskq = NULL; 935 } 936 937 /* 938 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority. 939 * Note that a type may have multiple discrete taskqs to avoid lock contention 940 * on the taskq itself. In that case we choose which taskq at random by using 941 * the low bits of gethrtime(). 942 */ 943 void 944 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q, 945 task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent) 946 { 947 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 948 taskq_t *tq; 949 950 ASSERT3P(tqs->stqs_taskq, !=, NULL); 951 ASSERT3U(tqs->stqs_count, !=, 0); 952 953 if (tqs->stqs_count == 1) { 954 tq = tqs->stqs_taskq[0]; 955 } else { 956 tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count]; 957 } 958 959 taskq_dispatch_ent(tq, func, arg, flags, ent); 960 } 961 962 static void 963 spa_create_zio_taskqs(spa_t *spa) 964 { 965 for (int t = 0; t < ZIO_TYPES; t++) { 966 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 967 spa_taskqs_init(spa, t, q); 968 } 969 } 970 } 971 972 #ifdef _KERNEL 973 static void 974 spa_thread(void *arg) 975 { 976 callb_cpr_t cprinfo; 977 978 spa_t *spa = arg; 979 user_t *pu = PTOU(curproc); 980 981 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr, 982 spa->spa_name); 983 984 ASSERT(curproc != &p0); 985 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs), 986 "zpool-%s", spa->spa_name); 987 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm)); 988 989 /* bind this thread to the requested psrset */ 990 if (zio_taskq_psrset_bind != PS_NONE) { 991 pool_lock(); 992 mutex_enter(&cpu_lock); 993 mutex_enter(&pidlock); 994 mutex_enter(&curproc->p_lock); 995 996 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind, 997 0, NULL, NULL) == 0) { 998 curthread->t_bind_pset = zio_taskq_psrset_bind; 999 } else { 1000 cmn_err(CE_WARN, 1001 "Couldn't bind process for zfs pool \"%s\" to " 1002 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind); 1003 } 1004 1005 mutex_exit(&curproc->p_lock); 1006 mutex_exit(&pidlock); 1007 mutex_exit(&cpu_lock); 1008 pool_unlock(); 1009 } 1010 1011 if (zio_taskq_sysdc) { 1012 sysdc_thread_enter(curthread, 100, 0); 1013 } 1014 1015 spa->spa_proc = curproc; 1016 spa->spa_did = curthread->t_did; 1017 1018 spa_create_zio_taskqs(spa); 1019 1020 mutex_enter(&spa->spa_proc_lock); 1021 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED); 1022 1023 spa->spa_proc_state = SPA_PROC_ACTIVE; 1024 cv_broadcast(&spa->spa_proc_cv); 1025 1026 CALLB_CPR_SAFE_BEGIN(&cprinfo); 1027 while (spa->spa_proc_state == SPA_PROC_ACTIVE) 1028 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 1029 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock); 1030 1031 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE); 1032 spa->spa_proc_state = SPA_PROC_GONE; 1033 spa->spa_proc = &p0; 1034 cv_broadcast(&spa->spa_proc_cv); 1035 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */ 1036 1037 mutex_enter(&curproc->p_lock); 1038 lwp_exit(); 1039 } 1040 #endif 1041 1042 /* 1043 * Activate an uninitialized pool. 1044 */ 1045 static void 1046 spa_activate(spa_t *spa, int mode) 1047 { 1048 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED); 1049 1050 spa->spa_state = POOL_STATE_ACTIVE; 1051 spa->spa_mode = mode; 1052 1053 spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops); 1054 spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops); 1055 1056 /* Try to create a covering process */ 1057 mutex_enter(&spa->spa_proc_lock); 1058 ASSERT(spa->spa_proc_state == SPA_PROC_NONE); 1059 ASSERT(spa->spa_proc == &p0); 1060 spa->spa_did = 0; 1061 1062 /* Only create a process if we're going to be around a while. */ 1063 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) { 1064 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri, 1065 NULL, 0) == 0) { 1066 spa->spa_proc_state = SPA_PROC_CREATED; 1067 while (spa->spa_proc_state == SPA_PROC_CREATED) { 1068 cv_wait(&spa->spa_proc_cv, 1069 &spa->spa_proc_lock); 1070 } 1071 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 1072 ASSERT(spa->spa_proc != &p0); 1073 ASSERT(spa->spa_did != 0); 1074 } else { 1075 #ifdef _KERNEL 1076 cmn_err(CE_WARN, 1077 "Couldn't create process for zfs pool \"%s\"\n", 1078 spa->spa_name); 1079 #endif 1080 } 1081 } 1082 mutex_exit(&spa->spa_proc_lock); 1083 1084 /* If we didn't create a process, we need to create our taskqs. */ 1085 if (spa->spa_proc == &p0) { 1086 spa_create_zio_taskqs(spa); 1087 } 1088 1089 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t), 1090 offsetof(vdev_t, vdev_config_dirty_node)); 1091 list_create(&spa->spa_evicting_os_list, sizeof (objset_t), 1092 offsetof(objset_t, os_evicting_node)); 1093 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t), 1094 offsetof(vdev_t, vdev_state_dirty_node)); 1095 1096 txg_list_create(&spa->spa_vdev_txg_list, 1097 offsetof(struct vdev, vdev_txg_node)); 1098 1099 avl_create(&spa->spa_errlist_scrub, 1100 spa_error_entry_compare, sizeof (spa_error_entry_t), 1101 offsetof(spa_error_entry_t, se_avl)); 1102 avl_create(&spa->spa_errlist_last, 1103 spa_error_entry_compare, sizeof (spa_error_entry_t), 1104 offsetof(spa_error_entry_t, se_avl)); 1105 } 1106 1107 /* 1108 * Opposite of spa_activate(). 1109 */ 1110 static void 1111 spa_deactivate(spa_t *spa) 1112 { 1113 ASSERT(spa->spa_sync_on == B_FALSE); 1114 ASSERT(spa->spa_dsl_pool == NULL); 1115 ASSERT(spa->spa_root_vdev == NULL); 1116 ASSERT(spa->spa_async_zio_root == NULL); 1117 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED); 1118 1119 spa_evicting_os_wait(spa); 1120 1121 txg_list_destroy(&spa->spa_vdev_txg_list); 1122 1123 list_destroy(&spa->spa_config_dirty_list); 1124 list_destroy(&spa->spa_evicting_os_list); 1125 list_destroy(&spa->spa_state_dirty_list); 1126 1127 for (int t = 0; t < ZIO_TYPES; t++) { 1128 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 1129 spa_taskqs_fini(spa, t, q); 1130 } 1131 } 1132 1133 metaslab_class_destroy(spa->spa_normal_class); 1134 spa->spa_normal_class = NULL; 1135 1136 metaslab_class_destroy(spa->spa_log_class); 1137 spa->spa_log_class = NULL; 1138 1139 /* 1140 * If this was part of an import or the open otherwise failed, we may 1141 * still have errors left in the queues. Empty them just in case. 1142 */ 1143 spa_errlog_drain(spa); 1144 1145 avl_destroy(&spa->spa_errlist_scrub); 1146 avl_destroy(&spa->spa_errlist_last); 1147 1148 spa->spa_state = POOL_STATE_UNINITIALIZED; 1149 1150 mutex_enter(&spa->spa_proc_lock); 1151 if (spa->spa_proc_state != SPA_PROC_NONE) { 1152 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 1153 spa->spa_proc_state = SPA_PROC_DEACTIVATE; 1154 cv_broadcast(&spa->spa_proc_cv); 1155 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) { 1156 ASSERT(spa->spa_proc != &p0); 1157 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 1158 } 1159 ASSERT(spa->spa_proc_state == SPA_PROC_GONE); 1160 spa->spa_proc_state = SPA_PROC_NONE; 1161 } 1162 ASSERT(spa->spa_proc == &p0); 1163 mutex_exit(&spa->spa_proc_lock); 1164 1165 /* 1166 * We want to make sure spa_thread() has actually exited the ZFS 1167 * module, so that the module can't be unloaded out from underneath 1168 * it. 1169 */ 1170 if (spa->spa_did != 0) { 1171 thread_join(spa->spa_did); 1172 spa->spa_did = 0; 1173 } 1174 } 1175 1176 /* 1177 * Verify a pool configuration, and construct the vdev tree appropriately. This 1178 * will create all the necessary vdevs in the appropriate layout, with each vdev 1179 * in the CLOSED state. This will prep the pool before open/creation/import. 1180 * All vdev validation is done by the vdev_alloc() routine. 1181 */ 1182 static int 1183 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, 1184 uint_t id, int atype) 1185 { 1186 nvlist_t **child; 1187 uint_t children; 1188 int error; 1189 1190 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0) 1191 return (error); 1192 1193 if ((*vdp)->vdev_ops->vdev_op_leaf) 1194 return (0); 1195 1196 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 1197 &child, &children); 1198 1199 if (error == ENOENT) 1200 return (0); 1201 1202 if (error) { 1203 vdev_free(*vdp); 1204 *vdp = NULL; 1205 return (SET_ERROR(EINVAL)); 1206 } 1207 1208 for (int c = 0; c < children; c++) { 1209 vdev_t *vd; 1210 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c, 1211 atype)) != 0) { 1212 vdev_free(*vdp); 1213 *vdp = NULL; 1214 return (error); 1215 } 1216 } 1217 1218 ASSERT(*vdp != NULL); 1219 1220 return (0); 1221 } 1222 1223 /* 1224 * Opposite of spa_load(). 1225 */ 1226 static void 1227 spa_unload(spa_t *spa) 1228 { 1229 int i; 1230 1231 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1232 1233 /* 1234 * Stop async tasks. 1235 */ 1236 spa_async_suspend(spa); 1237 1238 /* 1239 * Stop syncing. 1240 */ 1241 if (spa->spa_sync_on) { 1242 txg_sync_stop(spa->spa_dsl_pool); 1243 spa->spa_sync_on = B_FALSE; 1244 } 1245 1246 /* 1247 * Wait for any outstanding async I/O to complete. 1248 */ 1249 if (spa->spa_async_zio_root != NULL) { 1250 for (int i = 0; i < max_ncpus; i++) 1251 (void) zio_wait(spa->spa_async_zio_root[i]); 1252 kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *)); 1253 spa->spa_async_zio_root = NULL; 1254 } 1255 1256 bpobj_close(&spa->spa_deferred_bpobj); 1257 1258 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1259 1260 /* 1261 * Close all vdevs. 1262 */ 1263 if (spa->spa_root_vdev) 1264 vdev_free(spa->spa_root_vdev); 1265 ASSERT(spa->spa_root_vdev == NULL); 1266 1267 /* 1268 * Close the dsl pool. 1269 */ 1270 if (spa->spa_dsl_pool) { 1271 dsl_pool_close(spa->spa_dsl_pool); 1272 spa->spa_dsl_pool = NULL; 1273 spa->spa_meta_objset = NULL; 1274 } 1275 1276 ddt_unload(spa); 1277 1278 1279 /* 1280 * Drop and purge level 2 cache 1281 */ 1282 spa_l2cache_drop(spa); 1283 1284 for (i = 0; i < spa->spa_spares.sav_count; i++) 1285 vdev_free(spa->spa_spares.sav_vdevs[i]); 1286 if (spa->spa_spares.sav_vdevs) { 1287 kmem_free(spa->spa_spares.sav_vdevs, 1288 spa->spa_spares.sav_count * sizeof (void *)); 1289 spa->spa_spares.sav_vdevs = NULL; 1290 } 1291 if (spa->spa_spares.sav_config) { 1292 nvlist_free(spa->spa_spares.sav_config); 1293 spa->spa_spares.sav_config = NULL; 1294 } 1295 spa->spa_spares.sav_count = 0; 1296 1297 for (i = 0; i < spa->spa_l2cache.sav_count; i++) { 1298 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]); 1299 vdev_free(spa->spa_l2cache.sav_vdevs[i]); 1300 } 1301 if (spa->spa_l2cache.sav_vdevs) { 1302 kmem_free(spa->spa_l2cache.sav_vdevs, 1303 spa->spa_l2cache.sav_count * sizeof (void *)); 1304 spa->spa_l2cache.sav_vdevs = NULL; 1305 } 1306 if (spa->spa_l2cache.sav_config) { 1307 nvlist_free(spa->spa_l2cache.sav_config); 1308 spa->spa_l2cache.sav_config = NULL; 1309 } 1310 spa->spa_l2cache.sav_count = 0; 1311 1312 spa->spa_async_suspended = 0; 1313 1314 if (spa->spa_comment != NULL) { 1315 spa_strfree(spa->spa_comment); 1316 spa->spa_comment = NULL; 1317 } 1318 1319 spa_config_exit(spa, SCL_ALL, FTAG); 1320 } 1321 1322 /* 1323 * Load (or re-load) the current list of vdevs describing the active spares for 1324 * this pool. When this is called, we have some form of basic information in 1325 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and 1326 * then re-generate a more complete list including status information. 1327 */ 1328 static void 1329 spa_load_spares(spa_t *spa) 1330 { 1331 nvlist_t **spares; 1332 uint_t nspares; 1333 int i; 1334 vdev_t *vd, *tvd; 1335 1336 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1337 1338 /* 1339 * First, close and free any existing spare vdevs. 1340 */ 1341 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1342 vd = spa->spa_spares.sav_vdevs[i]; 1343 1344 /* Undo the call to spa_activate() below */ 1345 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1346 B_FALSE)) != NULL && tvd->vdev_isspare) 1347 spa_spare_remove(tvd); 1348 vdev_close(vd); 1349 vdev_free(vd); 1350 } 1351 1352 if (spa->spa_spares.sav_vdevs) 1353 kmem_free(spa->spa_spares.sav_vdevs, 1354 spa->spa_spares.sav_count * sizeof (void *)); 1355 1356 if (spa->spa_spares.sav_config == NULL) 1357 nspares = 0; 1358 else 1359 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 1360 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 1361 1362 spa->spa_spares.sav_count = (int)nspares; 1363 spa->spa_spares.sav_vdevs = NULL; 1364 1365 if (nspares == 0) 1366 return; 1367 1368 /* 1369 * Construct the array of vdevs, opening them to get status in the 1370 * process. For each spare, there is potentially two different vdev_t 1371 * structures associated with it: one in the list of spares (used only 1372 * for basic validation purposes) and one in the active vdev 1373 * configuration (if it's spared in). During this phase we open and 1374 * validate each vdev on the spare list. If the vdev also exists in the 1375 * active configuration, then we also mark this vdev as an active spare. 1376 */ 1377 spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *), 1378 KM_SLEEP); 1379 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1380 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0, 1381 VDEV_ALLOC_SPARE) == 0); 1382 ASSERT(vd != NULL); 1383 1384 spa->spa_spares.sav_vdevs[i] = vd; 1385 1386 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1387 B_FALSE)) != NULL) { 1388 if (!tvd->vdev_isspare) 1389 spa_spare_add(tvd); 1390 1391 /* 1392 * We only mark the spare active if we were successfully 1393 * able to load the vdev. Otherwise, importing a pool 1394 * with a bad active spare would result in strange 1395 * behavior, because multiple pool would think the spare 1396 * is actively in use. 1397 * 1398 * There is a vulnerability here to an equally bizarre 1399 * circumstance, where a dead active spare is later 1400 * brought back to life (onlined or otherwise). Given 1401 * the rarity of this scenario, and the extra complexity 1402 * it adds, we ignore the possibility. 1403 */ 1404 if (!vdev_is_dead(tvd)) 1405 spa_spare_activate(tvd); 1406 } 1407 1408 vd->vdev_top = vd; 1409 vd->vdev_aux = &spa->spa_spares; 1410 1411 if (vdev_open(vd) != 0) 1412 continue; 1413 1414 if (vdev_validate_aux(vd) == 0) 1415 spa_spare_add(vd); 1416 } 1417 1418 /* 1419 * Recompute the stashed list of spares, with status information 1420 * this time. 1421 */ 1422 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, 1423 DATA_TYPE_NVLIST_ARRAY) == 0); 1424 1425 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *), 1426 KM_SLEEP); 1427 for (i = 0; i < spa->spa_spares.sav_count; i++) 1428 spares[i] = vdev_config_generate(spa, 1429 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE); 1430 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 1431 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0); 1432 for (i = 0; i < spa->spa_spares.sav_count; i++) 1433 nvlist_free(spares[i]); 1434 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *)); 1435 } 1436 1437 /* 1438 * Load (or re-load) the current list of vdevs describing the active l2cache for 1439 * this pool. When this is called, we have some form of basic information in 1440 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and 1441 * then re-generate a more complete list including status information. 1442 * Devices which are already active have their details maintained, and are 1443 * not re-opened. 1444 */ 1445 static void 1446 spa_load_l2cache(spa_t *spa) 1447 { 1448 nvlist_t **l2cache; 1449 uint_t nl2cache; 1450 int i, j, oldnvdevs; 1451 uint64_t guid; 1452 vdev_t *vd, **oldvdevs, **newvdevs; 1453 spa_aux_vdev_t *sav = &spa->spa_l2cache; 1454 1455 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1456 1457 if (sav->sav_config != NULL) { 1458 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 1459 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 1460 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP); 1461 } else { 1462 nl2cache = 0; 1463 newvdevs = NULL; 1464 } 1465 1466 oldvdevs = sav->sav_vdevs; 1467 oldnvdevs = sav->sav_count; 1468 sav->sav_vdevs = NULL; 1469 sav->sav_count = 0; 1470 1471 /* 1472 * Process new nvlist of vdevs. 1473 */ 1474 for (i = 0; i < nl2cache; i++) { 1475 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID, 1476 &guid) == 0); 1477 1478 newvdevs[i] = NULL; 1479 for (j = 0; j < oldnvdevs; j++) { 1480 vd = oldvdevs[j]; 1481 if (vd != NULL && guid == vd->vdev_guid) { 1482 /* 1483 * Retain previous vdev for add/remove ops. 1484 */ 1485 newvdevs[i] = vd; 1486 oldvdevs[j] = NULL; 1487 break; 1488 } 1489 } 1490 1491 if (newvdevs[i] == NULL) { 1492 /* 1493 * Create new vdev 1494 */ 1495 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0, 1496 VDEV_ALLOC_L2CACHE) == 0); 1497 ASSERT(vd != NULL); 1498 newvdevs[i] = vd; 1499 1500 /* 1501 * Commit this vdev as an l2cache device, 1502 * even if it fails to open. 1503 */ 1504 spa_l2cache_add(vd); 1505 1506 vd->vdev_top = vd; 1507 vd->vdev_aux = sav; 1508 1509 spa_l2cache_activate(vd); 1510 1511 if (vdev_open(vd) != 0) 1512 continue; 1513 1514 (void) vdev_validate_aux(vd); 1515 1516 if (!vdev_is_dead(vd)) { 1517 boolean_t do_rebuild = B_FALSE; 1518 1519 (void) nvlist_lookup_boolean_value(l2cache[i], 1520 ZPOOL_CONFIG_L2CACHE_PERSISTENT, 1521 &do_rebuild); 1522 l2arc_add_vdev(spa, vd, do_rebuild); 1523 } 1524 } 1525 } 1526 1527 /* 1528 * Purge vdevs that were dropped 1529 */ 1530 for (i = 0; i < oldnvdevs; i++) { 1531 uint64_t pool; 1532 1533 vd = oldvdevs[i]; 1534 if (vd != NULL) { 1535 ASSERT(vd->vdev_isl2cache); 1536 1537 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 1538 pool != 0ULL && l2arc_vdev_present(vd)) 1539 l2arc_remove_vdev(vd); 1540 vdev_clear_stats(vd); 1541 vdev_free(vd); 1542 } 1543 } 1544 1545 if (oldvdevs) 1546 kmem_free(oldvdevs, oldnvdevs * sizeof (void *)); 1547 1548 if (sav->sav_config == NULL) 1549 goto out; 1550 1551 sav->sav_vdevs = newvdevs; 1552 sav->sav_count = (int)nl2cache; 1553 1554 /* 1555 * Recompute the stashed list of l2cache devices, with status 1556 * information this time. 1557 */ 1558 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE, 1559 DATA_TYPE_NVLIST_ARRAY) == 0); 1560 1561 l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 1562 for (i = 0; i < sav->sav_count; i++) 1563 l2cache[i] = vdev_config_generate(spa, 1564 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE); 1565 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 1566 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0); 1567 out: 1568 for (i = 0; i < sav->sav_count; i++) 1569 nvlist_free(l2cache[i]); 1570 if (sav->sav_count) 1571 kmem_free(l2cache, sav->sav_count * sizeof (void *)); 1572 } 1573 1574 static int 1575 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value) 1576 { 1577 dmu_buf_t *db; 1578 char *packed = NULL; 1579 size_t nvsize = 0; 1580 int error; 1581 *value = NULL; 1582 1583 error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db); 1584 if (error != 0) 1585 return (error); 1586 1587 nvsize = *(uint64_t *)db->db_data; 1588 dmu_buf_rele(db, FTAG); 1589 1590 packed = kmem_alloc(nvsize, KM_SLEEP); 1591 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed, 1592 DMU_READ_PREFETCH); 1593 if (error == 0) 1594 error = nvlist_unpack(packed, nvsize, value, 0); 1595 kmem_free(packed, nvsize); 1596 1597 return (error); 1598 } 1599 1600 /* 1601 * Checks to see if the given vdev could not be opened, in which case we post a 1602 * sysevent to notify the autoreplace code that the device has been removed. 1603 */ 1604 static void 1605 spa_check_removed(vdev_t *vd) 1606 { 1607 for (int c = 0; c < vd->vdev_children; c++) 1608 spa_check_removed(vd->vdev_child[c]); 1609 1610 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) && 1611 !vd->vdev_ishole) { 1612 zfs_post_autoreplace(vd->vdev_spa, vd); 1613 spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK); 1614 } 1615 } 1616 1617 /* 1618 * Validate the current config against the MOS config 1619 */ 1620 static boolean_t 1621 spa_config_valid(spa_t *spa, nvlist_t *config) 1622 { 1623 vdev_t *mrvd, *rvd = spa->spa_root_vdev; 1624 nvlist_t *nv; 1625 1626 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0); 1627 1628 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1629 VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0); 1630 1631 ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children); 1632 1633 /* 1634 * If we're doing a normal import, then build up any additional 1635 * diagnostic information about missing devices in this config. 1636 * We'll pass this up to the user for further processing. 1637 */ 1638 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) { 1639 nvlist_t **child, *nv; 1640 uint64_t idx = 0; 1641 1642 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **), 1643 KM_SLEEP); 1644 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0); 1645 1646 for (int c = 0; c < rvd->vdev_children; c++) { 1647 vdev_t *tvd = rvd->vdev_child[c]; 1648 vdev_t *mtvd = mrvd->vdev_child[c]; 1649 1650 if (tvd->vdev_ops == &vdev_missing_ops && 1651 mtvd->vdev_ops != &vdev_missing_ops && 1652 mtvd->vdev_islog) 1653 child[idx++] = vdev_config_generate(spa, mtvd, 1654 B_FALSE, 0); 1655 } 1656 1657 if (idx) { 1658 VERIFY(nvlist_add_nvlist_array(nv, 1659 ZPOOL_CONFIG_CHILDREN, child, idx) == 0); 1660 VERIFY(nvlist_add_nvlist(spa->spa_load_info, 1661 ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0); 1662 1663 for (int i = 0; i < idx; i++) 1664 nvlist_free(child[i]); 1665 } 1666 nvlist_free(nv); 1667 kmem_free(child, rvd->vdev_children * sizeof (char **)); 1668 } 1669 1670 /* 1671 * Compare the root vdev tree with the information we have 1672 * from the MOS config (mrvd). Check each top-level vdev 1673 * with the corresponding MOS config top-level (mtvd). 1674 */ 1675 for (int c = 0; c < rvd->vdev_children; c++) { 1676 vdev_t *tvd = rvd->vdev_child[c]; 1677 vdev_t *mtvd = mrvd->vdev_child[c]; 1678 1679 /* 1680 * Resolve any "missing" vdevs in the current configuration. 1681 * If we find that the MOS config has more accurate information 1682 * about the top-level vdev then use that vdev instead. 1683 */ 1684 if (tvd->vdev_ops == &vdev_missing_ops && 1685 mtvd->vdev_ops != &vdev_missing_ops) { 1686 1687 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) 1688 continue; 1689 1690 /* 1691 * Device specific actions. 1692 */ 1693 if (mtvd->vdev_islog) { 1694 spa_set_log_state(spa, SPA_LOG_CLEAR); 1695 } else { 1696 /* 1697 * XXX - once we have 'readonly' pool 1698 * support we should be able to handle 1699 * missing data devices by transitioning 1700 * the pool to readonly. 1701 */ 1702 continue; 1703 } 1704 1705 /* 1706 * Swap the missing vdev with the data we were 1707 * able to obtain from the MOS config. 1708 */ 1709 vdev_remove_child(rvd, tvd); 1710 vdev_remove_child(mrvd, mtvd); 1711 1712 vdev_add_child(rvd, mtvd); 1713 vdev_add_child(mrvd, tvd); 1714 1715 spa_config_exit(spa, SCL_ALL, FTAG); 1716 vdev_load(mtvd); 1717 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1718 1719 vdev_reopen(rvd); 1720 } else if (mtvd->vdev_islog) { 1721 /* 1722 * Load the slog device's state from the MOS config 1723 * since it's possible that the label does not 1724 * contain the most up-to-date information. 1725 */ 1726 vdev_load_log_state(tvd, mtvd); 1727 vdev_reopen(tvd); 1728 } 1729 } 1730 vdev_free(mrvd); 1731 spa_config_exit(spa, SCL_ALL, FTAG); 1732 1733 /* 1734 * Ensure we were able to validate the config. 1735 */ 1736 return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum); 1737 } 1738 1739 /* 1740 * Check for missing log devices 1741 */ 1742 static boolean_t 1743 spa_check_logs(spa_t *spa) 1744 { 1745 boolean_t rv = B_FALSE; 1746 dsl_pool_t *dp = spa_get_dsl(spa); 1747 1748 switch (spa->spa_log_state) { 1749 case SPA_LOG_MISSING: 1750 /* need to recheck in case slog has been restored */ 1751 case SPA_LOG_UNKNOWN: 1752 rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 1753 zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0); 1754 if (rv) 1755 spa_set_log_state(spa, SPA_LOG_MISSING); 1756 break; 1757 } 1758 return (rv); 1759 } 1760 1761 static boolean_t 1762 spa_passivate_log(spa_t *spa) 1763 { 1764 vdev_t *rvd = spa->spa_root_vdev; 1765 boolean_t slog_found = B_FALSE; 1766 1767 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1768 1769 if (!spa_has_slogs(spa)) 1770 return (B_FALSE); 1771 1772 for (int c = 0; c < rvd->vdev_children; c++) { 1773 vdev_t *tvd = rvd->vdev_child[c]; 1774 metaslab_group_t *mg = tvd->vdev_mg; 1775 1776 if (tvd->vdev_islog) { 1777 metaslab_group_passivate(mg); 1778 slog_found = B_TRUE; 1779 } 1780 } 1781 1782 return (slog_found); 1783 } 1784 1785 static void 1786 spa_activate_log(spa_t *spa) 1787 { 1788 vdev_t *rvd = spa->spa_root_vdev; 1789 1790 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1791 1792 for (int c = 0; c < rvd->vdev_children; c++) { 1793 vdev_t *tvd = rvd->vdev_child[c]; 1794 metaslab_group_t *mg = tvd->vdev_mg; 1795 1796 if (tvd->vdev_islog) 1797 metaslab_group_activate(mg); 1798 } 1799 } 1800 1801 int 1802 spa_offline_log(spa_t *spa) 1803 { 1804 int error; 1805 1806 error = dmu_objset_find(spa_name(spa), zil_vdev_offline, 1807 NULL, DS_FIND_CHILDREN); 1808 if (error == 0) { 1809 /* 1810 * We successfully offlined the log device, sync out the 1811 * current txg so that the "stubby" block can be removed 1812 * by zil_sync(). 1813 */ 1814 txg_wait_synced(spa->spa_dsl_pool, 0); 1815 } 1816 return (error); 1817 } 1818 1819 static void 1820 spa_aux_check_removed(spa_aux_vdev_t *sav) 1821 { 1822 for (int i = 0; i < sav->sav_count; i++) 1823 spa_check_removed(sav->sav_vdevs[i]); 1824 } 1825 1826 void 1827 spa_claim_notify(zio_t *zio) 1828 { 1829 spa_t *spa = zio->io_spa; 1830 1831 if (zio->io_error) 1832 return; 1833 1834 mutex_enter(&spa->spa_props_lock); /* any mutex will do */ 1835 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth) 1836 spa->spa_claim_max_txg = zio->io_bp->blk_birth; 1837 mutex_exit(&spa->spa_props_lock); 1838 } 1839 1840 typedef struct spa_load_error { 1841 uint64_t sle_meta_count; 1842 uint64_t sle_data_count; 1843 } spa_load_error_t; 1844 1845 static void 1846 spa_load_verify_done(zio_t *zio) 1847 { 1848 blkptr_t *bp = zio->io_bp; 1849 spa_load_error_t *sle = zio->io_private; 1850 dmu_object_type_t type = BP_GET_TYPE(bp); 1851 int error = zio->io_error; 1852 spa_t *spa = zio->io_spa; 1853 1854 if (error) { 1855 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) && 1856 type != DMU_OT_INTENT_LOG) 1857 atomic_inc_64(&sle->sle_meta_count); 1858 else 1859 atomic_inc_64(&sle->sle_data_count); 1860 } 1861 zio_data_buf_free(zio->io_data, zio->io_size); 1862 1863 mutex_enter(&spa->spa_scrub_lock); 1864 spa->spa_scrub_inflight--; 1865 cv_broadcast(&spa->spa_scrub_io_cv); 1866 mutex_exit(&spa->spa_scrub_lock); 1867 } 1868 1869 /* 1870 * Maximum number of concurrent scrub i/os to create while verifying 1871 * a pool while importing it. 1872 */ 1873 int spa_load_verify_maxinflight = 10000; 1874 boolean_t spa_load_verify_metadata = B_TRUE; 1875 boolean_t spa_load_verify_data = B_TRUE; 1876 1877 /*ARGSUSED*/ 1878 static int 1879 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 1880 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg) 1881 { 1882 if (bp == NULL || BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) 1883 return (0); 1884 /* 1885 * Note: normally this routine will not be called if 1886 * spa_load_verify_metadata is not set. However, it may be useful 1887 * to manually set the flag after the traversal has begun. 1888 */ 1889 if (!spa_load_verify_metadata) 1890 return (0); 1891 if (BP_GET_BUFC_TYPE(bp) == ARC_BUFC_DATA && !spa_load_verify_data) 1892 return (0); 1893 1894 zio_t *rio = arg; 1895 size_t size = BP_GET_PSIZE(bp); 1896 void *data = zio_data_buf_alloc(size); 1897 1898 mutex_enter(&spa->spa_scrub_lock); 1899 while (spa->spa_scrub_inflight >= spa_load_verify_maxinflight) 1900 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); 1901 spa->spa_scrub_inflight++; 1902 mutex_exit(&spa->spa_scrub_lock); 1903 1904 zio_nowait(zio_read(rio, spa, bp, data, size, 1905 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB, 1906 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL | 1907 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb)); 1908 return (0); 1909 } 1910 1911 static int 1912 spa_load_verify(spa_t *spa) 1913 { 1914 zio_t *rio; 1915 spa_load_error_t sle = { 0 }; 1916 zpool_rewind_policy_t policy; 1917 boolean_t verify_ok = B_FALSE; 1918 int error = 0; 1919 1920 zpool_get_rewind_policy(spa->spa_config, &policy); 1921 1922 if (policy.zrp_request & ZPOOL_NEVER_REWIND) 1923 return (0); 1924 1925 rio = zio_root(spa, NULL, &sle, 1926 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE); 1927 1928 if (spa_load_verify_metadata) { 1929 error = traverse_pool(spa, spa->spa_verify_min_txg, 1930 TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA, 1931 spa_load_verify_cb, rio); 1932 } 1933 1934 (void) zio_wait(rio); 1935 1936 spa->spa_load_meta_errors = sle.sle_meta_count; 1937 spa->spa_load_data_errors = sle.sle_data_count; 1938 1939 if (!error && sle.sle_meta_count <= policy.zrp_maxmeta && 1940 sle.sle_data_count <= policy.zrp_maxdata) { 1941 int64_t loss = 0; 1942 1943 verify_ok = B_TRUE; 1944 spa->spa_load_txg = spa->spa_uberblock.ub_txg; 1945 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp; 1946 1947 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts; 1948 VERIFY(nvlist_add_uint64(spa->spa_load_info, 1949 ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0); 1950 VERIFY(nvlist_add_int64(spa->spa_load_info, 1951 ZPOOL_CONFIG_REWIND_TIME, loss) == 0); 1952 VERIFY(nvlist_add_uint64(spa->spa_load_info, 1953 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0); 1954 } else { 1955 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg; 1956 } 1957 1958 if (error) { 1959 if (error != ENXIO && error != EIO) 1960 error = SET_ERROR(EIO); 1961 return (error); 1962 } 1963 1964 return (verify_ok ? 0 : EIO); 1965 } 1966 1967 /* 1968 * Find a value in the pool props object. 1969 */ 1970 static void 1971 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val) 1972 { 1973 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object, 1974 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val); 1975 } 1976 1977 /* 1978 * Find a value in the pool directory object. 1979 */ 1980 static int 1981 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val) 1982 { 1983 return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 1984 name, sizeof (uint64_t), 1, val)); 1985 } 1986 1987 static int 1988 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err) 1989 { 1990 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux); 1991 return (err); 1992 } 1993 1994 /* 1995 * Fix up config after a partly-completed split. This is done with the 1996 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off 1997 * pool have that entry in their config, but only the splitting one contains 1998 * a list of all the guids of the vdevs that are being split off. 1999 * 2000 * This function determines what to do with that list: either rejoin 2001 * all the disks to the pool, or complete the splitting process. To attempt 2002 * the rejoin, each disk that is offlined is marked online again, and 2003 * we do a reopen() call. If the vdev label for every disk that was 2004 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL) 2005 * then we call vdev_split() on each disk, and complete the split. 2006 * 2007 * Otherwise we leave the config alone, with all the vdevs in place in 2008 * the original pool. 2009 */ 2010 static void 2011 spa_try_repair(spa_t *spa, nvlist_t *config) 2012 { 2013 uint_t extracted; 2014 uint64_t *glist; 2015 uint_t i, gcount; 2016 nvlist_t *nvl; 2017 vdev_t **vd; 2018 boolean_t attempt_reopen; 2019 2020 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0) 2021 return; 2022 2023 /* check that the config is complete */ 2024 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 2025 &glist, &gcount) != 0) 2026 return; 2027 2028 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP); 2029 2030 /* attempt to online all the vdevs & validate */ 2031 attempt_reopen = B_TRUE; 2032 for (i = 0; i < gcount; i++) { 2033 if (glist[i] == 0) /* vdev is hole */ 2034 continue; 2035 2036 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE); 2037 if (vd[i] == NULL) { 2038 /* 2039 * Don't bother attempting to reopen the disks; 2040 * just do the split. 2041 */ 2042 attempt_reopen = B_FALSE; 2043 } else { 2044 /* attempt to re-online it */ 2045 vd[i]->vdev_offline = B_FALSE; 2046 } 2047 } 2048 2049 if (attempt_reopen) { 2050 vdev_reopen(spa->spa_root_vdev); 2051 2052 /* check each device to see what state it's in */ 2053 for (extracted = 0, i = 0; i < gcount; i++) { 2054 if (vd[i] != NULL && 2055 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL) 2056 break; 2057 ++extracted; 2058 } 2059 } 2060 2061 /* 2062 * If every disk has been moved to the new pool, or if we never 2063 * even attempted to look at them, then we split them off for 2064 * good. 2065 */ 2066 if (!attempt_reopen || gcount == extracted) { 2067 for (i = 0; i < gcount; i++) 2068 if (vd[i] != NULL) 2069 vdev_split(vd[i]); 2070 vdev_reopen(spa->spa_root_vdev); 2071 } 2072 2073 kmem_free(vd, gcount * sizeof (vdev_t *)); 2074 } 2075 2076 static int 2077 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type, 2078 boolean_t mosconfig) 2079 { 2080 nvlist_t *config = spa->spa_config; 2081 char *ereport = FM_EREPORT_ZFS_POOL; 2082 char *comment; 2083 int error; 2084 uint64_t pool_guid; 2085 nvlist_t *nvl; 2086 2087 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) 2088 return (SET_ERROR(EINVAL)); 2089 2090 ASSERT(spa->spa_comment == NULL); 2091 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0) 2092 spa->spa_comment = spa_strdup(comment); 2093 2094 /* 2095 * Versioning wasn't explicitly added to the label until later, so if 2096 * it's not present treat it as the initial version. 2097 */ 2098 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, 2099 &spa->spa_ubsync.ub_version) != 0) 2100 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL; 2101 2102 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, 2103 &spa->spa_config_txg); 2104 2105 if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) && 2106 spa_guid_exists(pool_guid, 0)) { 2107 error = SET_ERROR(EEXIST); 2108 } else { 2109 spa->spa_config_guid = pool_guid; 2110 2111 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, 2112 &nvl) == 0) { 2113 VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting, 2114 KM_SLEEP) == 0); 2115 } 2116 2117 nvlist_free(spa->spa_load_info); 2118 spa->spa_load_info = fnvlist_alloc(); 2119 2120 gethrestime(&spa->spa_loaded_ts); 2121 error = spa_load_impl(spa, pool_guid, config, state, type, 2122 mosconfig, &ereport); 2123 } 2124 2125 /* 2126 * Don't count references from objsets that are already closed 2127 * and are making their way through the eviction process. 2128 */ 2129 spa_evicting_os_wait(spa); 2130 spa->spa_minref = refcount_count(&spa->spa_refcount); 2131 if (error) { 2132 if (error != EEXIST) { 2133 spa->spa_loaded_ts.tv_sec = 0; 2134 spa->spa_loaded_ts.tv_nsec = 0; 2135 } 2136 if (error != EBADF) { 2137 zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0); 2138 } 2139 } 2140 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE; 2141 spa->spa_ena = 0; 2142 2143 return (error); 2144 } 2145 2146 /* 2147 * Load an existing storage pool, using the pool's builtin spa_config as a 2148 * source of configuration information. 2149 */ 2150 static int 2151 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config, 2152 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig, 2153 char **ereport) 2154 { 2155 int error = 0; 2156 nvlist_t *nvroot = NULL; 2157 nvlist_t *label; 2158 vdev_t *rvd; 2159 uberblock_t *ub = &spa->spa_uberblock; 2160 uint64_t children, config_cache_txg = spa->spa_config_txg; 2161 int orig_mode = spa->spa_mode; 2162 int parse; 2163 uint64_t obj; 2164 boolean_t missing_feat_write = B_FALSE; 2165 2166 /* 2167 * If this is an untrusted config, access the pool in read-only mode. 2168 * This prevents things like resilvering recently removed devices. 2169 */ 2170 if (!mosconfig) 2171 spa->spa_mode = FREAD; 2172 2173 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 2174 2175 spa->spa_load_state = state; 2176 2177 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot)) 2178 return (SET_ERROR(EINVAL)); 2179 2180 parse = (type == SPA_IMPORT_EXISTING ? 2181 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT); 2182 2183 /* 2184 * Create "The Godfather" zio to hold all async IOs 2185 */ 2186 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *), 2187 KM_SLEEP); 2188 for (int i = 0; i < max_ncpus; i++) { 2189 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL, 2190 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 2191 ZIO_FLAG_GODFATHER); 2192 } 2193 2194 /* 2195 * Parse the configuration into a vdev tree. We explicitly set the 2196 * value that will be returned by spa_version() since parsing the 2197 * configuration requires knowing the version number. 2198 */ 2199 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2200 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse); 2201 spa_config_exit(spa, SCL_ALL, FTAG); 2202 2203 if (error != 0) 2204 return (error); 2205 2206 ASSERT(spa->spa_root_vdev == rvd); 2207 ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT); 2208 ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT); 2209 2210 if (type != SPA_IMPORT_ASSEMBLE) { 2211 ASSERT(spa_guid(spa) == pool_guid); 2212 } 2213 2214 /* 2215 * Try to open all vdevs, loading each label in the process. 2216 */ 2217 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2218 error = vdev_open(rvd); 2219 spa_config_exit(spa, SCL_ALL, FTAG); 2220 if (error != 0) 2221 return (error); 2222 2223 /* 2224 * We need to validate the vdev labels against the configuration that 2225 * we have in hand, which is dependent on the setting of mosconfig. If 2226 * mosconfig is true then we're validating the vdev labels based on 2227 * that config. Otherwise, we're validating against the cached config 2228 * (zpool.cache) that was read when we loaded the zfs module, and then 2229 * later we will recursively call spa_load() and validate against 2230 * the vdev config. 2231 * 2232 * If we're assembling a new pool that's been split off from an 2233 * existing pool, the labels haven't yet been updated so we skip 2234 * validation for now. 2235 */ 2236 if (type != SPA_IMPORT_ASSEMBLE) { 2237 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2238 error = vdev_validate(rvd, mosconfig); 2239 spa_config_exit(spa, SCL_ALL, FTAG); 2240 2241 if (error != 0) 2242 return (error); 2243 2244 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) 2245 return (SET_ERROR(ENXIO)); 2246 } 2247 2248 /* 2249 * Find the best uberblock. 2250 */ 2251 vdev_uberblock_load(rvd, ub, &label); 2252 2253 /* 2254 * If we weren't able to find a single valid uberblock, return failure. 2255 */ 2256 if (ub->ub_txg == 0) { 2257 nvlist_free(label); 2258 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO)); 2259 } 2260 2261 /* 2262 * If the pool has an unsupported version we can't open it. 2263 */ 2264 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) { 2265 nvlist_free(label); 2266 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP)); 2267 } 2268 2269 if (ub->ub_version >= SPA_VERSION_FEATURES) { 2270 nvlist_t *features; 2271 2272 /* 2273 * If we weren't able to find what's necessary for reading the 2274 * MOS in the label, return failure. 2275 */ 2276 if (label == NULL || nvlist_lookup_nvlist(label, 2277 ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) { 2278 nvlist_free(label); 2279 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 2280 ENXIO)); 2281 } 2282 2283 /* 2284 * Update our in-core representation with the definitive values 2285 * from the label. 2286 */ 2287 nvlist_free(spa->spa_label_features); 2288 VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0); 2289 } 2290 2291 nvlist_free(label); 2292 2293 /* 2294 * Look through entries in the label nvlist's features_for_read. If 2295 * there is a feature listed there which we don't understand then we 2296 * cannot open a pool. 2297 */ 2298 if (ub->ub_version >= SPA_VERSION_FEATURES) { 2299 nvlist_t *unsup_feat; 2300 2301 VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) == 2302 0); 2303 2304 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features, 2305 NULL); nvp != NULL; 2306 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) { 2307 if (!zfeature_is_supported(nvpair_name(nvp))) { 2308 VERIFY(nvlist_add_string(unsup_feat, 2309 nvpair_name(nvp), "") == 0); 2310 } 2311 } 2312 2313 if (!nvlist_empty(unsup_feat)) { 2314 VERIFY(nvlist_add_nvlist(spa->spa_load_info, 2315 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0); 2316 nvlist_free(unsup_feat); 2317 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, 2318 ENOTSUP)); 2319 } 2320 2321 nvlist_free(unsup_feat); 2322 } 2323 2324 /* 2325 * If the vdev guid sum doesn't match the uberblock, we have an 2326 * incomplete configuration. We first check to see if the pool 2327 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN). 2328 * If it is, defer the vdev_guid_sum check till later so we 2329 * can handle missing vdevs. 2330 */ 2331 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN, 2332 &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE && 2333 rvd->vdev_guid_sum != ub->ub_guid_sum) 2334 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO)); 2335 2336 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) { 2337 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2338 spa_try_repair(spa, config); 2339 spa_config_exit(spa, SCL_ALL, FTAG); 2340 nvlist_free(spa->spa_config_splitting); 2341 spa->spa_config_splitting = NULL; 2342 } 2343 2344 /* 2345 * Initialize internal SPA structures. 2346 */ 2347 spa->spa_state = POOL_STATE_ACTIVE; 2348 spa->spa_ubsync = spa->spa_uberblock; 2349 spa->spa_verify_min_txg = spa->spa_extreme_rewind ? 2350 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1; 2351 spa->spa_first_txg = spa->spa_last_ubsync_txg ? 2352 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1; 2353 spa->spa_claim_max_txg = spa->spa_first_txg; 2354 spa->spa_prev_software_version = ub->ub_software_version; 2355 2356 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool); 2357 if (error) 2358 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2359 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset; 2360 2361 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0) 2362 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2363 2364 if (spa_version(spa) >= SPA_VERSION_FEATURES) { 2365 boolean_t missing_feat_read = B_FALSE; 2366 nvlist_t *unsup_feat, *enabled_feat; 2367 2368 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ, 2369 &spa->spa_feat_for_read_obj) != 0) { 2370 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2371 } 2372 2373 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE, 2374 &spa->spa_feat_for_write_obj) != 0) { 2375 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2376 } 2377 2378 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS, 2379 &spa->spa_feat_desc_obj) != 0) { 2380 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2381 } 2382 2383 enabled_feat = fnvlist_alloc(); 2384 unsup_feat = fnvlist_alloc(); 2385 2386 if (!spa_features_check(spa, B_FALSE, 2387 unsup_feat, enabled_feat)) 2388 missing_feat_read = B_TRUE; 2389 2390 if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) { 2391 if (!spa_features_check(spa, B_TRUE, 2392 unsup_feat, enabled_feat)) { 2393 missing_feat_write = B_TRUE; 2394 } 2395 } 2396 2397 fnvlist_add_nvlist(spa->spa_load_info, 2398 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat); 2399 2400 if (!nvlist_empty(unsup_feat)) { 2401 fnvlist_add_nvlist(spa->spa_load_info, 2402 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat); 2403 } 2404 2405 fnvlist_free(enabled_feat); 2406 fnvlist_free(unsup_feat); 2407 2408 if (!missing_feat_read) { 2409 fnvlist_add_boolean(spa->spa_load_info, 2410 ZPOOL_CONFIG_CAN_RDONLY); 2411 } 2412 2413 /* 2414 * If the state is SPA_LOAD_TRYIMPORT, our objective is 2415 * twofold: to determine whether the pool is available for 2416 * import in read-write mode and (if it is not) whether the 2417 * pool is available for import in read-only mode. If the pool 2418 * is available for import in read-write mode, it is displayed 2419 * as available in userland; if it is not available for import 2420 * in read-only mode, it is displayed as unavailable in 2421 * userland. If the pool is available for import in read-only 2422 * mode but not read-write mode, it is displayed as unavailable 2423 * in userland with a special note that the pool is actually 2424 * available for open in read-only mode. 2425 * 2426 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are 2427 * missing a feature for write, we must first determine whether 2428 * the pool can be opened read-only before returning to 2429 * userland in order to know whether to display the 2430 * abovementioned note. 2431 */ 2432 if (missing_feat_read || (missing_feat_write && 2433 spa_writeable(spa))) { 2434 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, 2435 ENOTSUP)); 2436 } 2437 2438 /* 2439 * Load refcounts for ZFS features from disk into an in-memory 2440 * cache during SPA initialization. 2441 */ 2442 for (spa_feature_t i = 0; i < SPA_FEATURES; i++) { 2443 uint64_t refcount; 2444 2445 error = feature_get_refcount_from_disk(spa, 2446 &spa_feature_table[i], &refcount); 2447 if (error == 0) { 2448 spa->spa_feat_refcount_cache[i] = refcount; 2449 } else if (error == ENOTSUP) { 2450 spa->spa_feat_refcount_cache[i] = 2451 SPA_FEATURE_DISABLED; 2452 } else { 2453 return (spa_vdev_err(rvd, 2454 VDEV_AUX_CORRUPT_DATA, EIO)); 2455 } 2456 } 2457 } 2458 2459 if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) { 2460 if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG, 2461 &spa->spa_feat_enabled_txg_obj) != 0) 2462 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2463 } 2464 2465 spa->spa_is_initializing = B_TRUE; 2466 error = dsl_pool_open(spa->spa_dsl_pool); 2467 spa->spa_is_initializing = B_FALSE; 2468 if (error != 0) 2469 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2470 2471 if (!mosconfig) { 2472 uint64_t hostid; 2473 nvlist_t *policy = NULL, *nvconfig; 2474 2475 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0) 2476 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2477 2478 if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig, 2479 ZPOOL_CONFIG_HOSTID, &hostid) == 0) { 2480 char *hostname; 2481 unsigned long myhostid = 0; 2482 2483 VERIFY(nvlist_lookup_string(nvconfig, 2484 ZPOOL_CONFIG_HOSTNAME, &hostname) == 0); 2485 2486 #ifdef _KERNEL 2487 myhostid = zone_get_hostid(NULL); 2488 #else /* _KERNEL */ 2489 /* 2490 * We're emulating the system's hostid in userland, so 2491 * we can't use zone_get_hostid(). 2492 */ 2493 (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid); 2494 #endif /* _KERNEL */ 2495 if (hostid != 0 && myhostid != 0 && 2496 hostid != myhostid) { 2497 nvlist_free(nvconfig); 2498 cmn_err(CE_WARN, "pool '%s' could not be " 2499 "loaded as it was last accessed by " 2500 "another system (host: %s hostid: 0x%lx). " 2501 "See: http://illumos.org/msg/ZFS-8000-EY", 2502 spa_name(spa), hostname, 2503 (unsigned long)hostid); 2504 return (SET_ERROR(EBADF)); 2505 } 2506 } 2507 if (nvlist_lookup_nvlist(spa->spa_config, 2508 ZPOOL_REWIND_POLICY, &policy) == 0) 2509 VERIFY(nvlist_add_nvlist(nvconfig, 2510 ZPOOL_REWIND_POLICY, policy) == 0); 2511 2512 spa_config_set(spa, nvconfig); 2513 spa_unload(spa); 2514 spa_deactivate(spa); 2515 spa_activate(spa, orig_mode); 2516 2517 return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE)); 2518 } 2519 2520 /* Grab the secret checksum salt from the MOS. */ 2521 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 2522 DMU_POOL_CHECKSUM_SALT, 1, 2523 sizeof (spa->spa_cksum_salt.zcs_bytes), 2524 spa->spa_cksum_salt.zcs_bytes); 2525 if (error == ENOENT) { 2526 /* Generate a new salt for subsequent use */ 2527 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes, 2528 sizeof (spa->spa_cksum_salt.zcs_bytes)); 2529 } else if (error != 0) { 2530 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2531 } 2532 2533 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0) 2534 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2535 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj); 2536 if (error != 0) 2537 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2538 2539 /* 2540 * Load the bit that tells us to use the new accounting function 2541 * (raid-z deflation). If we have an older pool, this will not 2542 * be present. 2543 */ 2544 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate); 2545 if (error != 0 && error != ENOENT) 2546 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2547 2548 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION, 2549 &spa->spa_creation_version); 2550 if (error != 0 && error != ENOENT) 2551 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2552 2553 /* 2554 * Load the persistent error log. If we have an older pool, this will 2555 * not be present. 2556 */ 2557 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last); 2558 if (error != 0 && error != ENOENT) 2559 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2560 2561 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB, 2562 &spa->spa_errlog_scrub); 2563 if (error != 0 && error != ENOENT) 2564 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2565 2566 /* 2567 * Load the history object. If we have an older pool, this 2568 * will not be present. 2569 */ 2570 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history); 2571 if (error != 0 && error != ENOENT) 2572 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2573 2574 /* 2575 * If we're assembling the pool from the split-off vdevs of 2576 * an existing pool, we don't want to attach the spares & cache 2577 * devices. 2578 */ 2579 2580 /* 2581 * Load any hot spares for this pool. 2582 */ 2583 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object); 2584 if (error != 0 && error != ENOENT) 2585 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2586 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 2587 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES); 2588 if (load_nvlist(spa, spa->spa_spares.sav_object, 2589 &spa->spa_spares.sav_config) != 0) 2590 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2591 2592 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2593 spa_load_spares(spa); 2594 spa_config_exit(spa, SCL_ALL, FTAG); 2595 } else if (error == 0) { 2596 spa->spa_spares.sav_sync = B_TRUE; 2597 } 2598 2599 /* 2600 * Load any level 2 ARC devices for this pool. 2601 */ 2602 error = spa_dir_prop(spa, DMU_POOL_L2CACHE, 2603 &spa->spa_l2cache.sav_object); 2604 if (error != 0 && error != ENOENT) 2605 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2606 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 2607 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE); 2608 if (load_nvlist(spa, spa->spa_l2cache.sav_object, 2609 &spa->spa_l2cache.sav_config) != 0) 2610 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2611 2612 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2613 spa_load_l2cache(spa); 2614 spa_config_exit(spa, SCL_ALL, FTAG); 2615 } else if (error == 0) { 2616 spa->spa_l2cache.sav_sync = B_TRUE; 2617 } 2618 2619 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 2620 2621 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object); 2622 if (error && error != ENOENT) 2623 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2624 2625 if (error == 0) { 2626 uint64_t autoreplace; 2627 2628 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs); 2629 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace); 2630 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation); 2631 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode); 2632 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand); 2633 spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO, 2634 &spa->spa_dedup_ditto); 2635 2636 spa->spa_autoreplace = (autoreplace != 0); 2637 } 2638 2639 /* 2640 * If the 'autoreplace' property is set, then post a resource notifying 2641 * the ZFS DE that it should not issue any faults for unopenable 2642 * devices. We also iterate over the vdevs, and post a sysevent for any 2643 * unopenable vdevs so that the normal autoreplace handler can take 2644 * over. 2645 */ 2646 if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) { 2647 spa_check_removed(spa->spa_root_vdev); 2648 /* 2649 * For the import case, this is done in spa_import(), because 2650 * at this point we're using the spare definitions from 2651 * the MOS config, not necessarily from the userland config. 2652 */ 2653 if (state != SPA_LOAD_IMPORT) { 2654 spa_aux_check_removed(&spa->spa_spares); 2655 spa_aux_check_removed(&spa->spa_l2cache); 2656 } 2657 } 2658 2659 /* 2660 * Load the vdev state for all toplevel vdevs. 2661 */ 2662 vdev_load(rvd); 2663 2664 /* 2665 * Propagate the leaf DTLs we just loaded all the way up the tree. 2666 */ 2667 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2668 vdev_dtl_reassess(rvd, 0, 0, B_FALSE); 2669 spa_config_exit(spa, SCL_ALL, FTAG); 2670 2671 /* 2672 * Load the DDTs (dedup tables). 2673 */ 2674 error = ddt_load(spa); 2675 if (error != 0) 2676 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2677 2678 spa_update_dspace(spa); 2679 2680 /* 2681 * Validate the config, using the MOS config to fill in any 2682 * information which might be missing. If we fail to validate 2683 * the config then declare the pool unfit for use. If we're 2684 * assembling a pool from a split, the log is not transferred 2685 * over. 2686 */ 2687 if (type != SPA_IMPORT_ASSEMBLE) { 2688 nvlist_t *nvconfig; 2689 2690 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0) 2691 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2692 2693 if (!spa_config_valid(spa, nvconfig)) { 2694 nvlist_free(nvconfig); 2695 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, 2696 ENXIO)); 2697 } 2698 nvlist_free(nvconfig); 2699 2700 /* 2701 * Now that we've validated the config, check the state of the 2702 * root vdev. If it can't be opened, it indicates one or 2703 * more toplevel vdevs are faulted. 2704 */ 2705 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) 2706 return (SET_ERROR(ENXIO)); 2707 2708 if (spa_writeable(spa) && spa_check_logs(spa)) { 2709 *ereport = FM_EREPORT_ZFS_LOG_REPLAY; 2710 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO)); 2711 } 2712 } 2713 2714 if (missing_feat_write) { 2715 ASSERT(state == SPA_LOAD_TRYIMPORT); 2716 2717 /* 2718 * At this point, we know that we can open the pool in 2719 * read-only mode but not read-write mode. We now have enough 2720 * information and can return to userland. 2721 */ 2722 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP)); 2723 } 2724 2725 /* 2726 * We've successfully opened the pool, verify that we're ready 2727 * to start pushing transactions. 2728 */ 2729 if (state != SPA_LOAD_TRYIMPORT) { 2730 if (error = spa_load_verify(spa)) 2731 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 2732 error)); 2733 } 2734 2735 if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER || 2736 spa->spa_load_max_txg == UINT64_MAX)) { 2737 dmu_tx_t *tx; 2738 int need_update = B_FALSE; 2739 dsl_pool_t *dp = spa_get_dsl(spa); 2740 2741 ASSERT(state != SPA_LOAD_TRYIMPORT); 2742 2743 /* 2744 * Claim log blocks that haven't been committed yet. 2745 * This must all happen in a single txg. 2746 * Note: spa_claim_max_txg is updated by spa_claim_notify(), 2747 * invoked from zil_claim_log_block()'s i/o done callback. 2748 * Price of rollback is that we abandon the log. 2749 */ 2750 spa->spa_claiming = B_TRUE; 2751 2752 tx = dmu_tx_create_assigned(dp, spa_first_txg(spa)); 2753 (void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 2754 zil_claim, tx, DS_FIND_CHILDREN); 2755 dmu_tx_commit(tx); 2756 2757 spa->spa_claiming = B_FALSE; 2758 2759 spa_set_log_state(spa, SPA_LOG_GOOD); 2760 spa->spa_sync_on = B_TRUE; 2761 txg_sync_start(spa->spa_dsl_pool); 2762 2763 /* 2764 * Wait for all claims to sync. We sync up to the highest 2765 * claimed log block birth time so that claimed log blocks 2766 * don't appear to be from the future. spa_claim_max_txg 2767 * will have been set for us by either zil_check_log_chain() 2768 * (invoked from spa_check_logs()) or zil_claim() above. 2769 */ 2770 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg); 2771 2772 /* 2773 * If the config cache is stale, or we have uninitialized 2774 * metaslabs (see spa_vdev_add()), then update the config. 2775 * 2776 * If this is a verbatim import, trust the current 2777 * in-core spa_config and update the disk labels. 2778 */ 2779 if (config_cache_txg != spa->spa_config_txg || 2780 state == SPA_LOAD_IMPORT || 2781 state == SPA_LOAD_RECOVER || 2782 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM)) 2783 need_update = B_TRUE; 2784 2785 for (int c = 0; c < rvd->vdev_children; c++) 2786 if (rvd->vdev_child[c]->vdev_ms_array == 0) 2787 need_update = B_TRUE; 2788 2789 /* 2790 * Update the config cache asychronously in case we're the 2791 * root pool, in which case the config cache isn't writable yet. 2792 */ 2793 if (need_update) 2794 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 2795 2796 /* 2797 * Check all DTLs to see if anything needs resilvering. 2798 */ 2799 if (!dsl_scan_resilvering(spa->spa_dsl_pool) && 2800 vdev_resilver_needed(rvd, NULL, NULL)) 2801 spa_async_request(spa, SPA_ASYNC_RESILVER); 2802 2803 /* 2804 * Log the fact that we booted up (so that we can detect if 2805 * we rebooted in the middle of an operation). 2806 */ 2807 spa_history_log_version(spa, "open"); 2808 2809 /* 2810 * Delete any inconsistent datasets. 2811 */ 2812 (void) dmu_objset_find(spa_name(spa), 2813 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN); 2814 2815 /* 2816 * Clean up any stale temporary dataset userrefs. 2817 */ 2818 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool); 2819 } 2820 2821 spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD); 2822 2823 return (0); 2824 } 2825 2826 static int 2827 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig) 2828 { 2829 int mode = spa->spa_mode; 2830 2831 spa_unload(spa); 2832 spa_deactivate(spa); 2833 2834 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1; 2835 2836 spa_activate(spa, mode); 2837 spa_async_suspend(spa); 2838 2839 return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig)); 2840 } 2841 2842 /* 2843 * If spa_load() fails this function will try loading prior txg's. If 2844 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool 2845 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this 2846 * function will not rewind the pool and will return the same error as 2847 * spa_load(). 2848 */ 2849 static int 2850 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig, 2851 uint64_t max_request, int rewind_flags) 2852 { 2853 nvlist_t *loadinfo = NULL; 2854 nvlist_t *config = NULL; 2855 int load_error, rewind_error; 2856 uint64_t safe_rewind_txg; 2857 uint64_t min_txg; 2858 2859 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) { 2860 spa->spa_load_max_txg = spa->spa_load_txg; 2861 spa_set_log_state(spa, SPA_LOG_CLEAR); 2862 } else { 2863 spa->spa_load_max_txg = max_request; 2864 if (max_request != UINT64_MAX) 2865 spa->spa_extreme_rewind = B_TRUE; 2866 } 2867 2868 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING, 2869 mosconfig); 2870 if (load_error == 0) 2871 return (0); 2872 2873 if (spa->spa_root_vdev != NULL) 2874 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 2875 2876 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg; 2877 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp; 2878 2879 if (rewind_flags & ZPOOL_NEVER_REWIND) { 2880 nvlist_free(config); 2881 return (load_error); 2882 } 2883 2884 if (state == SPA_LOAD_RECOVER) { 2885 /* Price of rolling back is discarding txgs, including log */ 2886 spa_set_log_state(spa, SPA_LOG_CLEAR); 2887 } else { 2888 /* 2889 * If we aren't rolling back save the load info from our first 2890 * import attempt so that we can restore it after attempting 2891 * to rewind. 2892 */ 2893 loadinfo = spa->spa_load_info; 2894 spa->spa_load_info = fnvlist_alloc(); 2895 } 2896 2897 spa->spa_load_max_txg = spa->spa_last_ubsync_txg; 2898 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE; 2899 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ? 2900 TXG_INITIAL : safe_rewind_txg; 2901 2902 /* 2903 * Continue as long as we're finding errors, we're still within 2904 * the acceptable rewind range, and we're still finding uberblocks 2905 */ 2906 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg && 2907 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) { 2908 if (spa->spa_load_max_txg < safe_rewind_txg) 2909 spa->spa_extreme_rewind = B_TRUE; 2910 rewind_error = spa_load_retry(spa, state, mosconfig); 2911 } 2912 2913 spa->spa_extreme_rewind = B_FALSE; 2914 spa->spa_load_max_txg = UINT64_MAX; 2915 2916 if (config && (rewind_error || state != SPA_LOAD_RECOVER)) 2917 spa_config_set(spa, config); 2918 2919 if (state == SPA_LOAD_RECOVER) { 2920 ASSERT3P(loadinfo, ==, NULL); 2921 return (rewind_error); 2922 } else { 2923 /* Store the rewind info as part of the initial load info */ 2924 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO, 2925 spa->spa_load_info); 2926 2927 /* Restore the initial load info */ 2928 fnvlist_free(spa->spa_load_info); 2929 spa->spa_load_info = loadinfo; 2930 2931 return (load_error); 2932 } 2933 } 2934 2935 /* 2936 * Pool Open/Import 2937 * 2938 * The import case is identical to an open except that the configuration is sent 2939 * down from userland, instead of grabbed from the configuration cache. For the 2940 * case of an open, the pool configuration will exist in the 2941 * POOL_STATE_UNINITIALIZED state. 2942 * 2943 * The stats information (gen/count/ustats) is used to gather vdev statistics at 2944 * the same time open the pool, without having to keep around the spa_t in some 2945 * ambiguous state. 2946 */ 2947 static int 2948 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy, 2949 nvlist_t **config) 2950 { 2951 spa_t *spa; 2952 spa_load_state_t state = SPA_LOAD_OPEN; 2953 int error; 2954 int locked = B_FALSE; 2955 2956 *spapp = NULL; 2957 2958 /* 2959 * As disgusting as this is, we need to support recursive calls to this 2960 * function because dsl_dir_open() is called during spa_load(), and ends 2961 * up calling spa_open() again. The real fix is to figure out how to 2962 * avoid dsl_dir_open() calling this in the first place. 2963 */ 2964 if (mutex_owner(&spa_namespace_lock) != curthread) { 2965 mutex_enter(&spa_namespace_lock); 2966 locked = B_TRUE; 2967 } 2968 2969 if ((spa = spa_lookup(pool)) == NULL) { 2970 if (locked) 2971 mutex_exit(&spa_namespace_lock); 2972 return (SET_ERROR(ENOENT)); 2973 } 2974 2975 if (spa->spa_state == POOL_STATE_UNINITIALIZED) { 2976 zpool_rewind_policy_t policy; 2977 2978 zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config, 2979 &policy); 2980 if (policy.zrp_request & ZPOOL_DO_REWIND) 2981 state = SPA_LOAD_RECOVER; 2982 2983 spa_activate(spa, spa_mode_global); 2984 2985 if (state != SPA_LOAD_RECOVER) 2986 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 2987 2988 error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg, 2989 policy.zrp_request); 2990 2991 if (error == EBADF) { 2992 /* 2993 * If vdev_validate() returns failure (indicated by 2994 * EBADF), it indicates that one of the vdevs indicates 2995 * that the pool has been exported or destroyed. If 2996 * this is the case, the config cache is out of sync and 2997 * we should remove the pool from the namespace. 2998 */ 2999 spa_unload(spa); 3000 spa_deactivate(spa); 3001 spa_config_sync(spa, B_TRUE, B_TRUE); 3002 spa_remove(spa); 3003 if (locked) 3004 mutex_exit(&spa_namespace_lock); 3005 return (SET_ERROR(ENOENT)); 3006 } 3007 3008 if (error) { 3009 /* 3010 * We can't open the pool, but we still have useful 3011 * information: the state of each vdev after the 3012 * attempted vdev_open(). Return this to the user. 3013 */ 3014 if (config != NULL && spa->spa_config) { 3015 VERIFY(nvlist_dup(spa->spa_config, config, 3016 KM_SLEEP) == 0); 3017 VERIFY(nvlist_add_nvlist(*config, 3018 ZPOOL_CONFIG_LOAD_INFO, 3019 spa->spa_load_info) == 0); 3020 } 3021 spa_unload(spa); 3022 spa_deactivate(spa); 3023 spa->spa_last_open_failed = error; 3024 if (locked) 3025 mutex_exit(&spa_namespace_lock); 3026 *spapp = NULL; 3027 return (error); 3028 } 3029 } 3030 3031 spa_open_ref(spa, tag); 3032 3033 if (config != NULL) 3034 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 3035 3036 /* 3037 * If we've recovered the pool, pass back any information we 3038 * gathered while doing the load. 3039 */ 3040 if (state == SPA_LOAD_RECOVER) { 3041 VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO, 3042 spa->spa_load_info) == 0); 3043 } 3044 3045 if (locked) { 3046 spa->spa_last_open_failed = 0; 3047 spa->spa_last_ubsync_txg = 0; 3048 spa->spa_load_txg = 0; 3049 mutex_exit(&spa_namespace_lock); 3050 } 3051 3052 *spapp = spa; 3053 3054 return (0); 3055 } 3056 3057 int 3058 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy, 3059 nvlist_t **config) 3060 { 3061 return (spa_open_common(name, spapp, tag, policy, config)); 3062 } 3063 3064 int 3065 spa_open(const char *name, spa_t **spapp, void *tag) 3066 { 3067 return (spa_open_common(name, spapp, tag, NULL, NULL)); 3068 } 3069 3070 /* 3071 * Lookup the given spa_t, incrementing the inject count in the process, 3072 * preventing it from being exported or destroyed. 3073 */ 3074 spa_t * 3075 spa_inject_addref(char *name) 3076 { 3077 spa_t *spa; 3078 3079 mutex_enter(&spa_namespace_lock); 3080 if ((spa = spa_lookup(name)) == NULL) { 3081 mutex_exit(&spa_namespace_lock); 3082 return (NULL); 3083 } 3084 spa->spa_inject_ref++; 3085 mutex_exit(&spa_namespace_lock); 3086 3087 return (spa); 3088 } 3089 3090 void 3091 spa_inject_delref(spa_t *spa) 3092 { 3093 mutex_enter(&spa_namespace_lock); 3094 spa->spa_inject_ref--; 3095 mutex_exit(&spa_namespace_lock); 3096 } 3097 3098 /* 3099 * Add spares device information to the nvlist. 3100 */ 3101 static void 3102 spa_add_spares(spa_t *spa, nvlist_t *config) 3103 { 3104 nvlist_t **spares; 3105 uint_t i, nspares; 3106 nvlist_t *nvroot; 3107 uint64_t guid; 3108 vdev_stat_t *vs; 3109 uint_t vsc; 3110 uint64_t pool; 3111 3112 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 3113 3114 if (spa->spa_spares.sav_count == 0) 3115 return; 3116 3117 VERIFY(nvlist_lookup_nvlist(config, 3118 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 3119 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 3120 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 3121 if (nspares != 0) { 3122 VERIFY(nvlist_add_nvlist_array(nvroot, 3123 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 3124 VERIFY(nvlist_lookup_nvlist_array(nvroot, 3125 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 3126 3127 /* 3128 * Go through and find any spares which have since been 3129 * repurposed as an active spare. If this is the case, update 3130 * their status appropriately. 3131 */ 3132 for (i = 0; i < nspares; i++) { 3133 VERIFY(nvlist_lookup_uint64(spares[i], 3134 ZPOOL_CONFIG_GUID, &guid) == 0); 3135 if (spa_spare_exists(guid, &pool, NULL) && 3136 pool != 0ULL) { 3137 VERIFY(nvlist_lookup_uint64_array( 3138 spares[i], ZPOOL_CONFIG_VDEV_STATS, 3139 (uint64_t **)&vs, &vsc) == 0); 3140 vs->vs_state = VDEV_STATE_CANT_OPEN; 3141 vs->vs_aux = VDEV_AUX_SPARED; 3142 } 3143 } 3144 } 3145 } 3146 3147 /* 3148 * Add l2cache device information to the nvlist, including vdev stats. 3149 */ 3150 static void 3151 spa_add_l2cache(spa_t *spa, nvlist_t *config) 3152 { 3153 nvlist_t **l2cache; 3154 uint_t i, j, nl2cache; 3155 nvlist_t *nvroot; 3156 uint64_t guid; 3157 vdev_t *vd; 3158 vdev_stat_t *vs; 3159 uint_t vsc; 3160 3161 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 3162 3163 if (spa->spa_l2cache.sav_count == 0) 3164 return; 3165 3166 VERIFY(nvlist_lookup_nvlist(config, 3167 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 3168 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 3169 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 3170 if (nl2cache != 0) { 3171 VERIFY(nvlist_add_nvlist_array(nvroot, 3172 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 3173 VERIFY(nvlist_lookup_nvlist_array(nvroot, 3174 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 3175 3176 /* 3177 * Update level 2 cache device stats. 3178 */ 3179 3180 for (i = 0; i < nl2cache; i++) { 3181 VERIFY(nvlist_lookup_uint64(l2cache[i], 3182 ZPOOL_CONFIG_GUID, &guid) == 0); 3183 3184 vd = NULL; 3185 for (j = 0; j < spa->spa_l2cache.sav_count; j++) { 3186 if (guid == 3187 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) { 3188 vd = spa->spa_l2cache.sav_vdevs[j]; 3189 break; 3190 } 3191 } 3192 ASSERT(vd != NULL); 3193 3194 VERIFY(nvlist_lookup_uint64_array(l2cache[i], 3195 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc) 3196 == 0); 3197 vdev_get_stats(vd, vs); 3198 } 3199 } 3200 } 3201 3202 static void 3203 spa_add_feature_stats(spa_t *spa, nvlist_t *config) 3204 { 3205 nvlist_t *features; 3206 zap_cursor_t zc; 3207 zap_attribute_t za; 3208 3209 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 3210 VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0); 3211 3212 if (spa->spa_feat_for_read_obj != 0) { 3213 for (zap_cursor_init(&zc, spa->spa_meta_objset, 3214 spa->spa_feat_for_read_obj); 3215 zap_cursor_retrieve(&zc, &za) == 0; 3216 zap_cursor_advance(&zc)) { 3217 ASSERT(za.za_integer_length == sizeof (uint64_t) && 3218 za.za_num_integers == 1); 3219 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name, 3220 za.za_first_integer)); 3221 } 3222 zap_cursor_fini(&zc); 3223 } 3224 3225 if (spa->spa_feat_for_write_obj != 0) { 3226 for (zap_cursor_init(&zc, spa->spa_meta_objset, 3227 spa->spa_feat_for_write_obj); 3228 zap_cursor_retrieve(&zc, &za) == 0; 3229 zap_cursor_advance(&zc)) { 3230 ASSERT(za.za_integer_length == sizeof (uint64_t) && 3231 za.za_num_integers == 1); 3232 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name, 3233 za.za_first_integer)); 3234 } 3235 zap_cursor_fini(&zc); 3236 } 3237 3238 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS, 3239 features) == 0); 3240 nvlist_free(features); 3241 } 3242 3243 int 3244 spa_get_stats(const char *name, nvlist_t **config, 3245 char *altroot, size_t buflen) 3246 { 3247 int error; 3248 spa_t *spa; 3249 3250 *config = NULL; 3251 error = spa_open_common(name, &spa, FTAG, NULL, config); 3252 3253 if (spa != NULL) { 3254 /* 3255 * This still leaves a window of inconsistency where the spares 3256 * or l2cache devices could change and the config would be 3257 * self-inconsistent. 3258 */ 3259 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 3260 3261 if (*config != NULL) { 3262 uint64_t loadtimes[2]; 3263 3264 loadtimes[0] = spa->spa_loaded_ts.tv_sec; 3265 loadtimes[1] = spa->spa_loaded_ts.tv_nsec; 3266 VERIFY(nvlist_add_uint64_array(*config, 3267 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0); 3268 3269 VERIFY(nvlist_add_uint64(*config, 3270 ZPOOL_CONFIG_ERRCOUNT, 3271 spa_get_errlog_size(spa)) == 0); 3272 3273 if (spa_suspended(spa)) 3274 VERIFY(nvlist_add_uint64(*config, 3275 ZPOOL_CONFIG_SUSPENDED, 3276 spa->spa_failmode) == 0); 3277 3278 spa_add_spares(spa, *config); 3279 spa_add_l2cache(spa, *config); 3280 spa_add_feature_stats(spa, *config); 3281 } 3282 } 3283 3284 /* 3285 * We want to get the alternate root even for faulted pools, so we cheat 3286 * and call spa_lookup() directly. 3287 */ 3288 if (altroot) { 3289 if (spa == NULL) { 3290 mutex_enter(&spa_namespace_lock); 3291 spa = spa_lookup(name); 3292 if (spa) 3293 spa_altroot(spa, altroot, buflen); 3294 else 3295 altroot[0] = '\0'; 3296 spa = NULL; 3297 mutex_exit(&spa_namespace_lock); 3298 } else { 3299 spa_altroot(spa, altroot, buflen); 3300 } 3301 } 3302 3303 if (spa != NULL) { 3304 spa_config_exit(spa, SCL_CONFIG, FTAG); 3305 spa_close(spa, FTAG); 3306 } 3307 3308 return (error); 3309 } 3310 3311 /* 3312 * Validate that the auxiliary device array is well formed. We must have an 3313 * array of nvlists, each which describes a valid leaf vdev. If this is an 3314 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be 3315 * specified, as long as they are well-formed. 3316 */ 3317 static int 3318 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode, 3319 spa_aux_vdev_t *sav, const char *config, uint64_t version, 3320 vdev_labeltype_t label) 3321 { 3322 nvlist_t **dev; 3323 uint_t i, ndev; 3324 vdev_t *vd; 3325 int error; 3326 3327 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 3328 3329 /* 3330 * It's acceptable to have no devs specified. 3331 */ 3332 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0) 3333 return (0); 3334 3335 if (ndev == 0) 3336 return (SET_ERROR(EINVAL)); 3337 3338 /* 3339 * Make sure the pool is formatted with a version that supports this 3340 * device type. 3341 */ 3342 if (spa_version(spa) < version) 3343 return (SET_ERROR(ENOTSUP)); 3344 3345 /* 3346 * Set the pending device list so we correctly handle device in-use 3347 * checking. 3348 */ 3349 sav->sav_pending = dev; 3350 sav->sav_npending = ndev; 3351 3352 for (i = 0; i < ndev; i++) { 3353 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0, 3354 mode)) != 0) 3355 goto out; 3356 3357 if (!vd->vdev_ops->vdev_op_leaf) { 3358 vdev_free(vd); 3359 error = SET_ERROR(EINVAL); 3360 goto out; 3361 } 3362 3363 /* 3364 * The L2ARC currently only supports disk devices in 3365 * kernel context. For user-level testing, we allow it. 3366 */ 3367 #ifdef _KERNEL 3368 if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) && 3369 strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) { 3370 error = SET_ERROR(ENOTBLK); 3371 vdev_free(vd); 3372 goto out; 3373 } 3374 #endif 3375 vd->vdev_top = vd; 3376 3377 if ((error = vdev_open(vd)) == 0 && 3378 (error = vdev_label_init(vd, crtxg, label)) == 0) { 3379 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID, 3380 vd->vdev_guid) == 0); 3381 } 3382 3383 vdev_free(vd); 3384 3385 if (error && 3386 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE)) 3387 goto out; 3388 else 3389 error = 0; 3390 } 3391 3392 out: 3393 sav->sav_pending = NULL; 3394 sav->sav_npending = 0; 3395 return (error); 3396 } 3397 3398 static int 3399 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode) 3400 { 3401 int error; 3402 3403 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 3404 3405 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode, 3406 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES, 3407 VDEV_LABEL_SPARE)) != 0) { 3408 return (error); 3409 } 3410 3411 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode, 3412 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE, 3413 VDEV_LABEL_L2CACHE)); 3414 } 3415 3416 static void 3417 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs, 3418 const char *config) 3419 { 3420 int i; 3421 3422 if (sav->sav_config != NULL) { 3423 nvlist_t **olddevs; 3424 uint_t oldndevs; 3425 nvlist_t **newdevs; 3426 3427 /* 3428 * Generate new dev list by concatentating with the 3429 * current dev list. 3430 */ 3431 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config, 3432 &olddevs, &oldndevs) == 0); 3433 3434 newdevs = kmem_alloc(sizeof (void *) * 3435 (ndevs + oldndevs), KM_SLEEP); 3436 for (i = 0; i < oldndevs; i++) 3437 VERIFY(nvlist_dup(olddevs[i], &newdevs[i], 3438 KM_SLEEP) == 0); 3439 for (i = 0; i < ndevs; i++) 3440 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs], 3441 KM_SLEEP) == 0); 3442 3443 VERIFY(nvlist_remove(sav->sav_config, config, 3444 DATA_TYPE_NVLIST_ARRAY) == 0); 3445 3446 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 3447 config, newdevs, ndevs + oldndevs) == 0); 3448 for (i = 0; i < oldndevs + ndevs; i++) 3449 nvlist_free(newdevs[i]); 3450 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *)); 3451 } else { 3452 /* 3453 * Generate a new dev list. 3454 */ 3455 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME, 3456 KM_SLEEP) == 0); 3457 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config, 3458 devs, ndevs) == 0); 3459 } 3460 } 3461 3462 /* 3463 * Stop and drop level 2 ARC devices 3464 */ 3465 void 3466 spa_l2cache_drop(spa_t *spa) 3467 { 3468 vdev_t *vd; 3469 int i; 3470 spa_aux_vdev_t *sav = &spa->spa_l2cache; 3471 3472 for (i = 0; i < sav->sav_count; i++) { 3473 uint64_t pool; 3474 3475 vd = sav->sav_vdevs[i]; 3476 ASSERT(vd != NULL); 3477 3478 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 3479 pool != 0ULL && l2arc_vdev_present(vd)) 3480 l2arc_remove_vdev(vd); 3481 } 3482 } 3483 3484 /* 3485 * Pool Creation 3486 */ 3487 int 3488 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props, 3489 nvlist_t *zplprops) 3490 { 3491 spa_t *spa; 3492 char *altroot = NULL; 3493 vdev_t *rvd; 3494 dsl_pool_t *dp; 3495 dmu_tx_t *tx; 3496 int error = 0; 3497 uint64_t txg = TXG_INITIAL; 3498 nvlist_t **spares, **l2cache; 3499 uint_t nspares, nl2cache; 3500 uint64_t version, obj; 3501 boolean_t has_features; 3502 3503 /* 3504 * If this pool already exists, return failure. 3505 */ 3506 mutex_enter(&spa_namespace_lock); 3507 if (spa_lookup(pool) != NULL) { 3508 mutex_exit(&spa_namespace_lock); 3509 return (SET_ERROR(EEXIST)); 3510 } 3511 3512 /* 3513 * Allocate a new spa_t structure. 3514 */ 3515 (void) nvlist_lookup_string(props, 3516 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 3517 spa = spa_add(pool, NULL, altroot); 3518 spa_activate(spa, spa_mode_global); 3519 3520 if (props && (error = spa_prop_validate(spa, props))) { 3521 spa_deactivate(spa); 3522 spa_remove(spa); 3523 mutex_exit(&spa_namespace_lock); 3524 return (error); 3525 } 3526 3527 has_features = B_FALSE; 3528 for (nvpair_t *elem = nvlist_next_nvpair(props, NULL); 3529 elem != NULL; elem = nvlist_next_nvpair(props, elem)) { 3530 if (zpool_prop_feature(nvpair_name(elem))) 3531 has_features = B_TRUE; 3532 } 3533 3534 if (has_features || nvlist_lookup_uint64(props, 3535 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) { 3536 version = SPA_VERSION; 3537 } 3538 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 3539 3540 spa->spa_first_txg = txg; 3541 spa->spa_uberblock.ub_txg = txg - 1; 3542 spa->spa_uberblock.ub_version = version; 3543 spa->spa_ubsync = spa->spa_uberblock; 3544 3545 /* 3546 * Create "The Godfather" zio to hold all async IOs 3547 */ 3548 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *), 3549 KM_SLEEP); 3550 for (int i = 0; i < max_ncpus; i++) { 3551 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL, 3552 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 3553 ZIO_FLAG_GODFATHER); 3554 } 3555 3556 /* 3557 * Create the root vdev. 3558 */ 3559 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3560 3561 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD); 3562 3563 ASSERT(error != 0 || rvd != NULL); 3564 ASSERT(error != 0 || spa->spa_root_vdev == rvd); 3565 3566 if (error == 0 && !zfs_allocatable_devs(nvroot)) 3567 error = SET_ERROR(EINVAL); 3568 3569 if (error == 0 && 3570 (error = vdev_create(rvd, txg, B_FALSE)) == 0 && 3571 (error = spa_validate_aux(spa, nvroot, txg, 3572 VDEV_ALLOC_ADD)) == 0) { 3573 for (int c = 0; c < rvd->vdev_children; c++) { 3574 vdev_metaslab_set_size(rvd->vdev_child[c]); 3575 vdev_expand(rvd->vdev_child[c], txg); 3576 } 3577 } 3578 3579 spa_config_exit(spa, SCL_ALL, FTAG); 3580 3581 if (error != 0) { 3582 spa_unload(spa); 3583 spa_deactivate(spa); 3584 spa_remove(spa); 3585 mutex_exit(&spa_namespace_lock); 3586 return (error); 3587 } 3588 3589 /* 3590 * Get the list of spares, if specified. 3591 */ 3592 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 3593 &spares, &nspares) == 0) { 3594 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME, 3595 KM_SLEEP) == 0); 3596 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 3597 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 3598 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3599 spa_load_spares(spa); 3600 spa_config_exit(spa, SCL_ALL, FTAG); 3601 spa->spa_spares.sav_sync = B_TRUE; 3602 } 3603 3604 /* 3605 * Get the list of level 2 cache devices, if specified. 3606 */ 3607 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 3608 &l2cache, &nl2cache) == 0) { 3609 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 3610 NV_UNIQUE_NAME, KM_SLEEP) == 0); 3611 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 3612 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 3613 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3614 spa_load_l2cache(spa); 3615 spa_config_exit(spa, SCL_ALL, FTAG); 3616 spa->spa_l2cache.sav_sync = B_TRUE; 3617 } 3618 3619 spa->spa_is_initializing = B_TRUE; 3620 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg); 3621 spa->spa_meta_objset = dp->dp_meta_objset; 3622 spa->spa_is_initializing = B_FALSE; 3623 3624 /* 3625 * Create DDTs (dedup tables). 3626 */ 3627 ddt_create(spa); 3628 3629 spa_update_dspace(spa); 3630 3631 tx = dmu_tx_create_assigned(dp, txg); 3632 3633 /* 3634 * Create the pool config object. 3635 */ 3636 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset, 3637 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE, 3638 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx); 3639 3640 if (zap_add(spa->spa_meta_objset, 3641 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG, 3642 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) { 3643 cmn_err(CE_PANIC, "failed to add pool config"); 3644 } 3645 3646 if (spa_version(spa) >= SPA_VERSION_FEATURES) 3647 spa_feature_create_zap_objects(spa, tx); 3648 3649 if (zap_add(spa->spa_meta_objset, 3650 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION, 3651 sizeof (uint64_t), 1, &version, tx) != 0) { 3652 cmn_err(CE_PANIC, "failed to add pool version"); 3653 } 3654 3655 /* Newly created pools with the right version are always deflated. */ 3656 if (version >= SPA_VERSION_RAIDZ_DEFLATE) { 3657 spa->spa_deflate = TRUE; 3658 if (zap_add(spa->spa_meta_objset, 3659 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 3660 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) { 3661 cmn_err(CE_PANIC, "failed to add deflate"); 3662 } 3663 } 3664 3665 /* 3666 * Create the deferred-free bpobj. Turn off compression 3667 * because sync-to-convergence takes longer if the blocksize 3668 * keeps changing. 3669 */ 3670 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx); 3671 dmu_object_set_compress(spa->spa_meta_objset, obj, 3672 ZIO_COMPRESS_OFF, tx); 3673 if (zap_add(spa->spa_meta_objset, 3674 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ, 3675 sizeof (uint64_t), 1, &obj, tx) != 0) { 3676 cmn_err(CE_PANIC, "failed to add bpobj"); 3677 } 3678 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj, 3679 spa->spa_meta_objset, obj)); 3680 3681 /* 3682 * Create the pool's history object. 3683 */ 3684 if (version >= SPA_VERSION_ZPOOL_HISTORY) 3685 spa_history_create_obj(spa, tx); 3686 3687 /* 3688 * Generate some random noise for salted checksums to operate on. 3689 */ 3690 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes, 3691 sizeof (spa->spa_cksum_salt.zcs_bytes)); 3692 3693 /* 3694 * Set pool properties. 3695 */ 3696 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS); 3697 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 3698 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE); 3699 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND); 3700 3701 if (props != NULL) { 3702 spa_configfile_set(spa, props, B_FALSE); 3703 spa_sync_props(props, tx); 3704 } 3705 3706 dmu_tx_commit(tx); 3707 3708 spa->spa_sync_on = B_TRUE; 3709 txg_sync_start(spa->spa_dsl_pool); 3710 3711 /* 3712 * We explicitly wait for the first transaction to complete so that our 3713 * bean counters are appropriately updated. 3714 */ 3715 txg_wait_synced(spa->spa_dsl_pool, txg); 3716 3717 spa_config_sync(spa, B_FALSE, B_TRUE); 3718 spa_event_notify(spa, NULL, ESC_ZFS_POOL_CREATE); 3719 3720 spa_history_log_version(spa, "create"); 3721 3722 /* 3723 * Don't count references from objsets that are already closed 3724 * and are making their way through the eviction process. 3725 */ 3726 spa_evicting_os_wait(spa); 3727 spa->spa_minref = refcount_count(&spa->spa_refcount); 3728 3729 mutex_exit(&spa_namespace_lock); 3730 3731 return (0); 3732 } 3733 3734 #ifdef _KERNEL 3735 /* 3736 * Get the root pool information from the root disk, then import the root pool 3737 * during the system boot up time. 3738 */ 3739 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **); 3740 3741 static nvlist_t * 3742 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid) 3743 { 3744 nvlist_t *config; 3745 nvlist_t *nvtop, *nvroot; 3746 uint64_t pgid; 3747 3748 if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0) 3749 return (NULL); 3750 3751 /* 3752 * Add this top-level vdev to the child array. 3753 */ 3754 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3755 &nvtop) == 0); 3756 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 3757 &pgid) == 0); 3758 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0); 3759 3760 /* 3761 * Put this pool's top-level vdevs into a root vdev. 3762 */ 3763 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 3764 VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, 3765 VDEV_TYPE_ROOT) == 0); 3766 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0); 3767 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0); 3768 VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 3769 &nvtop, 1) == 0); 3770 3771 /* 3772 * Replace the existing vdev_tree with the new root vdev in 3773 * this pool's configuration (remove the old, add the new). 3774 */ 3775 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0); 3776 nvlist_free(nvroot); 3777 return (config); 3778 } 3779 3780 /* 3781 * Walk the vdev tree and see if we can find a device with "better" 3782 * configuration. A configuration is "better" if the label on that 3783 * device has a more recent txg. 3784 */ 3785 static void 3786 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg) 3787 { 3788 for (int c = 0; c < vd->vdev_children; c++) 3789 spa_alt_rootvdev(vd->vdev_child[c], avd, txg); 3790 3791 if (vd->vdev_ops->vdev_op_leaf) { 3792 nvlist_t *label; 3793 uint64_t label_txg; 3794 3795 if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid, 3796 &label) != 0) 3797 return; 3798 3799 VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG, 3800 &label_txg) == 0); 3801 3802 /* 3803 * Do we have a better boot device? 3804 */ 3805 if (label_txg > *txg) { 3806 *txg = label_txg; 3807 *avd = vd; 3808 } 3809 nvlist_free(label); 3810 } 3811 } 3812 3813 /* 3814 * Import a root pool. 3815 * 3816 * For x86. devpath_list will consist of devid and/or physpath name of 3817 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a"). 3818 * The GRUB "findroot" command will return the vdev we should boot. 3819 * 3820 * For Sparc, devpath_list consists the physpath name of the booting device 3821 * no matter the rootpool is a single device pool or a mirrored pool. 3822 * e.g. 3823 * "/pci@1f,0/ide@d/disk@0,0:a" 3824 */ 3825 int 3826 spa_import_rootpool(char *devpath, char *devid) 3827 { 3828 spa_t *spa; 3829 vdev_t *rvd, *bvd, *avd = NULL; 3830 nvlist_t *config, *nvtop; 3831 uint64_t guid, txg; 3832 char *pname; 3833 int error; 3834 3835 /* 3836 * Read the label from the boot device and generate a configuration. 3837 */ 3838 config = spa_generate_rootconf(devpath, devid, &guid); 3839 #if defined(_OBP) && defined(_KERNEL) 3840 if (config == NULL) { 3841 if (strstr(devpath, "/iscsi/ssd") != NULL) { 3842 /* iscsi boot */ 3843 get_iscsi_bootpath_phy(devpath); 3844 config = spa_generate_rootconf(devpath, devid, &guid); 3845 } 3846 } 3847 #endif 3848 if (config == NULL) { 3849 cmn_err(CE_NOTE, "Cannot read the pool label from '%s'", 3850 devpath); 3851 return (SET_ERROR(EIO)); 3852 } 3853 3854 VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 3855 &pname) == 0); 3856 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0); 3857 3858 mutex_enter(&spa_namespace_lock); 3859 if ((spa = spa_lookup(pname)) != NULL) { 3860 /* 3861 * Remove the existing root pool from the namespace so that we 3862 * can replace it with the correct config we just read in. 3863 */ 3864 spa_remove(spa); 3865 } 3866 3867 spa = spa_add(pname, config, NULL); 3868 spa->spa_is_root = B_TRUE; 3869 spa->spa_import_flags = ZFS_IMPORT_VERBATIM; 3870 3871 /* 3872 * Build up a vdev tree based on the boot device's label config. 3873 */ 3874 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3875 &nvtop) == 0); 3876 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3877 error = spa_config_parse(spa, &rvd, nvtop, NULL, 0, 3878 VDEV_ALLOC_ROOTPOOL); 3879 spa_config_exit(spa, SCL_ALL, FTAG); 3880 if (error) { 3881 mutex_exit(&spa_namespace_lock); 3882 nvlist_free(config); 3883 cmn_err(CE_NOTE, "Can not parse the config for pool '%s'", 3884 pname); 3885 return (error); 3886 } 3887 3888 /* 3889 * Get the boot vdev. 3890 */ 3891 if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) { 3892 cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu", 3893 (u_longlong_t)guid); 3894 error = SET_ERROR(ENOENT); 3895 goto out; 3896 } 3897 3898 /* 3899 * Determine if there is a better boot device. 3900 */ 3901 avd = bvd; 3902 spa_alt_rootvdev(rvd, &avd, &txg); 3903 if (avd != bvd) { 3904 cmn_err(CE_NOTE, "The boot device is 'degraded'. Please " 3905 "try booting from '%s'", avd->vdev_path); 3906 error = SET_ERROR(EINVAL); 3907 goto out; 3908 } 3909 3910 /* 3911 * If the boot device is part of a spare vdev then ensure that 3912 * we're booting off the active spare. 3913 */ 3914 if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops && 3915 !bvd->vdev_isspare) { 3916 cmn_err(CE_NOTE, "The boot device is currently spared. Please " 3917 "try booting from '%s'", 3918 bvd->vdev_parent-> 3919 vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path); 3920 error = SET_ERROR(EINVAL); 3921 goto out; 3922 } 3923 3924 error = 0; 3925 out: 3926 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3927 vdev_free(rvd); 3928 spa_config_exit(spa, SCL_ALL, FTAG); 3929 mutex_exit(&spa_namespace_lock); 3930 3931 nvlist_free(config); 3932 return (error); 3933 } 3934 3935 #endif 3936 3937 /* 3938 * Import a non-root pool into the system. 3939 */ 3940 int 3941 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags) 3942 { 3943 spa_t *spa; 3944 char *altroot = NULL; 3945 spa_load_state_t state = SPA_LOAD_IMPORT; 3946 zpool_rewind_policy_t policy; 3947 uint64_t mode = spa_mode_global; 3948 uint64_t readonly = B_FALSE; 3949 int error; 3950 nvlist_t *nvroot; 3951 nvlist_t **spares, **l2cache; 3952 uint_t nspares, nl2cache; 3953 3954 /* 3955 * If a pool with this name exists, return failure. 3956 */ 3957 mutex_enter(&spa_namespace_lock); 3958 if (spa_lookup(pool) != NULL) { 3959 mutex_exit(&spa_namespace_lock); 3960 return (SET_ERROR(EEXIST)); 3961 } 3962 3963 /* 3964 * Create and initialize the spa structure. 3965 */ 3966 (void) nvlist_lookup_string(props, 3967 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 3968 (void) nvlist_lookup_uint64(props, 3969 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly); 3970 if (readonly) 3971 mode = FREAD; 3972 spa = spa_add(pool, config, altroot); 3973 spa->spa_import_flags = flags; 3974 3975 /* 3976 * Verbatim import - Take a pool and insert it into the namespace 3977 * as if it had been loaded at boot. 3978 */ 3979 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) { 3980 if (props != NULL) 3981 spa_configfile_set(spa, props, B_FALSE); 3982 3983 spa_config_sync(spa, B_FALSE, B_TRUE); 3984 spa_event_notify(spa, NULL, ESC_ZFS_POOL_IMPORT); 3985 3986 mutex_exit(&spa_namespace_lock); 3987 return (0); 3988 } 3989 3990 spa_activate(spa, mode); 3991 3992 /* 3993 * Don't start async tasks until we know everything is healthy. 3994 */ 3995 spa_async_suspend(spa); 3996 3997 zpool_get_rewind_policy(config, &policy); 3998 if (policy.zrp_request & ZPOOL_DO_REWIND) 3999 state = SPA_LOAD_RECOVER; 4000 4001 /* 4002 * Pass off the heavy lifting to spa_load(). Pass TRUE for mosconfig 4003 * because the user-supplied config is actually the one to trust when 4004 * doing an import. 4005 */ 4006 if (state != SPA_LOAD_RECOVER) 4007 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 4008 4009 error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg, 4010 policy.zrp_request); 4011 4012 /* 4013 * Propagate anything learned while loading the pool and pass it 4014 * back to caller (i.e. rewind info, missing devices, etc). 4015 */ 4016 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, 4017 spa->spa_load_info) == 0); 4018 4019 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4020 /* 4021 * Toss any existing sparelist, as it doesn't have any validity 4022 * anymore, and conflicts with spa_has_spare(). 4023 */ 4024 if (spa->spa_spares.sav_config) { 4025 nvlist_free(spa->spa_spares.sav_config); 4026 spa->spa_spares.sav_config = NULL; 4027 spa_load_spares(spa); 4028 } 4029 if (spa->spa_l2cache.sav_config) { 4030 nvlist_free(spa->spa_l2cache.sav_config); 4031 spa->spa_l2cache.sav_config = NULL; 4032 spa_load_l2cache(spa); 4033 } 4034 4035 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 4036 &nvroot) == 0); 4037 if (error == 0) 4038 error = spa_validate_aux(spa, nvroot, -1ULL, 4039 VDEV_ALLOC_SPARE); 4040 if (error == 0) 4041 error = spa_validate_aux(spa, nvroot, -1ULL, 4042 VDEV_ALLOC_L2CACHE); 4043 spa_config_exit(spa, SCL_ALL, FTAG); 4044 4045 if (props != NULL) 4046 spa_configfile_set(spa, props, B_FALSE); 4047 4048 if (error != 0 || (props && spa_writeable(spa) && 4049 (error = spa_prop_set(spa, props)))) { 4050 spa_unload(spa); 4051 spa_deactivate(spa); 4052 spa_remove(spa); 4053 mutex_exit(&spa_namespace_lock); 4054 return (error); 4055 } 4056 4057 spa_async_resume(spa); 4058 4059 /* 4060 * Override any spares and level 2 cache devices as specified by 4061 * the user, as these may have correct device names/devids, etc. 4062 */ 4063 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 4064 &spares, &nspares) == 0) { 4065 if (spa->spa_spares.sav_config) 4066 VERIFY(nvlist_remove(spa->spa_spares.sav_config, 4067 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0); 4068 else 4069 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, 4070 NV_UNIQUE_NAME, KM_SLEEP) == 0); 4071 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 4072 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 4073 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4074 spa_load_spares(spa); 4075 spa_config_exit(spa, SCL_ALL, FTAG); 4076 spa->spa_spares.sav_sync = B_TRUE; 4077 } 4078 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 4079 &l2cache, &nl2cache) == 0) { 4080 if (spa->spa_l2cache.sav_config) 4081 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config, 4082 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0); 4083 else 4084 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 4085 NV_UNIQUE_NAME, KM_SLEEP) == 0); 4086 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 4087 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 4088 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4089 spa_load_l2cache(spa); 4090 spa_config_exit(spa, SCL_ALL, FTAG); 4091 spa->spa_l2cache.sav_sync = B_TRUE; 4092 } 4093 4094 /* 4095 * Check for any removed devices. 4096 */ 4097 if (spa->spa_autoreplace) { 4098 spa_aux_check_removed(&spa->spa_spares); 4099 spa_aux_check_removed(&spa->spa_l2cache); 4100 } 4101 4102 if (spa_writeable(spa)) { 4103 /* 4104 * Update the config cache to include the newly-imported pool. 4105 */ 4106 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 4107 } 4108 4109 /* 4110 * It's possible that the pool was expanded while it was exported. 4111 * We kick off an async task to handle this for us. 4112 */ 4113 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND); 4114 4115 spa_history_log_version(spa, "import"); 4116 4117 spa_event_notify(spa, NULL, ESC_ZFS_POOL_IMPORT); 4118 4119 mutex_exit(&spa_namespace_lock); 4120 4121 return (0); 4122 } 4123 4124 nvlist_t * 4125 spa_tryimport(nvlist_t *tryconfig) 4126 { 4127 nvlist_t *config = NULL; 4128 char *poolname; 4129 spa_t *spa; 4130 uint64_t state; 4131 int error; 4132 4133 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname)) 4134 return (NULL); 4135 4136 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state)) 4137 return (NULL); 4138 4139 /* 4140 * Create and initialize the spa structure. 4141 */ 4142 mutex_enter(&spa_namespace_lock); 4143 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL); 4144 spa_activate(spa, FREAD); 4145 4146 /* 4147 * Pass off the heavy lifting to spa_load(). 4148 * Pass TRUE for mosconfig because the user-supplied config 4149 * is actually the one to trust when doing an import. 4150 */ 4151 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE); 4152 4153 /* 4154 * If 'tryconfig' was at least parsable, return the current config. 4155 */ 4156 if (spa->spa_root_vdev != NULL) { 4157 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 4158 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, 4159 poolname) == 0); 4160 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 4161 state) == 0); 4162 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP, 4163 spa->spa_uberblock.ub_timestamp) == 0); 4164 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, 4165 spa->spa_load_info) == 0); 4166 4167 /* 4168 * If the bootfs property exists on this pool then we 4169 * copy it out so that external consumers can tell which 4170 * pools are bootable. 4171 */ 4172 if ((!error || error == EEXIST) && spa->spa_bootfs) { 4173 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 4174 4175 /* 4176 * We have to play games with the name since the 4177 * pool was opened as TRYIMPORT_NAME. 4178 */ 4179 if (dsl_dsobj_to_dsname(spa_name(spa), 4180 spa->spa_bootfs, tmpname) == 0) { 4181 char *cp; 4182 char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 4183 4184 cp = strchr(tmpname, '/'); 4185 if (cp == NULL) { 4186 (void) strlcpy(dsname, tmpname, 4187 MAXPATHLEN); 4188 } else { 4189 (void) snprintf(dsname, MAXPATHLEN, 4190 "%s/%s", poolname, ++cp); 4191 } 4192 VERIFY(nvlist_add_string(config, 4193 ZPOOL_CONFIG_BOOTFS, dsname) == 0); 4194 kmem_free(dsname, MAXPATHLEN); 4195 } 4196 kmem_free(tmpname, MAXPATHLEN); 4197 } 4198 4199 /* 4200 * Add the list of hot spares and level 2 cache devices. 4201 */ 4202 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 4203 spa_add_spares(spa, config); 4204 spa_add_l2cache(spa, config); 4205 spa_config_exit(spa, SCL_CONFIG, FTAG); 4206 } 4207 4208 spa_unload(spa); 4209 spa_deactivate(spa); 4210 spa_remove(spa); 4211 mutex_exit(&spa_namespace_lock); 4212 4213 return (config); 4214 } 4215 4216 /* 4217 * Pool export/destroy 4218 * 4219 * The act of destroying or exporting a pool is very simple. We make sure there 4220 * is no more pending I/O and any references to the pool are gone. Then, we 4221 * update the pool state and sync all the labels to disk, removing the 4222 * configuration from the cache afterwards. If the 'hardforce' flag is set, then 4223 * we don't sync the labels or remove the configuration cache. 4224 */ 4225 static int 4226 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig, 4227 boolean_t force, boolean_t hardforce) 4228 { 4229 spa_t *spa; 4230 4231 if (oldconfig) 4232 *oldconfig = NULL; 4233 4234 if (!(spa_mode_global & FWRITE)) 4235 return (SET_ERROR(EROFS)); 4236 4237 mutex_enter(&spa_namespace_lock); 4238 if ((spa = spa_lookup(pool)) == NULL) { 4239 mutex_exit(&spa_namespace_lock); 4240 return (SET_ERROR(ENOENT)); 4241 } 4242 4243 /* 4244 * Put a hold on the pool, drop the namespace lock, stop async tasks, 4245 * reacquire the namespace lock, and see if we can export. 4246 */ 4247 spa_open_ref(spa, FTAG); 4248 mutex_exit(&spa_namespace_lock); 4249 spa_async_suspend(spa); 4250 mutex_enter(&spa_namespace_lock); 4251 spa_close(spa, FTAG); 4252 4253 /* 4254 * The pool will be in core if it's openable, 4255 * in which case we can modify its state. 4256 */ 4257 if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) { 4258 /* 4259 * Objsets may be open only because they're dirty, so we 4260 * have to force it to sync before checking spa_refcnt. 4261 */ 4262 txg_wait_synced(spa->spa_dsl_pool, 0); 4263 spa_evicting_os_wait(spa); 4264 4265 /* 4266 * A pool cannot be exported or destroyed if there are active 4267 * references. If we are resetting a pool, allow references by 4268 * fault injection handlers. 4269 */ 4270 if (!spa_refcount_zero(spa) || 4271 (spa->spa_inject_ref != 0 && 4272 new_state != POOL_STATE_UNINITIALIZED)) { 4273 spa_async_resume(spa); 4274 mutex_exit(&spa_namespace_lock); 4275 return (SET_ERROR(EBUSY)); 4276 } 4277 4278 /* 4279 * A pool cannot be exported if it has an active shared spare. 4280 * This is to prevent other pools stealing the active spare 4281 * from an exported pool. At user's own will, such pool can 4282 * be forcedly exported. 4283 */ 4284 if (!force && new_state == POOL_STATE_EXPORTED && 4285 spa_has_active_shared_spare(spa)) { 4286 spa_async_resume(spa); 4287 mutex_exit(&spa_namespace_lock); 4288 return (SET_ERROR(EXDEV)); 4289 } 4290 4291 /* 4292 * We want this to be reflected on every label, 4293 * so mark them all dirty. spa_unload() will do the 4294 * final sync that pushes these changes out. 4295 */ 4296 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) { 4297 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4298 spa->spa_state = new_state; 4299 spa->spa_final_txg = spa_last_synced_txg(spa) + 4300 TXG_DEFER_SIZE + 1; 4301 vdev_config_dirty(spa->spa_root_vdev); 4302 spa_config_exit(spa, SCL_ALL, FTAG); 4303 } 4304 } 4305 4306 spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY); 4307 4308 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 4309 spa_unload(spa); 4310 spa_deactivate(spa); 4311 } 4312 4313 if (oldconfig && spa->spa_config) 4314 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0); 4315 4316 if (new_state != POOL_STATE_UNINITIALIZED) { 4317 if (!hardforce) 4318 spa_config_sync(spa, B_TRUE, B_TRUE); 4319 spa_remove(spa); 4320 } 4321 mutex_exit(&spa_namespace_lock); 4322 4323 return (0); 4324 } 4325 4326 /* 4327 * Destroy a storage pool. 4328 */ 4329 int 4330 spa_destroy(char *pool) 4331 { 4332 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL, 4333 B_FALSE, B_FALSE)); 4334 } 4335 4336 /* 4337 * Export a storage pool. 4338 */ 4339 int 4340 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force, 4341 boolean_t hardforce) 4342 { 4343 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig, 4344 force, hardforce)); 4345 } 4346 4347 /* 4348 * Similar to spa_export(), this unloads the spa_t without actually removing it 4349 * from the namespace in any way. 4350 */ 4351 int 4352 spa_reset(char *pool) 4353 { 4354 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL, 4355 B_FALSE, B_FALSE)); 4356 } 4357 4358 /* 4359 * ========================================================================== 4360 * Device manipulation 4361 * ========================================================================== 4362 */ 4363 4364 /* 4365 * Add a device to a storage pool. 4366 */ 4367 int 4368 spa_vdev_add(spa_t *spa, nvlist_t *nvroot) 4369 { 4370 uint64_t txg, id; 4371 int error; 4372 vdev_t *rvd = spa->spa_root_vdev; 4373 vdev_t *vd, *tvd; 4374 nvlist_t **spares, **l2cache; 4375 uint_t nspares, nl2cache; 4376 4377 ASSERT(spa_writeable(spa)); 4378 4379 txg = spa_vdev_enter(spa); 4380 4381 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0, 4382 VDEV_ALLOC_ADD)) != 0) 4383 return (spa_vdev_exit(spa, NULL, txg, error)); 4384 4385 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */ 4386 4387 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, 4388 &nspares) != 0) 4389 nspares = 0; 4390 4391 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache, 4392 &nl2cache) != 0) 4393 nl2cache = 0; 4394 4395 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0) 4396 return (spa_vdev_exit(spa, vd, txg, EINVAL)); 4397 4398 if (vd->vdev_children != 0 && 4399 (error = vdev_create(vd, txg, B_FALSE)) != 0) 4400 return (spa_vdev_exit(spa, vd, txg, error)); 4401 4402 /* 4403 * We must validate the spares and l2cache devices after checking the 4404 * children. Otherwise, vdev_inuse() will blindly overwrite the spare. 4405 */ 4406 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0) 4407 return (spa_vdev_exit(spa, vd, txg, error)); 4408 4409 /* 4410 * Transfer each new top-level vdev from vd to rvd. 4411 */ 4412 for (int c = 0; c < vd->vdev_children; c++) { 4413 4414 /* 4415 * Set the vdev id to the first hole, if one exists. 4416 */ 4417 for (id = 0; id < rvd->vdev_children; id++) { 4418 if (rvd->vdev_child[id]->vdev_ishole) { 4419 vdev_free(rvd->vdev_child[id]); 4420 break; 4421 } 4422 } 4423 tvd = vd->vdev_child[c]; 4424 vdev_remove_child(vd, tvd); 4425 tvd->vdev_id = id; 4426 vdev_add_child(rvd, tvd); 4427 vdev_config_dirty(tvd); 4428 } 4429 4430 if (nspares != 0) { 4431 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares, 4432 ZPOOL_CONFIG_SPARES); 4433 spa_load_spares(spa); 4434 spa->spa_spares.sav_sync = B_TRUE; 4435 } 4436 4437 if (nl2cache != 0) { 4438 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache, 4439 ZPOOL_CONFIG_L2CACHE); 4440 spa_load_l2cache(spa); 4441 spa->spa_l2cache.sav_sync = B_TRUE; 4442 } 4443 4444 /* 4445 * We have to be careful when adding new vdevs to an existing pool. 4446 * If other threads start allocating from these vdevs before we 4447 * sync the config cache, and we lose power, then upon reboot we may 4448 * fail to open the pool because there are DVAs that the config cache 4449 * can't translate. Therefore, we first add the vdevs without 4450 * initializing metaslabs; sync the config cache (via spa_vdev_exit()); 4451 * and then let spa_config_update() initialize the new metaslabs. 4452 * 4453 * spa_load() checks for added-but-not-initialized vdevs, so that 4454 * if we lose power at any point in this sequence, the remaining 4455 * steps will be completed the next time we load the pool. 4456 */ 4457 (void) spa_vdev_exit(spa, vd, txg, 0); 4458 4459 mutex_enter(&spa_namespace_lock); 4460 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 4461 spa_event_notify(spa, NULL, ESC_ZFS_VDEV_ADD); 4462 mutex_exit(&spa_namespace_lock); 4463 4464 return (0); 4465 } 4466 4467 /* 4468 * Attach a device to a mirror. The arguments are the path to any device 4469 * in the mirror, and the nvroot for the new device. If the path specifies 4470 * a device that is not mirrored, we automatically insert the mirror vdev. 4471 * 4472 * If 'replacing' is specified, the new device is intended to replace the 4473 * existing device; in this case the two devices are made into their own 4474 * mirror using the 'replacing' vdev, which is functionally identical to 4475 * the mirror vdev (it actually reuses all the same ops) but has a few 4476 * extra rules: you can't attach to it after it's been created, and upon 4477 * completion of resilvering, the first disk (the one being replaced) 4478 * is automatically detached. 4479 */ 4480 int 4481 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing) 4482 { 4483 uint64_t txg, dtl_max_txg; 4484 vdev_t *rvd = spa->spa_root_vdev; 4485 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd; 4486 vdev_ops_t *pvops; 4487 char *oldvdpath, *newvdpath; 4488 int newvd_isspare; 4489 int error; 4490 4491 ASSERT(spa_writeable(spa)); 4492 4493 txg = spa_vdev_enter(spa); 4494 4495 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE); 4496 4497 if (oldvd == NULL) 4498 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 4499 4500 if (!oldvd->vdev_ops->vdev_op_leaf) 4501 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4502 4503 pvd = oldvd->vdev_parent; 4504 4505 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0, 4506 VDEV_ALLOC_ATTACH)) != 0) 4507 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4508 4509 if (newrootvd->vdev_children != 1) 4510 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 4511 4512 newvd = newrootvd->vdev_child[0]; 4513 4514 if (!newvd->vdev_ops->vdev_op_leaf) 4515 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 4516 4517 if ((error = vdev_create(newrootvd, txg, replacing)) != 0) 4518 return (spa_vdev_exit(spa, newrootvd, txg, error)); 4519 4520 /* 4521 * Spares can't replace logs 4522 */ 4523 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare) 4524 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4525 4526 if (!replacing) { 4527 /* 4528 * For attach, the only allowable parent is a mirror or the root 4529 * vdev. 4530 */ 4531 if (pvd->vdev_ops != &vdev_mirror_ops && 4532 pvd->vdev_ops != &vdev_root_ops) 4533 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4534 4535 pvops = &vdev_mirror_ops; 4536 } else { 4537 /* 4538 * Active hot spares can only be replaced by inactive hot 4539 * spares. 4540 */ 4541 if (pvd->vdev_ops == &vdev_spare_ops && 4542 oldvd->vdev_isspare && 4543 !spa_has_spare(spa, newvd->vdev_guid)) 4544 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4545 4546 /* 4547 * If the source is a hot spare, and the parent isn't already a 4548 * spare, then we want to create a new hot spare. Otherwise, we 4549 * want to create a replacing vdev. The user is not allowed to 4550 * attach to a spared vdev child unless the 'isspare' state is 4551 * the same (spare replaces spare, non-spare replaces 4552 * non-spare). 4553 */ 4554 if (pvd->vdev_ops == &vdev_replacing_ops && 4555 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) { 4556 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4557 } else if (pvd->vdev_ops == &vdev_spare_ops && 4558 newvd->vdev_isspare != oldvd->vdev_isspare) { 4559 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4560 } 4561 4562 if (newvd->vdev_isspare) 4563 pvops = &vdev_spare_ops; 4564 else 4565 pvops = &vdev_replacing_ops; 4566 } 4567 4568 /* 4569 * Make sure the new device is big enough. 4570 */ 4571 if (newvd->vdev_asize < vdev_get_min_asize(oldvd)) 4572 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW)); 4573 4574 /* 4575 * The new device cannot have a higher alignment requirement 4576 * than the top-level vdev. 4577 */ 4578 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift) 4579 return (spa_vdev_exit(spa, newrootvd, txg, EDOM)); 4580 4581 /* 4582 * If this is an in-place replacement, update oldvd's path and devid 4583 * to make it distinguishable from newvd, and unopenable from now on. 4584 */ 4585 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) { 4586 spa_strfree(oldvd->vdev_path); 4587 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5, 4588 KM_SLEEP); 4589 (void) sprintf(oldvd->vdev_path, "%s/%s", 4590 newvd->vdev_path, "old"); 4591 if (oldvd->vdev_devid != NULL) { 4592 spa_strfree(oldvd->vdev_devid); 4593 oldvd->vdev_devid = NULL; 4594 } 4595 } 4596 4597 /* mark the device being resilvered */ 4598 newvd->vdev_resilver_txg = txg; 4599 4600 /* 4601 * If the parent is not a mirror, or if we're replacing, insert the new 4602 * mirror/replacing/spare vdev above oldvd. 4603 */ 4604 if (pvd->vdev_ops != pvops) 4605 pvd = vdev_add_parent(oldvd, pvops); 4606 4607 ASSERT(pvd->vdev_top->vdev_parent == rvd); 4608 ASSERT(pvd->vdev_ops == pvops); 4609 ASSERT(oldvd->vdev_parent == pvd); 4610 4611 /* 4612 * Extract the new device from its root and add it to pvd. 4613 */ 4614 vdev_remove_child(newrootvd, newvd); 4615 newvd->vdev_id = pvd->vdev_children; 4616 newvd->vdev_crtxg = oldvd->vdev_crtxg; 4617 vdev_add_child(pvd, newvd); 4618 4619 tvd = newvd->vdev_top; 4620 ASSERT(pvd->vdev_top == tvd); 4621 ASSERT(tvd->vdev_parent == rvd); 4622 4623 vdev_config_dirty(tvd); 4624 4625 /* 4626 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account 4627 * for any dmu_sync-ed blocks. It will propagate upward when 4628 * spa_vdev_exit() calls vdev_dtl_reassess(). 4629 */ 4630 dtl_max_txg = txg + TXG_CONCURRENT_STATES; 4631 4632 vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL, 4633 dtl_max_txg - TXG_INITIAL); 4634 4635 if (newvd->vdev_isspare) { 4636 spa_spare_activate(newvd); 4637 spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE); 4638 } 4639 4640 oldvdpath = spa_strdup(oldvd->vdev_path); 4641 newvdpath = spa_strdup(newvd->vdev_path); 4642 newvd_isspare = newvd->vdev_isspare; 4643 4644 /* 4645 * Mark newvd's DTL dirty in this txg. 4646 */ 4647 vdev_dirty(tvd, VDD_DTL, newvd, txg); 4648 4649 /* 4650 * Schedule the resilver to restart in the future. We do this to 4651 * ensure that dmu_sync-ed blocks have been stitched into the 4652 * respective datasets. 4653 */ 4654 dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg); 4655 4656 if (spa->spa_bootfs) 4657 spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH); 4658 4659 spa_event_notify(spa, newvd, ESC_ZFS_VDEV_ATTACH); 4660 4661 /* 4662 * Commit the config 4663 */ 4664 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0); 4665 4666 spa_history_log_internal(spa, "vdev attach", NULL, 4667 "%s vdev=%s %s vdev=%s", 4668 replacing && newvd_isspare ? "spare in" : 4669 replacing ? "replace" : "attach", newvdpath, 4670 replacing ? "for" : "to", oldvdpath); 4671 4672 spa_strfree(oldvdpath); 4673 spa_strfree(newvdpath); 4674 4675 return (0); 4676 } 4677 4678 /* 4679 * Detach a device from a mirror or replacing vdev. 4680 * 4681 * If 'replace_done' is specified, only detach if the parent 4682 * is a replacing vdev. 4683 */ 4684 int 4685 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done) 4686 { 4687 uint64_t txg; 4688 int error; 4689 vdev_t *rvd = spa->spa_root_vdev; 4690 vdev_t *vd, *pvd, *cvd, *tvd; 4691 boolean_t unspare = B_FALSE; 4692 uint64_t unspare_guid = 0; 4693 char *vdpath; 4694 4695 ASSERT(spa_writeable(spa)); 4696 4697 txg = spa_vdev_enter(spa); 4698 4699 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 4700 4701 if (vd == NULL) 4702 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 4703 4704 if (!vd->vdev_ops->vdev_op_leaf) 4705 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4706 4707 pvd = vd->vdev_parent; 4708 4709 /* 4710 * If the parent/child relationship is not as expected, don't do it. 4711 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing 4712 * vdev that's replacing B with C. The user's intent in replacing 4713 * is to go from M(A,B) to M(A,C). If the user decides to cancel 4714 * the replace by detaching C, the expected behavior is to end up 4715 * M(A,B). But suppose that right after deciding to detach C, 4716 * the replacement of B completes. We would have M(A,C), and then 4717 * ask to detach C, which would leave us with just A -- not what 4718 * the user wanted. To prevent this, we make sure that the 4719 * parent/child relationship hasn't changed -- in this example, 4720 * that C's parent is still the replacing vdev R. 4721 */ 4722 if (pvd->vdev_guid != pguid && pguid != 0) 4723 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 4724 4725 /* 4726 * Only 'replacing' or 'spare' vdevs can be replaced. 4727 */ 4728 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops && 4729 pvd->vdev_ops != &vdev_spare_ops) 4730 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4731 4732 ASSERT(pvd->vdev_ops != &vdev_spare_ops || 4733 spa_version(spa) >= SPA_VERSION_SPARES); 4734 4735 /* 4736 * Only mirror, replacing, and spare vdevs support detach. 4737 */ 4738 if (pvd->vdev_ops != &vdev_replacing_ops && 4739 pvd->vdev_ops != &vdev_mirror_ops && 4740 pvd->vdev_ops != &vdev_spare_ops) 4741 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4742 4743 /* 4744 * If this device has the only valid copy of some data, 4745 * we cannot safely detach it. 4746 */ 4747 if (vdev_dtl_required(vd)) 4748 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 4749 4750 ASSERT(pvd->vdev_children >= 2); 4751 4752 /* 4753 * If we are detaching the second disk from a replacing vdev, then 4754 * check to see if we changed the original vdev's path to have "/old" 4755 * at the end in spa_vdev_attach(). If so, undo that change now. 4756 */ 4757 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 && 4758 vd->vdev_path != NULL) { 4759 size_t len = strlen(vd->vdev_path); 4760 4761 for (int c = 0; c < pvd->vdev_children; c++) { 4762 cvd = pvd->vdev_child[c]; 4763 4764 if (cvd == vd || cvd->vdev_path == NULL) 4765 continue; 4766 4767 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 && 4768 strcmp(cvd->vdev_path + len, "/old") == 0) { 4769 spa_strfree(cvd->vdev_path); 4770 cvd->vdev_path = spa_strdup(vd->vdev_path); 4771 break; 4772 } 4773 } 4774 } 4775 4776 /* 4777 * If we are detaching the original disk from a spare, then it implies 4778 * that the spare should become a real disk, and be removed from the 4779 * active spare list for the pool. 4780 */ 4781 if (pvd->vdev_ops == &vdev_spare_ops && 4782 vd->vdev_id == 0 && 4783 pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare) 4784 unspare = B_TRUE; 4785 4786 /* 4787 * Erase the disk labels so the disk can be used for other things. 4788 * This must be done after all other error cases are handled, 4789 * but before we disembowel vd (so we can still do I/O to it). 4790 * But if we can't do it, don't treat the error as fatal -- 4791 * it may be that the unwritability of the disk is the reason 4792 * it's being detached! 4793 */ 4794 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 4795 4796 /* 4797 * Remove vd from its parent and compact the parent's children. 4798 */ 4799 vdev_remove_child(pvd, vd); 4800 vdev_compact_children(pvd); 4801 4802 /* 4803 * Remember one of the remaining children so we can get tvd below. 4804 */ 4805 cvd = pvd->vdev_child[pvd->vdev_children - 1]; 4806 4807 /* 4808 * If we need to remove the remaining child from the list of hot spares, 4809 * do it now, marking the vdev as no longer a spare in the process. 4810 * We must do this before vdev_remove_parent(), because that can 4811 * change the GUID if it creates a new toplevel GUID. For a similar 4812 * reason, we must remove the spare now, in the same txg as the detach; 4813 * otherwise someone could attach a new sibling, change the GUID, and 4814 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail. 4815 */ 4816 if (unspare) { 4817 ASSERT(cvd->vdev_isspare); 4818 spa_spare_remove(cvd); 4819 unspare_guid = cvd->vdev_guid; 4820 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE); 4821 cvd->vdev_unspare = B_TRUE; 4822 } 4823 4824 /* 4825 * If the parent mirror/replacing vdev only has one child, 4826 * the parent is no longer needed. Remove it from the tree. 4827 */ 4828 if (pvd->vdev_children == 1) { 4829 if (pvd->vdev_ops == &vdev_spare_ops) 4830 cvd->vdev_unspare = B_FALSE; 4831 vdev_remove_parent(cvd); 4832 } 4833 4834 4835 /* 4836 * We don't set tvd until now because the parent we just removed 4837 * may have been the previous top-level vdev. 4838 */ 4839 tvd = cvd->vdev_top; 4840 ASSERT(tvd->vdev_parent == rvd); 4841 4842 /* 4843 * Reevaluate the parent vdev state. 4844 */ 4845 vdev_propagate_state(cvd); 4846 4847 /* 4848 * If the 'autoexpand' property is set on the pool then automatically 4849 * try to expand the size of the pool. For example if the device we 4850 * just detached was smaller than the others, it may be possible to 4851 * add metaslabs (i.e. grow the pool). We need to reopen the vdev 4852 * first so that we can obtain the updated sizes of the leaf vdevs. 4853 */ 4854 if (spa->spa_autoexpand) { 4855 vdev_reopen(tvd); 4856 vdev_expand(tvd, txg); 4857 } 4858 4859 vdev_config_dirty(tvd); 4860 4861 /* 4862 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that 4863 * vd->vdev_detached is set and free vd's DTL object in syncing context. 4864 * But first make sure we're not on any *other* txg's DTL list, to 4865 * prevent vd from being accessed after it's freed. 4866 */ 4867 vdpath = spa_strdup(vd->vdev_path); 4868 for (int t = 0; t < TXG_SIZE; t++) 4869 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t); 4870 vd->vdev_detached = B_TRUE; 4871 vdev_dirty(tvd, VDD_DTL, vd, txg); 4872 4873 spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE); 4874 4875 /* hang on to the spa before we release the lock */ 4876 spa_open_ref(spa, FTAG); 4877 4878 error = spa_vdev_exit(spa, vd, txg, 0); 4879 4880 spa_history_log_internal(spa, "detach", NULL, 4881 "vdev=%s", vdpath); 4882 spa_strfree(vdpath); 4883 4884 /* 4885 * If this was the removal of the original device in a hot spare vdev, 4886 * then we want to go through and remove the device from the hot spare 4887 * list of every other pool. 4888 */ 4889 if (unspare) { 4890 spa_t *altspa = NULL; 4891 4892 mutex_enter(&spa_namespace_lock); 4893 while ((altspa = spa_next(altspa)) != NULL) { 4894 if (altspa->spa_state != POOL_STATE_ACTIVE || 4895 altspa == spa) 4896 continue; 4897 4898 spa_open_ref(altspa, FTAG); 4899 mutex_exit(&spa_namespace_lock); 4900 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE); 4901 mutex_enter(&spa_namespace_lock); 4902 spa_close(altspa, FTAG); 4903 } 4904 mutex_exit(&spa_namespace_lock); 4905 4906 /* search the rest of the vdevs for spares to remove */ 4907 spa_vdev_resilver_done(spa); 4908 } 4909 4910 /* all done with the spa; OK to release */ 4911 mutex_enter(&spa_namespace_lock); 4912 spa_close(spa, FTAG); 4913 mutex_exit(&spa_namespace_lock); 4914 4915 return (error); 4916 } 4917 4918 /* 4919 * Split a set of devices from their mirrors, and create a new pool from them. 4920 */ 4921 int 4922 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config, 4923 nvlist_t *props, boolean_t exp) 4924 { 4925 int error = 0; 4926 uint64_t txg, *glist; 4927 spa_t *newspa; 4928 uint_t c, children, lastlog; 4929 nvlist_t **child, *nvl, *tmp; 4930 dmu_tx_t *tx; 4931 char *altroot = NULL; 4932 vdev_t *rvd, **vml = NULL; /* vdev modify list */ 4933 boolean_t activate_slog; 4934 4935 ASSERT(spa_writeable(spa)); 4936 4937 txg = spa_vdev_enter(spa); 4938 4939 /* clear the log and flush everything up to now */ 4940 activate_slog = spa_passivate_log(spa); 4941 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 4942 error = spa_offline_log(spa); 4943 txg = spa_vdev_config_enter(spa); 4944 4945 if (activate_slog) 4946 spa_activate_log(spa); 4947 4948 if (error != 0) 4949 return (spa_vdev_exit(spa, NULL, txg, error)); 4950 4951 /* check new spa name before going any further */ 4952 if (spa_lookup(newname) != NULL) 4953 return (spa_vdev_exit(spa, NULL, txg, EEXIST)); 4954 4955 /* 4956 * scan through all the children to ensure they're all mirrors 4957 */ 4958 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 || 4959 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child, 4960 &children) != 0) 4961 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4962 4963 /* first, check to ensure we've got the right child count */ 4964 rvd = spa->spa_root_vdev; 4965 lastlog = 0; 4966 for (c = 0; c < rvd->vdev_children; c++) { 4967 vdev_t *vd = rvd->vdev_child[c]; 4968 4969 /* don't count the holes & logs as children */ 4970 if (vd->vdev_islog || vd->vdev_ishole) { 4971 if (lastlog == 0) 4972 lastlog = c; 4973 continue; 4974 } 4975 4976 lastlog = 0; 4977 } 4978 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children)) 4979 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4980 4981 /* next, ensure no spare or cache devices are part of the split */ 4982 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 || 4983 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0) 4984 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4985 4986 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP); 4987 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP); 4988 4989 /* then, loop over each vdev and validate it */ 4990 for (c = 0; c < children; c++) { 4991 uint64_t is_hole = 0; 4992 4993 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE, 4994 &is_hole); 4995 4996 if (is_hole != 0) { 4997 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole || 4998 spa->spa_root_vdev->vdev_child[c]->vdev_islog) { 4999 continue; 5000 } else { 5001 error = SET_ERROR(EINVAL); 5002 break; 5003 } 5004 } 5005 5006 /* which disk is going to be split? */ 5007 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID, 5008 &glist[c]) != 0) { 5009 error = SET_ERROR(EINVAL); 5010 break; 5011 } 5012 5013 /* look it up in the spa */ 5014 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE); 5015 if (vml[c] == NULL) { 5016 error = SET_ERROR(ENODEV); 5017 break; 5018 } 5019 5020 /* make sure there's nothing stopping the split */ 5021 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops || 5022 vml[c]->vdev_islog || 5023 vml[c]->vdev_ishole || 5024 vml[c]->vdev_isspare || 5025 vml[c]->vdev_isl2cache || 5026 !vdev_writeable(vml[c]) || 5027 vml[c]->vdev_children != 0 || 5028 vml[c]->vdev_state != VDEV_STATE_HEALTHY || 5029 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) { 5030 error = SET_ERROR(EINVAL); 5031 break; 5032 } 5033 5034 if (vdev_dtl_required(vml[c])) { 5035 error = SET_ERROR(EBUSY); 5036 break; 5037 } 5038 5039 /* we need certain info from the top level */ 5040 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY, 5041 vml[c]->vdev_top->vdev_ms_array) == 0); 5042 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT, 5043 vml[c]->vdev_top->vdev_ms_shift) == 0); 5044 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE, 5045 vml[c]->vdev_top->vdev_asize) == 0); 5046 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT, 5047 vml[c]->vdev_top->vdev_ashift) == 0); 5048 } 5049 5050 if (error != 0) { 5051 kmem_free(vml, children * sizeof (vdev_t *)); 5052 kmem_free(glist, children * sizeof (uint64_t)); 5053 return (spa_vdev_exit(spa, NULL, txg, error)); 5054 } 5055 5056 /* stop writers from using the disks */ 5057 for (c = 0; c < children; c++) { 5058 if (vml[c] != NULL) 5059 vml[c]->vdev_offline = B_TRUE; 5060 } 5061 vdev_reopen(spa->spa_root_vdev); 5062 5063 /* 5064 * Temporarily record the splitting vdevs in the spa config. This 5065 * will disappear once the config is regenerated. 5066 */ 5067 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0); 5068 VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 5069 glist, children) == 0); 5070 kmem_free(glist, children * sizeof (uint64_t)); 5071 5072 mutex_enter(&spa->spa_props_lock); 5073 VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT, 5074 nvl) == 0); 5075 mutex_exit(&spa->spa_props_lock); 5076 spa->spa_config_splitting = nvl; 5077 vdev_config_dirty(spa->spa_root_vdev); 5078 5079 /* configure and create the new pool */ 5080 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0); 5081 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 5082 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0); 5083 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, 5084 spa_version(spa)) == 0); 5085 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, 5086 spa->spa_config_txg) == 0); 5087 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID, 5088 spa_generate_guid(NULL)) == 0); 5089 (void) nvlist_lookup_string(props, 5090 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 5091 5092 /* add the new pool to the namespace */ 5093 newspa = spa_add(newname, config, altroot); 5094 newspa->spa_config_txg = spa->spa_config_txg; 5095 spa_set_log_state(newspa, SPA_LOG_CLEAR); 5096 5097 /* release the spa config lock, retaining the namespace lock */ 5098 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 5099 5100 if (zio_injection_enabled) 5101 zio_handle_panic_injection(spa, FTAG, 1); 5102 5103 spa_activate(newspa, spa_mode_global); 5104 spa_async_suspend(newspa); 5105 5106 /* create the new pool from the disks of the original pool */ 5107 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE); 5108 if (error) 5109 goto out; 5110 5111 /* if that worked, generate a real config for the new pool */ 5112 if (newspa->spa_root_vdev != NULL) { 5113 VERIFY(nvlist_alloc(&newspa->spa_config_splitting, 5114 NV_UNIQUE_NAME, KM_SLEEP) == 0); 5115 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting, 5116 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0); 5117 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL, 5118 B_TRUE)); 5119 } 5120 5121 /* set the props */ 5122 if (props != NULL) { 5123 spa_configfile_set(newspa, props, B_FALSE); 5124 error = spa_prop_set(newspa, props); 5125 if (error) 5126 goto out; 5127 } 5128 5129 /* flush everything */ 5130 txg = spa_vdev_config_enter(newspa); 5131 vdev_config_dirty(newspa->spa_root_vdev); 5132 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG); 5133 5134 if (zio_injection_enabled) 5135 zio_handle_panic_injection(spa, FTAG, 2); 5136 5137 spa_async_resume(newspa); 5138 5139 /* finally, update the original pool's config */ 5140 txg = spa_vdev_config_enter(spa); 5141 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 5142 error = dmu_tx_assign(tx, TXG_WAIT); 5143 if (error != 0) 5144 dmu_tx_abort(tx); 5145 for (c = 0; c < children; c++) { 5146 if (vml[c] != NULL) { 5147 vdev_split(vml[c]); 5148 if (error == 0) 5149 spa_history_log_internal(spa, "detach", tx, 5150 "vdev=%s", vml[c]->vdev_path); 5151 vdev_free(vml[c]); 5152 } 5153 } 5154 vdev_config_dirty(spa->spa_root_vdev); 5155 spa->spa_config_splitting = NULL; 5156 nvlist_free(nvl); 5157 if (error == 0) 5158 dmu_tx_commit(tx); 5159 (void) spa_vdev_exit(spa, NULL, txg, 0); 5160 5161 if (zio_injection_enabled) 5162 zio_handle_panic_injection(spa, FTAG, 3); 5163 5164 /* split is complete; log a history record */ 5165 spa_history_log_internal(newspa, "split", NULL, 5166 "from pool %s", spa_name(spa)); 5167 5168 kmem_free(vml, children * sizeof (vdev_t *)); 5169 5170 /* if we're not going to mount the filesystems in userland, export */ 5171 if (exp) 5172 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL, 5173 B_FALSE, B_FALSE); 5174 5175 return (error); 5176 5177 out: 5178 spa_unload(newspa); 5179 spa_deactivate(newspa); 5180 spa_remove(newspa); 5181 5182 txg = spa_vdev_config_enter(spa); 5183 5184 /* re-online all offlined disks */ 5185 for (c = 0; c < children; c++) { 5186 if (vml[c] != NULL) 5187 vml[c]->vdev_offline = B_FALSE; 5188 } 5189 vdev_reopen(spa->spa_root_vdev); 5190 5191 nvlist_free(spa->spa_config_splitting); 5192 spa->spa_config_splitting = NULL; 5193 (void) spa_vdev_exit(spa, NULL, txg, error); 5194 5195 kmem_free(vml, children * sizeof (vdev_t *)); 5196 return (error); 5197 } 5198 5199 static nvlist_t * 5200 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid) 5201 { 5202 for (int i = 0; i < count; i++) { 5203 uint64_t guid; 5204 5205 VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID, 5206 &guid) == 0); 5207 5208 if (guid == target_guid) 5209 return (nvpp[i]); 5210 } 5211 5212 return (NULL); 5213 } 5214 5215 static void 5216 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count, 5217 nvlist_t *dev_to_remove) 5218 { 5219 nvlist_t **newdev = NULL; 5220 5221 if (count > 1) 5222 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP); 5223 5224 for (int i = 0, j = 0; i < count; i++) { 5225 if (dev[i] == dev_to_remove) 5226 continue; 5227 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0); 5228 } 5229 5230 VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0); 5231 VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0); 5232 5233 for (int i = 0; i < count - 1; i++) 5234 nvlist_free(newdev[i]); 5235 5236 if (count > 1) 5237 kmem_free(newdev, (count - 1) * sizeof (void *)); 5238 } 5239 5240 /* 5241 * Evacuate the device. 5242 */ 5243 static int 5244 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd) 5245 { 5246 uint64_t txg; 5247 int error = 0; 5248 5249 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 5250 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 5251 ASSERT(vd == vd->vdev_top); 5252 5253 /* 5254 * Evacuate the device. We don't hold the config lock as writer 5255 * since we need to do I/O but we do keep the 5256 * spa_namespace_lock held. Once this completes the device 5257 * should no longer have any blocks allocated on it. 5258 */ 5259 if (vd->vdev_islog) { 5260 if (vd->vdev_stat.vs_alloc != 0) 5261 error = spa_offline_log(spa); 5262 } else { 5263 error = SET_ERROR(ENOTSUP); 5264 } 5265 5266 if (error) 5267 return (error); 5268 5269 /* 5270 * The evacuation succeeded. Remove any remaining MOS metadata 5271 * associated with this vdev, and wait for these changes to sync. 5272 */ 5273 ASSERT0(vd->vdev_stat.vs_alloc); 5274 txg = spa_vdev_config_enter(spa); 5275 vd->vdev_removing = B_TRUE; 5276 vdev_dirty_leaves(vd, VDD_DTL, txg); 5277 vdev_config_dirty(vd); 5278 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 5279 5280 return (0); 5281 } 5282 5283 /* 5284 * Complete the removal by cleaning up the namespace. 5285 */ 5286 static void 5287 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd) 5288 { 5289 vdev_t *rvd = spa->spa_root_vdev; 5290 uint64_t id = vd->vdev_id; 5291 boolean_t last_vdev = (id == (rvd->vdev_children - 1)); 5292 5293 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 5294 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 5295 ASSERT(vd == vd->vdev_top); 5296 5297 /* 5298 * Only remove any devices which are empty. 5299 */ 5300 if (vd->vdev_stat.vs_alloc != 0) 5301 return; 5302 5303 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 5304 5305 if (list_link_active(&vd->vdev_state_dirty_node)) 5306 vdev_state_clean(vd); 5307 if (list_link_active(&vd->vdev_config_dirty_node)) 5308 vdev_config_clean(vd); 5309 5310 vdev_free(vd); 5311 5312 if (last_vdev) { 5313 vdev_compact_children(rvd); 5314 } else { 5315 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops); 5316 vdev_add_child(rvd, vd); 5317 } 5318 vdev_config_dirty(rvd); 5319 5320 /* 5321 * Reassess the health of our root vdev. 5322 */ 5323 vdev_reopen(rvd); 5324 } 5325 5326 /* 5327 * Remove a device from the pool - 5328 * 5329 * Removing a device from the vdev namespace requires several steps 5330 * and can take a significant amount of time. As a result we use 5331 * the spa_vdev_config_[enter/exit] functions which allow us to 5332 * grab and release the spa_config_lock while still holding the namespace 5333 * lock. During each step the configuration is synced out. 5334 * 5335 * Currently, this supports removing only hot spares, slogs, and level 2 ARC 5336 * devices. 5337 */ 5338 int 5339 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare) 5340 { 5341 vdev_t *vd; 5342 metaslab_group_t *mg; 5343 nvlist_t **spares, **l2cache, *nv; 5344 uint64_t txg = 0; 5345 uint_t nspares, nl2cache; 5346 int error = 0; 5347 boolean_t locked = MUTEX_HELD(&spa_namespace_lock); 5348 5349 ASSERT(spa_writeable(spa)); 5350 5351 if (!locked) 5352 txg = spa_vdev_enter(spa); 5353 5354 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 5355 5356 if (spa->spa_spares.sav_vdevs != NULL && 5357 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 5358 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 && 5359 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) { 5360 /* 5361 * Only remove the hot spare if it's not currently in use 5362 * in this pool. 5363 */ 5364 if (vd == NULL || unspare) { 5365 spa_vdev_remove_aux(spa->spa_spares.sav_config, 5366 ZPOOL_CONFIG_SPARES, spares, nspares, nv); 5367 spa_load_spares(spa); 5368 spa->spa_spares.sav_sync = B_TRUE; 5369 } else { 5370 error = SET_ERROR(EBUSY); 5371 } 5372 } else if (spa->spa_l2cache.sav_vdevs != NULL && 5373 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 5374 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 && 5375 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) { 5376 /* 5377 * Cache devices can always be removed. 5378 */ 5379 spa_vdev_remove_aux(spa->spa_l2cache.sav_config, 5380 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv); 5381 spa_load_l2cache(spa); 5382 spa->spa_l2cache.sav_sync = B_TRUE; 5383 } else if (vd != NULL && vd->vdev_islog) { 5384 ASSERT(!locked); 5385 ASSERT(vd == vd->vdev_top); 5386 5387 mg = vd->vdev_mg; 5388 5389 /* 5390 * Stop allocating from this vdev. 5391 */ 5392 metaslab_group_passivate(mg); 5393 5394 /* 5395 * Wait for the youngest allocations and frees to sync, 5396 * and then wait for the deferral of those frees to finish. 5397 */ 5398 spa_vdev_config_exit(spa, NULL, 5399 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG); 5400 5401 /* 5402 * Attempt to evacuate the vdev. 5403 */ 5404 error = spa_vdev_remove_evacuate(spa, vd); 5405 5406 txg = spa_vdev_config_enter(spa); 5407 5408 /* 5409 * If we couldn't evacuate the vdev, unwind. 5410 */ 5411 if (error) { 5412 metaslab_group_activate(mg); 5413 return (spa_vdev_exit(spa, NULL, txg, error)); 5414 } 5415 5416 /* 5417 * Clean up the vdev namespace. 5418 */ 5419 spa_vdev_remove_from_namespace(spa, vd); 5420 5421 } else if (vd != NULL) { 5422 /* 5423 * Normal vdevs cannot be removed (yet). 5424 */ 5425 error = SET_ERROR(ENOTSUP); 5426 } else { 5427 /* 5428 * There is no vdev of any kind with the specified guid. 5429 */ 5430 error = SET_ERROR(ENOENT); 5431 } 5432 5433 if (!locked) 5434 return (spa_vdev_exit(spa, NULL, txg, error)); 5435 5436 return (error); 5437 } 5438 5439 /* 5440 * Find any device that's done replacing, or a vdev marked 'unspare' that's 5441 * currently spared, so we can detach it. 5442 */ 5443 static vdev_t * 5444 spa_vdev_resilver_done_hunt(vdev_t *vd) 5445 { 5446 vdev_t *newvd, *oldvd; 5447 5448 for (int c = 0; c < vd->vdev_children; c++) { 5449 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]); 5450 if (oldvd != NULL) 5451 return (oldvd); 5452 } 5453 5454 /* 5455 * Check for a completed replacement. We always consider the first 5456 * vdev in the list to be the oldest vdev, and the last one to be 5457 * the newest (see spa_vdev_attach() for how that works). In 5458 * the case where the newest vdev is faulted, we will not automatically 5459 * remove it after a resilver completes. This is OK as it will require 5460 * user intervention to determine which disk the admin wishes to keep. 5461 */ 5462 if (vd->vdev_ops == &vdev_replacing_ops) { 5463 ASSERT(vd->vdev_children > 1); 5464 5465 newvd = vd->vdev_child[vd->vdev_children - 1]; 5466 oldvd = vd->vdev_child[0]; 5467 5468 if (vdev_dtl_empty(newvd, DTL_MISSING) && 5469 vdev_dtl_empty(newvd, DTL_OUTAGE) && 5470 !vdev_dtl_required(oldvd)) 5471 return (oldvd); 5472 } 5473 5474 /* 5475 * Check for a completed resilver with the 'unspare' flag set. 5476 */ 5477 if (vd->vdev_ops == &vdev_spare_ops) { 5478 vdev_t *first = vd->vdev_child[0]; 5479 vdev_t *last = vd->vdev_child[vd->vdev_children - 1]; 5480 5481 if (last->vdev_unspare) { 5482 oldvd = first; 5483 newvd = last; 5484 } else if (first->vdev_unspare) { 5485 oldvd = last; 5486 newvd = first; 5487 } else { 5488 oldvd = NULL; 5489 } 5490 5491 if (oldvd != NULL && 5492 vdev_dtl_empty(newvd, DTL_MISSING) && 5493 vdev_dtl_empty(newvd, DTL_OUTAGE) && 5494 !vdev_dtl_required(oldvd)) 5495 return (oldvd); 5496 5497 /* 5498 * If there are more than two spares attached to a disk, 5499 * and those spares are not required, then we want to 5500 * attempt to free them up now so that they can be used 5501 * by other pools. Once we're back down to a single 5502 * disk+spare, we stop removing them. 5503 */ 5504 if (vd->vdev_children > 2) { 5505 newvd = vd->vdev_child[1]; 5506 5507 if (newvd->vdev_isspare && last->vdev_isspare && 5508 vdev_dtl_empty(last, DTL_MISSING) && 5509 vdev_dtl_empty(last, DTL_OUTAGE) && 5510 !vdev_dtl_required(newvd)) 5511 return (newvd); 5512 } 5513 } 5514 5515 return (NULL); 5516 } 5517 5518 static void 5519 spa_vdev_resilver_done(spa_t *spa) 5520 { 5521 vdev_t *vd, *pvd, *ppvd; 5522 uint64_t guid, sguid, pguid, ppguid; 5523 5524 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5525 5526 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) { 5527 pvd = vd->vdev_parent; 5528 ppvd = pvd->vdev_parent; 5529 guid = vd->vdev_guid; 5530 pguid = pvd->vdev_guid; 5531 ppguid = ppvd->vdev_guid; 5532 sguid = 0; 5533 /* 5534 * If we have just finished replacing a hot spared device, then 5535 * we need to detach the parent's first child (the original hot 5536 * spare) as well. 5537 */ 5538 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 && 5539 ppvd->vdev_children == 2) { 5540 ASSERT(pvd->vdev_ops == &vdev_replacing_ops); 5541 sguid = ppvd->vdev_child[1]->vdev_guid; 5542 } 5543 ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd)); 5544 5545 spa_config_exit(spa, SCL_ALL, FTAG); 5546 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0) 5547 return; 5548 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0) 5549 return; 5550 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5551 } 5552 5553 spa_config_exit(spa, SCL_ALL, FTAG); 5554 } 5555 5556 /* 5557 * Update the stored path or FRU for this vdev. 5558 */ 5559 int 5560 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value, 5561 boolean_t ispath) 5562 { 5563 vdev_t *vd; 5564 boolean_t sync = B_FALSE; 5565 5566 ASSERT(spa_writeable(spa)); 5567 5568 spa_vdev_state_enter(spa, SCL_ALL); 5569 5570 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 5571 return (spa_vdev_state_exit(spa, NULL, ENOENT)); 5572 5573 if (!vd->vdev_ops->vdev_op_leaf) 5574 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 5575 5576 if (ispath) { 5577 if (strcmp(value, vd->vdev_path) != 0) { 5578 spa_strfree(vd->vdev_path); 5579 vd->vdev_path = spa_strdup(value); 5580 sync = B_TRUE; 5581 } 5582 } else { 5583 if (vd->vdev_fru == NULL) { 5584 vd->vdev_fru = spa_strdup(value); 5585 sync = B_TRUE; 5586 } else if (strcmp(value, vd->vdev_fru) != 0) { 5587 spa_strfree(vd->vdev_fru); 5588 vd->vdev_fru = spa_strdup(value); 5589 sync = B_TRUE; 5590 } 5591 } 5592 5593 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0)); 5594 } 5595 5596 int 5597 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath) 5598 { 5599 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE)); 5600 } 5601 5602 int 5603 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru) 5604 { 5605 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE)); 5606 } 5607 5608 /* 5609 * ========================================================================== 5610 * SPA Scanning 5611 * ========================================================================== 5612 */ 5613 5614 int 5615 spa_scan_stop(spa_t *spa) 5616 { 5617 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 5618 if (dsl_scan_resilvering(spa->spa_dsl_pool)) 5619 return (SET_ERROR(EBUSY)); 5620 return (dsl_scan_cancel(spa->spa_dsl_pool)); 5621 } 5622 5623 int 5624 spa_scan(spa_t *spa, pool_scan_func_t func) 5625 { 5626 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 5627 5628 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE) 5629 return (SET_ERROR(ENOTSUP)); 5630 5631 /* 5632 * If a resilver was requested, but there is no DTL on a 5633 * writeable leaf device, we have nothing to do. 5634 */ 5635 if (func == POOL_SCAN_RESILVER && 5636 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) { 5637 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 5638 return (0); 5639 } 5640 5641 return (dsl_scan(spa->spa_dsl_pool, func)); 5642 } 5643 5644 /* 5645 * ========================================================================== 5646 * SPA async task processing 5647 * ========================================================================== 5648 */ 5649 5650 static void 5651 spa_async_remove(spa_t *spa, vdev_t *vd) 5652 { 5653 if (vd->vdev_remove_wanted) { 5654 vd->vdev_remove_wanted = B_FALSE; 5655 vd->vdev_delayed_close = B_FALSE; 5656 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE); 5657 5658 /* 5659 * We want to clear the stats, but we don't want to do a full 5660 * vdev_clear() as that will cause us to throw away 5661 * degraded/faulted state as well as attempt to reopen the 5662 * device, all of which is a waste. 5663 */ 5664 vd->vdev_stat.vs_read_errors = 0; 5665 vd->vdev_stat.vs_write_errors = 0; 5666 vd->vdev_stat.vs_checksum_errors = 0; 5667 5668 vdev_state_dirty(vd->vdev_top); 5669 } 5670 5671 for (int c = 0; c < vd->vdev_children; c++) 5672 spa_async_remove(spa, vd->vdev_child[c]); 5673 } 5674 5675 static void 5676 spa_async_probe(spa_t *spa, vdev_t *vd) 5677 { 5678 if (vd->vdev_probe_wanted) { 5679 vd->vdev_probe_wanted = B_FALSE; 5680 vdev_reopen(vd); /* vdev_open() does the actual probe */ 5681 } 5682 5683 for (int c = 0; c < vd->vdev_children; c++) 5684 spa_async_probe(spa, vd->vdev_child[c]); 5685 } 5686 5687 static void 5688 spa_async_autoexpand(spa_t *spa, vdev_t *vd) 5689 { 5690 sysevent_id_t eid; 5691 nvlist_t *attr; 5692 char *physpath; 5693 5694 if (!spa->spa_autoexpand) 5695 return; 5696 5697 for (int c = 0; c < vd->vdev_children; c++) { 5698 vdev_t *cvd = vd->vdev_child[c]; 5699 spa_async_autoexpand(spa, cvd); 5700 } 5701 5702 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL) 5703 return; 5704 5705 physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP); 5706 (void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath); 5707 5708 VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0); 5709 VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0); 5710 5711 (void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS, 5712 ESC_DEV_DLE, attr, &eid, DDI_SLEEP); 5713 5714 nvlist_free(attr); 5715 kmem_free(physpath, MAXPATHLEN); 5716 } 5717 5718 static void 5719 spa_async_thread(spa_t *spa) 5720 { 5721 int tasks; 5722 5723 ASSERT(spa->spa_sync_on); 5724 5725 mutex_enter(&spa->spa_async_lock); 5726 tasks = spa->spa_async_tasks; 5727 spa->spa_async_tasks = 0; 5728 mutex_exit(&spa->spa_async_lock); 5729 5730 /* 5731 * See if the config needs to be updated. 5732 */ 5733 if (tasks & SPA_ASYNC_CONFIG_UPDATE) { 5734 uint64_t old_space, new_space; 5735 5736 mutex_enter(&spa_namespace_lock); 5737 old_space = metaslab_class_get_space(spa_normal_class(spa)); 5738 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 5739 new_space = metaslab_class_get_space(spa_normal_class(spa)); 5740 mutex_exit(&spa_namespace_lock); 5741 5742 /* 5743 * If the pool grew as a result of the config update, 5744 * then log an internal history event. 5745 */ 5746 if (new_space != old_space) { 5747 spa_history_log_internal(spa, "vdev online", NULL, 5748 "pool '%s' size: %llu(+%llu)", 5749 spa_name(spa), new_space, new_space - old_space); 5750 } 5751 } 5752 5753 /* 5754 * See if any devices need to be marked REMOVED. 5755 */ 5756 if (tasks & SPA_ASYNC_REMOVE) { 5757 spa_vdev_state_enter(spa, SCL_NONE); 5758 spa_async_remove(spa, spa->spa_root_vdev); 5759 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) 5760 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]); 5761 for (int i = 0; i < spa->spa_spares.sav_count; i++) 5762 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]); 5763 (void) spa_vdev_state_exit(spa, NULL, 0); 5764 } 5765 5766 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) { 5767 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 5768 spa_async_autoexpand(spa, spa->spa_root_vdev); 5769 spa_config_exit(spa, SCL_CONFIG, FTAG); 5770 } 5771 5772 /* 5773 * See if any devices need to be probed. 5774 */ 5775 if (tasks & SPA_ASYNC_PROBE) { 5776 spa_vdev_state_enter(spa, SCL_NONE); 5777 spa_async_probe(spa, spa->spa_root_vdev); 5778 (void) spa_vdev_state_exit(spa, NULL, 0); 5779 } 5780 5781 /* 5782 * If any devices are done replacing, detach them. 5783 */ 5784 if (tasks & SPA_ASYNC_RESILVER_DONE) 5785 spa_vdev_resilver_done(spa); 5786 5787 /* 5788 * Kick off a resilver. 5789 */ 5790 if (tasks & SPA_ASYNC_RESILVER) 5791 dsl_resilver_restart(spa->spa_dsl_pool, 0); 5792 5793 /* 5794 * Kick off L2 cache rebuilding. 5795 */ 5796 if (tasks & SPA_ASYNC_L2CACHE_REBUILD) 5797 l2arc_spa_rebuild_start(spa); 5798 5799 /* 5800 * Let the world know that we're done. 5801 */ 5802 mutex_enter(&spa->spa_async_lock); 5803 spa->spa_async_thread = NULL; 5804 cv_broadcast(&spa->spa_async_cv); 5805 mutex_exit(&spa->spa_async_lock); 5806 thread_exit(); 5807 } 5808 5809 void 5810 spa_async_suspend(spa_t *spa) 5811 { 5812 mutex_enter(&spa->spa_async_lock); 5813 spa->spa_async_suspended++; 5814 while (spa->spa_async_thread != NULL) 5815 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock); 5816 mutex_exit(&spa->spa_async_lock); 5817 } 5818 5819 void 5820 spa_async_resume(spa_t *spa) 5821 { 5822 mutex_enter(&spa->spa_async_lock); 5823 ASSERT(spa->spa_async_suspended != 0); 5824 spa->spa_async_suspended--; 5825 mutex_exit(&spa->spa_async_lock); 5826 } 5827 5828 static boolean_t 5829 spa_async_tasks_pending(spa_t *spa) 5830 { 5831 uint_t non_config_tasks; 5832 uint_t config_task; 5833 boolean_t config_task_suspended; 5834 5835 non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE; 5836 config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE; 5837 if (spa->spa_ccw_fail_time == 0) { 5838 config_task_suspended = B_FALSE; 5839 } else { 5840 config_task_suspended = 5841 (gethrtime() - spa->spa_ccw_fail_time) < 5842 (zfs_ccw_retry_interval * NANOSEC); 5843 } 5844 5845 return (non_config_tasks || (config_task && !config_task_suspended)); 5846 } 5847 5848 static void 5849 spa_async_dispatch(spa_t *spa) 5850 { 5851 mutex_enter(&spa->spa_async_lock); 5852 if (spa_async_tasks_pending(spa) && 5853 !spa->spa_async_suspended && 5854 spa->spa_async_thread == NULL && 5855 rootdir != NULL) 5856 spa->spa_async_thread = thread_create(NULL, 0, 5857 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri); 5858 mutex_exit(&spa->spa_async_lock); 5859 } 5860 5861 void 5862 spa_async_request(spa_t *spa, int task) 5863 { 5864 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task); 5865 mutex_enter(&spa->spa_async_lock); 5866 spa->spa_async_tasks |= task; 5867 mutex_exit(&spa->spa_async_lock); 5868 } 5869 5870 /* 5871 * ========================================================================== 5872 * SPA syncing routines 5873 * ========================================================================== 5874 */ 5875 5876 static int 5877 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 5878 { 5879 bpobj_t *bpo = arg; 5880 bpobj_enqueue(bpo, bp, tx); 5881 return (0); 5882 } 5883 5884 static int 5885 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 5886 { 5887 zio_t *zio = arg; 5888 5889 zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp, 5890 zio->io_flags)); 5891 return (0); 5892 } 5893 5894 /* 5895 * Note: this simple function is not inlined to make it easier to dtrace the 5896 * amount of time spent syncing frees. 5897 */ 5898 static void 5899 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx) 5900 { 5901 zio_t *zio = zio_root(spa, NULL, NULL, 0); 5902 bplist_iterate(bpl, spa_free_sync_cb, zio, tx); 5903 VERIFY(zio_wait(zio) == 0); 5904 } 5905 5906 /* 5907 * Note: this simple function is not inlined to make it easier to dtrace the 5908 * amount of time spent syncing deferred frees. 5909 */ 5910 static void 5911 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx) 5912 { 5913 zio_t *zio = zio_root(spa, NULL, NULL, 0); 5914 VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj, 5915 spa_free_sync_cb, zio, tx), ==, 0); 5916 VERIFY0(zio_wait(zio)); 5917 } 5918 5919 5920 static void 5921 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx) 5922 { 5923 char *packed = NULL; 5924 size_t bufsize; 5925 size_t nvsize = 0; 5926 dmu_buf_t *db; 5927 5928 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0); 5929 5930 /* 5931 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration 5932 * information. This avoids the dmu_buf_will_dirty() path and 5933 * saves us a pre-read to get data we don't actually care about. 5934 */ 5935 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE); 5936 packed = kmem_alloc(bufsize, KM_SLEEP); 5937 5938 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR, 5939 KM_SLEEP) == 0); 5940 bzero(packed + nvsize, bufsize - nvsize); 5941 5942 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx); 5943 5944 kmem_free(packed, bufsize); 5945 5946 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 5947 dmu_buf_will_dirty(db, tx); 5948 *(uint64_t *)db->db_data = nvsize; 5949 dmu_buf_rele(db, FTAG); 5950 } 5951 5952 static void 5953 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx, 5954 const char *config, const char *entry) 5955 { 5956 nvlist_t *nvroot; 5957 nvlist_t **list; 5958 int i; 5959 5960 if (!sav->sav_sync) 5961 return; 5962 5963 /* 5964 * Update the MOS nvlist describing the list of available devices. 5965 * spa_validate_aux() will have already made sure this nvlist is 5966 * valid and the vdevs are labeled appropriately. 5967 */ 5968 if (sav->sav_object == 0) { 5969 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset, 5970 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE, 5971 sizeof (uint64_t), tx); 5972 VERIFY(zap_update(spa->spa_meta_objset, 5973 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1, 5974 &sav->sav_object, tx) == 0); 5975 } 5976 5977 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 5978 if (sav->sav_count == 0) { 5979 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0); 5980 } else { 5981 list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 5982 for (i = 0; i < sav->sav_count; i++) 5983 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i], 5984 B_FALSE, VDEV_CONFIG_L2CACHE); 5985 VERIFY(nvlist_add_nvlist_array(nvroot, config, list, 5986 sav->sav_count) == 0); 5987 for (i = 0; i < sav->sav_count; i++) 5988 nvlist_free(list[i]); 5989 kmem_free(list, sav->sav_count * sizeof (void *)); 5990 } 5991 5992 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx); 5993 nvlist_free(nvroot); 5994 5995 sav->sav_sync = B_FALSE; 5996 } 5997 5998 static void 5999 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx) 6000 { 6001 nvlist_t *config; 6002 6003 if (list_is_empty(&spa->spa_config_dirty_list)) 6004 return; 6005 6006 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 6007 6008 config = spa_config_generate(spa, spa->spa_root_vdev, 6009 dmu_tx_get_txg(tx), B_FALSE); 6010 6011 /* 6012 * If we're upgrading the spa version then make sure that 6013 * the config object gets updated with the correct version. 6014 */ 6015 if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version) 6016 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, 6017 spa->spa_uberblock.ub_version); 6018 6019 spa_config_exit(spa, SCL_STATE, FTAG); 6020 6021 nvlist_free(spa->spa_config_syncing); 6022 spa->spa_config_syncing = config; 6023 6024 spa_sync_nvlist(spa, spa->spa_config_object, config, tx); 6025 } 6026 6027 static void 6028 spa_sync_version(void *arg, dmu_tx_t *tx) 6029 { 6030 uint64_t *versionp = arg; 6031 uint64_t version = *versionp; 6032 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 6033 6034 /* 6035 * Setting the version is special cased when first creating the pool. 6036 */ 6037 ASSERT(tx->tx_txg != TXG_INITIAL); 6038 6039 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 6040 ASSERT(version >= spa_version(spa)); 6041 6042 spa->spa_uberblock.ub_version = version; 6043 vdev_config_dirty(spa->spa_root_vdev); 6044 spa_history_log_internal(spa, "set", tx, "version=%lld", version); 6045 } 6046 6047 /* 6048 * Set zpool properties. 6049 */ 6050 static void 6051 spa_sync_props(void *arg, dmu_tx_t *tx) 6052 { 6053 nvlist_t *nvp = arg; 6054 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 6055 objset_t *mos = spa->spa_meta_objset; 6056 nvpair_t *elem = NULL; 6057 6058 mutex_enter(&spa->spa_props_lock); 6059 6060 while ((elem = nvlist_next_nvpair(nvp, elem))) { 6061 uint64_t intval; 6062 char *strval, *fname; 6063 zpool_prop_t prop; 6064 const char *propname; 6065 zprop_type_t proptype; 6066 spa_feature_t fid; 6067 6068 switch (prop = zpool_name_to_prop(nvpair_name(elem))) { 6069 case ZPROP_INVAL: 6070 /* 6071 * We checked this earlier in spa_prop_validate(). 6072 */ 6073 ASSERT(zpool_prop_feature(nvpair_name(elem))); 6074 6075 fname = strchr(nvpair_name(elem), '@') + 1; 6076 VERIFY0(zfeature_lookup_name(fname, &fid)); 6077 6078 spa_feature_enable(spa, fid, tx); 6079 spa_history_log_internal(spa, "set", tx, 6080 "%s=enabled", nvpair_name(elem)); 6081 break; 6082 6083 case ZPOOL_PROP_VERSION: 6084 intval = fnvpair_value_uint64(elem); 6085 /* 6086 * The version is synced seperatly before other 6087 * properties and should be correct by now. 6088 */ 6089 ASSERT3U(spa_version(spa), >=, intval); 6090 break; 6091 6092 case ZPOOL_PROP_ALTROOT: 6093 /* 6094 * 'altroot' is a non-persistent property. It should 6095 * have been set temporarily at creation or import time. 6096 */ 6097 ASSERT(spa->spa_root != NULL); 6098 break; 6099 6100 case ZPOOL_PROP_READONLY: 6101 case ZPOOL_PROP_CACHEFILE: 6102 /* 6103 * 'readonly' and 'cachefile' are also non-persisitent 6104 * properties. 6105 */ 6106 break; 6107 case ZPOOL_PROP_COMMENT: 6108 strval = fnvpair_value_string(elem); 6109 if (spa->spa_comment != NULL) 6110 spa_strfree(spa->spa_comment); 6111 spa->spa_comment = spa_strdup(strval); 6112 /* 6113 * We need to dirty the configuration on all the vdevs 6114 * so that their labels get updated. It's unnecessary 6115 * to do this for pool creation since the vdev's 6116 * configuratoin has already been dirtied. 6117 */ 6118 if (tx->tx_txg != TXG_INITIAL) 6119 vdev_config_dirty(spa->spa_root_vdev); 6120 spa_history_log_internal(spa, "set", tx, 6121 "%s=%s", nvpair_name(elem), strval); 6122 break; 6123 default: 6124 /* 6125 * Set pool property values in the poolprops mos object. 6126 */ 6127 if (spa->spa_pool_props_object == 0) { 6128 spa->spa_pool_props_object = 6129 zap_create_link(mos, DMU_OT_POOL_PROPS, 6130 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS, 6131 tx); 6132 } 6133 6134 /* normalize the property name */ 6135 propname = zpool_prop_to_name(prop); 6136 proptype = zpool_prop_get_type(prop); 6137 6138 if (nvpair_type(elem) == DATA_TYPE_STRING) { 6139 ASSERT(proptype == PROP_TYPE_STRING); 6140 strval = fnvpair_value_string(elem); 6141 VERIFY0(zap_update(mos, 6142 spa->spa_pool_props_object, propname, 6143 1, strlen(strval) + 1, strval, tx)); 6144 spa_history_log_internal(spa, "set", tx, 6145 "%s=%s", nvpair_name(elem), strval); 6146 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) { 6147 intval = fnvpair_value_uint64(elem); 6148 6149 if (proptype == PROP_TYPE_INDEX) { 6150 const char *unused; 6151 VERIFY0(zpool_prop_index_to_string( 6152 prop, intval, &unused)); 6153 } 6154 VERIFY0(zap_update(mos, 6155 spa->spa_pool_props_object, propname, 6156 8, 1, &intval, tx)); 6157 spa_history_log_internal(spa, "set", tx, 6158 "%s=%lld", nvpair_name(elem), intval); 6159 } else { 6160 ASSERT(0); /* not allowed */ 6161 } 6162 6163 switch (prop) { 6164 case ZPOOL_PROP_DELEGATION: 6165 spa->spa_delegation = intval; 6166 break; 6167 case ZPOOL_PROP_BOOTFS: 6168 spa->spa_bootfs = intval; 6169 break; 6170 case ZPOOL_PROP_FAILUREMODE: 6171 spa->spa_failmode = intval; 6172 break; 6173 case ZPOOL_PROP_AUTOEXPAND: 6174 spa->spa_autoexpand = intval; 6175 if (tx->tx_txg != TXG_INITIAL) 6176 spa_async_request(spa, 6177 SPA_ASYNC_AUTOEXPAND); 6178 break; 6179 case ZPOOL_PROP_DEDUPDITTO: 6180 spa->spa_dedup_ditto = intval; 6181 break; 6182 default: 6183 break; 6184 } 6185 } 6186 6187 } 6188 6189 mutex_exit(&spa->spa_props_lock); 6190 } 6191 6192 /* 6193 * Perform one-time upgrade on-disk changes. spa_version() does not 6194 * reflect the new version this txg, so there must be no changes this 6195 * txg to anything that the upgrade code depends on after it executes. 6196 * Therefore this must be called after dsl_pool_sync() does the sync 6197 * tasks. 6198 */ 6199 static void 6200 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx) 6201 { 6202 dsl_pool_t *dp = spa->spa_dsl_pool; 6203 6204 ASSERT(spa->spa_sync_pass == 1); 6205 6206 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); 6207 6208 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN && 6209 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) { 6210 dsl_pool_create_origin(dp, tx); 6211 6212 /* Keeping the origin open increases spa_minref */ 6213 spa->spa_minref += 3; 6214 } 6215 6216 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES && 6217 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) { 6218 dsl_pool_upgrade_clones(dp, tx); 6219 } 6220 6221 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES && 6222 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) { 6223 dsl_pool_upgrade_dir_clones(dp, tx); 6224 6225 /* Keeping the freedir open increases spa_minref */ 6226 spa->spa_minref += 3; 6227 } 6228 6229 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES && 6230 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) { 6231 spa_feature_create_zap_objects(spa, tx); 6232 } 6233 6234 /* 6235 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable 6236 * when possibility to use lz4 compression for metadata was added 6237 * Old pools that have this feature enabled must be upgraded to have 6238 * this feature active 6239 */ 6240 if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) { 6241 boolean_t lz4_en = spa_feature_is_enabled(spa, 6242 SPA_FEATURE_LZ4_COMPRESS); 6243 boolean_t lz4_ac = spa_feature_is_active(spa, 6244 SPA_FEATURE_LZ4_COMPRESS); 6245 6246 if (lz4_en && !lz4_ac) 6247 spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx); 6248 } 6249 6250 /* 6251 * If we haven't written the salt, do so now. Note that the 6252 * feature may not be activated yet, but that's fine since 6253 * the presence of this ZAP entry is backwards compatible. 6254 */ 6255 if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 6256 DMU_POOL_CHECKSUM_SALT) == ENOENT) { 6257 VERIFY0(zap_add(spa->spa_meta_objset, 6258 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1, 6259 sizeof (spa->spa_cksum_salt.zcs_bytes), 6260 spa->spa_cksum_salt.zcs_bytes, tx)); 6261 } 6262 6263 rrw_exit(&dp->dp_config_rwlock, FTAG); 6264 } 6265 6266 /* 6267 * Sync the specified transaction group. New blocks may be dirtied as 6268 * part of the process, so we iterate until it converges. 6269 */ 6270 void 6271 spa_sync(spa_t *spa, uint64_t txg) 6272 { 6273 dsl_pool_t *dp = spa->spa_dsl_pool; 6274 objset_t *mos = spa->spa_meta_objset; 6275 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK]; 6276 vdev_t *rvd = spa->spa_root_vdev; 6277 vdev_t *vd; 6278 dmu_tx_t *tx; 6279 int error; 6280 6281 VERIFY(spa_writeable(spa)); 6282 6283 /* 6284 * Lock out configuration changes. 6285 */ 6286 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 6287 6288 spa->spa_syncing_txg = txg; 6289 spa->spa_sync_pass = 0; 6290 6291 /* 6292 * If there are any pending vdev state changes, convert them 6293 * into config changes that go out with this transaction group. 6294 */ 6295 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 6296 while (list_head(&spa->spa_state_dirty_list) != NULL) { 6297 /* 6298 * We need the write lock here because, for aux vdevs, 6299 * calling vdev_config_dirty() modifies sav_config. 6300 * This is ugly and will become unnecessary when we 6301 * eliminate the aux vdev wart by integrating all vdevs 6302 * into the root vdev tree. 6303 */ 6304 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 6305 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER); 6306 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) { 6307 vdev_state_clean(vd); 6308 vdev_config_dirty(vd); 6309 } 6310 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 6311 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 6312 } 6313 spa_config_exit(spa, SCL_STATE, FTAG); 6314 6315 tx = dmu_tx_create_assigned(dp, txg); 6316 6317 spa->spa_sync_starttime = gethrtime(); 6318 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, 6319 spa->spa_sync_starttime + spa->spa_deadman_synctime)); 6320 6321 /* 6322 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg, 6323 * set spa_deflate if we have no raid-z vdevs. 6324 */ 6325 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE && 6326 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) { 6327 int i; 6328 6329 for (i = 0; i < rvd->vdev_children; i++) { 6330 vd = rvd->vdev_child[i]; 6331 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE) 6332 break; 6333 } 6334 if (i == rvd->vdev_children) { 6335 spa->spa_deflate = TRUE; 6336 VERIFY(0 == zap_add(spa->spa_meta_objset, 6337 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 6338 sizeof (uint64_t), 1, &spa->spa_deflate, tx)); 6339 } 6340 } 6341 6342 /* 6343 * Iterate to convergence. 6344 */ 6345 do { 6346 int pass = ++spa->spa_sync_pass; 6347 6348 spa_sync_config_object(spa, tx); 6349 spa_sync_aux_dev(spa, &spa->spa_spares, tx, 6350 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES); 6351 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx, 6352 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE); 6353 spa_errlog_sync(spa, txg); 6354 dsl_pool_sync(dp, txg); 6355 6356 if (pass < zfs_sync_pass_deferred_free) { 6357 spa_sync_frees(spa, free_bpl, tx); 6358 } else { 6359 /* 6360 * We can not defer frees in pass 1, because 6361 * we sync the deferred frees later in pass 1. 6362 */ 6363 ASSERT3U(pass, >, 1); 6364 bplist_iterate(free_bpl, bpobj_enqueue_cb, 6365 &spa->spa_deferred_bpobj, tx); 6366 } 6367 6368 ddt_sync(spa, txg); 6369 dsl_scan_sync(dp, tx); 6370 6371 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) 6372 vdev_sync(vd, txg); 6373 6374 if (pass == 1) { 6375 spa_sync_upgrades(spa, tx); 6376 ASSERT3U(txg, >=, 6377 spa->spa_uberblock.ub_rootbp.blk_birth); 6378 /* 6379 * Note: We need to check if the MOS is dirty 6380 * because we could have marked the MOS dirty 6381 * without updating the uberblock (e.g. if we 6382 * have sync tasks but no dirty user data). We 6383 * need to check the uberblock's rootbp because 6384 * it is updated if we have synced out dirty 6385 * data (though in this case the MOS will most 6386 * likely also be dirty due to second order 6387 * effects, we don't want to rely on that here). 6388 */ 6389 if (spa->spa_uberblock.ub_rootbp.blk_birth < txg && 6390 !dmu_objset_is_dirty(mos, txg)) { 6391 /* 6392 * Nothing changed on the first pass, 6393 * therefore this TXG is a no-op. Avoid 6394 * syncing deferred frees, so that we 6395 * can keep this TXG as a no-op. 6396 */ 6397 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, 6398 txg)); 6399 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); 6400 ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg)); 6401 break; 6402 } 6403 spa_sync_deferred_frees(spa, tx); 6404 } 6405 6406 } while (dmu_objset_is_dirty(mos, txg)); 6407 6408 /* 6409 * Rewrite the vdev configuration (which includes the uberblock) 6410 * to commit the transaction group. 6411 * 6412 * If there are no dirty vdevs, we sync the uberblock to a few 6413 * random top-level vdevs that are known to be visible in the 6414 * config cache (see spa_vdev_add() for a complete description). 6415 * If there *are* dirty vdevs, sync the uberblock to all vdevs. 6416 */ 6417 for (;;) { 6418 /* 6419 * We hold SCL_STATE to prevent vdev open/close/etc. 6420 * while we're attempting to write the vdev labels. 6421 */ 6422 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 6423 6424 if (list_is_empty(&spa->spa_config_dirty_list)) { 6425 vdev_t *svd[SPA_DVAS_PER_BP]; 6426 int svdcount = 0; 6427 int children = rvd->vdev_children; 6428 int c0 = spa_get_random(children); 6429 6430 for (int c = 0; c < children; c++) { 6431 vd = rvd->vdev_child[(c0 + c) % children]; 6432 if (vd->vdev_ms_array == 0 || vd->vdev_islog) 6433 continue; 6434 svd[svdcount++] = vd; 6435 if (svdcount == SPA_DVAS_PER_BP) 6436 break; 6437 } 6438 error = vdev_config_sync(svd, svdcount, txg); 6439 } else { 6440 error = vdev_config_sync(rvd->vdev_child, 6441 rvd->vdev_children, txg); 6442 } 6443 6444 if (error == 0) 6445 spa->spa_last_synced_guid = rvd->vdev_guid; 6446 6447 spa_config_exit(spa, SCL_STATE, FTAG); 6448 6449 if (error == 0) 6450 break; 6451 zio_suspend(spa, NULL); 6452 zio_resume_wait(spa); 6453 } 6454 dmu_tx_commit(tx); 6455 6456 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY)); 6457 6458 /* 6459 * Clear the dirty config list. 6460 */ 6461 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL) 6462 vdev_config_clean(vd); 6463 6464 /* 6465 * Now that the new config has synced transactionally, 6466 * let it become visible to the config cache. 6467 */ 6468 if (spa->spa_config_syncing != NULL) { 6469 spa_config_set(spa, spa->spa_config_syncing); 6470 spa->spa_config_txg = txg; 6471 spa->spa_config_syncing = NULL; 6472 } 6473 6474 spa->spa_ubsync = spa->spa_uberblock; 6475 6476 dsl_pool_sync_done(dp, txg); 6477 6478 /* 6479 * Update usable space statistics. 6480 */ 6481 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg))) 6482 vdev_sync_done(vd, txg); 6483 6484 spa_update_dspace(spa); 6485 6486 /* 6487 * It had better be the case that we didn't dirty anything 6488 * since vdev_config_sync(). 6489 */ 6490 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg)); 6491 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); 6492 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg)); 6493 6494 spa->spa_sync_pass = 0; 6495 6496 spa_config_exit(spa, SCL_CONFIG, FTAG); 6497 6498 spa_handle_ignored_writes(spa); 6499 6500 /* 6501 * If any async tasks have been requested, kick them off. 6502 */ 6503 spa_async_dispatch(spa); 6504 } 6505 6506 /* 6507 * Sync all pools. We don't want to hold the namespace lock across these 6508 * operations, so we take a reference on the spa_t and drop the lock during the 6509 * sync. 6510 */ 6511 void 6512 spa_sync_allpools(void) 6513 { 6514 spa_t *spa = NULL; 6515 mutex_enter(&spa_namespace_lock); 6516 while ((spa = spa_next(spa)) != NULL) { 6517 if (spa_state(spa) != POOL_STATE_ACTIVE || 6518 !spa_writeable(spa) || spa_suspended(spa)) 6519 continue; 6520 spa_open_ref(spa, FTAG); 6521 mutex_exit(&spa_namespace_lock); 6522 txg_wait_synced(spa_get_dsl(spa), 0); 6523 mutex_enter(&spa_namespace_lock); 6524 spa_close(spa, FTAG); 6525 } 6526 mutex_exit(&spa_namespace_lock); 6527 } 6528 6529 /* 6530 * ========================================================================== 6531 * Miscellaneous routines 6532 * ========================================================================== 6533 */ 6534 6535 /* 6536 * Remove all pools in the system. 6537 */ 6538 void 6539 spa_evict_all(void) 6540 { 6541 spa_t *spa; 6542 6543 /* 6544 * Remove all cached state. All pools should be closed now, 6545 * so every spa in the AVL tree should be unreferenced. 6546 */ 6547 mutex_enter(&spa_namespace_lock); 6548 while ((spa = spa_next(NULL)) != NULL) { 6549 /* 6550 * Stop async tasks. The async thread may need to detach 6551 * a device that's been replaced, which requires grabbing 6552 * spa_namespace_lock, so we must drop it here. 6553 */ 6554 spa_open_ref(spa, FTAG); 6555 mutex_exit(&spa_namespace_lock); 6556 spa_async_suspend(spa); 6557 mutex_enter(&spa_namespace_lock); 6558 spa_close(spa, FTAG); 6559 6560 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 6561 spa_unload(spa); 6562 spa_deactivate(spa); 6563 } 6564 spa_remove(spa); 6565 } 6566 mutex_exit(&spa_namespace_lock); 6567 } 6568 6569 vdev_t * 6570 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux) 6571 { 6572 vdev_t *vd; 6573 int i; 6574 6575 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL) 6576 return (vd); 6577 6578 if (aux) { 6579 for (i = 0; i < spa->spa_l2cache.sav_count; i++) { 6580 vd = spa->spa_l2cache.sav_vdevs[i]; 6581 if (vd->vdev_guid == guid) 6582 return (vd); 6583 } 6584 6585 for (i = 0; i < spa->spa_spares.sav_count; i++) { 6586 vd = spa->spa_spares.sav_vdevs[i]; 6587 if (vd->vdev_guid == guid) 6588 return (vd); 6589 } 6590 } 6591 6592 return (NULL); 6593 } 6594 6595 void 6596 spa_upgrade(spa_t *spa, uint64_t version) 6597 { 6598 ASSERT(spa_writeable(spa)); 6599 6600 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 6601 6602 /* 6603 * This should only be called for a non-faulted pool, and since a 6604 * future version would result in an unopenable pool, this shouldn't be 6605 * possible. 6606 */ 6607 ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version)); 6608 ASSERT3U(version, >=, spa->spa_uberblock.ub_version); 6609 6610 spa->spa_uberblock.ub_version = version; 6611 vdev_config_dirty(spa->spa_root_vdev); 6612 6613 spa_config_exit(spa, SCL_ALL, FTAG); 6614 6615 txg_wait_synced(spa_get_dsl(spa), 0); 6616 } 6617 6618 boolean_t 6619 spa_has_spare(spa_t *spa, uint64_t guid) 6620 { 6621 int i; 6622 uint64_t spareguid; 6623 spa_aux_vdev_t *sav = &spa->spa_spares; 6624 6625 for (i = 0; i < sav->sav_count; i++) 6626 if (sav->sav_vdevs[i]->vdev_guid == guid) 6627 return (B_TRUE); 6628 6629 for (i = 0; i < sav->sav_npending; i++) { 6630 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID, 6631 &spareguid) == 0 && spareguid == guid) 6632 return (B_TRUE); 6633 } 6634 6635 return (B_FALSE); 6636 } 6637 6638 /* 6639 * Check if a pool has an active shared spare device. 6640 * Note: reference count of an active spare is 2, as a spare and as a replace 6641 */ 6642 static boolean_t 6643 spa_has_active_shared_spare(spa_t *spa) 6644 { 6645 int i, refcnt; 6646 uint64_t pool; 6647 spa_aux_vdev_t *sav = &spa->spa_spares; 6648 6649 for (i = 0; i < sav->sav_count; i++) { 6650 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool, 6651 &refcnt) && pool != 0ULL && pool == spa_guid(spa) && 6652 refcnt > 2) 6653 return (B_TRUE); 6654 } 6655 6656 return (B_FALSE); 6657 } 6658 6659 /* 6660 * Post a sysevent corresponding to the given event. The 'name' must be one of 6661 * the event definitions in sys/sysevent/eventdefs.h. The payload will be 6662 * filled in from the spa and (optionally) the vdev. This doesn't do anything 6663 * in the userland libzpool, as we don't want consumers to misinterpret ztest 6664 * or zdb as real changes. 6665 */ 6666 void 6667 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name) 6668 { 6669 #ifdef _KERNEL 6670 sysevent_t *ev; 6671 sysevent_attr_list_t *attr = NULL; 6672 sysevent_value_t value; 6673 sysevent_id_t eid; 6674 6675 ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs", 6676 SE_SLEEP); 6677 6678 value.value_type = SE_DATA_TYPE_STRING; 6679 value.value.sv_string = spa_name(spa); 6680 if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0) 6681 goto done; 6682 6683 value.value_type = SE_DATA_TYPE_UINT64; 6684 value.value.sv_uint64 = spa_guid(spa); 6685 if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0) 6686 goto done; 6687 6688 if (vd) { 6689 value.value_type = SE_DATA_TYPE_UINT64; 6690 value.value.sv_uint64 = vd->vdev_guid; 6691 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value, 6692 SE_SLEEP) != 0) 6693 goto done; 6694 6695 if (vd->vdev_path) { 6696 value.value_type = SE_DATA_TYPE_STRING; 6697 value.value.sv_string = vd->vdev_path; 6698 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH, 6699 &value, SE_SLEEP) != 0) 6700 goto done; 6701 } 6702 } 6703 6704 if (sysevent_attach_attributes(ev, attr) != 0) 6705 goto done; 6706 attr = NULL; 6707 6708 (void) log_sysevent(ev, SE_SLEEP, &eid); 6709 6710 done: 6711 if (attr) 6712 sysevent_free_attr(attr); 6713 sysevent_free(ev); 6714 #endif 6715 } 6716