xref: /titanic_51/usr/src/uts/common/fs/zfs/spa.c (revision ccdeb6b6d71f3c9aa7e78b688f7b34fff109a817)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
25  * Copyright (c) 2015, Nexenta Systems, Inc.  All rights reserved.
26  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27  * Copyright 2013 Saso Kiselkov. All rights reserved.
28  * Copyright (c) 2014 Integros [integros.com]
29  * Copyright 2016 Toomas Soome <tsoome@me.com>
30  */
31 
32 /*
33  * SPA: Storage Pool Allocator
34  *
35  * This file contains all the routines used when modifying on-disk SPA state.
36  * This includes opening, importing, destroying, exporting a pool, and syncing a
37  * pool.
38  */
39 
40 #include <sys/zfs_context.h>
41 #include <sys/fm/fs/zfs.h>
42 #include <sys/spa_impl.h>
43 #include <sys/zio.h>
44 #include <sys/zio_checksum.h>
45 #include <sys/dmu.h>
46 #include <sys/dmu_tx.h>
47 #include <sys/zap.h>
48 #include <sys/zil.h>
49 #include <sys/ddt.h>
50 #include <sys/vdev_impl.h>
51 #include <sys/metaslab.h>
52 #include <sys/metaslab_impl.h>
53 #include <sys/uberblock_impl.h>
54 #include <sys/txg.h>
55 #include <sys/avl.h>
56 #include <sys/dmu_traverse.h>
57 #include <sys/dmu_objset.h>
58 #include <sys/unique.h>
59 #include <sys/dsl_pool.h>
60 #include <sys/dsl_dataset.h>
61 #include <sys/dsl_dir.h>
62 #include <sys/dsl_prop.h>
63 #include <sys/dsl_synctask.h>
64 #include <sys/fs/zfs.h>
65 #include <sys/arc.h>
66 #include <sys/callb.h>
67 #include <sys/systeminfo.h>
68 #include <sys/spa_boot.h>
69 #include <sys/zfs_ioctl.h>
70 #include <sys/dsl_scan.h>
71 #include <sys/zfeature.h>
72 #include <sys/dsl_destroy.h>
73 
74 #ifdef	_KERNEL
75 #include <sys/bootprops.h>
76 #include <sys/callb.h>
77 #include <sys/cpupart.h>
78 #include <sys/pool.h>
79 #include <sys/sysdc.h>
80 #include <sys/zone.h>
81 #endif	/* _KERNEL */
82 
83 #include "zfs_prop.h"
84 #include "zfs_comutil.h"
85 
86 /*
87  * The interval, in seconds, at which failed configuration cache file writes
88  * should be retried.
89  */
90 static int zfs_ccw_retry_interval = 300;
91 
92 typedef enum zti_modes {
93 	ZTI_MODE_FIXED,			/* value is # of threads (min 1) */
94 	ZTI_MODE_BATCH,			/* cpu-intensive; value is ignored */
95 	ZTI_MODE_NULL,			/* don't create a taskq */
96 	ZTI_NMODES
97 } zti_modes_t;
98 
99 #define	ZTI_P(n, q)	{ ZTI_MODE_FIXED, (n), (q) }
100 #define	ZTI_BATCH	{ ZTI_MODE_BATCH, 0, 1 }
101 #define	ZTI_NULL	{ ZTI_MODE_NULL, 0, 0 }
102 
103 #define	ZTI_N(n)	ZTI_P(n, 1)
104 #define	ZTI_ONE		ZTI_N(1)
105 
106 typedef struct zio_taskq_info {
107 	zti_modes_t zti_mode;
108 	uint_t zti_value;
109 	uint_t zti_count;
110 } zio_taskq_info_t;
111 
112 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
113 	"issue", "issue_high", "intr", "intr_high"
114 };
115 
116 /*
117  * This table defines the taskq settings for each ZFS I/O type. When
118  * initializing a pool, we use this table to create an appropriately sized
119  * taskq. Some operations are low volume and therefore have a small, static
120  * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
121  * macros. Other operations process a large amount of data; the ZTI_BATCH
122  * macro causes us to create a taskq oriented for throughput. Some operations
123  * are so high frequency and short-lived that the taskq itself can become a a
124  * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
125  * additional degree of parallelism specified by the number of threads per-
126  * taskq and the number of taskqs; when dispatching an event in this case, the
127  * particular taskq is chosen at random.
128  *
129  * The different taskq priorities are to handle the different contexts (issue
130  * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
131  * need to be handled with minimum delay.
132  */
133 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
134 	/* ISSUE	ISSUE_HIGH	INTR		INTR_HIGH */
135 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* NULL */
136 	{ ZTI_N(8),	ZTI_NULL,	ZTI_P(12, 8),	ZTI_NULL }, /* READ */
137 	{ ZTI_BATCH,	ZTI_N(5),	ZTI_N(8),	ZTI_N(5) }, /* WRITE */
138 	{ ZTI_P(12, 8),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* FREE */
139 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* CLAIM */
140 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* IOCTL */
141 };
142 
143 static void spa_sync_version(void *arg, dmu_tx_t *tx);
144 static void spa_sync_props(void *arg, dmu_tx_t *tx);
145 static boolean_t spa_has_active_shared_spare(spa_t *spa);
146 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
147     spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
148     char **ereport);
149 static void spa_vdev_resilver_done(spa_t *spa);
150 
151 uint_t		zio_taskq_batch_pct = 75;	/* 1 thread per cpu in pset */
152 id_t		zio_taskq_psrset_bind = PS_NONE;
153 boolean_t	zio_taskq_sysdc = B_TRUE;	/* use SDC scheduling class */
154 uint_t		zio_taskq_basedc = 80;		/* base duty cycle */
155 
156 boolean_t	spa_create_process = B_TRUE;	/* no process ==> no sysdc */
157 extern int	zfs_sync_pass_deferred_free;
158 
159 /*
160  * This (illegal) pool name is used when temporarily importing a spa_t in order
161  * to get the vdev stats associated with the imported devices.
162  */
163 #define	TRYIMPORT_NAME	"$import"
164 
165 /*
166  * ==========================================================================
167  * SPA properties routines
168  * ==========================================================================
169  */
170 
171 /*
172  * Add a (source=src, propname=propval) list to an nvlist.
173  */
174 static void
175 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
176     uint64_t intval, zprop_source_t src)
177 {
178 	const char *propname = zpool_prop_to_name(prop);
179 	nvlist_t *propval;
180 
181 	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
182 	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
183 
184 	if (strval != NULL)
185 		VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
186 	else
187 		VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
188 
189 	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
190 	nvlist_free(propval);
191 }
192 
193 /*
194  * Get property values from the spa configuration.
195  */
196 static void
197 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
198 {
199 	vdev_t *rvd = spa->spa_root_vdev;
200 	dsl_pool_t *pool = spa->spa_dsl_pool;
201 	uint64_t size, alloc, cap, version;
202 	zprop_source_t src = ZPROP_SRC_NONE;
203 	spa_config_dirent_t *dp;
204 	metaslab_class_t *mc = spa_normal_class(spa);
205 
206 	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
207 
208 	if (rvd != NULL) {
209 		alloc = metaslab_class_get_alloc(spa_normal_class(spa));
210 		size = metaslab_class_get_space(spa_normal_class(spa));
211 		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
212 		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
213 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
214 		spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
215 		    size - alloc, src);
216 
217 		spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
218 		    metaslab_class_fragmentation(mc), src);
219 		spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
220 		    metaslab_class_expandable_space(mc), src);
221 		spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
222 		    (spa_mode(spa) == FREAD), src);
223 
224 		cap = (size == 0) ? 0 : (alloc * 100 / size);
225 		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
226 
227 		spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
228 		    ddt_get_pool_dedup_ratio(spa), src);
229 
230 		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
231 		    rvd->vdev_state, src);
232 
233 		version = spa_version(spa);
234 		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
235 			src = ZPROP_SRC_DEFAULT;
236 		else
237 			src = ZPROP_SRC_LOCAL;
238 		spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
239 	}
240 
241 	if (pool != NULL) {
242 		/*
243 		 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
244 		 * when opening pools before this version freedir will be NULL.
245 		 */
246 		if (pool->dp_free_dir != NULL) {
247 			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
248 			    dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
249 			    src);
250 		} else {
251 			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
252 			    NULL, 0, src);
253 		}
254 
255 		if (pool->dp_leak_dir != NULL) {
256 			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
257 			    dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
258 			    src);
259 		} else {
260 			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
261 			    NULL, 0, src);
262 		}
263 	}
264 
265 	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
266 
267 	if (spa->spa_comment != NULL) {
268 		spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
269 		    0, ZPROP_SRC_LOCAL);
270 	}
271 
272 	if (spa->spa_root != NULL)
273 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
274 		    0, ZPROP_SRC_LOCAL);
275 
276 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
277 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
278 		    MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
279 	} else {
280 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
281 		    SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
282 	}
283 
284 	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
285 		if (dp->scd_path == NULL) {
286 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
287 			    "none", 0, ZPROP_SRC_LOCAL);
288 		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
289 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
290 			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
291 		}
292 	}
293 }
294 
295 /*
296  * Get zpool property values.
297  */
298 int
299 spa_prop_get(spa_t *spa, nvlist_t **nvp)
300 {
301 	objset_t *mos = spa->spa_meta_objset;
302 	zap_cursor_t zc;
303 	zap_attribute_t za;
304 	int err;
305 
306 	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
307 
308 	mutex_enter(&spa->spa_props_lock);
309 
310 	/*
311 	 * Get properties from the spa config.
312 	 */
313 	spa_prop_get_config(spa, nvp);
314 
315 	/* If no pool property object, no more prop to get. */
316 	if (mos == NULL || spa->spa_pool_props_object == 0) {
317 		mutex_exit(&spa->spa_props_lock);
318 		return (0);
319 	}
320 
321 	/*
322 	 * Get properties from the MOS pool property object.
323 	 */
324 	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
325 	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
326 	    zap_cursor_advance(&zc)) {
327 		uint64_t intval = 0;
328 		char *strval = NULL;
329 		zprop_source_t src = ZPROP_SRC_DEFAULT;
330 		zpool_prop_t prop;
331 
332 		if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
333 			continue;
334 
335 		switch (za.za_integer_length) {
336 		case 8:
337 			/* integer property */
338 			if (za.za_first_integer !=
339 			    zpool_prop_default_numeric(prop))
340 				src = ZPROP_SRC_LOCAL;
341 
342 			if (prop == ZPOOL_PROP_BOOTFS) {
343 				dsl_pool_t *dp;
344 				dsl_dataset_t *ds = NULL;
345 
346 				dp = spa_get_dsl(spa);
347 				dsl_pool_config_enter(dp, FTAG);
348 				if (err = dsl_dataset_hold_obj(dp,
349 				    za.za_first_integer, FTAG, &ds)) {
350 					dsl_pool_config_exit(dp, FTAG);
351 					break;
352 				}
353 
354 				strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN,
355 				    KM_SLEEP);
356 				dsl_dataset_name(ds, strval);
357 				dsl_dataset_rele(ds, FTAG);
358 				dsl_pool_config_exit(dp, FTAG);
359 			} else {
360 				strval = NULL;
361 				intval = za.za_first_integer;
362 			}
363 
364 			spa_prop_add_list(*nvp, prop, strval, intval, src);
365 
366 			if (strval != NULL)
367 				kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN);
368 
369 			break;
370 
371 		case 1:
372 			/* string property */
373 			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
374 			err = zap_lookup(mos, spa->spa_pool_props_object,
375 			    za.za_name, 1, za.za_num_integers, strval);
376 			if (err) {
377 				kmem_free(strval, za.za_num_integers);
378 				break;
379 			}
380 			spa_prop_add_list(*nvp, prop, strval, 0, src);
381 			kmem_free(strval, za.za_num_integers);
382 			break;
383 
384 		default:
385 			break;
386 		}
387 	}
388 	zap_cursor_fini(&zc);
389 	mutex_exit(&spa->spa_props_lock);
390 out:
391 	if (err && err != ENOENT) {
392 		nvlist_free(*nvp);
393 		*nvp = NULL;
394 		return (err);
395 	}
396 
397 	return (0);
398 }
399 
400 /*
401  * Validate the given pool properties nvlist and modify the list
402  * for the property values to be set.
403  */
404 static int
405 spa_prop_validate(spa_t *spa, nvlist_t *props)
406 {
407 	nvpair_t *elem;
408 	int error = 0, reset_bootfs = 0;
409 	uint64_t objnum = 0;
410 	boolean_t has_feature = B_FALSE;
411 
412 	elem = NULL;
413 	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
414 		uint64_t intval;
415 		char *strval, *slash, *check, *fname;
416 		const char *propname = nvpair_name(elem);
417 		zpool_prop_t prop = zpool_name_to_prop(propname);
418 
419 		switch (prop) {
420 		case ZPROP_INVAL:
421 			if (!zpool_prop_feature(propname)) {
422 				error = SET_ERROR(EINVAL);
423 				break;
424 			}
425 
426 			/*
427 			 * Sanitize the input.
428 			 */
429 			if (nvpair_type(elem) != DATA_TYPE_UINT64) {
430 				error = SET_ERROR(EINVAL);
431 				break;
432 			}
433 
434 			if (nvpair_value_uint64(elem, &intval) != 0) {
435 				error = SET_ERROR(EINVAL);
436 				break;
437 			}
438 
439 			if (intval != 0) {
440 				error = SET_ERROR(EINVAL);
441 				break;
442 			}
443 
444 			fname = strchr(propname, '@') + 1;
445 			if (zfeature_lookup_name(fname, NULL) != 0) {
446 				error = SET_ERROR(EINVAL);
447 				break;
448 			}
449 
450 			has_feature = B_TRUE;
451 			break;
452 
453 		case ZPOOL_PROP_VERSION:
454 			error = nvpair_value_uint64(elem, &intval);
455 			if (!error &&
456 			    (intval < spa_version(spa) ||
457 			    intval > SPA_VERSION_BEFORE_FEATURES ||
458 			    has_feature))
459 				error = SET_ERROR(EINVAL);
460 			break;
461 
462 		case ZPOOL_PROP_DELEGATION:
463 		case ZPOOL_PROP_AUTOREPLACE:
464 		case ZPOOL_PROP_LISTSNAPS:
465 		case ZPOOL_PROP_AUTOEXPAND:
466 			error = nvpair_value_uint64(elem, &intval);
467 			if (!error && intval > 1)
468 				error = SET_ERROR(EINVAL);
469 			break;
470 
471 		case ZPOOL_PROP_BOOTFS:
472 			/*
473 			 * If the pool version is less than SPA_VERSION_BOOTFS,
474 			 * or the pool is still being created (version == 0),
475 			 * the bootfs property cannot be set.
476 			 */
477 			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
478 				error = SET_ERROR(ENOTSUP);
479 				break;
480 			}
481 
482 			/*
483 			 * Make sure the vdev config is bootable
484 			 */
485 			if (!vdev_is_bootable(spa->spa_root_vdev)) {
486 				error = SET_ERROR(ENOTSUP);
487 				break;
488 			}
489 
490 			reset_bootfs = 1;
491 
492 			error = nvpair_value_string(elem, &strval);
493 
494 			if (!error) {
495 				objset_t *os;
496 				uint64_t propval;
497 
498 				if (strval == NULL || strval[0] == '\0') {
499 					objnum = zpool_prop_default_numeric(
500 					    ZPOOL_PROP_BOOTFS);
501 					break;
502 				}
503 
504 				if (error = dmu_objset_hold(strval, FTAG, &os))
505 					break;
506 
507 				/*
508 				 * Must be ZPL, and its property settings
509 				 * must be supported by GRUB (compression
510 				 * is not gzip, and large blocks are not used).
511 				 */
512 
513 				if (dmu_objset_type(os) != DMU_OST_ZFS) {
514 					error = SET_ERROR(ENOTSUP);
515 				} else if ((error =
516 				    dsl_prop_get_int_ds(dmu_objset_ds(os),
517 				    zfs_prop_to_name(ZFS_PROP_COMPRESSION),
518 				    &propval)) == 0 &&
519 				    !BOOTFS_COMPRESS_VALID(propval)) {
520 					error = SET_ERROR(ENOTSUP);
521 				} else {
522 					objnum = dmu_objset_id(os);
523 				}
524 				dmu_objset_rele(os, FTAG);
525 			}
526 			break;
527 
528 		case ZPOOL_PROP_FAILUREMODE:
529 			error = nvpair_value_uint64(elem, &intval);
530 			if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
531 			    intval > ZIO_FAILURE_MODE_PANIC))
532 				error = SET_ERROR(EINVAL);
533 
534 			/*
535 			 * This is a special case which only occurs when
536 			 * the pool has completely failed. This allows
537 			 * the user to change the in-core failmode property
538 			 * without syncing it out to disk (I/Os might
539 			 * currently be blocked). We do this by returning
540 			 * EIO to the caller (spa_prop_set) to trick it
541 			 * into thinking we encountered a property validation
542 			 * error.
543 			 */
544 			if (!error && spa_suspended(spa)) {
545 				spa->spa_failmode = intval;
546 				error = SET_ERROR(EIO);
547 			}
548 			break;
549 
550 		case ZPOOL_PROP_CACHEFILE:
551 			if ((error = nvpair_value_string(elem, &strval)) != 0)
552 				break;
553 
554 			if (strval[0] == '\0')
555 				break;
556 
557 			if (strcmp(strval, "none") == 0)
558 				break;
559 
560 			if (strval[0] != '/') {
561 				error = SET_ERROR(EINVAL);
562 				break;
563 			}
564 
565 			slash = strrchr(strval, '/');
566 			ASSERT(slash != NULL);
567 
568 			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
569 			    strcmp(slash, "/..") == 0)
570 				error = SET_ERROR(EINVAL);
571 			break;
572 
573 		case ZPOOL_PROP_COMMENT:
574 			if ((error = nvpair_value_string(elem, &strval)) != 0)
575 				break;
576 			for (check = strval; *check != '\0'; check++) {
577 				/*
578 				 * The kernel doesn't have an easy isprint()
579 				 * check.  For this kernel check, we merely
580 				 * check ASCII apart from DEL.  Fix this if
581 				 * there is an easy-to-use kernel isprint().
582 				 */
583 				if (*check >= 0x7f) {
584 					error = SET_ERROR(EINVAL);
585 					break;
586 				}
587 			}
588 			if (strlen(strval) > ZPROP_MAX_COMMENT)
589 				error = E2BIG;
590 			break;
591 
592 		case ZPOOL_PROP_DEDUPDITTO:
593 			if (spa_version(spa) < SPA_VERSION_DEDUP)
594 				error = SET_ERROR(ENOTSUP);
595 			else
596 				error = nvpair_value_uint64(elem, &intval);
597 			if (error == 0 &&
598 			    intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
599 				error = SET_ERROR(EINVAL);
600 			break;
601 		}
602 
603 		if (error)
604 			break;
605 	}
606 
607 	if (!error && reset_bootfs) {
608 		error = nvlist_remove(props,
609 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
610 
611 		if (!error) {
612 			error = nvlist_add_uint64(props,
613 			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
614 		}
615 	}
616 
617 	return (error);
618 }
619 
620 void
621 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
622 {
623 	char *cachefile;
624 	spa_config_dirent_t *dp;
625 
626 	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
627 	    &cachefile) != 0)
628 		return;
629 
630 	dp = kmem_alloc(sizeof (spa_config_dirent_t),
631 	    KM_SLEEP);
632 
633 	if (cachefile[0] == '\0')
634 		dp->scd_path = spa_strdup(spa_config_path);
635 	else if (strcmp(cachefile, "none") == 0)
636 		dp->scd_path = NULL;
637 	else
638 		dp->scd_path = spa_strdup(cachefile);
639 
640 	list_insert_head(&spa->spa_config_list, dp);
641 	if (need_sync)
642 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
643 }
644 
645 int
646 spa_prop_set(spa_t *spa, nvlist_t *nvp)
647 {
648 	int error;
649 	nvpair_t *elem = NULL;
650 	boolean_t need_sync = B_FALSE;
651 
652 	if ((error = spa_prop_validate(spa, nvp)) != 0)
653 		return (error);
654 
655 	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
656 		zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
657 
658 		if (prop == ZPOOL_PROP_CACHEFILE ||
659 		    prop == ZPOOL_PROP_ALTROOT ||
660 		    prop == ZPOOL_PROP_READONLY)
661 			continue;
662 
663 		if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) {
664 			uint64_t ver;
665 
666 			if (prop == ZPOOL_PROP_VERSION) {
667 				VERIFY(nvpair_value_uint64(elem, &ver) == 0);
668 			} else {
669 				ASSERT(zpool_prop_feature(nvpair_name(elem)));
670 				ver = SPA_VERSION_FEATURES;
671 				need_sync = B_TRUE;
672 			}
673 
674 			/* Save time if the version is already set. */
675 			if (ver == spa_version(spa))
676 				continue;
677 
678 			/*
679 			 * In addition to the pool directory object, we might
680 			 * create the pool properties object, the features for
681 			 * read object, the features for write object, or the
682 			 * feature descriptions object.
683 			 */
684 			error = dsl_sync_task(spa->spa_name, NULL,
685 			    spa_sync_version, &ver,
686 			    6, ZFS_SPACE_CHECK_RESERVED);
687 			if (error)
688 				return (error);
689 			continue;
690 		}
691 
692 		need_sync = B_TRUE;
693 		break;
694 	}
695 
696 	if (need_sync) {
697 		return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
698 		    nvp, 6, ZFS_SPACE_CHECK_RESERVED));
699 	}
700 
701 	return (0);
702 }
703 
704 /*
705  * If the bootfs property value is dsobj, clear it.
706  */
707 void
708 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
709 {
710 	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
711 		VERIFY(zap_remove(spa->spa_meta_objset,
712 		    spa->spa_pool_props_object,
713 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
714 		spa->spa_bootfs = 0;
715 	}
716 }
717 
718 /*ARGSUSED*/
719 static int
720 spa_change_guid_check(void *arg, dmu_tx_t *tx)
721 {
722 	uint64_t *newguid = arg;
723 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
724 	vdev_t *rvd = spa->spa_root_vdev;
725 	uint64_t vdev_state;
726 
727 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
728 	vdev_state = rvd->vdev_state;
729 	spa_config_exit(spa, SCL_STATE, FTAG);
730 
731 	if (vdev_state != VDEV_STATE_HEALTHY)
732 		return (SET_ERROR(ENXIO));
733 
734 	ASSERT3U(spa_guid(spa), !=, *newguid);
735 
736 	return (0);
737 }
738 
739 static void
740 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
741 {
742 	uint64_t *newguid = arg;
743 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
744 	uint64_t oldguid;
745 	vdev_t *rvd = spa->spa_root_vdev;
746 
747 	oldguid = spa_guid(spa);
748 
749 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
750 	rvd->vdev_guid = *newguid;
751 	rvd->vdev_guid_sum += (*newguid - oldguid);
752 	vdev_config_dirty(rvd);
753 	spa_config_exit(spa, SCL_STATE, FTAG);
754 
755 	spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
756 	    oldguid, *newguid);
757 }
758 
759 /*
760  * Change the GUID for the pool.  This is done so that we can later
761  * re-import a pool built from a clone of our own vdevs.  We will modify
762  * the root vdev's guid, our own pool guid, and then mark all of our
763  * vdevs dirty.  Note that we must make sure that all our vdevs are
764  * online when we do this, or else any vdevs that weren't present
765  * would be orphaned from our pool.  We are also going to issue a
766  * sysevent to update any watchers.
767  */
768 int
769 spa_change_guid(spa_t *spa)
770 {
771 	int error;
772 	uint64_t guid;
773 
774 	mutex_enter(&spa->spa_vdev_top_lock);
775 	mutex_enter(&spa_namespace_lock);
776 	guid = spa_generate_guid(NULL);
777 
778 	error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
779 	    spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
780 
781 	if (error == 0) {
782 		spa_config_sync(spa, B_FALSE, B_TRUE);
783 		spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID);
784 	}
785 
786 	mutex_exit(&spa_namespace_lock);
787 	mutex_exit(&spa->spa_vdev_top_lock);
788 
789 	return (error);
790 }
791 
792 /*
793  * ==========================================================================
794  * SPA state manipulation (open/create/destroy/import/export)
795  * ==========================================================================
796  */
797 
798 static int
799 spa_error_entry_compare(const void *a, const void *b)
800 {
801 	spa_error_entry_t *sa = (spa_error_entry_t *)a;
802 	spa_error_entry_t *sb = (spa_error_entry_t *)b;
803 	int ret;
804 
805 	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
806 	    sizeof (zbookmark_phys_t));
807 
808 	if (ret < 0)
809 		return (-1);
810 	else if (ret > 0)
811 		return (1);
812 	else
813 		return (0);
814 }
815 
816 /*
817  * Utility function which retrieves copies of the current logs and
818  * re-initializes them in the process.
819  */
820 void
821 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
822 {
823 	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
824 
825 	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
826 	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
827 
828 	avl_create(&spa->spa_errlist_scrub,
829 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
830 	    offsetof(spa_error_entry_t, se_avl));
831 	avl_create(&spa->spa_errlist_last,
832 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
833 	    offsetof(spa_error_entry_t, se_avl));
834 }
835 
836 static void
837 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
838 {
839 	const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
840 	enum zti_modes mode = ztip->zti_mode;
841 	uint_t value = ztip->zti_value;
842 	uint_t count = ztip->zti_count;
843 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
844 	char name[32];
845 	uint_t flags = 0;
846 	boolean_t batch = B_FALSE;
847 
848 	if (mode == ZTI_MODE_NULL) {
849 		tqs->stqs_count = 0;
850 		tqs->stqs_taskq = NULL;
851 		return;
852 	}
853 
854 	ASSERT3U(count, >, 0);
855 
856 	tqs->stqs_count = count;
857 	tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
858 
859 	switch (mode) {
860 	case ZTI_MODE_FIXED:
861 		ASSERT3U(value, >=, 1);
862 		value = MAX(value, 1);
863 		break;
864 
865 	case ZTI_MODE_BATCH:
866 		batch = B_TRUE;
867 		flags |= TASKQ_THREADS_CPU_PCT;
868 		value = zio_taskq_batch_pct;
869 		break;
870 
871 	default:
872 		panic("unrecognized mode for %s_%s taskq (%u:%u) in "
873 		    "spa_activate()",
874 		    zio_type_name[t], zio_taskq_types[q], mode, value);
875 		break;
876 	}
877 
878 	for (uint_t i = 0; i < count; i++) {
879 		taskq_t *tq;
880 
881 		if (count > 1) {
882 			(void) snprintf(name, sizeof (name), "%s_%s_%u",
883 			    zio_type_name[t], zio_taskq_types[q], i);
884 		} else {
885 			(void) snprintf(name, sizeof (name), "%s_%s",
886 			    zio_type_name[t], zio_taskq_types[q]);
887 		}
888 
889 		if (zio_taskq_sysdc && spa->spa_proc != &p0) {
890 			if (batch)
891 				flags |= TASKQ_DC_BATCH;
892 
893 			tq = taskq_create_sysdc(name, value, 50, INT_MAX,
894 			    spa->spa_proc, zio_taskq_basedc, flags);
895 		} else {
896 			pri_t pri = maxclsyspri;
897 			/*
898 			 * The write issue taskq can be extremely CPU
899 			 * intensive.  Run it at slightly lower priority
900 			 * than the other taskqs.
901 			 */
902 			if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
903 				pri--;
904 
905 			tq = taskq_create_proc(name, value, pri, 50,
906 			    INT_MAX, spa->spa_proc, flags);
907 		}
908 
909 		tqs->stqs_taskq[i] = tq;
910 	}
911 }
912 
913 static void
914 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
915 {
916 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
917 
918 	if (tqs->stqs_taskq == NULL) {
919 		ASSERT0(tqs->stqs_count);
920 		return;
921 	}
922 
923 	for (uint_t i = 0; i < tqs->stqs_count; i++) {
924 		ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
925 		taskq_destroy(tqs->stqs_taskq[i]);
926 	}
927 
928 	kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
929 	tqs->stqs_taskq = NULL;
930 }
931 
932 /*
933  * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
934  * Note that a type may have multiple discrete taskqs to avoid lock contention
935  * on the taskq itself. In that case we choose which taskq at random by using
936  * the low bits of gethrtime().
937  */
938 void
939 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
940     task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
941 {
942 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
943 	taskq_t *tq;
944 
945 	ASSERT3P(tqs->stqs_taskq, !=, NULL);
946 	ASSERT3U(tqs->stqs_count, !=, 0);
947 
948 	if (tqs->stqs_count == 1) {
949 		tq = tqs->stqs_taskq[0];
950 	} else {
951 		tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count];
952 	}
953 
954 	taskq_dispatch_ent(tq, func, arg, flags, ent);
955 }
956 
957 static void
958 spa_create_zio_taskqs(spa_t *spa)
959 {
960 	for (int t = 0; t < ZIO_TYPES; t++) {
961 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
962 			spa_taskqs_init(spa, t, q);
963 		}
964 	}
965 }
966 
967 #ifdef _KERNEL
968 static void
969 spa_thread(void *arg)
970 {
971 	callb_cpr_t cprinfo;
972 
973 	spa_t *spa = arg;
974 	user_t *pu = PTOU(curproc);
975 
976 	CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
977 	    spa->spa_name);
978 
979 	ASSERT(curproc != &p0);
980 	(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
981 	    "zpool-%s", spa->spa_name);
982 	(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
983 
984 	/* bind this thread to the requested psrset */
985 	if (zio_taskq_psrset_bind != PS_NONE) {
986 		pool_lock();
987 		mutex_enter(&cpu_lock);
988 		mutex_enter(&pidlock);
989 		mutex_enter(&curproc->p_lock);
990 
991 		if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
992 		    0, NULL, NULL) == 0)  {
993 			curthread->t_bind_pset = zio_taskq_psrset_bind;
994 		} else {
995 			cmn_err(CE_WARN,
996 			    "Couldn't bind process for zfs pool \"%s\" to "
997 			    "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
998 		}
999 
1000 		mutex_exit(&curproc->p_lock);
1001 		mutex_exit(&pidlock);
1002 		mutex_exit(&cpu_lock);
1003 		pool_unlock();
1004 	}
1005 
1006 	if (zio_taskq_sysdc) {
1007 		sysdc_thread_enter(curthread, 100, 0);
1008 	}
1009 
1010 	spa->spa_proc = curproc;
1011 	spa->spa_did = curthread->t_did;
1012 
1013 	spa_create_zio_taskqs(spa);
1014 
1015 	mutex_enter(&spa->spa_proc_lock);
1016 	ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1017 
1018 	spa->spa_proc_state = SPA_PROC_ACTIVE;
1019 	cv_broadcast(&spa->spa_proc_cv);
1020 
1021 	CALLB_CPR_SAFE_BEGIN(&cprinfo);
1022 	while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1023 		cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1024 	CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1025 
1026 	ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1027 	spa->spa_proc_state = SPA_PROC_GONE;
1028 	spa->spa_proc = &p0;
1029 	cv_broadcast(&spa->spa_proc_cv);
1030 	CALLB_CPR_EXIT(&cprinfo);	/* drops spa_proc_lock */
1031 
1032 	mutex_enter(&curproc->p_lock);
1033 	lwp_exit();
1034 }
1035 #endif
1036 
1037 /*
1038  * Activate an uninitialized pool.
1039  */
1040 static void
1041 spa_activate(spa_t *spa, int mode)
1042 {
1043 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1044 
1045 	spa->spa_state = POOL_STATE_ACTIVE;
1046 	spa->spa_mode = mode;
1047 
1048 	spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1049 	spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1050 
1051 	/* Try to create a covering process */
1052 	mutex_enter(&spa->spa_proc_lock);
1053 	ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1054 	ASSERT(spa->spa_proc == &p0);
1055 	spa->spa_did = 0;
1056 
1057 	/* Only create a process if we're going to be around a while. */
1058 	if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1059 		if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1060 		    NULL, 0) == 0) {
1061 			spa->spa_proc_state = SPA_PROC_CREATED;
1062 			while (spa->spa_proc_state == SPA_PROC_CREATED) {
1063 				cv_wait(&spa->spa_proc_cv,
1064 				    &spa->spa_proc_lock);
1065 			}
1066 			ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1067 			ASSERT(spa->spa_proc != &p0);
1068 			ASSERT(spa->spa_did != 0);
1069 		} else {
1070 #ifdef _KERNEL
1071 			cmn_err(CE_WARN,
1072 			    "Couldn't create process for zfs pool \"%s\"\n",
1073 			    spa->spa_name);
1074 #endif
1075 		}
1076 	}
1077 	mutex_exit(&spa->spa_proc_lock);
1078 
1079 	/* If we didn't create a process, we need to create our taskqs. */
1080 	if (spa->spa_proc == &p0) {
1081 		spa_create_zio_taskqs(spa);
1082 	}
1083 
1084 	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1085 	    offsetof(vdev_t, vdev_config_dirty_node));
1086 	list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1087 	    offsetof(objset_t, os_evicting_node));
1088 	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1089 	    offsetof(vdev_t, vdev_state_dirty_node));
1090 
1091 	txg_list_create(&spa->spa_vdev_txg_list,
1092 	    offsetof(struct vdev, vdev_txg_node));
1093 
1094 	avl_create(&spa->spa_errlist_scrub,
1095 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1096 	    offsetof(spa_error_entry_t, se_avl));
1097 	avl_create(&spa->spa_errlist_last,
1098 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1099 	    offsetof(spa_error_entry_t, se_avl));
1100 }
1101 
1102 /*
1103  * Opposite of spa_activate().
1104  */
1105 static void
1106 spa_deactivate(spa_t *spa)
1107 {
1108 	ASSERT(spa->spa_sync_on == B_FALSE);
1109 	ASSERT(spa->spa_dsl_pool == NULL);
1110 	ASSERT(spa->spa_root_vdev == NULL);
1111 	ASSERT(spa->spa_async_zio_root == NULL);
1112 	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1113 
1114 	spa_evicting_os_wait(spa);
1115 
1116 	txg_list_destroy(&spa->spa_vdev_txg_list);
1117 
1118 	list_destroy(&spa->spa_config_dirty_list);
1119 	list_destroy(&spa->spa_evicting_os_list);
1120 	list_destroy(&spa->spa_state_dirty_list);
1121 
1122 	for (int t = 0; t < ZIO_TYPES; t++) {
1123 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1124 			spa_taskqs_fini(spa, t, q);
1125 		}
1126 	}
1127 
1128 	metaslab_class_destroy(spa->spa_normal_class);
1129 	spa->spa_normal_class = NULL;
1130 
1131 	metaslab_class_destroy(spa->spa_log_class);
1132 	spa->spa_log_class = NULL;
1133 
1134 	/*
1135 	 * If this was part of an import or the open otherwise failed, we may
1136 	 * still have errors left in the queues.  Empty them just in case.
1137 	 */
1138 	spa_errlog_drain(spa);
1139 
1140 	avl_destroy(&spa->spa_errlist_scrub);
1141 	avl_destroy(&spa->spa_errlist_last);
1142 
1143 	spa->spa_state = POOL_STATE_UNINITIALIZED;
1144 
1145 	mutex_enter(&spa->spa_proc_lock);
1146 	if (spa->spa_proc_state != SPA_PROC_NONE) {
1147 		ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1148 		spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1149 		cv_broadcast(&spa->spa_proc_cv);
1150 		while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1151 			ASSERT(spa->spa_proc != &p0);
1152 			cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1153 		}
1154 		ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1155 		spa->spa_proc_state = SPA_PROC_NONE;
1156 	}
1157 	ASSERT(spa->spa_proc == &p0);
1158 	mutex_exit(&spa->spa_proc_lock);
1159 
1160 	/*
1161 	 * We want to make sure spa_thread() has actually exited the ZFS
1162 	 * module, so that the module can't be unloaded out from underneath
1163 	 * it.
1164 	 */
1165 	if (spa->spa_did != 0) {
1166 		thread_join(spa->spa_did);
1167 		spa->spa_did = 0;
1168 	}
1169 }
1170 
1171 /*
1172  * Verify a pool configuration, and construct the vdev tree appropriately.  This
1173  * will create all the necessary vdevs in the appropriate layout, with each vdev
1174  * in the CLOSED state.  This will prep the pool before open/creation/import.
1175  * All vdev validation is done by the vdev_alloc() routine.
1176  */
1177 static int
1178 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1179     uint_t id, int atype)
1180 {
1181 	nvlist_t **child;
1182 	uint_t children;
1183 	int error;
1184 
1185 	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1186 		return (error);
1187 
1188 	if ((*vdp)->vdev_ops->vdev_op_leaf)
1189 		return (0);
1190 
1191 	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1192 	    &child, &children);
1193 
1194 	if (error == ENOENT)
1195 		return (0);
1196 
1197 	if (error) {
1198 		vdev_free(*vdp);
1199 		*vdp = NULL;
1200 		return (SET_ERROR(EINVAL));
1201 	}
1202 
1203 	for (int c = 0; c < children; c++) {
1204 		vdev_t *vd;
1205 		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1206 		    atype)) != 0) {
1207 			vdev_free(*vdp);
1208 			*vdp = NULL;
1209 			return (error);
1210 		}
1211 	}
1212 
1213 	ASSERT(*vdp != NULL);
1214 
1215 	return (0);
1216 }
1217 
1218 /*
1219  * Opposite of spa_load().
1220  */
1221 static void
1222 spa_unload(spa_t *spa)
1223 {
1224 	int i;
1225 
1226 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1227 
1228 	/*
1229 	 * Stop async tasks.
1230 	 */
1231 	spa_async_suspend(spa);
1232 
1233 	/*
1234 	 * Stop syncing.
1235 	 */
1236 	if (spa->spa_sync_on) {
1237 		txg_sync_stop(spa->spa_dsl_pool);
1238 		spa->spa_sync_on = B_FALSE;
1239 	}
1240 
1241 	/*
1242 	 * Wait for any outstanding async I/O to complete.
1243 	 */
1244 	if (spa->spa_async_zio_root != NULL) {
1245 		for (int i = 0; i < max_ncpus; i++)
1246 			(void) zio_wait(spa->spa_async_zio_root[i]);
1247 		kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
1248 		spa->spa_async_zio_root = NULL;
1249 	}
1250 
1251 	bpobj_close(&spa->spa_deferred_bpobj);
1252 
1253 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1254 
1255 	/*
1256 	 * Close all vdevs.
1257 	 */
1258 	if (spa->spa_root_vdev)
1259 		vdev_free(spa->spa_root_vdev);
1260 	ASSERT(spa->spa_root_vdev == NULL);
1261 
1262 	/*
1263 	 * Close the dsl pool.
1264 	 */
1265 	if (spa->spa_dsl_pool) {
1266 		dsl_pool_close(spa->spa_dsl_pool);
1267 		spa->spa_dsl_pool = NULL;
1268 		spa->spa_meta_objset = NULL;
1269 	}
1270 
1271 	ddt_unload(spa);
1272 
1273 
1274 	/*
1275 	 * Drop and purge level 2 cache
1276 	 */
1277 	spa_l2cache_drop(spa);
1278 
1279 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1280 		vdev_free(spa->spa_spares.sav_vdevs[i]);
1281 	if (spa->spa_spares.sav_vdevs) {
1282 		kmem_free(spa->spa_spares.sav_vdevs,
1283 		    spa->spa_spares.sav_count * sizeof (void *));
1284 		spa->spa_spares.sav_vdevs = NULL;
1285 	}
1286 	if (spa->spa_spares.sav_config) {
1287 		nvlist_free(spa->spa_spares.sav_config);
1288 		spa->spa_spares.sav_config = NULL;
1289 	}
1290 	spa->spa_spares.sav_count = 0;
1291 
1292 	for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1293 		vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1294 		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1295 	}
1296 	if (spa->spa_l2cache.sav_vdevs) {
1297 		kmem_free(spa->spa_l2cache.sav_vdevs,
1298 		    spa->spa_l2cache.sav_count * sizeof (void *));
1299 		spa->spa_l2cache.sav_vdevs = NULL;
1300 	}
1301 	if (spa->spa_l2cache.sav_config) {
1302 		nvlist_free(spa->spa_l2cache.sav_config);
1303 		spa->spa_l2cache.sav_config = NULL;
1304 	}
1305 	spa->spa_l2cache.sav_count = 0;
1306 
1307 	spa->spa_async_suspended = 0;
1308 
1309 	if (spa->spa_comment != NULL) {
1310 		spa_strfree(spa->spa_comment);
1311 		spa->spa_comment = NULL;
1312 	}
1313 
1314 	spa_config_exit(spa, SCL_ALL, FTAG);
1315 }
1316 
1317 /*
1318  * Load (or re-load) the current list of vdevs describing the active spares for
1319  * this pool.  When this is called, we have some form of basic information in
1320  * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
1321  * then re-generate a more complete list including status information.
1322  */
1323 static void
1324 spa_load_spares(spa_t *spa)
1325 {
1326 	nvlist_t **spares;
1327 	uint_t nspares;
1328 	int i;
1329 	vdev_t *vd, *tvd;
1330 
1331 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1332 
1333 	/*
1334 	 * First, close and free any existing spare vdevs.
1335 	 */
1336 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1337 		vd = spa->spa_spares.sav_vdevs[i];
1338 
1339 		/* Undo the call to spa_activate() below */
1340 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1341 		    B_FALSE)) != NULL && tvd->vdev_isspare)
1342 			spa_spare_remove(tvd);
1343 		vdev_close(vd);
1344 		vdev_free(vd);
1345 	}
1346 
1347 	if (spa->spa_spares.sav_vdevs)
1348 		kmem_free(spa->spa_spares.sav_vdevs,
1349 		    spa->spa_spares.sav_count * sizeof (void *));
1350 
1351 	if (spa->spa_spares.sav_config == NULL)
1352 		nspares = 0;
1353 	else
1354 		VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1355 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1356 
1357 	spa->spa_spares.sav_count = (int)nspares;
1358 	spa->spa_spares.sav_vdevs = NULL;
1359 
1360 	if (nspares == 0)
1361 		return;
1362 
1363 	/*
1364 	 * Construct the array of vdevs, opening them to get status in the
1365 	 * process.   For each spare, there is potentially two different vdev_t
1366 	 * structures associated with it: one in the list of spares (used only
1367 	 * for basic validation purposes) and one in the active vdev
1368 	 * configuration (if it's spared in).  During this phase we open and
1369 	 * validate each vdev on the spare list.  If the vdev also exists in the
1370 	 * active configuration, then we also mark this vdev as an active spare.
1371 	 */
1372 	spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1373 	    KM_SLEEP);
1374 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1375 		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1376 		    VDEV_ALLOC_SPARE) == 0);
1377 		ASSERT(vd != NULL);
1378 
1379 		spa->spa_spares.sav_vdevs[i] = vd;
1380 
1381 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1382 		    B_FALSE)) != NULL) {
1383 			if (!tvd->vdev_isspare)
1384 				spa_spare_add(tvd);
1385 
1386 			/*
1387 			 * We only mark the spare active if we were successfully
1388 			 * able to load the vdev.  Otherwise, importing a pool
1389 			 * with a bad active spare would result in strange
1390 			 * behavior, because multiple pool would think the spare
1391 			 * is actively in use.
1392 			 *
1393 			 * There is a vulnerability here to an equally bizarre
1394 			 * circumstance, where a dead active spare is later
1395 			 * brought back to life (onlined or otherwise).  Given
1396 			 * the rarity of this scenario, and the extra complexity
1397 			 * it adds, we ignore the possibility.
1398 			 */
1399 			if (!vdev_is_dead(tvd))
1400 				spa_spare_activate(tvd);
1401 		}
1402 
1403 		vd->vdev_top = vd;
1404 		vd->vdev_aux = &spa->spa_spares;
1405 
1406 		if (vdev_open(vd) != 0)
1407 			continue;
1408 
1409 		if (vdev_validate_aux(vd) == 0)
1410 			spa_spare_add(vd);
1411 	}
1412 
1413 	/*
1414 	 * Recompute the stashed list of spares, with status information
1415 	 * this time.
1416 	 */
1417 	VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1418 	    DATA_TYPE_NVLIST_ARRAY) == 0);
1419 
1420 	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1421 	    KM_SLEEP);
1422 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1423 		spares[i] = vdev_config_generate(spa,
1424 		    spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1425 	VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1426 	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1427 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1428 		nvlist_free(spares[i]);
1429 	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1430 }
1431 
1432 /*
1433  * Load (or re-load) the current list of vdevs describing the active l2cache for
1434  * this pool.  When this is called, we have some form of basic information in
1435  * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
1436  * then re-generate a more complete list including status information.
1437  * Devices which are already active have their details maintained, and are
1438  * not re-opened.
1439  */
1440 static void
1441 spa_load_l2cache(spa_t *spa)
1442 {
1443 	nvlist_t **l2cache;
1444 	uint_t nl2cache;
1445 	int i, j, oldnvdevs;
1446 	uint64_t guid;
1447 	vdev_t *vd, **oldvdevs, **newvdevs;
1448 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
1449 
1450 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1451 
1452 	if (sav->sav_config != NULL) {
1453 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1454 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1455 		newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1456 	} else {
1457 		nl2cache = 0;
1458 		newvdevs = NULL;
1459 	}
1460 
1461 	oldvdevs = sav->sav_vdevs;
1462 	oldnvdevs = sav->sav_count;
1463 	sav->sav_vdevs = NULL;
1464 	sav->sav_count = 0;
1465 
1466 	/*
1467 	 * Process new nvlist of vdevs.
1468 	 */
1469 	for (i = 0; i < nl2cache; i++) {
1470 		VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1471 		    &guid) == 0);
1472 
1473 		newvdevs[i] = NULL;
1474 		for (j = 0; j < oldnvdevs; j++) {
1475 			vd = oldvdevs[j];
1476 			if (vd != NULL && guid == vd->vdev_guid) {
1477 				/*
1478 				 * Retain previous vdev for add/remove ops.
1479 				 */
1480 				newvdevs[i] = vd;
1481 				oldvdevs[j] = NULL;
1482 				break;
1483 			}
1484 		}
1485 
1486 		if (newvdevs[i] == NULL) {
1487 			/*
1488 			 * Create new vdev
1489 			 */
1490 			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1491 			    VDEV_ALLOC_L2CACHE) == 0);
1492 			ASSERT(vd != NULL);
1493 			newvdevs[i] = vd;
1494 
1495 			/*
1496 			 * Commit this vdev as an l2cache device,
1497 			 * even if it fails to open.
1498 			 */
1499 			spa_l2cache_add(vd);
1500 
1501 			vd->vdev_top = vd;
1502 			vd->vdev_aux = sav;
1503 
1504 			spa_l2cache_activate(vd);
1505 
1506 			if (vdev_open(vd) != 0)
1507 				continue;
1508 
1509 			(void) vdev_validate_aux(vd);
1510 
1511 			if (!vdev_is_dead(vd))
1512 				l2arc_add_vdev(spa, vd);
1513 		}
1514 	}
1515 
1516 	/*
1517 	 * Purge vdevs that were dropped
1518 	 */
1519 	for (i = 0; i < oldnvdevs; i++) {
1520 		uint64_t pool;
1521 
1522 		vd = oldvdevs[i];
1523 		if (vd != NULL) {
1524 			ASSERT(vd->vdev_isl2cache);
1525 
1526 			if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1527 			    pool != 0ULL && l2arc_vdev_present(vd))
1528 				l2arc_remove_vdev(vd);
1529 			vdev_clear_stats(vd);
1530 			vdev_free(vd);
1531 		}
1532 	}
1533 
1534 	if (oldvdevs)
1535 		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1536 
1537 	if (sav->sav_config == NULL)
1538 		goto out;
1539 
1540 	sav->sav_vdevs = newvdevs;
1541 	sav->sav_count = (int)nl2cache;
1542 
1543 	/*
1544 	 * Recompute the stashed list of l2cache devices, with status
1545 	 * information this time.
1546 	 */
1547 	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1548 	    DATA_TYPE_NVLIST_ARRAY) == 0);
1549 
1550 	l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1551 	for (i = 0; i < sav->sav_count; i++)
1552 		l2cache[i] = vdev_config_generate(spa,
1553 		    sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1554 	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1555 	    ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1556 out:
1557 	for (i = 0; i < sav->sav_count; i++)
1558 		nvlist_free(l2cache[i]);
1559 	if (sav->sav_count)
1560 		kmem_free(l2cache, sav->sav_count * sizeof (void *));
1561 }
1562 
1563 static int
1564 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1565 {
1566 	dmu_buf_t *db;
1567 	char *packed = NULL;
1568 	size_t nvsize = 0;
1569 	int error;
1570 	*value = NULL;
1571 
1572 	error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
1573 	if (error != 0)
1574 		return (error);
1575 
1576 	nvsize = *(uint64_t *)db->db_data;
1577 	dmu_buf_rele(db, FTAG);
1578 
1579 	packed = kmem_alloc(nvsize, KM_SLEEP);
1580 	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1581 	    DMU_READ_PREFETCH);
1582 	if (error == 0)
1583 		error = nvlist_unpack(packed, nvsize, value, 0);
1584 	kmem_free(packed, nvsize);
1585 
1586 	return (error);
1587 }
1588 
1589 /*
1590  * Checks to see if the given vdev could not be opened, in which case we post a
1591  * sysevent to notify the autoreplace code that the device has been removed.
1592  */
1593 static void
1594 spa_check_removed(vdev_t *vd)
1595 {
1596 	for (int c = 0; c < vd->vdev_children; c++)
1597 		spa_check_removed(vd->vdev_child[c]);
1598 
1599 	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1600 	    !vd->vdev_ishole) {
1601 		zfs_post_autoreplace(vd->vdev_spa, vd);
1602 		spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1603 	}
1604 }
1605 
1606 /*
1607  * Validate the current config against the MOS config
1608  */
1609 static boolean_t
1610 spa_config_valid(spa_t *spa, nvlist_t *config)
1611 {
1612 	vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1613 	nvlist_t *nv;
1614 
1615 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1616 
1617 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1618 	VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1619 
1620 	ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1621 
1622 	/*
1623 	 * If we're doing a normal import, then build up any additional
1624 	 * diagnostic information about missing devices in this config.
1625 	 * We'll pass this up to the user for further processing.
1626 	 */
1627 	if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1628 		nvlist_t **child, *nv;
1629 		uint64_t idx = 0;
1630 
1631 		child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1632 		    KM_SLEEP);
1633 		VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1634 
1635 		for (int c = 0; c < rvd->vdev_children; c++) {
1636 			vdev_t *tvd = rvd->vdev_child[c];
1637 			vdev_t *mtvd  = mrvd->vdev_child[c];
1638 
1639 			if (tvd->vdev_ops == &vdev_missing_ops &&
1640 			    mtvd->vdev_ops != &vdev_missing_ops &&
1641 			    mtvd->vdev_islog)
1642 				child[idx++] = vdev_config_generate(spa, mtvd,
1643 				    B_FALSE, 0);
1644 		}
1645 
1646 		if (idx) {
1647 			VERIFY(nvlist_add_nvlist_array(nv,
1648 			    ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1649 			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1650 			    ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1651 
1652 			for (int i = 0; i < idx; i++)
1653 				nvlist_free(child[i]);
1654 		}
1655 		nvlist_free(nv);
1656 		kmem_free(child, rvd->vdev_children * sizeof (char **));
1657 	}
1658 
1659 	/*
1660 	 * Compare the root vdev tree with the information we have
1661 	 * from the MOS config (mrvd). Check each top-level vdev
1662 	 * with the corresponding MOS config top-level (mtvd).
1663 	 */
1664 	for (int c = 0; c < rvd->vdev_children; c++) {
1665 		vdev_t *tvd = rvd->vdev_child[c];
1666 		vdev_t *mtvd  = mrvd->vdev_child[c];
1667 
1668 		/*
1669 		 * Resolve any "missing" vdevs in the current configuration.
1670 		 * If we find that the MOS config has more accurate information
1671 		 * about the top-level vdev then use that vdev instead.
1672 		 */
1673 		if (tvd->vdev_ops == &vdev_missing_ops &&
1674 		    mtvd->vdev_ops != &vdev_missing_ops) {
1675 
1676 			if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
1677 				continue;
1678 
1679 			/*
1680 			 * Device specific actions.
1681 			 */
1682 			if (mtvd->vdev_islog) {
1683 				spa_set_log_state(spa, SPA_LOG_CLEAR);
1684 			} else {
1685 				/*
1686 				 * XXX - once we have 'readonly' pool
1687 				 * support we should be able to handle
1688 				 * missing data devices by transitioning
1689 				 * the pool to readonly.
1690 				 */
1691 				continue;
1692 			}
1693 
1694 			/*
1695 			 * Swap the missing vdev with the data we were
1696 			 * able to obtain from the MOS config.
1697 			 */
1698 			vdev_remove_child(rvd, tvd);
1699 			vdev_remove_child(mrvd, mtvd);
1700 
1701 			vdev_add_child(rvd, mtvd);
1702 			vdev_add_child(mrvd, tvd);
1703 
1704 			spa_config_exit(spa, SCL_ALL, FTAG);
1705 			vdev_load(mtvd);
1706 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1707 
1708 			vdev_reopen(rvd);
1709 		} else if (mtvd->vdev_islog) {
1710 			/*
1711 			 * Load the slog device's state from the MOS config
1712 			 * since it's possible that the label does not
1713 			 * contain the most up-to-date information.
1714 			 */
1715 			vdev_load_log_state(tvd, mtvd);
1716 			vdev_reopen(tvd);
1717 		}
1718 	}
1719 	vdev_free(mrvd);
1720 	spa_config_exit(spa, SCL_ALL, FTAG);
1721 
1722 	/*
1723 	 * Ensure we were able to validate the config.
1724 	 */
1725 	return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1726 }
1727 
1728 /*
1729  * Check for missing log devices
1730  */
1731 static boolean_t
1732 spa_check_logs(spa_t *spa)
1733 {
1734 	boolean_t rv = B_FALSE;
1735 	dsl_pool_t *dp = spa_get_dsl(spa);
1736 
1737 	switch (spa->spa_log_state) {
1738 	case SPA_LOG_MISSING:
1739 		/* need to recheck in case slog has been restored */
1740 	case SPA_LOG_UNKNOWN:
1741 		rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
1742 		    zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
1743 		if (rv)
1744 			spa_set_log_state(spa, SPA_LOG_MISSING);
1745 		break;
1746 	}
1747 	return (rv);
1748 }
1749 
1750 static boolean_t
1751 spa_passivate_log(spa_t *spa)
1752 {
1753 	vdev_t *rvd = spa->spa_root_vdev;
1754 	boolean_t slog_found = B_FALSE;
1755 
1756 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1757 
1758 	if (!spa_has_slogs(spa))
1759 		return (B_FALSE);
1760 
1761 	for (int c = 0; c < rvd->vdev_children; c++) {
1762 		vdev_t *tvd = rvd->vdev_child[c];
1763 		metaslab_group_t *mg = tvd->vdev_mg;
1764 
1765 		if (tvd->vdev_islog) {
1766 			metaslab_group_passivate(mg);
1767 			slog_found = B_TRUE;
1768 		}
1769 	}
1770 
1771 	return (slog_found);
1772 }
1773 
1774 static void
1775 spa_activate_log(spa_t *spa)
1776 {
1777 	vdev_t *rvd = spa->spa_root_vdev;
1778 
1779 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1780 
1781 	for (int c = 0; c < rvd->vdev_children; c++) {
1782 		vdev_t *tvd = rvd->vdev_child[c];
1783 		metaslab_group_t *mg = tvd->vdev_mg;
1784 
1785 		if (tvd->vdev_islog)
1786 			metaslab_group_activate(mg);
1787 	}
1788 }
1789 
1790 int
1791 spa_offline_log(spa_t *spa)
1792 {
1793 	int error;
1794 
1795 	error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1796 	    NULL, DS_FIND_CHILDREN);
1797 	if (error == 0) {
1798 		/*
1799 		 * We successfully offlined the log device, sync out the
1800 		 * current txg so that the "stubby" block can be removed
1801 		 * by zil_sync().
1802 		 */
1803 		txg_wait_synced(spa->spa_dsl_pool, 0);
1804 	}
1805 	return (error);
1806 }
1807 
1808 static void
1809 spa_aux_check_removed(spa_aux_vdev_t *sav)
1810 {
1811 	for (int i = 0; i < sav->sav_count; i++)
1812 		spa_check_removed(sav->sav_vdevs[i]);
1813 }
1814 
1815 void
1816 spa_claim_notify(zio_t *zio)
1817 {
1818 	spa_t *spa = zio->io_spa;
1819 
1820 	if (zio->io_error)
1821 		return;
1822 
1823 	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
1824 	if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1825 		spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1826 	mutex_exit(&spa->spa_props_lock);
1827 }
1828 
1829 typedef struct spa_load_error {
1830 	uint64_t	sle_meta_count;
1831 	uint64_t	sle_data_count;
1832 } spa_load_error_t;
1833 
1834 static void
1835 spa_load_verify_done(zio_t *zio)
1836 {
1837 	blkptr_t *bp = zio->io_bp;
1838 	spa_load_error_t *sle = zio->io_private;
1839 	dmu_object_type_t type = BP_GET_TYPE(bp);
1840 	int error = zio->io_error;
1841 	spa_t *spa = zio->io_spa;
1842 
1843 	if (error) {
1844 		if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
1845 		    type != DMU_OT_INTENT_LOG)
1846 			atomic_inc_64(&sle->sle_meta_count);
1847 		else
1848 			atomic_inc_64(&sle->sle_data_count);
1849 	}
1850 	zio_data_buf_free(zio->io_data, zio->io_size);
1851 
1852 	mutex_enter(&spa->spa_scrub_lock);
1853 	spa->spa_scrub_inflight--;
1854 	cv_broadcast(&spa->spa_scrub_io_cv);
1855 	mutex_exit(&spa->spa_scrub_lock);
1856 }
1857 
1858 /*
1859  * Maximum number of concurrent scrub i/os to create while verifying
1860  * a pool while importing it.
1861  */
1862 int spa_load_verify_maxinflight = 10000;
1863 boolean_t spa_load_verify_metadata = B_TRUE;
1864 boolean_t spa_load_verify_data = B_TRUE;
1865 
1866 /*ARGSUSED*/
1867 static int
1868 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1869     const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
1870 {
1871 	if (bp == NULL || BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
1872 		return (0);
1873 	/*
1874 	 * Note: normally this routine will not be called if
1875 	 * spa_load_verify_metadata is not set.  However, it may be useful
1876 	 * to manually set the flag after the traversal has begun.
1877 	 */
1878 	if (!spa_load_verify_metadata)
1879 		return (0);
1880 	if (BP_GET_BUFC_TYPE(bp) == ARC_BUFC_DATA && !spa_load_verify_data)
1881 		return (0);
1882 
1883 	zio_t *rio = arg;
1884 	size_t size = BP_GET_PSIZE(bp);
1885 	void *data = zio_data_buf_alloc(size);
1886 
1887 	mutex_enter(&spa->spa_scrub_lock);
1888 	while (spa->spa_scrub_inflight >= spa_load_verify_maxinflight)
1889 		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
1890 	spa->spa_scrub_inflight++;
1891 	mutex_exit(&spa->spa_scrub_lock);
1892 
1893 	zio_nowait(zio_read(rio, spa, bp, data, size,
1894 	    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1895 	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1896 	    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1897 	return (0);
1898 }
1899 
1900 static int
1901 spa_load_verify(spa_t *spa)
1902 {
1903 	zio_t *rio;
1904 	spa_load_error_t sle = { 0 };
1905 	zpool_rewind_policy_t policy;
1906 	boolean_t verify_ok = B_FALSE;
1907 	int error = 0;
1908 
1909 	zpool_get_rewind_policy(spa->spa_config, &policy);
1910 
1911 	if (policy.zrp_request & ZPOOL_NEVER_REWIND)
1912 		return (0);
1913 
1914 	rio = zio_root(spa, NULL, &sle,
1915 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1916 
1917 	if (spa_load_verify_metadata) {
1918 		error = traverse_pool(spa, spa->spa_verify_min_txg,
1919 		    TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA,
1920 		    spa_load_verify_cb, rio);
1921 	}
1922 
1923 	(void) zio_wait(rio);
1924 
1925 	spa->spa_load_meta_errors = sle.sle_meta_count;
1926 	spa->spa_load_data_errors = sle.sle_data_count;
1927 
1928 	if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
1929 	    sle.sle_data_count <= policy.zrp_maxdata) {
1930 		int64_t loss = 0;
1931 
1932 		verify_ok = B_TRUE;
1933 		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
1934 		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
1935 
1936 		loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
1937 		VERIFY(nvlist_add_uint64(spa->spa_load_info,
1938 		    ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
1939 		VERIFY(nvlist_add_int64(spa->spa_load_info,
1940 		    ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
1941 		VERIFY(nvlist_add_uint64(spa->spa_load_info,
1942 		    ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
1943 	} else {
1944 		spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
1945 	}
1946 
1947 	if (error) {
1948 		if (error != ENXIO && error != EIO)
1949 			error = SET_ERROR(EIO);
1950 		return (error);
1951 	}
1952 
1953 	return (verify_ok ? 0 : EIO);
1954 }
1955 
1956 /*
1957  * Find a value in the pool props object.
1958  */
1959 static void
1960 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
1961 {
1962 	(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
1963 	    zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
1964 }
1965 
1966 /*
1967  * Find a value in the pool directory object.
1968  */
1969 static int
1970 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
1971 {
1972 	return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1973 	    name, sizeof (uint64_t), 1, val));
1974 }
1975 
1976 static int
1977 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
1978 {
1979 	vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
1980 	return (err);
1981 }
1982 
1983 /*
1984  * Fix up config after a partly-completed split.  This is done with the
1985  * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
1986  * pool have that entry in their config, but only the splitting one contains
1987  * a list of all the guids of the vdevs that are being split off.
1988  *
1989  * This function determines what to do with that list: either rejoin
1990  * all the disks to the pool, or complete the splitting process.  To attempt
1991  * the rejoin, each disk that is offlined is marked online again, and
1992  * we do a reopen() call.  If the vdev label for every disk that was
1993  * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
1994  * then we call vdev_split() on each disk, and complete the split.
1995  *
1996  * Otherwise we leave the config alone, with all the vdevs in place in
1997  * the original pool.
1998  */
1999 static void
2000 spa_try_repair(spa_t *spa, nvlist_t *config)
2001 {
2002 	uint_t extracted;
2003 	uint64_t *glist;
2004 	uint_t i, gcount;
2005 	nvlist_t *nvl;
2006 	vdev_t **vd;
2007 	boolean_t attempt_reopen;
2008 
2009 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
2010 		return;
2011 
2012 	/* check that the config is complete */
2013 	if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
2014 	    &glist, &gcount) != 0)
2015 		return;
2016 
2017 	vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
2018 
2019 	/* attempt to online all the vdevs & validate */
2020 	attempt_reopen = B_TRUE;
2021 	for (i = 0; i < gcount; i++) {
2022 		if (glist[i] == 0)	/* vdev is hole */
2023 			continue;
2024 
2025 		vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2026 		if (vd[i] == NULL) {
2027 			/*
2028 			 * Don't bother attempting to reopen the disks;
2029 			 * just do the split.
2030 			 */
2031 			attempt_reopen = B_FALSE;
2032 		} else {
2033 			/* attempt to re-online it */
2034 			vd[i]->vdev_offline = B_FALSE;
2035 		}
2036 	}
2037 
2038 	if (attempt_reopen) {
2039 		vdev_reopen(spa->spa_root_vdev);
2040 
2041 		/* check each device to see what state it's in */
2042 		for (extracted = 0, i = 0; i < gcount; i++) {
2043 			if (vd[i] != NULL &&
2044 			    vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
2045 				break;
2046 			++extracted;
2047 		}
2048 	}
2049 
2050 	/*
2051 	 * If every disk has been moved to the new pool, or if we never
2052 	 * even attempted to look at them, then we split them off for
2053 	 * good.
2054 	 */
2055 	if (!attempt_reopen || gcount == extracted) {
2056 		for (i = 0; i < gcount; i++)
2057 			if (vd[i] != NULL)
2058 				vdev_split(vd[i]);
2059 		vdev_reopen(spa->spa_root_vdev);
2060 	}
2061 
2062 	kmem_free(vd, gcount * sizeof (vdev_t *));
2063 }
2064 
2065 static int
2066 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
2067     boolean_t mosconfig)
2068 {
2069 	nvlist_t *config = spa->spa_config;
2070 	char *ereport = FM_EREPORT_ZFS_POOL;
2071 	char *comment;
2072 	int error;
2073 	uint64_t pool_guid;
2074 	nvlist_t *nvl;
2075 
2076 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
2077 		return (SET_ERROR(EINVAL));
2078 
2079 	ASSERT(spa->spa_comment == NULL);
2080 	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2081 		spa->spa_comment = spa_strdup(comment);
2082 
2083 	/*
2084 	 * Versioning wasn't explicitly added to the label until later, so if
2085 	 * it's not present treat it as the initial version.
2086 	 */
2087 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2088 	    &spa->spa_ubsync.ub_version) != 0)
2089 		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2090 
2091 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2092 	    &spa->spa_config_txg);
2093 
2094 	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
2095 	    spa_guid_exists(pool_guid, 0)) {
2096 		error = SET_ERROR(EEXIST);
2097 	} else {
2098 		spa->spa_config_guid = pool_guid;
2099 
2100 		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
2101 		    &nvl) == 0) {
2102 			VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
2103 			    KM_SLEEP) == 0);
2104 		}
2105 
2106 		nvlist_free(spa->spa_load_info);
2107 		spa->spa_load_info = fnvlist_alloc();
2108 
2109 		gethrestime(&spa->spa_loaded_ts);
2110 		error = spa_load_impl(spa, pool_guid, config, state, type,
2111 		    mosconfig, &ereport);
2112 	}
2113 
2114 	/*
2115 	 * Don't count references from objsets that are already closed
2116 	 * and are making their way through the eviction process.
2117 	 */
2118 	spa_evicting_os_wait(spa);
2119 	spa->spa_minref = refcount_count(&spa->spa_refcount);
2120 	if (error) {
2121 		if (error != EEXIST) {
2122 			spa->spa_loaded_ts.tv_sec = 0;
2123 			spa->spa_loaded_ts.tv_nsec = 0;
2124 		}
2125 		if (error != EBADF) {
2126 			zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
2127 		}
2128 	}
2129 	spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2130 	spa->spa_ena = 0;
2131 
2132 	return (error);
2133 }
2134 
2135 /*
2136  * Load an existing storage pool, using the pool's builtin spa_config as a
2137  * source of configuration information.
2138  */
2139 static int
2140 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
2141     spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
2142     char **ereport)
2143 {
2144 	int error = 0;
2145 	nvlist_t *nvroot = NULL;
2146 	nvlist_t *label;
2147 	vdev_t *rvd;
2148 	uberblock_t *ub = &spa->spa_uberblock;
2149 	uint64_t children, config_cache_txg = spa->spa_config_txg;
2150 	int orig_mode = spa->spa_mode;
2151 	int parse;
2152 	uint64_t obj;
2153 	boolean_t missing_feat_write = B_FALSE;
2154 
2155 	/*
2156 	 * If this is an untrusted config, access the pool in read-only mode.
2157 	 * This prevents things like resilvering recently removed devices.
2158 	 */
2159 	if (!mosconfig)
2160 		spa->spa_mode = FREAD;
2161 
2162 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
2163 
2164 	spa->spa_load_state = state;
2165 
2166 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
2167 		return (SET_ERROR(EINVAL));
2168 
2169 	parse = (type == SPA_IMPORT_EXISTING ?
2170 	    VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2171 
2172 	/*
2173 	 * Create "The Godfather" zio to hold all async IOs
2174 	 */
2175 	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
2176 	    KM_SLEEP);
2177 	for (int i = 0; i < max_ncpus; i++) {
2178 		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
2179 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2180 		    ZIO_FLAG_GODFATHER);
2181 	}
2182 
2183 	/*
2184 	 * Parse the configuration into a vdev tree.  We explicitly set the
2185 	 * value that will be returned by spa_version() since parsing the
2186 	 * configuration requires knowing the version number.
2187 	 */
2188 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2189 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
2190 	spa_config_exit(spa, SCL_ALL, FTAG);
2191 
2192 	if (error != 0)
2193 		return (error);
2194 
2195 	ASSERT(spa->spa_root_vdev == rvd);
2196 	ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
2197 	ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
2198 
2199 	if (type != SPA_IMPORT_ASSEMBLE) {
2200 		ASSERT(spa_guid(spa) == pool_guid);
2201 	}
2202 
2203 	/*
2204 	 * Try to open all vdevs, loading each label in the process.
2205 	 */
2206 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2207 	error = vdev_open(rvd);
2208 	spa_config_exit(spa, SCL_ALL, FTAG);
2209 	if (error != 0)
2210 		return (error);
2211 
2212 	/*
2213 	 * We need to validate the vdev labels against the configuration that
2214 	 * we have in hand, which is dependent on the setting of mosconfig. If
2215 	 * mosconfig is true then we're validating the vdev labels based on
2216 	 * that config.  Otherwise, we're validating against the cached config
2217 	 * (zpool.cache) that was read when we loaded the zfs module, and then
2218 	 * later we will recursively call spa_load() and validate against
2219 	 * the vdev config.
2220 	 *
2221 	 * If we're assembling a new pool that's been split off from an
2222 	 * existing pool, the labels haven't yet been updated so we skip
2223 	 * validation for now.
2224 	 */
2225 	if (type != SPA_IMPORT_ASSEMBLE) {
2226 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2227 		error = vdev_validate(rvd, mosconfig);
2228 		spa_config_exit(spa, SCL_ALL, FTAG);
2229 
2230 		if (error != 0)
2231 			return (error);
2232 
2233 		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2234 			return (SET_ERROR(ENXIO));
2235 	}
2236 
2237 	/*
2238 	 * Find the best uberblock.
2239 	 */
2240 	vdev_uberblock_load(rvd, ub, &label);
2241 
2242 	/*
2243 	 * If we weren't able to find a single valid uberblock, return failure.
2244 	 */
2245 	if (ub->ub_txg == 0) {
2246 		nvlist_free(label);
2247 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2248 	}
2249 
2250 	/*
2251 	 * If the pool has an unsupported version we can't open it.
2252 	 */
2253 	if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2254 		nvlist_free(label);
2255 		return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2256 	}
2257 
2258 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2259 		nvlist_t *features;
2260 
2261 		/*
2262 		 * If we weren't able to find what's necessary for reading the
2263 		 * MOS in the label, return failure.
2264 		 */
2265 		if (label == NULL || nvlist_lookup_nvlist(label,
2266 		    ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) {
2267 			nvlist_free(label);
2268 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2269 			    ENXIO));
2270 		}
2271 
2272 		/*
2273 		 * Update our in-core representation with the definitive values
2274 		 * from the label.
2275 		 */
2276 		nvlist_free(spa->spa_label_features);
2277 		VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2278 	}
2279 
2280 	nvlist_free(label);
2281 
2282 	/*
2283 	 * Look through entries in the label nvlist's features_for_read. If
2284 	 * there is a feature listed there which we don't understand then we
2285 	 * cannot open a pool.
2286 	 */
2287 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2288 		nvlist_t *unsup_feat;
2289 
2290 		VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2291 		    0);
2292 
2293 		for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
2294 		    NULL); nvp != NULL;
2295 		    nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2296 			if (!zfeature_is_supported(nvpair_name(nvp))) {
2297 				VERIFY(nvlist_add_string(unsup_feat,
2298 				    nvpair_name(nvp), "") == 0);
2299 			}
2300 		}
2301 
2302 		if (!nvlist_empty(unsup_feat)) {
2303 			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2304 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2305 			nvlist_free(unsup_feat);
2306 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2307 			    ENOTSUP));
2308 		}
2309 
2310 		nvlist_free(unsup_feat);
2311 	}
2312 
2313 	/*
2314 	 * If the vdev guid sum doesn't match the uberblock, we have an
2315 	 * incomplete configuration.  We first check to see if the pool
2316 	 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
2317 	 * If it is, defer the vdev_guid_sum check till later so we
2318 	 * can handle missing vdevs.
2319 	 */
2320 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
2321 	    &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
2322 	    rvd->vdev_guid_sum != ub->ub_guid_sum)
2323 		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2324 
2325 	if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2326 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2327 		spa_try_repair(spa, config);
2328 		spa_config_exit(spa, SCL_ALL, FTAG);
2329 		nvlist_free(spa->spa_config_splitting);
2330 		spa->spa_config_splitting = NULL;
2331 	}
2332 
2333 	/*
2334 	 * Initialize internal SPA structures.
2335 	 */
2336 	spa->spa_state = POOL_STATE_ACTIVE;
2337 	spa->spa_ubsync = spa->spa_uberblock;
2338 	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2339 	    TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2340 	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2341 	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2342 	spa->spa_claim_max_txg = spa->spa_first_txg;
2343 	spa->spa_prev_software_version = ub->ub_software_version;
2344 
2345 	error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2346 	if (error)
2347 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2348 	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2349 
2350 	if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
2351 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2352 
2353 	if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2354 		boolean_t missing_feat_read = B_FALSE;
2355 		nvlist_t *unsup_feat, *enabled_feat;
2356 
2357 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2358 		    &spa->spa_feat_for_read_obj) != 0) {
2359 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2360 		}
2361 
2362 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2363 		    &spa->spa_feat_for_write_obj) != 0) {
2364 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2365 		}
2366 
2367 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2368 		    &spa->spa_feat_desc_obj) != 0) {
2369 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2370 		}
2371 
2372 		enabled_feat = fnvlist_alloc();
2373 		unsup_feat = fnvlist_alloc();
2374 
2375 		if (!spa_features_check(spa, B_FALSE,
2376 		    unsup_feat, enabled_feat))
2377 			missing_feat_read = B_TRUE;
2378 
2379 		if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) {
2380 			if (!spa_features_check(spa, B_TRUE,
2381 			    unsup_feat, enabled_feat)) {
2382 				missing_feat_write = B_TRUE;
2383 			}
2384 		}
2385 
2386 		fnvlist_add_nvlist(spa->spa_load_info,
2387 		    ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
2388 
2389 		if (!nvlist_empty(unsup_feat)) {
2390 			fnvlist_add_nvlist(spa->spa_load_info,
2391 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
2392 		}
2393 
2394 		fnvlist_free(enabled_feat);
2395 		fnvlist_free(unsup_feat);
2396 
2397 		if (!missing_feat_read) {
2398 			fnvlist_add_boolean(spa->spa_load_info,
2399 			    ZPOOL_CONFIG_CAN_RDONLY);
2400 		}
2401 
2402 		/*
2403 		 * If the state is SPA_LOAD_TRYIMPORT, our objective is
2404 		 * twofold: to determine whether the pool is available for
2405 		 * import in read-write mode and (if it is not) whether the
2406 		 * pool is available for import in read-only mode. If the pool
2407 		 * is available for import in read-write mode, it is displayed
2408 		 * as available in userland; if it is not available for import
2409 		 * in read-only mode, it is displayed as unavailable in
2410 		 * userland. If the pool is available for import in read-only
2411 		 * mode but not read-write mode, it is displayed as unavailable
2412 		 * in userland with a special note that the pool is actually
2413 		 * available for open in read-only mode.
2414 		 *
2415 		 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2416 		 * missing a feature for write, we must first determine whether
2417 		 * the pool can be opened read-only before returning to
2418 		 * userland in order to know whether to display the
2419 		 * abovementioned note.
2420 		 */
2421 		if (missing_feat_read || (missing_feat_write &&
2422 		    spa_writeable(spa))) {
2423 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2424 			    ENOTSUP));
2425 		}
2426 
2427 		/*
2428 		 * Load refcounts for ZFS features from disk into an in-memory
2429 		 * cache during SPA initialization.
2430 		 */
2431 		for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
2432 			uint64_t refcount;
2433 
2434 			error = feature_get_refcount_from_disk(spa,
2435 			    &spa_feature_table[i], &refcount);
2436 			if (error == 0) {
2437 				spa->spa_feat_refcount_cache[i] = refcount;
2438 			} else if (error == ENOTSUP) {
2439 				spa->spa_feat_refcount_cache[i] =
2440 				    SPA_FEATURE_DISABLED;
2441 			} else {
2442 				return (spa_vdev_err(rvd,
2443 				    VDEV_AUX_CORRUPT_DATA, EIO));
2444 			}
2445 		}
2446 	}
2447 
2448 	if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
2449 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
2450 		    &spa->spa_feat_enabled_txg_obj) != 0)
2451 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2452 	}
2453 
2454 	spa->spa_is_initializing = B_TRUE;
2455 	error = dsl_pool_open(spa->spa_dsl_pool);
2456 	spa->spa_is_initializing = B_FALSE;
2457 	if (error != 0)
2458 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2459 
2460 	if (!mosconfig) {
2461 		uint64_t hostid;
2462 		nvlist_t *policy = NULL, *nvconfig;
2463 
2464 		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2465 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2466 
2467 		if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
2468 		    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2469 			char *hostname;
2470 			unsigned long myhostid = 0;
2471 
2472 			VERIFY(nvlist_lookup_string(nvconfig,
2473 			    ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
2474 
2475 #ifdef	_KERNEL
2476 			myhostid = zone_get_hostid(NULL);
2477 #else	/* _KERNEL */
2478 			/*
2479 			 * We're emulating the system's hostid in userland, so
2480 			 * we can't use zone_get_hostid().
2481 			 */
2482 			(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2483 #endif	/* _KERNEL */
2484 			if (hostid != 0 && myhostid != 0 &&
2485 			    hostid != myhostid) {
2486 				nvlist_free(nvconfig);
2487 				cmn_err(CE_WARN, "pool '%s' could not be "
2488 				    "loaded as it was last accessed by "
2489 				    "another system (host: %s hostid: 0x%lx). "
2490 				    "See: http://illumos.org/msg/ZFS-8000-EY",
2491 				    spa_name(spa), hostname,
2492 				    (unsigned long)hostid);
2493 				return (SET_ERROR(EBADF));
2494 			}
2495 		}
2496 		if (nvlist_lookup_nvlist(spa->spa_config,
2497 		    ZPOOL_REWIND_POLICY, &policy) == 0)
2498 			VERIFY(nvlist_add_nvlist(nvconfig,
2499 			    ZPOOL_REWIND_POLICY, policy) == 0);
2500 
2501 		spa_config_set(spa, nvconfig);
2502 		spa_unload(spa);
2503 		spa_deactivate(spa);
2504 		spa_activate(spa, orig_mode);
2505 
2506 		return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
2507 	}
2508 
2509 	/* Grab the secret checksum salt from the MOS. */
2510 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2511 	    DMU_POOL_CHECKSUM_SALT, 1,
2512 	    sizeof (spa->spa_cksum_salt.zcs_bytes),
2513 	    spa->spa_cksum_salt.zcs_bytes);
2514 	if (error == ENOENT) {
2515 		/* Generate a new salt for subsequent use */
2516 		(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
2517 		    sizeof (spa->spa_cksum_salt.zcs_bytes));
2518 	} else if (error != 0) {
2519 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2520 	}
2521 
2522 	if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2523 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2524 	error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2525 	if (error != 0)
2526 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2527 
2528 	/*
2529 	 * Load the bit that tells us to use the new accounting function
2530 	 * (raid-z deflation).  If we have an older pool, this will not
2531 	 * be present.
2532 	 */
2533 	error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2534 	if (error != 0 && error != ENOENT)
2535 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2536 
2537 	error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2538 	    &spa->spa_creation_version);
2539 	if (error != 0 && error != ENOENT)
2540 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2541 
2542 	/*
2543 	 * Load the persistent error log.  If we have an older pool, this will
2544 	 * not be present.
2545 	 */
2546 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2547 	if (error != 0 && error != ENOENT)
2548 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2549 
2550 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2551 	    &spa->spa_errlog_scrub);
2552 	if (error != 0 && error != ENOENT)
2553 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2554 
2555 	/*
2556 	 * Load the history object.  If we have an older pool, this
2557 	 * will not be present.
2558 	 */
2559 	error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2560 	if (error != 0 && error != ENOENT)
2561 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2562 
2563 	/*
2564 	 * If we're assembling the pool from the split-off vdevs of
2565 	 * an existing pool, we don't want to attach the spares & cache
2566 	 * devices.
2567 	 */
2568 
2569 	/*
2570 	 * Load any hot spares for this pool.
2571 	 */
2572 	error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
2573 	if (error != 0 && error != ENOENT)
2574 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2575 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2576 		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2577 		if (load_nvlist(spa, spa->spa_spares.sav_object,
2578 		    &spa->spa_spares.sav_config) != 0)
2579 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2580 
2581 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2582 		spa_load_spares(spa);
2583 		spa_config_exit(spa, SCL_ALL, FTAG);
2584 	} else if (error == 0) {
2585 		spa->spa_spares.sav_sync = B_TRUE;
2586 	}
2587 
2588 	/*
2589 	 * Load any level 2 ARC devices for this pool.
2590 	 */
2591 	error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2592 	    &spa->spa_l2cache.sav_object);
2593 	if (error != 0 && error != ENOENT)
2594 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2595 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2596 		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2597 		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2598 		    &spa->spa_l2cache.sav_config) != 0)
2599 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2600 
2601 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2602 		spa_load_l2cache(spa);
2603 		spa_config_exit(spa, SCL_ALL, FTAG);
2604 	} else if (error == 0) {
2605 		spa->spa_l2cache.sav_sync = B_TRUE;
2606 	}
2607 
2608 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2609 
2610 	error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
2611 	if (error && error != ENOENT)
2612 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2613 
2614 	if (error == 0) {
2615 		uint64_t autoreplace;
2616 
2617 		spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2618 		spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2619 		spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2620 		spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2621 		spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2622 		spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2623 		    &spa->spa_dedup_ditto);
2624 
2625 		spa->spa_autoreplace = (autoreplace != 0);
2626 	}
2627 
2628 	/*
2629 	 * If the 'autoreplace' property is set, then post a resource notifying
2630 	 * the ZFS DE that it should not issue any faults for unopenable
2631 	 * devices.  We also iterate over the vdevs, and post a sysevent for any
2632 	 * unopenable vdevs so that the normal autoreplace handler can take
2633 	 * over.
2634 	 */
2635 	if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
2636 		spa_check_removed(spa->spa_root_vdev);
2637 		/*
2638 		 * For the import case, this is done in spa_import(), because
2639 		 * at this point we're using the spare definitions from
2640 		 * the MOS config, not necessarily from the userland config.
2641 		 */
2642 		if (state != SPA_LOAD_IMPORT) {
2643 			spa_aux_check_removed(&spa->spa_spares);
2644 			spa_aux_check_removed(&spa->spa_l2cache);
2645 		}
2646 	}
2647 
2648 	/*
2649 	 * Load the vdev state for all toplevel vdevs.
2650 	 */
2651 	vdev_load(rvd);
2652 
2653 	/*
2654 	 * Propagate the leaf DTLs we just loaded all the way up the tree.
2655 	 */
2656 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2657 	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
2658 	spa_config_exit(spa, SCL_ALL, FTAG);
2659 
2660 	/*
2661 	 * Load the DDTs (dedup tables).
2662 	 */
2663 	error = ddt_load(spa);
2664 	if (error != 0)
2665 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2666 
2667 	spa_update_dspace(spa);
2668 
2669 	/*
2670 	 * Validate the config, using the MOS config to fill in any
2671 	 * information which might be missing.  If we fail to validate
2672 	 * the config then declare the pool unfit for use. If we're
2673 	 * assembling a pool from a split, the log is not transferred
2674 	 * over.
2675 	 */
2676 	if (type != SPA_IMPORT_ASSEMBLE) {
2677 		nvlist_t *nvconfig;
2678 
2679 		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2680 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2681 
2682 		if (!spa_config_valid(spa, nvconfig)) {
2683 			nvlist_free(nvconfig);
2684 			return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2685 			    ENXIO));
2686 		}
2687 		nvlist_free(nvconfig);
2688 
2689 		/*
2690 		 * Now that we've validated the config, check the state of the
2691 		 * root vdev.  If it can't be opened, it indicates one or
2692 		 * more toplevel vdevs are faulted.
2693 		 */
2694 		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2695 			return (SET_ERROR(ENXIO));
2696 
2697 		if (spa_writeable(spa) && spa_check_logs(spa)) {
2698 			*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2699 			return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2700 		}
2701 	}
2702 
2703 	if (missing_feat_write) {
2704 		ASSERT(state == SPA_LOAD_TRYIMPORT);
2705 
2706 		/*
2707 		 * At this point, we know that we can open the pool in
2708 		 * read-only mode but not read-write mode. We now have enough
2709 		 * information and can return to userland.
2710 		 */
2711 		return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP));
2712 	}
2713 
2714 	/*
2715 	 * We've successfully opened the pool, verify that we're ready
2716 	 * to start pushing transactions.
2717 	 */
2718 	if (state != SPA_LOAD_TRYIMPORT) {
2719 		if (error = spa_load_verify(spa))
2720 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2721 			    error));
2722 	}
2723 
2724 	if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2725 	    spa->spa_load_max_txg == UINT64_MAX)) {
2726 		dmu_tx_t *tx;
2727 		int need_update = B_FALSE;
2728 		dsl_pool_t *dp = spa_get_dsl(spa);
2729 
2730 		ASSERT(state != SPA_LOAD_TRYIMPORT);
2731 
2732 		/*
2733 		 * Claim log blocks that haven't been committed yet.
2734 		 * This must all happen in a single txg.
2735 		 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2736 		 * invoked from zil_claim_log_block()'s i/o done callback.
2737 		 * Price of rollback is that we abandon the log.
2738 		 */
2739 		spa->spa_claiming = B_TRUE;
2740 
2741 		tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
2742 		(void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2743 		    zil_claim, tx, DS_FIND_CHILDREN);
2744 		dmu_tx_commit(tx);
2745 
2746 		spa->spa_claiming = B_FALSE;
2747 
2748 		spa_set_log_state(spa, SPA_LOG_GOOD);
2749 		spa->spa_sync_on = B_TRUE;
2750 		txg_sync_start(spa->spa_dsl_pool);
2751 
2752 		/*
2753 		 * Wait for all claims to sync.  We sync up to the highest
2754 		 * claimed log block birth time so that claimed log blocks
2755 		 * don't appear to be from the future.  spa_claim_max_txg
2756 		 * will have been set for us by either zil_check_log_chain()
2757 		 * (invoked from spa_check_logs()) or zil_claim() above.
2758 		 */
2759 		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2760 
2761 		/*
2762 		 * If the config cache is stale, or we have uninitialized
2763 		 * metaslabs (see spa_vdev_add()), then update the config.
2764 		 *
2765 		 * If this is a verbatim import, trust the current
2766 		 * in-core spa_config and update the disk labels.
2767 		 */
2768 		if (config_cache_txg != spa->spa_config_txg ||
2769 		    state == SPA_LOAD_IMPORT ||
2770 		    state == SPA_LOAD_RECOVER ||
2771 		    (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
2772 			need_update = B_TRUE;
2773 
2774 		for (int c = 0; c < rvd->vdev_children; c++)
2775 			if (rvd->vdev_child[c]->vdev_ms_array == 0)
2776 				need_update = B_TRUE;
2777 
2778 		/*
2779 		 * Update the config cache asychronously in case we're the
2780 		 * root pool, in which case the config cache isn't writable yet.
2781 		 */
2782 		if (need_update)
2783 			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2784 
2785 		/*
2786 		 * Check all DTLs to see if anything needs resilvering.
2787 		 */
2788 		if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2789 		    vdev_resilver_needed(rvd, NULL, NULL))
2790 			spa_async_request(spa, SPA_ASYNC_RESILVER);
2791 
2792 		/*
2793 		 * Log the fact that we booted up (so that we can detect if
2794 		 * we rebooted in the middle of an operation).
2795 		 */
2796 		spa_history_log_version(spa, "open");
2797 
2798 		/*
2799 		 * Delete any inconsistent datasets.
2800 		 */
2801 		(void) dmu_objset_find(spa_name(spa),
2802 		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2803 
2804 		/*
2805 		 * Clean up any stale temporary dataset userrefs.
2806 		 */
2807 		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2808 	}
2809 
2810 	return (0);
2811 }
2812 
2813 static int
2814 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
2815 {
2816 	int mode = spa->spa_mode;
2817 
2818 	spa_unload(spa);
2819 	spa_deactivate(spa);
2820 
2821 	spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
2822 
2823 	spa_activate(spa, mode);
2824 	spa_async_suspend(spa);
2825 
2826 	return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
2827 }
2828 
2829 /*
2830  * If spa_load() fails this function will try loading prior txg's. If
2831  * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
2832  * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
2833  * function will not rewind the pool and will return the same error as
2834  * spa_load().
2835  */
2836 static int
2837 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
2838     uint64_t max_request, int rewind_flags)
2839 {
2840 	nvlist_t *loadinfo = NULL;
2841 	nvlist_t *config = NULL;
2842 	int load_error, rewind_error;
2843 	uint64_t safe_rewind_txg;
2844 	uint64_t min_txg;
2845 
2846 	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
2847 		spa->spa_load_max_txg = spa->spa_load_txg;
2848 		spa_set_log_state(spa, SPA_LOG_CLEAR);
2849 	} else {
2850 		spa->spa_load_max_txg = max_request;
2851 		if (max_request != UINT64_MAX)
2852 			spa->spa_extreme_rewind = B_TRUE;
2853 	}
2854 
2855 	load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
2856 	    mosconfig);
2857 	if (load_error == 0)
2858 		return (0);
2859 
2860 	if (spa->spa_root_vdev != NULL)
2861 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2862 
2863 	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
2864 	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
2865 
2866 	if (rewind_flags & ZPOOL_NEVER_REWIND) {
2867 		nvlist_free(config);
2868 		return (load_error);
2869 	}
2870 
2871 	if (state == SPA_LOAD_RECOVER) {
2872 		/* Price of rolling back is discarding txgs, including log */
2873 		spa_set_log_state(spa, SPA_LOG_CLEAR);
2874 	} else {
2875 		/*
2876 		 * If we aren't rolling back save the load info from our first
2877 		 * import attempt so that we can restore it after attempting
2878 		 * to rewind.
2879 		 */
2880 		loadinfo = spa->spa_load_info;
2881 		spa->spa_load_info = fnvlist_alloc();
2882 	}
2883 
2884 	spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
2885 	safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
2886 	min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
2887 	    TXG_INITIAL : safe_rewind_txg;
2888 
2889 	/*
2890 	 * Continue as long as we're finding errors, we're still within
2891 	 * the acceptable rewind range, and we're still finding uberblocks
2892 	 */
2893 	while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
2894 	    spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
2895 		if (spa->spa_load_max_txg < safe_rewind_txg)
2896 			spa->spa_extreme_rewind = B_TRUE;
2897 		rewind_error = spa_load_retry(spa, state, mosconfig);
2898 	}
2899 
2900 	spa->spa_extreme_rewind = B_FALSE;
2901 	spa->spa_load_max_txg = UINT64_MAX;
2902 
2903 	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
2904 		spa_config_set(spa, config);
2905 
2906 	if (state == SPA_LOAD_RECOVER) {
2907 		ASSERT3P(loadinfo, ==, NULL);
2908 		return (rewind_error);
2909 	} else {
2910 		/* Store the rewind info as part of the initial load info */
2911 		fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
2912 		    spa->spa_load_info);
2913 
2914 		/* Restore the initial load info */
2915 		fnvlist_free(spa->spa_load_info);
2916 		spa->spa_load_info = loadinfo;
2917 
2918 		return (load_error);
2919 	}
2920 }
2921 
2922 /*
2923  * Pool Open/Import
2924  *
2925  * The import case is identical to an open except that the configuration is sent
2926  * down from userland, instead of grabbed from the configuration cache.  For the
2927  * case of an open, the pool configuration will exist in the
2928  * POOL_STATE_UNINITIALIZED state.
2929  *
2930  * The stats information (gen/count/ustats) is used to gather vdev statistics at
2931  * the same time open the pool, without having to keep around the spa_t in some
2932  * ambiguous state.
2933  */
2934 static int
2935 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
2936     nvlist_t **config)
2937 {
2938 	spa_t *spa;
2939 	spa_load_state_t state = SPA_LOAD_OPEN;
2940 	int error;
2941 	int locked = B_FALSE;
2942 
2943 	*spapp = NULL;
2944 
2945 	/*
2946 	 * As disgusting as this is, we need to support recursive calls to this
2947 	 * function because dsl_dir_open() is called during spa_load(), and ends
2948 	 * up calling spa_open() again.  The real fix is to figure out how to
2949 	 * avoid dsl_dir_open() calling this in the first place.
2950 	 */
2951 	if (mutex_owner(&spa_namespace_lock) != curthread) {
2952 		mutex_enter(&spa_namespace_lock);
2953 		locked = B_TRUE;
2954 	}
2955 
2956 	if ((spa = spa_lookup(pool)) == NULL) {
2957 		if (locked)
2958 			mutex_exit(&spa_namespace_lock);
2959 		return (SET_ERROR(ENOENT));
2960 	}
2961 
2962 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
2963 		zpool_rewind_policy_t policy;
2964 
2965 		zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
2966 		    &policy);
2967 		if (policy.zrp_request & ZPOOL_DO_REWIND)
2968 			state = SPA_LOAD_RECOVER;
2969 
2970 		spa_activate(spa, spa_mode_global);
2971 
2972 		if (state != SPA_LOAD_RECOVER)
2973 			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
2974 
2975 		error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
2976 		    policy.zrp_request);
2977 
2978 		if (error == EBADF) {
2979 			/*
2980 			 * If vdev_validate() returns failure (indicated by
2981 			 * EBADF), it indicates that one of the vdevs indicates
2982 			 * that the pool has been exported or destroyed.  If
2983 			 * this is the case, the config cache is out of sync and
2984 			 * we should remove the pool from the namespace.
2985 			 */
2986 			spa_unload(spa);
2987 			spa_deactivate(spa);
2988 			spa_config_sync(spa, B_TRUE, B_TRUE);
2989 			spa_remove(spa);
2990 			if (locked)
2991 				mutex_exit(&spa_namespace_lock);
2992 			return (SET_ERROR(ENOENT));
2993 		}
2994 
2995 		if (error) {
2996 			/*
2997 			 * We can't open the pool, but we still have useful
2998 			 * information: the state of each vdev after the
2999 			 * attempted vdev_open().  Return this to the user.
3000 			 */
3001 			if (config != NULL && spa->spa_config) {
3002 				VERIFY(nvlist_dup(spa->spa_config, config,
3003 				    KM_SLEEP) == 0);
3004 				VERIFY(nvlist_add_nvlist(*config,
3005 				    ZPOOL_CONFIG_LOAD_INFO,
3006 				    spa->spa_load_info) == 0);
3007 			}
3008 			spa_unload(spa);
3009 			spa_deactivate(spa);
3010 			spa->spa_last_open_failed = error;
3011 			if (locked)
3012 				mutex_exit(&spa_namespace_lock);
3013 			*spapp = NULL;
3014 			return (error);
3015 		}
3016 	}
3017 
3018 	spa_open_ref(spa, tag);
3019 
3020 	if (config != NULL)
3021 		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
3022 
3023 	/*
3024 	 * If we've recovered the pool, pass back any information we
3025 	 * gathered while doing the load.
3026 	 */
3027 	if (state == SPA_LOAD_RECOVER) {
3028 		VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
3029 		    spa->spa_load_info) == 0);
3030 	}
3031 
3032 	if (locked) {
3033 		spa->spa_last_open_failed = 0;
3034 		spa->spa_last_ubsync_txg = 0;
3035 		spa->spa_load_txg = 0;
3036 		mutex_exit(&spa_namespace_lock);
3037 	}
3038 
3039 	*spapp = spa;
3040 
3041 	return (0);
3042 }
3043 
3044 int
3045 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
3046     nvlist_t **config)
3047 {
3048 	return (spa_open_common(name, spapp, tag, policy, config));
3049 }
3050 
3051 int
3052 spa_open(const char *name, spa_t **spapp, void *tag)
3053 {
3054 	return (spa_open_common(name, spapp, tag, NULL, NULL));
3055 }
3056 
3057 /*
3058  * Lookup the given spa_t, incrementing the inject count in the process,
3059  * preventing it from being exported or destroyed.
3060  */
3061 spa_t *
3062 spa_inject_addref(char *name)
3063 {
3064 	spa_t *spa;
3065 
3066 	mutex_enter(&spa_namespace_lock);
3067 	if ((spa = spa_lookup(name)) == NULL) {
3068 		mutex_exit(&spa_namespace_lock);
3069 		return (NULL);
3070 	}
3071 	spa->spa_inject_ref++;
3072 	mutex_exit(&spa_namespace_lock);
3073 
3074 	return (spa);
3075 }
3076 
3077 void
3078 spa_inject_delref(spa_t *spa)
3079 {
3080 	mutex_enter(&spa_namespace_lock);
3081 	spa->spa_inject_ref--;
3082 	mutex_exit(&spa_namespace_lock);
3083 }
3084 
3085 /*
3086  * Add spares device information to the nvlist.
3087  */
3088 static void
3089 spa_add_spares(spa_t *spa, nvlist_t *config)
3090 {
3091 	nvlist_t **spares;
3092 	uint_t i, nspares;
3093 	nvlist_t *nvroot;
3094 	uint64_t guid;
3095 	vdev_stat_t *vs;
3096 	uint_t vsc;
3097 	uint64_t pool;
3098 
3099 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3100 
3101 	if (spa->spa_spares.sav_count == 0)
3102 		return;
3103 
3104 	VERIFY(nvlist_lookup_nvlist(config,
3105 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3106 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
3107 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3108 	if (nspares != 0) {
3109 		VERIFY(nvlist_add_nvlist_array(nvroot,
3110 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3111 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
3112 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3113 
3114 		/*
3115 		 * Go through and find any spares which have since been
3116 		 * repurposed as an active spare.  If this is the case, update
3117 		 * their status appropriately.
3118 		 */
3119 		for (i = 0; i < nspares; i++) {
3120 			VERIFY(nvlist_lookup_uint64(spares[i],
3121 			    ZPOOL_CONFIG_GUID, &guid) == 0);
3122 			if (spa_spare_exists(guid, &pool, NULL) &&
3123 			    pool != 0ULL) {
3124 				VERIFY(nvlist_lookup_uint64_array(
3125 				    spares[i], ZPOOL_CONFIG_VDEV_STATS,
3126 				    (uint64_t **)&vs, &vsc) == 0);
3127 				vs->vs_state = VDEV_STATE_CANT_OPEN;
3128 				vs->vs_aux = VDEV_AUX_SPARED;
3129 			}
3130 		}
3131 	}
3132 }
3133 
3134 /*
3135  * Add l2cache device information to the nvlist, including vdev stats.
3136  */
3137 static void
3138 spa_add_l2cache(spa_t *spa, nvlist_t *config)
3139 {
3140 	nvlist_t **l2cache;
3141 	uint_t i, j, nl2cache;
3142 	nvlist_t *nvroot;
3143 	uint64_t guid;
3144 	vdev_t *vd;
3145 	vdev_stat_t *vs;
3146 	uint_t vsc;
3147 
3148 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3149 
3150 	if (spa->spa_l2cache.sav_count == 0)
3151 		return;
3152 
3153 	VERIFY(nvlist_lookup_nvlist(config,
3154 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3155 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3156 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3157 	if (nl2cache != 0) {
3158 		VERIFY(nvlist_add_nvlist_array(nvroot,
3159 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3160 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
3161 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3162 
3163 		/*
3164 		 * Update level 2 cache device stats.
3165 		 */
3166 
3167 		for (i = 0; i < nl2cache; i++) {
3168 			VERIFY(nvlist_lookup_uint64(l2cache[i],
3169 			    ZPOOL_CONFIG_GUID, &guid) == 0);
3170 
3171 			vd = NULL;
3172 			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
3173 				if (guid ==
3174 				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
3175 					vd = spa->spa_l2cache.sav_vdevs[j];
3176 					break;
3177 				}
3178 			}
3179 			ASSERT(vd != NULL);
3180 
3181 			VERIFY(nvlist_lookup_uint64_array(l2cache[i],
3182 			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
3183 			    == 0);
3184 			vdev_get_stats(vd, vs);
3185 		}
3186 	}
3187 }
3188 
3189 static void
3190 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
3191 {
3192 	nvlist_t *features;
3193 	zap_cursor_t zc;
3194 	zap_attribute_t za;
3195 
3196 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3197 	VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3198 
3199 	if (spa->spa_feat_for_read_obj != 0) {
3200 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3201 		    spa->spa_feat_for_read_obj);
3202 		    zap_cursor_retrieve(&zc, &za) == 0;
3203 		    zap_cursor_advance(&zc)) {
3204 			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3205 			    za.za_num_integers == 1);
3206 			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3207 			    za.za_first_integer));
3208 		}
3209 		zap_cursor_fini(&zc);
3210 	}
3211 
3212 	if (spa->spa_feat_for_write_obj != 0) {
3213 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3214 		    spa->spa_feat_for_write_obj);
3215 		    zap_cursor_retrieve(&zc, &za) == 0;
3216 		    zap_cursor_advance(&zc)) {
3217 			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3218 			    za.za_num_integers == 1);
3219 			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3220 			    za.za_first_integer));
3221 		}
3222 		zap_cursor_fini(&zc);
3223 	}
3224 
3225 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
3226 	    features) == 0);
3227 	nvlist_free(features);
3228 }
3229 
3230 int
3231 spa_get_stats(const char *name, nvlist_t **config,
3232     char *altroot, size_t buflen)
3233 {
3234 	int error;
3235 	spa_t *spa;
3236 
3237 	*config = NULL;
3238 	error = spa_open_common(name, &spa, FTAG, NULL, config);
3239 
3240 	if (spa != NULL) {
3241 		/*
3242 		 * This still leaves a window of inconsistency where the spares
3243 		 * or l2cache devices could change and the config would be
3244 		 * self-inconsistent.
3245 		 */
3246 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3247 
3248 		if (*config != NULL) {
3249 			uint64_t loadtimes[2];
3250 
3251 			loadtimes[0] = spa->spa_loaded_ts.tv_sec;
3252 			loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
3253 			VERIFY(nvlist_add_uint64_array(*config,
3254 			    ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
3255 
3256 			VERIFY(nvlist_add_uint64(*config,
3257 			    ZPOOL_CONFIG_ERRCOUNT,
3258 			    spa_get_errlog_size(spa)) == 0);
3259 
3260 			if (spa_suspended(spa))
3261 				VERIFY(nvlist_add_uint64(*config,
3262 				    ZPOOL_CONFIG_SUSPENDED,
3263 				    spa->spa_failmode) == 0);
3264 
3265 			spa_add_spares(spa, *config);
3266 			spa_add_l2cache(spa, *config);
3267 			spa_add_feature_stats(spa, *config);
3268 		}
3269 	}
3270 
3271 	/*
3272 	 * We want to get the alternate root even for faulted pools, so we cheat
3273 	 * and call spa_lookup() directly.
3274 	 */
3275 	if (altroot) {
3276 		if (spa == NULL) {
3277 			mutex_enter(&spa_namespace_lock);
3278 			spa = spa_lookup(name);
3279 			if (spa)
3280 				spa_altroot(spa, altroot, buflen);
3281 			else
3282 				altroot[0] = '\0';
3283 			spa = NULL;
3284 			mutex_exit(&spa_namespace_lock);
3285 		} else {
3286 			spa_altroot(spa, altroot, buflen);
3287 		}
3288 	}
3289 
3290 	if (spa != NULL) {
3291 		spa_config_exit(spa, SCL_CONFIG, FTAG);
3292 		spa_close(spa, FTAG);
3293 	}
3294 
3295 	return (error);
3296 }
3297 
3298 /*
3299  * Validate that the auxiliary device array is well formed.  We must have an
3300  * array of nvlists, each which describes a valid leaf vdev.  If this is an
3301  * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
3302  * specified, as long as they are well-formed.
3303  */
3304 static int
3305 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
3306     spa_aux_vdev_t *sav, const char *config, uint64_t version,
3307     vdev_labeltype_t label)
3308 {
3309 	nvlist_t **dev;
3310 	uint_t i, ndev;
3311 	vdev_t *vd;
3312 	int error;
3313 
3314 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3315 
3316 	/*
3317 	 * It's acceptable to have no devs specified.
3318 	 */
3319 	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
3320 		return (0);
3321 
3322 	if (ndev == 0)
3323 		return (SET_ERROR(EINVAL));
3324 
3325 	/*
3326 	 * Make sure the pool is formatted with a version that supports this
3327 	 * device type.
3328 	 */
3329 	if (spa_version(spa) < version)
3330 		return (SET_ERROR(ENOTSUP));
3331 
3332 	/*
3333 	 * Set the pending device list so we correctly handle device in-use
3334 	 * checking.
3335 	 */
3336 	sav->sav_pending = dev;
3337 	sav->sav_npending = ndev;
3338 
3339 	for (i = 0; i < ndev; i++) {
3340 		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
3341 		    mode)) != 0)
3342 			goto out;
3343 
3344 		if (!vd->vdev_ops->vdev_op_leaf) {
3345 			vdev_free(vd);
3346 			error = SET_ERROR(EINVAL);
3347 			goto out;
3348 		}
3349 
3350 		/*
3351 		 * The L2ARC currently only supports disk devices in
3352 		 * kernel context.  For user-level testing, we allow it.
3353 		 */
3354 #ifdef _KERNEL
3355 		if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
3356 		    strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
3357 			error = SET_ERROR(ENOTBLK);
3358 			vdev_free(vd);
3359 			goto out;
3360 		}
3361 #endif
3362 		vd->vdev_top = vd;
3363 
3364 		if ((error = vdev_open(vd)) == 0 &&
3365 		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
3366 			VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
3367 			    vd->vdev_guid) == 0);
3368 		}
3369 
3370 		vdev_free(vd);
3371 
3372 		if (error &&
3373 		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
3374 			goto out;
3375 		else
3376 			error = 0;
3377 	}
3378 
3379 out:
3380 	sav->sav_pending = NULL;
3381 	sav->sav_npending = 0;
3382 	return (error);
3383 }
3384 
3385 static int
3386 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
3387 {
3388 	int error;
3389 
3390 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3391 
3392 	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3393 	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
3394 	    VDEV_LABEL_SPARE)) != 0) {
3395 		return (error);
3396 	}
3397 
3398 	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3399 	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
3400 	    VDEV_LABEL_L2CACHE));
3401 }
3402 
3403 static void
3404 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
3405     const char *config)
3406 {
3407 	int i;
3408 
3409 	if (sav->sav_config != NULL) {
3410 		nvlist_t **olddevs;
3411 		uint_t oldndevs;
3412 		nvlist_t **newdevs;
3413 
3414 		/*
3415 		 * Generate new dev list by concatentating with the
3416 		 * current dev list.
3417 		 */
3418 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
3419 		    &olddevs, &oldndevs) == 0);
3420 
3421 		newdevs = kmem_alloc(sizeof (void *) *
3422 		    (ndevs + oldndevs), KM_SLEEP);
3423 		for (i = 0; i < oldndevs; i++)
3424 			VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
3425 			    KM_SLEEP) == 0);
3426 		for (i = 0; i < ndevs; i++)
3427 			VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
3428 			    KM_SLEEP) == 0);
3429 
3430 		VERIFY(nvlist_remove(sav->sav_config, config,
3431 		    DATA_TYPE_NVLIST_ARRAY) == 0);
3432 
3433 		VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3434 		    config, newdevs, ndevs + oldndevs) == 0);
3435 		for (i = 0; i < oldndevs + ndevs; i++)
3436 			nvlist_free(newdevs[i]);
3437 		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
3438 	} else {
3439 		/*
3440 		 * Generate a new dev list.
3441 		 */
3442 		VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
3443 		    KM_SLEEP) == 0);
3444 		VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
3445 		    devs, ndevs) == 0);
3446 	}
3447 }
3448 
3449 /*
3450  * Stop and drop level 2 ARC devices
3451  */
3452 void
3453 spa_l2cache_drop(spa_t *spa)
3454 {
3455 	vdev_t *vd;
3456 	int i;
3457 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
3458 
3459 	for (i = 0; i < sav->sav_count; i++) {
3460 		uint64_t pool;
3461 
3462 		vd = sav->sav_vdevs[i];
3463 		ASSERT(vd != NULL);
3464 
3465 		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
3466 		    pool != 0ULL && l2arc_vdev_present(vd))
3467 			l2arc_remove_vdev(vd);
3468 	}
3469 }
3470 
3471 /*
3472  * Pool Creation
3473  */
3474 int
3475 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
3476     nvlist_t *zplprops)
3477 {
3478 	spa_t *spa;
3479 	char *altroot = NULL;
3480 	vdev_t *rvd;
3481 	dsl_pool_t *dp;
3482 	dmu_tx_t *tx;
3483 	int error = 0;
3484 	uint64_t txg = TXG_INITIAL;
3485 	nvlist_t **spares, **l2cache;
3486 	uint_t nspares, nl2cache;
3487 	uint64_t version, obj;
3488 	boolean_t has_features;
3489 
3490 	/*
3491 	 * If this pool already exists, return failure.
3492 	 */
3493 	mutex_enter(&spa_namespace_lock);
3494 	if (spa_lookup(pool) != NULL) {
3495 		mutex_exit(&spa_namespace_lock);
3496 		return (SET_ERROR(EEXIST));
3497 	}
3498 
3499 	/*
3500 	 * Allocate a new spa_t structure.
3501 	 */
3502 	(void) nvlist_lookup_string(props,
3503 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3504 	spa = spa_add(pool, NULL, altroot);
3505 	spa_activate(spa, spa_mode_global);
3506 
3507 	if (props && (error = spa_prop_validate(spa, props))) {
3508 		spa_deactivate(spa);
3509 		spa_remove(spa);
3510 		mutex_exit(&spa_namespace_lock);
3511 		return (error);
3512 	}
3513 
3514 	has_features = B_FALSE;
3515 	for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
3516 	    elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
3517 		if (zpool_prop_feature(nvpair_name(elem)))
3518 			has_features = B_TRUE;
3519 	}
3520 
3521 	if (has_features || nvlist_lookup_uint64(props,
3522 	    zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
3523 		version = SPA_VERSION;
3524 	}
3525 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
3526 
3527 	spa->spa_first_txg = txg;
3528 	spa->spa_uberblock.ub_txg = txg - 1;
3529 	spa->spa_uberblock.ub_version = version;
3530 	spa->spa_ubsync = spa->spa_uberblock;
3531 
3532 	/*
3533 	 * Create "The Godfather" zio to hold all async IOs
3534 	 */
3535 	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
3536 	    KM_SLEEP);
3537 	for (int i = 0; i < max_ncpus; i++) {
3538 		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
3539 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3540 		    ZIO_FLAG_GODFATHER);
3541 	}
3542 
3543 	/*
3544 	 * Create the root vdev.
3545 	 */
3546 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3547 
3548 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
3549 
3550 	ASSERT(error != 0 || rvd != NULL);
3551 	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
3552 
3553 	if (error == 0 && !zfs_allocatable_devs(nvroot))
3554 		error = SET_ERROR(EINVAL);
3555 
3556 	if (error == 0 &&
3557 	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
3558 	    (error = spa_validate_aux(spa, nvroot, txg,
3559 	    VDEV_ALLOC_ADD)) == 0) {
3560 		for (int c = 0; c < rvd->vdev_children; c++) {
3561 			vdev_metaslab_set_size(rvd->vdev_child[c]);
3562 			vdev_expand(rvd->vdev_child[c], txg);
3563 		}
3564 	}
3565 
3566 	spa_config_exit(spa, SCL_ALL, FTAG);
3567 
3568 	if (error != 0) {
3569 		spa_unload(spa);
3570 		spa_deactivate(spa);
3571 		spa_remove(spa);
3572 		mutex_exit(&spa_namespace_lock);
3573 		return (error);
3574 	}
3575 
3576 	/*
3577 	 * Get the list of spares, if specified.
3578 	 */
3579 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3580 	    &spares, &nspares) == 0) {
3581 		VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
3582 		    KM_SLEEP) == 0);
3583 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3584 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3585 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3586 		spa_load_spares(spa);
3587 		spa_config_exit(spa, SCL_ALL, FTAG);
3588 		spa->spa_spares.sav_sync = B_TRUE;
3589 	}
3590 
3591 	/*
3592 	 * Get the list of level 2 cache devices, if specified.
3593 	 */
3594 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3595 	    &l2cache, &nl2cache) == 0) {
3596 		VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3597 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
3598 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3599 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3600 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3601 		spa_load_l2cache(spa);
3602 		spa_config_exit(spa, SCL_ALL, FTAG);
3603 		spa->spa_l2cache.sav_sync = B_TRUE;
3604 	}
3605 
3606 	spa->spa_is_initializing = B_TRUE;
3607 	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
3608 	spa->spa_meta_objset = dp->dp_meta_objset;
3609 	spa->spa_is_initializing = B_FALSE;
3610 
3611 	/*
3612 	 * Create DDTs (dedup tables).
3613 	 */
3614 	ddt_create(spa);
3615 
3616 	spa_update_dspace(spa);
3617 
3618 	tx = dmu_tx_create_assigned(dp, txg);
3619 
3620 	/*
3621 	 * Create the pool config object.
3622 	 */
3623 	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
3624 	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
3625 	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
3626 
3627 	if (zap_add(spa->spa_meta_objset,
3628 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
3629 	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
3630 		cmn_err(CE_PANIC, "failed to add pool config");
3631 	}
3632 
3633 	if (spa_version(spa) >= SPA_VERSION_FEATURES)
3634 		spa_feature_create_zap_objects(spa, tx);
3635 
3636 	if (zap_add(spa->spa_meta_objset,
3637 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
3638 	    sizeof (uint64_t), 1, &version, tx) != 0) {
3639 		cmn_err(CE_PANIC, "failed to add pool version");
3640 	}
3641 
3642 	/* Newly created pools with the right version are always deflated. */
3643 	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
3644 		spa->spa_deflate = TRUE;
3645 		if (zap_add(spa->spa_meta_objset,
3646 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3647 		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
3648 			cmn_err(CE_PANIC, "failed to add deflate");
3649 		}
3650 	}
3651 
3652 	/*
3653 	 * Create the deferred-free bpobj.  Turn off compression
3654 	 * because sync-to-convergence takes longer if the blocksize
3655 	 * keeps changing.
3656 	 */
3657 	obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
3658 	dmu_object_set_compress(spa->spa_meta_objset, obj,
3659 	    ZIO_COMPRESS_OFF, tx);
3660 	if (zap_add(spa->spa_meta_objset,
3661 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
3662 	    sizeof (uint64_t), 1, &obj, tx) != 0) {
3663 		cmn_err(CE_PANIC, "failed to add bpobj");
3664 	}
3665 	VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
3666 	    spa->spa_meta_objset, obj));
3667 
3668 	/*
3669 	 * Create the pool's history object.
3670 	 */
3671 	if (version >= SPA_VERSION_ZPOOL_HISTORY)
3672 		spa_history_create_obj(spa, tx);
3673 
3674 	/*
3675 	 * Generate some random noise for salted checksums to operate on.
3676 	 */
3677 	(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
3678 	    sizeof (spa->spa_cksum_salt.zcs_bytes));
3679 
3680 	/*
3681 	 * Set pool properties.
3682 	 */
3683 	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
3684 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3685 	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
3686 	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
3687 
3688 	if (props != NULL) {
3689 		spa_configfile_set(spa, props, B_FALSE);
3690 		spa_sync_props(props, tx);
3691 	}
3692 
3693 	dmu_tx_commit(tx);
3694 
3695 	spa->spa_sync_on = B_TRUE;
3696 	txg_sync_start(spa->spa_dsl_pool);
3697 
3698 	/*
3699 	 * We explicitly wait for the first transaction to complete so that our
3700 	 * bean counters are appropriately updated.
3701 	 */
3702 	txg_wait_synced(spa->spa_dsl_pool, txg);
3703 
3704 	spa_config_sync(spa, B_FALSE, B_TRUE);
3705 	spa_event_notify(spa, NULL, ESC_ZFS_POOL_CREATE);
3706 
3707 	spa_history_log_version(spa, "create");
3708 
3709 	/*
3710 	 * Don't count references from objsets that are already closed
3711 	 * and are making their way through the eviction process.
3712 	 */
3713 	spa_evicting_os_wait(spa);
3714 	spa->spa_minref = refcount_count(&spa->spa_refcount);
3715 
3716 	mutex_exit(&spa_namespace_lock);
3717 
3718 	return (0);
3719 }
3720 
3721 #ifdef _KERNEL
3722 /*
3723  * Get the root pool information from the root disk, then import the root pool
3724  * during the system boot up time.
3725  */
3726 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
3727 
3728 static nvlist_t *
3729 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
3730 {
3731 	nvlist_t *config;
3732 	nvlist_t *nvtop, *nvroot;
3733 	uint64_t pgid;
3734 
3735 	if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
3736 		return (NULL);
3737 
3738 	/*
3739 	 * Add this top-level vdev to the child array.
3740 	 */
3741 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3742 	    &nvtop) == 0);
3743 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3744 	    &pgid) == 0);
3745 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
3746 
3747 	/*
3748 	 * Put this pool's top-level vdevs into a root vdev.
3749 	 */
3750 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3751 	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3752 	    VDEV_TYPE_ROOT) == 0);
3753 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3754 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3755 	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3756 	    &nvtop, 1) == 0);
3757 
3758 	/*
3759 	 * Replace the existing vdev_tree with the new root vdev in
3760 	 * this pool's configuration (remove the old, add the new).
3761 	 */
3762 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3763 	nvlist_free(nvroot);
3764 	return (config);
3765 }
3766 
3767 /*
3768  * Walk the vdev tree and see if we can find a device with "better"
3769  * configuration. A configuration is "better" if the label on that
3770  * device has a more recent txg.
3771  */
3772 static void
3773 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
3774 {
3775 	for (int c = 0; c < vd->vdev_children; c++)
3776 		spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
3777 
3778 	if (vd->vdev_ops->vdev_op_leaf) {
3779 		nvlist_t *label;
3780 		uint64_t label_txg;
3781 
3782 		if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
3783 		    &label) != 0)
3784 			return;
3785 
3786 		VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
3787 		    &label_txg) == 0);
3788 
3789 		/*
3790 		 * Do we have a better boot device?
3791 		 */
3792 		if (label_txg > *txg) {
3793 			*txg = label_txg;
3794 			*avd = vd;
3795 		}
3796 		nvlist_free(label);
3797 	}
3798 }
3799 
3800 /*
3801  * Import a root pool.
3802  *
3803  * For x86. devpath_list will consist of devid and/or physpath name of
3804  * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
3805  * The GRUB "findroot" command will return the vdev we should boot.
3806  *
3807  * For Sparc, devpath_list consists the physpath name of the booting device
3808  * no matter the rootpool is a single device pool or a mirrored pool.
3809  * e.g.
3810  *	"/pci@1f,0/ide@d/disk@0,0:a"
3811  */
3812 int
3813 spa_import_rootpool(char *devpath, char *devid)
3814 {
3815 	spa_t *spa;
3816 	vdev_t *rvd, *bvd, *avd = NULL;
3817 	nvlist_t *config, *nvtop;
3818 	uint64_t guid, txg;
3819 	char *pname;
3820 	int error;
3821 
3822 	/*
3823 	 * Read the label from the boot device and generate a configuration.
3824 	 */
3825 	config = spa_generate_rootconf(devpath, devid, &guid);
3826 #if defined(_OBP) && defined(_KERNEL)
3827 	if (config == NULL) {
3828 		if (strstr(devpath, "/iscsi/ssd") != NULL) {
3829 			/* iscsi boot */
3830 			get_iscsi_bootpath_phy(devpath);
3831 			config = spa_generate_rootconf(devpath, devid, &guid);
3832 		}
3833 	}
3834 #endif
3835 	if (config == NULL) {
3836 		cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
3837 		    devpath);
3838 		return (SET_ERROR(EIO));
3839 	}
3840 
3841 	VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3842 	    &pname) == 0);
3843 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
3844 
3845 	mutex_enter(&spa_namespace_lock);
3846 	if ((spa = spa_lookup(pname)) != NULL) {
3847 		/*
3848 		 * Remove the existing root pool from the namespace so that we
3849 		 * can replace it with the correct config we just read in.
3850 		 */
3851 		spa_remove(spa);
3852 	}
3853 
3854 	spa = spa_add(pname, config, NULL);
3855 	spa->spa_is_root = B_TRUE;
3856 	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
3857 
3858 	/*
3859 	 * Build up a vdev tree based on the boot device's label config.
3860 	 */
3861 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3862 	    &nvtop) == 0);
3863 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3864 	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
3865 	    VDEV_ALLOC_ROOTPOOL);
3866 	spa_config_exit(spa, SCL_ALL, FTAG);
3867 	if (error) {
3868 		mutex_exit(&spa_namespace_lock);
3869 		nvlist_free(config);
3870 		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
3871 		    pname);
3872 		return (error);
3873 	}
3874 
3875 	/*
3876 	 * Get the boot vdev.
3877 	 */
3878 	if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
3879 		cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
3880 		    (u_longlong_t)guid);
3881 		error = SET_ERROR(ENOENT);
3882 		goto out;
3883 	}
3884 
3885 	/*
3886 	 * Determine if there is a better boot device.
3887 	 */
3888 	avd = bvd;
3889 	spa_alt_rootvdev(rvd, &avd, &txg);
3890 	if (avd != bvd) {
3891 		cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
3892 		    "try booting from '%s'", avd->vdev_path);
3893 		error = SET_ERROR(EINVAL);
3894 		goto out;
3895 	}
3896 
3897 	/*
3898 	 * If the boot device is part of a spare vdev then ensure that
3899 	 * we're booting off the active spare.
3900 	 */
3901 	if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3902 	    !bvd->vdev_isspare) {
3903 		cmn_err(CE_NOTE, "The boot device is currently spared. Please "
3904 		    "try booting from '%s'",
3905 		    bvd->vdev_parent->
3906 		    vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
3907 		error = SET_ERROR(EINVAL);
3908 		goto out;
3909 	}
3910 
3911 	error = 0;
3912 out:
3913 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3914 	vdev_free(rvd);
3915 	spa_config_exit(spa, SCL_ALL, FTAG);
3916 	mutex_exit(&spa_namespace_lock);
3917 
3918 	nvlist_free(config);
3919 	return (error);
3920 }
3921 
3922 #endif
3923 
3924 /*
3925  * Import a non-root pool into the system.
3926  */
3927 int
3928 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
3929 {
3930 	spa_t *spa;
3931 	char *altroot = NULL;
3932 	spa_load_state_t state = SPA_LOAD_IMPORT;
3933 	zpool_rewind_policy_t policy;
3934 	uint64_t mode = spa_mode_global;
3935 	uint64_t readonly = B_FALSE;
3936 	int error;
3937 	nvlist_t *nvroot;
3938 	nvlist_t **spares, **l2cache;
3939 	uint_t nspares, nl2cache;
3940 
3941 	/*
3942 	 * If a pool with this name exists, return failure.
3943 	 */
3944 	mutex_enter(&spa_namespace_lock);
3945 	if (spa_lookup(pool) != NULL) {
3946 		mutex_exit(&spa_namespace_lock);
3947 		return (SET_ERROR(EEXIST));
3948 	}
3949 
3950 	/*
3951 	 * Create and initialize the spa structure.
3952 	 */
3953 	(void) nvlist_lookup_string(props,
3954 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3955 	(void) nvlist_lookup_uint64(props,
3956 	    zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
3957 	if (readonly)
3958 		mode = FREAD;
3959 	spa = spa_add(pool, config, altroot);
3960 	spa->spa_import_flags = flags;
3961 
3962 	/*
3963 	 * Verbatim import - Take a pool and insert it into the namespace
3964 	 * as if it had been loaded at boot.
3965 	 */
3966 	if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
3967 		if (props != NULL)
3968 			spa_configfile_set(spa, props, B_FALSE);
3969 
3970 		spa_config_sync(spa, B_FALSE, B_TRUE);
3971 		spa_event_notify(spa, NULL, ESC_ZFS_POOL_IMPORT);
3972 
3973 		mutex_exit(&spa_namespace_lock);
3974 		return (0);
3975 	}
3976 
3977 	spa_activate(spa, mode);
3978 
3979 	/*
3980 	 * Don't start async tasks until we know everything is healthy.
3981 	 */
3982 	spa_async_suspend(spa);
3983 
3984 	zpool_get_rewind_policy(config, &policy);
3985 	if (policy.zrp_request & ZPOOL_DO_REWIND)
3986 		state = SPA_LOAD_RECOVER;
3987 
3988 	/*
3989 	 * Pass off the heavy lifting to spa_load().  Pass TRUE for mosconfig
3990 	 * because the user-supplied config is actually the one to trust when
3991 	 * doing an import.
3992 	 */
3993 	if (state != SPA_LOAD_RECOVER)
3994 		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
3995 
3996 	error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
3997 	    policy.zrp_request);
3998 
3999 	/*
4000 	 * Propagate anything learned while loading the pool and pass it
4001 	 * back to caller (i.e. rewind info, missing devices, etc).
4002 	 */
4003 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4004 	    spa->spa_load_info) == 0);
4005 
4006 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4007 	/*
4008 	 * Toss any existing sparelist, as it doesn't have any validity
4009 	 * anymore, and conflicts with spa_has_spare().
4010 	 */
4011 	if (spa->spa_spares.sav_config) {
4012 		nvlist_free(spa->spa_spares.sav_config);
4013 		spa->spa_spares.sav_config = NULL;
4014 		spa_load_spares(spa);
4015 	}
4016 	if (spa->spa_l2cache.sav_config) {
4017 		nvlist_free(spa->spa_l2cache.sav_config);
4018 		spa->spa_l2cache.sav_config = NULL;
4019 		spa_load_l2cache(spa);
4020 	}
4021 
4022 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4023 	    &nvroot) == 0);
4024 	if (error == 0)
4025 		error = spa_validate_aux(spa, nvroot, -1ULL,
4026 		    VDEV_ALLOC_SPARE);
4027 	if (error == 0)
4028 		error = spa_validate_aux(spa, nvroot, -1ULL,
4029 		    VDEV_ALLOC_L2CACHE);
4030 	spa_config_exit(spa, SCL_ALL, FTAG);
4031 
4032 	if (props != NULL)
4033 		spa_configfile_set(spa, props, B_FALSE);
4034 
4035 	if (error != 0 || (props && spa_writeable(spa) &&
4036 	    (error = spa_prop_set(spa, props)))) {
4037 		spa_unload(spa);
4038 		spa_deactivate(spa);
4039 		spa_remove(spa);
4040 		mutex_exit(&spa_namespace_lock);
4041 		return (error);
4042 	}
4043 
4044 	spa_async_resume(spa);
4045 
4046 	/*
4047 	 * Override any spares and level 2 cache devices as specified by
4048 	 * the user, as these may have correct device names/devids, etc.
4049 	 */
4050 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
4051 	    &spares, &nspares) == 0) {
4052 		if (spa->spa_spares.sav_config)
4053 			VERIFY(nvlist_remove(spa->spa_spares.sav_config,
4054 			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
4055 		else
4056 			VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
4057 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4058 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
4059 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
4060 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4061 		spa_load_spares(spa);
4062 		spa_config_exit(spa, SCL_ALL, FTAG);
4063 		spa->spa_spares.sav_sync = B_TRUE;
4064 	}
4065 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
4066 	    &l2cache, &nl2cache) == 0) {
4067 		if (spa->spa_l2cache.sav_config)
4068 			VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
4069 			    ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
4070 		else
4071 			VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
4072 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4073 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
4074 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4075 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4076 		spa_load_l2cache(spa);
4077 		spa_config_exit(spa, SCL_ALL, FTAG);
4078 		spa->spa_l2cache.sav_sync = B_TRUE;
4079 	}
4080 
4081 	/*
4082 	 * Check for any removed devices.
4083 	 */
4084 	if (spa->spa_autoreplace) {
4085 		spa_aux_check_removed(&spa->spa_spares);
4086 		spa_aux_check_removed(&spa->spa_l2cache);
4087 	}
4088 
4089 	if (spa_writeable(spa)) {
4090 		/*
4091 		 * Update the config cache to include the newly-imported pool.
4092 		 */
4093 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4094 	}
4095 
4096 	/*
4097 	 * It's possible that the pool was expanded while it was exported.
4098 	 * We kick off an async task to handle this for us.
4099 	 */
4100 	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
4101 
4102 	spa_history_log_version(spa, "import");
4103 
4104 	spa_event_notify(spa, NULL, ESC_ZFS_POOL_IMPORT);
4105 
4106 	mutex_exit(&spa_namespace_lock);
4107 
4108 	return (0);
4109 }
4110 
4111 nvlist_t *
4112 spa_tryimport(nvlist_t *tryconfig)
4113 {
4114 	nvlist_t *config = NULL;
4115 	char *poolname;
4116 	spa_t *spa;
4117 	uint64_t state;
4118 	int error;
4119 
4120 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
4121 		return (NULL);
4122 
4123 	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
4124 		return (NULL);
4125 
4126 	/*
4127 	 * Create and initialize the spa structure.
4128 	 */
4129 	mutex_enter(&spa_namespace_lock);
4130 	spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
4131 	spa_activate(spa, FREAD);
4132 
4133 	/*
4134 	 * Pass off the heavy lifting to spa_load().
4135 	 * Pass TRUE for mosconfig because the user-supplied config
4136 	 * is actually the one to trust when doing an import.
4137 	 */
4138 	error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
4139 
4140 	/*
4141 	 * If 'tryconfig' was at least parsable, return the current config.
4142 	 */
4143 	if (spa->spa_root_vdev != NULL) {
4144 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4145 		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
4146 		    poolname) == 0);
4147 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4148 		    state) == 0);
4149 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
4150 		    spa->spa_uberblock.ub_timestamp) == 0);
4151 		VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4152 		    spa->spa_load_info) == 0);
4153 
4154 		/*
4155 		 * If the bootfs property exists on this pool then we
4156 		 * copy it out so that external consumers can tell which
4157 		 * pools are bootable.
4158 		 */
4159 		if ((!error || error == EEXIST) && spa->spa_bootfs) {
4160 			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4161 
4162 			/*
4163 			 * We have to play games with the name since the
4164 			 * pool was opened as TRYIMPORT_NAME.
4165 			 */
4166 			if (dsl_dsobj_to_dsname(spa_name(spa),
4167 			    spa->spa_bootfs, tmpname) == 0) {
4168 				char *cp;
4169 				char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4170 
4171 				cp = strchr(tmpname, '/');
4172 				if (cp == NULL) {
4173 					(void) strlcpy(dsname, tmpname,
4174 					    MAXPATHLEN);
4175 				} else {
4176 					(void) snprintf(dsname, MAXPATHLEN,
4177 					    "%s/%s", poolname, ++cp);
4178 				}
4179 				VERIFY(nvlist_add_string(config,
4180 				    ZPOOL_CONFIG_BOOTFS, dsname) == 0);
4181 				kmem_free(dsname, MAXPATHLEN);
4182 			}
4183 			kmem_free(tmpname, MAXPATHLEN);
4184 		}
4185 
4186 		/*
4187 		 * Add the list of hot spares and level 2 cache devices.
4188 		 */
4189 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4190 		spa_add_spares(spa, config);
4191 		spa_add_l2cache(spa, config);
4192 		spa_config_exit(spa, SCL_CONFIG, FTAG);
4193 	}
4194 
4195 	spa_unload(spa);
4196 	spa_deactivate(spa);
4197 	spa_remove(spa);
4198 	mutex_exit(&spa_namespace_lock);
4199 
4200 	return (config);
4201 }
4202 
4203 /*
4204  * Pool export/destroy
4205  *
4206  * The act of destroying or exporting a pool is very simple.  We make sure there
4207  * is no more pending I/O and any references to the pool are gone.  Then, we
4208  * update the pool state and sync all the labels to disk, removing the
4209  * configuration from the cache afterwards. If the 'hardforce' flag is set, then
4210  * we don't sync the labels or remove the configuration cache.
4211  */
4212 static int
4213 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
4214     boolean_t force, boolean_t hardforce)
4215 {
4216 	spa_t *spa;
4217 
4218 	if (oldconfig)
4219 		*oldconfig = NULL;
4220 
4221 	if (!(spa_mode_global & FWRITE))
4222 		return (SET_ERROR(EROFS));
4223 
4224 	mutex_enter(&spa_namespace_lock);
4225 	if ((spa = spa_lookup(pool)) == NULL) {
4226 		mutex_exit(&spa_namespace_lock);
4227 		return (SET_ERROR(ENOENT));
4228 	}
4229 
4230 	/*
4231 	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
4232 	 * reacquire the namespace lock, and see if we can export.
4233 	 */
4234 	spa_open_ref(spa, FTAG);
4235 	mutex_exit(&spa_namespace_lock);
4236 	spa_async_suspend(spa);
4237 	mutex_enter(&spa_namespace_lock);
4238 	spa_close(spa, FTAG);
4239 
4240 	/*
4241 	 * The pool will be in core if it's openable,
4242 	 * in which case we can modify its state.
4243 	 */
4244 	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
4245 		/*
4246 		 * Objsets may be open only because they're dirty, so we
4247 		 * have to force it to sync before checking spa_refcnt.
4248 		 */
4249 		txg_wait_synced(spa->spa_dsl_pool, 0);
4250 		spa_evicting_os_wait(spa);
4251 
4252 		/*
4253 		 * A pool cannot be exported or destroyed if there are active
4254 		 * references.  If we are resetting a pool, allow references by
4255 		 * fault injection handlers.
4256 		 */
4257 		if (!spa_refcount_zero(spa) ||
4258 		    (spa->spa_inject_ref != 0 &&
4259 		    new_state != POOL_STATE_UNINITIALIZED)) {
4260 			spa_async_resume(spa);
4261 			mutex_exit(&spa_namespace_lock);
4262 			return (SET_ERROR(EBUSY));
4263 		}
4264 
4265 		/*
4266 		 * A pool cannot be exported if it has an active shared spare.
4267 		 * This is to prevent other pools stealing the active spare
4268 		 * from an exported pool. At user's own will, such pool can
4269 		 * be forcedly exported.
4270 		 */
4271 		if (!force && new_state == POOL_STATE_EXPORTED &&
4272 		    spa_has_active_shared_spare(spa)) {
4273 			spa_async_resume(spa);
4274 			mutex_exit(&spa_namespace_lock);
4275 			return (SET_ERROR(EXDEV));
4276 		}
4277 
4278 		/*
4279 		 * We want this to be reflected on every label,
4280 		 * so mark them all dirty.  spa_unload() will do the
4281 		 * final sync that pushes these changes out.
4282 		 */
4283 		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
4284 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4285 			spa->spa_state = new_state;
4286 			spa->spa_final_txg = spa_last_synced_txg(spa) +
4287 			    TXG_DEFER_SIZE + 1;
4288 			vdev_config_dirty(spa->spa_root_vdev);
4289 			spa_config_exit(spa, SCL_ALL, FTAG);
4290 		}
4291 	}
4292 
4293 	spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
4294 
4295 	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4296 		spa_unload(spa);
4297 		spa_deactivate(spa);
4298 	}
4299 
4300 	if (oldconfig && spa->spa_config)
4301 		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
4302 
4303 	if (new_state != POOL_STATE_UNINITIALIZED) {
4304 		if (!hardforce)
4305 			spa_config_sync(spa, B_TRUE, B_TRUE);
4306 		spa_remove(spa);
4307 	}
4308 	mutex_exit(&spa_namespace_lock);
4309 
4310 	return (0);
4311 }
4312 
4313 /*
4314  * Destroy a storage pool.
4315  */
4316 int
4317 spa_destroy(char *pool)
4318 {
4319 	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
4320 	    B_FALSE, B_FALSE));
4321 }
4322 
4323 /*
4324  * Export a storage pool.
4325  */
4326 int
4327 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
4328     boolean_t hardforce)
4329 {
4330 	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
4331 	    force, hardforce));
4332 }
4333 
4334 /*
4335  * Similar to spa_export(), this unloads the spa_t without actually removing it
4336  * from the namespace in any way.
4337  */
4338 int
4339 spa_reset(char *pool)
4340 {
4341 	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
4342 	    B_FALSE, B_FALSE));
4343 }
4344 
4345 /*
4346  * ==========================================================================
4347  * Device manipulation
4348  * ==========================================================================
4349  */
4350 
4351 /*
4352  * Add a device to a storage pool.
4353  */
4354 int
4355 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
4356 {
4357 	uint64_t txg, id;
4358 	int error;
4359 	vdev_t *rvd = spa->spa_root_vdev;
4360 	vdev_t *vd, *tvd;
4361 	nvlist_t **spares, **l2cache;
4362 	uint_t nspares, nl2cache;
4363 
4364 	ASSERT(spa_writeable(spa));
4365 
4366 	txg = spa_vdev_enter(spa);
4367 
4368 	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
4369 	    VDEV_ALLOC_ADD)) != 0)
4370 		return (spa_vdev_exit(spa, NULL, txg, error));
4371 
4372 	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
4373 
4374 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
4375 	    &nspares) != 0)
4376 		nspares = 0;
4377 
4378 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
4379 	    &nl2cache) != 0)
4380 		nl2cache = 0;
4381 
4382 	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
4383 		return (spa_vdev_exit(spa, vd, txg, EINVAL));
4384 
4385 	if (vd->vdev_children != 0 &&
4386 	    (error = vdev_create(vd, txg, B_FALSE)) != 0)
4387 		return (spa_vdev_exit(spa, vd, txg, error));
4388 
4389 	/*
4390 	 * We must validate the spares and l2cache devices after checking the
4391 	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
4392 	 */
4393 	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
4394 		return (spa_vdev_exit(spa, vd, txg, error));
4395 
4396 	/*
4397 	 * Transfer each new top-level vdev from vd to rvd.
4398 	 */
4399 	for (int c = 0; c < vd->vdev_children; c++) {
4400 
4401 		/*
4402 		 * Set the vdev id to the first hole, if one exists.
4403 		 */
4404 		for (id = 0; id < rvd->vdev_children; id++) {
4405 			if (rvd->vdev_child[id]->vdev_ishole) {
4406 				vdev_free(rvd->vdev_child[id]);
4407 				break;
4408 			}
4409 		}
4410 		tvd = vd->vdev_child[c];
4411 		vdev_remove_child(vd, tvd);
4412 		tvd->vdev_id = id;
4413 		vdev_add_child(rvd, tvd);
4414 		vdev_config_dirty(tvd);
4415 	}
4416 
4417 	if (nspares != 0) {
4418 		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
4419 		    ZPOOL_CONFIG_SPARES);
4420 		spa_load_spares(spa);
4421 		spa->spa_spares.sav_sync = B_TRUE;
4422 	}
4423 
4424 	if (nl2cache != 0) {
4425 		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
4426 		    ZPOOL_CONFIG_L2CACHE);
4427 		spa_load_l2cache(spa);
4428 		spa->spa_l2cache.sav_sync = B_TRUE;
4429 	}
4430 
4431 	/*
4432 	 * We have to be careful when adding new vdevs to an existing pool.
4433 	 * If other threads start allocating from these vdevs before we
4434 	 * sync the config cache, and we lose power, then upon reboot we may
4435 	 * fail to open the pool because there are DVAs that the config cache
4436 	 * can't translate.  Therefore, we first add the vdevs without
4437 	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
4438 	 * and then let spa_config_update() initialize the new metaslabs.
4439 	 *
4440 	 * spa_load() checks for added-but-not-initialized vdevs, so that
4441 	 * if we lose power at any point in this sequence, the remaining
4442 	 * steps will be completed the next time we load the pool.
4443 	 */
4444 	(void) spa_vdev_exit(spa, vd, txg, 0);
4445 
4446 	mutex_enter(&spa_namespace_lock);
4447 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4448 	spa_event_notify(spa, NULL, ESC_ZFS_VDEV_ADD);
4449 	mutex_exit(&spa_namespace_lock);
4450 
4451 	return (0);
4452 }
4453 
4454 /*
4455  * Attach a device to a mirror.  The arguments are the path to any device
4456  * in the mirror, and the nvroot for the new device.  If the path specifies
4457  * a device that is not mirrored, we automatically insert the mirror vdev.
4458  *
4459  * If 'replacing' is specified, the new device is intended to replace the
4460  * existing device; in this case the two devices are made into their own
4461  * mirror using the 'replacing' vdev, which is functionally identical to
4462  * the mirror vdev (it actually reuses all the same ops) but has a few
4463  * extra rules: you can't attach to it after it's been created, and upon
4464  * completion of resilvering, the first disk (the one being replaced)
4465  * is automatically detached.
4466  */
4467 int
4468 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
4469 {
4470 	uint64_t txg, dtl_max_txg;
4471 	vdev_t *rvd = spa->spa_root_vdev;
4472 	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
4473 	vdev_ops_t *pvops;
4474 	char *oldvdpath, *newvdpath;
4475 	int newvd_isspare;
4476 	int error;
4477 
4478 	ASSERT(spa_writeable(spa));
4479 
4480 	txg = spa_vdev_enter(spa);
4481 
4482 	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
4483 
4484 	if (oldvd == NULL)
4485 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4486 
4487 	if (!oldvd->vdev_ops->vdev_op_leaf)
4488 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4489 
4490 	pvd = oldvd->vdev_parent;
4491 
4492 	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
4493 	    VDEV_ALLOC_ATTACH)) != 0)
4494 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4495 
4496 	if (newrootvd->vdev_children != 1)
4497 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4498 
4499 	newvd = newrootvd->vdev_child[0];
4500 
4501 	if (!newvd->vdev_ops->vdev_op_leaf)
4502 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4503 
4504 	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
4505 		return (spa_vdev_exit(spa, newrootvd, txg, error));
4506 
4507 	/*
4508 	 * Spares can't replace logs
4509 	 */
4510 	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
4511 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4512 
4513 	if (!replacing) {
4514 		/*
4515 		 * For attach, the only allowable parent is a mirror or the root
4516 		 * vdev.
4517 		 */
4518 		if (pvd->vdev_ops != &vdev_mirror_ops &&
4519 		    pvd->vdev_ops != &vdev_root_ops)
4520 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4521 
4522 		pvops = &vdev_mirror_ops;
4523 	} else {
4524 		/*
4525 		 * Active hot spares can only be replaced by inactive hot
4526 		 * spares.
4527 		 */
4528 		if (pvd->vdev_ops == &vdev_spare_ops &&
4529 		    oldvd->vdev_isspare &&
4530 		    !spa_has_spare(spa, newvd->vdev_guid))
4531 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4532 
4533 		/*
4534 		 * If the source is a hot spare, and the parent isn't already a
4535 		 * spare, then we want to create a new hot spare.  Otherwise, we
4536 		 * want to create a replacing vdev.  The user is not allowed to
4537 		 * attach to a spared vdev child unless the 'isspare' state is
4538 		 * the same (spare replaces spare, non-spare replaces
4539 		 * non-spare).
4540 		 */
4541 		if (pvd->vdev_ops == &vdev_replacing_ops &&
4542 		    spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
4543 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4544 		} else if (pvd->vdev_ops == &vdev_spare_ops &&
4545 		    newvd->vdev_isspare != oldvd->vdev_isspare) {
4546 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4547 		}
4548 
4549 		if (newvd->vdev_isspare)
4550 			pvops = &vdev_spare_ops;
4551 		else
4552 			pvops = &vdev_replacing_ops;
4553 	}
4554 
4555 	/*
4556 	 * Make sure the new device is big enough.
4557 	 */
4558 	if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
4559 		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
4560 
4561 	/*
4562 	 * The new device cannot have a higher alignment requirement
4563 	 * than the top-level vdev.
4564 	 */
4565 	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
4566 		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
4567 
4568 	/*
4569 	 * If this is an in-place replacement, update oldvd's path and devid
4570 	 * to make it distinguishable from newvd, and unopenable from now on.
4571 	 */
4572 	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
4573 		spa_strfree(oldvd->vdev_path);
4574 		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
4575 		    KM_SLEEP);
4576 		(void) sprintf(oldvd->vdev_path, "%s/%s",
4577 		    newvd->vdev_path, "old");
4578 		if (oldvd->vdev_devid != NULL) {
4579 			spa_strfree(oldvd->vdev_devid);
4580 			oldvd->vdev_devid = NULL;
4581 		}
4582 	}
4583 
4584 	/* mark the device being resilvered */
4585 	newvd->vdev_resilver_txg = txg;
4586 
4587 	/*
4588 	 * If the parent is not a mirror, or if we're replacing, insert the new
4589 	 * mirror/replacing/spare vdev above oldvd.
4590 	 */
4591 	if (pvd->vdev_ops != pvops)
4592 		pvd = vdev_add_parent(oldvd, pvops);
4593 
4594 	ASSERT(pvd->vdev_top->vdev_parent == rvd);
4595 	ASSERT(pvd->vdev_ops == pvops);
4596 	ASSERT(oldvd->vdev_parent == pvd);
4597 
4598 	/*
4599 	 * Extract the new device from its root and add it to pvd.
4600 	 */
4601 	vdev_remove_child(newrootvd, newvd);
4602 	newvd->vdev_id = pvd->vdev_children;
4603 	newvd->vdev_crtxg = oldvd->vdev_crtxg;
4604 	vdev_add_child(pvd, newvd);
4605 
4606 	tvd = newvd->vdev_top;
4607 	ASSERT(pvd->vdev_top == tvd);
4608 	ASSERT(tvd->vdev_parent == rvd);
4609 
4610 	vdev_config_dirty(tvd);
4611 
4612 	/*
4613 	 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
4614 	 * for any dmu_sync-ed blocks.  It will propagate upward when
4615 	 * spa_vdev_exit() calls vdev_dtl_reassess().
4616 	 */
4617 	dtl_max_txg = txg + TXG_CONCURRENT_STATES;
4618 
4619 	vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
4620 	    dtl_max_txg - TXG_INITIAL);
4621 
4622 	if (newvd->vdev_isspare) {
4623 		spa_spare_activate(newvd);
4624 		spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
4625 	}
4626 
4627 	oldvdpath = spa_strdup(oldvd->vdev_path);
4628 	newvdpath = spa_strdup(newvd->vdev_path);
4629 	newvd_isspare = newvd->vdev_isspare;
4630 
4631 	/*
4632 	 * Mark newvd's DTL dirty in this txg.
4633 	 */
4634 	vdev_dirty(tvd, VDD_DTL, newvd, txg);
4635 
4636 	/*
4637 	 * Schedule the resilver to restart in the future. We do this to
4638 	 * ensure that dmu_sync-ed blocks have been stitched into the
4639 	 * respective datasets.
4640 	 */
4641 	dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
4642 
4643 	if (spa->spa_bootfs)
4644 		spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH);
4645 
4646 	spa_event_notify(spa, newvd, ESC_ZFS_VDEV_ATTACH);
4647 
4648 	/*
4649 	 * Commit the config
4650 	 */
4651 	(void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
4652 
4653 	spa_history_log_internal(spa, "vdev attach", NULL,
4654 	    "%s vdev=%s %s vdev=%s",
4655 	    replacing && newvd_isspare ? "spare in" :
4656 	    replacing ? "replace" : "attach", newvdpath,
4657 	    replacing ? "for" : "to", oldvdpath);
4658 
4659 	spa_strfree(oldvdpath);
4660 	spa_strfree(newvdpath);
4661 
4662 	return (0);
4663 }
4664 
4665 /*
4666  * Detach a device from a mirror or replacing vdev.
4667  *
4668  * If 'replace_done' is specified, only detach if the parent
4669  * is a replacing vdev.
4670  */
4671 int
4672 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
4673 {
4674 	uint64_t txg;
4675 	int error;
4676 	vdev_t *rvd = spa->spa_root_vdev;
4677 	vdev_t *vd, *pvd, *cvd, *tvd;
4678 	boolean_t unspare = B_FALSE;
4679 	uint64_t unspare_guid = 0;
4680 	char *vdpath;
4681 
4682 	ASSERT(spa_writeable(spa));
4683 
4684 	txg = spa_vdev_enter(spa);
4685 
4686 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4687 
4688 	if (vd == NULL)
4689 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4690 
4691 	if (!vd->vdev_ops->vdev_op_leaf)
4692 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4693 
4694 	pvd = vd->vdev_parent;
4695 
4696 	/*
4697 	 * If the parent/child relationship is not as expected, don't do it.
4698 	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
4699 	 * vdev that's replacing B with C.  The user's intent in replacing
4700 	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
4701 	 * the replace by detaching C, the expected behavior is to end up
4702 	 * M(A,B).  But suppose that right after deciding to detach C,
4703 	 * the replacement of B completes.  We would have M(A,C), and then
4704 	 * ask to detach C, which would leave us with just A -- not what
4705 	 * the user wanted.  To prevent this, we make sure that the
4706 	 * parent/child relationship hasn't changed -- in this example,
4707 	 * that C's parent is still the replacing vdev R.
4708 	 */
4709 	if (pvd->vdev_guid != pguid && pguid != 0)
4710 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4711 
4712 	/*
4713 	 * Only 'replacing' or 'spare' vdevs can be replaced.
4714 	 */
4715 	if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
4716 	    pvd->vdev_ops != &vdev_spare_ops)
4717 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4718 
4719 	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
4720 	    spa_version(spa) >= SPA_VERSION_SPARES);
4721 
4722 	/*
4723 	 * Only mirror, replacing, and spare vdevs support detach.
4724 	 */
4725 	if (pvd->vdev_ops != &vdev_replacing_ops &&
4726 	    pvd->vdev_ops != &vdev_mirror_ops &&
4727 	    pvd->vdev_ops != &vdev_spare_ops)
4728 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4729 
4730 	/*
4731 	 * If this device has the only valid copy of some data,
4732 	 * we cannot safely detach it.
4733 	 */
4734 	if (vdev_dtl_required(vd))
4735 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4736 
4737 	ASSERT(pvd->vdev_children >= 2);
4738 
4739 	/*
4740 	 * If we are detaching the second disk from a replacing vdev, then
4741 	 * check to see if we changed the original vdev's path to have "/old"
4742 	 * at the end in spa_vdev_attach().  If so, undo that change now.
4743 	 */
4744 	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
4745 	    vd->vdev_path != NULL) {
4746 		size_t len = strlen(vd->vdev_path);
4747 
4748 		for (int c = 0; c < pvd->vdev_children; c++) {
4749 			cvd = pvd->vdev_child[c];
4750 
4751 			if (cvd == vd || cvd->vdev_path == NULL)
4752 				continue;
4753 
4754 			if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
4755 			    strcmp(cvd->vdev_path + len, "/old") == 0) {
4756 				spa_strfree(cvd->vdev_path);
4757 				cvd->vdev_path = spa_strdup(vd->vdev_path);
4758 				break;
4759 			}
4760 		}
4761 	}
4762 
4763 	/*
4764 	 * If we are detaching the original disk from a spare, then it implies
4765 	 * that the spare should become a real disk, and be removed from the
4766 	 * active spare list for the pool.
4767 	 */
4768 	if (pvd->vdev_ops == &vdev_spare_ops &&
4769 	    vd->vdev_id == 0 &&
4770 	    pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
4771 		unspare = B_TRUE;
4772 
4773 	/*
4774 	 * Erase the disk labels so the disk can be used for other things.
4775 	 * This must be done after all other error cases are handled,
4776 	 * but before we disembowel vd (so we can still do I/O to it).
4777 	 * But if we can't do it, don't treat the error as fatal --
4778 	 * it may be that the unwritability of the disk is the reason
4779 	 * it's being detached!
4780 	 */
4781 	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
4782 
4783 	/*
4784 	 * Remove vd from its parent and compact the parent's children.
4785 	 */
4786 	vdev_remove_child(pvd, vd);
4787 	vdev_compact_children(pvd);
4788 
4789 	/*
4790 	 * Remember one of the remaining children so we can get tvd below.
4791 	 */
4792 	cvd = pvd->vdev_child[pvd->vdev_children - 1];
4793 
4794 	/*
4795 	 * If we need to remove the remaining child from the list of hot spares,
4796 	 * do it now, marking the vdev as no longer a spare in the process.
4797 	 * We must do this before vdev_remove_parent(), because that can
4798 	 * change the GUID if it creates a new toplevel GUID.  For a similar
4799 	 * reason, we must remove the spare now, in the same txg as the detach;
4800 	 * otherwise someone could attach a new sibling, change the GUID, and
4801 	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
4802 	 */
4803 	if (unspare) {
4804 		ASSERT(cvd->vdev_isspare);
4805 		spa_spare_remove(cvd);
4806 		unspare_guid = cvd->vdev_guid;
4807 		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
4808 		cvd->vdev_unspare = B_TRUE;
4809 	}
4810 
4811 	/*
4812 	 * If the parent mirror/replacing vdev only has one child,
4813 	 * the parent is no longer needed.  Remove it from the tree.
4814 	 */
4815 	if (pvd->vdev_children == 1) {
4816 		if (pvd->vdev_ops == &vdev_spare_ops)
4817 			cvd->vdev_unspare = B_FALSE;
4818 		vdev_remove_parent(cvd);
4819 	}
4820 
4821 
4822 	/*
4823 	 * We don't set tvd until now because the parent we just removed
4824 	 * may have been the previous top-level vdev.
4825 	 */
4826 	tvd = cvd->vdev_top;
4827 	ASSERT(tvd->vdev_parent == rvd);
4828 
4829 	/*
4830 	 * Reevaluate the parent vdev state.
4831 	 */
4832 	vdev_propagate_state(cvd);
4833 
4834 	/*
4835 	 * If the 'autoexpand' property is set on the pool then automatically
4836 	 * try to expand the size of the pool. For example if the device we
4837 	 * just detached was smaller than the others, it may be possible to
4838 	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
4839 	 * first so that we can obtain the updated sizes of the leaf vdevs.
4840 	 */
4841 	if (spa->spa_autoexpand) {
4842 		vdev_reopen(tvd);
4843 		vdev_expand(tvd, txg);
4844 	}
4845 
4846 	vdev_config_dirty(tvd);
4847 
4848 	/*
4849 	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
4850 	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
4851 	 * But first make sure we're not on any *other* txg's DTL list, to
4852 	 * prevent vd from being accessed after it's freed.
4853 	 */
4854 	vdpath = spa_strdup(vd->vdev_path);
4855 	for (int t = 0; t < TXG_SIZE; t++)
4856 		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
4857 	vd->vdev_detached = B_TRUE;
4858 	vdev_dirty(tvd, VDD_DTL, vd, txg);
4859 
4860 	spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
4861 
4862 	/* hang on to the spa before we release the lock */
4863 	spa_open_ref(spa, FTAG);
4864 
4865 	error = spa_vdev_exit(spa, vd, txg, 0);
4866 
4867 	spa_history_log_internal(spa, "detach", NULL,
4868 	    "vdev=%s", vdpath);
4869 	spa_strfree(vdpath);
4870 
4871 	/*
4872 	 * If this was the removal of the original device in a hot spare vdev,
4873 	 * then we want to go through and remove the device from the hot spare
4874 	 * list of every other pool.
4875 	 */
4876 	if (unspare) {
4877 		spa_t *altspa = NULL;
4878 
4879 		mutex_enter(&spa_namespace_lock);
4880 		while ((altspa = spa_next(altspa)) != NULL) {
4881 			if (altspa->spa_state != POOL_STATE_ACTIVE ||
4882 			    altspa == spa)
4883 				continue;
4884 
4885 			spa_open_ref(altspa, FTAG);
4886 			mutex_exit(&spa_namespace_lock);
4887 			(void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
4888 			mutex_enter(&spa_namespace_lock);
4889 			spa_close(altspa, FTAG);
4890 		}
4891 		mutex_exit(&spa_namespace_lock);
4892 
4893 		/* search the rest of the vdevs for spares to remove */
4894 		spa_vdev_resilver_done(spa);
4895 	}
4896 
4897 	/* all done with the spa; OK to release */
4898 	mutex_enter(&spa_namespace_lock);
4899 	spa_close(spa, FTAG);
4900 	mutex_exit(&spa_namespace_lock);
4901 
4902 	return (error);
4903 }
4904 
4905 /*
4906  * Split a set of devices from their mirrors, and create a new pool from them.
4907  */
4908 int
4909 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
4910     nvlist_t *props, boolean_t exp)
4911 {
4912 	int error = 0;
4913 	uint64_t txg, *glist;
4914 	spa_t *newspa;
4915 	uint_t c, children, lastlog;
4916 	nvlist_t **child, *nvl, *tmp;
4917 	dmu_tx_t *tx;
4918 	char *altroot = NULL;
4919 	vdev_t *rvd, **vml = NULL;			/* vdev modify list */
4920 	boolean_t activate_slog;
4921 
4922 	ASSERT(spa_writeable(spa));
4923 
4924 	txg = spa_vdev_enter(spa);
4925 
4926 	/* clear the log and flush everything up to now */
4927 	activate_slog = spa_passivate_log(spa);
4928 	(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4929 	error = spa_offline_log(spa);
4930 	txg = spa_vdev_config_enter(spa);
4931 
4932 	if (activate_slog)
4933 		spa_activate_log(spa);
4934 
4935 	if (error != 0)
4936 		return (spa_vdev_exit(spa, NULL, txg, error));
4937 
4938 	/* check new spa name before going any further */
4939 	if (spa_lookup(newname) != NULL)
4940 		return (spa_vdev_exit(spa, NULL, txg, EEXIST));
4941 
4942 	/*
4943 	 * scan through all the children to ensure they're all mirrors
4944 	 */
4945 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
4946 	    nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
4947 	    &children) != 0)
4948 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4949 
4950 	/* first, check to ensure we've got the right child count */
4951 	rvd = spa->spa_root_vdev;
4952 	lastlog = 0;
4953 	for (c = 0; c < rvd->vdev_children; c++) {
4954 		vdev_t *vd = rvd->vdev_child[c];
4955 
4956 		/* don't count the holes & logs as children */
4957 		if (vd->vdev_islog || vd->vdev_ishole) {
4958 			if (lastlog == 0)
4959 				lastlog = c;
4960 			continue;
4961 		}
4962 
4963 		lastlog = 0;
4964 	}
4965 	if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
4966 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4967 
4968 	/* next, ensure no spare or cache devices are part of the split */
4969 	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
4970 	    nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
4971 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4972 
4973 	vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
4974 	glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
4975 
4976 	/* then, loop over each vdev and validate it */
4977 	for (c = 0; c < children; c++) {
4978 		uint64_t is_hole = 0;
4979 
4980 		(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
4981 		    &is_hole);
4982 
4983 		if (is_hole != 0) {
4984 			if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
4985 			    spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
4986 				continue;
4987 			} else {
4988 				error = SET_ERROR(EINVAL);
4989 				break;
4990 			}
4991 		}
4992 
4993 		/* which disk is going to be split? */
4994 		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
4995 		    &glist[c]) != 0) {
4996 			error = SET_ERROR(EINVAL);
4997 			break;
4998 		}
4999 
5000 		/* look it up in the spa */
5001 		vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
5002 		if (vml[c] == NULL) {
5003 			error = SET_ERROR(ENODEV);
5004 			break;
5005 		}
5006 
5007 		/* make sure there's nothing stopping the split */
5008 		if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
5009 		    vml[c]->vdev_islog ||
5010 		    vml[c]->vdev_ishole ||
5011 		    vml[c]->vdev_isspare ||
5012 		    vml[c]->vdev_isl2cache ||
5013 		    !vdev_writeable(vml[c]) ||
5014 		    vml[c]->vdev_children != 0 ||
5015 		    vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
5016 		    c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
5017 			error = SET_ERROR(EINVAL);
5018 			break;
5019 		}
5020 
5021 		if (vdev_dtl_required(vml[c])) {
5022 			error = SET_ERROR(EBUSY);
5023 			break;
5024 		}
5025 
5026 		/* we need certain info from the top level */
5027 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
5028 		    vml[c]->vdev_top->vdev_ms_array) == 0);
5029 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
5030 		    vml[c]->vdev_top->vdev_ms_shift) == 0);
5031 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
5032 		    vml[c]->vdev_top->vdev_asize) == 0);
5033 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
5034 		    vml[c]->vdev_top->vdev_ashift) == 0);
5035 	}
5036 
5037 	if (error != 0) {
5038 		kmem_free(vml, children * sizeof (vdev_t *));
5039 		kmem_free(glist, children * sizeof (uint64_t));
5040 		return (spa_vdev_exit(spa, NULL, txg, error));
5041 	}
5042 
5043 	/* stop writers from using the disks */
5044 	for (c = 0; c < children; c++) {
5045 		if (vml[c] != NULL)
5046 			vml[c]->vdev_offline = B_TRUE;
5047 	}
5048 	vdev_reopen(spa->spa_root_vdev);
5049 
5050 	/*
5051 	 * Temporarily record the splitting vdevs in the spa config.  This
5052 	 * will disappear once the config is regenerated.
5053 	 */
5054 	VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5055 	VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
5056 	    glist, children) == 0);
5057 	kmem_free(glist, children * sizeof (uint64_t));
5058 
5059 	mutex_enter(&spa->spa_props_lock);
5060 	VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
5061 	    nvl) == 0);
5062 	mutex_exit(&spa->spa_props_lock);
5063 	spa->spa_config_splitting = nvl;
5064 	vdev_config_dirty(spa->spa_root_vdev);
5065 
5066 	/* configure and create the new pool */
5067 	VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
5068 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
5069 	    exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
5070 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5071 	    spa_version(spa)) == 0);
5072 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
5073 	    spa->spa_config_txg) == 0);
5074 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
5075 	    spa_generate_guid(NULL)) == 0);
5076 	(void) nvlist_lookup_string(props,
5077 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5078 
5079 	/* add the new pool to the namespace */
5080 	newspa = spa_add(newname, config, altroot);
5081 	newspa->spa_config_txg = spa->spa_config_txg;
5082 	spa_set_log_state(newspa, SPA_LOG_CLEAR);
5083 
5084 	/* release the spa config lock, retaining the namespace lock */
5085 	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5086 
5087 	if (zio_injection_enabled)
5088 		zio_handle_panic_injection(spa, FTAG, 1);
5089 
5090 	spa_activate(newspa, spa_mode_global);
5091 	spa_async_suspend(newspa);
5092 
5093 	/* create the new pool from the disks of the original pool */
5094 	error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
5095 	if (error)
5096 		goto out;
5097 
5098 	/* if that worked, generate a real config for the new pool */
5099 	if (newspa->spa_root_vdev != NULL) {
5100 		VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
5101 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
5102 		VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
5103 		    ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
5104 		spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
5105 		    B_TRUE));
5106 	}
5107 
5108 	/* set the props */
5109 	if (props != NULL) {
5110 		spa_configfile_set(newspa, props, B_FALSE);
5111 		error = spa_prop_set(newspa, props);
5112 		if (error)
5113 			goto out;
5114 	}
5115 
5116 	/* flush everything */
5117 	txg = spa_vdev_config_enter(newspa);
5118 	vdev_config_dirty(newspa->spa_root_vdev);
5119 	(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
5120 
5121 	if (zio_injection_enabled)
5122 		zio_handle_panic_injection(spa, FTAG, 2);
5123 
5124 	spa_async_resume(newspa);
5125 
5126 	/* finally, update the original pool's config */
5127 	txg = spa_vdev_config_enter(spa);
5128 	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
5129 	error = dmu_tx_assign(tx, TXG_WAIT);
5130 	if (error != 0)
5131 		dmu_tx_abort(tx);
5132 	for (c = 0; c < children; c++) {
5133 		if (vml[c] != NULL) {
5134 			vdev_split(vml[c]);
5135 			if (error == 0)
5136 				spa_history_log_internal(spa, "detach", tx,
5137 				    "vdev=%s", vml[c]->vdev_path);
5138 			vdev_free(vml[c]);
5139 		}
5140 	}
5141 	vdev_config_dirty(spa->spa_root_vdev);
5142 	spa->spa_config_splitting = NULL;
5143 	nvlist_free(nvl);
5144 	if (error == 0)
5145 		dmu_tx_commit(tx);
5146 	(void) spa_vdev_exit(spa, NULL, txg, 0);
5147 
5148 	if (zio_injection_enabled)
5149 		zio_handle_panic_injection(spa, FTAG, 3);
5150 
5151 	/* split is complete; log a history record */
5152 	spa_history_log_internal(newspa, "split", NULL,
5153 	    "from pool %s", spa_name(spa));
5154 
5155 	kmem_free(vml, children * sizeof (vdev_t *));
5156 
5157 	/* if we're not going to mount the filesystems in userland, export */
5158 	if (exp)
5159 		error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
5160 		    B_FALSE, B_FALSE);
5161 
5162 	return (error);
5163 
5164 out:
5165 	spa_unload(newspa);
5166 	spa_deactivate(newspa);
5167 	spa_remove(newspa);
5168 
5169 	txg = spa_vdev_config_enter(spa);
5170 
5171 	/* re-online all offlined disks */
5172 	for (c = 0; c < children; c++) {
5173 		if (vml[c] != NULL)
5174 			vml[c]->vdev_offline = B_FALSE;
5175 	}
5176 	vdev_reopen(spa->spa_root_vdev);
5177 
5178 	nvlist_free(spa->spa_config_splitting);
5179 	spa->spa_config_splitting = NULL;
5180 	(void) spa_vdev_exit(spa, NULL, txg, error);
5181 
5182 	kmem_free(vml, children * sizeof (vdev_t *));
5183 	return (error);
5184 }
5185 
5186 static nvlist_t *
5187 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
5188 {
5189 	for (int i = 0; i < count; i++) {
5190 		uint64_t guid;
5191 
5192 		VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
5193 		    &guid) == 0);
5194 
5195 		if (guid == target_guid)
5196 			return (nvpp[i]);
5197 	}
5198 
5199 	return (NULL);
5200 }
5201 
5202 static void
5203 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
5204 	nvlist_t *dev_to_remove)
5205 {
5206 	nvlist_t **newdev = NULL;
5207 
5208 	if (count > 1)
5209 		newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
5210 
5211 	for (int i = 0, j = 0; i < count; i++) {
5212 		if (dev[i] == dev_to_remove)
5213 			continue;
5214 		VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
5215 	}
5216 
5217 	VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
5218 	VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
5219 
5220 	for (int i = 0; i < count - 1; i++)
5221 		nvlist_free(newdev[i]);
5222 
5223 	if (count > 1)
5224 		kmem_free(newdev, (count - 1) * sizeof (void *));
5225 }
5226 
5227 /*
5228  * Evacuate the device.
5229  */
5230 static int
5231 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
5232 {
5233 	uint64_t txg;
5234 	int error = 0;
5235 
5236 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5237 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5238 	ASSERT(vd == vd->vdev_top);
5239 
5240 	/*
5241 	 * Evacuate the device.  We don't hold the config lock as writer
5242 	 * since we need to do I/O but we do keep the
5243 	 * spa_namespace_lock held.  Once this completes the device
5244 	 * should no longer have any blocks allocated on it.
5245 	 */
5246 	if (vd->vdev_islog) {
5247 		if (vd->vdev_stat.vs_alloc != 0)
5248 			error = spa_offline_log(spa);
5249 	} else {
5250 		error = SET_ERROR(ENOTSUP);
5251 	}
5252 
5253 	if (error)
5254 		return (error);
5255 
5256 	/*
5257 	 * The evacuation succeeded.  Remove any remaining MOS metadata
5258 	 * associated with this vdev, and wait for these changes to sync.
5259 	 */
5260 	ASSERT0(vd->vdev_stat.vs_alloc);
5261 	txg = spa_vdev_config_enter(spa);
5262 	vd->vdev_removing = B_TRUE;
5263 	vdev_dirty_leaves(vd, VDD_DTL, txg);
5264 	vdev_config_dirty(vd);
5265 	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5266 
5267 	return (0);
5268 }
5269 
5270 /*
5271  * Complete the removal by cleaning up the namespace.
5272  */
5273 static void
5274 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
5275 {
5276 	vdev_t *rvd = spa->spa_root_vdev;
5277 	uint64_t id = vd->vdev_id;
5278 	boolean_t last_vdev = (id == (rvd->vdev_children - 1));
5279 
5280 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5281 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5282 	ASSERT(vd == vd->vdev_top);
5283 
5284 	/*
5285 	 * Only remove any devices which are empty.
5286 	 */
5287 	if (vd->vdev_stat.vs_alloc != 0)
5288 		return;
5289 
5290 	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5291 
5292 	if (list_link_active(&vd->vdev_state_dirty_node))
5293 		vdev_state_clean(vd);
5294 	if (list_link_active(&vd->vdev_config_dirty_node))
5295 		vdev_config_clean(vd);
5296 
5297 	vdev_free(vd);
5298 
5299 	if (last_vdev) {
5300 		vdev_compact_children(rvd);
5301 	} else {
5302 		vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
5303 		vdev_add_child(rvd, vd);
5304 	}
5305 	vdev_config_dirty(rvd);
5306 
5307 	/*
5308 	 * Reassess the health of our root vdev.
5309 	 */
5310 	vdev_reopen(rvd);
5311 }
5312 
5313 /*
5314  * Remove a device from the pool -
5315  *
5316  * Removing a device from the vdev namespace requires several steps
5317  * and can take a significant amount of time.  As a result we use
5318  * the spa_vdev_config_[enter/exit] functions which allow us to
5319  * grab and release the spa_config_lock while still holding the namespace
5320  * lock.  During each step the configuration is synced out.
5321  *
5322  * Currently, this supports removing only hot spares, slogs, and level 2 ARC
5323  * devices.
5324  */
5325 int
5326 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
5327 {
5328 	vdev_t *vd;
5329 	metaslab_group_t *mg;
5330 	nvlist_t **spares, **l2cache, *nv;
5331 	uint64_t txg = 0;
5332 	uint_t nspares, nl2cache;
5333 	int error = 0;
5334 	boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
5335 
5336 	ASSERT(spa_writeable(spa));
5337 
5338 	if (!locked)
5339 		txg = spa_vdev_enter(spa);
5340 
5341 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5342 
5343 	if (spa->spa_spares.sav_vdevs != NULL &&
5344 	    nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5345 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
5346 	    (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
5347 		/*
5348 		 * Only remove the hot spare if it's not currently in use
5349 		 * in this pool.
5350 		 */
5351 		if (vd == NULL || unspare) {
5352 			spa_vdev_remove_aux(spa->spa_spares.sav_config,
5353 			    ZPOOL_CONFIG_SPARES, spares, nspares, nv);
5354 			spa_load_spares(spa);
5355 			spa->spa_spares.sav_sync = B_TRUE;
5356 		} else {
5357 			error = SET_ERROR(EBUSY);
5358 		}
5359 	} else if (spa->spa_l2cache.sav_vdevs != NULL &&
5360 	    nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5361 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
5362 	    (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
5363 		/*
5364 		 * Cache devices can always be removed.
5365 		 */
5366 		spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
5367 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
5368 		spa_load_l2cache(spa);
5369 		spa->spa_l2cache.sav_sync = B_TRUE;
5370 	} else if (vd != NULL && vd->vdev_islog) {
5371 		ASSERT(!locked);
5372 		ASSERT(vd == vd->vdev_top);
5373 
5374 		mg = vd->vdev_mg;
5375 
5376 		/*
5377 		 * Stop allocating from this vdev.
5378 		 */
5379 		metaslab_group_passivate(mg);
5380 
5381 		/*
5382 		 * Wait for the youngest allocations and frees to sync,
5383 		 * and then wait for the deferral of those frees to finish.
5384 		 */
5385 		spa_vdev_config_exit(spa, NULL,
5386 		    txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
5387 
5388 		/*
5389 		 * Attempt to evacuate the vdev.
5390 		 */
5391 		error = spa_vdev_remove_evacuate(spa, vd);
5392 
5393 		txg = spa_vdev_config_enter(spa);
5394 
5395 		/*
5396 		 * If we couldn't evacuate the vdev, unwind.
5397 		 */
5398 		if (error) {
5399 			metaslab_group_activate(mg);
5400 			return (spa_vdev_exit(spa, NULL, txg, error));
5401 		}
5402 
5403 		/*
5404 		 * Clean up the vdev namespace.
5405 		 */
5406 		spa_vdev_remove_from_namespace(spa, vd);
5407 
5408 	} else if (vd != NULL) {
5409 		/*
5410 		 * Normal vdevs cannot be removed (yet).
5411 		 */
5412 		error = SET_ERROR(ENOTSUP);
5413 	} else {
5414 		/*
5415 		 * There is no vdev of any kind with the specified guid.
5416 		 */
5417 		error = SET_ERROR(ENOENT);
5418 	}
5419 
5420 	if (!locked)
5421 		return (spa_vdev_exit(spa, NULL, txg, error));
5422 
5423 	return (error);
5424 }
5425 
5426 /*
5427  * Find any device that's done replacing, or a vdev marked 'unspare' that's
5428  * currently spared, so we can detach it.
5429  */
5430 static vdev_t *
5431 spa_vdev_resilver_done_hunt(vdev_t *vd)
5432 {
5433 	vdev_t *newvd, *oldvd;
5434 
5435 	for (int c = 0; c < vd->vdev_children; c++) {
5436 		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
5437 		if (oldvd != NULL)
5438 			return (oldvd);
5439 	}
5440 
5441 	/*
5442 	 * Check for a completed replacement.  We always consider the first
5443 	 * vdev in the list to be the oldest vdev, and the last one to be
5444 	 * the newest (see spa_vdev_attach() for how that works).  In
5445 	 * the case where the newest vdev is faulted, we will not automatically
5446 	 * remove it after a resilver completes.  This is OK as it will require
5447 	 * user intervention to determine which disk the admin wishes to keep.
5448 	 */
5449 	if (vd->vdev_ops == &vdev_replacing_ops) {
5450 		ASSERT(vd->vdev_children > 1);
5451 
5452 		newvd = vd->vdev_child[vd->vdev_children - 1];
5453 		oldvd = vd->vdev_child[0];
5454 
5455 		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
5456 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5457 		    !vdev_dtl_required(oldvd))
5458 			return (oldvd);
5459 	}
5460 
5461 	/*
5462 	 * Check for a completed resilver with the 'unspare' flag set.
5463 	 */
5464 	if (vd->vdev_ops == &vdev_spare_ops) {
5465 		vdev_t *first = vd->vdev_child[0];
5466 		vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
5467 
5468 		if (last->vdev_unspare) {
5469 			oldvd = first;
5470 			newvd = last;
5471 		} else if (first->vdev_unspare) {
5472 			oldvd = last;
5473 			newvd = first;
5474 		} else {
5475 			oldvd = NULL;
5476 		}
5477 
5478 		if (oldvd != NULL &&
5479 		    vdev_dtl_empty(newvd, DTL_MISSING) &&
5480 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5481 		    !vdev_dtl_required(oldvd))
5482 			return (oldvd);
5483 
5484 		/*
5485 		 * If there are more than two spares attached to a disk,
5486 		 * and those spares are not required, then we want to
5487 		 * attempt to free them up now so that they can be used
5488 		 * by other pools.  Once we're back down to a single
5489 		 * disk+spare, we stop removing them.
5490 		 */
5491 		if (vd->vdev_children > 2) {
5492 			newvd = vd->vdev_child[1];
5493 
5494 			if (newvd->vdev_isspare && last->vdev_isspare &&
5495 			    vdev_dtl_empty(last, DTL_MISSING) &&
5496 			    vdev_dtl_empty(last, DTL_OUTAGE) &&
5497 			    !vdev_dtl_required(newvd))
5498 				return (newvd);
5499 		}
5500 	}
5501 
5502 	return (NULL);
5503 }
5504 
5505 static void
5506 spa_vdev_resilver_done(spa_t *spa)
5507 {
5508 	vdev_t *vd, *pvd, *ppvd;
5509 	uint64_t guid, sguid, pguid, ppguid;
5510 
5511 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5512 
5513 	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
5514 		pvd = vd->vdev_parent;
5515 		ppvd = pvd->vdev_parent;
5516 		guid = vd->vdev_guid;
5517 		pguid = pvd->vdev_guid;
5518 		ppguid = ppvd->vdev_guid;
5519 		sguid = 0;
5520 		/*
5521 		 * If we have just finished replacing a hot spared device, then
5522 		 * we need to detach the parent's first child (the original hot
5523 		 * spare) as well.
5524 		 */
5525 		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
5526 		    ppvd->vdev_children == 2) {
5527 			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
5528 			sguid = ppvd->vdev_child[1]->vdev_guid;
5529 		}
5530 		ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
5531 
5532 		spa_config_exit(spa, SCL_ALL, FTAG);
5533 		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
5534 			return;
5535 		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
5536 			return;
5537 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5538 	}
5539 
5540 	spa_config_exit(spa, SCL_ALL, FTAG);
5541 }
5542 
5543 /*
5544  * Update the stored path or FRU for this vdev.
5545  */
5546 int
5547 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
5548     boolean_t ispath)
5549 {
5550 	vdev_t *vd;
5551 	boolean_t sync = B_FALSE;
5552 
5553 	ASSERT(spa_writeable(spa));
5554 
5555 	spa_vdev_state_enter(spa, SCL_ALL);
5556 
5557 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
5558 		return (spa_vdev_state_exit(spa, NULL, ENOENT));
5559 
5560 	if (!vd->vdev_ops->vdev_op_leaf)
5561 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
5562 
5563 	if (ispath) {
5564 		if (strcmp(value, vd->vdev_path) != 0) {
5565 			spa_strfree(vd->vdev_path);
5566 			vd->vdev_path = spa_strdup(value);
5567 			sync = B_TRUE;
5568 		}
5569 	} else {
5570 		if (vd->vdev_fru == NULL) {
5571 			vd->vdev_fru = spa_strdup(value);
5572 			sync = B_TRUE;
5573 		} else if (strcmp(value, vd->vdev_fru) != 0) {
5574 			spa_strfree(vd->vdev_fru);
5575 			vd->vdev_fru = spa_strdup(value);
5576 			sync = B_TRUE;
5577 		}
5578 	}
5579 
5580 	return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
5581 }
5582 
5583 int
5584 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
5585 {
5586 	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
5587 }
5588 
5589 int
5590 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
5591 {
5592 	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
5593 }
5594 
5595 /*
5596  * ==========================================================================
5597  * SPA Scanning
5598  * ==========================================================================
5599  */
5600 
5601 int
5602 spa_scan_stop(spa_t *spa)
5603 {
5604 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5605 	if (dsl_scan_resilvering(spa->spa_dsl_pool))
5606 		return (SET_ERROR(EBUSY));
5607 	return (dsl_scan_cancel(spa->spa_dsl_pool));
5608 }
5609 
5610 int
5611 spa_scan(spa_t *spa, pool_scan_func_t func)
5612 {
5613 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5614 
5615 	if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
5616 		return (SET_ERROR(ENOTSUP));
5617 
5618 	/*
5619 	 * If a resilver was requested, but there is no DTL on a
5620 	 * writeable leaf device, we have nothing to do.
5621 	 */
5622 	if (func == POOL_SCAN_RESILVER &&
5623 	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5624 		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
5625 		return (0);
5626 	}
5627 
5628 	return (dsl_scan(spa->spa_dsl_pool, func));
5629 }
5630 
5631 /*
5632  * ==========================================================================
5633  * SPA async task processing
5634  * ==========================================================================
5635  */
5636 
5637 static void
5638 spa_async_remove(spa_t *spa, vdev_t *vd)
5639 {
5640 	if (vd->vdev_remove_wanted) {
5641 		vd->vdev_remove_wanted = B_FALSE;
5642 		vd->vdev_delayed_close = B_FALSE;
5643 		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
5644 
5645 		/*
5646 		 * We want to clear the stats, but we don't want to do a full
5647 		 * vdev_clear() as that will cause us to throw away
5648 		 * degraded/faulted state as well as attempt to reopen the
5649 		 * device, all of which is a waste.
5650 		 */
5651 		vd->vdev_stat.vs_read_errors = 0;
5652 		vd->vdev_stat.vs_write_errors = 0;
5653 		vd->vdev_stat.vs_checksum_errors = 0;
5654 
5655 		vdev_state_dirty(vd->vdev_top);
5656 	}
5657 
5658 	for (int c = 0; c < vd->vdev_children; c++)
5659 		spa_async_remove(spa, vd->vdev_child[c]);
5660 }
5661 
5662 static void
5663 spa_async_probe(spa_t *spa, vdev_t *vd)
5664 {
5665 	if (vd->vdev_probe_wanted) {
5666 		vd->vdev_probe_wanted = B_FALSE;
5667 		vdev_reopen(vd);	/* vdev_open() does the actual probe */
5668 	}
5669 
5670 	for (int c = 0; c < vd->vdev_children; c++)
5671 		spa_async_probe(spa, vd->vdev_child[c]);
5672 }
5673 
5674 static void
5675 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
5676 {
5677 	sysevent_id_t eid;
5678 	nvlist_t *attr;
5679 	char *physpath;
5680 
5681 	if (!spa->spa_autoexpand)
5682 		return;
5683 
5684 	for (int c = 0; c < vd->vdev_children; c++) {
5685 		vdev_t *cvd = vd->vdev_child[c];
5686 		spa_async_autoexpand(spa, cvd);
5687 	}
5688 
5689 	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
5690 		return;
5691 
5692 	physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
5693 	(void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
5694 
5695 	VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5696 	VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
5697 
5698 	(void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
5699 	    ESC_DEV_DLE, attr, &eid, DDI_SLEEP);
5700 
5701 	nvlist_free(attr);
5702 	kmem_free(physpath, MAXPATHLEN);
5703 }
5704 
5705 static void
5706 spa_async_thread(spa_t *spa)
5707 {
5708 	int tasks;
5709 
5710 	ASSERT(spa->spa_sync_on);
5711 
5712 	mutex_enter(&spa->spa_async_lock);
5713 	tasks = spa->spa_async_tasks;
5714 	spa->spa_async_tasks = 0;
5715 	mutex_exit(&spa->spa_async_lock);
5716 
5717 	/*
5718 	 * See if the config needs to be updated.
5719 	 */
5720 	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
5721 		uint64_t old_space, new_space;
5722 
5723 		mutex_enter(&spa_namespace_lock);
5724 		old_space = metaslab_class_get_space(spa_normal_class(spa));
5725 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5726 		new_space = metaslab_class_get_space(spa_normal_class(spa));
5727 		mutex_exit(&spa_namespace_lock);
5728 
5729 		/*
5730 		 * If the pool grew as a result of the config update,
5731 		 * then log an internal history event.
5732 		 */
5733 		if (new_space != old_space) {
5734 			spa_history_log_internal(spa, "vdev online", NULL,
5735 			    "pool '%s' size: %llu(+%llu)",
5736 			    spa_name(spa), new_space, new_space - old_space);
5737 		}
5738 	}
5739 
5740 	/*
5741 	 * See if any devices need to be marked REMOVED.
5742 	 */
5743 	if (tasks & SPA_ASYNC_REMOVE) {
5744 		spa_vdev_state_enter(spa, SCL_NONE);
5745 		spa_async_remove(spa, spa->spa_root_vdev);
5746 		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
5747 			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
5748 		for (int i = 0; i < spa->spa_spares.sav_count; i++)
5749 			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
5750 		(void) spa_vdev_state_exit(spa, NULL, 0);
5751 	}
5752 
5753 	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
5754 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5755 		spa_async_autoexpand(spa, spa->spa_root_vdev);
5756 		spa_config_exit(spa, SCL_CONFIG, FTAG);
5757 	}
5758 
5759 	/*
5760 	 * See if any devices need to be probed.
5761 	 */
5762 	if (tasks & SPA_ASYNC_PROBE) {
5763 		spa_vdev_state_enter(spa, SCL_NONE);
5764 		spa_async_probe(spa, spa->spa_root_vdev);
5765 		(void) spa_vdev_state_exit(spa, NULL, 0);
5766 	}
5767 
5768 	/*
5769 	 * If any devices are done replacing, detach them.
5770 	 */
5771 	if (tasks & SPA_ASYNC_RESILVER_DONE)
5772 		spa_vdev_resilver_done(spa);
5773 
5774 	/*
5775 	 * Kick off a resilver.
5776 	 */
5777 	if (tasks & SPA_ASYNC_RESILVER)
5778 		dsl_resilver_restart(spa->spa_dsl_pool, 0);
5779 
5780 	/*
5781 	 * Let the world know that we're done.
5782 	 */
5783 	mutex_enter(&spa->spa_async_lock);
5784 	spa->spa_async_thread = NULL;
5785 	cv_broadcast(&spa->spa_async_cv);
5786 	mutex_exit(&spa->spa_async_lock);
5787 	thread_exit();
5788 }
5789 
5790 void
5791 spa_async_suspend(spa_t *spa)
5792 {
5793 	mutex_enter(&spa->spa_async_lock);
5794 	spa->spa_async_suspended++;
5795 	while (spa->spa_async_thread != NULL)
5796 		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
5797 	mutex_exit(&spa->spa_async_lock);
5798 }
5799 
5800 void
5801 spa_async_resume(spa_t *spa)
5802 {
5803 	mutex_enter(&spa->spa_async_lock);
5804 	ASSERT(spa->spa_async_suspended != 0);
5805 	spa->spa_async_suspended--;
5806 	mutex_exit(&spa->spa_async_lock);
5807 }
5808 
5809 static boolean_t
5810 spa_async_tasks_pending(spa_t *spa)
5811 {
5812 	uint_t non_config_tasks;
5813 	uint_t config_task;
5814 	boolean_t config_task_suspended;
5815 
5816 	non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
5817 	config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
5818 	if (spa->spa_ccw_fail_time == 0) {
5819 		config_task_suspended = B_FALSE;
5820 	} else {
5821 		config_task_suspended =
5822 		    (gethrtime() - spa->spa_ccw_fail_time) <
5823 		    (zfs_ccw_retry_interval * NANOSEC);
5824 	}
5825 
5826 	return (non_config_tasks || (config_task && !config_task_suspended));
5827 }
5828 
5829 static void
5830 spa_async_dispatch(spa_t *spa)
5831 {
5832 	mutex_enter(&spa->spa_async_lock);
5833 	if (spa_async_tasks_pending(spa) &&
5834 	    !spa->spa_async_suspended &&
5835 	    spa->spa_async_thread == NULL &&
5836 	    rootdir != NULL)
5837 		spa->spa_async_thread = thread_create(NULL, 0,
5838 		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
5839 	mutex_exit(&spa->spa_async_lock);
5840 }
5841 
5842 void
5843 spa_async_request(spa_t *spa, int task)
5844 {
5845 	zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
5846 	mutex_enter(&spa->spa_async_lock);
5847 	spa->spa_async_tasks |= task;
5848 	mutex_exit(&spa->spa_async_lock);
5849 }
5850 
5851 /*
5852  * ==========================================================================
5853  * SPA syncing routines
5854  * ==========================================================================
5855  */
5856 
5857 static int
5858 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5859 {
5860 	bpobj_t *bpo = arg;
5861 	bpobj_enqueue(bpo, bp, tx);
5862 	return (0);
5863 }
5864 
5865 static int
5866 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5867 {
5868 	zio_t *zio = arg;
5869 
5870 	zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
5871 	    zio->io_flags));
5872 	return (0);
5873 }
5874 
5875 /*
5876  * Note: this simple function is not inlined to make it easier to dtrace the
5877  * amount of time spent syncing frees.
5878  */
5879 static void
5880 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
5881 {
5882 	zio_t *zio = zio_root(spa, NULL, NULL, 0);
5883 	bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
5884 	VERIFY(zio_wait(zio) == 0);
5885 }
5886 
5887 /*
5888  * Note: this simple function is not inlined to make it easier to dtrace the
5889  * amount of time spent syncing deferred frees.
5890  */
5891 static void
5892 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
5893 {
5894 	zio_t *zio = zio_root(spa, NULL, NULL, 0);
5895 	VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
5896 	    spa_free_sync_cb, zio, tx), ==, 0);
5897 	VERIFY0(zio_wait(zio));
5898 }
5899 
5900 
5901 static void
5902 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
5903 {
5904 	char *packed = NULL;
5905 	size_t bufsize;
5906 	size_t nvsize = 0;
5907 	dmu_buf_t *db;
5908 
5909 	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
5910 
5911 	/*
5912 	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
5913 	 * information.  This avoids the dmu_buf_will_dirty() path and
5914 	 * saves us a pre-read to get data we don't actually care about.
5915 	 */
5916 	bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
5917 	packed = kmem_alloc(bufsize, KM_SLEEP);
5918 
5919 	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
5920 	    KM_SLEEP) == 0);
5921 	bzero(packed + nvsize, bufsize - nvsize);
5922 
5923 	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
5924 
5925 	kmem_free(packed, bufsize);
5926 
5927 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
5928 	dmu_buf_will_dirty(db, tx);
5929 	*(uint64_t *)db->db_data = nvsize;
5930 	dmu_buf_rele(db, FTAG);
5931 }
5932 
5933 static void
5934 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
5935     const char *config, const char *entry)
5936 {
5937 	nvlist_t *nvroot;
5938 	nvlist_t **list;
5939 	int i;
5940 
5941 	if (!sav->sav_sync)
5942 		return;
5943 
5944 	/*
5945 	 * Update the MOS nvlist describing the list of available devices.
5946 	 * spa_validate_aux() will have already made sure this nvlist is
5947 	 * valid and the vdevs are labeled appropriately.
5948 	 */
5949 	if (sav->sav_object == 0) {
5950 		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
5951 		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
5952 		    sizeof (uint64_t), tx);
5953 		VERIFY(zap_update(spa->spa_meta_objset,
5954 		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
5955 		    &sav->sav_object, tx) == 0);
5956 	}
5957 
5958 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5959 	if (sav->sav_count == 0) {
5960 		VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
5961 	} else {
5962 		list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
5963 		for (i = 0; i < sav->sav_count; i++)
5964 			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
5965 			    B_FALSE, VDEV_CONFIG_L2CACHE);
5966 		VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
5967 		    sav->sav_count) == 0);
5968 		for (i = 0; i < sav->sav_count; i++)
5969 			nvlist_free(list[i]);
5970 		kmem_free(list, sav->sav_count * sizeof (void *));
5971 	}
5972 
5973 	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
5974 	nvlist_free(nvroot);
5975 
5976 	sav->sav_sync = B_FALSE;
5977 }
5978 
5979 static void
5980 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
5981 {
5982 	nvlist_t *config;
5983 
5984 	if (list_is_empty(&spa->spa_config_dirty_list))
5985 		return;
5986 
5987 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5988 
5989 	config = spa_config_generate(spa, spa->spa_root_vdev,
5990 	    dmu_tx_get_txg(tx), B_FALSE);
5991 
5992 	/*
5993 	 * If we're upgrading the spa version then make sure that
5994 	 * the config object gets updated with the correct version.
5995 	 */
5996 	if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
5997 		fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5998 		    spa->spa_uberblock.ub_version);
5999 
6000 	spa_config_exit(spa, SCL_STATE, FTAG);
6001 
6002 	nvlist_free(spa->spa_config_syncing);
6003 	spa->spa_config_syncing = config;
6004 
6005 	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
6006 }
6007 
6008 static void
6009 spa_sync_version(void *arg, dmu_tx_t *tx)
6010 {
6011 	uint64_t *versionp = arg;
6012 	uint64_t version = *versionp;
6013 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6014 
6015 	/*
6016 	 * Setting the version is special cased when first creating the pool.
6017 	 */
6018 	ASSERT(tx->tx_txg != TXG_INITIAL);
6019 
6020 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
6021 	ASSERT(version >= spa_version(spa));
6022 
6023 	spa->spa_uberblock.ub_version = version;
6024 	vdev_config_dirty(spa->spa_root_vdev);
6025 	spa_history_log_internal(spa, "set", tx, "version=%lld", version);
6026 }
6027 
6028 /*
6029  * Set zpool properties.
6030  */
6031 static void
6032 spa_sync_props(void *arg, dmu_tx_t *tx)
6033 {
6034 	nvlist_t *nvp = arg;
6035 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6036 	objset_t *mos = spa->spa_meta_objset;
6037 	nvpair_t *elem = NULL;
6038 
6039 	mutex_enter(&spa->spa_props_lock);
6040 
6041 	while ((elem = nvlist_next_nvpair(nvp, elem))) {
6042 		uint64_t intval;
6043 		char *strval, *fname;
6044 		zpool_prop_t prop;
6045 		const char *propname;
6046 		zprop_type_t proptype;
6047 		spa_feature_t fid;
6048 
6049 		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
6050 		case ZPROP_INVAL:
6051 			/*
6052 			 * We checked this earlier in spa_prop_validate().
6053 			 */
6054 			ASSERT(zpool_prop_feature(nvpair_name(elem)));
6055 
6056 			fname = strchr(nvpair_name(elem), '@') + 1;
6057 			VERIFY0(zfeature_lookup_name(fname, &fid));
6058 
6059 			spa_feature_enable(spa, fid, tx);
6060 			spa_history_log_internal(spa, "set", tx,
6061 			    "%s=enabled", nvpair_name(elem));
6062 			break;
6063 
6064 		case ZPOOL_PROP_VERSION:
6065 			intval = fnvpair_value_uint64(elem);
6066 			/*
6067 			 * The version is synced seperatly before other
6068 			 * properties and should be correct by now.
6069 			 */
6070 			ASSERT3U(spa_version(spa), >=, intval);
6071 			break;
6072 
6073 		case ZPOOL_PROP_ALTROOT:
6074 			/*
6075 			 * 'altroot' is a non-persistent property. It should
6076 			 * have been set temporarily at creation or import time.
6077 			 */
6078 			ASSERT(spa->spa_root != NULL);
6079 			break;
6080 
6081 		case ZPOOL_PROP_READONLY:
6082 		case ZPOOL_PROP_CACHEFILE:
6083 			/*
6084 			 * 'readonly' and 'cachefile' are also non-persisitent
6085 			 * properties.
6086 			 */
6087 			break;
6088 		case ZPOOL_PROP_COMMENT:
6089 			strval = fnvpair_value_string(elem);
6090 			if (spa->spa_comment != NULL)
6091 				spa_strfree(spa->spa_comment);
6092 			spa->spa_comment = spa_strdup(strval);
6093 			/*
6094 			 * We need to dirty the configuration on all the vdevs
6095 			 * so that their labels get updated.  It's unnecessary
6096 			 * to do this for pool creation since the vdev's
6097 			 * configuratoin has already been dirtied.
6098 			 */
6099 			if (tx->tx_txg != TXG_INITIAL)
6100 				vdev_config_dirty(spa->spa_root_vdev);
6101 			spa_history_log_internal(spa, "set", tx,
6102 			    "%s=%s", nvpair_name(elem), strval);
6103 			break;
6104 		default:
6105 			/*
6106 			 * Set pool property values in the poolprops mos object.
6107 			 */
6108 			if (spa->spa_pool_props_object == 0) {
6109 				spa->spa_pool_props_object =
6110 				    zap_create_link(mos, DMU_OT_POOL_PROPS,
6111 				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
6112 				    tx);
6113 			}
6114 
6115 			/* normalize the property name */
6116 			propname = zpool_prop_to_name(prop);
6117 			proptype = zpool_prop_get_type(prop);
6118 
6119 			if (nvpair_type(elem) == DATA_TYPE_STRING) {
6120 				ASSERT(proptype == PROP_TYPE_STRING);
6121 				strval = fnvpair_value_string(elem);
6122 				VERIFY0(zap_update(mos,
6123 				    spa->spa_pool_props_object, propname,
6124 				    1, strlen(strval) + 1, strval, tx));
6125 				spa_history_log_internal(spa, "set", tx,
6126 				    "%s=%s", nvpair_name(elem), strval);
6127 			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
6128 				intval = fnvpair_value_uint64(elem);
6129 
6130 				if (proptype == PROP_TYPE_INDEX) {
6131 					const char *unused;
6132 					VERIFY0(zpool_prop_index_to_string(
6133 					    prop, intval, &unused));
6134 				}
6135 				VERIFY0(zap_update(mos,
6136 				    spa->spa_pool_props_object, propname,
6137 				    8, 1, &intval, tx));
6138 				spa_history_log_internal(spa, "set", tx,
6139 				    "%s=%lld", nvpair_name(elem), intval);
6140 			} else {
6141 				ASSERT(0); /* not allowed */
6142 			}
6143 
6144 			switch (prop) {
6145 			case ZPOOL_PROP_DELEGATION:
6146 				spa->spa_delegation = intval;
6147 				break;
6148 			case ZPOOL_PROP_BOOTFS:
6149 				spa->spa_bootfs = intval;
6150 				break;
6151 			case ZPOOL_PROP_FAILUREMODE:
6152 				spa->spa_failmode = intval;
6153 				break;
6154 			case ZPOOL_PROP_AUTOEXPAND:
6155 				spa->spa_autoexpand = intval;
6156 				if (tx->tx_txg != TXG_INITIAL)
6157 					spa_async_request(spa,
6158 					    SPA_ASYNC_AUTOEXPAND);
6159 				break;
6160 			case ZPOOL_PROP_DEDUPDITTO:
6161 				spa->spa_dedup_ditto = intval;
6162 				break;
6163 			default:
6164 				break;
6165 			}
6166 		}
6167 
6168 	}
6169 
6170 	mutex_exit(&spa->spa_props_lock);
6171 }
6172 
6173 /*
6174  * Perform one-time upgrade on-disk changes.  spa_version() does not
6175  * reflect the new version this txg, so there must be no changes this
6176  * txg to anything that the upgrade code depends on after it executes.
6177  * Therefore this must be called after dsl_pool_sync() does the sync
6178  * tasks.
6179  */
6180 static void
6181 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
6182 {
6183 	dsl_pool_t *dp = spa->spa_dsl_pool;
6184 
6185 	ASSERT(spa->spa_sync_pass == 1);
6186 
6187 	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
6188 
6189 	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
6190 	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
6191 		dsl_pool_create_origin(dp, tx);
6192 
6193 		/* Keeping the origin open increases spa_minref */
6194 		spa->spa_minref += 3;
6195 	}
6196 
6197 	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
6198 	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
6199 		dsl_pool_upgrade_clones(dp, tx);
6200 	}
6201 
6202 	if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
6203 	    spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
6204 		dsl_pool_upgrade_dir_clones(dp, tx);
6205 
6206 		/* Keeping the freedir open increases spa_minref */
6207 		spa->spa_minref += 3;
6208 	}
6209 
6210 	if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
6211 	    spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6212 		spa_feature_create_zap_objects(spa, tx);
6213 	}
6214 
6215 	/*
6216 	 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
6217 	 * when possibility to use lz4 compression for metadata was added
6218 	 * Old pools that have this feature enabled must be upgraded to have
6219 	 * this feature active
6220 	 */
6221 	if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6222 		boolean_t lz4_en = spa_feature_is_enabled(spa,
6223 		    SPA_FEATURE_LZ4_COMPRESS);
6224 		boolean_t lz4_ac = spa_feature_is_active(spa,
6225 		    SPA_FEATURE_LZ4_COMPRESS);
6226 
6227 		if (lz4_en && !lz4_ac)
6228 			spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
6229 	}
6230 
6231 	/*
6232 	 * If we haven't written the salt, do so now.  Note that the
6233 	 * feature may not be activated yet, but that's fine since
6234 	 * the presence of this ZAP entry is backwards compatible.
6235 	 */
6236 	if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
6237 	    DMU_POOL_CHECKSUM_SALT) == ENOENT) {
6238 		VERIFY0(zap_add(spa->spa_meta_objset,
6239 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1,
6240 		    sizeof (spa->spa_cksum_salt.zcs_bytes),
6241 		    spa->spa_cksum_salt.zcs_bytes, tx));
6242 	}
6243 
6244 	rrw_exit(&dp->dp_config_rwlock, FTAG);
6245 }
6246 
6247 /*
6248  * Sync the specified transaction group.  New blocks may be dirtied as
6249  * part of the process, so we iterate until it converges.
6250  */
6251 void
6252 spa_sync(spa_t *spa, uint64_t txg)
6253 {
6254 	dsl_pool_t *dp = spa->spa_dsl_pool;
6255 	objset_t *mos = spa->spa_meta_objset;
6256 	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
6257 	vdev_t *rvd = spa->spa_root_vdev;
6258 	vdev_t *vd;
6259 	dmu_tx_t *tx;
6260 	int error;
6261 
6262 	VERIFY(spa_writeable(spa));
6263 
6264 	/*
6265 	 * Lock out configuration changes.
6266 	 */
6267 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6268 
6269 	spa->spa_syncing_txg = txg;
6270 	spa->spa_sync_pass = 0;
6271 
6272 	/*
6273 	 * If there are any pending vdev state changes, convert them
6274 	 * into config changes that go out with this transaction group.
6275 	 */
6276 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6277 	while (list_head(&spa->spa_state_dirty_list) != NULL) {
6278 		/*
6279 		 * We need the write lock here because, for aux vdevs,
6280 		 * calling vdev_config_dirty() modifies sav_config.
6281 		 * This is ugly and will become unnecessary when we
6282 		 * eliminate the aux vdev wart by integrating all vdevs
6283 		 * into the root vdev tree.
6284 		 */
6285 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6286 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
6287 		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
6288 			vdev_state_clean(vd);
6289 			vdev_config_dirty(vd);
6290 		}
6291 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6292 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6293 	}
6294 	spa_config_exit(spa, SCL_STATE, FTAG);
6295 
6296 	tx = dmu_tx_create_assigned(dp, txg);
6297 
6298 	spa->spa_sync_starttime = gethrtime();
6299 	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid,
6300 	    spa->spa_sync_starttime + spa->spa_deadman_synctime));
6301 
6302 	/*
6303 	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
6304 	 * set spa_deflate if we have no raid-z vdevs.
6305 	 */
6306 	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
6307 	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
6308 		int i;
6309 
6310 		for (i = 0; i < rvd->vdev_children; i++) {
6311 			vd = rvd->vdev_child[i];
6312 			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
6313 				break;
6314 		}
6315 		if (i == rvd->vdev_children) {
6316 			spa->spa_deflate = TRUE;
6317 			VERIFY(0 == zap_add(spa->spa_meta_objset,
6318 			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6319 			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
6320 		}
6321 	}
6322 
6323 	/*
6324 	 * Iterate to convergence.
6325 	 */
6326 	do {
6327 		int pass = ++spa->spa_sync_pass;
6328 
6329 		spa_sync_config_object(spa, tx);
6330 		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
6331 		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
6332 		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
6333 		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
6334 		spa_errlog_sync(spa, txg);
6335 		dsl_pool_sync(dp, txg);
6336 
6337 		if (pass < zfs_sync_pass_deferred_free) {
6338 			spa_sync_frees(spa, free_bpl, tx);
6339 		} else {
6340 			/*
6341 			 * We can not defer frees in pass 1, because
6342 			 * we sync the deferred frees later in pass 1.
6343 			 */
6344 			ASSERT3U(pass, >, 1);
6345 			bplist_iterate(free_bpl, bpobj_enqueue_cb,
6346 			    &spa->spa_deferred_bpobj, tx);
6347 		}
6348 
6349 		ddt_sync(spa, txg);
6350 		dsl_scan_sync(dp, tx);
6351 
6352 		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
6353 			vdev_sync(vd, txg);
6354 
6355 		if (pass == 1) {
6356 			spa_sync_upgrades(spa, tx);
6357 			ASSERT3U(txg, >=,
6358 			    spa->spa_uberblock.ub_rootbp.blk_birth);
6359 			/*
6360 			 * Note: We need to check if the MOS is dirty
6361 			 * because we could have marked the MOS dirty
6362 			 * without updating the uberblock (e.g. if we
6363 			 * have sync tasks but no dirty user data).  We
6364 			 * need to check the uberblock's rootbp because
6365 			 * it is updated if we have synced out dirty
6366 			 * data (though in this case the MOS will most
6367 			 * likely also be dirty due to second order
6368 			 * effects, we don't want to rely on that here).
6369 			 */
6370 			if (spa->spa_uberblock.ub_rootbp.blk_birth < txg &&
6371 			    !dmu_objset_is_dirty(mos, txg)) {
6372 				/*
6373 				 * Nothing changed on the first pass,
6374 				 * therefore this TXG is a no-op.  Avoid
6375 				 * syncing deferred frees, so that we
6376 				 * can keep this TXG as a no-op.
6377 				 */
6378 				ASSERT(txg_list_empty(&dp->dp_dirty_datasets,
6379 				    txg));
6380 				ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6381 				ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
6382 				break;
6383 			}
6384 			spa_sync_deferred_frees(spa, tx);
6385 		}
6386 
6387 	} while (dmu_objset_is_dirty(mos, txg));
6388 
6389 	/*
6390 	 * Rewrite the vdev configuration (which includes the uberblock)
6391 	 * to commit the transaction group.
6392 	 *
6393 	 * If there are no dirty vdevs, we sync the uberblock to a few
6394 	 * random top-level vdevs that are known to be visible in the
6395 	 * config cache (see spa_vdev_add() for a complete description).
6396 	 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
6397 	 */
6398 	for (;;) {
6399 		/*
6400 		 * We hold SCL_STATE to prevent vdev open/close/etc.
6401 		 * while we're attempting to write the vdev labels.
6402 		 */
6403 		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6404 
6405 		if (list_is_empty(&spa->spa_config_dirty_list)) {
6406 			vdev_t *svd[SPA_DVAS_PER_BP];
6407 			int svdcount = 0;
6408 			int children = rvd->vdev_children;
6409 			int c0 = spa_get_random(children);
6410 
6411 			for (int c = 0; c < children; c++) {
6412 				vd = rvd->vdev_child[(c0 + c) % children];
6413 				if (vd->vdev_ms_array == 0 || vd->vdev_islog)
6414 					continue;
6415 				svd[svdcount++] = vd;
6416 				if (svdcount == SPA_DVAS_PER_BP)
6417 					break;
6418 			}
6419 			error = vdev_config_sync(svd, svdcount, txg);
6420 		} else {
6421 			error = vdev_config_sync(rvd->vdev_child,
6422 			    rvd->vdev_children, txg);
6423 		}
6424 
6425 		if (error == 0)
6426 			spa->spa_last_synced_guid = rvd->vdev_guid;
6427 
6428 		spa_config_exit(spa, SCL_STATE, FTAG);
6429 
6430 		if (error == 0)
6431 			break;
6432 		zio_suspend(spa, NULL);
6433 		zio_resume_wait(spa);
6434 	}
6435 	dmu_tx_commit(tx);
6436 
6437 	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
6438 
6439 	/*
6440 	 * Clear the dirty config list.
6441 	 */
6442 	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
6443 		vdev_config_clean(vd);
6444 
6445 	/*
6446 	 * Now that the new config has synced transactionally,
6447 	 * let it become visible to the config cache.
6448 	 */
6449 	if (spa->spa_config_syncing != NULL) {
6450 		spa_config_set(spa, spa->spa_config_syncing);
6451 		spa->spa_config_txg = txg;
6452 		spa->spa_config_syncing = NULL;
6453 	}
6454 
6455 	spa->spa_ubsync = spa->spa_uberblock;
6456 
6457 	dsl_pool_sync_done(dp, txg);
6458 
6459 	/*
6460 	 * Update usable space statistics.
6461 	 */
6462 	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
6463 		vdev_sync_done(vd, txg);
6464 
6465 	spa_update_dspace(spa);
6466 
6467 	/*
6468 	 * It had better be the case that we didn't dirty anything
6469 	 * since vdev_config_sync().
6470 	 */
6471 	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
6472 	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6473 	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
6474 
6475 	spa->spa_sync_pass = 0;
6476 
6477 	spa_config_exit(spa, SCL_CONFIG, FTAG);
6478 
6479 	spa_handle_ignored_writes(spa);
6480 
6481 	/*
6482 	 * If any async tasks have been requested, kick them off.
6483 	 */
6484 	spa_async_dispatch(spa);
6485 }
6486 
6487 /*
6488  * Sync all pools.  We don't want to hold the namespace lock across these
6489  * operations, so we take a reference on the spa_t and drop the lock during the
6490  * sync.
6491  */
6492 void
6493 spa_sync_allpools(void)
6494 {
6495 	spa_t *spa = NULL;
6496 	mutex_enter(&spa_namespace_lock);
6497 	while ((spa = spa_next(spa)) != NULL) {
6498 		if (spa_state(spa) != POOL_STATE_ACTIVE ||
6499 		    !spa_writeable(spa) || spa_suspended(spa))
6500 			continue;
6501 		spa_open_ref(spa, FTAG);
6502 		mutex_exit(&spa_namespace_lock);
6503 		txg_wait_synced(spa_get_dsl(spa), 0);
6504 		mutex_enter(&spa_namespace_lock);
6505 		spa_close(spa, FTAG);
6506 	}
6507 	mutex_exit(&spa_namespace_lock);
6508 }
6509 
6510 /*
6511  * ==========================================================================
6512  * Miscellaneous routines
6513  * ==========================================================================
6514  */
6515 
6516 /*
6517  * Remove all pools in the system.
6518  */
6519 void
6520 spa_evict_all(void)
6521 {
6522 	spa_t *spa;
6523 
6524 	/*
6525 	 * Remove all cached state.  All pools should be closed now,
6526 	 * so every spa in the AVL tree should be unreferenced.
6527 	 */
6528 	mutex_enter(&spa_namespace_lock);
6529 	while ((spa = spa_next(NULL)) != NULL) {
6530 		/*
6531 		 * Stop async tasks.  The async thread may need to detach
6532 		 * a device that's been replaced, which requires grabbing
6533 		 * spa_namespace_lock, so we must drop it here.
6534 		 */
6535 		spa_open_ref(spa, FTAG);
6536 		mutex_exit(&spa_namespace_lock);
6537 		spa_async_suspend(spa);
6538 		mutex_enter(&spa_namespace_lock);
6539 		spa_close(spa, FTAG);
6540 
6541 		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6542 			spa_unload(spa);
6543 			spa_deactivate(spa);
6544 		}
6545 		spa_remove(spa);
6546 	}
6547 	mutex_exit(&spa_namespace_lock);
6548 }
6549 
6550 vdev_t *
6551 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
6552 {
6553 	vdev_t *vd;
6554 	int i;
6555 
6556 	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
6557 		return (vd);
6558 
6559 	if (aux) {
6560 		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
6561 			vd = spa->spa_l2cache.sav_vdevs[i];
6562 			if (vd->vdev_guid == guid)
6563 				return (vd);
6564 		}
6565 
6566 		for (i = 0; i < spa->spa_spares.sav_count; i++) {
6567 			vd = spa->spa_spares.sav_vdevs[i];
6568 			if (vd->vdev_guid == guid)
6569 				return (vd);
6570 		}
6571 	}
6572 
6573 	return (NULL);
6574 }
6575 
6576 void
6577 spa_upgrade(spa_t *spa, uint64_t version)
6578 {
6579 	ASSERT(spa_writeable(spa));
6580 
6581 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6582 
6583 	/*
6584 	 * This should only be called for a non-faulted pool, and since a
6585 	 * future version would result in an unopenable pool, this shouldn't be
6586 	 * possible.
6587 	 */
6588 	ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
6589 	ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
6590 
6591 	spa->spa_uberblock.ub_version = version;
6592 	vdev_config_dirty(spa->spa_root_vdev);
6593 
6594 	spa_config_exit(spa, SCL_ALL, FTAG);
6595 
6596 	txg_wait_synced(spa_get_dsl(spa), 0);
6597 }
6598 
6599 boolean_t
6600 spa_has_spare(spa_t *spa, uint64_t guid)
6601 {
6602 	int i;
6603 	uint64_t spareguid;
6604 	spa_aux_vdev_t *sav = &spa->spa_spares;
6605 
6606 	for (i = 0; i < sav->sav_count; i++)
6607 		if (sav->sav_vdevs[i]->vdev_guid == guid)
6608 			return (B_TRUE);
6609 
6610 	for (i = 0; i < sav->sav_npending; i++) {
6611 		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
6612 		    &spareguid) == 0 && spareguid == guid)
6613 			return (B_TRUE);
6614 	}
6615 
6616 	return (B_FALSE);
6617 }
6618 
6619 /*
6620  * Check if a pool has an active shared spare device.
6621  * Note: reference count of an active spare is 2, as a spare and as a replace
6622  */
6623 static boolean_t
6624 spa_has_active_shared_spare(spa_t *spa)
6625 {
6626 	int i, refcnt;
6627 	uint64_t pool;
6628 	spa_aux_vdev_t *sav = &spa->spa_spares;
6629 
6630 	for (i = 0; i < sav->sav_count; i++) {
6631 		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
6632 		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
6633 		    refcnt > 2)
6634 			return (B_TRUE);
6635 	}
6636 
6637 	return (B_FALSE);
6638 }
6639 
6640 /*
6641  * Post a sysevent corresponding to the given event.  The 'name' must be one of
6642  * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
6643  * filled in from the spa and (optionally) the vdev.  This doesn't do anything
6644  * in the userland libzpool, as we don't want consumers to misinterpret ztest
6645  * or zdb as real changes.
6646  */
6647 void
6648 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
6649 {
6650 #ifdef _KERNEL
6651 	sysevent_t		*ev;
6652 	sysevent_attr_list_t	*attr = NULL;
6653 	sysevent_value_t	value;
6654 	sysevent_id_t		eid;
6655 
6656 	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
6657 	    SE_SLEEP);
6658 
6659 	value.value_type = SE_DATA_TYPE_STRING;
6660 	value.value.sv_string = spa_name(spa);
6661 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
6662 		goto done;
6663 
6664 	value.value_type = SE_DATA_TYPE_UINT64;
6665 	value.value.sv_uint64 = spa_guid(spa);
6666 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
6667 		goto done;
6668 
6669 	if (vd) {
6670 		value.value_type = SE_DATA_TYPE_UINT64;
6671 		value.value.sv_uint64 = vd->vdev_guid;
6672 		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
6673 		    SE_SLEEP) != 0)
6674 			goto done;
6675 
6676 		if (vd->vdev_path) {
6677 			value.value_type = SE_DATA_TYPE_STRING;
6678 			value.value.sv_string = vd->vdev_path;
6679 			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
6680 			    &value, SE_SLEEP) != 0)
6681 				goto done;
6682 		}
6683 	}
6684 
6685 	if (sysevent_attach_attributes(ev, attr) != 0)
6686 		goto done;
6687 	attr = NULL;
6688 
6689 	(void) log_sysevent(ev, SE_SLEEP, &eid);
6690 
6691 done:
6692 	if (attr)
6693 		sysevent_free_attr(attr);
6694 	sysevent_free(ev);
6695 #endif
6696 }
6697