1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2013 by Delphix. All rights reserved. 25 * Copyright 2013 Nexenta Systems, Inc. All rights reserved. 26 */ 27 28 /* 29 * SPA: Storage Pool Allocator 30 * 31 * This file contains all the routines used when modifying on-disk SPA state. 32 * This includes opening, importing, destroying, exporting a pool, and syncing a 33 * pool. 34 */ 35 36 #include <sys/zfs_context.h> 37 #include <sys/fm/fs/zfs.h> 38 #include <sys/spa_impl.h> 39 #include <sys/zio.h> 40 #include <sys/zio_checksum.h> 41 #include <sys/dmu.h> 42 #include <sys/dmu_tx.h> 43 #include <sys/zap.h> 44 #include <sys/zil.h> 45 #include <sys/ddt.h> 46 #include <sys/vdev_impl.h> 47 #include <sys/metaslab.h> 48 #include <sys/metaslab_impl.h> 49 #include <sys/uberblock_impl.h> 50 #include <sys/txg.h> 51 #include <sys/avl.h> 52 #include <sys/dmu_traverse.h> 53 #include <sys/dmu_objset.h> 54 #include <sys/unique.h> 55 #include <sys/dsl_pool.h> 56 #include <sys/dsl_dataset.h> 57 #include <sys/dsl_dir.h> 58 #include <sys/dsl_prop.h> 59 #include <sys/dsl_synctask.h> 60 #include <sys/fs/zfs.h> 61 #include <sys/arc.h> 62 #include <sys/callb.h> 63 #include <sys/systeminfo.h> 64 #include <sys/spa_boot.h> 65 #include <sys/zfs_ioctl.h> 66 #include <sys/dsl_scan.h> 67 #include <sys/zfeature.h> 68 #include <sys/dsl_destroy.h> 69 70 #ifdef _KERNEL 71 #include <sys/bootprops.h> 72 #include <sys/callb.h> 73 #include <sys/cpupart.h> 74 #include <sys/pool.h> 75 #include <sys/sysdc.h> 76 #include <sys/zone.h> 77 #endif /* _KERNEL */ 78 79 #include "zfs_prop.h" 80 #include "zfs_comutil.h" 81 82 /* 83 * The interval, in seconds, at which failed configuration cache file writes 84 * should be retried. 85 */ 86 static int zfs_ccw_retry_interval = 300; 87 88 typedef enum zti_modes { 89 ZTI_MODE_FIXED, /* value is # of threads (min 1) */ 90 ZTI_MODE_BATCH, /* cpu-intensive; value is ignored */ 91 ZTI_MODE_NULL, /* don't create a taskq */ 92 ZTI_NMODES 93 } zti_modes_t; 94 95 #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) } 96 #define ZTI_BATCH { ZTI_MODE_BATCH, 0, 1 } 97 #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 } 98 99 #define ZTI_N(n) ZTI_P(n, 1) 100 #define ZTI_ONE ZTI_N(1) 101 102 typedef struct zio_taskq_info { 103 zti_modes_t zti_mode; 104 uint_t zti_value; 105 uint_t zti_count; 106 } zio_taskq_info_t; 107 108 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = { 109 "issue", "issue_high", "intr", "intr_high" 110 }; 111 112 /* 113 * This table defines the taskq settings for each ZFS I/O type. When 114 * initializing a pool, we use this table to create an appropriately sized 115 * taskq. Some operations are low volume and therefore have a small, static 116 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE 117 * macros. Other operations process a large amount of data; the ZTI_BATCH 118 * macro causes us to create a taskq oriented for throughput. Some operations 119 * are so high frequency and short-lived that the taskq itself can become a a 120 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an 121 * additional degree of parallelism specified by the number of threads per- 122 * taskq and the number of taskqs; when dispatching an event in this case, the 123 * particular taskq is chosen at random. 124 * 125 * The different taskq priorities are to handle the different contexts (issue 126 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that 127 * need to be handled with minimum delay. 128 */ 129 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = { 130 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */ 131 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */ 132 { ZTI_N(8), ZTI_NULL, ZTI_BATCH, ZTI_NULL }, /* READ */ 133 { ZTI_BATCH, ZTI_N(5), ZTI_N(8), ZTI_N(5) }, /* WRITE */ 134 { ZTI_P(12, 8), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */ 135 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */ 136 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* IOCTL */ 137 }; 138 139 static void spa_sync_version(void *arg, dmu_tx_t *tx); 140 static void spa_sync_props(void *arg, dmu_tx_t *tx); 141 static boolean_t spa_has_active_shared_spare(spa_t *spa); 142 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config, 143 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig, 144 char **ereport); 145 static void spa_vdev_resilver_done(spa_t *spa); 146 147 uint_t zio_taskq_batch_pct = 75; /* 1 thread per cpu in pset */ 148 id_t zio_taskq_psrset_bind = PS_NONE; 149 boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */ 150 uint_t zio_taskq_basedc = 80; /* base duty cycle */ 151 152 boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */ 153 extern int zfs_sync_pass_deferred_free; 154 155 /* 156 * This (illegal) pool name is used when temporarily importing a spa_t in order 157 * to get the vdev stats associated with the imported devices. 158 */ 159 #define TRYIMPORT_NAME "$import" 160 161 /* 162 * ========================================================================== 163 * SPA properties routines 164 * ========================================================================== 165 */ 166 167 /* 168 * Add a (source=src, propname=propval) list to an nvlist. 169 */ 170 static void 171 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval, 172 uint64_t intval, zprop_source_t src) 173 { 174 const char *propname = zpool_prop_to_name(prop); 175 nvlist_t *propval; 176 177 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0); 178 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0); 179 180 if (strval != NULL) 181 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0); 182 else 183 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0); 184 185 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0); 186 nvlist_free(propval); 187 } 188 189 /* 190 * Get property values from the spa configuration. 191 */ 192 static void 193 spa_prop_get_config(spa_t *spa, nvlist_t **nvp) 194 { 195 vdev_t *rvd = spa->spa_root_vdev; 196 dsl_pool_t *pool = spa->spa_dsl_pool; 197 uint64_t size; 198 uint64_t alloc; 199 uint64_t space; 200 uint64_t cap, version; 201 zprop_source_t src = ZPROP_SRC_NONE; 202 spa_config_dirent_t *dp; 203 204 ASSERT(MUTEX_HELD(&spa->spa_props_lock)); 205 206 if (rvd != NULL) { 207 alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 208 size = metaslab_class_get_space(spa_normal_class(spa)); 209 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src); 210 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src); 211 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src); 212 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL, 213 size - alloc, src); 214 215 space = 0; 216 for (int c = 0; c < rvd->vdev_children; c++) { 217 vdev_t *tvd = rvd->vdev_child[c]; 218 space += tvd->vdev_max_asize - tvd->vdev_asize; 219 } 220 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL, space, 221 src); 222 223 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL, 224 (spa_mode(spa) == FREAD), src); 225 226 cap = (size == 0) ? 0 : (alloc * 100 / size); 227 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src); 228 229 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL, 230 ddt_get_pool_dedup_ratio(spa), src); 231 232 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL, 233 rvd->vdev_state, src); 234 235 version = spa_version(spa); 236 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) 237 src = ZPROP_SRC_DEFAULT; 238 else 239 src = ZPROP_SRC_LOCAL; 240 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src); 241 } 242 243 if (pool != NULL) { 244 dsl_dir_t *freedir = pool->dp_free_dir; 245 246 /* 247 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS, 248 * when opening pools before this version freedir will be NULL. 249 */ 250 if (freedir != NULL) { 251 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL, 252 freedir->dd_phys->dd_used_bytes, src); 253 } else { 254 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, 255 NULL, 0, src); 256 } 257 } 258 259 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src); 260 261 if (spa->spa_comment != NULL) { 262 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment, 263 0, ZPROP_SRC_LOCAL); 264 } 265 266 if (spa->spa_root != NULL) 267 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root, 268 0, ZPROP_SRC_LOCAL); 269 270 if ((dp = list_head(&spa->spa_config_list)) != NULL) { 271 if (dp->scd_path == NULL) { 272 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 273 "none", 0, ZPROP_SRC_LOCAL); 274 } else if (strcmp(dp->scd_path, spa_config_path) != 0) { 275 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 276 dp->scd_path, 0, ZPROP_SRC_LOCAL); 277 } 278 } 279 } 280 281 /* 282 * Get zpool property values. 283 */ 284 int 285 spa_prop_get(spa_t *spa, nvlist_t **nvp) 286 { 287 objset_t *mos = spa->spa_meta_objset; 288 zap_cursor_t zc; 289 zap_attribute_t za; 290 int err; 291 292 VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0); 293 294 mutex_enter(&spa->spa_props_lock); 295 296 /* 297 * Get properties from the spa config. 298 */ 299 spa_prop_get_config(spa, nvp); 300 301 /* If no pool property object, no more prop to get. */ 302 if (mos == NULL || spa->spa_pool_props_object == 0) { 303 mutex_exit(&spa->spa_props_lock); 304 return (0); 305 } 306 307 /* 308 * Get properties from the MOS pool property object. 309 */ 310 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object); 311 (err = zap_cursor_retrieve(&zc, &za)) == 0; 312 zap_cursor_advance(&zc)) { 313 uint64_t intval = 0; 314 char *strval = NULL; 315 zprop_source_t src = ZPROP_SRC_DEFAULT; 316 zpool_prop_t prop; 317 318 if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL) 319 continue; 320 321 switch (za.za_integer_length) { 322 case 8: 323 /* integer property */ 324 if (za.za_first_integer != 325 zpool_prop_default_numeric(prop)) 326 src = ZPROP_SRC_LOCAL; 327 328 if (prop == ZPOOL_PROP_BOOTFS) { 329 dsl_pool_t *dp; 330 dsl_dataset_t *ds = NULL; 331 332 dp = spa_get_dsl(spa); 333 dsl_pool_config_enter(dp, FTAG); 334 if (err = dsl_dataset_hold_obj(dp, 335 za.za_first_integer, FTAG, &ds)) { 336 dsl_pool_config_exit(dp, FTAG); 337 break; 338 } 339 340 strval = kmem_alloc( 341 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1, 342 KM_SLEEP); 343 dsl_dataset_name(ds, strval); 344 dsl_dataset_rele(ds, FTAG); 345 dsl_pool_config_exit(dp, FTAG); 346 } else { 347 strval = NULL; 348 intval = za.za_first_integer; 349 } 350 351 spa_prop_add_list(*nvp, prop, strval, intval, src); 352 353 if (strval != NULL) 354 kmem_free(strval, 355 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1); 356 357 break; 358 359 case 1: 360 /* string property */ 361 strval = kmem_alloc(za.za_num_integers, KM_SLEEP); 362 err = zap_lookup(mos, spa->spa_pool_props_object, 363 za.za_name, 1, za.za_num_integers, strval); 364 if (err) { 365 kmem_free(strval, za.za_num_integers); 366 break; 367 } 368 spa_prop_add_list(*nvp, prop, strval, 0, src); 369 kmem_free(strval, za.za_num_integers); 370 break; 371 372 default: 373 break; 374 } 375 } 376 zap_cursor_fini(&zc); 377 mutex_exit(&spa->spa_props_lock); 378 out: 379 if (err && err != ENOENT) { 380 nvlist_free(*nvp); 381 *nvp = NULL; 382 return (err); 383 } 384 385 return (0); 386 } 387 388 /* 389 * Validate the given pool properties nvlist and modify the list 390 * for the property values to be set. 391 */ 392 static int 393 spa_prop_validate(spa_t *spa, nvlist_t *props) 394 { 395 nvpair_t *elem; 396 int error = 0, reset_bootfs = 0; 397 uint64_t objnum = 0; 398 boolean_t has_feature = B_FALSE; 399 400 elem = NULL; 401 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) { 402 uint64_t intval; 403 char *strval, *slash, *check, *fname; 404 const char *propname = nvpair_name(elem); 405 zpool_prop_t prop = zpool_name_to_prop(propname); 406 407 switch (prop) { 408 case ZPROP_INVAL: 409 if (!zpool_prop_feature(propname)) { 410 error = SET_ERROR(EINVAL); 411 break; 412 } 413 414 /* 415 * Sanitize the input. 416 */ 417 if (nvpair_type(elem) != DATA_TYPE_UINT64) { 418 error = SET_ERROR(EINVAL); 419 break; 420 } 421 422 if (nvpair_value_uint64(elem, &intval) != 0) { 423 error = SET_ERROR(EINVAL); 424 break; 425 } 426 427 if (intval != 0) { 428 error = SET_ERROR(EINVAL); 429 break; 430 } 431 432 fname = strchr(propname, '@') + 1; 433 if (zfeature_lookup_name(fname, NULL) != 0) { 434 error = SET_ERROR(EINVAL); 435 break; 436 } 437 438 has_feature = B_TRUE; 439 break; 440 441 case ZPOOL_PROP_VERSION: 442 error = nvpair_value_uint64(elem, &intval); 443 if (!error && 444 (intval < spa_version(spa) || 445 intval > SPA_VERSION_BEFORE_FEATURES || 446 has_feature)) 447 error = SET_ERROR(EINVAL); 448 break; 449 450 case ZPOOL_PROP_DELEGATION: 451 case ZPOOL_PROP_AUTOREPLACE: 452 case ZPOOL_PROP_LISTSNAPS: 453 case ZPOOL_PROP_AUTOEXPAND: 454 error = nvpair_value_uint64(elem, &intval); 455 if (!error && intval > 1) 456 error = SET_ERROR(EINVAL); 457 break; 458 459 case ZPOOL_PROP_BOOTFS: 460 /* 461 * If the pool version is less than SPA_VERSION_BOOTFS, 462 * or the pool is still being created (version == 0), 463 * the bootfs property cannot be set. 464 */ 465 if (spa_version(spa) < SPA_VERSION_BOOTFS) { 466 error = SET_ERROR(ENOTSUP); 467 break; 468 } 469 470 /* 471 * Make sure the vdev config is bootable 472 */ 473 if (!vdev_is_bootable(spa->spa_root_vdev)) { 474 error = SET_ERROR(ENOTSUP); 475 break; 476 } 477 478 reset_bootfs = 1; 479 480 error = nvpair_value_string(elem, &strval); 481 482 if (!error) { 483 objset_t *os; 484 uint64_t compress; 485 486 if (strval == NULL || strval[0] == '\0') { 487 objnum = zpool_prop_default_numeric( 488 ZPOOL_PROP_BOOTFS); 489 break; 490 } 491 492 if (error = dmu_objset_hold(strval, FTAG, &os)) 493 break; 494 495 /* Must be ZPL and not gzip compressed. */ 496 497 if (dmu_objset_type(os) != DMU_OST_ZFS) { 498 error = SET_ERROR(ENOTSUP); 499 } else if ((error = 500 dsl_prop_get_int_ds(dmu_objset_ds(os), 501 zfs_prop_to_name(ZFS_PROP_COMPRESSION), 502 &compress)) == 0 && 503 !BOOTFS_COMPRESS_VALID(compress)) { 504 error = SET_ERROR(ENOTSUP); 505 } else { 506 objnum = dmu_objset_id(os); 507 } 508 dmu_objset_rele(os, FTAG); 509 } 510 break; 511 512 case ZPOOL_PROP_FAILUREMODE: 513 error = nvpair_value_uint64(elem, &intval); 514 if (!error && (intval < ZIO_FAILURE_MODE_WAIT || 515 intval > ZIO_FAILURE_MODE_PANIC)) 516 error = SET_ERROR(EINVAL); 517 518 /* 519 * This is a special case which only occurs when 520 * the pool has completely failed. This allows 521 * the user to change the in-core failmode property 522 * without syncing it out to disk (I/Os might 523 * currently be blocked). We do this by returning 524 * EIO to the caller (spa_prop_set) to trick it 525 * into thinking we encountered a property validation 526 * error. 527 */ 528 if (!error && spa_suspended(spa)) { 529 spa->spa_failmode = intval; 530 error = SET_ERROR(EIO); 531 } 532 break; 533 534 case ZPOOL_PROP_CACHEFILE: 535 if ((error = nvpair_value_string(elem, &strval)) != 0) 536 break; 537 538 if (strval[0] == '\0') 539 break; 540 541 if (strcmp(strval, "none") == 0) 542 break; 543 544 if (strval[0] != '/') { 545 error = SET_ERROR(EINVAL); 546 break; 547 } 548 549 slash = strrchr(strval, '/'); 550 ASSERT(slash != NULL); 551 552 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 || 553 strcmp(slash, "/..") == 0) 554 error = SET_ERROR(EINVAL); 555 break; 556 557 case ZPOOL_PROP_COMMENT: 558 if ((error = nvpair_value_string(elem, &strval)) != 0) 559 break; 560 for (check = strval; *check != '\0'; check++) { 561 /* 562 * The kernel doesn't have an easy isprint() 563 * check. For this kernel check, we merely 564 * check ASCII apart from DEL. Fix this if 565 * there is an easy-to-use kernel isprint(). 566 */ 567 if (*check >= 0x7f) { 568 error = SET_ERROR(EINVAL); 569 break; 570 } 571 check++; 572 } 573 if (strlen(strval) > ZPROP_MAX_COMMENT) 574 error = E2BIG; 575 break; 576 577 case ZPOOL_PROP_DEDUPDITTO: 578 if (spa_version(spa) < SPA_VERSION_DEDUP) 579 error = SET_ERROR(ENOTSUP); 580 else 581 error = nvpair_value_uint64(elem, &intval); 582 if (error == 0 && 583 intval != 0 && intval < ZIO_DEDUPDITTO_MIN) 584 error = SET_ERROR(EINVAL); 585 break; 586 } 587 588 if (error) 589 break; 590 } 591 592 if (!error && reset_bootfs) { 593 error = nvlist_remove(props, 594 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING); 595 596 if (!error) { 597 error = nvlist_add_uint64(props, 598 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum); 599 } 600 } 601 602 return (error); 603 } 604 605 void 606 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync) 607 { 608 char *cachefile; 609 spa_config_dirent_t *dp; 610 611 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE), 612 &cachefile) != 0) 613 return; 614 615 dp = kmem_alloc(sizeof (spa_config_dirent_t), 616 KM_SLEEP); 617 618 if (cachefile[0] == '\0') 619 dp->scd_path = spa_strdup(spa_config_path); 620 else if (strcmp(cachefile, "none") == 0) 621 dp->scd_path = NULL; 622 else 623 dp->scd_path = spa_strdup(cachefile); 624 625 list_insert_head(&spa->spa_config_list, dp); 626 if (need_sync) 627 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 628 } 629 630 int 631 spa_prop_set(spa_t *spa, nvlist_t *nvp) 632 { 633 int error; 634 nvpair_t *elem = NULL; 635 boolean_t need_sync = B_FALSE; 636 637 if ((error = spa_prop_validate(spa, nvp)) != 0) 638 return (error); 639 640 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) { 641 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem)); 642 643 if (prop == ZPOOL_PROP_CACHEFILE || 644 prop == ZPOOL_PROP_ALTROOT || 645 prop == ZPOOL_PROP_READONLY) 646 continue; 647 648 if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) { 649 uint64_t ver; 650 651 if (prop == ZPOOL_PROP_VERSION) { 652 VERIFY(nvpair_value_uint64(elem, &ver) == 0); 653 } else { 654 ASSERT(zpool_prop_feature(nvpair_name(elem))); 655 ver = SPA_VERSION_FEATURES; 656 need_sync = B_TRUE; 657 } 658 659 /* Save time if the version is already set. */ 660 if (ver == spa_version(spa)) 661 continue; 662 663 /* 664 * In addition to the pool directory object, we might 665 * create the pool properties object, the features for 666 * read object, the features for write object, or the 667 * feature descriptions object. 668 */ 669 error = dsl_sync_task(spa->spa_name, NULL, 670 spa_sync_version, &ver, 6); 671 if (error) 672 return (error); 673 continue; 674 } 675 676 need_sync = B_TRUE; 677 break; 678 } 679 680 if (need_sync) { 681 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props, 682 nvp, 6)); 683 } 684 685 return (0); 686 } 687 688 /* 689 * If the bootfs property value is dsobj, clear it. 690 */ 691 void 692 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx) 693 { 694 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) { 695 VERIFY(zap_remove(spa->spa_meta_objset, 696 spa->spa_pool_props_object, 697 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0); 698 spa->spa_bootfs = 0; 699 } 700 } 701 702 /*ARGSUSED*/ 703 static int 704 spa_change_guid_check(void *arg, dmu_tx_t *tx) 705 { 706 uint64_t *newguid = arg; 707 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 708 vdev_t *rvd = spa->spa_root_vdev; 709 uint64_t vdev_state; 710 711 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 712 vdev_state = rvd->vdev_state; 713 spa_config_exit(spa, SCL_STATE, FTAG); 714 715 if (vdev_state != VDEV_STATE_HEALTHY) 716 return (SET_ERROR(ENXIO)); 717 718 ASSERT3U(spa_guid(spa), !=, *newguid); 719 720 return (0); 721 } 722 723 static void 724 spa_change_guid_sync(void *arg, dmu_tx_t *tx) 725 { 726 uint64_t *newguid = arg; 727 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 728 uint64_t oldguid; 729 vdev_t *rvd = spa->spa_root_vdev; 730 731 oldguid = spa_guid(spa); 732 733 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 734 rvd->vdev_guid = *newguid; 735 rvd->vdev_guid_sum += (*newguid - oldguid); 736 vdev_config_dirty(rvd); 737 spa_config_exit(spa, SCL_STATE, FTAG); 738 739 spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu", 740 oldguid, *newguid); 741 } 742 743 /* 744 * Change the GUID for the pool. This is done so that we can later 745 * re-import a pool built from a clone of our own vdevs. We will modify 746 * the root vdev's guid, our own pool guid, and then mark all of our 747 * vdevs dirty. Note that we must make sure that all our vdevs are 748 * online when we do this, or else any vdevs that weren't present 749 * would be orphaned from our pool. We are also going to issue a 750 * sysevent to update any watchers. 751 */ 752 int 753 spa_change_guid(spa_t *spa) 754 { 755 int error; 756 uint64_t guid; 757 758 mutex_enter(&spa->spa_vdev_top_lock); 759 mutex_enter(&spa_namespace_lock); 760 guid = spa_generate_guid(NULL); 761 762 error = dsl_sync_task(spa->spa_name, spa_change_guid_check, 763 spa_change_guid_sync, &guid, 5); 764 765 if (error == 0) { 766 spa_config_sync(spa, B_FALSE, B_TRUE); 767 spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID); 768 } 769 770 mutex_exit(&spa_namespace_lock); 771 mutex_exit(&spa->spa_vdev_top_lock); 772 773 return (error); 774 } 775 776 /* 777 * ========================================================================== 778 * SPA state manipulation (open/create/destroy/import/export) 779 * ========================================================================== 780 */ 781 782 static int 783 spa_error_entry_compare(const void *a, const void *b) 784 { 785 spa_error_entry_t *sa = (spa_error_entry_t *)a; 786 spa_error_entry_t *sb = (spa_error_entry_t *)b; 787 int ret; 788 789 ret = bcmp(&sa->se_bookmark, &sb->se_bookmark, 790 sizeof (zbookmark_t)); 791 792 if (ret < 0) 793 return (-1); 794 else if (ret > 0) 795 return (1); 796 else 797 return (0); 798 } 799 800 /* 801 * Utility function which retrieves copies of the current logs and 802 * re-initializes them in the process. 803 */ 804 void 805 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub) 806 { 807 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock)); 808 809 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t)); 810 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t)); 811 812 avl_create(&spa->spa_errlist_scrub, 813 spa_error_entry_compare, sizeof (spa_error_entry_t), 814 offsetof(spa_error_entry_t, se_avl)); 815 avl_create(&spa->spa_errlist_last, 816 spa_error_entry_compare, sizeof (spa_error_entry_t), 817 offsetof(spa_error_entry_t, se_avl)); 818 } 819 820 static void 821 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q) 822 { 823 const zio_taskq_info_t *ztip = &zio_taskqs[t][q]; 824 enum zti_modes mode = ztip->zti_mode; 825 uint_t value = ztip->zti_value; 826 uint_t count = ztip->zti_count; 827 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 828 char name[32]; 829 uint_t flags = 0; 830 boolean_t batch = B_FALSE; 831 832 if (mode == ZTI_MODE_NULL) { 833 tqs->stqs_count = 0; 834 tqs->stqs_taskq = NULL; 835 return; 836 } 837 838 ASSERT3U(count, >, 0); 839 840 tqs->stqs_count = count; 841 tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP); 842 843 switch (mode) { 844 case ZTI_MODE_FIXED: 845 ASSERT3U(value, >=, 1); 846 value = MAX(value, 1); 847 break; 848 849 case ZTI_MODE_BATCH: 850 batch = B_TRUE; 851 flags |= TASKQ_THREADS_CPU_PCT; 852 value = zio_taskq_batch_pct; 853 break; 854 855 default: 856 panic("unrecognized mode for %s_%s taskq (%u:%u) in " 857 "spa_activate()", 858 zio_type_name[t], zio_taskq_types[q], mode, value); 859 break; 860 } 861 862 for (uint_t i = 0; i < count; i++) { 863 taskq_t *tq; 864 865 if (count > 1) { 866 (void) snprintf(name, sizeof (name), "%s_%s_%u", 867 zio_type_name[t], zio_taskq_types[q], i); 868 } else { 869 (void) snprintf(name, sizeof (name), "%s_%s", 870 zio_type_name[t], zio_taskq_types[q]); 871 } 872 873 if (zio_taskq_sysdc && spa->spa_proc != &p0) { 874 if (batch) 875 flags |= TASKQ_DC_BATCH; 876 877 tq = taskq_create_sysdc(name, value, 50, INT_MAX, 878 spa->spa_proc, zio_taskq_basedc, flags); 879 } else { 880 pri_t pri = maxclsyspri; 881 /* 882 * The write issue taskq can be extremely CPU 883 * intensive. Run it at slightly lower priority 884 * than the other taskqs. 885 */ 886 if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE) 887 pri--; 888 889 tq = taskq_create_proc(name, value, pri, 50, 890 INT_MAX, spa->spa_proc, flags); 891 } 892 893 tqs->stqs_taskq[i] = tq; 894 } 895 } 896 897 static void 898 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q) 899 { 900 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 901 902 if (tqs->stqs_taskq == NULL) { 903 ASSERT0(tqs->stqs_count); 904 return; 905 } 906 907 for (uint_t i = 0; i < tqs->stqs_count; i++) { 908 ASSERT3P(tqs->stqs_taskq[i], !=, NULL); 909 taskq_destroy(tqs->stqs_taskq[i]); 910 } 911 912 kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *)); 913 tqs->stqs_taskq = NULL; 914 } 915 916 /* 917 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority. 918 * Note that a type may have multiple discrete taskqs to avoid lock contention 919 * on the taskq itself. In that case we choose which taskq at random by using 920 * the low bits of gethrtime(). 921 */ 922 void 923 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q, 924 task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent) 925 { 926 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 927 taskq_t *tq; 928 929 ASSERT3P(tqs->stqs_taskq, !=, NULL); 930 ASSERT3U(tqs->stqs_count, !=, 0); 931 932 if (tqs->stqs_count == 1) { 933 tq = tqs->stqs_taskq[0]; 934 } else { 935 tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count]; 936 } 937 938 taskq_dispatch_ent(tq, func, arg, flags, ent); 939 } 940 941 static void 942 spa_create_zio_taskqs(spa_t *spa) 943 { 944 for (int t = 0; t < ZIO_TYPES; t++) { 945 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 946 spa_taskqs_init(spa, t, q); 947 } 948 } 949 } 950 951 #ifdef _KERNEL 952 static void 953 spa_thread(void *arg) 954 { 955 callb_cpr_t cprinfo; 956 957 spa_t *spa = arg; 958 user_t *pu = PTOU(curproc); 959 960 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr, 961 spa->spa_name); 962 963 ASSERT(curproc != &p0); 964 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs), 965 "zpool-%s", spa->spa_name); 966 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm)); 967 968 /* bind this thread to the requested psrset */ 969 if (zio_taskq_psrset_bind != PS_NONE) { 970 pool_lock(); 971 mutex_enter(&cpu_lock); 972 mutex_enter(&pidlock); 973 mutex_enter(&curproc->p_lock); 974 975 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind, 976 0, NULL, NULL) == 0) { 977 curthread->t_bind_pset = zio_taskq_psrset_bind; 978 } else { 979 cmn_err(CE_WARN, 980 "Couldn't bind process for zfs pool \"%s\" to " 981 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind); 982 } 983 984 mutex_exit(&curproc->p_lock); 985 mutex_exit(&pidlock); 986 mutex_exit(&cpu_lock); 987 pool_unlock(); 988 } 989 990 if (zio_taskq_sysdc) { 991 sysdc_thread_enter(curthread, 100, 0); 992 } 993 994 spa->spa_proc = curproc; 995 spa->spa_did = curthread->t_did; 996 997 spa_create_zio_taskqs(spa); 998 999 mutex_enter(&spa->spa_proc_lock); 1000 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED); 1001 1002 spa->spa_proc_state = SPA_PROC_ACTIVE; 1003 cv_broadcast(&spa->spa_proc_cv); 1004 1005 CALLB_CPR_SAFE_BEGIN(&cprinfo); 1006 while (spa->spa_proc_state == SPA_PROC_ACTIVE) 1007 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 1008 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock); 1009 1010 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE); 1011 spa->spa_proc_state = SPA_PROC_GONE; 1012 spa->spa_proc = &p0; 1013 cv_broadcast(&spa->spa_proc_cv); 1014 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */ 1015 1016 mutex_enter(&curproc->p_lock); 1017 lwp_exit(); 1018 } 1019 #endif 1020 1021 /* 1022 * Activate an uninitialized pool. 1023 */ 1024 static void 1025 spa_activate(spa_t *spa, int mode) 1026 { 1027 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED); 1028 1029 spa->spa_state = POOL_STATE_ACTIVE; 1030 spa->spa_mode = mode; 1031 1032 spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops); 1033 spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops); 1034 1035 /* Try to create a covering process */ 1036 mutex_enter(&spa->spa_proc_lock); 1037 ASSERT(spa->spa_proc_state == SPA_PROC_NONE); 1038 ASSERT(spa->spa_proc == &p0); 1039 spa->spa_did = 0; 1040 1041 /* Only create a process if we're going to be around a while. */ 1042 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) { 1043 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri, 1044 NULL, 0) == 0) { 1045 spa->spa_proc_state = SPA_PROC_CREATED; 1046 while (spa->spa_proc_state == SPA_PROC_CREATED) { 1047 cv_wait(&spa->spa_proc_cv, 1048 &spa->spa_proc_lock); 1049 } 1050 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 1051 ASSERT(spa->spa_proc != &p0); 1052 ASSERT(spa->spa_did != 0); 1053 } else { 1054 #ifdef _KERNEL 1055 cmn_err(CE_WARN, 1056 "Couldn't create process for zfs pool \"%s\"\n", 1057 spa->spa_name); 1058 #endif 1059 } 1060 } 1061 mutex_exit(&spa->spa_proc_lock); 1062 1063 /* If we didn't create a process, we need to create our taskqs. */ 1064 if (spa->spa_proc == &p0) { 1065 spa_create_zio_taskqs(spa); 1066 } 1067 1068 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t), 1069 offsetof(vdev_t, vdev_config_dirty_node)); 1070 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t), 1071 offsetof(vdev_t, vdev_state_dirty_node)); 1072 1073 txg_list_create(&spa->spa_vdev_txg_list, 1074 offsetof(struct vdev, vdev_txg_node)); 1075 1076 avl_create(&spa->spa_errlist_scrub, 1077 spa_error_entry_compare, sizeof (spa_error_entry_t), 1078 offsetof(spa_error_entry_t, se_avl)); 1079 avl_create(&spa->spa_errlist_last, 1080 spa_error_entry_compare, sizeof (spa_error_entry_t), 1081 offsetof(spa_error_entry_t, se_avl)); 1082 } 1083 1084 /* 1085 * Opposite of spa_activate(). 1086 */ 1087 static void 1088 spa_deactivate(spa_t *spa) 1089 { 1090 ASSERT(spa->spa_sync_on == B_FALSE); 1091 ASSERT(spa->spa_dsl_pool == NULL); 1092 ASSERT(spa->spa_root_vdev == NULL); 1093 ASSERT(spa->spa_async_zio_root == NULL); 1094 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED); 1095 1096 txg_list_destroy(&spa->spa_vdev_txg_list); 1097 1098 list_destroy(&spa->spa_config_dirty_list); 1099 list_destroy(&spa->spa_state_dirty_list); 1100 1101 for (int t = 0; t < ZIO_TYPES; t++) { 1102 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 1103 spa_taskqs_fini(spa, t, q); 1104 } 1105 } 1106 1107 metaslab_class_destroy(spa->spa_normal_class); 1108 spa->spa_normal_class = NULL; 1109 1110 metaslab_class_destroy(spa->spa_log_class); 1111 spa->spa_log_class = NULL; 1112 1113 /* 1114 * If this was part of an import or the open otherwise failed, we may 1115 * still have errors left in the queues. Empty them just in case. 1116 */ 1117 spa_errlog_drain(spa); 1118 1119 avl_destroy(&spa->spa_errlist_scrub); 1120 avl_destroy(&spa->spa_errlist_last); 1121 1122 spa->spa_state = POOL_STATE_UNINITIALIZED; 1123 1124 mutex_enter(&spa->spa_proc_lock); 1125 if (spa->spa_proc_state != SPA_PROC_NONE) { 1126 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 1127 spa->spa_proc_state = SPA_PROC_DEACTIVATE; 1128 cv_broadcast(&spa->spa_proc_cv); 1129 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) { 1130 ASSERT(spa->spa_proc != &p0); 1131 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 1132 } 1133 ASSERT(spa->spa_proc_state == SPA_PROC_GONE); 1134 spa->spa_proc_state = SPA_PROC_NONE; 1135 } 1136 ASSERT(spa->spa_proc == &p0); 1137 mutex_exit(&spa->spa_proc_lock); 1138 1139 /* 1140 * We want to make sure spa_thread() has actually exited the ZFS 1141 * module, so that the module can't be unloaded out from underneath 1142 * it. 1143 */ 1144 if (spa->spa_did != 0) { 1145 thread_join(spa->spa_did); 1146 spa->spa_did = 0; 1147 } 1148 } 1149 1150 /* 1151 * Verify a pool configuration, and construct the vdev tree appropriately. This 1152 * will create all the necessary vdevs in the appropriate layout, with each vdev 1153 * in the CLOSED state. This will prep the pool before open/creation/import. 1154 * All vdev validation is done by the vdev_alloc() routine. 1155 */ 1156 static int 1157 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, 1158 uint_t id, int atype) 1159 { 1160 nvlist_t **child; 1161 uint_t children; 1162 int error; 1163 1164 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0) 1165 return (error); 1166 1167 if ((*vdp)->vdev_ops->vdev_op_leaf) 1168 return (0); 1169 1170 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 1171 &child, &children); 1172 1173 if (error == ENOENT) 1174 return (0); 1175 1176 if (error) { 1177 vdev_free(*vdp); 1178 *vdp = NULL; 1179 return (SET_ERROR(EINVAL)); 1180 } 1181 1182 for (int c = 0; c < children; c++) { 1183 vdev_t *vd; 1184 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c, 1185 atype)) != 0) { 1186 vdev_free(*vdp); 1187 *vdp = NULL; 1188 return (error); 1189 } 1190 } 1191 1192 ASSERT(*vdp != NULL); 1193 1194 return (0); 1195 } 1196 1197 /* 1198 * Opposite of spa_load(). 1199 */ 1200 static void 1201 spa_unload(spa_t *spa) 1202 { 1203 int i; 1204 1205 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1206 1207 /* 1208 * Stop async tasks. 1209 */ 1210 spa_async_suspend(spa); 1211 1212 /* 1213 * Stop syncing. 1214 */ 1215 if (spa->spa_sync_on) { 1216 txg_sync_stop(spa->spa_dsl_pool); 1217 spa->spa_sync_on = B_FALSE; 1218 } 1219 1220 /* 1221 * Wait for any outstanding async I/O to complete. 1222 */ 1223 if (spa->spa_async_zio_root != NULL) { 1224 (void) zio_wait(spa->spa_async_zio_root); 1225 spa->spa_async_zio_root = NULL; 1226 } 1227 1228 bpobj_close(&spa->spa_deferred_bpobj); 1229 1230 /* 1231 * Close the dsl pool. 1232 */ 1233 if (spa->spa_dsl_pool) { 1234 dsl_pool_close(spa->spa_dsl_pool); 1235 spa->spa_dsl_pool = NULL; 1236 spa->spa_meta_objset = NULL; 1237 } 1238 1239 ddt_unload(spa); 1240 1241 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1242 1243 /* 1244 * Drop and purge level 2 cache 1245 */ 1246 spa_l2cache_drop(spa); 1247 1248 /* 1249 * Close all vdevs. 1250 */ 1251 if (spa->spa_root_vdev) 1252 vdev_free(spa->spa_root_vdev); 1253 ASSERT(spa->spa_root_vdev == NULL); 1254 1255 for (i = 0; i < spa->spa_spares.sav_count; i++) 1256 vdev_free(spa->spa_spares.sav_vdevs[i]); 1257 if (spa->spa_spares.sav_vdevs) { 1258 kmem_free(spa->spa_spares.sav_vdevs, 1259 spa->spa_spares.sav_count * sizeof (void *)); 1260 spa->spa_spares.sav_vdevs = NULL; 1261 } 1262 if (spa->spa_spares.sav_config) { 1263 nvlist_free(spa->spa_spares.sav_config); 1264 spa->spa_spares.sav_config = NULL; 1265 } 1266 spa->spa_spares.sav_count = 0; 1267 1268 for (i = 0; i < spa->spa_l2cache.sav_count; i++) { 1269 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]); 1270 vdev_free(spa->spa_l2cache.sav_vdevs[i]); 1271 } 1272 if (spa->spa_l2cache.sav_vdevs) { 1273 kmem_free(spa->spa_l2cache.sav_vdevs, 1274 spa->spa_l2cache.sav_count * sizeof (void *)); 1275 spa->spa_l2cache.sav_vdevs = NULL; 1276 } 1277 if (spa->spa_l2cache.sav_config) { 1278 nvlist_free(spa->spa_l2cache.sav_config); 1279 spa->spa_l2cache.sav_config = NULL; 1280 } 1281 spa->spa_l2cache.sav_count = 0; 1282 1283 spa->spa_async_suspended = 0; 1284 1285 if (spa->spa_comment != NULL) { 1286 spa_strfree(spa->spa_comment); 1287 spa->spa_comment = NULL; 1288 } 1289 1290 spa_config_exit(spa, SCL_ALL, FTAG); 1291 } 1292 1293 /* 1294 * Load (or re-load) the current list of vdevs describing the active spares for 1295 * this pool. When this is called, we have some form of basic information in 1296 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and 1297 * then re-generate a more complete list including status information. 1298 */ 1299 static void 1300 spa_load_spares(spa_t *spa) 1301 { 1302 nvlist_t **spares; 1303 uint_t nspares; 1304 int i; 1305 vdev_t *vd, *tvd; 1306 1307 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1308 1309 /* 1310 * First, close and free any existing spare vdevs. 1311 */ 1312 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1313 vd = spa->spa_spares.sav_vdevs[i]; 1314 1315 /* Undo the call to spa_activate() below */ 1316 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1317 B_FALSE)) != NULL && tvd->vdev_isspare) 1318 spa_spare_remove(tvd); 1319 vdev_close(vd); 1320 vdev_free(vd); 1321 } 1322 1323 if (spa->spa_spares.sav_vdevs) 1324 kmem_free(spa->spa_spares.sav_vdevs, 1325 spa->spa_spares.sav_count * sizeof (void *)); 1326 1327 if (spa->spa_spares.sav_config == NULL) 1328 nspares = 0; 1329 else 1330 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 1331 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 1332 1333 spa->spa_spares.sav_count = (int)nspares; 1334 spa->spa_spares.sav_vdevs = NULL; 1335 1336 if (nspares == 0) 1337 return; 1338 1339 /* 1340 * Construct the array of vdevs, opening them to get status in the 1341 * process. For each spare, there is potentially two different vdev_t 1342 * structures associated with it: one in the list of spares (used only 1343 * for basic validation purposes) and one in the active vdev 1344 * configuration (if it's spared in). During this phase we open and 1345 * validate each vdev on the spare list. If the vdev also exists in the 1346 * active configuration, then we also mark this vdev as an active spare. 1347 */ 1348 spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *), 1349 KM_SLEEP); 1350 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1351 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0, 1352 VDEV_ALLOC_SPARE) == 0); 1353 ASSERT(vd != NULL); 1354 1355 spa->spa_spares.sav_vdevs[i] = vd; 1356 1357 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1358 B_FALSE)) != NULL) { 1359 if (!tvd->vdev_isspare) 1360 spa_spare_add(tvd); 1361 1362 /* 1363 * We only mark the spare active if we were successfully 1364 * able to load the vdev. Otherwise, importing a pool 1365 * with a bad active spare would result in strange 1366 * behavior, because multiple pool would think the spare 1367 * is actively in use. 1368 * 1369 * There is a vulnerability here to an equally bizarre 1370 * circumstance, where a dead active spare is later 1371 * brought back to life (onlined or otherwise). Given 1372 * the rarity of this scenario, and the extra complexity 1373 * it adds, we ignore the possibility. 1374 */ 1375 if (!vdev_is_dead(tvd)) 1376 spa_spare_activate(tvd); 1377 } 1378 1379 vd->vdev_top = vd; 1380 vd->vdev_aux = &spa->spa_spares; 1381 1382 if (vdev_open(vd) != 0) 1383 continue; 1384 1385 if (vdev_validate_aux(vd) == 0) 1386 spa_spare_add(vd); 1387 } 1388 1389 /* 1390 * Recompute the stashed list of spares, with status information 1391 * this time. 1392 */ 1393 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, 1394 DATA_TYPE_NVLIST_ARRAY) == 0); 1395 1396 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *), 1397 KM_SLEEP); 1398 for (i = 0; i < spa->spa_spares.sav_count; i++) 1399 spares[i] = vdev_config_generate(spa, 1400 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE); 1401 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 1402 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0); 1403 for (i = 0; i < spa->spa_spares.sav_count; i++) 1404 nvlist_free(spares[i]); 1405 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *)); 1406 } 1407 1408 /* 1409 * Load (or re-load) the current list of vdevs describing the active l2cache for 1410 * this pool. When this is called, we have some form of basic information in 1411 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and 1412 * then re-generate a more complete list including status information. 1413 * Devices which are already active have their details maintained, and are 1414 * not re-opened. 1415 */ 1416 static void 1417 spa_load_l2cache(spa_t *spa) 1418 { 1419 nvlist_t **l2cache; 1420 uint_t nl2cache; 1421 int i, j, oldnvdevs; 1422 uint64_t guid; 1423 vdev_t *vd, **oldvdevs, **newvdevs; 1424 spa_aux_vdev_t *sav = &spa->spa_l2cache; 1425 1426 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1427 1428 if (sav->sav_config != NULL) { 1429 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 1430 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 1431 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP); 1432 } else { 1433 nl2cache = 0; 1434 newvdevs = NULL; 1435 } 1436 1437 oldvdevs = sav->sav_vdevs; 1438 oldnvdevs = sav->sav_count; 1439 sav->sav_vdevs = NULL; 1440 sav->sav_count = 0; 1441 1442 /* 1443 * Process new nvlist of vdevs. 1444 */ 1445 for (i = 0; i < nl2cache; i++) { 1446 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID, 1447 &guid) == 0); 1448 1449 newvdevs[i] = NULL; 1450 for (j = 0; j < oldnvdevs; j++) { 1451 vd = oldvdevs[j]; 1452 if (vd != NULL && guid == vd->vdev_guid) { 1453 /* 1454 * Retain previous vdev for add/remove ops. 1455 */ 1456 newvdevs[i] = vd; 1457 oldvdevs[j] = NULL; 1458 break; 1459 } 1460 } 1461 1462 if (newvdevs[i] == NULL) { 1463 /* 1464 * Create new vdev 1465 */ 1466 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0, 1467 VDEV_ALLOC_L2CACHE) == 0); 1468 ASSERT(vd != NULL); 1469 newvdevs[i] = vd; 1470 1471 /* 1472 * Commit this vdev as an l2cache device, 1473 * even if it fails to open. 1474 */ 1475 spa_l2cache_add(vd); 1476 1477 vd->vdev_top = vd; 1478 vd->vdev_aux = sav; 1479 1480 spa_l2cache_activate(vd); 1481 1482 if (vdev_open(vd) != 0) 1483 continue; 1484 1485 (void) vdev_validate_aux(vd); 1486 1487 if (!vdev_is_dead(vd)) 1488 l2arc_add_vdev(spa, vd); 1489 } 1490 } 1491 1492 /* 1493 * Purge vdevs that were dropped 1494 */ 1495 for (i = 0; i < oldnvdevs; i++) { 1496 uint64_t pool; 1497 1498 vd = oldvdevs[i]; 1499 if (vd != NULL) { 1500 ASSERT(vd->vdev_isl2cache); 1501 1502 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 1503 pool != 0ULL && l2arc_vdev_present(vd)) 1504 l2arc_remove_vdev(vd); 1505 vdev_clear_stats(vd); 1506 vdev_free(vd); 1507 } 1508 } 1509 1510 if (oldvdevs) 1511 kmem_free(oldvdevs, oldnvdevs * sizeof (void *)); 1512 1513 if (sav->sav_config == NULL) 1514 goto out; 1515 1516 sav->sav_vdevs = newvdevs; 1517 sav->sav_count = (int)nl2cache; 1518 1519 /* 1520 * Recompute the stashed list of l2cache devices, with status 1521 * information this time. 1522 */ 1523 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE, 1524 DATA_TYPE_NVLIST_ARRAY) == 0); 1525 1526 l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 1527 for (i = 0; i < sav->sav_count; i++) 1528 l2cache[i] = vdev_config_generate(spa, 1529 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE); 1530 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 1531 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0); 1532 out: 1533 for (i = 0; i < sav->sav_count; i++) 1534 nvlist_free(l2cache[i]); 1535 if (sav->sav_count) 1536 kmem_free(l2cache, sav->sav_count * sizeof (void *)); 1537 } 1538 1539 static int 1540 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value) 1541 { 1542 dmu_buf_t *db; 1543 char *packed = NULL; 1544 size_t nvsize = 0; 1545 int error; 1546 *value = NULL; 1547 1548 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 1549 nvsize = *(uint64_t *)db->db_data; 1550 dmu_buf_rele(db, FTAG); 1551 1552 packed = kmem_alloc(nvsize, KM_SLEEP); 1553 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed, 1554 DMU_READ_PREFETCH); 1555 if (error == 0) 1556 error = nvlist_unpack(packed, nvsize, value, 0); 1557 kmem_free(packed, nvsize); 1558 1559 return (error); 1560 } 1561 1562 /* 1563 * Checks to see if the given vdev could not be opened, in which case we post a 1564 * sysevent to notify the autoreplace code that the device has been removed. 1565 */ 1566 static void 1567 spa_check_removed(vdev_t *vd) 1568 { 1569 for (int c = 0; c < vd->vdev_children; c++) 1570 spa_check_removed(vd->vdev_child[c]); 1571 1572 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) && 1573 !vd->vdev_ishole) { 1574 zfs_post_autoreplace(vd->vdev_spa, vd); 1575 spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK); 1576 } 1577 } 1578 1579 /* 1580 * Validate the current config against the MOS config 1581 */ 1582 static boolean_t 1583 spa_config_valid(spa_t *spa, nvlist_t *config) 1584 { 1585 vdev_t *mrvd, *rvd = spa->spa_root_vdev; 1586 nvlist_t *nv; 1587 1588 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0); 1589 1590 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1591 VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0); 1592 1593 ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children); 1594 1595 /* 1596 * If we're doing a normal import, then build up any additional 1597 * diagnostic information about missing devices in this config. 1598 * We'll pass this up to the user for further processing. 1599 */ 1600 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) { 1601 nvlist_t **child, *nv; 1602 uint64_t idx = 0; 1603 1604 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **), 1605 KM_SLEEP); 1606 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0); 1607 1608 for (int c = 0; c < rvd->vdev_children; c++) { 1609 vdev_t *tvd = rvd->vdev_child[c]; 1610 vdev_t *mtvd = mrvd->vdev_child[c]; 1611 1612 if (tvd->vdev_ops == &vdev_missing_ops && 1613 mtvd->vdev_ops != &vdev_missing_ops && 1614 mtvd->vdev_islog) 1615 child[idx++] = vdev_config_generate(spa, mtvd, 1616 B_FALSE, 0); 1617 } 1618 1619 if (idx) { 1620 VERIFY(nvlist_add_nvlist_array(nv, 1621 ZPOOL_CONFIG_CHILDREN, child, idx) == 0); 1622 VERIFY(nvlist_add_nvlist(spa->spa_load_info, 1623 ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0); 1624 1625 for (int i = 0; i < idx; i++) 1626 nvlist_free(child[i]); 1627 } 1628 nvlist_free(nv); 1629 kmem_free(child, rvd->vdev_children * sizeof (char **)); 1630 } 1631 1632 /* 1633 * Compare the root vdev tree with the information we have 1634 * from the MOS config (mrvd). Check each top-level vdev 1635 * with the corresponding MOS config top-level (mtvd). 1636 */ 1637 for (int c = 0; c < rvd->vdev_children; c++) { 1638 vdev_t *tvd = rvd->vdev_child[c]; 1639 vdev_t *mtvd = mrvd->vdev_child[c]; 1640 1641 /* 1642 * Resolve any "missing" vdevs in the current configuration. 1643 * If we find that the MOS config has more accurate information 1644 * about the top-level vdev then use that vdev instead. 1645 */ 1646 if (tvd->vdev_ops == &vdev_missing_ops && 1647 mtvd->vdev_ops != &vdev_missing_ops) { 1648 1649 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) 1650 continue; 1651 1652 /* 1653 * Device specific actions. 1654 */ 1655 if (mtvd->vdev_islog) { 1656 spa_set_log_state(spa, SPA_LOG_CLEAR); 1657 } else { 1658 /* 1659 * XXX - once we have 'readonly' pool 1660 * support we should be able to handle 1661 * missing data devices by transitioning 1662 * the pool to readonly. 1663 */ 1664 continue; 1665 } 1666 1667 /* 1668 * Swap the missing vdev with the data we were 1669 * able to obtain from the MOS config. 1670 */ 1671 vdev_remove_child(rvd, tvd); 1672 vdev_remove_child(mrvd, mtvd); 1673 1674 vdev_add_child(rvd, mtvd); 1675 vdev_add_child(mrvd, tvd); 1676 1677 spa_config_exit(spa, SCL_ALL, FTAG); 1678 vdev_load(mtvd); 1679 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1680 1681 vdev_reopen(rvd); 1682 } else if (mtvd->vdev_islog) { 1683 /* 1684 * Load the slog device's state from the MOS config 1685 * since it's possible that the label does not 1686 * contain the most up-to-date information. 1687 */ 1688 vdev_load_log_state(tvd, mtvd); 1689 vdev_reopen(tvd); 1690 } 1691 } 1692 vdev_free(mrvd); 1693 spa_config_exit(spa, SCL_ALL, FTAG); 1694 1695 /* 1696 * Ensure we were able to validate the config. 1697 */ 1698 return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum); 1699 } 1700 1701 /* 1702 * Check for missing log devices 1703 */ 1704 static boolean_t 1705 spa_check_logs(spa_t *spa) 1706 { 1707 boolean_t rv = B_FALSE; 1708 1709 switch (spa->spa_log_state) { 1710 case SPA_LOG_MISSING: 1711 /* need to recheck in case slog has been restored */ 1712 case SPA_LOG_UNKNOWN: 1713 rv = (dmu_objset_find(spa->spa_name, zil_check_log_chain, 1714 NULL, DS_FIND_CHILDREN) != 0); 1715 if (rv) 1716 spa_set_log_state(spa, SPA_LOG_MISSING); 1717 break; 1718 } 1719 return (rv); 1720 } 1721 1722 static boolean_t 1723 spa_passivate_log(spa_t *spa) 1724 { 1725 vdev_t *rvd = spa->spa_root_vdev; 1726 boolean_t slog_found = B_FALSE; 1727 1728 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1729 1730 if (!spa_has_slogs(spa)) 1731 return (B_FALSE); 1732 1733 for (int c = 0; c < rvd->vdev_children; c++) { 1734 vdev_t *tvd = rvd->vdev_child[c]; 1735 metaslab_group_t *mg = tvd->vdev_mg; 1736 1737 if (tvd->vdev_islog) { 1738 metaslab_group_passivate(mg); 1739 slog_found = B_TRUE; 1740 } 1741 } 1742 1743 return (slog_found); 1744 } 1745 1746 static void 1747 spa_activate_log(spa_t *spa) 1748 { 1749 vdev_t *rvd = spa->spa_root_vdev; 1750 1751 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1752 1753 for (int c = 0; c < rvd->vdev_children; c++) { 1754 vdev_t *tvd = rvd->vdev_child[c]; 1755 metaslab_group_t *mg = tvd->vdev_mg; 1756 1757 if (tvd->vdev_islog) 1758 metaslab_group_activate(mg); 1759 } 1760 } 1761 1762 int 1763 spa_offline_log(spa_t *spa) 1764 { 1765 int error; 1766 1767 error = dmu_objset_find(spa_name(spa), zil_vdev_offline, 1768 NULL, DS_FIND_CHILDREN); 1769 if (error == 0) { 1770 /* 1771 * We successfully offlined the log device, sync out the 1772 * current txg so that the "stubby" block can be removed 1773 * by zil_sync(). 1774 */ 1775 txg_wait_synced(spa->spa_dsl_pool, 0); 1776 } 1777 return (error); 1778 } 1779 1780 static void 1781 spa_aux_check_removed(spa_aux_vdev_t *sav) 1782 { 1783 for (int i = 0; i < sav->sav_count; i++) 1784 spa_check_removed(sav->sav_vdevs[i]); 1785 } 1786 1787 void 1788 spa_claim_notify(zio_t *zio) 1789 { 1790 spa_t *spa = zio->io_spa; 1791 1792 if (zio->io_error) 1793 return; 1794 1795 mutex_enter(&spa->spa_props_lock); /* any mutex will do */ 1796 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth) 1797 spa->spa_claim_max_txg = zio->io_bp->blk_birth; 1798 mutex_exit(&spa->spa_props_lock); 1799 } 1800 1801 typedef struct spa_load_error { 1802 uint64_t sle_meta_count; 1803 uint64_t sle_data_count; 1804 } spa_load_error_t; 1805 1806 static void 1807 spa_load_verify_done(zio_t *zio) 1808 { 1809 blkptr_t *bp = zio->io_bp; 1810 spa_load_error_t *sle = zio->io_private; 1811 dmu_object_type_t type = BP_GET_TYPE(bp); 1812 int error = zio->io_error; 1813 1814 if (error) { 1815 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) && 1816 type != DMU_OT_INTENT_LOG) 1817 atomic_add_64(&sle->sle_meta_count, 1); 1818 else 1819 atomic_add_64(&sle->sle_data_count, 1); 1820 } 1821 zio_data_buf_free(zio->io_data, zio->io_size); 1822 } 1823 1824 /*ARGSUSED*/ 1825 static int 1826 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 1827 const zbookmark_t *zb, const dnode_phys_t *dnp, void *arg) 1828 { 1829 if (bp != NULL) { 1830 zio_t *rio = arg; 1831 size_t size = BP_GET_PSIZE(bp); 1832 void *data = zio_data_buf_alloc(size); 1833 1834 zio_nowait(zio_read(rio, spa, bp, data, size, 1835 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB, 1836 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL | 1837 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb)); 1838 } 1839 return (0); 1840 } 1841 1842 static int 1843 spa_load_verify(spa_t *spa) 1844 { 1845 zio_t *rio; 1846 spa_load_error_t sle = { 0 }; 1847 zpool_rewind_policy_t policy; 1848 boolean_t verify_ok = B_FALSE; 1849 int error; 1850 1851 zpool_get_rewind_policy(spa->spa_config, &policy); 1852 1853 if (policy.zrp_request & ZPOOL_NEVER_REWIND) 1854 return (0); 1855 1856 rio = zio_root(spa, NULL, &sle, 1857 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE); 1858 1859 error = traverse_pool(spa, spa->spa_verify_min_txg, 1860 TRAVERSE_PRE | TRAVERSE_PREFETCH, spa_load_verify_cb, rio); 1861 1862 (void) zio_wait(rio); 1863 1864 spa->spa_load_meta_errors = sle.sle_meta_count; 1865 spa->spa_load_data_errors = sle.sle_data_count; 1866 1867 if (!error && sle.sle_meta_count <= policy.zrp_maxmeta && 1868 sle.sle_data_count <= policy.zrp_maxdata) { 1869 int64_t loss = 0; 1870 1871 verify_ok = B_TRUE; 1872 spa->spa_load_txg = spa->spa_uberblock.ub_txg; 1873 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp; 1874 1875 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts; 1876 VERIFY(nvlist_add_uint64(spa->spa_load_info, 1877 ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0); 1878 VERIFY(nvlist_add_int64(spa->spa_load_info, 1879 ZPOOL_CONFIG_REWIND_TIME, loss) == 0); 1880 VERIFY(nvlist_add_uint64(spa->spa_load_info, 1881 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0); 1882 } else { 1883 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg; 1884 } 1885 1886 if (error) { 1887 if (error != ENXIO && error != EIO) 1888 error = SET_ERROR(EIO); 1889 return (error); 1890 } 1891 1892 return (verify_ok ? 0 : EIO); 1893 } 1894 1895 /* 1896 * Find a value in the pool props object. 1897 */ 1898 static void 1899 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val) 1900 { 1901 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object, 1902 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val); 1903 } 1904 1905 /* 1906 * Find a value in the pool directory object. 1907 */ 1908 static int 1909 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val) 1910 { 1911 return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 1912 name, sizeof (uint64_t), 1, val)); 1913 } 1914 1915 static int 1916 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err) 1917 { 1918 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux); 1919 return (err); 1920 } 1921 1922 /* 1923 * Fix up config after a partly-completed split. This is done with the 1924 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off 1925 * pool have that entry in their config, but only the splitting one contains 1926 * a list of all the guids of the vdevs that are being split off. 1927 * 1928 * This function determines what to do with that list: either rejoin 1929 * all the disks to the pool, or complete the splitting process. To attempt 1930 * the rejoin, each disk that is offlined is marked online again, and 1931 * we do a reopen() call. If the vdev label for every disk that was 1932 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL) 1933 * then we call vdev_split() on each disk, and complete the split. 1934 * 1935 * Otherwise we leave the config alone, with all the vdevs in place in 1936 * the original pool. 1937 */ 1938 static void 1939 spa_try_repair(spa_t *spa, nvlist_t *config) 1940 { 1941 uint_t extracted; 1942 uint64_t *glist; 1943 uint_t i, gcount; 1944 nvlist_t *nvl; 1945 vdev_t **vd; 1946 boolean_t attempt_reopen; 1947 1948 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0) 1949 return; 1950 1951 /* check that the config is complete */ 1952 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 1953 &glist, &gcount) != 0) 1954 return; 1955 1956 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP); 1957 1958 /* attempt to online all the vdevs & validate */ 1959 attempt_reopen = B_TRUE; 1960 for (i = 0; i < gcount; i++) { 1961 if (glist[i] == 0) /* vdev is hole */ 1962 continue; 1963 1964 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE); 1965 if (vd[i] == NULL) { 1966 /* 1967 * Don't bother attempting to reopen the disks; 1968 * just do the split. 1969 */ 1970 attempt_reopen = B_FALSE; 1971 } else { 1972 /* attempt to re-online it */ 1973 vd[i]->vdev_offline = B_FALSE; 1974 } 1975 } 1976 1977 if (attempt_reopen) { 1978 vdev_reopen(spa->spa_root_vdev); 1979 1980 /* check each device to see what state it's in */ 1981 for (extracted = 0, i = 0; i < gcount; i++) { 1982 if (vd[i] != NULL && 1983 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL) 1984 break; 1985 ++extracted; 1986 } 1987 } 1988 1989 /* 1990 * If every disk has been moved to the new pool, or if we never 1991 * even attempted to look at them, then we split them off for 1992 * good. 1993 */ 1994 if (!attempt_reopen || gcount == extracted) { 1995 for (i = 0; i < gcount; i++) 1996 if (vd[i] != NULL) 1997 vdev_split(vd[i]); 1998 vdev_reopen(spa->spa_root_vdev); 1999 } 2000 2001 kmem_free(vd, gcount * sizeof (vdev_t *)); 2002 } 2003 2004 static int 2005 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type, 2006 boolean_t mosconfig) 2007 { 2008 nvlist_t *config = spa->spa_config; 2009 char *ereport = FM_EREPORT_ZFS_POOL; 2010 char *comment; 2011 int error; 2012 uint64_t pool_guid; 2013 nvlist_t *nvl; 2014 2015 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) 2016 return (SET_ERROR(EINVAL)); 2017 2018 ASSERT(spa->spa_comment == NULL); 2019 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0) 2020 spa->spa_comment = spa_strdup(comment); 2021 2022 /* 2023 * Versioning wasn't explicitly added to the label until later, so if 2024 * it's not present treat it as the initial version. 2025 */ 2026 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, 2027 &spa->spa_ubsync.ub_version) != 0) 2028 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL; 2029 2030 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, 2031 &spa->spa_config_txg); 2032 2033 if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) && 2034 spa_guid_exists(pool_guid, 0)) { 2035 error = SET_ERROR(EEXIST); 2036 } else { 2037 spa->spa_config_guid = pool_guid; 2038 2039 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, 2040 &nvl) == 0) { 2041 VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting, 2042 KM_SLEEP) == 0); 2043 } 2044 2045 nvlist_free(spa->spa_load_info); 2046 spa->spa_load_info = fnvlist_alloc(); 2047 2048 gethrestime(&spa->spa_loaded_ts); 2049 error = spa_load_impl(spa, pool_guid, config, state, type, 2050 mosconfig, &ereport); 2051 } 2052 2053 spa->spa_minref = refcount_count(&spa->spa_refcount); 2054 if (error) { 2055 if (error != EEXIST) { 2056 spa->spa_loaded_ts.tv_sec = 0; 2057 spa->spa_loaded_ts.tv_nsec = 0; 2058 } 2059 if (error != EBADF) { 2060 zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0); 2061 } 2062 } 2063 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE; 2064 spa->spa_ena = 0; 2065 2066 return (error); 2067 } 2068 2069 /* 2070 * Load an existing storage pool, using the pool's builtin spa_config as a 2071 * source of configuration information. 2072 */ 2073 static int 2074 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config, 2075 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig, 2076 char **ereport) 2077 { 2078 int error = 0; 2079 nvlist_t *nvroot = NULL; 2080 nvlist_t *label; 2081 vdev_t *rvd; 2082 uberblock_t *ub = &spa->spa_uberblock; 2083 uint64_t children, config_cache_txg = spa->spa_config_txg; 2084 int orig_mode = spa->spa_mode; 2085 int parse; 2086 uint64_t obj; 2087 boolean_t missing_feat_write = B_FALSE; 2088 2089 /* 2090 * If this is an untrusted config, access the pool in read-only mode. 2091 * This prevents things like resilvering recently removed devices. 2092 */ 2093 if (!mosconfig) 2094 spa->spa_mode = FREAD; 2095 2096 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 2097 2098 spa->spa_load_state = state; 2099 2100 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot)) 2101 return (SET_ERROR(EINVAL)); 2102 2103 parse = (type == SPA_IMPORT_EXISTING ? 2104 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT); 2105 2106 /* 2107 * Create "The Godfather" zio to hold all async IOs 2108 */ 2109 spa->spa_async_zio_root = zio_root(spa, NULL, NULL, 2110 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER); 2111 2112 /* 2113 * Parse the configuration into a vdev tree. We explicitly set the 2114 * value that will be returned by spa_version() since parsing the 2115 * configuration requires knowing the version number. 2116 */ 2117 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2118 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse); 2119 spa_config_exit(spa, SCL_ALL, FTAG); 2120 2121 if (error != 0) 2122 return (error); 2123 2124 ASSERT(spa->spa_root_vdev == rvd); 2125 2126 if (type != SPA_IMPORT_ASSEMBLE) { 2127 ASSERT(spa_guid(spa) == pool_guid); 2128 } 2129 2130 /* 2131 * Try to open all vdevs, loading each label in the process. 2132 */ 2133 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2134 error = vdev_open(rvd); 2135 spa_config_exit(spa, SCL_ALL, FTAG); 2136 if (error != 0) 2137 return (error); 2138 2139 /* 2140 * We need to validate the vdev labels against the configuration that 2141 * we have in hand, which is dependent on the setting of mosconfig. If 2142 * mosconfig is true then we're validating the vdev labels based on 2143 * that config. Otherwise, we're validating against the cached config 2144 * (zpool.cache) that was read when we loaded the zfs module, and then 2145 * later we will recursively call spa_load() and validate against 2146 * the vdev config. 2147 * 2148 * If we're assembling a new pool that's been split off from an 2149 * existing pool, the labels haven't yet been updated so we skip 2150 * validation for now. 2151 */ 2152 if (type != SPA_IMPORT_ASSEMBLE) { 2153 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2154 error = vdev_validate(rvd, mosconfig); 2155 spa_config_exit(spa, SCL_ALL, FTAG); 2156 2157 if (error != 0) 2158 return (error); 2159 2160 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) 2161 return (SET_ERROR(ENXIO)); 2162 } 2163 2164 /* 2165 * Find the best uberblock. 2166 */ 2167 vdev_uberblock_load(rvd, ub, &label); 2168 2169 /* 2170 * If we weren't able to find a single valid uberblock, return failure. 2171 */ 2172 if (ub->ub_txg == 0) { 2173 nvlist_free(label); 2174 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO)); 2175 } 2176 2177 /* 2178 * If the pool has an unsupported version we can't open it. 2179 */ 2180 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) { 2181 nvlist_free(label); 2182 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP)); 2183 } 2184 2185 if (ub->ub_version >= SPA_VERSION_FEATURES) { 2186 nvlist_t *features; 2187 2188 /* 2189 * If we weren't able to find what's necessary for reading the 2190 * MOS in the label, return failure. 2191 */ 2192 if (label == NULL || nvlist_lookup_nvlist(label, 2193 ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) { 2194 nvlist_free(label); 2195 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 2196 ENXIO)); 2197 } 2198 2199 /* 2200 * Update our in-core representation with the definitive values 2201 * from the label. 2202 */ 2203 nvlist_free(spa->spa_label_features); 2204 VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0); 2205 } 2206 2207 nvlist_free(label); 2208 2209 /* 2210 * Look through entries in the label nvlist's features_for_read. If 2211 * there is a feature listed there which we don't understand then we 2212 * cannot open a pool. 2213 */ 2214 if (ub->ub_version >= SPA_VERSION_FEATURES) { 2215 nvlist_t *unsup_feat; 2216 2217 VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) == 2218 0); 2219 2220 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features, 2221 NULL); nvp != NULL; 2222 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) { 2223 if (!zfeature_is_supported(nvpair_name(nvp))) { 2224 VERIFY(nvlist_add_string(unsup_feat, 2225 nvpair_name(nvp), "") == 0); 2226 } 2227 } 2228 2229 if (!nvlist_empty(unsup_feat)) { 2230 VERIFY(nvlist_add_nvlist(spa->spa_load_info, 2231 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0); 2232 nvlist_free(unsup_feat); 2233 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, 2234 ENOTSUP)); 2235 } 2236 2237 nvlist_free(unsup_feat); 2238 } 2239 2240 /* 2241 * If the vdev guid sum doesn't match the uberblock, we have an 2242 * incomplete configuration. We first check to see if the pool 2243 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN). 2244 * If it is, defer the vdev_guid_sum check till later so we 2245 * can handle missing vdevs. 2246 */ 2247 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN, 2248 &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE && 2249 rvd->vdev_guid_sum != ub->ub_guid_sum) 2250 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO)); 2251 2252 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) { 2253 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2254 spa_try_repair(spa, config); 2255 spa_config_exit(spa, SCL_ALL, FTAG); 2256 nvlist_free(spa->spa_config_splitting); 2257 spa->spa_config_splitting = NULL; 2258 } 2259 2260 /* 2261 * Initialize internal SPA structures. 2262 */ 2263 spa->spa_state = POOL_STATE_ACTIVE; 2264 spa->spa_ubsync = spa->spa_uberblock; 2265 spa->spa_verify_min_txg = spa->spa_extreme_rewind ? 2266 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1; 2267 spa->spa_first_txg = spa->spa_last_ubsync_txg ? 2268 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1; 2269 spa->spa_claim_max_txg = spa->spa_first_txg; 2270 spa->spa_prev_software_version = ub->ub_software_version; 2271 2272 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool); 2273 if (error) 2274 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2275 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset; 2276 2277 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0) 2278 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2279 2280 if (spa_version(spa) >= SPA_VERSION_FEATURES) { 2281 boolean_t missing_feat_read = B_FALSE; 2282 nvlist_t *unsup_feat, *enabled_feat; 2283 2284 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ, 2285 &spa->spa_feat_for_read_obj) != 0) { 2286 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2287 } 2288 2289 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE, 2290 &spa->spa_feat_for_write_obj) != 0) { 2291 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2292 } 2293 2294 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS, 2295 &spa->spa_feat_desc_obj) != 0) { 2296 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2297 } 2298 2299 enabled_feat = fnvlist_alloc(); 2300 unsup_feat = fnvlist_alloc(); 2301 2302 if (!feature_is_supported(spa->spa_meta_objset, 2303 spa->spa_feat_for_read_obj, spa->spa_feat_desc_obj, 2304 unsup_feat, enabled_feat)) 2305 missing_feat_read = B_TRUE; 2306 2307 if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) { 2308 if (!feature_is_supported(spa->spa_meta_objset, 2309 spa->spa_feat_for_write_obj, spa->spa_feat_desc_obj, 2310 unsup_feat, enabled_feat)) { 2311 missing_feat_write = B_TRUE; 2312 } 2313 } 2314 2315 fnvlist_add_nvlist(spa->spa_load_info, 2316 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat); 2317 2318 if (!nvlist_empty(unsup_feat)) { 2319 fnvlist_add_nvlist(spa->spa_load_info, 2320 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat); 2321 } 2322 2323 fnvlist_free(enabled_feat); 2324 fnvlist_free(unsup_feat); 2325 2326 if (!missing_feat_read) { 2327 fnvlist_add_boolean(spa->spa_load_info, 2328 ZPOOL_CONFIG_CAN_RDONLY); 2329 } 2330 2331 /* 2332 * If the state is SPA_LOAD_TRYIMPORT, our objective is 2333 * twofold: to determine whether the pool is available for 2334 * import in read-write mode and (if it is not) whether the 2335 * pool is available for import in read-only mode. If the pool 2336 * is available for import in read-write mode, it is displayed 2337 * as available in userland; if it is not available for import 2338 * in read-only mode, it is displayed as unavailable in 2339 * userland. If the pool is available for import in read-only 2340 * mode but not read-write mode, it is displayed as unavailable 2341 * in userland with a special note that the pool is actually 2342 * available for open in read-only mode. 2343 * 2344 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are 2345 * missing a feature for write, we must first determine whether 2346 * the pool can be opened read-only before returning to 2347 * userland in order to know whether to display the 2348 * abovementioned note. 2349 */ 2350 if (missing_feat_read || (missing_feat_write && 2351 spa_writeable(spa))) { 2352 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, 2353 ENOTSUP)); 2354 } 2355 } 2356 2357 spa->spa_is_initializing = B_TRUE; 2358 error = dsl_pool_open(spa->spa_dsl_pool); 2359 spa->spa_is_initializing = B_FALSE; 2360 if (error != 0) 2361 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2362 2363 if (!mosconfig) { 2364 uint64_t hostid; 2365 nvlist_t *policy = NULL, *nvconfig; 2366 2367 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0) 2368 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2369 2370 if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig, 2371 ZPOOL_CONFIG_HOSTID, &hostid) == 0) { 2372 char *hostname; 2373 unsigned long myhostid = 0; 2374 2375 VERIFY(nvlist_lookup_string(nvconfig, 2376 ZPOOL_CONFIG_HOSTNAME, &hostname) == 0); 2377 2378 #ifdef _KERNEL 2379 myhostid = zone_get_hostid(NULL); 2380 #else /* _KERNEL */ 2381 /* 2382 * We're emulating the system's hostid in userland, so 2383 * we can't use zone_get_hostid(). 2384 */ 2385 (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid); 2386 #endif /* _KERNEL */ 2387 if (hostid != 0 && myhostid != 0 && 2388 hostid != myhostid) { 2389 nvlist_free(nvconfig); 2390 cmn_err(CE_WARN, "pool '%s' could not be " 2391 "loaded as it was last accessed by " 2392 "another system (host: %s hostid: 0x%lx). " 2393 "See: http://illumos.org/msg/ZFS-8000-EY", 2394 spa_name(spa), hostname, 2395 (unsigned long)hostid); 2396 return (SET_ERROR(EBADF)); 2397 } 2398 } 2399 if (nvlist_lookup_nvlist(spa->spa_config, 2400 ZPOOL_REWIND_POLICY, &policy) == 0) 2401 VERIFY(nvlist_add_nvlist(nvconfig, 2402 ZPOOL_REWIND_POLICY, policy) == 0); 2403 2404 spa_config_set(spa, nvconfig); 2405 spa_unload(spa); 2406 spa_deactivate(spa); 2407 spa_activate(spa, orig_mode); 2408 2409 return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE)); 2410 } 2411 2412 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0) 2413 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2414 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj); 2415 if (error != 0) 2416 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2417 2418 /* 2419 * Load the bit that tells us to use the new accounting function 2420 * (raid-z deflation). If we have an older pool, this will not 2421 * be present. 2422 */ 2423 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate); 2424 if (error != 0 && error != ENOENT) 2425 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2426 2427 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION, 2428 &spa->spa_creation_version); 2429 if (error != 0 && error != ENOENT) 2430 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2431 2432 /* 2433 * Load the persistent error log. If we have an older pool, this will 2434 * not be present. 2435 */ 2436 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last); 2437 if (error != 0 && error != ENOENT) 2438 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2439 2440 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB, 2441 &spa->spa_errlog_scrub); 2442 if (error != 0 && error != ENOENT) 2443 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2444 2445 /* 2446 * Load the history object. If we have an older pool, this 2447 * will not be present. 2448 */ 2449 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history); 2450 if (error != 0 && error != ENOENT) 2451 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2452 2453 /* 2454 * If we're assembling the pool from the split-off vdevs of 2455 * an existing pool, we don't want to attach the spares & cache 2456 * devices. 2457 */ 2458 2459 /* 2460 * Load any hot spares for this pool. 2461 */ 2462 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object); 2463 if (error != 0 && error != ENOENT) 2464 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2465 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 2466 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES); 2467 if (load_nvlist(spa, spa->spa_spares.sav_object, 2468 &spa->spa_spares.sav_config) != 0) 2469 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2470 2471 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2472 spa_load_spares(spa); 2473 spa_config_exit(spa, SCL_ALL, FTAG); 2474 } else if (error == 0) { 2475 spa->spa_spares.sav_sync = B_TRUE; 2476 } 2477 2478 /* 2479 * Load any level 2 ARC devices for this pool. 2480 */ 2481 error = spa_dir_prop(spa, DMU_POOL_L2CACHE, 2482 &spa->spa_l2cache.sav_object); 2483 if (error != 0 && error != ENOENT) 2484 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2485 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 2486 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE); 2487 if (load_nvlist(spa, spa->spa_l2cache.sav_object, 2488 &spa->spa_l2cache.sav_config) != 0) 2489 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2490 2491 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2492 spa_load_l2cache(spa); 2493 spa_config_exit(spa, SCL_ALL, FTAG); 2494 } else if (error == 0) { 2495 spa->spa_l2cache.sav_sync = B_TRUE; 2496 } 2497 2498 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 2499 2500 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object); 2501 if (error && error != ENOENT) 2502 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2503 2504 if (error == 0) { 2505 uint64_t autoreplace; 2506 2507 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs); 2508 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace); 2509 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation); 2510 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode); 2511 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand); 2512 spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO, 2513 &spa->spa_dedup_ditto); 2514 2515 spa->spa_autoreplace = (autoreplace != 0); 2516 } 2517 2518 /* 2519 * If the 'autoreplace' property is set, then post a resource notifying 2520 * the ZFS DE that it should not issue any faults for unopenable 2521 * devices. We also iterate over the vdevs, and post a sysevent for any 2522 * unopenable vdevs so that the normal autoreplace handler can take 2523 * over. 2524 */ 2525 if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) { 2526 spa_check_removed(spa->spa_root_vdev); 2527 /* 2528 * For the import case, this is done in spa_import(), because 2529 * at this point we're using the spare definitions from 2530 * the MOS config, not necessarily from the userland config. 2531 */ 2532 if (state != SPA_LOAD_IMPORT) { 2533 spa_aux_check_removed(&spa->spa_spares); 2534 spa_aux_check_removed(&spa->spa_l2cache); 2535 } 2536 } 2537 2538 /* 2539 * Load the vdev state for all toplevel vdevs. 2540 */ 2541 vdev_load(rvd); 2542 2543 /* 2544 * Propagate the leaf DTLs we just loaded all the way up the tree. 2545 */ 2546 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2547 vdev_dtl_reassess(rvd, 0, 0, B_FALSE); 2548 spa_config_exit(spa, SCL_ALL, FTAG); 2549 2550 /* 2551 * Load the DDTs (dedup tables). 2552 */ 2553 error = ddt_load(spa); 2554 if (error != 0) 2555 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2556 2557 spa_update_dspace(spa); 2558 2559 /* 2560 * Validate the config, using the MOS config to fill in any 2561 * information which might be missing. If we fail to validate 2562 * the config then declare the pool unfit for use. If we're 2563 * assembling a pool from a split, the log is not transferred 2564 * over. 2565 */ 2566 if (type != SPA_IMPORT_ASSEMBLE) { 2567 nvlist_t *nvconfig; 2568 2569 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0) 2570 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2571 2572 if (!spa_config_valid(spa, nvconfig)) { 2573 nvlist_free(nvconfig); 2574 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, 2575 ENXIO)); 2576 } 2577 nvlist_free(nvconfig); 2578 2579 /* 2580 * Now that we've validated the config, check the state of the 2581 * root vdev. If it can't be opened, it indicates one or 2582 * more toplevel vdevs are faulted. 2583 */ 2584 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) 2585 return (SET_ERROR(ENXIO)); 2586 2587 if (spa_check_logs(spa)) { 2588 *ereport = FM_EREPORT_ZFS_LOG_REPLAY; 2589 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO)); 2590 } 2591 } 2592 2593 if (missing_feat_write) { 2594 ASSERT(state == SPA_LOAD_TRYIMPORT); 2595 2596 /* 2597 * At this point, we know that we can open the pool in 2598 * read-only mode but not read-write mode. We now have enough 2599 * information and can return to userland. 2600 */ 2601 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP)); 2602 } 2603 2604 /* 2605 * We've successfully opened the pool, verify that we're ready 2606 * to start pushing transactions. 2607 */ 2608 if (state != SPA_LOAD_TRYIMPORT) { 2609 if (error = spa_load_verify(spa)) 2610 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 2611 error)); 2612 } 2613 2614 if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER || 2615 spa->spa_load_max_txg == UINT64_MAX)) { 2616 dmu_tx_t *tx; 2617 int need_update = B_FALSE; 2618 2619 ASSERT(state != SPA_LOAD_TRYIMPORT); 2620 2621 /* 2622 * Claim log blocks that haven't been committed yet. 2623 * This must all happen in a single txg. 2624 * Note: spa_claim_max_txg is updated by spa_claim_notify(), 2625 * invoked from zil_claim_log_block()'s i/o done callback. 2626 * Price of rollback is that we abandon the log. 2627 */ 2628 spa->spa_claiming = B_TRUE; 2629 2630 tx = dmu_tx_create_assigned(spa_get_dsl(spa), 2631 spa_first_txg(spa)); 2632 (void) dmu_objset_find(spa_name(spa), 2633 zil_claim, tx, DS_FIND_CHILDREN); 2634 dmu_tx_commit(tx); 2635 2636 spa->spa_claiming = B_FALSE; 2637 2638 spa_set_log_state(spa, SPA_LOG_GOOD); 2639 spa->spa_sync_on = B_TRUE; 2640 txg_sync_start(spa->spa_dsl_pool); 2641 2642 /* 2643 * Wait for all claims to sync. We sync up to the highest 2644 * claimed log block birth time so that claimed log blocks 2645 * don't appear to be from the future. spa_claim_max_txg 2646 * will have been set for us by either zil_check_log_chain() 2647 * (invoked from spa_check_logs()) or zil_claim() above. 2648 */ 2649 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg); 2650 2651 /* 2652 * If the config cache is stale, or we have uninitialized 2653 * metaslabs (see spa_vdev_add()), then update the config. 2654 * 2655 * If this is a verbatim import, trust the current 2656 * in-core spa_config and update the disk labels. 2657 */ 2658 if (config_cache_txg != spa->spa_config_txg || 2659 state == SPA_LOAD_IMPORT || 2660 state == SPA_LOAD_RECOVER || 2661 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM)) 2662 need_update = B_TRUE; 2663 2664 for (int c = 0; c < rvd->vdev_children; c++) 2665 if (rvd->vdev_child[c]->vdev_ms_array == 0) 2666 need_update = B_TRUE; 2667 2668 /* 2669 * Update the config cache asychronously in case we're the 2670 * root pool, in which case the config cache isn't writable yet. 2671 */ 2672 if (need_update) 2673 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 2674 2675 /* 2676 * Check all DTLs to see if anything needs resilvering. 2677 */ 2678 if (!dsl_scan_resilvering(spa->spa_dsl_pool) && 2679 vdev_resilver_needed(rvd, NULL, NULL)) 2680 spa_async_request(spa, SPA_ASYNC_RESILVER); 2681 2682 /* 2683 * Log the fact that we booted up (so that we can detect if 2684 * we rebooted in the middle of an operation). 2685 */ 2686 spa_history_log_version(spa, "open"); 2687 2688 /* 2689 * Delete any inconsistent datasets. 2690 */ 2691 (void) dmu_objset_find(spa_name(spa), 2692 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN); 2693 2694 /* 2695 * Clean up any stale temporary dataset userrefs. 2696 */ 2697 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool); 2698 } 2699 2700 return (0); 2701 } 2702 2703 static int 2704 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig) 2705 { 2706 int mode = spa->spa_mode; 2707 2708 spa_unload(spa); 2709 spa_deactivate(spa); 2710 2711 spa->spa_load_max_txg--; 2712 2713 spa_activate(spa, mode); 2714 spa_async_suspend(spa); 2715 2716 return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig)); 2717 } 2718 2719 /* 2720 * If spa_load() fails this function will try loading prior txg's. If 2721 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool 2722 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this 2723 * function will not rewind the pool and will return the same error as 2724 * spa_load(). 2725 */ 2726 static int 2727 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig, 2728 uint64_t max_request, int rewind_flags) 2729 { 2730 nvlist_t *loadinfo = NULL; 2731 nvlist_t *config = NULL; 2732 int load_error, rewind_error; 2733 uint64_t safe_rewind_txg; 2734 uint64_t min_txg; 2735 2736 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) { 2737 spa->spa_load_max_txg = spa->spa_load_txg; 2738 spa_set_log_state(spa, SPA_LOG_CLEAR); 2739 } else { 2740 spa->spa_load_max_txg = max_request; 2741 } 2742 2743 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING, 2744 mosconfig); 2745 if (load_error == 0) 2746 return (0); 2747 2748 if (spa->spa_root_vdev != NULL) 2749 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 2750 2751 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg; 2752 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp; 2753 2754 if (rewind_flags & ZPOOL_NEVER_REWIND) { 2755 nvlist_free(config); 2756 return (load_error); 2757 } 2758 2759 if (state == SPA_LOAD_RECOVER) { 2760 /* Price of rolling back is discarding txgs, including log */ 2761 spa_set_log_state(spa, SPA_LOG_CLEAR); 2762 } else { 2763 /* 2764 * If we aren't rolling back save the load info from our first 2765 * import attempt so that we can restore it after attempting 2766 * to rewind. 2767 */ 2768 loadinfo = spa->spa_load_info; 2769 spa->spa_load_info = fnvlist_alloc(); 2770 } 2771 2772 spa->spa_load_max_txg = spa->spa_last_ubsync_txg; 2773 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE; 2774 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ? 2775 TXG_INITIAL : safe_rewind_txg; 2776 2777 /* 2778 * Continue as long as we're finding errors, we're still within 2779 * the acceptable rewind range, and we're still finding uberblocks 2780 */ 2781 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg && 2782 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) { 2783 if (spa->spa_load_max_txg < safe_rewind_txg) 2784 spa->spa_extreme_rewind = B_TRUE; 2785 rewind_error = spa_load_retry(spa, state, mosconfig); 2786 } 2787 2788 spa->spa_extreme_rewind = B_FALSE; 2789 spa->spa_load_max_txg = UINT64_MAX; 2790 2791 if (config && (rewind_error || state != SPA_LOAD_RECOVER)) 2792 spa_config_set(spa, config); 2793 2794 if (state == SPA_LOAD_RECOVER) { 2795 ASSERT3P(loadinfo, ==, NULL); 2796 return (rewind_error); 2797 } else { 2798 /* Store the rewind info as part of the initial load info */ 2799 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO, 2800 spa->spa_load_info); 2801 2802 /* Restore the initial load info */ 2803 fnvlist_free(spa->spa_load_info); 2804 spa->spa_load_info = loadinfo; 2805 2806 return (load_error); 2807 } 2808 } 2809 2810 /* 2811 * Pool Open/Import 2812 * 2813 * The import case is identical to an open except that the configuration is sent 2814 * down from userland, instead of grabbed from the configuration cache. For the 2815 * case of an open, the pool configuration will exist in the 2816 * POOL_STATE_UNINITIALIZED state. 2817 * 2818 * The stats information (gen/count/ustats) is used to gather vdev statistics at 2819 * the same time open the pool, without having to keep around the spa_t in some 2820 * ambiguous state. 2821 */ 2822 static int 2823 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy, 2824 nvlist_t **config) 2825 { 2826 spa_t *spa; 2827 spa_load_state_t state = SPA_LOAD_OPEN; 2828 int error; 2829 int locked = B_FALSE; 2830 2831 *spapp = NULL; 2832 2833 /* 2834 * As disgusting as this is, we need to support recursive calls to this 2835 * function because dsl_dir_open() is called during spa_load(), and ends 2836 * up calling spa_open() again. The real fix is to figure out how to 2837 * avoid dsl_dir_open() calling this in the first place. 2838 */ 2839 if (mutex_owner(&spa_namespace_lock) != curthread) { 2840 mutex_enter(&spa_namespace_lock); 2841 locked = B_TRUE; 2842 } 2843 2844 if ((spa = spa_lookup(pool)) == NULL) { 2845 if (locked) 2846 mutex_exit(&spa_namespace_lock); 2847 return (SET_ERROR(ENOENT)); 2848 } 2849 2850 if (spa->spa_state == POOL_STATE_UNINITIALIZED) { 2851 zpool_rewind_policy_t policy; 2852 2853 zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config, 2854 &policy); 2855 if (policy.zrp_request & ZPOOL_DO_REWIND) 2856 state = SPA_LOAD_RECOVER; 2857 2858 spa_activate(spa, spa_mode_global); 2859 2860 if (state != SPA_LOAD_RECOVER) 2861 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 2862 2863 error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg, 2864 policy.zrp_request); 2865 2866 if (error == EBADF) { 2867 /* 2868 * If vdev_validate() returns failure (indicated by 2869 * EBADF), it indicates that one of the vdevs indicates 2870 * that the pool has been exported or destroyed. If 2871 * this is the case, the config cache is out of sync and 2872 * we should remove the pool from the namespace. 2873 */ 2874 spa_unload(spa); 2875 spa_deactivate(spa); 2876 spa_config_sync(spa, B_TRUE, B_TRUE); 2877 spa_remove(spa); 2878 if (locked) 2879 mutex_exit(&spa_namespace_lock); 2880 return (SET_ERROR(ENOENT)); 2881 } 2882 2883 if (error) { 2884 /* 2885 * We can't open the pool, but we still have useful 2886 * information: the state of each vdev after the 2887 * attempted vdev_open(). Return this to the user. 2888 */ 2889 if (config != NULL && spa->spa_config) { 2890 VERIFY(nvlist_dup(spa->spa_config, config, 2891 KM_SLEEP) == 0); 2892 VERIFY(nvlist_add_nvlist(*config, 2893 ZPOOL_CONFIG_LOAD_INFO, 2894 spa->spa_load_info) == 0); 2895 } 2896 spa_unload(spa); 2897 spa_deactivate(spa); 2898 spa->spa_last_open_failed = error; 2899 if (locked) 2900 mutex_exit(&spa_namespace_lock); 2901 *spapp = NULL; 2902 return (error); 2903 } 2904 } 2905 2906 spa_open_ref(spa, tag); 2907 2908 if (config != NULL) 2909 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 2910 2911 /* 2912 * If we've recovered the pool, pass back any information we 2913 * gathered while doing the load. 2914 */ 2915 if (state == SPA_LOAD_RECOVER) { 2916 VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO, 2917 spa->spa_load_info) == 0); 2918 } 2919 2920 if (locked) { 2921 spa->spa_last_open_failed = 0; 2922 spa->spa_last_ubsync_txg = 0; 2923 spa->spa_load_txg = 0; 2924 mutex_exit(&spa_namespace_lock); 2925 } 2926 2927 *spapp = spa; 2928 2929 return (0); 2930 } 2931 2932 int 2933 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy, 2934 nvlist_t **config) 2935 { 2936 return (spa_open_common(name, spapp, tag, policy, config)); 2937 } 2938 2939 int 2940 spa_open(const char *name, spa_t **spapp, void *tag) 2941 { 2942 return (spa_open_common(name, spapp, tag, NULL, NULL)); 2943 } 2944 2945 /* 2946 * Lookup the given spa_t, incrementing the inject count in the process, 2947 * preventing it from being exported or destroyed. 2948 */ 2949 spa_t * 2950 spa_inject_addref(char *name) 2951 { 2952 spa_t *spa; 2953 2954 mutex_enter(&spa_namespace_lock); 2955 if ((spa = spa_lookup(name)) == NULL) { 2956 mutex_exit(&spa_namespace_lock); 2957 return (NULL); 2958 } 2959 spa->spa_inject_ref++; 2960 mutex_exit(&spa_namespace_lock); 2961 2962 return (spa); 2963 } 2964 2965 void 2966 spa_inject_delref(spa_t *spa) 2967 { 2968 mutex_enter(&spa_namespace_lock); 2969 spa->spa_inject_ref--; 2970 mutex_exit(&spa_namespace_lock); 2971 } 2972 2973 /* 2974 * Add spares device information to the nvlist. 2975 */ 2976 static void 2977 spa_add_spares(spa_t *spa, nvlist_t *config) 2978 { 2979 nvlist_t **spares; 2980 uint_t i, nspares; 2981 nvlist_t *nvroot; 2982 uint64_t guid; 2983 vdev_stat_t *vs; 2984 uint_t vsc; 2985 uint64_t pool; 2986 2987 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 2988 2989 if (spa->spa_spares.sav_count == 0) 2990 return; 2991 2992 VERIFY(nvlist_lookup_nvlist(config, 2993 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 2994 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 2995 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 2996 if (nspares != 0) { 2997 VERIFY(nvlist_add_nvlist_array(nvroot, 2998 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 2999 VERIFY(nvlist_lookup_nvlist_array(nvroot, 3000 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 3001 3002 /* 3003 * Go through and find any spares which have since been 3004 * repurposed as an active spare. If this is the case, update 3005 * their status appropriately. 3006 */ 3007 for (i = 0; i < nspares; i++) { 3008 VERIFY(nvlist_lookup_uint64(spares[i], 3009 ZPOOL_CONFIG_GUID, &guid) == 0); 3010 if (spa_spare_exists(guid, &pool, NULL) && 3011 pool != 0ULL) { 3012 VERIFY(nvlist_lookup_uint64_array( 3013 spares[i], ZPOOL_CONFIG_VDEV_STATS, 3014 (uint64_t **)&vs, &vsc) == 0); 3015 vs->vs_state = VDEV_STATE_CANT_OPEN; 3016 vs->vs_aux = VDEV_AUX_SPARED; 3017 } 3018 } 3019 } 3020 } 3021 3022 /* 3023 * Add l2cache device information to the nvlist, including vdev stats. 3024 */ 3025 static void 3026 spa_add_l2cache(spa_t *spa, nvlist_t *config) 3027 { 3028 nvlist_t **l2cache; 3029 uint_t i, j, nl2cache; 3030 nvlist_t *nvroot; 3031 uint64_t guid; 3032 vdev_t *vd; 3033 vdev_stat_t *vs; 3034 uint_t vsc; 3035 3036 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 3037 3038 if (spa->spa_l2cache.sav_count == 0) 3039 return; 3040 3041 VERIFY(nvlist_lookup_nvlist(config, 3042 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 3043 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 3044 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 3045 if (nl2cache != 0) { 3046 VERIFY(nvlist_add_nvlist_array(nvroot, 3047 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 3048 VERIFY(nvlist_lookup_nvlist_array(nvroot, 3049 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 3050 3051 /* 3052 * Update level 2 cache device stats. 3053 */ 3054 3055 for (i = 0; i < nl2cache; i++) { 3056 VERIFY(nvlist_lookup_uint64(l2cache[i], 3057 ZPOOL_CONFIG_GUID, &guid) == 0); 3058 3059 vd = NULL; 3060 for (j = 0; j < spa->spa_l2cache.sav_count; j++) { 3061 if (guid == 3062 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) { 3063 vd = spa->spa_l2cache.sav_vdevs[j]; 3064 break; 3065 } 3066 } 3067 ASSERT(vd != NULL); 3068 3069 VERIFY(nvlist_lookup_uint64_array(l2cache[i], 3070 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc) 3071 == 0); 3072 vdev_get_stats(vd, vs); 3073 } 3074 } 3075 } 3076 3077 static void 3078 spa_add_feature_stats(spa_t *spa, nvlist_t *config) 3079 { 3080 nvlist_t *features; 3081 zap_cursor_t zc; 3082 zap_attribute_t za; 3083 3084 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 3085 VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0); 3086 3087 if (spa->spa_feat_for_read_obj != 0) { 3088 for (zap_cursor_init(&zc, spa->spa_meta_objset, 3089 spa->spa_feat_for_read_obj); 3090 zap_cursor_retrieve(&zc, &za) == 0; 3091 zap_cursor_advance(&zc)) { 3092 ASSERT(za.za_integer_length == sizeof (uint64_t) && 3093 za.za_num_integers == 1); 3094 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name, 3095 za.za_first_integer)); 3096 } 3097 zap_cursor_fini(&zc); 3098 } 3099 3100 if (spa->spa_feat_for_write_obj != 0) { 3101 for (zap_cursor_init(&zc, spa->spa_meta_objset, 3102 spa->spa_feat_for_write_obj); 3103 zap_cursor_retrieve(&zc, &za) == 0; 3104 zap_cursor_advance(&zc)) { 3105 ASSERT(za.za_integer_length == sizeof (uint64_t) && 3106 za.za_num_integers == 1); 3107 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name, 3108 za.za_first_integer)); 3109 } 3110 zap_cursor_fini(&zc); 3111 } 3112 3113 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS, 3114 features) == 0); 3115 nvlist_free(features); 3116 } 3117 3118 int 3119 spa_get_stats(const char *name, nvlist_t **config, 3120 char *altroot, size_t buflen) 3121 { 3122 int error; 3123 spa_t *spa; 3124 3125 *config = NULL; 3126 error = spa_open_common(name, &spa, FTAG, NULL, config); 3127 3128 if (spa != NULL) { 3129 /* 3130 * This still leaves a window of inconsistency where the spares 3131 * or l2cache devices could change and the config would be 3132 * self-inconsistent. 3133 */ 3134 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 3135 3136 if (*config != NULL) { 3137 uint64_t loadtimes[2]; 3138 3139 loadtimes[0] = spa->spa_loaded_ts.tv_sec; 3140 loadtimes[1] = spa->spa_loaded_ts.tv_nsec; 3141 VERIFY(nvlist_add_uint64_array(*config, 3142 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0); 3143 3144 VERIFY(nvlist_add_uint64(*config, 3145 ZPOOL_CONFIG_ERRCOUNT, 3146 spa_get_errlog_size(spa)) == 0); 3147 3148 if (spa_suspended(spa)) 3149 VERIFY(nvlist_add_uint64(*config, 3150 ZPOOL_CONFIG_SUSPENDED, 3151 spa->spa_failmode) == 0); 3152 3153 spa_add_spares(spa, *config); 3154 spa_add_l2cache(spa, *config); 3155 spa_add_feature_stats(spa, *config); 3156 } 3157 } 3158 3159 /* 3160 * We want to get the alternate root even for faulted pools, so we cheat 3161 * and call spa_lookup() directly. 3162 */ 3163 if (altroot) { 3164 if (spa == NULL) { 3165 mutex_enter(&spa_namespace_lock); 3166 spa = spa_lookup(name); 3167 if (spa) 3168 spa_altroot(spa, altroot, buflen); 3169 else 3170 altroot[0] = '\0'; 3171 spa = NULL; 3172 mutex_exit(&spa_namespace_lock); 3173 } else { 3174 spa_altroot(spa, altroot, buflen); 3175 } 3176 } 3177 3178 if (spa != NULL) { 3179 spa_config_exit(spa, SCL_CONFIG, FTAG); 3180 spa_close(spa, FTAG); 3181 } 3182 3183 return (error); 3184 } 3185 3186 /* 3187 * Validate that the auxiliary device array is well formed. We must have an 3188 * array of nvlists, each which describes a valid leaf vdev. If this is an 3189 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be 3190 * specified, as long as they are well-formed. 3191 */ 3192 static int 3193 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode, 3194 spa_aux_vdev_t *sav, const char *config, uint64_t version, 3195 vdev_labeltype_t label) 3196 { 3197 nvlist_t **dev; 3198 uint_t i, ndev; 3199 vdev_t *vd; 3200 int error; 3201 3202 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 3203 3204 /* 3205 * It's acceptable to have no devs specified. 3206 */ 3207 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0) 3208 return (0); 3209 3210 if (ndev == 0) 3211 return (SET_ERROR(EINVAL)); 3212 3213 /* 3214 * Make sure the pool is formatted with a version that supports this 3215 * device type. 3216 */ 3217 if (spa_version(spa) < version) 3218 return (SET_ERROR(ENOTSUP)); 3219 3220 /* 3221 * Set the pending device list so we correctly handle device in-use 3222 * checking. 3223 */ 3224 sav->sav_pending = dev; 3225 sav->sav_npending = ndev; 3226 3227 for (i = 0; i < ndev; i++) { 3228 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0, 3229 mode)) != 0) 3230 goto out; 3231 3232 if (!vd->vdev_ops->vdev_op_leaf) { 3233 vdev_free(vd); 3234 error = SET_ERROR(EINVAL); 3235 goto out; 3236 } 3237 3238 /* 3239 * The L2ARC currently only supports disk devices in 3240 * kernel context. For user-level testing, we allow it. 3241 */ 3242 #ifdef _KERNEL 3243 if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) && 3244 strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) { 3245 error = SET_ERROR(ENOTBLK); 3246 vdev_free(vd); 3247 goto out; 3248 } 3249 #endif 3250 vd->vdev_top = vd; 3251 3252 if ((error = vdev_open(vd)) == 0 && 3253 (error = vdev_label_init(vd, crtxg, label)) == 0) { 3254 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID, 3255 vd->vdev_guid) == 0); 3256 } 3257 3258 vdev_free(vd); 3259 3260 if (error && 3261 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE)) 3262 goto out; 3263 else 3264 error = 0; 3265 } 3266 3267 out: 3268 sav->sav_pending = NULL; 3269 sav->sav_npending = 0; 3270 return (error); 3271 } 3272 3273 static int 3274 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode) 3275 { 3276 int error; 3277 3278 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 3279 3280 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode, 3281 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES, 3282 VDEV_LABEL_SPARE)) != 0) { 3283 return (error); 3284 } 3285 3286 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode, 3287 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE, 3288 VDEV_LABEL_L2CACHE)); 3289 } 3290 3291 static void 3292 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs, 3293 const char *config) 3294 { 3295 int i; 3296 3297 if (sav->sav_config != NULL) { 3298 nvlist_t **olddevs; 3299 uint_t oldndevs; 3300 nvlist_t **newdevs; 3301 3302 /* 3303 * Generate new dev list by concatentating with the 3304 * current dev list. 3305 */ 3306 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config, 3307 &olddevs, &oldndevs) == 0); 3308 3309 newdevs = kmem_alloc(sizeof (void *) * 3310 (ndevs + oldndevs), KM_SLEEP); 3311 for (i = 0; i < oldndevs; i++) 3312 VERIFY(nvlist_dup(olddevs[i], &newdevs[i], 3313 KM_SLEEP) == 0); 3314 for (i = 0; i < ndevs; i++) 3315 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs], 3316 KM_SLEEP) == 0); 3317 3318 VERIFY(nvlist_remove(sav->sav_config, config, 3319 DATA_TYPE_NVLIST_ARRAY) == 0); 3320 3321 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 3322 config, newdevs, ndevs + oldndevs) == 0); 3323 for (i = 0; i < oldndevs + ndevs; i++) 3324 nvlist_free(newdevs[i]); 3325 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *)); 3326 } else { 3327 /* 3328 * Generate a new dev list. 3329 */ 3330 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME, 3331 KM_SLEEP) == 0); 3332 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config, 3333 devs, ndevs) == 0); 3334 } 3335 } 3336 3337 /* 3338 * Stop and drop level 2 ARC devices 3339 */ 3340 void 3341 spa_l2cache_drop(spa_t *spa) 3342 { 3343 vdev_t *vd; 3344 int i; 3345 spa_aux_vdev_t *sav = &spa->spa_l2cache; 3346 3347 for (i = 0; i < sav->sav_count; i++) { 3348 uint64_t pool; 3349 3350 vd = sav->sav_vdevs[i]; 3351 ASSERT(vd != NULL); 3352 3353 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 3354 pool != 0ULL && l2arc_vdev_present(vd)) 3355 l2arc_remove_vdev(vd); 3356 } 3357 } 3358 3359 /* 3360 * Pool Creation 3361 */ 3362 int 3363 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props, 3364 nvlist_t *zplprops) 3365 { 3366 spa_t *spa; 3367 char *altroot = NULL; 3368 vdev_t *rvd; 3369 dsl_pool_t *dp; 3370 dmu_tx_t *tx; 3371 int error = 0; 3372 uint64_t txg = TXG_INITIAL; 3373 nvlist_t **spares, **l2cache; 3374 uint_t nspares, nl2cache; 3375 uint64_t version, obj; 3376 boolean_t has_features; 3377 3378 /* 3379 * If this pool already exists, return failure. 3380 */ 3381 mutex_enter(&spa_namespace_lock); 3382 if (spa_lookup(pool) != NULL) { 3383 mutex_exit(&spa_namespace_lock); 3384 return (SET_ERROR(EEXIST)); 3385 } 3386 3387 /* 3388 * Allocate a new spa_t structure. 3389 */ 3390 (void) nvlist_lookup_string(props, 3391 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 3392 spa = spa_add(pool, NULL, altroot); 3393 spa_activate(spa, spa_mode_global); 3394 3395 if (props && (error = spa_prop_validate(spa, props))) { 3396 spa_deactivate(spa); 3397 spa_remove(spa); 3398 mutex_exit(&spa_namespace_lock); 3399 return (error); 3400 } 3401 3402 has_features = B_FALSE; 3403 for (nvpair_t *elem = nvlist_next_nvpair(props, NULL); 3404 elem != NULL; elem = nvlist_next_nvpair(props, elem)) { 3405 if (zpool_prop_feature(nvpair_name(elem))) 3406 has_features = B_TRUE; 3407 } 3408 3409 if (has_features || nvlist_lookup_uint64(props, 3410 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) { 3411 version = SPA_VERSION; 3412 } 3413 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 3414 3415 spa->spa_first_txg = txg; 3416 spa->spa_uberblock.ub_txg = txg - 1; 3417 spa->spa_uberblock.ub_version = version; 3418 spa->spa_ubsync = spa->spa_uberblock; 3419 3420 /* 3421 * Create "The Godfather" zio to hold all async IOs 3422 */ 3423 spa->spa_async_zio_root = zio_root(spa, NULL, NULL, 3424 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER); 3425 3426 /* 3427 * Create the root vdev. 3428 */ 3429 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3430 3431 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD); 3432 3433 ASSERT(error != 0 || rvd != NULL); 3434 ASSERT(error != 0 || spa->spa_root_vdev == rvd); 3435 3436 if (error == 0 && !zfs_allocatable_devs(nvroot)) 3437 error = SET_ERROR(EINVAL); 3438 3439 if (error == 0 && 3440 (error = vdev_create(rvd, txg, B_FALSE)) == 0 && 3441 (error = spa_validate_aux(spa, nvroot, txg, 3442 VDEV_ALLOC_ADD)) == 0) { 3443 for (int c = 0; c < rvd->vdev_children; c++) { 3444 vdev_metaslab_set_size(rvd->vdev_child[c]); 3445 vdev_expand(rvd->vdev_child[c], txg); 3446 } 3447 } 3448 3449 spa_config_exit(spa, SCL_ALL, FTAG); 3450 3451 if (error != 0) { 3452 spa_unload(spa); 3453 spa_deactivate(spa); 3454 spa_remove(spa); 3455 mutex_exit(&spa_namespace_lock); 3456 return (error); 3457 } 3458 3459 /* 3460 * Get the list of spares, if specified. 3461 */ 3462 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 3463 &spares, &nspares) == 0) { 3464 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME, 3465 KM_SLEEP) == 0); 3466 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 3467 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 3468 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3469 spa_load_spares(spa); 3470 spa_config_exit(spa, SCL_ALL, FTAG); 3471 spa->spa_spares.sav_sync = B_TRUE; 3472 } 3473 3474 /* 3475 * Get the list of level 2 cache devices, if specified. 3476 */ 3477 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 3478 &l2cache, &nl2cache) == 0) { 3479 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 3480 NV_UNIQUE_NAME, KM_SLEEP) == 0); 3481 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 3482 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 3483 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3484 spa_load_l2cache(spa); 3485 spa_config_exit(spa, SCL_ALL, FTAG); 3486 spa->spa_l2cache.sav_sync = B_TRUE; 3487 } 3488 3489 spa->spa_is_initializing = B_TRUE; 3490 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg); 3491 spa->spa_meta_objset = dp->dp_meta_objset; 3492 spa->spa_is_initializing = B_FALSE; 3493 3494 /* 3495 * Create DDTs (dedup tables). 3496 */ 3497 ddt_create(spa); 3498 3499 spa_update_dspace(spa); 3500 3501 tx = dmu_tx_create_assigned(dp, txg); 3502 3503 /* 3504 * Create the pool config object. 3505 */ 3506 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset, 3507 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE, 3508 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx); 3509 3510 if (zap_add(spa->spa_meta_objset, 3511 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG, 3512 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) { 3513 cmn_err(CE_PANIC, "failed to add pool config"); 3514 } 3515 3516 if (spa_version(spa) >= SPA_VERSION_FEATURES) 3517 spa_feature_create_zap_objects(spa, tx); 3518 3519 if (zap_add(spa->spa_meta_objset, 3520 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION, 3521 sizeof (uint64_t), 1, &version, tx) != 0) { 3522 cmn_err(CE_PANIC, "failed to add pool version"); 3523 } 3524 3525 /* Newly created pools with the right version are always deflated. */ 3526 if (version >= SPA_VERSION_RAIDZ_DEFLATE) { 3527 spa->spa_deflate = TRUE; 3528 if (zap_add(spa->spa_meta_objset, 3529 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 3530 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) { 3531 cmn_err(CE_PANIC, "failed to add deflate"); 3532 } 3533 } 3534 3535 /* 3536 * Create the deferred-free bpobj. Turn off compression 3537 * because sync-to-convergence takes longer if the blocksize 3538 * keeps changing. 3539 */ 3540 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx); 3541 dmu_object_set_compress(spa->spa_meta_objset, obj, 3542 ZIO_COMPRESS_OFF, tx); 3543 if (zap_add(spa->spa_meta_objset, 3544 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ, 3545 sizeof (uint64_t), 1, &obj, tx) != 0) { 3546 cmn_err(CE_PANIC, "failed to add bpobj"); 3547 } 3548 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj, 3549 spa->spa_meta_objset, obj)); 3550 3551 /* 3552 * Create the pool's history object. 3553 */ 3554 if (version >= SPA_VERSION_ZPOOL_HISTORY) 3555 spa_history_create_obj(spa, tx); 3556 3557 /* 3558 * Set pool properties. 3559 */ 3560 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS); 3561 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 3562 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE); 3563 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND); 3564 3565 if (props != NULL) { 3566 spa_configfile_set(spa, props, B_FALSE); 3567 spa_sync_props(props, tx); 3568 } 3569 3570 dmu_tx_commit(tx); 3571 3572 spa->spa_sync_on = B_TRUE; 3573 txg_sync_start(spa->spa_dsl_pool); 3574 3575 /* 3576 * We explicitly wait for the first transaction to complete so that our 3577 * bean counters are appropriately updated. 3578 */ 3579 txg_wait_synced(spa->spa_dsl_pool, txg); 3580 3581 spa_config_sync(spa, B_FALSE, B_TRUE); 3582 3583 spa_history_log_version(spa, "create"); 3584 3585 spa->spa_minref = refcount_count(&spa->spa_refcount); 3586 3587 mutex_exit(&spa_namespace_lock); 3588 3589 return (0); 3590 } 3591 3592 #ifdef _KERNEL 3593 /* 3594 * Get the root pool information from the root disk, then import the root pool 3595 * during the system boot up time. 3596 */ 3597 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **); 3598 3599 static nvlist_t * 3600 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid) 3601 { 3602 nvlist_t *config; 3603 nvlist_t *nvtop, *nvroot; 3604 uint64_t pgid; 3605 3606 if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0) 3607 return (NULL); 3608 3609 /* 3610 * Add this top-level vdev to the child array. 3611 */ 3612 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3613 &nvtop) == 0); 3614 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 3615 &pgid) == 0); 3616 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0); 3617 3618 /* 3619 * Put this pool's top-level vdevs into a root vdev. 3620 */ 3621 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 3622 VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, 3623 VDEV_TYPE_ROOT) == 0); 3624 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0); 3625 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0); 3626 VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 3627 &nvtop, 1) == 0); 3628 3629 /* 3630 * Replace the existing vdev_tree with the new root vdev in 3631 * this pool's configuration (remove the old, add the new). 3632 */ 3633 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0); 3634 nvlist_free(nvroot); 3635 return (config); 3636 } 3637 3638 /* 3639 * Walk the vdev tree and see if we can find a device with "better" 3640 * configuration. A configuration is "better" if the label on that 3641 * device has a more recent txg. 3642 */ 3643 static void 3644 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg) 3645 { 3646 for (int c = 0; c < vd->vdev_children; c++) 3647 spa_alt_rootvdev(vd->vdev_child[c], avd, txg); 3648 3649 if (vd->vdev_ops->vdev_op_leaf) { 3650 nvlist_t *label; 3651 uint64_t label_txg; 3652 3653 if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid, 3654 &label) != 0) 3655 return; 3656 3657 VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG, 3658 &label_txg) == 0); 3659 3660 /* 3661 * Do we have a better boot device? 3662 */ 3663 if (label_txg > *txg) { 3664 *txg = label_txg; 3665 *avd = vd; 3666 } 3667 nvlist_free(label); 3668 } 3669 } 3670 3671 /* 3672 * Import a root pool. 3673 * 3674 * For x86. devpath_list will consist of devid and/or physpath name of 3675 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a"). 3676 * The GRUB "findroot" command will return the vdev we should boot. 3677 * 3678 * For Sparc, devpath_list consists the physpath name of the booting device 3679 * no matter the rootpool is a single device pool or a mirrored pool. 3680 * e.g. 3681 * "/pci@1f,0/ide@d/disk@0,0:a" 3682 */ 3683 int 3684 spa_import_rootpool(char *devpath, char *devid) 3685 { 3686 spa_t *spa; 3687 vdev_t *rvd, *bvd, *avd = NULL; 3688 nvlist_t *config, *nvtop; 3689 uint64_t guid, txg; 3690 char *pname; 3691 int error; 3692 3693 /* 3694 * Read the label from the boot device and generate a configuration. 3695 */ 3696 config = spa_generate_rootconf(devpath, devid, &guid); 3697 #if defined(_OBP) && defined(_KERNEL) 3698 if (config == NULL) { 3699 if (strstr(devpath, "/iscsi/ssd") != NULL) { 3700 /* iscsi boot */ 3701 get_iscsi_bootpath_phy(devpath); 3702 config = spa_generate_rootconf(devpath, devid, &guid); 3703 } 3704 } 3705 #endif 3706 if (config == NULL) { 3707 cmn_err(CE_NOTE, "Cannot read the pool label from '%s'", 3708 devpath); 3709 return (SET_ERROR(EIO)); 3710 } 3711 3712 VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 3713 &pname) == 0); 3714 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0); 3715 3716 mutex_enter(&spa_namespace_lock); 3717 if ((spa = spa_lookup(pname)) != NULL) { 3718 /* 3719 * Remove the existing root pool from the namespace so that we 3720 * can replace it with the correct config we just read in. 3721 */ 3722 spa_remove(spa); 3723 } 3724 3725 spa = spa_add(pname, config, NULL); 3726 spa->spa_is_root = B_TRUE; 3727 spa->spa_import_flags = ZFS_IMPORT_VERBATIM; 3728 3729 /* 3730 * Build up a vdev tree based on the boot device's label config. 3731 */ 3732 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3733 &nvtop) == 0); 3734 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3735 error = spa_config_parse(spa, &rvd, nvtop, NULL, 0, 3736 VDEV_ALLOC_ROOTPOOL); 3737 spa_config_exit(spa, SCL_ALL, FTAG); 3738 if (error) { 3739 mutex_exit(&spa_namespace_lock); 3740 nvlist_free(config); 3741 cmn_err(CE_NOTE, "Can not parse the config for pool '%s'", 3742 pname); 3743 return (error); 3744 } 3745 3746 /* 3747 * Get the boot vdev. 3748 */ 3749 if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) { 3750 cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu", 3751 (u_longlong_t)guid); 3752 error = SET_ERROR(ENOENT); 3753 goto out; 3754 } 3755 3756 /* 3757 * Determine if there is a better boot device. 3758 */ 3759 avd = bvd; 3760 spa_alt_rootvdev(rvd, &avd, &txg); 3761 if (avd != bvd) { 3762 cmn_err(CE_NOTE, "The boot device is 'degraded'. Please " 3763 "try booting from '%s'", avd->vdev_path); 3764 error = SET_ERROR(EINVAL); 3765 goto out; 3766 } 3767 3768 /* 3769 * If the boot device is part of a spare vdev then ensure that 3770 * we're booting off the active spare. 3771 */ 3772 if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops && 3773 !bvd->vdev_isspare) { 3774 cmn_err(CE_NOTE, "The boot device is currently spared. Please " 3775 "try booting from '%s'", 3776 bvd->vdev_parent-> 3777 vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path); 3778 error = SET_ERROR(EINVAL); 3779 goto out; 3780 } 3781 3782 error = 0; 3783 out: 3784 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3785 vdev_free(rvd); 3786 spa_config_exit(spa, SCL_ALL, FTAG); 3787 mutex_exit(&spa_namespace_lock); 3788 3789 nvlist_free(config); 3790 return (error); 3791 } 3792 3793 #endif 3794 3795 /* 3796 * Import a non-root pool into the system. 3797 */ 3798 int 3799 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags) 3800 { 3801 spa_t *spa; 3802 char *altroot = NULL; 3803 spa_load_state_t state = SPA_LOAD_IMPORT; 3804 zpool_rewind_policy_t policy; 3805 uint64_t mode = spa_mode_global; 3806 uint64_t readonly = B_FALSE; 3807 int error; 3808 nvlist_t *nvroot; 3809 nvlist_t **spares, **l2cache; 3810 uint_t nspares, nl2cache; 3811 3812 /* 3813 * If a pool with this name exists, return failure. 3814 */ 3815 mutex_enter(&spa_namespace_lock); 3816 if (spa_lookup(pool) != NULL) { 3817 mutex_exit(&spa_namespace_lock); 3818 return (SET_ERROR(EEXIST)); 3819 } 3820 3821 /* 3822 * Create and initialize the spa structure. 3823 */ 3824 (void) nvlist_lookup_string(props, 3825 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 3826 (void) nvlist_lookup_uint64(props, 3827 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly); 3828 if (readonly) 3829 mode = FREAD; 3830 spa = spa_add(pool, config, altroot); 3831 spa->spa_import_flags = flags; 3832 3833 /* 3834 * Verbatim import - Take a pool and insert it into the namespace 3835 * as if it had been loaded at boot. 3836 */ 3837 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) { 3838 if (props != NULL) 3839 spa_configfile_set(spa, props, B_FALSE); 3840 3841 spa_config_sync(spa, B_FALSE, B_TRUE); 3842 3843 mutex_exit(&spa_namespace_lock); 3844 spa_history_log_version(spa, "import"); 3845 3846 return (0); 3847 } 3848 3849 spa_activate(spa, mode); 3850 3851 /* 3852 * Don't start async tasks until we know everything is healthy. 3853 */ 3854 spa_async_suspend(spa); 3855 3856 zpool_get_rewind_policy(config, &policy); 3857 if (policy.zrp_request & ZPOOL_DO_REWIND) 3858 state = SPA_LOAD_RECOVER; 3859 3860 /* 3861 * Pass off the heavy lifting to spa_load(). Pass TRUE for mosconfig 3862 * because the user-supplied config is actually the one to trust when 3863 * doing an import. 3864 */ 3865 if (state != SPA_LOAD_RECOVER) 3866 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 3867 3868 error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg, 3869 policy.zrp_request); 3870 3871 /* 3872 * Propagate anything learned while loading the pool and pass it 3873 * back to caller (i.e. rewind info, missing devices, etc). 3874 */ 3875 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, 3876 spa->spa_load_info) == 0); 3877 3878 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3879 /* 3880 * Toss any existing sparelist, as it doesn't have any validity 3881 * anymore, and conflicts with spa_has_spare(). 3882 */ 3883 if (spa->spa_spares.sav_config) { 3884 nvlist_free(spa->spa_spares.sav_config); 3885 spa->spa_spares.sav_config = NULL; 3886 spa_load_spares(spa); 3887 } 3888 if (spa->spa_l2cache.sav_config) { 3889 nvlist_free(spa->spa_l2cache.sav_config); 3890 spa->spa_l2cache.sav_config = NULL; 3891 spa_load_l2cache(spa); 3892 } 3893 3894 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3895 &nvroot) == 0); 3896 if (error == 0) 3897 error = spa_validate_aux(spa, nvroot, -1ULL, 3898 VDEV_ALLOC_SPARE); 3899 if (error == 0) 3900 error = spa_validate_aux(spa, nvroot, -1ULL, 3901 VDEV_ALLOC_L2CACHE); 3902 spa_config_exit(spa, SCL_ALL, FTAG); 3903 3904 if (props != NULL) 3905 spa_configfile_set(spa, props, B_FALSE); 3906 3907 if (error != 0 || (props && spa_writeable(spa) && 3908 (error = spa_prop_set(spa, props)))) { 3909 spa_unload(spa); 3910 spa_deactivate(spa); 3911 spa_remove(spa); 3912 mutex_exit(&spa_namespace_lock); 3913 return (error); 3914 } 3915 3916 spa_async_resume(spa); 3917 3918 /* 3919 * Override any spares and level 2 cache devices as specified by 3920 * the user, as these may have correct device names/devids, etc. 3921 */ 3922 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 3923 &spares, &nspares) == 0) { 3924 if (spa->spa_spares.sav_config) 3925 VERIFY(nvlist_remove(spa->spa_spares.sav_config, 3926 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0); 3927 else 3928 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, 3929 NV_UNIQUE_NAME, KM_SLEEP) == 0); 3930 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 3931 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 3932 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3933 spa_load_spares(spa); 3934 spa_config_exit(spa, SCL_ALL, FTAG); 3935 spa->spa_spares.sav_sync = B_TRUE; 3936 } 3937 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 3938 &l2cache, &nl2cache) == 0) { 3939 if (spa->spa_l2cache.sav_config) 3940 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config, 3941 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0); 3942 else 3943 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 3944 NV_UNIQUE_NAME, KM_SLEEP) == 0); 3945 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 3946 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 3947 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3948 spa_load_l2cache(spa); 3949 spa_config_exit(spa, SCL_ALL, FTAG); 3950 spa->spa_l2cache.sav_sync = B_TRUE; 3951 } 3952 3953 /* 3954 * Check for any removed devices. 3955 */ 3956 if (spa->spa_autoreplace) { 3957 spa_aux_check_removed(&spa->spa_spares); 3958 spa_aux_check_removed(&spa->spa_l2cache); 3959 } 3960 3961 if (spa_writeable(spa)) { 3962 /* 3963 * Update the config cache to include the newly-imported pool. 3964 */ 3965 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 3966 } 3967 3968 /* 3969 * It's possible that the pool was expanded while it was exported. 3970 * We kick off an async task to handle this for us. 3971 */ 3972 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND); 3973 3974 mutex_exit(&spa_namespace_lock); 3975 spa_history_log_version(spa, "import"); 3976 3977 return (0); 3978 } 3979 3980 nvlist_t * 3981 spa_tryimport(nvlist_t *tryconfig) 3982 { 3983 nvlist_t *config = NULL; 3984 char *poolname; 3985 spa_t *spa; 3986 uint64_t state; 3987 int error; 3988 3989 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname)) 3990 return (NULL); 3991 3992 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state)) 3993 return (NULL); 3994 3995 /* 3996 * Create and initialize the spa structure. 3997 */ 3998 mutex_enter(&spa_namespace_lock); 3999 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL); 4000 spa_activate(spa, FREAD); 4001 4002 /* 4003 * Pass off the heavy lifting to spa_load(). 4004 * Pass TRUE for mosconfig because the user-supplied config 4005 * is actually the one to trust when doing an import. 4006 */ 4007 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE); 4008 4009 /* 4010 * If 'tryconfig' was at least parsable, return the current config. 4011 */ 4012 if (spa->spa_root_vdev != NULL) { 4013 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 4014 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, 4015 poolname) == 0); 4016 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 4017 state) == 0); 4018 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP, 4019 spa->spa_uberblock.ub_timestamp) == 0); 4020 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, 4021 spa->spa_load_info) == 0); 4022 4023 /* 4024 * If the bootfs property exists on this pool then we 4025 * copy it out so that external consumers can tell which 4026 * pools are bootable. 4027 */ 4028 if ((!error || error == EEXIST) && spa->spa_bootfs) { 4029 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 4030 4031 /* 4032 * We have to play games with the name since the 4033 * pool was opened as TRYIMPORT_NAME. 4034 */ 4035 if (dsl_dsobj_to_dsname(spa_name(spa), 4036 spa->spa_bootfs, tmpname) == 0) { 4037 char *cp; 4038 char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 4039 4040 cp = strchr(tmpname, '/'); 4041 if (cp == NULL) { 4042 (void) strlcpy(dsname, tmpname, 4043 MAXPATHLEN); 4044 } else { 4045 (void) snprintf(dsname, MAXPATHLEN, 4046 "%s/%s", poolname, ++cp); 4047 } 4048 VERIFY(nvlist_add_string(config, 4049 ZPOOL_CONFIG_BOOTFS, dsname) == 0); 4050 kmem_free(dsname, MAXPATHLEN); 4051 } 4052 kmem_free(tmpname, MAXPATHLEN); 4053 } 4054 4055 /* 4056 * Add the list of hot spares and level 2 cache devices. 4057 */ 4058 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 4059 spa_add_spares(spa, config); 4060 spa_add_l2cache(spa, config); 4061 spa_config_exit(spa, SCL_CONFIG, FTAG); 4062 } 4063 4064 spa_unload(spa); 4065 spa_deactivate(spa); 4066 spa_remove(spa); 4067 mutex_exit(&spa_namespace_lock); 4068 4069 return (config); 4070 } 4071 4072 /* 4073 * Pool export/destroy 4074 * 4075 * The act of destroying or exporting a pool is very simple. We make sure there 4076 * is no more pending I/O and any references to the pool are gone. Then, we 4077 * update the pool state and sync all the labels to disk, removing the 4078 * configuration from the cache afterwards. If the 'hardforce' flag is set, then 4079 * we don't sync the labels or remove the configuration cache. 4080 */ 4081 static int 4082 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig, 4083 boolean_t force, boolean_t hardforce) 4084 { 4085 spa_t *spa; 4086 4087 if (oldconfig) 4088 *oldconfig = NULL; 4089 4090 if (!(spa_mode_global & FWRITE)) 4091 return (SET_ERROR(EROFS)); 4092 4093 mutex_enter(&spa_namespace_lock); 4094 if ((spa = spa_lookup(pool)) == NULL) { 4095 mutex_exit(&spa_namespace_lock); 4096 return (SET_ERROR(ENOENT)); 4097 } 4098 4099 /* 4100 * Put a hold on the pool, drop the namespace lock, stop async tasks, 4101 * reacquire the namespace lock, and see if we can export. 4102 */ 4103 spa_open_ref(spa, FTAG); 4104 mutex_exit(&spa_namespace_lock); 4105 spa_async_suspend(spa); 4106 mutex_enter(&spa_namespace_lock); 4107 spa_close(spa, FTAG); 4108 4109 /* 4110 * The pool will be in core if it's openable, 4111 * in which case we can modify its state. 4112 */ 4113 if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) { 4114 /* 4115 * Objsets may be open only because they're dirty, so we 4116 * have to force it to sync before checking spa_refcnt. 4117 */ 4118 txg_wait_synced(spa->spa_dsl_pool, 0); 4119 4120 /* 4121 * A pool cannot be exported or destroyed if there are active 4122 * references. If we are resetting a pool, allow references by 4123 * fault injection handlers. 4124 */ 4125 if (!spa_refcount_zero(spa) || 4126 (spa->spa_inject_ref != 0 && 4127 new_state != POOL_STATE_UNINITIALIZED)) { 4128 spa_async_resume(spa); 4129 mutex_exit(&spa_namespace_lock); 4130 return (SET_ERROR(EBUSY)); 4131 } 4132 4133 /* 4134 * A pool cannot be exported if it has an active shared spare. 4135 * This is to prevent other pools stealing the active spare 4136 * from an exported pool. At user's own will, such pool can 4137 * be forcedly exported. 4138 */ 4139 if (!force && new_state == POOL_STATE_EXPORTED && 4140 spa_has_active_shared_spare(spa)) { 4141 spa_async_resume(spa); 4142 mutex_exit(&spa_namespace_lock); 4143 return (SET_ERROR(EXDEV)); 4144 } 4145 4146 /* 4147 * We want this to be reflected on every label, 4148 * so mark them all dirty. spa_unload() will do the 4149 * final sync that pushes these changes out. 4150 */ 4151 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) { 4152 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4153 spa->spa_state = new_state; 4154 spa->spa_final_txg = spa_last_synced_txg(spa) + 4155 TXG_DEFER_SIZE + 1; 4156 vdev_config_dirty(spa->spa_root_vdev); 4157 spa_config_exit(spa, SCL_ALL, FTAG); 4158 } 4159 } 4160 4161 spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY); 4162 4163 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 4164 spa_unload(spa); 4165 spa_deactivate(spa); 4166 } 4167 4168 if (oldconfig && spa->spa_config) 4169 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0); 4170 4171 if (new_state != POOL_STATE_UNINITIALIZED) { 4172 if (!hardforce) 4173 spa_config_sync(spa, B_TRUE, B_TRUE); 4174 spa_remove(spa); 4175 } 4176 mutex_exit(&spa_namespace_lock); 4177 4178 return (0); 4179 } 4180 4181 /* 4182 * Destroy a storage pool. 4183 */ 4184 int 4185 spa_destroy(char *pool) 4186 { 4187 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL, 4188 B_FALSE, B_FALSE)); 4189 } 4190 4191 /* 4192 * Export a storage pool. 4193 */ 4194 int 4195 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force, 4196 boolean_t hardforce) 4197 { 4198 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig, 4199 force, hardforce)); 4200 } 4201 4202 /* 4203 * Similar to spa_export(), this unloads the spa_t without actually removing it 4204 * from the namespace in any way. 4205 */ 4206 int 4207 spa_reset(char *pool) 4208 { 4209 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL, 4210 B_FALSE, B_FALSE)); 4211 } 4212 4213 /* 4214 * ========================================================================== 4215 * Device manipulation 4216 * ========================================================================== 4217 */ 4218 4219 /* 4220 * Add a device to a storage pool. 4221 */ 4222 int 4223 spa_vdev_add(spa_t *spa, nvlist_t *nvroot) 4224 { 4225 uint64_t txg, id; 4226 int error; 4227 vdev_t *rvd = spa->spa_root_vdev; 4228 vdev_t *vd, *tvd; 4229 nvlist_t **spares, **l2cache; 4230 uint_t nspares, nl2cache; 4231 4232 ASSERT(spa_writeable(spa)); 4233 4234 txg = spa_vdev_enter(spa); 4235 4236 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0, 4237 VDEV_ALLOC_ADD)) != 0) 4238 return (spa_vdev_exit(spa, NULL, txg, error)); 4239 4240 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */ 4241 4242 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, 4243 &nspares) != 0) 4244 nspares = 0; 4245 4246 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache, 4247 &nl2cache) != 0) 4248 nl2cache = 0; 4249 4250 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0) 4251 return (spa_vdev_exit(spa, vd, txg, EINVAL)); 4252 4253 if (vd->vdev_children != 0 && 4254 (error = vdev_create(vd, txg, B_FALSE)) != 0) 4255 return (spa_vdev_exit(spa, vd, txg, error)); 4256 4257 /* 4258 * We must validate the spares and l2cache devices after checking the 4259 * children. Otherwise, vdev_inuse() will blindly overwrite the spare. 4260 */ 4261 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0) 4262 return (spa_vdev_exit(spa, vd, txg, error)); 4263 4264 /* 4265 * Transfer each new top-level vdev from vd to rvd. 4266 */ 4267 for (int c = 0; c < vd->vdev_children; c++) { 4268 4269 /* 4270 * Set the vdev id to the first hole, if one exists. 4271 */ 4272 for (id = 0; id < rvd->vdev_children; id++) { 4273 if (rvd->vdev_child[id]->vdev_ishole) { 4274 vdev_free(rvd->vdev_child[id]); 4275 break; 4276 } 4277 } 4278 tvd = vd->vdev_child[c]; 4279 vdev_remove_child(vd, tvd); 4280 tvd->vdev_id = id; 4281 vdev_add_child(rvd, tvd); 4282 vdev_config_dirty(tvd); 4283 } 4284 4285 if (nspares != 0) { 4286 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares, 4287 ZPOOL_CONFIG_SPARES); 4288 spa_load_spares(spa); 4289 spa->spa_spares.sav_sync = B_TRUE; 4290 } 4291 4292 if (nl2cache != 0) { 4293 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache, 4294 ZPOOL_CONFIG_L2CACHE); 4295 spa_load_l2cache(spa); 4296 spa->spa_l2cache.sav_sync = B_TRUE; 4297 } 4298 4299 /* 4300 * We have to be careful when adding new vdevs to an existing pool. 4301 * If other threads start allocating from these vdevs before we 4302 * sync the config cache, and we lose power, then upon reboot we may 4303 * fail to open the pool because there are DVAs that the config cache 4304 * can't translate. Therefore, we first add the vdevs without 4305 * initializing metaslabs; sync the config cache (via spa_vdev_exit()); 4306 * and then let spa_config_update() initialize the new metaslabs. 4307 * 4308 * spa_load() checks for added-but-not-initialized vdevs, so that 4309 * if we lose power at any point in this sequence, the remaining 4310 * steps will be completed the next time we load the pool. 4311 */ 4312 (void) spa_vdev_exit(spa, vd, txg, 0); 4313 4314 mutex_enter(&spa_namespace_lock); 4315 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 4316 mutex_exit(&spa_namespace_lock); 4317 4318 return (0); 4319 } 4320 4321 /* 4322 * Attach a device to a mirror. The arguments are the path to any device 4323 * in the mirror, and the nvroot for the new device. If the path specifies 4324 * a device that is not mirrored, we automatically insert the mirror vdev. 4325 * 4326 * If 'replacing' is specified, the new device is intended to replace the 4327 * existing device; in this case the two devices are made into their own 4328 * mirror using the 'replacing' vdev, which is functionally identical to 4329 * the mirror vdev (it actually reuses all the same ops) but has a few 4330 * extra rules: you can't attach to it after it's been created, and upon 4331 * completion of resilvering, the first disk (the one being replaced) 4332 * is automatically detached. 4333 */ 4334 int 4335 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing) 4336 { 4337 uint64_t txg, dtl_max_txg; 4338 vdev_t *rvd = spa->spa_root_vdev; 4339 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd; 4340 vdev_ops_t *pvops; 4341 char *oldvdpath, *newvdpath; 4342 int newvd_isspare; 4343 int error; 4344 4345 ASSERT(spa_writeable(spa)); 4346 4347 txg = spa_vdev_enter(spa); 4348 4349 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE); 4350 4351 if (oldvd == NULL) 4352 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 4353 4354 if (!oldvd->vdev_ops->vdev_op_leaf) 4355 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4356 4357 pvd = oldvd->vdev_parent; 4358 4359 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0, 4360 VDEV_ALLOC_ATTACH)) != 0) 4361 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4362 4363 if (newrootvd->vdev_children != 1) 4364 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 4365 4366 newvd = newrootvd->vdev_child[0]; 4367 4368 if (!newvd->vdev_ops->vdev_op_leaf) 4369 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 4370 4371 if ((error = vdev_create(newrootvd, txg, replacing)) != 0) 4372 return (spa_vdev_exit(spa, newrootvd, txg, error)); 4373 4374 /* 4375 * Spares can't replace logs 4376 */ 4377 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare) 4378 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4379 4380 if (!replacing) { 4381 /* 4382 * For attach, the only allowable parent is a mirror or the root 4383 * vdev. 4384 */ 4385 if (pvd->vdev_ops != &vdev_mirror_ops && 4386 pvd->vdev_ops != &vdev_root_ops) 4387 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4388 4389 pvops = &vdev_mirror_ops; 4390 } else { 4391 /* 4392 * Active hot spares can only be replaced by inactive hot 4393 * spares. 4394 */ 4395 if (pvd->vdev_ops == &vdev_spare_ops && 4396 oldvd->vdev_isspare && 4397 !spa_has_spare(spa, newvd->vdev_guid)) 4398 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4399 4400 /* 4401 * If the source is a hot spare, and the parent isn't already a 4402 * spare, then we want to create a new hot spare. Otherwise, we 4403 * want to create a replacing vdev. The user is not allowed to 4404 * attach to a spared vdev child unless the 'isspare' state is 4405 * the same (spare replaces spare, non-spare replaces 4406 * non-spare). 4407 */ 4408 if (pvd->vdev_ops == &vdev_replacing_ops && 4409 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) { 4410 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4411 } else if (pvd->vdev_ops == &vdev_spare_ops && 4412 newvd->vdev_isspare != oldvd->vdev_isspare) { 4413 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4414 } 4415 4416 if (newvd->vdev_isspare) 4417 pvops = &vdev_spare_ops; 4418 else 4419 pvops = &vdev_replacing_ops; 4420 } 4421 4422 /* 4423 * Make sure the new device is big enough. 4424 */ 4425 if (newvd->vdev_asize < vdev_get_min_asize(oldvd)) 4426 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW)); 4427 4428 /* 4429 * The new device cannot have a higher alignment requirement 4430 * than the top-level vdev. 4431 */ 4432 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift) 4433 return (spa_vdev_exit(spa, newrootvd, txg, EDOM)); 4434 4435 /* 4436 * If this is an in-place replacement, update oldvd's path and devid 4437 * to make it distinguishable from newvd, and unopenable from now on. 4438 */ 4439 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) { 4440 spa_strfree(oldvd->vdev_path); 4441 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5, 4442 KM_SLEEP); 4443 (void) sprintf(oldvd->vdev_path, "%s/%s", 4444 newvd->vdev_path, "old"); 4445 if (oldvd->vdev_devid != NULL) { 4446 spa_strfree(oldvd->vdev_devid); 4447 oldvd->vdev_devid = NULL; 4448 } 4449 } 4450 4451 /* mark the device being resilvered */ 4452 newvd->vdev_resilver_txg = txg; 4453 4454 /* 4455 * If the parent is not a mirror, or if we're replacing, insert the new 4456 * mirror/replacing/spare vdev above oldvd. 4457 */ 4458 if (pvd->vdev_ops != pvops) 4459 pvd = vdev_add_parent(oldvd, pvops); 4460 4461 ASSERT(pvd->vdev_top->vdev_parent == rvd); 4462 ASSERT(pvd->vdev_ops == pvops); 4463 ASSERT(oldvd->vdev_parent == pvd); 4464 4465 /* 4466 * Extract the new device from its root and add it to pvd. 4467 */ 4468 vdev_remove_child(newrootvd, newvd); 4469 newvd->vdev_id = pvd->vdev_children; 4470 newvd->vdev_crtxg = oldvd->vdev_crtxg; 4471 vdev_add_child(pvd, newvd); 4472 4473 tvd = newvd->vdev_top; 4474 ASSERT(pvd->vdev_top == tvd); 4475 ASSERT(tvd->vdev_parent == rvd); 4476 4477 vdev_config_dirty(tvd); 4478 4479 /* 4480 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account 4481 * for any dmu_sync-ed blocks. It will propagate upward when 4482 * spa_vdev_exit() calls vdev_dtl_reassess(). 4483 */ 4484 dtl_max_txg = txg + TXG_CONCURRENT_STATES; 4485 4486 vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL, 4487 dtl_max_txg - TXG_INITIAL); 4488 4489 if (newvd->vdev_isspare) { 4490 spa_spare_activate(newvd); 4491 spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE); 4492 } 4493 4494 oldvdpath = spa_strdup(oldvd->vdev_path); 4495 newvdpath = spa_strdup(newvd->vdev_path); 4496 newvd_isspare = newvd->vdev_isspare; 4497 4498 /* 4499 * Mark newvd's DTL dirty in this txg. 4500 */ 4501 vdev_dirty(tvd, VDD_DTL, newvd, txg); 4502 4503 /* 4504 * Restart the resilver 4505 */ 4506 dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg); 4507 4508 /* 4509 * Commit the config 4510 */ 4511 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0); 4512 4513 spa_history_log_internal(spa, "vdev attach", NULL, 4514 "%s vdev=%s %s vdev=%s", 4515 replacing && newvd_isspare ? "spare in" : 4516 replacing ? "replace" : "attach", newvdpath, 4517 replacing ? "for" : "to", oldvdpath); 4518 4519 spa_strfree(oldvdpath); 4520 spa_strfree(newvdpath); 4521 4522 if (spa->spa_bootfs) 4523 spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH); 4524 4525 return (0); 4526 } 4527 4528 /* 4529 * Detach a device from a mirror or replacing vdev. 4530 * 4531 * If 'replace_done' is specified, only detach if the parent 4532 * is a replacing vdev. 4533 */ 4534 int 4535 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done) 4536 { 4537 uint64_t txg; 4538 int error; 4539 vdev_t *rvd = spa->spa_root_vdev; 4540 vdev_t *vd, *pvd, *cvd, *tvd; 4541 boolean_t unspare = B_FALSE; 4542 uint64_t unspare_guid = 0; 4543 char *vdpath; 4544 4545 ASSERT(spa_writeable(spa)); 4546 4547 txg = spa_vdev_enter(spa); 4548 4549 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 4550 4551 if (vd == NULL) 4552 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 4553 4554 if (!vd->vdev_ops->vdev_op_leaf) 4555 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4556 4557 pvd = vd->vdev_parent; 4558 4559 /* 4560 * If the parent/child relationship is not as expected, don't do it. 4561 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing 4562 * vdev that's replacing B with C. The user's intent in replacing 4563 * is to go from M(A,B) to M(A,C). If the user decides to cancel 4564 * the replace by detaching C, the expected behavior is to end up 4565 * M(A,B). But suppose that right after deciding to detach C, 4566 * the replacement of B completes. We would have M(A,C), and then 4567 * ask to detach C, which would leave us with just A -- not what 4568 * the user wanted. To prevent this, we make sure that the 4569 * parent/child relationship hasn't changed -- in this example, 4570 * that C's parent is still the replacing vdev R. 4571 */ 4572 if (pvd->vdev_guid != pguid && pguid != 0) 4573 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 4574 4575 /* 4576 * Only 'replacing' or 'spare' vdevs can be replaced. 4577 */ 4578 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops && 4579 pvd->vdev_ops != &vdev_spare_ops) 4580 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4581 4582 ASSERT(pvd->vdev_ops != &vdev_spare_ops || 4583 spa_version(spa) >= SPA_VERSION_SPARES); 4584 4585 /* 4586 * Only mirror, replacing, and spare vdevs support detach. 4587 */ 4588 if (pvd->vdev_ops != &vdev_replacing_ops && 4589 pvd->vdev_ops != &vdev_mirror_ops && 4590 pvd->vdev_ops != &vdev_spare_ops) 4591 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4592 4593 /* 4594 * If this device has the only valid copy of some data, 4595 * we cannot safely detach it. 4596 */ 4597 if (vdev_dtl_required(vd)) 4598 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 4599 4600 ASSERT(pvd->vdev_children >= 2); 4601 4602 /* 4603 * If we are detaching the second disk from a replacing vdev, then 4604 * check to see if we changed the original vdev's path to have "/old" 4605 * at the end in spa_vdev_attach(). If so, undo that change now. 4606 */ 4607 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 && 4608 vd->vdev_path != NULL) { 4609 size_t len = strlen(vd->vdev_path); 4610 4611 for (int c = 0; c < pvd->vdev_children; c++) { 4612 cvd = pvd->vdev_child[c]; 4613 4614 if (cvd == vd || cvd->vdev_path == NULL) 4615 continue; 4616 4617 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 && 4618 strcmp(cvd->vdev_path + len, "/old") == 0) { 4619 spa_strfree(cvd->vdev_path); 4620 cvd->vdev_path = spa_strdup(vd->vdev_path); 4621 break; 4622 } 4623 } 4624 } 4625 4626 /* 4627 * If we are detaching the original disk from a spare, then it implies 4628 * that the spare should become a real disk, and be removed from the 4629 * active spare list for the pool. 4630 */ 4631 if (pvd->vdev_ops == &vdev_spare_ops && 4632 vd->vdev_id == 0 && 4633 pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare) 4634 unspare = B_TRUE; 4635 4636 /* 4637 * Erase the disk labels so the disk can be used for other things. 4638 * This must be done after all other error cases are handled, 4639 * but before we disembowel vd (so we can still do I/O to it). 4640 * But if we can't do it, don't treat the error as fatal -- 4641 * it may be that the unwritability of the disk is the reason 4642 * it's being detached! 4643 */ 4644 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 4645 4646 /* 4647 * Remove vd from its parent and compact the parent's children. 4648 */ 4649 vdev_remove_child(pvd, vd); 4650 vdev_compact_children(pvd); 4651 4652 /* 4653 * Remember one of the remaining children so we can get tvd below. 4654 */ 4655 cvd = pvd->vdev_child[pvd->vdev_children - 1]; 4656 4657 /* 4658 * If we need to remove the remaining child from the list of hot spares, 4659 * do it now, marking the vdev as no longer a spare in the process. 4660 * We must do this before vdev_remove_parent(), because that can 4661 * change the GUID if it creates a new toplevel GUID. For a similar 4662 * reason, we must remove the spare now, in the same txg as the detach; 4663 * otherwise someone could attach a new sibling, change the GUID, and 4664 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail. 4665 */ 4666 if (unspare) { 4667 ASSERT(cvd->vdev_isspare); 4668 spa_spare_remove(cvd); 4669 unspare_guid = cvd->vdev_guid; 4670 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE); 4671 cvd->vdev_unspare = B_TRUE; 4672 } 4673 4674 /* 4675 * If the parent mirror/replacing vdev only has one child, 4676 * the parent is no longer needed. Remove it from the tree. 4677 */ 4678 if (pvd->vdev_children == 1) { 4679 if (pvd->vdev_ops == &vdev_spare_ops) 4680 cvd->vdev_unspare = B_FALSE; 4681 vdev_remove_parent(cvd); 4682 } 4683 4684 4685 /* 4686 * We don't set tvd until now because the parent we just removed 4687 * may have been the previous top-level vdev. 4688 */ 4689 tvd = cvd->vdev_top; 4690 ASSERT(tvd->vdev_parent == rvd); 4691 4692 /* 4693 * Reevaluate the parent vdev state. 4694 */ 4695 vdev_propagate_state(cvd); 4696 4697 /* 4698 * If the 'autoexpand' property is set on the pool then automatically 4699 * try to expand the size of the pool. For example if the device we 4700 * just detached was smaller than the others, it may be possible to 4701 * add metaslabs (i.e. grow the pool). We need to reopen the vdev 4702 * first so that we can obtain the updated sizes of the leaf vdevs. 4703 */ 4704 if (spa->spa_autoexpand) { 4705 vdev_reopen(tvd); 4706 vdev_expand(tvd, txg); 4707 } 4708 4709 vdev_config_dirty(tvd); 4710 4711 /* 4712 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that 4713 * vd->vdev_detached is set and free vd's DTL object in syncing context. 4714 * But first make sure we're not on any *other* txg's DTL list, to 4715 * prevent vd from being accessed after it's freed. 4716 */ 4717 vdpath = spa_strdup(vd->vdev_path); 4718 for (int t = 0; t < TXG_SIZE; t++) 4719 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t); 4720 vd->vdev_detached = B_TRUE; 4721 vdev_dirty(tvd, VDD_DTL, vd, txg); 4722 4723 spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE); 4724 4725 /* hang on to the spa before we release the lock */ 4726 spa_open_ref(spa, FTAG); 4727 4728 error = spa_vdev_exit(spa, vd, txg, 0); 4729 4730 spa_history_log_internal(spa, "detach", NULL, 4731 "vdev=%s", vdpath); 4732 spa_strfree(vdpath); 4733 4734 /* 4735 * If this was the removal of the original device in a hot spare vdev, 4736 * then we want to go through and remove the device from the hot spare 4737 * list of every other pool. 4738 */ 4739 if (unspare) { 4740 spa_t *altspa = NULL; 4741 4742 mutex_enter(&spa_namespace_lock); 4743 while ((altspa = spa_next(altspa)) != NULL) { 4744 if (altspa->spa_state != POOL_STATE_ACTIVE || 4745 altspa == spa) 4746 continue; 4747 4748 spa_open_ref(altspa, FTAG); 4749 mutex_exit(&spa_namespace_lock); 4750 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE); 4751 mutex_enter(&spa_namespace_lock); 4752 spa_close(altspa, FTAG); 4753 } 4754 mutex_exit(&spa_namespace_lock); 4755 4756 /* search the rest of the vdevs for spares to remove */ 4757 spa_vdev_resilver_done(spa); 4758 } 4759 4760 /* all done with the spa; OK to release */ 4761 mutex_enter(&spa_namespace_lock); 4762 spa_close(spa, FTAG); 4763 mutex_exit(&spa_namespace_lock); 4764 4765 return (error); 4766 } 4767 4768 /* 4769 * Split a set of devices from their mirrors, and create a new pool from them. 4770 */ 4771 int 4772 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config, 4773 nvlist_t *props, boolean_t exp) 4774 { 4775 int error = 0; 4776 uint64_t txg, *glist; 4777 spa_t *newspa; 4778 uint_t c, children, lastlog; 4779 nvlist_t **child, *nvl, *tmp; 4780 dmu_tx_t *tx; 4781 char *altroot = NULL; 4782 vdev_t *rvd, **vml = NULL; /* vdev modify list */ 4783 boolean_t activate_slog; 4784 4785 ASSERT(spa_writeable(spa)); 4786 4787 txg = spa_vdev_enter(spa); 4788 4789 /* clear the log and flush everything up to now */ 4790 activate_slog = spa_passivate_log(spa); 4791 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 4792 error = spa_offline_log(spa); 4793 txg = spa_vdev_config_enter(spa); 4794 4795 if (activate_slog) 4796 spa_activate_log(spa); 4797 4798 if (error != 0) 4799 return (spa_vdev_exit(spa, NULL, txg, error)); 4800 4801 /* check new spa name before going any further */ 4802 if (spa_lookup(newname) != NULL) 4803 return (spa_vdev_exit(spa, NULL, txg, EEXIST)); 4804 4805 /* 4806 * scan through all the children to ensure they're all mirrors 4807 */ 4808 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 || 4809 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child, 4810 &children) != 0) 4811 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4812 4813 /* first, check to ensure we've got the right child count */ 4814 rvd = spa->spa_root_vdev; 4815 lastlog = 0; 4816 for (c = 0; c < rvd->vdev_children; c++) { 4817 vdev_t *vd = rvd->vdev_child[c]; 4818 4819 /* don't count the holes & logs as children */ 4820 if (vd->vdev_islog || vd->vdev_ishole) { 4821 if (lastlog == 0) 4822 lastlog = c; 4823 continue; 4824 } 4825 4826 lastlog = 0; 4827 } 4828 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children)) 4829 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4830 4831 /* next, ensure no spare or cache devices are part of the split */ 4832 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 || 4833 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0) 4834 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4835 4836 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP); 4837 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP); 4838 4839 /* then, loop over each vdev and validate it */ 4840 for (c = 0; c < children; c++) { 4841 uint64_t is_hole = 0; 4842 4843 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE, 4844 &is_hole); 4845 4846 if (is_hole != 0) { 4847 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole || 4848 spa->spa_root_vdev->vdev_child[c]->vdev_islog) { 4849 continue; 4850 } else { 4851 error = SET_ERROR(EINVAL); 4852 break; 4853 } 4854 } 4855 4856 /* which disk is going to be split? */ 4857 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID, 4858 &glist[c]) != 0) { 4859 error = SET_ERROR(EINVAL); 4860 break; 4861 } 4862 4863 /* look it up in the spa */ 4864 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE); 4865 if (vml[c] == NULL) { 4866 error = SET_ERROR(ENODEV); 4867 break; 4868 } 4869 4870 /* make sure there's nothing stopping the split */ 4871 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops || 4872 vml[c]->vdev_islog || 4873 vml[c]->vdev_ishole || 4874 vml[c]->vdev_isspare || 4875 vml[c]->vdev_isl2cache || 4876 !vdev_writeable(vml[c]) || 4877 vml[c]->vdev_children != 0 || 4878 vml[c]->vdev_state != VDEV_STATE_HEALTHY || 4879 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) { 4880 error = SET_ERROR(EINVAL); 4881 break; 4882 } 4883 4884 if (vdev_dtl_required(vml[c])) { 4885 error = SET_ERROR(EBUSY); 4886 break; 4887 } 4888 4889 /* we need certain info from the top level */ 4890 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY, 4891 vml[c]->vdev_top->vdev_ms_array) == 0); 4892 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT, 4893 vml[c]->vdev_top->vdev_ms_shift) == 0); 4894 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE, 4895 vml[c]->vdev_top->vdev_asize) == 0); 4896 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT, 4897 vml[c]->vdev_top->vdev_ashift) == 0); 4898 } 4899 4900 if (error != 0) { 4901 kmem_free(vml, children * sizeof (vdev_t *)); 4902 kmem_free(glist, children * sizeof (uint64_t)); 4903 return (spa_vdev_exit(spa, NULL, txg, error)); 4904 } 4905 4906 /* stop writers from using the disks */ 4907 for (c = 0; c < children; c++) { 4908 if (vml[c] != NULL) 4909 vml[c]->vdev_offline = B_TRUE; 4910 } 4911 vdev_reopen(spa->spa_root_vdev); 4912 4913 /* 4914 * Temporarily record the splitting vdevs in the spa config. This 4915 * will disappear once the config is regenerated. 4916 */ 4917 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0); 4918 VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 4919 glist, children) == 0); 4920 kmem_free(glist, children * sizeof (uint64_t)); 4921 4922 mutex_enter(&spa->spa_props_lock); 4923 VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT, 4924 nvl) == 0); 4925 mutex_exit(&spa->spa_props_lock); 4926 spa->spa_config_splitting = nvl; 4927 vdev_config_dirty(spa->spa_root_vdev); 4928 4929 /* configure and create the new pool */ 4930 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0); 4931 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 4932 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0); 4933 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, 4934 spa_version(spa)) == 0); 4935 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, 4936 spa->spa_config_txg) == 0); 4937 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID, 4938 spa_generate_guid(NULL)) == 0); 4939 (void) nvlist_lookup_string(props, 4940 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 4941 4942 /* add the new pool to the namespace */ 4943 newspa = spa_add(newname, config, altroot); 4944 newspa->spa_config_txg = spa->spa_config_txg; 4945 spa_set_log_state(newspa, SPA_LOG_CLEAR); 4946 4947 /* release the spa config lock, retaining the namespace lock */ 4948 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 4949 4950 if (zio_injection_enabled) 4951 zio_handle_panic_injection(spa, FTAG, 1); 4952 4953 spa_activate(newspa, spa_mode_global); 4954 spa_async_suspend(newspa); 4955 4956 /* create the new pool from the disks of the original pool */ 4957 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE); 4958 if (error) 4959 goto out; 4960 4961 /* if that worked, generate a real config for the new pool */ 4962 if (newspa->spa_root_vdev != NULL) { 4963 VERIFY(nvlist_alloc(&newspa->spa_config_splitting, 4964 NV_UNIQUE_NAME, KM_SLEEP) == 0); 4965 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting, 4966 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0); 4967 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL, 4968 B_TRUE)); 4969 } 4970 4971 /* set the props */ 4972 if (props != NULL) { 4973 spa_configfile_set(newspa, props, B_FALSE); 4974 error = spa_prop_set(newspa, props); 4975 if (error) 4976 goto out; 4977 } 4978 4979 /* flush everything */ 4980 txg = spa_vdev_config_enter(newspa); 4981 vdev_config_dirty(newspa->spa_root_vdev); 4982 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG); 4983 4984 if (zio_injection_enabled) 4985 zio_handle_panic_injection(spa, FTAG, 2); 4986 4987 spa_async_resume(newspa); 4988 4989 /* finally, update the original pool's config */ 4990 txg = spa_vdev_config_enter(spa); 4991 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 4992 error = dmu_tx_assign(tx, TXG_WAIT); 4993 if (error != 0) 4994 dmu_tx_abort(tx); 4995 for (c = 0; c < children; c++) { 4996 if (vml[c] != NULL) { 4997 vdev_split(vml[c]); 4998 if (error == 0) 4999 spa_history_log_internal(spa, "detach", tx, 5000 "vdev=%s", vml[c]->vdev_path); 5001 vdev_free(vml[c]); 5002 } 5003 } 5004 vdev_config_dirty(spa->spa_root_vdev); 5005 spa->spa_config_splitting = NULL; 5006 nvlist_free(nvl); 5007 if (error == 0) 5008 dmu_tx_commit(tx); 5009 (void) spa_vdev_exit(spa, NULL, txg, 0); 5010 5011 if (zio_injection_enabled) 5012 zio_handle_panic_injection(spa, FTAG, 3); 5013 5014 /* split is complete; log a history record */ 5015 spa_history_log_internal(newspa, "split", NULL, 5016 "from pool %s", spa_name(spa)); 5017 5018 kmem_free(vml, children * sizeof (vdev_t *)); 5019 5020 /* if we're not going to mount the filesystems in userland, export */ 5021 if (exp) 5022 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL, 5023 B_FALSE, B_FALSE); 5024 5025 return (error); 5026 5027 out: 5028 spa_unload(newspa); 5029 spa_deactivate(newspa); 5030 spa_remove(newspa); 5031 5032 txg = spa_vdev_config_enter(spa); 5033 5034 /* re-online all offlined disks */ 5035 for (c = 0; c < children; c++) { 5036 if (vml[c] != NULL) 5037 vml[c]->vdev_offline = B_FALSE; 5038 } 5039 vdev_reopen(spa->spa_root_vdev); 5040 5041 nvlist_free(spa->spa_config_splitting); 5042 spa->spa_config_splitting = NULL; 5043 (void) spa_vdev_exit(spa, NULL, txg, error); 5044 5045 kmem_free(vml, children * sizeof (vdev_t *)); 5046 return (error); 5047 } 5048 5049 static nvlist_t * 5050 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid) 5051 { 5052 for (int i = 0; i < count; i++) { 5053 uint64_t guid; 5054 5055 VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID, 5056 &guid) == 0); 5057 5058 if (guid == target_guid) 5059 return (nvpp[i]); 5060 } 5061 5062 return (NULL); 5063 } 5064 5065 static void 5066 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count, 5067 nvlist_t *dev_to_remove) 5068 { 5069 nvlist_t **newdev = NULL; 5070 5071 if (count > 1) 5072 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP); 5073 5074 for (int i = 0, j = 0; i < count; i++) { 5075 if (dev[i] == dev_to_remove) 5076 continue; 5077 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0); 5078 } 5079 5080 VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0); 5081 VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0); 5082 5083 for (int i = 0; i < count - 1; i++) 5084 nvlist_free(newdev[i]); 5085 5086 if (count > 1) 5087 kmem_free(newdev, (count - 1) * sizeof (void *)); 5088 } 5089 5090 /* 5091 * Evacuate the device. 5092 */ 5093 static int 5094 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd) 5095 { 5096 uint64_t txg; 5097 int error = 0; 5098 5099 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 5100 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 5101 ASSERT(vd == vd->vdev_top); 5102 5103 /* 5104 * Evacuate the device. We don't hold the config lock as writer 5105 * since we need to do I/O but we do keep the 5106 * spa_namespace_lock held. Once this completes the device 5107 * should no longer have any blocks allocated on it. 5108 */ 5109 if (vd->vdev_islog) { 5110 if (vd->vdev_stat.vs_alloc != 0) 5111 error = spa_offline_log(spa); 5112 } else { 5113 error = SET_ERROR(ENOTSUP); 5114 } 5115 5116 if (error) 5117 return (error); 5118 5119 /* 5120 * The evacuation succeeded. Remove any remaining MOS metadata 5121 * associated with this vdev, and wait for these changes to sync. 5122 */ 5123 ASSERT0(vd->vdev_stat.vs_alloc); 5124 txg = spa_vdev_config_enter(spa); 5125 vd->vdev_removing = B_TRUE; 5126 vdev_dirty(vd, 0, NULL, txg); 5127 vdev_config_dirty(vd); 5128 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 5129 5130 return (0); 5131 } 5132 5133 /* 5134 * Complete the removal by cleaning up the namespace. 5135 */ 5136 static void 5137 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd) 5138 { 5139 vdev_t *rvd = spa->spa_root_vdev; 5140 uint64_t id = vd->vdev_id; 5141 boolean_t last_vdev = (id == (rvd->vdev_children - 1)); 5142 5143 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 5144 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 5145 ASSERT(vd == vd->vdev_top); 5146 5147 /* 5148 * Only remove any devices which are empty. 5149 */ 5150 if (vd->vdev_stat.vs_alloc != 0) 5151 return; 5152 5153 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 5154 5155 if (list_link_active(&vd->vdev_state_dirty_node)) 5156 vdev_state_clean(vd); 5157 if (list_link_active(&vd->vdev_config_dirty_node)) 5158 vdev_config_clean(vd); 5159 5160 vdev_free(vd); 5161 5162 if (last_vdev) { 5163 vdev_compact_children(rvd); 5164 } else { 5165 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops); 5166 vdev_add_child(rvd, vd); 5167 } 5168 vdev_config_dirty(rvd); 5169 5170 /* 5171 * Reassess the health of our root vdev. 5172 */ 5173 vdev_reopen(rvd); 5174 } 5175 5176 /* 5177 * Remove a device from the pool - 5178 * 5179 * Removing a device from the vdev namespace requires several steps 5180 * and can take a significant amount of time. As a result we use 5181 * the spa_vdev_config_[enter/exit] functions which allow us to 5182 * grab and release the spa_config_lock while still holding the namespace 5183 * lock. During each step the configuration is synced out. 5184 * 5185 * Currently, this supports removing only hot spares, slogs, and level 2 ARC 5186 * devices. 5187 */ 5188 int 5189 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare) 5190 { 5191 vdev_t *vd; 5192 metaslab_group_t *mg; 5193 nvlist_t **spares, **l2cache, *nv; 5194 uint64_t txg = 0; 5195 uint_t nspares, nl2cache; 5196 int error = 0; 5197 boolean_t locked = MUTEX_HELD(&spa_namespace_lock); 5198 5199 ASSERT(spa_writeable(spa)); 5200 5201 if (!locked) 5202 txg = spa_vdev_enter(spa); 5203 5204 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 5205 5206 if (spa->spa_spares.sav_vdevs != NULL && 5207 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 5208 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 && 5209 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) { 5210 /* 5211 * Only remove the hot spare if it's not currently in use 5212 * in this pool. 5213 */ 5214 if (vd == NULL || unspare) { 5215 spa_vdev_remove_aux(spa->spa_spares.sav_config, 5216 ZPOOL_CONFIG_SPARES, spares, nspares, nv); 5217 spa_load_spares(spa); 5218 spa->spa_spares.sav_sync = B_TRUE; 5219 } else { 5220 error = SET_ERROR(EBUSY); 5221 } 5222 } else if (spa->spa_l2cache.sav_vdevs != NULL && 5223 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 5224 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 && 5225 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) { 5226 /* 5227 * Cache devices can always be removed. 5228 */ 5229 spa_vdev_remove_aux(spa->spa_l2cache.sav_config, 5230 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv); 5231 spa_load_l2cache(spa); 5232 spa->spa_l2cache.sav_sync = B_TRUE; 5233 } else if (vd != NULL && vd->vdev_islog) { 5234 ASSERT(!locked); 5235 ASSERT(vd == vd->vdev_top); 5236 5237 /* 5238 * XXX - Once we have bp-rewrite this should 5239 * become the common case. 5240 */ 5241 5242 mg = vd->vdev_mg; 5243 5244 /* 5245 * Stop allocating from this vdev. 5246 */ 5247 metaslab_group_passivate(mg); 5248 5249 /* 5250 * Wait for the youngest allocations and frees to sync, 5251 * and then wait for the deferral of those frees to finish. 5252 */ 5253 spa_vdev_config_exit(spa, NULL, 5254 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG); 5255 5256 /* 5257 * Attempt to evacuate the vdev. 5258 */ 5259 error = spa_vdev_remove_evacuate(spa, vd); 5260 5261 txg = spa_vdev_config_enter(spa); 5262 5263 /* 5264 * If we couldn't evacuate the vdev, unwind. 5265 */ 5266 if (error) { 5267 metaslab_group_activate(mg); 5268 return (spa_vdev_exit(spa, NULL, txg, error)); 5269 } 5270 5271 /* 5272 * Clean up the vdev namespace. 5273 */ 5274 spa_vdev_remove_from_namespace(spa, vd); 5275 5276 } else if (vd != NULL) { 5277 /* 5278 * Normal vdevs cannot be removed (yet). 5279 */ 5280 error = SET_ERROR(ENOTSUP); 5281 } else { 5282 /* 5283 * There is no vdev of any kind with the specified guid. 5284 */ 5285 error = SET_ERROR(ENOENT); 5286 } 5287 5288 if (!locked) 5289 return (spa_vdev_exit(spa, NULL, txg, error)); 5290 5291 return (error); 5292 } 5293 5294 /* 5295 * Find any device that's done replacing, or a vdev marked 'unspare' that's 5296 * currently spared, so we can detach it. 5297 */ 5298 static vdev_t * 5299 spa_vdev_resilver_done_hunt(vdev_t *vd) 5300 { 5301 vdev_t *newvd, *oldvd; 5302 5303 for (int c = 0; c < vd->vdev_children; c++) { 5304 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]); 5305 if (oldvd != NULL) 5306 return (oldvd); 5307 } 5308 5309 /* 5310 * Check for a completed replacement. We always consider the first 5311 * vdev in the list to be the oldest vdev, and the last one to be 5312 * the newest (see spa_vdev_attach() for how that works). In 5313 * the case where the newest vdev is faulted, we will not automatically 5314 * remove it after a resilver completes. This is OK as it will require 5315 * user intervention to determine which disk the admin wishes to keep. 5316 */ 5317 if (vd->vdev_ops == &vdev_replacing_ops) { 5318 ASSERT(vd->vdev_children > 1); 5319 5320 newvd = vd->vdev_child[vd->vdev_children - 1]; 5321 oldvd = vd->vdev_child[0]; 5322 5323 if (vdev_dtl_empty(newvd, DTL_MISSING) && 5324 vdev_dtl_empty(newvd, DTL_OUTAGE) && 5325 !vdev_dtl_required(oldvd)) 5326 return (oldvd); 5327 } 5328 5329 /* 5330 * Check for a completed resilver with the 'unspare' flag set. 5331 */ 5332 if (vd->vdev_ops == &vdev_spare_ops) { 5333 vdev_t *first = vd->vdev_child[0]; 5334 vdev_t *last = vd->vdev_child[vd->vdev_children - 1]; 5335 5336 if (last->vdev_unspare) { 5337 oldvd = first; 5338 newvd = last; 5339 } else if (first->vdev_unspare) { 5340 oldvd = last; 5341 newvd = first; 5342 } else { 5343 oldvd = NULL; 5344 } 5345 5346 if (oldvd != NULL && 5347 vdev_dtl_empty(newvd, DTL_MISSING) && 5348 vdev_dtl_empty(newvd, DTL_OUTAGE) && 5349 !vdev_dtl_required(oldvd)) 5350 return (oldvd); 5351 5352 /* 5353 * If there are more than two spares attached to a disk, 5354 * and those spares are not required, then we want to 5355 * attempt to free them up now so that they can be used 5356 * by other pools. Once we're back down to a single 5357 * disk+spare, we stop removing them. 5358 */ 5359 if (vd->vdev_children > 2) { 5360 newvd = vd->vdev_child[1]; 5361 5362 if (newvd->vdev_isspare && last->vdev_isspare && 5363 vdev_dtl_empty(last, DTL_MISSING) && 5364 vdev_dtl_empty(last, DTL_OUTAGE) && 5365 !vdev_dtl_required(newvd)) 5366 return (newvd); 5367 } 5368 } 5369 5370 return (NULL); 5371 } 5372 5373 static void 5374 spa_vdev_resilver_done(spa_t *spa) 5375 { 5376 vdev_t *vd, *pvd, *ppvd; 5377 uint64_t guid, sguid, pguid, ppguid; 5378 5379 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5380 5381 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) { 5382 pvd = vd->vdev_parent; 5383 ppvd = pvd->vdev_parent; 5384 guid = vd->vdev_guid; 5385 pguid = pvd->vdev_guid; 5386 ppguid = ppvd->vdev_guid; 5387 sguid = 0; 5388 /* 5389 * If we have just finished replacing a hot spared device, then 5390 * we need to detach the parent's first child (the original hot 5391 * spare) as well. 5392 */ 5393 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 && 5394 ppvd->vdev_children == 2) { 5395 ASSERT(pvd->vdev_ops == &vdev_replacing_ops); 5396 sguid = ppvd->vdev_child[1]->vdev_guid; 5397 } 5398 ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd)); 5399 5400 spa_config_exit(spa, SCL_ALL, FTAG); 5401 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0) 5402 return; 5403 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0) 5404 return; 5405 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5406 } 5407 5408 spa_config_exit(spa, SCL_ALL, FTAG); 5409 } 5410 5411 /* 5412 * Update the stored path or FRU for this vdev. 5413 */ 5414 int 5415 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value, 5416 boolean_t ispath) 5417 { 5418 vdev_t *vd; 5419 boolean_t sync = B_FALSE; 5420 5421 ASSERT(spa_writeable(spa)); 5422 5423 spa_vdev_state_enter(spa, SCL_ALL); 5424 5425 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 5426 return (spa_vdev_state_exit(spa, NULL, ENOENT)); 5427 5428 if (!vd->vdev_ops->vdev_op_leaf) 5429 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 5430 5431 if (ispath) { 5432 if (strcmp(value, vd->vdev_path) != 0) { 5433 spa_strfree(vd->vdev_path); 5434 vd->vdev_path = spa_strdup(value); 5435 sync = B_TRUE; 5436 } 5437 } else { 5438 if (vd->vdev_fru == NULL) { 5439 vd->vdev_fru = spa_strdup(value); 5440 sync = B_TRUE; 5441 } else if (strcmp(value, vd->vdev_fru) != 0) { 5442 spa_strfree(vd->vdev_fru); 5443 vd->vdev_fru = spa_strdup(value); 5444 sync = B_TRUE; 5445 } 5446 } 5447 5448 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0)); 5449 } 5450 5451 int 5452 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath) 5453 { 5454 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE)); 5455 } 5456 5457 int 5458 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru) 5459 { 5460 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE)); 5461 } 5462 5463 /* 5464 * ========================================================================== 5465 * SPA Scanning 5466 * ========================================================================== 5467 */ 5468 5469 int 5470 spa_scan_stop(spa_t *spa) 5471 { 5472 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 5473 if (dsl_scan_resilvering(spa->spa_dsl_pool)) 5474 return (SET_ERROR(EBUSY)); 5475 return (dsl_scan_cancel(spa->spa_dsl_pool)); 5476 } 5477 5478 int 5479 spa_scan(spa_t *spa, pool_scan_func_t func) 5480 { 5481 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 5482 5483 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE) 5484 return (SET_ERROR(ENOTSUP)); 5485 5486 /* 5487 * If a resilver was requested, but there is no DTL on a 5488 * writeable leaf device, we have nothing to do. 5489 */ 5490 if (func == POOL_SCAN_RESILVER && 5491 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) { 5492 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 5493 return (0); 5494 } 5495 5496 return (dsl_scan(spa->spa_dsl_pool, func)); 5497 } 5498 5499 /* 5500 * ========================================================================== 5501 * SPA async task processing 5502 * ========================================================================== 5503 */ 5504 5505 static void 5506 spa_async_remove(spa_t *spa, vdev_t *vd) 5507 { 5508 if (vd->vdev_remove_wanted) { 5509 vd->vdev_remove_wanted = B_FALSE; 5510 vd->vdev_delayed_close = B_FALSE; 5511 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE); 5512 5513 /* 5514 * We want to clear the stats, but we don't want to do a full 5515 * vdev_clear() as that will cause us to throw away 5516 * degraded/faulted state as well as attempt to reopen the 5517 * device, all of which is a waste. 5518 */ 5519 vd->vdev_stat.vs_read_errors = 0; 5520 vd->vdev_stat.vs_write_errors = 0; 5521 vd->vdev_stat.vs_checksum_errors = 0; 5522 5523 vdev_state_dirty(vd->vdev_top); 5524 } 5525 5526 for (int c = 0; c < vd->vdev_children; c++) 5527 spa_async_remove(spa, vd->vdev_child[c]); 5528 } 5529 5530 static void 5531 spa_async_probe(spa_t *spa, vdev_t *vd) 5532 { 5533 if (vd->vdev_probe_wanted) { 5534 vd->vdev_probe_wanted = B_FALSE; 5535 vdev_reopen(vd); /* vdev_open() does the actual probe */ 5536 } 5537 5538 for (int c = 0; c < vd->vdev_children; c++) 5539 spa_async_probe(spa, vd->vdev_child[c]); 5540 } 5541 5542 static void 5543 spa_async_autoexpand(spa_t *spa, vdev_t *vd) 5544 { 5545 sysevent_id_t eid; 5546 nvlist_t *attr; 5547 char *physpath; 5548 5549 if (!spa->spa_autoexpand) 5550 return; 5551 5552 for (int c = 0; c < vd->vdev_children; c++) { 5553 vdev_t *cvd = vd->vdev_child[c]; 5554 spa_async_autoexpand(spa, cvd); 5555 } 5556 5557 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL) 5558 return; 5559 5560 physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP); 5561 (void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath); 5562 5563 VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0); 5564 VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0); 5565 5566 (void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS, 5567 ESC_DEV_DLE, attr, &eid, DDI_SLEEP); 5568 5569 nvlist_free(attr); 5570 kmem_free(physpath, MAXPATHLEN); 5571 } 5572 5573 static void 5574 spa_async_thread(spa_t *spa) 5575 { 5576 int tasks; 5577 5578 ASSERT(spa->spa_sync_on); 5579 5580 mutex_enter(&spa->spa_async_lock); 5581 tasks = spa->spa_async_tasks; 5582 spa->spa_async_tasks = 0; 5583 mutex_exit(&spa->spa_async_lock); 5584 5585 /* 5586 * See if the config needs to be updated. 5587 */ 5588 if (tasks & SPA_ASYNC_CONFIG_UPDATE) { 5589 uint64_t old_space, new_space; 5590 5591 mutex_enter(&spa_namespace_lock); 5592 old_space = metaslab_class_get_space(spa_normal_class(spa)); 5593 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 5594 new_space = metaslab_class_get_space(spa_normal_class(spa)); 5595 mutex_exit(&spa_namespace_lock); 5596 5597 /* 5598 * If the pool grew as a result of the config update, 5599 * then log an internal history event. 5600 */ 5601 if (new_space != old_space) { 5602 spa_history_log_internal(spa, "vdev online", NULL, 5603 "pool '%s' size: %llu(+%llu)", 5604 spa_name(spa), new_space, new_space - old_space); 5605 } 5606 } 5607 5608 /* 5609 * See if any devices need to be marked REMOVED. 5610 */ 5611 if (tasks & SPA_ASYNC_REMOVE) { 5612 spa_vdev_state_enter(spa, SCL_NONE); 5613 spa_async_remove(spa, spa->spa_root_vdev); 5614 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) 5615 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]); 5616 for (int i = 0; i < spa->spa_spares.sav_count; i++) 5617 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]); 5618 (void) spa_vdev_state_exit(spa, NULL, 0); 5619 } 5620 5621 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) { 5622 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 5623 spa_async_autoexpand(spa, spa->spa_root_vdev); 5624 spa_config_exit(spa, SCL_CONFIG, FTAG); 5625 } 5626 5627 /* 5628 * See if any devices need to be probed. 5629 */ 5630 if (tasks & SPA_ASYNC_PROBE) { 5631 spa_vdev_state_enter(spa, SCL_NONE); 5632 spa_async_probe(spa, spa->spa_root_vdev); 5633 (void) spa_vdev_state_exit(spa, NULL, 0); 5634 } 5635 5636 /* 5637 * If any devices are done replacing, detach them. 5638 */ 5639 if (tasks & SPA_ASYNC_RESILVER_DONE) 5640 spa_vdev_resilver_done(spa); 5641 5642 /* 5643 * Kick off a resilver. 5644 */ 5645 if (tasks & SPA_ASYNC_RESILVER) 5646 dsl_resilver_restart(spa->spa_dsl_pool, 0); 5647 5648 /* 5649 * Let the world know that we're done. 5650 */ 5651 mutex_enter(&spa->spa_async_lock); 5652 spa->spa_async_thread = NULL; 5653 cv_broadcast(&spa->spa_async_cv); 5654 mutex_exit(&spa->spa_async_lock); 5655 thread_exit(); 5656 } 5657 5658 void 5659 spa_async_suspend(spa_t *spa) 5660 { 5661 mutex_enter(&spa->spa_async_lock); 5662 spa->spa_async_suspended++; 5663 while (spa->spa_async_thread != NULL) 5664 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock); 5665 mutex_exit(&spa->spa_async_lock); 5666 } 5667 5668 void 5669 spa_async_resume(spa_t *spa) 5670 { 5671 mutex_enter(&spa->spa_async_lock); 5672 ASSERT(spa->spa_async_suspended != 0); 5673 spa->spa_async_suspended--; 5674 mutex_exit(&spa->spa_async_lock); 5675 } 5676 5677 static boolean_t 5678 spa_async_tasks_pending(spa_t *spa) 5679 { 5680 uint_t non_config_tasks; 5681 uint_t config_task; 5682 boolean_t config_task_suspended; 5683 5684 non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE; 5685 config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE; 5686 if (spa->spa_ccw_fail_time == 0) { 5687 config_task_suspended = B_FALSE; 5688 } else { 5689 config_task_suspended = 5690 (gethrtime() - spa->spa_ccw_fail_time) < 5691 (zfs_ccw_retry_interval * NANOSEC); 5692 } 5693 5694 return (non_config_tasks || (config_task && !config_task_suspended)); 5695 } 5696 5697 static void 5698 spa_async_dispatch(spa_t *spa) 5699 { 5700 mutex_enter(&spa->spa_async_lock); 5701 if (spa_async_tasks_pending(spa) && 5702 !spa->spa_async_suspended && 5703 spa->spa_async_thread == NULL && 5704 rootdir != NULL) 5705 spa->spa_async_thread = thread_create(NULL, 0, 5706 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri); 5707 mutex_exit(&spa->spa_async_lock); 5708 } 5709 5710 void 5711 spa_async_request(spa_t *spa, int task) 5712 { 5713 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task); 5714 mutex_enter(&spa->spa_async_lock); 5715 spa->spa_async_tasks |= task; 5716 mutex_exit(&spa->spa_async_lock); 5717 } 5718 5719 /* 5720 * ========================================================================== 5721 * SPA syncing routines 5722 * ========================================================================== 5723 */ 5724 5725 static int 5726 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 5727 { 5728 bpobj_t *bpo = arg; 5729 bpobj_enqueue(bpo, bp, tx); 5730 return (0); 5731 } 5732 5733 static int 5734 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 5735 { 5736 zio_t *zio = arg; 5737 5738 zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp, 5739 zio->io_flags)); 5740 return (0); 5741 } 5742 5743 /* 5744 * Note: this simple function is not inlined to make it easier to dtrace the 5745 * amount of time spent syncing frees. 5746 */ 5747 static void 5748 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx) 5749 { 5750 zio_t *zio = zio_root(spa, NULL, NULL, 0); 5751 bplist_iterate(bpl, spa_free_sync_cb, zio, tx); 5752 VERIFY(zio_wait(zio) == 0); 5753 } 5754 5755 /* 5756 * Note: this simple function is not inlined to make it easier to dtrace the 5757 * amount of time spent syncing deferred frees. 5758 */ 5759 static void 5760 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx) 5761 { 5762 zio_t *zio = zio_root(spa, NULL, NULL, 0); 5763 VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj, 5764 spa_free_sync_cb, zio, tx), ==, 0); 5765 VERIFY0(zio_wait(zio)); 5766 } 5767 5768 5769 static void 5770 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx) 5771 { 5772 char *packed = NULL; 5773 size_t bufsize; 5774 size_t nvsize = 0; 5775 dmu_buf_t *db; 5776 5777 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0); 5778 5779 /* 5780 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration 5781 * information. This avoids the dbuf_will_dirty() path and 5782 * saves us a pre-read to get data we don't actually care about. 5783 */ 5784 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE); 5785 packed = kmem_alloc(bufsize, KM_SLEEP); 5786 5787 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR, 5788 KM_SLEEP) == 0); 5789 bzero(packed + nvsize, bufsize - nvsize); 5790 5791 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx); 5792 5793 kmem_free(packed, bufsize); 5794 5795 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 5796 dmu_buf_will_dirty(db, tx); 5797 *(uint64_t *)db->db_data = nvsize; 5798 dmu_buf_rele(db, FTAG); 5799 } 5800 5801 static void 5802 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx, 5803 const char *config, const char *entry) 5804 { 5805 nvlist_t *nvroot; 5806 nvlist_t **list; 5807 int i; 5808 5809 if (!sav->sav_sync) 5810 return; 5811 5812 /* 5813 * Update the MOS nvlist describing the list of available devices. 5814 * spa_validate_aux() will have already made sure this nvlist is 5815 * valid and the vdevs are labeled appropriately. 5816 */ 5817 if (sav->sav_object == 0) { 5818 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset, 5819 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE, 5820 sizeof (uint64_t), tx); 5821 VERIFY(zap_update(spa->spa_meta_objset, 5822 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1, 5823 &sav->sav_object, tx) == 0); 5824 } 5825 5826 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 5827 if (sav->sav_count == 0) { 5828 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0); 5829 } else { 5830 list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 5831 for (i = 0; i < sav->sav_count; i++) 5832 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i], 5833 B_FALSE, VDEV_CONFIG_L2CACHE); 5834 VERIFY(nvlist_add_nvlist_array(nvroot, config, list, 5835 sav->sav_count) == 0); 5836 for (i = 0; i < sav->sav_count; i++) 5837 nvlist_free(list[i]); 5838 kmem_free(list, sav->sav_count * sizeof (void *)); 5839 } 5840 5841 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx); 5842 nvlist_free(nvroot); 5843 5844 sav->sav_sync = B_FALSE; 5845 } 5846 5847 static void 5848 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx) 5849 { 5850 nvlist_t *config; 5851 5852 if (list_is_empty(&spa->spa_config_dirty_list)) 5853 return; 5854 5855 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 5856 5857 config = spa_config_generate(spa, spa->spa_root_vdev, 5858 dmu_tx_get_txg(tx), B_FALSE); 5859 5860 /* 5861 * If we're upgrading the spa version then make sure that 5862 * the config object gets updated with the correct version. 5863 */ 5864 if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version) 5865 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, 5866 spa->spa_uberblock.ub_version); 5867 5868 spa_config_exit(spa, SCL_STATE, FTAG); 5869 5870 if (spa->spa_config_syncing) 5871 nvlist_free(spa->spa_config_syncing); 5872 spa->spa_config_syncing = config; 5873 5874 spa_sync_nvlist(spa, spa->spa_config_object, config, tx); 5875 } 5876 5877 static void 5878 spa_sync_version(void *arg, dmu_tx_t *tx) 5879 { 5880 uint64_t *versionp = arg; 5881 uint64_t version = *versionp; 5882 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 5883 5884 /* 5885 * Setting the version is special cased when first creating the pool. 5886 */ 5887 ASSERT(tx->tx_txg != TXG_INITIAL); 5888 5889 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 5890 ASSERT(version >= spa_version(spa)); 5891 5892 spa->spa_uberblock.ub_version = version; 5893 vdev_config_dirty(spa->spa_root_vdev); 5894 spa_history_log_internal(spa, "set", tx, "version=%lld", version); 5895 } 5896 5897 /* 5898 * Set zpool properties. 5899 */ 5900 static void 5901 spa_sync_props(void *arg, dmu_tx_t *tx) 5902 { 5903 nvlist_t *nvp = arg; 5904 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 5905 objset_t *mos = spa->spa_meta_objset; 5906 nvpair_t *elem = NULL; 5907 5908 mutex_enter(&spa->spa_props_lock); 5909 5910 while ((elem = nvlist_next_nvpair(nvp, elem))) { 5911 uint64_t intval; 5912 char *strval, *fname; 5913 zpool_prop_t prop; 5914 const char *propname; 5915 zprop_type_t proptype; 5916 zfeature_info_t *feature; 5917 5918 switch (prop = zpool_name_to_prop(nvpair_name(elem))) { 5919 case ZPROP_INVAL: 5920 /* 5921 * We checked this earlier in spa_prop_validate(). 5922 */ 5923 ASSERT(zpool_prop_feature(nvpair_name(elem))); 5924 5925 fname = strchr(nvpair_name(elem), '@') + 1; 5926 VERIFY3U(0, ==, zfeature_lookup_name(fname, &feature)); 5927 5928 spa_feature_enable(spa, feature, tx); 5929 spa_history_log_internal(spa, "set", tx, 5930 "%s=enabled", nvpair_name(elem)); 5931 break; 5932 5933 case ZPOOL_PROP_VERSION: 5934 VERIFY(nvpair_value_uint64(elem, &intval) == 0); 5935 /* 5936 * The version is synced seperatly before other 5937 * properties and should be correct by now. 5938 */ 5939 ASSERT3U(spa_version(spa), >=, intval); 5940 break; 5941 5942 case ZPOOL_PROP_ALTROOT: 5943 /* 5944 * 'altroot' is a non-persistent property. It should 5945 * have been set temporarily at creation or import time. 5946 */ 5947 ASSERT(spa->spa_root != NULL); 5948 break; 5949 5950 case ZPOOL_PROP_READONLY: 5951 case ZPOOL_PROP_CACHEFILE: 5952 /* 5953 * 'readonly' and 'cachefile' are also non-persisitent 5954 * properties. 5955 */ 5956 break; 5957 case ZPOOL_PROP_COMMENT: 5958 VERIFY(nvpair_value_string(elem, &strval) == 0); 5959 if (spa->spa_comment != NULL) 5960 spa_strfree(spa->spa_comment); 5961 spa->spa_comment = spa_strdup(strval); 5962 /* 5963 * We need to dirty the configuration on all the vdevs 5964 * so that their labels get updated. It's unnecessary 5965 * to do this for pool creation since the vdev's 5966 * configuratoin has already been dirtied. 5967 */ 5968 if (tx->tx_txg != TXG_INITIAL) 5969 vdev_config_dirty(spa->spa_root_vdev); 5970 spa_history_log_internal(spa, "set", tx, 5971 "%s=%s", nvpair_name(elem), strval); 5972 break; 5973 default: 5974 /* 5975 * Set pool property values in the poolprops mos object. 5976 */ 5977 if (spa->spa_pool_props_object == 0) { 5978 spa->spa_pool_props_object = 5979 zap_create_link(mos, DMU_OT_POOL_PROPS, 5980 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS, 5981 tx); 5982 } 5983 5984 /* normalize the property name */ 5985 propname = zpool_prop_to_name(prop); 5986 proptype = zpool_prop_get_type(prop); 5987 5988 if (nvpair_type(elem) == DATA_TYPE_STRING) { 5989 ASSERT(proptype == PROP_TYPE_STRING); 5990 VERIFY(nvpair_value_string(elem, &strval) == 0); 5991 VERIFY(zap_update(mos, 5992 spa->spa_pool_props_object, propname, 5993 1, strlen(strval) + 1, strval, tx) == 0); 5994 spa_history_log_internal(spa, "set", tx, 5995 "%s=%s", nvpair_name(elem), strval); 5996 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) { 5997 VERIFY(nvpair_value_uint64(elem, &intval) == 0); 5998 5999 if (proptype == PROP_TYPE_INDEX) { 6000 const char *unused; 6001 VERIFY(zpool_prop_index_to_string( 6002 prop, intval, &unused) == 0); 6003 } 6004 VERIFY(zap_update(mos, 6005 spa->spa_pool_props_object, propname, 6006 8, 1, &intval, tx) == 0); 6007 spa_history_log_internal(spa, "set", tx, 6008 "%s=%lld", nvpair_name(elem), intval); 6009 } else { 6010 ASSERT(0); /* not allowed */ 6011 } 6012 6013 switch (prop) { 6014 case ZPOOL_PROP_DELEGATION: 6015 spa->spa_delegation = intval; 6016 break; 6017 case ZPOOL_PROP_BOOTFS: 6018 spa->spa_bootfs = intval; 6019 break; 6020 case ZPOOL_PROP_FAILUREMODE: 6021 spa->spa_failmode = intval; 6022 break; 6023 case ZPOOL_PROP_AUTOEXPAND: 6024 spa->spa_autoexpand = intval; 6025 if (tx->tx_txg != TXG_INITIAL) 6026 spa_async_request(spa, 6027 SPA_ASYNC_AUTOEXPAND); 6028 break; 6029 case ZPOOL_PROP_DEDUPDITTO: 6030 spa->spa_dedup_ditto = intval; 6031 break; 6032 default: 6033 break; 6034 } 6035 } 6036 6037 } 6038 6039 mutex_exit(&spa->spa_props_lock); 6040 } 6041 6042 /* 6043 * Perform one-time upgrade on-disk changes. spa_version() does not 6044 * reflect the new version this txg, so there must be no changes this 6045 * txg to anything that the upgrade code depends on after it executes. 6046 * Therefore this must be called after dsl_pool_sync() does the sync 6047 * tasks. 6048 */ 6049 static void 6050 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx) 6051 { 6052 dsl_pool_t *dp = spa->spa_dsl_pool; 6053 6054 ASSERT(spa->spa_sync_pass == 1); 6055 6056 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); 6057 6058 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN && 6059 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) { 6060 dsl_pool_create_origin(dp, tx); 6061 6062 /* Keeping the origin open increases spa_minref */ 6063 spa->spa_minref += 3; 6064 } 6065 6066 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES && 6067 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) { 6068 dsl_pool_upgrade_clones(dp, tx); 6069 } 6070 6071 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES && 6072 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) { 6073 dsl_pool_upgrade_dir_clones(dp, tx); 6074 6075 /* Keeping the freedir open increases spa_minref */ 6076 spa->spa_minref += 3; 6077 } 6078 6079 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES && 6080 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) { 6081 spa_feature_create_zap_objects(spa, tx); 6082 } 6083 rrw_exit(&dp->dp_config_rwlock, FTAG); 6084 } 6085 6086 /* 6087 * Sync the specified transaction group. New blocks may be dirtied as 6088 * part of the process, so we iterate until it converges. 6089 */ 6090 void 6091 spa_sync(spa_t *spa, uint64_t txg) 6092 { 6093 dsl_pool_t *dp = spa->spa_dsl_pool; 6094 objset_t *mos = spa->spa_meta_objset; 6095 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK]; 6096 vdev_t *rvd = spa->spa_root_vdev; 6097 vdev_t *vd; 6098 dmu_tx_t *tx; 6099 int error; 6100 6101 VERIFY(spa_writeable(spa)); 6102 6103 /* 6104 * Lock out configuration changes. 6105 */ 6106 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 6107 6108 spa->spa_syncing_txg = txg; 6109 spa->spa_sync_pass = 0; 6110 6111 /* 6112 * If there are any pending vdev state changes, convert them 6113 * into config changes that go out with this transaction group. 6114 */ 6115 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 6116 while (list_head(&spa->spa_state_dirty_list) != NULL) { 6117 /* 6118 * We need the write lock here because, for aux vdevs, 6119 * calling vdev_config_dirty() modifies sav_config. 6120 * This is ugly and will become unnecessary when we 6121 * eliminate the aux vdev wart by integrating all vdevs 6122 * into the root vdev tree. 6123 */ 6124 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 6125 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER); 6126 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) { 6127 vdev_state_clean(vd); 6128 vdev_config_dirty(vd); 6129 } 6130 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 6131 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 6132 } 6133 spa_config_exit(spa, SCL_STATE, FTAG); 6134 6135 tx = dmu_tx_create_assigned(dp, txg); 6136 6137 spa->spa_sync_starttime = gethrtime(); 6138 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, 6139 spa->spa_sync_starttime + spa->spa_deadman_synctime)); 6140 6141 /* 6142 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg, 6143 * set spa_deflate if we have no raid-z vdevs. 6144 */ 6145 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE && 6146 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) { 6147 int i; 6148 6149 for (i = 0; i < rvd->vdev_children; i++) { 6150 vd = rvd->vdev_child[i]; 6151 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE) 6152 break; 6153 } 6154 if (i == rvd->vdev_children) { 6155 spa->spa_deflate = TRUE; 6156 VERIFY(0 == zap_add(spa->spa_meta_objset, 6157 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 6158 sizeof (uint64_t), 1, &spa->spa_deflate, tx)); 6159 } 6160 } 6161 6162 /* 6163 * If anything has changed in this txg, or if someone is waiting 6164 * for this txg to sync (eg, spa_vdev_remove()), push the 6165 * deferred frees from the previous txg. If not, leave them 6166 * alone so that we don't generate work on an otherwise idle 6167 * system. 6168 */ 6169 if (!txg_list_empty(&dp->dp_dirty_datasets, txg) || 6170 !txg_list_empty(&dp->dp_dirty_dirs, txg) || 6171 !txg_list_empty(&dp->dp_sync_tasks, txg) || 6172 ((dsl_scan_active(dp->dp_scan) || 6173 txg_sync_waiting(dp)) && !spa_shutting_down(spa))) { 6174 spa_sync_deferred_frees(spa, tx); 6175 } 6176 6177 /* 6178 * Iterate to convergence. 6179 */ 6180 do { 6181 int pass = ++spa->spa_sync_pass; 6182 6183 spa_sync_config_object(spa, tx); 6184 spa_sync_aux_dev(spa, &spa->spa_spares, tx, 6185 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES); 6186 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx, 6187 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE); 6188 spa_errlog_sync(spa, txg); 6189 dsl_pool_sync(dp, txg); 6190 6191 if (pass < zfs_sync_pass_deferred_free) { 6192 spa_sync_frees(spa, free_bpl, tx); 6193 } else { 6194 bplist_iterate(free_bpl, bpobj_enqueue_cb, 6195 &spa->spa_deferred_bpobj, tx); 6196 } 6197 6198 ddt_sync(spa, txg); 6199 dsl_scan_sync(dp, tx); 6200 6201 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) 6202 vdev_sync(vd, txg); 6203 6204 if (pass == 1) 6205 spa_sync_upgrades(spa, tx); 6206 6207 } while (dmu_objset_is_dirty(mos, txg)); 6208 6209 /* 6210 * Rewrite the vdev configuration (which includes the uberblock) 6211 * to commit the transaction group. 6212 * 6213 * If there are no dirty vdevs, we sync the uberblock to a few 6214 * random top-level vdevs that are known to be visible in the 6215 * config cache (see spa_vdev_add() for a complete description). 6216 * If there *are* dirty vdevs, sync the uberblock to all vdevs. 6217 */ 6218 for (;;) { 6219 /* 6220 * We hold SCL_STATE to prevent vdev open/close/etc. 6221 * while we're attempting to write the vdev labels. 6222 */ 6223 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 6224 6225 if (list_is_empty(&spa->spa_config_dirty_list)) { 6226 vdev_t *svd[SPA_DVAS_PER_BP]; 6227 int svdcount = 0; 6228 int children = rvd->vdev_children; 6229 int c0 = spa_get_random(children); 6230 6231 for (int c = 0; c < children; c++) { 6232 vd = rvd->vdev_child[(c0 + c) % children]; 6233 if (vd->vdev_ms_array == 0 || vd->vdev_islog) 6234 continue; 6235 svd[svdcount++] = vd; 6236 if (svdcount == SPA_DVAS_PER_BP) 6237 break; 6238 } 6239 error = vdev_config_sync(svd, svdcount, txg, B_FALSE); 6240 if (error != 0) 6241 error = vdev_config_sync(svd, svdcount, txg, 6242 B_TRUE); 6243 } else { 6244 error = vdev_config_sync(rvd->vdev_child, 6245 rvd->vdev_children, txg, B_FALSE); 6246 if (error != 0) 6247 error = vdev_config_sync(rvd->vdev_child, 6248 rvd->vdev_children, txg, B_TRUE); 6249 } 6250 6251 if (error == 0) 6252 spa->spa_last_synced_guid = rvd->vdev_guid; 6253 6254 spa_config_exit(spa, SCL_STATE, FTAG); 6255 6256 if (error == 0) 6257 break; 6258 zio_suspend(spa, NULL); 6259 zio_resume_wait(spa); 6260 } 6261 dmu_tx_commit(tx); 6262 6263 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY)); 6264 6265 /* 6266 * Clear the dirty config list. 6267 */ 6268 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL) 6269 vdev_config_clean(vd); 6270 6271 /* 6272 * Now that the new config has synced transactionally, 6273 * let it become visible to the config cache. 6274 */ 6275 if (spa->spa_config_syncing != NULL) { 6276 spa_config_set(spa, spa->spa_config_syncing); 6277 spa->spa_config_txg = txg; 6278 spa->spa_config_syncing = NULL; 6279 } 6280 6281 spa->spa_ubsync = spa->spa_uberblock; 6282 6283 dsl_pool_sync_done(dp, txg); 6284 6285 /* 6286 * Update usable space statistics. 6287 */ 6288 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg))) 6289 vdev_sync_done(vd, txg); 6290 6291 spa_update_dspace(spa); 6292 6293 /* 6294 * It had better be the case that we didn't dirty anything 6295 * since vdev_config_sync(). 6296 */ 6297 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg)); 6298 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); 6299 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg)); 6300 6301 spa->spa_sync_pass = 0; 6302 6303 spa_config_exit(spa, SCL_CONFIG, FTAG); 6304 6305 spa_handle_ignored_writes(spa); 6306 6307 /* 6308 * If any async tasks have been requested, kick them off. 6309 */ 6310 spa_async_dispatch(spa); 6311 } 6312 6313 /* 6314 * Sync all pools. We don't want to hold the namespace lock across these 6315 * operations, so we take a reference on the spa_t and drop the lock during the 6316 * sync. 6317 */ 6318 void 6319 spa_sync_allpools(void) 6320 { 6321 spa_t *spa = NULL; 6322 mutex_enter(&spa_namespace_lock); 6323 while ((spa = spa_next(spa)) != NULL) { 6324 if (spa_state(spa) != POOL_STATE_ACTIVE || 6325 !spa_writeable(spa) || spa_suspended(spa)) 6326 continue; 6327 spa_open_ref(spa, FTAG); 6328 mutex_exit(&spa_namespace_lock); 6329 txg_wait_synced(spa_get_dsl(spa), 0); 6330 mutex_enter(&spa_namespace_lock); 6331 spa_close(spa, FTAG); 6332 } 6333 mutex_exit(&spa_namespace_lock); 6334 } 6335 6336 /* 6337 * ========================================================================== 6338 * Miscellaneous routines 6339 * ========================================================================== 6340 */ 6341 6342 /* 6343 * Remove all pools in the system. 6344 */ 6345 void 6346 spa_evict_all(void) 6347 { 6348 spa_t *spa; 6349 6350 /* 6351 * Remove all cached state. All pools should be closed now, 6352 * so every spa in the AVL tree should be unreferenced. 6353 */ 6354 mutex_enter(&spa_namespace_lock); 6355 while ((spa = spa_next(NULL)) != NULL) { 6356 /* 6357 * Stop async tasks. The async thread may need to detach 6358 * a device that's been replaced, which requires grabbing 6359 * spa_namespace_lock, so we must drop it here. 6360 */ 6361 spa_open_ref(spa, FTAG); 6362 mutex_exit(&spa_namespace_lock); 6363 spa_async_suspend(spa); 6364 mutex_enter(&spa_namespace_lock); 6365 spa_close(spa, FTAG); 6366 6367 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 6368 spa_unload(spa); 6369 spa_deactivate(spa); 6370 } 6371 spa_remove(spa); 6372 } 6373 mutex_exit(&spa_namespace_lock); 6374 } 6375 6376 vdev_t * 6377 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux) 6378 { 6379 vdev_t *vd; 6380 int i; 6381 6382 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL) 6383 return (vd); 6384 6385 if (aux) { 6386 for (i = 0; i < spa->spa_l2cache.sav_count; i++) { 6387 vd = spa->spa_l2cache.sav_vdevs[i]; 6388 if (vd->vdev_guid == guid) 6389 return (vd); 6390 } 6391 6392 for (i = 0; i < spa->spa_spares.sav_count; i++) { 6393 vd = spa->spa_spares.sav_vdevs[i]; 6394 if (vd->vdev_guid == guid) 6395 return (vd); 6396 } 6397 } 6398 6399 return (NULL); 6400 } 6401 6402 void 6403 spa_upgrade(spa_t *spa, uint64_t version) 6404 { 6405 ASSERT(spa_writeable(spa)); 6406 6407 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 6408 6409 /* 6410 * This should only be called for a non-faulted pool, and since a 6411 * future version would result in an unopenable pool, this shouldn't be 6412 * possible. 6413 */ 6414 ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version)); 6415 ASSERT(version >= spa->spa_uberblock.ub_version); 6416 6417 spa->spa_uberblock.ub_version = version; 6418 vdev_config_dirty(spa->spa_root_vdev); 6419 6420 spa_config_exit(spa, SCL_ALL, FTAG); 6421 6422 txg_wait_synced(spa_get_dsl(spa), 0); 6423 } 6424 6425 boolean_t 6426 spa_has_spare(spa_t *spa, uint64_t guid) 6427 { 6428 int i; 6429 uint64_t spareguid; 6430 spa_aux_vdev_t *sav = &spa->spa_spares; 6431 6432 for (i = 0; i < sav->sav_count; i++) 6433 if (sav->sav_vdevs[i]->vdev_guid == guid) 6434 return (B_TRUE); 6435 6436 for (i = 0; i < sav->sav_npending; i++) { 6437 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID, 6438 &spareguid) == 0 && spareguid == guid) 6439 return (B_TRUE); 6440 } 6441 6442 return (B_FALSE); 6443 } 6444 6445 /* 6446 * Check if a pool has an active shared spare device. 6447 * Note: reference count of an active spare is 2, as a spare and as a replace 6448 */ 6449 static boolean_t 6450 spa_has_active_shared_spare(spa_t *spa) 6451 { 6452 int i, refcnt; 6453 uint64_t pool; 6454 spa_aux_vdev_t *sav = &spa->spa_spares; 6455 6456 for (i = 0; i < sav->sav_count; i++) { 6457 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool, 6458 &refcnt) && pool != 0ULL && pool == spa_guid(spa) && 6459 refcnt > 2) 6460 return (B_TRUE); 6461 } 6462 6463 return (B_FALSE); 6464 } 6465 6466 /* 6467 * Post a sysevent corresponding to the given event. The 'name' must be one of 6468 * the event definitions in sys/sysevent/eventdefs.h. The payload will be 6469 * filled in from the spa and (optionally) the vdev. This doesn't do anything 6470 * in the userland libzpool, as we don't want consumers to misinterpret ztest 6471 * or zdb as real changes. 6472 */ 6473 void 6474 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name) 6475 { 6476 #ifdef _KERNEL 6477 sysevent_t *ev; 6478 sysevent_attr_list_t *attr = NULL; 6479 sysevent_value_t value; 6480 sysevent_id_t eid; 6481 6482 ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs", 6483 SE_SLEEP); 6484 6485 value.value_type = SE_DATA_TYPE_STRING; 6486 value.value.sv_string = spa_name(spa); 6487 if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0) 6488 goto done; 6489 6490 value.value_type = SE_DATA_TYPE_UINT64; 6491 value.value.sv_uint64 = spa_guid(spa); 6492 if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0) 6493 goto done; 6494 6495 if (vd) { 6496 value.value_type = SE_DATA_TYPE_UINT64; 6497 value.value.sv_uint64 = vd->vdev_guid; 6498 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value, 6499 SE_SLEEP) != 0) 6500 goto done; 6501 6502 if (vd->vdev_path) { 6503 value.value_type = SE_DATA_TYPE_STRING; 6504 value.value.sv_string = vd->vdev_path; 6505 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH, 6506 &value, SE_SLEEP) != 0) 6507 goto done; 6508 } 6509 } 6510 6511 if (sysevent_attach_attributes(ev, attr) != 0) 6512 goto done; 6513 attr = NULL; 6514 6515 (void) log_sysevent(ev, SE_SLEEP, &eid); 6516 6517 done: 6518 if (attr) 6519 sysevent_free_attr(attr); 6520 sysevent_free(ev); 6521 #endif 6522 } 6523