1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2014 by Delphix. All rights reserved. 25 * Copyright (c) 2013, 2014, Nexenta Systems, Inc. All rights reserved. 26 */ 27 28 /* 29 * SPA: Storage Pool Allocator 30 * 31 * This file contains all the routines used when modifying on-disk SPA state. 32 * This includes opening, importing, destroying, exporting a pool, and syncing a 33 * pool. 34 */ 35 36 #include <sys/zfs_context.h> 37 #include <sys/fm/fs/zfs.h> 38 #include <sys/spa_impl.h> 39 #include <sys/zio.h> 40 #include <sys/zio_checksum.h> 41 #include <sys/dmu.h> 42 #include <sys/dmu_tx.h> 43 #include <sys/zap.h> 44 #include <sys/zil.h> 45 #include <sys/ddt.h> 46 #include <sys/vdev_impl.h> 47 #include <sys/metaslab.h> 48 #include <sys/metaslab_impl.h> 49 #include <sys/uberblock_impl.h> 50 #include <sys/txg.h> 51 #include <sys/avl.h> 52 #include <sys/dmu_traverse.h> 53 #include <sys/dmu_objset.h> 54 #include <sys/unique.h> 55 #include <sys/dsl_pool.h> 56 #include <sys/dsl_dataset.h> 57 #include <sys/dsl_dir.h> 58 #include <sys/dsl_prop.h> 59 #include <sys/dsl_synctask.h> 60 #include <sys/fs/zfs.h> 61 #include <sys/arc.h> 62 #include <sys/callb.h> 63 #include <sys/systeminfo.h> 64 #include <sys/spa_boot.h> 65 #include <sys/zfs_ioctl.h> 66 #include <sys/dsl_scan.h> 67 #include <sys/zfeature.h> 68 #include <sys/dsl_destroy.h> 69 70 #ifdef _KERNEL 71 #include <sys/bootprops.h> 72 #include <sys/callb.h> 73 #include <sys/cpupart.h> 74 #include <sys/pool.h> 75 #include <sys/sysdc.h> 76 #include <sys/zone.h> 77 #endif /* _KERNEL */ 78 79 #include "zfs_prop.h" 80 #include "zfs_comutil.h" 81 82 /* 83 * The interval, in seconds, at which failed configuration cache file writes 84 * should be retried. 85 */ 86 static int zfs_ccw_retry_interval = 300; 87 88 typedef enum zti_modes { 89 ZTI_MODE_FIXED, /* value is # of threads (min 1) */ 90 ZTI_MODE_BATCH, /* cpu-intensive; value is ignored */ 91 ZTI_MODE_NULL, /* don't create a taskq */ 92 ZTI_NMODES 93 } zti_modes_t; 94 95 #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) } 96 #define ZTI_BATCH { ZTI_MODE_BATCH, 0, 1 } 97 #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 } 98 99 #define ZTI_N(n) ZTI_P(n, 1) 100 #define ZTI_ONE ZTI_N(1) 101 102 typedef struct zio_taskq_info { 103 zti_modes_t zti_mode; 104 uint_t zti_value; 105 uint_t zti_count; 106 } zio_taskq_info_t; 107 108 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = { 109 "issue", "issue_high", "intr", "intr_high" 110 }; 111 112 /* 113 * This table defines the taskq settings for each ZFS I/O type. When 114 * initializing a pool, we use this table to create an appropriately sized 115 * taskq. Some operations are low volume and therefore have a small, static 116 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE 117 * macros. Other operations process a large amount of data; the ZTI_BATCH 118 * macro causes us to create a taskq oriented for throughput. Some operations 119 * are so high frequency and short-lived that the taskq itself can become a a 120 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an 121 * additional degree of parallelism specified by the number of threads per- 122 * taskq and the number of taskqs; when dispatching an event in this case, the 123 * particular taskq is chosen at random. 124 * 125 * The different taskq priorities are to handle the different contexts (issue 126 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that 127 * need to be handled with minimum delay. 128 */ 129 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = { 130 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */ 131 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */ 132 { ZTI_N(8), ZTI_NULL, ZTI_P(12, 8), ZTI_NULL }, /* READ */ 133 { ZTI_BATCH, ZTI_N(5), ZTI_N(8), ZTI_N(5) }, /* WRITE */ 134 { ZTI_P(12, 8), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */ 135 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */ 136 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* IOCTL */ 137 }; 138 139 static void spa_sync_version(void *arg, dmu_tx_t *tx); 140 static void spa_sync_props(void *arg, dmu_tx_t *tx); 141 static boolean_t spa_has_active_shared_spare(spa_t *spa); 142 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config, 143 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig, 144 char **ereport); 145 static void spa_vdev_resilver_done(spa_t *spa); 146 147 uint_t zio_taskq_batch_pct = 75; /* 1 thread per cpu in pset */ 148 id_t zio_taskq_psrset_bind = PS_NONE; 149 boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */ 150 uint_t zio_taskq_basedc = 80; /* base duty cycle */ 151 152 boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */ 153 extern int zfs_sync_pass_deferred_free; 154 155 /* 156 * This (illegal) pool name is used when temporarily importing a spa_t in order 157 * to get the vdev stats associated with the imported devices. 158 */ 159 #define TRYIMPORT_NAME "$import" 160 161 /* 162 * ========================================================================== 163 * SPA properties routines 164 * ========================================================================== 165 */ 166 167 /* 168 * Add a (source=src, propname=propval) list to an nvlist. 169 */ 170 static void 171 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval, 172 uint64_t intval, zprop_source_t src) 173 { 174 const char *propname = zpool_prop_to_name(prop); 175 nvlist_t *propval; 176 177 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0); 178 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0); 179 180 if (strval != NULL) 181 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0); 182 else 183 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0); 184 185 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0); 186 nvlist_free(propval); 187 } 188 189 /* 190 * Get property values from the spa configuration. 191 */ 192 static void 193 spa_prop_get_config(spa_t *spa, nvlist_t **nvp) 194 { 195 vdev_t *rvd = spa->spa_root_vdev; 196 dsl_pool_t *pool = spa->spa_dsl_pool; 197 uint64_t size, alloc, cap, version; 198 zprop_source_t src = ZPROP_SRC_NONE; 199 spa_config_dirent_t *dp; 200 metaslab_class_t *mc = spa_normal_class(spa); 201 202 ASSERT(MUTEX_HELD(&spa->spa_props_lock)); 203 204 if (rvd != NULL) { 205 alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 206 size = metaslab_class_get_space(spa_normal_class(spa)); 207 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src); 208 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src); 209 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src); 210 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL, 211 size - alloc, src); 212 213 spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL, 214 metaslab_class_fragmentation(mc), src); 215 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL, 216 metaslab_class_expandable_space(mc), src); 217 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL, 218 (spa_mode(spa) == FREAD), src); 219 220 cap = (size == 0) ? 0 : (alloc * 100 / size); 221 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src); 222 223 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL, 224 ddt_get_pool_dedup_ratio(spa), src); 225 226 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL, 227 rvd->vdev_state, src); 228 229 version = spa_version(spa); 230 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) 231 src = ZPROP_SRC_DEFAULT; 232 else 233 src = ZPROP_SRC_LOCAL; 234 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src); 235 } 236 237 if (pool != NULL) { 238 /* 239 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS, 240 * when opening pools before this version freedir will be NULL. 241 */ 242 if (pool->dp_free_dir != NULL) { 243 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL, 244 dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes, 245 src); 246 } else { 247 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, 248 NULL, 0, src); 249 } 250 251 if (pool->dp_leak_dir != NULL) { 252 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL, 253 dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes, 254 src); 255 } else { 256 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, 257 NULL, 0, src); 258 } 259 } 260 261 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src); 262 263 if (spa->spa_comment != NULL) { 264 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment, 265 0, ZPROP_SRC_LOCAL); 266 } 267 268 if (spa->spa_root != NULL) 269 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root, 270 0, ZPROP_SRC_LOCAL); 271 272 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) { 273 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL, 274 MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE); 275 } else { 276 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL, 277 SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE); 278 } 279 280 if ((dp = list_head(&spa->spa_config_list)) != NULL) { 281 if (dp->scd_path == NULL) { 282 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 283 "none", 0, ZPROP_SRC_LOCAL); 284 } else if (strcmp(dp->scd_path, spa_config_path) != 0) { 285 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 286 dp->scd_path, 0, ZPROP_SRC_LOCAL); 287 } 288 } 289 } 290 291 /* 292 * Get zpool property values. 293 */ 294 int 295 spa_prop_get(spa_t *spa, nvlist_t **nvp) 296 { 297 objset_t *mos = spa->spa_meta_objset; 298 zap_cursor_t zc; 299 zap_attribute_t za; 300 int err; 301 302 VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0); 303 304 mutex_enter(&spa->spa_props_lock); 305 306 /* 307 * Get properties from the spa config. 308 */ 309 spa_prop_get_config(spa, nvp); 310 311 /* If no pool property object, no more prop to get. */ 312 if (mos == NULL || spa->spa_pool_props_object == 0) { 313 mutex_exit(&spa->spa_props_lock); 314 return (0); 315 } 316 317 /* 318 * Get properties from the MOS pool property object. 319 */ 320 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object); 321 (err = zap_cursor_retrieve(&zc, &za)) == 0; 322 zap_cursor_advance(&zc)) { 323 uint64_t intval = 0; 324 char *strval = NULL; 325 zprop_source_t src = ZPROP_SRC_DEFAULT; 326 zpool_prop_t prop; 327 328 if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL) 329 continue; 330 331 switch (za.za_integer_length) { 332 case 8: 333 /* integer property */ 334 if (za.za_first_integer != 335 zpool_prop_default_numeric(prop)) 336 src = ZPROP_SRC_LOCAL; 337 338 if (prop == ZPOOL_PROP_BOOTFS) { 339 dsl_pool_t *dp; 340 dsl_dataset_t *ds = NULL; 341 342 dp = spa_get_dsl(spa); 343 dsl_pool_config_enter(dp, FTAG); 344 if (err = dsl_dataset_hold_obj(dp, 345 za.za_first_integer, FTAG, &ds)) { 346 dsl_pool_config_exit(dp, FTAG); 347 break; 348 } 349 350 strval = kmem_alloc( 351 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1, 352 KM_SLEEP); 353 dsl_dataset_name(ds, strval); 354 dsl_dataset_rele(ds, FTAG); 355 dsl_pool_config_exit(dp, FTAG); 356 } else { 357 strval = NULL; 358 intval = za.za_first_integer; 359 } 360 361 spa_prop_add_list(*nvp, prop, strval, intval, src); 362 363 if (strval != NULL) 364 kmem_free(strval, 365 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1); 366 367 break; 368 369 case 1: 370 /* string property */ 371 strval = kmem_alloc(za.za_num_integers, KM_SLEEP); 372 err = zap_lookup(mos, spa->spa_pool_props_object, 373 za.za_name, 1, za.za_num_integers, strval); 374 if (err) { 375 kmem_free(strval, za.za_num_integers); 376 break; 377 } 378 spa_prop_add_list(*nvp, prop, strval, 0, src); 379 kmem_free(strval, za.za_num_integers); 380 break; 381 382 default: 383 break; 384 } 385 } 386 zap_cursor_fini(&zc); 387 mutex_exit(&spa->spa_props_lock); 388 out: 389 if (err && err != ENOENT) { 390 nvlist_free(*nvp); 391 *nvp = NULL; 392 return (err); 393 } 394 395 return (0); 396 } 397 398 /* 399 * Validate the given pool properties nvlist and modify the list 400 * for the property values to be set. 401 */ 402 static int 403 spa_prop_validate(spa_t *spa, nvlist_t *props) 404 { 405 nvpair_t *elem; 406 int error = 0, reset_bootfs = 0; 407 uint64_t objnum = 0; 408 boolean_t has_feature = B_FALSE; 409 410 elem = NULL; 411 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) { 412 uint64_t intval; 413 char *strval, *slash, *check, *fname; 414 const char *propname = nvpair_name(elem); 415 zpool_prop_t prop = zpool_name_to_prop(propname); 416 417 switch (prop) { 418 case ZPROP_INVAL: 419 if (!zpool_prop_feature(propname)) { 420 error = SET_ERROR(EINVAL); 421 break; 422 } 423 424 /* 425 * Sanitize the input. 426 */ 427 if (nvpair_type(elem) != DATA_TYPE_UINT64) { 428 error = SET_ERROR(EINVAL); 429 break; 430 } 431 432 if (nvpair_value_uint64(elem, &intval) != 0) { 433 error = SET_ERROR(EINVAL); 434 break; 435 } 436 437 if (intval != 0) { 438 error = SET_ERROR(EINVAL); 439 break; 440 } 441 442 fname = strchr(propname, '@') + 1; 443 if (zfeature_lookup_name(fname, NULL) != 0) { 444 error = SET_ERROR(EINVAL); 445 break; 446 } 447 448 has_feature = B_TRUE; 449 break; 450 451 case ZPOOL_PROP_VERSION: 452 error = nvpair_value_uint64(elem, &intval); 453 if (!error && 454 (intval < spa_version(spa) || 455 intval > SPA_VERSION_BEFORE_FEATURES || 456 has_feature)) 457 error = SET_ERROR(EINVAL); 458 break; 459 460 case ZPOOL_PROP_DELEGATION: 461 case ZPOOL_PROP_AUTOREPLACE: 462 case ZPOOL_PROP_LISTSNAPS: 463 case ZPOOL_PROP_AUTOEXPAND: 464 error = nvpair_value_uint64(elem, &intval); 465 if (!error && intval > 1) 466 error = SET_ERROR(EINVAL); 467 break; 468 469 case ZPOOL_PROP_BOOTFS: 470 /* 471 * If the pool version is less than SPA_VERSION_BOOTFS, 472 * or the pool is still being created (version == 0), 473 * the bootfs property cannot be set. 474 */ 475 if (spa_version(spa) < SPA_VERSION_BOOTFS) { 476 error = SET_ERROR(ENOTSUP); 477 break; 478 } 479 480 /* 481 * Make sure the vdev config is bootable 482 */ 483 if (!vdev_is_bootable(spa->spa_root_vdev)) { 484 error = SET_ERROR(ENOTSUP); 485 break; 486 } 487 488 reset_bootfs = 1; 489 490 error = nvpair_value_string(elem, &strval); 491 492 if (!error) { 493 objset_t *os; 494 uint64_t propval; 495 496 if (strval == NULL || strval[0] == '\0') { 497 objnum = zpool_prop_default_numeric( 498 ZPOOL_PROP_BOOTFS); 499 break; 500 } 501 502 if (error = dmu_objset_hold(strval, FTAG, &os)) 503 break; 504 505 /* 506 * Must be ZPL, and its property settings 507 * must be supported by GRUB (compression 508 * is not gzip, and large blocks are not used). 509 */ 510 511 if (dmu_objset_type(os) != DMU_OST_ZFS) { 512 error = SET_ERROR(ENOTSUP); 513 } else if ((error = 514 dsl_prop_get_int_ds(dmu_objset_ds(os), 515 zfs_prop_to_name(ZFS_PROP_COMPRESSION), 516 &propval)) == 0 && 517 !BOOTFS_COMPRESS_VALID(propval)) { 518 error = SET_ERROR(ENOTSUP); 519 } else if ((error = 520 dsl_prop_get_int_ds(dmu_objset_ds(os), 521 zfs_prop_to_name(ZFS_PROP_RECORDSIZE), 522 &propval)) == 0 && 523 propval > SPA_OLD_MAXBLOCKSIZE) { 524 error = SET_ERROR(ENOTSUP); 525 } else { 526 objnum = dmu_objset_id(os); 527 } 528 dmu_objset_rele(os, FTAG); 529 } 530 break; 531 532 case ZPOOL_PROP_FAILUREMODE: 533 error = nvpair_value_uint64(elem, &intval); 534 if (!error && (intval < ZIO_FAILURE_MODE_WAIT || 535 intval > ZIO_FAILURE_MODE_PANIC)) 536 error = SET_ERROR(EINVAL); 537 538 /* 539 * This is a special case which only occurs when 540 * the pool has completely failed. This allows 541 * the user to change the in-core failmode property 542 * without syncing it out to disk (I/Os might 543 * currently be blocked). We do this by returning 544 * EIO to the caller (spa_prop_set) to trick it 545 * into thinking we encountered a property validation 546 * error. 547 */ 548 if (!error && spa_suspended(spa)) { 549 spa->spa_failmode = intval; 550 error = SET_ERROR(EIO); 551 } 552 break; 553 554 case ZPOOL_PROP_CACHEFILE: 555 if ((error = nvpair_value_string(elem, &strval)) != 0) 556 break; 557 558 if (strval[0] == '\0') 559 break; 560 561 if (strcmp(strval, "none") == 0) 562 break; 563 564 if (strval[0] != '/') { 565 error = SET_ERROR(EINVAL); 566 break; 567 } 568 569 slash = strrchr(strval, '/'); 570 ASSERT(slash != NULL); 571 572 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 || 573 strcmp(slash, "/..") == 0) 574 error = SET_ERROR(EINVAL); 575 break; 576 577 case ZPOOL_PROP_COMMENT: 578 if ((error = nvpair_value_string(elem, &strval)) != 0) 579 break; 580 for (check = strval; *check != '\0'; check++) { 581 /* 582 * The kernel doesn't have an easy isprint() 583 * check. For this kernel check, we merely 584 * check ASCII apart from DEL. Fix this if 585 * there is an easy-to-use kernel isprint(). 586 */ 587 if (*check >= 0x7f) { 588 error = SET_ERROR(EINVAL); 589 break; 590 } 591 check++; 592 } 593 if (strlen(strval) > ZPROP_MAX_COMMENT) 594 error = E2BIG; 595 break; 596 597 case ZPOOL_PROP_DEDUPDITTO: 598 if (spa_version(spa) < SPA_VERSION_DEDUP) 599 error = SET_ERROR(ENOTSUP); 600 else 601 error = nvpair_value_uint64(elem, &intval); 602 if (error == 0 && 603 intval != 0 && intval < ZIO_DEDUPDITTO_MIN) 604 error = SET_ERROR(EINVAL); 605 break; 606 } 607 608 if (error) 609 break; 610 } 611 612 if (!error && reset_bootfs) { 613 error = nvlist_remove(props, 614 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING); 615 616 if (!error) { 617 error = nvlist_add_uint64(props, 618 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum); 619 } 620 } 621 622 return (error); 623 } 624 625 void 626 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync) 627 { 628 char *cachefile; 629 spa_config_dirent_t *dp; 630 631 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE), 632 &cachefile) != 0) 633 return; 634 635 dp = kmem_alloc(sizeof (spa_config_dirent_t), 636 KM_SLEEP); 637 638 if (cachefile[0] == '\0') 639 dp->scd_path = spa_strdup(spa_config_path); 640 else if (strcmp(cachefile, "none") == 0) 641 dp->scd_path = NULL; 642 else 643 dp->scd_path = spa_strdup(cachefile); 644 645 list_insert_head(&spa->spa_config_list, dp); 646 if (need_sync) 647 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 648 } 649 650 int 651 spa_prop_set(spa_t *spa, nvlist_t *nvp) 652 { 653 int error; 654 nvpair_t *elem = NULL; 655 boolean_t need_sync = B_FALSE; 656 657 if ((error = spa_prop_validate(spa, nvp)) != 0) 658 return (error); 659 660 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) { 661 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem)); 662 663 if (prop == ZPOOL_PROP_CACHEFILE || 664 prop == ZPOOL_PROP_ALTROOT || 665 prop == ZPOOL_PROP_READONLY) 666 continue; 667 668 if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) { 669 uint64_t ver; 670 671 if (prop == ZPOOL_PROP_VERSION) { 672 VERIFY(nvpair_value_uint64(elem, &ver) == 0); 673 } else { 674 ASSERT(zpool_prop_feature(nvpair_name(elem))); 675 ver = SPA_VERSION_FEATURES; 676 need_sync = B_TRUE; 677 } 678 679 /* Save time if the version is already set. */ 680 if (ver == spa_version(spa)) 681 continue; 682 683 /* 684 * In addition to the pool directory object, we might 685 * create the pool properties object, the features for 686 * read object, the features for write object, or the 687 * feature descriptions object. 688 */ 689 error = dsl_sync_task(spa->spa_name, NULL, 690 spa_sync_version, &ver, 691 6, ZFS_SPACE_CHECK_RESERVED); 692 if (error) 693 return (error); 694 continue; 695 } 696 697 need_sync = B_TRUE; 698 break; 699 } 700 701 if (need_sync) { 702 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props, 703 nvp, 6, ZFS_SPACE_CHECK_RESERVED)); 704 } 705 706 return (0); 707 } 708 709 /* 710 * If the bootfs property value is dsobj, clear it. 711 */ 712 void 713 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx) 714 { 715 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) { 716 VERIFY(zap_remove(spa->spa_meta_objset, 717 spa->spa_pool_props_object, 718 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0); 719 spa->spa_bootfs = 0; 720 } 721 } 722 723 /*ARGSUSED*/ 724 static int 725 spa_change_guid_check(void *arg, dmu_tx_t *tx) 726 { 727 uint64_t *newguid = arg; 728 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 729 vdev_t *rvd = spa->spa_root_vdev; 730 uint64_t vdev_state; 731 732 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 733 vdev_state = rvd->vdev_state; 734 spa_config_exit(spa, SCL_STATE, FTAG); 735 736 if (vdev_state != VDEV_STATE_HEALTHY) 737 return (SET_ERROR(ENXIO)); 738 739 ASSERT3U(spa_guid(spa), !=, *newguid); 740 741 return (0); 742 } 743 744 static void 745 spa_change_guid_sync(void *arg, dmu_tx_t *tx) 746 { 747 uint64_t *newguid = arg; 748 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 749 uint64_t oldguid; 750 vdev_t *rvd = spa->spa_root_vdev; 751 752 oldguid = spa_guid(spa); 753 754 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 755 rvd->vdev_guid = *newguid; 756 rvd->vdev_guid_sum += (*newguid - oldguid); 757 vdev_config_dirty(rvd); 758 spa_config_exit(spa, SCL_STATE, FTAG); 759 760 spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu", 761 oldguid, *newguid); 762 } 763 764 /* 765 * Change the GUID for the pool. This is done so that we can later 766 * re-import a pool built from a clone of our own vdevs. We will modify 767 * the root vdev's guid, our own pool guid, and then mark all of our 768 * vdevs dirty. Note that we must make sure that all our vdevs are 769 * online when we do this, or else any vdevs that weren't present 770 * would be orphaned from our pool. We are also going to issue a 771 * sysevent to update any watchers. 772 */ 773 int 774 spa_change_guid(spa_t *spa) 775 { 776 int error; 777 uint64_t guid; 778 779 mutex_enter(&spa->spa_vdev_top_lock); 780 mutex_enter(&spa_namespace_lock); 781 guid = spa_generate_guid(NULL); 782 783 error = dsl_sync_task(spa->spa_name, spa_change_guid_check, 784 spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED); 785 786 if (error == 0) { 787 spa_config_sync(spa, B_FALSE, B_TRUE); 788 spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID); 789 } 790 791 mutex_exit(&spa_namespace_lock); 792 mutex_exit(&spa->spa_vdev_top_lock); 793 794 return (error); 795 } 796 797 /* 798 * ========================================================================== 799 * SPA state manipulation (open/create/destroy/import/export) 800 * ========================================================================== 801 */ 802 803 static int 804 spa_error_entry_compare(const void *a, const void *b) 805 { 806 spa_error_entry_t *sa = (spa_error_entry_t *)a; 807 spa_error_entry_t *sb = (spa_error_entry_t *)b; 808 int ret; 809 810 ret = bcmp(&sa->se_bookmark, &sb->se_bookmark, 811 sizeof (zbookmark_phys_t)); 812 813 if (ret < 0) 814 return (-1); 815 else if (ret > 0) 816 return (1); 817 else 818 return (0); 819 } 820 821 /* 822 * Utility function which retrieves copies of the current logs and 823 * re-initializes them in the process. 824 */ 825 void 826 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub) 827 { 828 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock)); 829 830 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t)); 831 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t)); 832 833 avl_create(&spa->spa_errlist_scrub, 834 spa_error_entry_compare, sizeof (spa_error_entry_t), 835 offsetof(spa_error_entry_t, se_avl)); 836 avl_create(&spa->spa_errlist_last, 837 spa_error_entry_compare, sizeof (spa_error_entry_t), 838 offsetof(spa_error_entry_t, se_avl)); 839 } 840 841 static void 842 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q) 843 { 844 const zio_taskq_info_t *ztip = &zio_taskqs[t][q]; 845 enum zti_modes mode = ztip->zti_mode; 846 uint_t value = ztip->zti_value; 847 uint_t count = ztip->zti_count; 848 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 849 char name[32]; 850 uint_t flags = 0; 851 boolean_t batch = B_FALSE; 852 853 if (mode == ZTI_MODE_NULL) { 854 tqs->stqs_count = 0; 855 tqs->stqs_taskq = NULL; 856 return; 857 } 858 859 ASSERT3U(count, >, 0); 860 861 tqs->stqs_count = count; 862 tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP); 863 864 switch (mode) { 865 case ZTI_MODE_FIXED: 866 ASSERT3U(value, >=, 1); 867 value = MAX(value, 1); 868 break; 869 870 case ZTI_MODE_BATCH: 871 batch = B_TRUE; 872 flags |= TASKQ_THREADS_CPU_PCT; 873 value = zio_taskq_batch_pct; 874 break; 875 876 default: 877 panic("unrecognized mode for %s_%s taskq (%u:%u) in " 878 "spa_activate()", 879 zio_type_name[t], zio_taskq_types[q], mode, value); 880 break; 881 } 882 883 for (uint_t i = 0; i < count; i++) { 884 taskq_t *tq; 885 886 if (count > 1) { 887 (void) snprintf(name, sizeof (name), "%s_%s_%u", 888 zio_type_name[t], zio_taskq_types[q], i); 889 } else { 890 (void) snprintf(name, sizeof (name), "%s_%s", 891 zio_type_name[t], zio_taskq_types[q]); 892 } 893 894 if (zio_taskq_sysdc && spa->spa_proc != &p0) { 895 if (batch) 896 flags |= TASKQ_DC_BATCH; 897 898 tq = taskq_create_sysdc(name, value, 50, INT_MAX, 899 spa->spa_proc, zio_taskq_basedc, flags); 900 } else { 901 pri_t pri = maxclsyspri; 902 /* 903 * The write issue taskq can be extremely CPU 904 * intensive. Run it at slightly lower priority 905 * than the other taskqs. 906 */ 907 if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE) 908 pri--; 909 910 tq = taskq_create_proc(name, value, pri, 50, 911 INT_MAX, spa->spa_proc, flags); 912 } 913 914 tqs->stqs_taskq[i] = tq; 915 } 916 } 917 918 static void 919 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q) 920 { 921 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 922 923 if (tqs->stqs_taskq == NULL) { 924 ASSERT0(tqs->stqs_count); 925 return; 926 } 927 928 for (uint_t i = 0; i < tqs->stqs_count; i++) { 929 ASSERT3P(tqs->stqs_taskq[i], !=, NULL); 930 taskq_destroy(tqs->stqs_taskq[i]); 931 } 932 933 kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *)); 934 tqs->stqs_taskq = NULL; 935 } 936 937 /* 938 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority. 939 * Note that a type may have multiple discrete taskqs to avoid lock contention 940 * on the taskq itself. In that case we choose which taskq at random by using 941 * the low bits of gethrtime(). 942 */ 943 void 944 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q, 945 task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent) 946 { 947 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 948 taskq_t *tq; 949 950 ASSERT3P(tqs->stqs_taskq, !=, NULL); 951 ASSERT3U(tqs->stqs_count, !=, 0); 952 953 if (tqs->stqs_count == 1) { 954 tq = tqs->stqs_taskq[0]; 955 } else { 956 tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count]; 957 } 958 959 taskq_dispatch_ent(tq, func, arg, flags, ent); 960 } 961 962 static void 963 spa_create_zio_taskqs(spa_t *spa) 964 { 965 for (int t = 0; t < ZIO_TYPES; t++) { 966 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 967 spa_taskqs_init(spa, t, q); 968 } 969 } 970 } 971 972 #ifdef _KERNEL 973 static void 974 spa_thread(void *arg) 975 { 976 callb_cpr_t cprinfo; 977 978 spa_t *spa = arg; 979 user_t *pu = PTOU(curproc); 980 981 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr, 982 spa->spa_name); 983 984 ASSERT(curproc != &p0); 985 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs), 986 "zpool-%s", spa->spa_name); 987 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm)); 988 989 /* bind this thread to the requested psrset */ 990 if (zio_taskq_psrset_bind != PS_NONE) { 991 pool_lock(); 992 mutex_enter(&cpu_lock); 993 mutex_enter(&pidlock); 994 mutex_enter(&curproc->p_lock); 995 996 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind, 997 0, NULL, NULL) == 0) { 998 curthread->t_bind_pset = zio_taskq_psrset_bind; 999 } else { 1000 cmn_err(CE_WARN, 1001 "Couldn't bind process for zfs pool \"%s\" to " 1002 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind); 1003 } 1004 1005 mutex_exit(&curproc->p_lock); 1006 mutex_exit(&pidlock); 1007 mutex_exit(&cpu_lock); 1008 pool_unlock(); 1009 } 1010 1011 if (zio_taskq_sysdc) { 1012 sysdc_thread_enter(curthread, 100, 0); 1013 } 1014 1015 spa->spa_proc = curproc; 1016 spa->spa_did = curthread->t_did; 1017 1018 spa_create_zio_taskqs(spa); 1019 1020 mutex_enter(&spa->spa_proc_lock); 1021 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED); 1022 1023 spa->spa_proc_state = SPA_PROC_ACTIVE; 1024 cv_broadcast(&spa->spa_proc_cv); 1025 1026 CALLB_CPR_SAFE_BEGIN(&cprinfo); 1027 while (spa->spa_proc_state == SPA_PROC_ACTIVE) 1028 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 1029 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock); 1030 1031 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE); 1032 spa->spa_proc_state = SPA_PROC_GONE; 1033 spa->spa_proc = &p0; 1034 cv_broadcast(&spa->spa_proc_cv); 1035 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */ 1036 1037 mutex_enter(&curproc->p_lock); 1038 lwp_exit(); 1039 } 1040 #endif 1041 1042 /* 1043 * Activate an uninitialized pool. 1044 */ 1045 static void 1046 spa_activate(spa_t *spa, int mode) 1047 { 1048 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED); 1049 1050 spa->spa_state = POOL_STATE_ACTIVE; 1051 spa->spa_mode = mode; 1052 1053 spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops); 1054 spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops); 1055 1056 /* Try to create a covering process */ 1057 mutex_enter(&spa->spa_proc_lock); 1058 ASSERT(spa->spa_proc_state == SPA_PROC_NONE); 1059 ASSERT(spa->spa_proc == &p0); 1060 spa->spa_did = 0; 1061 1062 /* Only create a process if we're going to be around a while. */ 1063 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) { 1064 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri, 1065 NULL, 0) == 0) { 1066 spa->spa_proc_state = SPA_PROC_CREATED; 1067 while (spa->spa_proc_state == SPA_PROC_CREATED) { 1068 cv_wait(&spa->spa_proc_cv, 1069 &spa->spa_proc_lock); 1070 } 1071 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 1072 ASSERT(spa->spa_proc != &p0); 1073 ASSERT(spa->spa_did != 0); 1074 } else { 1075 #ifdef _KERNEL 1076 cmn_err(CE_WARN, 1077 "Couldn't create process for zfs pool \"%s\"\n", 1078 spa->spa_name); 1079 #endif 1080 } 1081 } 1082 mutex_exit(&spa->spa_proc_lock); 1083 1084 /* If we didn't create a process, we need to create our taskqs. */ 1085 if (spa->spa_proc == &p0) { 1086 spa_create_zio_taskqs(spa); 1087 } 1088 1089 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t), 1090 offsetof(vdev_t, vdev_config_dirty_node)); 1091 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t), 1092 offsetof(vdev_t, vdev_state_dirty_node)); 1093 1094 txg_list_create(&spa->spa_vdev_txg_list, 1095 offsetof(struct vdev, vdev_txg_node)); 1096 1097 avl_create(&spa->spa_errlist_scrub, 1098 spa_error_entry_compare, sizeof (spa_error_entry_t), 1099 offsetof(spa_error_entry_t, se_avl)); 1100 avl_create(&spa->spa_errlist_last, 1101 spa_error_entry_compare, sizeof (spa_error_entry_t), 1102 offsetof(spa_error_entry_t, se_avl)); 1103 } 1104 1105 /* 1106 * Opposite of spa_activate(). 1107 */ 1108 static void 1109 spa_deactivate(spa_t *spa) 1110 { 1111 ASSERT(spa->spa_sync_on == B_FALSE); 1112 ASSERT(spa->spa_dsl_pool == NULL); 1113 ASSERT(spa->spa_root_vdev == NULL); 1114 ASSERT(spa->spa_async_zio_root == NULL); 1115 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED); 1116 1117 txg_list_destroy(&spa->spa_vdev_txg_list); 1118 1119 list_destroy(&spa->spa_config_dirty_list); 1120 list_destroy(&spa->spa_state_dirty_list); 1121 1122 for (int t = 0; t < ZIO_TYPES; t++) { 1123 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 1124 spa_taskqs_fini(spa, t, q); 1125 } 1126 } 1127 1128 metaslab_class_destroy(spa->spa_normal_class); 1129 spa->spa_normal_class = NULL; 1130 1131 metaslab_class_destroy(spa->spa_log_class); 1132 spa->spa_log_class = NULL; 1133 1134 /* 1135 * If this was part of an import or the open otherwise failed, we may 1136 * still have errors left in the queues. Empty them just in case. 1137 */ 1138 spa_errlog_drain(spa); 1139 1140 avl_destroy(&spa->spa_errlist_scrub); 1141 avl_destroy(&spa->spa_errlist_last); 1142 1143 spa->spa_state = POOL_STATE_UNINITIALIZED; 1144 1145 mutex_enter(&spa->spa_proc_lock); 1146 if (spa->spa_proc_state != SPA_PROC_NONE) { 1147 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 1148 spa->spa_proc_state = SPA_PROC_DEACTIVATE; 1149 cv_broadcast(&spa->spa_proc_cv); 1150 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) { 1151 ASSERT(spa->spa_proc != &p0); 1152 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 1153 } 1154 ASSERT(spa->spa_proc_state == SPA_PROC_GONE); 1155 spa->spa_proc_state = SPA_PROC_NONE; 1156 } 1157 ASSERT(spa->spa_proc == &p0); 1158 mutex_exit(&spa->spa_proc_lock); 1159 1160 /* 1161 * We want to make sure spa_thread() has actually exited the ZFS 1162 * module, so that the module can't be unloaded out from underneath 1163 * it. 1164 */ 1165 if (spa->spa_did != 0) { 1166 thread_join(spa->spa_did); 1167 spa->spa_did = 0; 1168 } 1169 } 1170 1171 /* 1172 * Verify a pool configuration, and construct the vdev tree appropriately. This 1173 * will create all the necessary vdevs in the appropriate layout, with each vdev 1174 * in the CLOSED state. This will prep the pool before open/creation/import. 1175 * All vdev validation is done by the vdev_alloc() routine. 1176 */ 1177 static int 1178 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, 1179 uint_t id, int atype) 1180 { 1181 nvlist_t **child; 1182 uint_t children; 1183 int error; 1184 1185 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0) 1186 return (error); 1187 1188 if ((*vdp)->vdev_ops->vdev_op_leaf) 1189 return (0); 1190 1191 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 1192 &child, &children); 1193 1194 if (error == ENOENT) 1195 return (0); 1196 1197 if (error) { 1198 vdev_free(*vdp); 1199 *vdp = NULL; 1200 return (SET_ERROR(EINVAL)); 1201 } 1202 1203 for (int c = 0; c < children; c++) { 1204 vdev_t *vd; 1205 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c, 1206 atype)) != 0) { 1207 vdev_free(*vdp); 1208 *vdp = NULL; 1209 return (error); 1210 } 1211 } 1212 1213 ASSERT(*vdp != NULL); 1214 1215 return (0); 1216 } 1217 1218 /* 1219 * Opposite of spa_load(). 1220 */ 1221 static void 1222 spa_unload(spa_t *spa) 1223 { 1224 int i; 1225 1226 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1227 1228 /* 1229 * Stop async tasks. 1230 */ 1231 spa_async_suspend(spa); 1232 1233 /* 1234 * Stop syncing. 1235 */ 1236 if (spa->spa_sync_on) { 1237 txg_sync_stop(spa->spa_dsl_pool); 1238 spa->spa_sync_on = B_FALSE; 1239 } 1240 1241 /* 1242 * Wait for any outstanding async I/O to complete. 1243 */ 1244 if (spa->spa_async_zio_root != NULL) { 1245 for (int i = 0; i < max_ncpus; i++) 1246 (void) zio_wait(spa->spa_async_zio_root[i]); 1247 kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *)); 1248 spa->spa_async_zio_root = NULL; 1249 } 1250 1251 bpobj_close(&spa->spa_deferred_bpobj); 1252 1253 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1254 1255 /* 1256 * Close all vdevs. 1257 */ 1258 if (spa->spa_root_vdev) 1259 vdev_free(spa->spa_root_vdev); 1260 ASSERT(spa->spa_root_vdev == NULL); 1261 1262 /* 1263 * Close the dsl pool. 1264 */ 1265 if (spa->spa_dsl_pool) { 1266 dsl_pool_close(spa->spa_dsl_pool); 1267 spa->spa_dsl_pool = NULL; 1268 spa->spa_meta_objset = NULL; 1269 } 1270 1271 ddt_unload(spa); 1272 1273 1274 /* 1275 * Drop and purge level 2 cache 1276 */ 1277 spa_l2cache_drop(spa); 1278 1279 for (i = 0; i < spa->spa_spares.sav_count; i++) 1280 vdev_free(spa->spa_spares.sav_vdevs[i]); 1281 if (spa->spa_spares.sav_vdevs) { 1282 kmem_free(spa->spa_spares.sav_vdevs, 1283 spa->spa_spares.sav_count * sizeof (void *)); 1284 spa->spa_spares.sav_vdevs = NULL; 1285 } 1286 if (spa->spa_spares.sav_config) { 1287 nvlist_free(spa->spa_spares.sav_config); 1288 spa->spa_spares.sav_config = NULL; 1289 } 1290 spa->spa_spares.sav_count = 0; 1291 1292 for (i = 0; i < spa->spa_l2cache.sav_count; i++) { 1293 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]); 1294 vdev_free(spa->spa_l2cache.sav_vdevs[i]); 1295 } 1296 if (spa->spa_l2cache.sav_vdevs) { 1297 kmem_free(spa->spa_l2cache.sav_vdevs, 1298 spa->spa_l2cache.sav_count * sizeof (void *)); 1299 spa->spa_l2cache.sav_vdevs = NULL; 1300 } 1301 if (spa->spa_l2cache.sav_config) { 1302 nvlist_free(spa->spa_l2cache.sav_config); 1303 spa->spa_l2cache.sav_config = NULL; 1304 } 1305 spa->spa_l2cache.sav_count = 0; 1306 1307 spa->spa_async_suspended = 0; 1308 1309 if (spa->spa_comment != NULL) { 1310 spa_strfree(spa->spa_comment); 1311 spa->spa_comment = NULL; 1312 } 1313 1314 spa_config_exit(spa, SCL_ALL, FTAG); 1315 } 1316 1317 /* 1318 * Load (or re-load) the current list of vdevs describing the active spares for 1319 * this pool. When this is called, we have some form of basic information in 1320 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and 1321 * then re-generate a more complete list including status information. 1322 */ 1323 static void 1324 spa_load_spares(spa_t *spa) 1325 { 1326 nvlist_t **spares; 1327 uint_t nspares; 1328 int i; 1329 vdev_t *vd, *tvd; 1330 1331 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1332 1333 /* 1334 * First, close and free any existing spare vdevs. 1335 */ 1336 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1337 vd = spa->spa_spares.sav_vdevs[i]; 1338 1339 /* Undo the call to spa_activate() below */ 1340 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1341 B_FALSE)) != NULL && tvd->vdev_isspare) 1342 spa_spare_remove(tvd); 1343 vdev_close(vd); 1344 vdev_free(vd); 1345 } 1346 1347 if (spa->spa_spares.sav_vdevs) 1348 kmem_free(spa->spa_spares.sav_vdevs, 1349 spa->spa_spares.sav_count * sizeof (void *)); 1350 1351 if (spa->spa_spares.sav_config == NULL) 1352 nspares = 0; 1353 else 1354 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 1355 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 1356 1357 spa->spa_spares.sav_count = (int)nspares; 1358 spa->spa_spares.sav_vdevs = NULL; 1359 1360 if (nspares == 0) 1361 return; 1362 1363 /* 1364 * Construct the array of vdevs, opening them to get status in the 1365 * process. For each spare, there is potentially two different vdev_t 1366 * structures associated with it: one in the list of spares (used only 1367 * for basic validation purposes) and one in the active vdev 1368 * configuration (if it's spared in). During this phase we open and 1369 * validate each vdev on the spare list. If the vdev also exists in the 1370 * active configuration, then we also mark this vdev as an active spare. 1371 */ 1372 spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *), 1373 KM_SLEEP); 1374 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1375 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0, 1376 VDEV_ALLOC_SPARE) == 0); 1377 ASSERT(vd != NULL); 1378 1379 spa->spa_spares.sav_vdevs[i] = vd; 1380 1381 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1382 B_FALSE)) != NULL) { 1383 if (!tvd->vdev_isspare) 1384 spa_spare_add(tvd); 1385 1386 /* 1387 * We only mark the spare active if we were successfully 1388 * able to load the vdev. Otherwise, importing a pool 1389 * with a bad active spare would result in strange 1390 * behavior, because multiple pool would think the spare 1391 * is actively in use. 1392 * 1393 * There is a vulnerability here to an equally bizarre 1394 * circumstance, where a dead active spare is later 1395 * brought back to life (onlined or otherwise). Given 1396 * the rarity of this scenario, and the extra complexity 1397 * it adds, we ignore the possibility. 1398 */ 1399 if (!vdev_is_dead(tvd)) 1400 spa_spare_activate(tvd); 1401 } 1402 1403 vd->vdev_top = vd; 1404 vd->vdev_aux = &spa->spa_spares; 1405 1406 if (vdev_open(vd) != 0) 1407 continue; 1408 1409 if (vdev_validate_aux(vd) == 0) 1410 spa_spare_add(vd); 1411 } 1412 1413 /* 1414 * Recompute the stashed list of spares, with status information 1415 * this time. 1416 */ 1417 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, 1418 DATA_TYPE_NVLIST_ARRAY) == 0); 1419 1420 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *), 1421 KM_SLEEP); 1422 for (i = 0; i < spa->spa_spares.sav_count; i++) 1423 spares[i] = vdev_config_generate(spa, 1424 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE); 1425 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 1426 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0); 1427 for (i = 0; i < spa->spa_spares.sav_count; i++) 1428 nvlist_free(spares[i]); 1429 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *)); 1430 } 1431 1432 /* 1433 * Load (or re-load) the current list of vdevs describing the active l2cache for 1434 * this pool. When this is called, we have some form of basic information in 1435 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and 1436 * then re-generate a more complete list including status information. 1437 * Devices which are already active have their details maintained, and are 1438 * not re-opened. 1439 */ 1440 static void 1441 spa_load_l2cache(spa_t *spa) 1442 { 1443 nvlist_t **l2cache; 1444 uint_t nl2cache; 1445 int i, j, oldnvdevs; 1446 uint64_t guid; 1447 vdev_t *vd, **oldvdevs, **newvdevs; 1448 spa_aux_vdev_t *sav = &spa->spa_l2cache; 1449 1450 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1451 1452 if (sav->sav_config != NULL) { 1453 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 1454 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 1455 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP); 1456 } else { 1457 nl2cache = 0; 1458 newvdevs = NULL; 1459 } 1460 1461 oldvdevs = sav->sav_vdevs; 1462 oldnvdevs = sav->sav_count; 1463 sav->sav_vdevs = NULL; 1464 sav->sav_count = 0; 1465 1466 /* 1467 * Process new nvlist of vdevs. 1468 */ 1469 for (i = 0; i < nl2cache; i++) { 1470 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID, 1471 &guid) == 0); 1472 1473 newvdevs[i] = NULL; 1474 for (j = 0; j < oldnvdevs; j++) { 1475 vd = oldvdevs[j]; 1476 if (vd != NULL && guid == vd->vdev_guid) { 1477 /* 1478 * Retain previous vdev for add/remove ops. 1479 */ 1480 newvdevs[i] = vd; 1481 oldvdevs[j] = NULL; 1482 break; 1483 } 1484 } 1485 1486 if (newvdevs[i] == NULL) { 1487 /* 1488 * Create new vdev 1489 */ 1490 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0, 1491 VDEV_ALLOC_L2CACHE) == 0); 1492 ASSERT(vd != NULL); 1493 newvdevs[i] = vd; 1494 1495 /* 1496 * Commit this vdev as an l2cache device, 1497 * even if it fails to open. 1498 */ 1499 spa_l2cache_add(vd); 1500 1501 vd->vdev_top = vd; 1502 vd->vdev_aux = sav; 1503 1504 spa_l2cache_activate(vd); 1505 1506 if (vdev_open(vd) != 0) 1507 continue; 1508 1509 (void) vdev_validate_aux(vd); 1510 1511 if (!vdev_is_dead(vd)) 1512 l2arc_add_vdev(spa, vd); 1513 } 1514 } 1515 1516 /* 1517 * Purge vdevs that were dropped 1518 */ 1519 for (i = 0; i < oldnvdevs; i++) { 1520 uint64_t pool; 1521 1522 vd = oldvdevs[i]; 1523 if (vd != NULL) { 1524 ASSERT(vd->vdev_isl2cache); 1525 1526 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 1527 pool != 0ULL && l2arc_vdev_present(vd)) 1528 l2arc_remove_vdev(vd); 1529 vdev_clear_stats(vd); 1530 vdev_free(vd); 1531 } 1532 } 1533 1534 if (oldvdevs) 1535 kmem_free(oldvdevs, oldnvdevs * sizeof (void *)); 1536 1537 if (sav->sav_config == NULL) 1538 goto out; 1539 1540 sav->sav_vdevs = newvdevs; 1541 sav->sav_count = (int)nl2cache; 1542 1543 /* 1544 * Recompute the stashed list of l2cache devices, with status 1545 * information this time. 1546 */ 1547 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE, 1548 DATA_TYPE_NVLIST_ARRAY) == 0); 1549 1550 l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 1551 for (i = 0; i < sav->sav_count; i++) 1552 l2cache[i] = vdev_config_generate(spa, 1553 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE); 1554 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 1555 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0); 1556 out: 1557 for (i = 0; i < sav->sav_count; i++) 1558 nvlist_free(l2cache[i]); 1559 if (sav->sav_count) 1560 kmem_free(l2cache, sav->sav_count * sizeof (void *)); 1561 } 1562 1563 static int 1564 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value) 1565 { 1566 dmu_buf_t *db; 1567 char *packed = NULL; 1568 size_t nvsize = 0; 1569 int error; 1570 *value = NULL; 1571 1572 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 1573 nvsize = *(uint64_t *)db->db_data; 1574 dmu_buf_rele(db, FTAG); 1575 1576 packed = kmem_alloc(nvsize, KM_SLEEP); 1577 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed, 1578 DMU_READ_PREFETCH); 1579 if (error == 0) 1580 error = nvlist_unpack(packed, nvsize, value, 0); 1581 kmem_free(packed, nvsize); 1582 1583 return (error); 1584 } 1585 1586 /* 1587 * Checks to see if the given vdev could not be opened, in which case we post a 1588 * sysevent to notify the autoreplace code that the device has been removed. 1589 */ 1590 static void 1591 spa_check_removed(vdev_t *vd) 1592 { 1593 for (int c = 0; c < vd->vdev_children; c++) 1594 spa_check_removed(vd->vdev_child[c]); 1595 1596 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) && 1597 !vd->vdev_ishole) { 1598 zfs_post_autoreplace(vd->vdev_spa, vd); 1599 spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK); 1600 } 1601 } 1602 1603 /* 1604 * Validate the current config against the MOS config 1605 */ 1606 static boolean_t 1607 spa_config_valid(spa_t *spa, nvlist_t *config) 1608 { 1609 vdev_t *mrvd, *rvd = spa->spa_root_vdev; 1610 nvlist_t *nv; 1611 1612 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0); 1613 1614 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1615 VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0); 1616 1617 ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children); 1618 1619 /* 1620 * If we're doing a normal import, then build up any additional 1621 * diagnostic information about missing devices in this config. 1622 * We'll pass this up to the user for further processing. 1623 */ 1624 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) { 1625 nvlist_t **child, *nv; 1626 uint64_t idx = 0; 1627 1628 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **), 1629 KM_SLEEP); 1630 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0); 1631 1632 for (int c = 0; c < rvd->vdev_children; c++) { 1633 vdev_t *tvd = rvd->vdev_child[c]; 1634 vdev_t *mtvd = mrvd->vdev_child[c]; 1635 1636 if (tvd->vdev_ops == &vdev_missing_ops && 1637 mtvd->vdev_ops != &vdev_missing_ops && 1638 mtvd->vdev_islog) 1639 child[idx++] = vdev_config_generate(spa, mtvd, 1640 B_FALSE, 0); 1641 } 1642 1643 if (idx) { 1644 VERIFY(nvlist_add_nvlist_array(nv, 1645 ZPOOL_CONFIG_CHILDREN, child, idx) == 0); 1646 VERIFY(nvlist_add_nvlist(spa->spa_load_info, 1647 ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0); 1648 1649 for (int i = 0; i < idx; i++) 1650 nvlist_free(child[i]); 1651 } 1652 nvlist_free(nv); 1653 kmem_free(child, rvd->vdev_children * sizeof (char **)); 1654 } 1655 1656 /* 1657 * Compare the root vdev tree with the information we have 1658 * from the MOS config (mrvd). Check each top-level vdev 1659 * with the corresponding MOS config top-level (mtvd). 1660 */ 1661 for (int c = 0; c < rvd->vdev_children; c++) { 1662 vdev_t *tvd = rvd->vdev_child[c]; 1663 vdev_t *mtvd = mrvd->vdev_child[c]; 1664 1665 /* 1666 * Resolve any "missing" vdevs in the current configuration. 1667 * If we find that the MOS config has more accurate information 1668 * about the top-level vdev then use that vdev instead. 1669 */ 1670 if (tvd->vdev_ops == &vdev_missing_ops && 1671 mtvd->vdev_ops != &vdev_missing_ops) { 1672 1673 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) 1674 continue; 1675 1676 /* 1677 * Device specific actions. 1678 */ 1679 if (mtvd->vdev_islog) { 1680 spa_set_log_state(spa, SPA_LOG_CLEAR); 1681 } else { 1682 /* 1683 * XXX - once we have 'readonly' pool 1684 * support we should be able to handle 1685 * missing data devices by transitioning 1686 * the pool to readonly. 1687 */ 1688 continue; 1689 } 1690 1691 /* 1692 * Swap the missing vdev with the data we were 1693 * able to obtain from the MOS config. 1694 */ 1695 vdev_remove_child(rvd, tvd); 1696 vdev_remove_child(mrvd, mtvd); 1697 1698 vdev_add_child(rvd, mtvd); 1699 vdev_add_child(mrvd, tvd); 1700 1701 spa_config_exit(spa, SCL_ALL, FTAG); 1702 vdev_load(mtvd); 1703 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1704 1705 vdev_reopen(rvd); 1706 } else if (mtvd->vdev_islog) { 1707 /* 1708 * Load the slog device's state from the MOS config 1709 * since it's possible that the label does not 1710 * contain the most up-to-date information. 1711 */ 1712 vdev_load_log_state(tvd, mtvd); 1713 vdev_reopen(tvd); 1714 } 1715 } 1716 vdev_free(mrvd); 1717 spa_config_exit(spa, SCL_ALL, FTAG); 1718 1719 /* 1720 * Ensure we were able to validate the config. 1721 */ 1722 return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum); 1723 } 1724 1725 /* 1726 * Check for missing log devices 1727 */ 1728 static boolean_t 1729 spa_check_logs(spa_t *spa) 1730 { 1731 boolean_t rv = B_FALSE; 1732 1733 switch (spa->spa_log_state) { 1734 case SPA_LOG_MISSING: 1735 /* need to recheck in case slog has been restored */ 1736 case SPA_LOG_UNKNOWN: 1737 rv = (dmu_objset_find(spa->spa_name, zil_check_log_chain, 1738 NULL, DS_FIND_CHILDREN) != 0); 1739 if (rv) 1740 spa_set_log_state(spa, SPA_LOG_MISSING); 1741 break; 1742 } 1743 return (rv); 1744 } 1745 1746 static boolean_t 1747 spa_passivate_log(spa_t *spa) 1748 { 1749 vdev_t *rvd = spa->spa_root_vdev; 1750 boolean_t slog_found = B_FALSE; 1751 1752 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1753 1754 if (!spa_has_slogs(spa)) 1755 return (B_FALSE); 1756 1757 for (int c = 0; c < rvd->vdev_children; c++) { 1758 vdev_t *tvd = rvd->vdev_child[c]; 1759 metaslab_group_t *mg = tvd->vdev_mg; 1760 1761 if (tvd->vdev_islog) { 1762 metaslab_group_passivate(mg); 1763 slog_found = B_TRUE; 1764 } 1765 } 1766 1767 return (slog_found); 1768 } 1769 1770 static void 1771 spa_activate_log(spa_t *spa) 1772 { 1773 vdev_t *rvd = spa->spa_root_vdev; 1774 1775 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1776 1777 for (int c = 0; c < rvd->vdev_children; c++) { 1778 vdev_t *tvd = rvd->vdev_child[c]; 1779 metaslab_group_t *mg = tvd->vdev_mg; 1780 1781 if (tvd->vdev_islog) 1782 metaslab_group_activate(mg); 1783 } 1784 } 1785 1786 int 1787 spa_offline_log(spa_t *spa) 1788 { 1789 int error; 1790 1791 error = dmu_objset_find(spa_name(spa), zil_vdev_offline, 1792 NULL, DS_FIND_CHILDREN); 1793 if (error == 0) { 1794 /* 1795 * We successfully offlined the log device, sync out the 1796 * current txg so that the "stubby" block can be removed 1797 * by zil_sync(). 1798 */ 1799 txg_wait_synced(spa->spa_dsl_pool, 0); 1800 } 1801 return (error); 1802 } 1803 1804 static void 1805 spa_aux_check_removed(spa_aux_vdev_t *sav) 1806 { 1807 for (int i = 0; i < sav->sav_count; i++) 1808 spa_check_removed(sav->sav_vdevs[i]); 1809 } 1810 1811 void 1812 spa_claim_notify(zio_t *zio) 1813 { 1814 spa_t *spa = zio->io_spa; 1815 1816 if (zio->io_error) 1817 return; 1818 1819 mutex_enter(&spa->spa_props_lock); /* any mutex will do */ 1820 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth) 1821 spa->spa_claim_max_txg = zio->io_bp->blk_birth; 1822 mutex_exit(&spa->spa_props_lock); 1823 } 1824 1825 typedef struct spa_load_error { 1826 uint64_t sle_meta_count; 1827 uint64_t sle_data_count; 1828 } spa_load_error_t; 1829 1830 static void 1831 spa_load_verify_done(zio_t *zio) 1832 { 1833 blkptr_t *bp = zio->io_bp; 1834 spa_load_error_t *sle = zio->io_private; 1835 dmu_object_type_t type = BP_GET_TYPE(bp); 1836 int error = zio->io_error; 1837 spa_t *spa = zio->io_spa; 1838 1839 if (error) { 1840 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) && 1841 type != DMU_OT_INTENT_LOG) 1842 atomic_inc_64(&sle->sle_meta_count); 1843 else 1844 atomic_inc_64(&sle->sle_data_count); 1845 } 1846 zio_data_buf_free(zio->io_data, zio->io_size); 1847 1848 mutex_enter(&spa->spa_scrub_lock); 1849 spa->spa_scrub_inflight--; 1850 cv_broadcast(&spa->spa_scrub_io_cv); 1851 mutex_exit(&spa->spa_scrub_lock); 1852 } 1853 1854 /* 1855 * Maximum number of concurrent scrub i/os to create while verifying 1856 * a pool while importing it. 1857 */ 1858 int spa_load_verify_maxinflight = 10000; 1859 boolean_t spa_load_verify_metadata = B_TRUE; 1860 boolean_t spa_load_verify_data = B_TRUE; 1861 1862 /*ARGSUSED*/ 1863 static int 1864 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 1865 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg) 1866 { 1867 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) 1868 return (0); 1869 /* 1870 * Note: normally this routine will not be called if 1871 * spa_load_verify_metadata is not set. However, it may be useful 1872 * to manually set the flag after the traversal has begun. 1873 */ 1874 if (!spa_load_verify_metadata) 1875 return (0); 1876 if (BP_GET_BUFC_TYPE(bp) == ARC_BUFC_DATA && !spa_load_verify_data) 1877 return (0); 1878 1879 zio_t *rio = arg; 1880 size_t size = BP_GET_PSIZE(bp); 1881 void *data = zio_data_buf_alloc(size); 1882 1883 mutex_enter(&spa->spa_scrub_lock); 1884 while (spa->spa_scrub_inflight >= spa_load_verify_maxinflight) 1885 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); 1886 spa->spa_scrub_inflight++; 1887 mutex_exit(&spa->spa_scrub_lock); 1888 1889 zio_nowait(zio_read(rio, spa, bp, data, size, 1890 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB, 1891 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL | 1892 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb)); 1893 return (0); 1894 } 1895 1896 static int 1897 spa_load_verify(spa_t *spa) 1898 { 1899 zio_t *rio; 1900 spa_load_error_t sle = { 0 }; 1901 zpool_rewind_policy_t policy; 1902 boolean_t verify_ok = B_FALSE; 1903 int error = 0; 1904 1905 zpool_get_rewind_policy(spa->spa_config, &policy); 1906 1907 if (policy.zrp_request & ZPOOL_NEVER_REWIND) 1908 return (0); 1909 1910 rio = zio_root(spa, NULL, &sle, 1911 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE); 1912 1913 if (spa_load_verify_metadata) { 1914 error = traverse_pool(spa, spa->spa_verify_min_txg, 1915 TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA, 1916 spa_load_verify_cb, rio); 1917 } 1918 1919 (void) zio_wait(rio); 1920 1921 spa->spa_load_meta_errors = sle.sle_meta_count; 1922 spa->spa_load_data_errors = sle.sle_data_count; 1923 1924 if (!error && sle.sle_meta_count <= policy.zrp_maxmeta && 1925 sle.sle_data_count <= policy.zrp_maxdata) { 1926 int64_t loss = 0; 1927 1928 verify_ok = B_TRUE; 1929 spa->spa_load_txg = spa->spa_uberblock.ub_txg; 1930 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp; 1931 1932 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts; 1933 VERIFY(nvlist_add_uint64(spa->spa_load_info, 1934 ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0); 1935 VERIFY(nvlist_add_int64(spa->spa_load_info, 1936 ZPOOL_CONFIG_REWIND_TIME, loss) == 0); 1937 VERIFY(nvlist_add_uint64(spa->spa_load_info, 1938 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0); 1939 } else { 1940 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg; 1941 } 1942 1943 if (error) { 1944 if (error != ENXIO && error != EIO) 1945 error = SET_ERROR(EIO); 1946 return (error); 1947 } 1948 1949 return (verify_ok ? 0 : EIO); 1950 } 1951 1952 /* 1953 * Find a value in the pool props object. 1954 */ 1955 static void 1956 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val) 1957 { 1958 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object, 1959 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val); 1960 } 1961 1962 /* 1963 * Find a value in the pool directory object. 1964 */ 1965 static int 1966 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val) 1967 { 1968 return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 1969 name, sizeof (uint64_t), 1, val)); 1970 } 1971 1972 static int 1973 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err) 1974 { 1975 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux); 1976 return (err); 1977 } 1978 1979 /* 1980 * Fix up config after a partly-completed split. This is done with the 1981 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off 1982 * pool have that entry in their config, but only the splitting one contains 1983 * a list of all the guids of the vdevs that are being split off. 1984 * 1985 * This function determines what to do with that list: either rejoin 1986 * all the disks to the pool, or complete the splitting process. To attempt 1987 * the rejoin, each disk that is offlined is marked online again, and 1988 * we do a reopen() call. If the vdev label for every disk that was 1989 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL) 1990 * then we call vdev_split() on each disk, and complete the split. 1991 * 1992 * Otherwise we leave the config alone, with all the vdevs in place in 1993 * the original pool. 1994 */ 1995 static void 1996 spa_try_repair(spa_t *spa, nvlist_t *config) 1997 { 1998 uint_t extracted; 1999 uint64_t *glist; 2000 uint_t i, gcount; 2001 nvlist_t *nvl; 2002 vdev_t **vd; 2003 boolean_t attempt_reopen; 2004 2005 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0) 2006 return; 2007 2008 /* check that the config is complete */ 2009 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 2010 &glist, &gcount) != 0) 2011 return; 2012 2013 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP); 2014 2015 /* attempt to online all the vdevs & validate */ 2016 attempt_reopen = B_TRUE; 2017 for (i = 0; i < gcount; i++) { 2018 if (glist[i] == 0) /* vdev is hole */ 2019 continue; 2020 2021 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE); 2022 if (vd[i] == NULL) { 2023 /* 2024 * Don't bother attempting to reopen the disks; 2025 * just do the split. 2026 */ 2027 attempt_reopen = B_FALSE; 2028 } else { 2029 /* attempt to re-online it */ 2030 vd[i]->vdev_offline = B_FALSE; 2031 } 2032 } 2033 2034 if (attempt_reopen) { 2035 vdev_reopen(spa->spa_root_vdev); 2036 2037 /* check each device to see what state it's in */ 2038 for (extracted = 0, i = 0; i < gcount; i++) { 2039 if (vd[i] != NULL && 2040 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL) 2041 break; 2042 ++extracted; 2043 } 2044 } 2045 2046 /* 2047 * If every disk has been moved to the new pool, or if we never 2048 * even attempted to look at them, then we split them off for 2049 * good. 2050 */ 2051 if (!attempt_reopen || gcount == extracted) { 2052 for (i = 0; i < gcount; i++) 2053 if (vd[i] != NULL) 2054 vdev_split(vd[i]); 2055 vdev_reopen(spa->spa_root_vdev); 2056 } 2057 2058 kmem_free(vd, gcount * sizeof (vdev_t *)); 2059 } 2060 2061 static int 2062 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type, 2063 boolean_t mosconfig) 2064 { 2065 nvlist_t *config = spa->spa_config; 2066 char *ereport = FM_EREPORT_ZFS_POOL; 2067 char *comment; 2068 int error; 2069 uint64_t pool_guid; 2070 nvlist_t *nvl; 2071 2072 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) 2073 return (SET_ERROR(EINVAL)); 2074 2075 ASSERT(spa->spa_comment == NULL); 2076 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0) 2077 spa->spa_comment = spa_strdup(comment); 2078 2079 /* 2080 * Versioning wasn't explicitly added to the label until later, so if 2081 * it's not present treat it as the initial version. 2082 */ 2083 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, 2084 &spa->spa_ubsync.ub_version) != 0) 2085 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL; 2086 2087 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, 2088 &spa->spa_config_txg); 2089 2090 if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) && 2091 spa_guid_exists(pool_guid, 0)) { 2092 error = SET_ERROR(EEXIST); 2093 } else { 2094 spa->spa_config_guid = pool_guid; 2095 2096 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, 2097 &nvl) == 0) { 2098 VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting, 2099 KM_SLEEP) == 0); 2100 } 2101 2102 nvlist_free(spa->spa_load_info); 2103 spa->spa_load_info = fnvlist_alloc(); 2104 2105 gethrestime(&spa->spa_loaded_ts); 2106 error = spa_load_impl(spa, pool_guid, config, state, type, 2107 mosconfig, &ereport); 2108 } 2109 2110 spa->spa_minref = refcount_count(&spa->spa_refcount); 2111 if (error) { 2112 if (error != EEXIST) { 2113 spa->spa_loaded_ts.tv_sec = 0; 2114 spa->spa_loaded_ts.tv_nsec = 0; 2115 } 2116 if (error != EBADF) { 2117 zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0); 2118 } 2119 } 2120 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE; 2121 spa->spa_ena = 0; 2122 2123 return (error); 2124 } 2125 2126 /* 2127 * Load an existing storage pool, using the pool's builtin spa_config as a 2128 * source of configuration information. 2129 */ 2130 static int 2131 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config, 2132 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig, 2133 char **ereport) 2134 { 2135 int error = 0; 2136 nvlist_t *nvroot = NULL; 2137 nvlist_t *label; 2138 vdev_t *rvd; 2139 uberblock_t *ub = &spa->spa_uberblock; 2140 uint64_t children, config_cache_txg = spa->spa_config_txg; 2141 int orig_mode = spa->spa_mode; 2142 int parse; 2143 uint64_t obj; 2144 boolean_t missing_feat_write = B_FALSE; 2145 2146 /* 2147 * If this is an untrusted config, access the pool in read-only mode. 2148 * This prevents things like resilvering recently removed devices. 2149 */ 2150 if (!mosconfig) 2151 spa->spa_mode = FREAD; 2152 2153 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 2154 2155 spa->spa_load_state = state; 2156 2157 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot)) 2158 return (SET_ERROR(EINVAL)); 2159 2160 parse = (type == SPA_IMPORT_EXISTING ? 2161 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT); 2162 2163 /* 2164 * Create "The Godfather" zio to hold all async IOs 2165 */ 2166 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *), 2167 KM_SLEEP); 2168 for (int i = 0; i < max_ncpus; i++) { 2169 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL, 2170 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 2171 ZIO_FLAG_GODFATHER); 2172 } 2173 2174 /* 2175 * Parse the configuration into a vdev tree. We explicitly set the 2176 * value that will be returned by spa_version() since parsing the 2177 * configuration requires knowing the version number. 2178 */ 2179 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2180 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse); 2181 spa_config_exit(spa, SCL_ALL, FTAG); 2182 2183 if (error != 0) 2184 return (error); 2185 2186 ASSERT(spa->spa_root_vdev == rvd); 2187 2188 if (type != SPA_IMPORT_ASSEMBLE) { 2189 ASSERT(spa_guid(spa) == pool_guid); 2190 } 2191 2192 /* 2193 * Try to open all vdevs, loading each label in the process. 2194 */ 2195 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2196 error = vdev_open(rvd); 2197 spa_config_exit(spa, SCL_ALL, FTAG); 2198 if (error != 0) 2199 return (error); 2200 2201 /* 2202 * We need to validate the vdev labels against the configuration that 2203 * we have in hand, which is dependent on the setting of mosconfig. If 2204 * mosconfig is true then we're validating the vdev labels based on 2205 * that config. Otherwise, we're validating against the cached config 2206 * (zpool.cache) that was read when we loaded the zfs module, and then 2207 * later we will recursively call spa_load() and validate against 2208 * the vdev config. 2209 * 2210 * If we're assembling a new pool that's been split off from an 2211 * existing pool, the labels haven't yet been updated so we skip 2212 * validation for now. 2213 */ 2214 if (type != SPA_IMPORT_ASSEMBLE) { 2215 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2216 error = vdev_validate(rvd, mosconfig); 2217 spa_config_exit(spa, SCL_ALL, FTAG); 2218 2219 if (error != 0) 2220 return (error); 2221 2222 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) 2223 return (SET_ERROR(ENXIO)); 2224 } 2225 2226 /* 2227 * Find the best uberblock. 2228 */ 2229 vdev_uberblock_load(rvd, ub, &label); 2230 2231 /* 2232 * If we weren't able to find a single valid uberblock, return failure. 2233 */ 2234 if (ub->ub_txg == 0) { 2235 nvlist_free(label); 2236 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO)); 2237 } 2238 2239 /* 2240 * If the pool has an unsupported version we can't open it. 2241 */ 2242 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) { 2243 nvlist_free(label); 2244 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP)); 2245 } 2246 2247 if (ub->ub_version >= SPA_VERSION_FEATURES) { 2248 nvlist_t *features; 2249 2250 /* 2251 * If we weren't able to find what's necessary for reading the 2252 * MOS in the label, return failure. 2253 */ 2254 if (label == NULL || nvlist_lookup_nvlist(label, 2255 ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) { 2256 nvlist_free(label); 2257 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 2258 ENXIO)); 2259 } 2260 2261 /* 2262 * Update our in-core representation with the definitive values 2263 * from the label. 2264 */ 2265 nvlist_free(spa->spa_label_features); 2266 VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0); 2267 } 2268 2269 nvlist_free(label); 2270 2271 /* 2272 * Look through entries in the label nvlist's features_for_read. If 2273 * there is a feature listed there which we don't understand then we 2274 * cannot open a pool. 2275 */ 2276 if (ub->ub_version >= SPA_VERSION_FEATURES) { 2277 nvlist_t *unsup_feat; 2278 2279 VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) == 2280 0); 2281 2282 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features, 2283 NULL); nvp != NULL; 2284 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) { 2285 if (!zfeature_is_supported(nvpair_name(nvp))) { 2286 VERIFY(nvlist_add_string(unsup_feat, 2287 nvpair_name(nvp), "") == 0); 2288 } 2289 } 2290 2291 if (!nvlist_empty(unsup_feat)) { 2292 VERIFY(nvlist_add_nvlist(spa->spa_load_info, 2293 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0); 2294 nvlist_free(unsup_feat); 2295 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, 2296 ENOTSUP)); 2297 } 2298 2299 nvlist_free(unsup_feat); 2300 } 2301 2302 /* 2303 * If the vdev guid sum doesn't match the uberblock, we have an 2304 * incomplete configuration. We first check to see if the pool 2305 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN). 2306 * If it is, defer the vdev_guid_sum check till later so we 2307 * can handle missing vdevs. 2308 */ 2309 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN, 2310 &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE && 2311 rvd->vdev_guid_sum != ub->ub_guid_sum) 2312 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO)); 2313 2314 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) { 2315 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2316 spa_try_repair(spa, config); 2317 spa_config_exit(spa, SCL_ALL, FTAG); 2318 nvlist_free(spa->spa_config_splitting); 2319 spa->spa_config_splitting = NULL; 2320 } 2321 2322 /* 2323 * Initialize internal SPA structures. 2324 */ 2325 spa->spa_state = POOL_STATE_ACTIVE; 2326 spa->spa_ubsync = spa->spa_uberblock; 2327 spa->spa_verify_min_txg = spa->spa_extreme_rewind ? 2328 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1; 2329 spa->spa_first_txg = spa->spa_last_ubsync_txg ? 2330 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1; 2331 spa->spa_claim_max_txg = spa->spa_first_txg; 2332 spa->spa_prev_software_version = ub->ub_software_version; 2333 2334 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool); 2335 if (error) 2336 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2337 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset; 2338 2339 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0) 2340 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2341 2342 if (spa_version(spa) >= SPA_VERSION_FEATURES) { 2343 boolean_t missing_feat_read = B_FALSE; 2344 nvlist_t *unsup_feat, *enabled_feat; 2345 2346 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ, 2347 &spa->spa_feat_for_read_obj) != 0) { 2348 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2349 } 2350 2351 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE, 2352 &spa->spa_feat_for_write_obj) != 0) { 2353 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2354 } 2355 2356 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS, 2357 &spa->spa_feat_desc_obj) != 0) { 2358 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2359 } 2360 2361 enabled_feat = fnvlist_alloc(); 2362 unsup_feat = fnvlist_alloc(); 2363 2364 if (!spa_features_check(spa, B_FALSE, 2365 unsup_feat, enabled_feat)) 2366 missing_feat_read = B_TRUE; 2367 2368 if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) { 2369 if (!spa_features_check(spa, B_TRUE, 2370 unsup_feat, enabled_feat)) { 2371 missing_feat_write = B_TRUE; 2372 } 2373 } 2374 2375 fnvlist_add_nvlist(spa->spa_load_info, 2376 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat); 2377 2378 if (!nvlist_empty(unsup_feat)) { 2379 fnvlist_add_nvlist(spa->spa_load_info, 2380 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat); 2381 } 2382 2383 fnvlist_free(enabled_feat); 2384 fnvlist_free(unsup_feat); 2385 2386 if (!missing_feat_read) { 2387 fnvlist_add_boolean(spa->spa_load_info, 2388 ZPOOL_CONFIG_CAN_RDONLY); 2389 } 2390 2391 /* 2392 * If the state is SPA_LOAD_TRYIMPORT, our objective is 2393 * twofold: to determine whether the pool is available for 2394 * import in read-write mode and (if it is not) whether the 2395 * pool is available for import in read-only mode. If the pool 2396 * is available for import in read-write mode, it is displayed 2397 * as available in userland; if it is not available for import 2398 * in read-only mode, it is displayed as unavailable in 2399 * userland. If the pool is available for import in read-only 2400 * mode but not read-write mode, it is displayed as unavailable 2401 * in userland with a special note that the pool is actually 2402 * available for open in read-only mode. 2403 * 2404 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are 2405 * missing a feature for write, we must first determine whether 2406 * the pool can be opened read-only before returning to 2407 * userland in order to know whether to display the 2408 * abovementioned note. 2409 */ 2410 if (missing_feat_read || (missing_feat_write && 2411 spa_writeable(spa))) { 2412 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, 2413 ENOTSUP)); 2414 } 2415 2416 /* 2417 * Load refcounts for ZFS features from disk into an in-memory 2418 * cache during SPA initialization. 2419 */ 2420 for (spa_feature_t i = 0; i < SPA_FEATURES; i++) { 2421 uint64_t refcount; 2422 2423 error = feature_get_refcount_from_disk(spa, 2424 &spa_feature_table[i], &refcount); 2425 if (error == 0) { 2426 spa->spa_feat_refcount_cache[i] = refcount; 2427 } else if (error == ENOTSUP) { 2428 spa->spa_feat_refcount_cache[i] = 2429 SPA_FEATURE_DISABLED; 2430 } else { 2431 return (spa_vdev_err(rvd, 2432 VDEV_AUX_CORRUPT_DATA, EIO)); 2433 } 2434 } 2435 } 2436 2437 if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) { 2438 if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG, 2439 &spa->spa_feat_enabled_txg_obj) != 0) 2440 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2441 } 2442 2443 spa->spa_is_initializing = B_TRUE; 2444 error = dsl_pool_open(spa->spa_dsl_pool); 2445 spa->spa_is_initializing = B_FALSE; 2446 if (error != 0) 2447 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2448 2449 if (!mosconfig) { 2450 uint64_t hostid; 2451 nvlist_t *policy = NULL, *nvconfig; 2452 2453 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0) 2454 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2455 2456 if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig, 2457 ZPOOL_CONFIG_HOSTID, &hostid) == 0) { 2458 char *hostname; 2459 unsigned long myhostid = 0; 2460 2461 VERIFY(nvlist_lookup_string(nvconfig, 2462 ZPOOL_CONFIG_HOSTNAME, &hostname) == 0); 2463 2464 #ifdef _KERNEL 2465 myhostid = zone_get_hostid(NULL); 2466 #else /* _KERNEL */ 2467 /* 2468 * We're emulating the system's hostid in userland, so 2469 * we can't use zone_get_hostid(). 2470 */ 2471 (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid); 2472 #endif /* _KERNEL */ 2473 if (hostid != 0 && myhostid != 0 && 2474 hostid != myhostid) { 2475 nvlist_free(nvconfig); 2476 cmn_err(CE_WARN, "pool '%s' could not be " 2477 "loaded as it was last accessed by " 2478 "another system (host: %s hostid: 0x%lx). " 2479 "See: http://illumos.org/msg/ZFS-8000-EY", 2480 spa_name(spa), hostname, 2481 (unsigned long)hostid); 2482 return (SET_ERROR(EBADF)); 2483 } 2484 } 2485 if (nvlist_lookup_nvlist(spa->spa_config, 2486 ZPOOL_REWIND_POLICY, &policy) == 0) 2487 VERIFY(nvlist_add_nvlist(nvconfig, 2488 ZPOOL_REWIND_POLICY, policy) == 0); 2489 2490 spa_config_set(spa, nvconfig); 2491 spa_unload(spa); 2492 spa_deactivate(spa); 2493 spa_activate(spa, orig_mode); 2494 2495 return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE)); 2496 } 2497 2498 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0) 2499 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2500 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj); 2501 if (error != 0) 2502 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2503 2504 /* 2505 * Load the bit that tells us to use the new accounting function 2506 * (raid-z deflation). If we have an older pool, this will not 2507 * be present. 2508 */ 2509 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate); 2510 if (error != 0 && error != ENOENT) 2511 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2512 2513 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION, 2514 &spa->spa_creation_version); 2515 if (error != 0 && error != ENOENT) 2516 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2517 2518 /* 2519 * Load the persistent error log. If we have an older pool, this will 2520 * not be present. 2521 */ 2522 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last); 2523 if (error != 0 && error != ENOENT) 2524 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2525 2526 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB, 2527 &spa->spa_errlog_scrub); 2528 if (error != 0 && error != ENOENT) 2529 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2530 2531 /* 2532 * Load the history object. If we have an older pool, this 2533 * will not be present. 2534 */ 2535 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history); 2536 if (error != 0 && error != ENOENT) 2537 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2538 2539 /* 2540 * If we're assembling the pool from the split-off vdevs of 2541 * an existing pool, we don't want to attach the spares & cache 2542 * devices. 2543 */ 2544 2545 /* 2546 * Load any hot spares for this pool. 2547 */ 2548 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object); 2549 if (error != 0 && error != ENOENT) 2550 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2551 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 2552 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES); 2553 if (load_nvlist(spa, spa->spa_spares.sav_object, 2554 &spa->spa_spares.sav_config) != 0) 2555 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2556 2557 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2558 spa_load_spares(spa); 2559 spa_config_exit(spa, SCL_ALL, FTAG); 2560 } else if (error == 0) { 2561 spa->spa_spares.sav_sync = B_TRUE; 2562 } 2563 2564 /* 2565 * Load any level 2 ARC devices for this pool. 2566 */ 2567 error = spa_dir_prop(spa, DMU_POOL_L2CACHE, 2568 &spa->spa_l2cache.sav_object); 2569 if (error != 0 && error != ENOENT) 2570 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2571 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 2572 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE); 2573 if (load_nvlist(spa, spa->spa_l2cache.sav_object, 2574 &spa->spa_l2cache.sav_config) != 0) 2575 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2576 2577 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2578 spa_load_l2cache(spa); 2579 spa_config_exit(spa, SCL_ALL, FTAG); 2580 } else if (error == 0) { 2581 spa->spa_l2cache.sav_sync = B_TRUE; 2582 } 2583 2584 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 2585 2586 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object); 2587 if (error && error != ENOENT) 2588 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2589 2590 if (error == 0) { 2591 uint64_t autoreplace; 2592 2593 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs); 2594 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace); 2595 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation); 2596 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode); 2597 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand); 2598 spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO, 2599 &spa->spa_dedup_ditto); 2600 2601 spa->spa_autoreplace = (autoreplace != 0); 2602 } 2603 2604 /* 2605 * If the 'autoreplace' property is set, then post a resource notifying 2606 * the ZFS DE that it should not issue any faults for unopenable 2607 * devices. We also iterate over the vdevs, and post a sysevent for any 2608 * unopenable vdevs so that the normal autoreplace handler can take 2609 * over. 2610 */ 2611 if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) { 2612 spa_check_removed(spa->spa_root_vdev); 2613 /* 2614 * For the import case, this is done in spa_import(), because 2615 * at this point we're using the spare definitions from 2616 * the MOS config, not necessarily from the userland config. 2617 */ 2618 if (state != SPA_LOAD_IMPORT) { 2619 spa_aux_check_removed(&spa->spa_spares); 2620 spa_aux_check_removed(&spa->spa_l2cache); 2621 } 2622 } 2623 2624 /* 2625 * Load the vdev state for all toplevel vdevs. 2626 */ 2627 vdev_load(rvd); 2628 2629 /* 2630 * Propagate the leaf DTLs we just loaded all the way up the tree. 2631 */ 2632 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2633 vdev_dtl_reassess(rvd, 0, 0, B_FALSE); 2634 spa_config_exit(spa, SCL_ALL, FTAG); 2635 2636 /* 2637 * Load the DDTs (dedup tables). 2638 */ 2639 error = ddt_load(spa); 2640 if (error != 0) 2641 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2642 2643 spa_update_dspace(spa); 2644 2645 /* 2646 * Validate the config, using the MOS config to fill in any 2647 * information which might be missing. If we fail to validate 2648 * the config then declare the pool unfit for use. If we're 2649 * assembling a pool from a split, the log is not transferred 2650 * over. 2651 */ 2652 if (type != SPA_IMPORT_ASSEMBLE) { 2653 nvlist_t *nvconfig; 2654 2655 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0) 2656 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2657 2658 if (!spa_config_valid(spa, nvconfig)) { 2659 nvlist_free(nvconfig); 2660 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, 2661 ENXIO)); 2662 } 2663 nvlist_free(nvconfig); 2664 2665 /* 2666 * Now that we've validated the config, check the state of the 2667 * root vdev. If it can't be opened, it indicates one or 2668 * more toplevel vdevs are faulted. 2669 */ 2670 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) 2671 return (SET_ERROR(ENXIO)); 2672 2673 if (spa_check_logs(spa)) { 2674 *ereport = FM_EREPORT_ZFS_LOG_REPLAY; 2675 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO)); 2676 } 2677 } 2678 2679 if (missing_feat_write) { 2680 ASSERT(state == SPA_LOAD_TRYIMPORT); 2681 2682 /* 2683 * At this point, we know that we can open the pool in 2684 * read-only mode but not read-write mode. We now have enough 2685 * information and can return to userland. 2686 */ 2687 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP)); 2688 } 2689 2690 /* 2691 * We've successfully opened the pool, verify that we're ready 2692 * to start pushing transactions. 2693 */ 2694 if (state != SPA_LOAD_TRYIMPORT) { 2695 if (error = spa_load_verify(spa)) 2696 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 2697 error)); 2698 } 2699 2700 if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER || 2701 spa->spa_load_max_txg == UINT64_MAX)) { 2702 dmu_tx_t *tx; 2703 int need_update = B_FALSE; 2704 2705 ASSERT(state != SPA_LOAD_TRYIMPORT); 2706 2707 /* 2708 * Claim log blocks that haven't been committed yet. 2709 * This must all happen in a single txg. 2710 * Note: spa_claim_max_txg is updated by spa_claim_notify(), 2711 * invoked from zil_claim_log_block()'s i/o done callback. 2712 * Price of rollback is that we abandon the log. 2713 */ 2714 spa->spa_claiming = B_TRUE; 2715 2716 tx = dmu_tx_create_assigned(spa_get_dsl(spa), 2717 spa_first_txg(spa)); 2718 (void) dmu_objset_find(spa_name(spa), 2719 zil_claim, tx, DS_FIND_CHILDREN); 2720 dmu_tx_commit(tx); 2721 2722 spa->spa_claiming = B_FALSE; 2723 2724 spa_set_log_state(spa, SPA_LOG_GOOD); 2725 spa->spa_sync_on = B_TRUE; 2726 txg_sync_start(spa->spa_dsl_pool); 2727 2728 /* 2729 * Wait for all claims to sync. We sync up to the highest 2730 * claimed log block birth time so that claimed log blocks 2731 * don't appear to be from the future. spa_claim_max_txg 2732 * will have been set for us by either zil_check_log_chain() 2733 * (invoked from spa_check_logs()) or zil_claim() above. 2734 */ 2735 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg); 2736 2737 /* 2738 * If the config cache is stale, or we have uninitialized 2739 * metaslabs (see spa_vdev_add()), then update the config. 2740 * 2741 * If this is a verbatim import, trust the current 2742 * in-core spa_config and update the disk labels. 2743 */ 2744 if (config_cache_txg != spa->spa_config_txg || 2745 state == SPA_LOAD_IMPORT || 2746 state == SPA_LOAD_RECOVER || 2747 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM)) 2748 need_update = B_TRUE; 2749 2750 for (int c = 0; c < rvd->vdev_children; c++) 2751 if (rvd->vdev_child[c]->vdev_ms_array == 0) 2752 need_update = B_TRUE; 2753 2754 /* 2755 * Update the config cache asychronously in case we're the 2756 * root pool, in which case the config cache isn't writable yet. 2757 */ 2758 if (need_update) 2759 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 2760 2761 /* 2762 * Check all DTLs to see if anything needs resilvering. 2763 */ 2764 if (!dsl_scan_resilvering(spa->spa_dsl_pool) && 2765 vdev_resilver_needed(rvd, NULL, NULL)) 2766 spa_async_request(spa, SPA_ASYNC_RESILVER); 2767 2768 /* 2769 * Log the fact that we booted up (so that we can detect if 2770 * we rebooted in the middle of an operation). 2771 */ 2772 spa_history_log_version(spa, "open"); 2773 2774 /* 2775 * Delete any inconsistent datasets. 2776 */ 2777 (void) dmu_objset_find(spa_name(spa), 2778 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN); 2779 2780 /* 2781 * Clean up any stale temporary dataset userrefs. 2782 */ 2783 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool); 2784 } 2785 2786 return (0); 2787 } 2788 2789 static int 2790 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig) 2791 { 2792 int mode = spa->spa_mode; 2793 2794 spa_unload(spa); 2795 spa_deactivate(spa); 2796 2797 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1; 2798 2799 spa_activate(spa, mode); 2800 spa_async_suspend(spa); 2801 2802 return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig)); 2803 } 2804 2805 /* 2806 * If spa_load() fails this function will try loading prior txg's. If 2807 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool 2808 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this 2809 * function will not rewind the pool and will return the same error as 2810 * spa_load(). 2811 */ 2812 static int 2813 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig, 2814 uint64_t max_request, int rewind_flags) 2815 { 2816 nvlist_t *loadinfo = NULL; 2817 nvlist_t *config = NULL; 2818 int load_error, rewind_error; 2819 uint64_t safe_rewind_txg; 2820 uint64_t min_txg; 2821 2822 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) { 2823 spa->spa_load_max_txg = spa->spa_load_txg; 2824 spa_set_log_state(spa, SPA_LOG_CLEAR); 2825 } else { 2826 spa->spa_load_max_txg = max_request; 2827 if (max_request != UINT64_MAX) 2828 spa->spa_extreme_rewind = B_TRUE; 2829 } 2830 2831 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING, 2832 mosconfig); 2833 if (load_error == 0) 2834 return (0); 2835 2836 if (spa->spa_root_vdev != NULL) 2837 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 2838 2839 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg; 2840 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp; 2841 2842 if (rewind_flags & ZPOOL_NEVER_REWIND) { 2843 nvlist_free(config); 2844 return (load_error); 2845 } 2846 2847 if (state == SPA_LOAD_RECOVER) { 2848 /* Price of rolling back is discarding txgs, including log */ 2849 spa_set_log_state(spa, SPA_LOG_CLEAR); 2850 } else { 2851 /* 2852 * If we aren't rolling back save the load info from our first 2853 * import attempt so that we can restore it after attempting 2854 * to rewind. 2855 */ 2856 loadinfo = spa->spa_load_info; 2857 spa->spa_load_info = fnvlist_alloc(); 2858 } 2859 2860 spa->spa_load_max_txg = spa->spa_last_ubsync_txg; 2861 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE; 2862 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ? 2863 TXG_INITIAL : safe_rewind_txg; 2864 2865 /* 2866 * Continue as long as we're finding errors, we're still within 2867 * the acceptable rewind range, and we're still finding uberblocks 2868 */ 2869 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg && 2870 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) { 2871 if (spa->spa_load_max_txg < safe_rewind_txg) 2872 spa->spa_extreme_rewind = B_TRUE; 2873 rewind_error = spa_load_retry(spa, state, mosconfig); 2874 } 2875 2876 spa->spa_extreme_rewind = B_FALSE; 2877 spa->spa_load_max_txg = UINT64_MAX; 2878 2879 if (config && (rewind_error || state != SPA_LOAD_RECOVER)) 2880 spa_config_set(spa, config); 2881 2882 if (state == SPA_LOAD_RECOVER) { 2883 ASSERT3P(loadinfo, ==, NULL); 2884 return (rewind_error); 2885 } else { 2886 /* Store the rewind info as part of the initial load info */ 2887 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO, 2888 spa->spa_load_info); 2889 2890 /* Restore the initial load info */ 2891 fnvlist_free(spa->spa_load_info); 2892 spa->spa_load_info = loadinfo; 2893 2894 return (load_error); 2895 } 2896 } 2897 2898 /* 2899 * Pool Open/Import 2900 * 2901 * The import case is identical to an open except that the configuration is sent 2902 * down from userland, instead of grabbed from the configuration cache. For the 2903 * case of an open, the pool configuration will exist in the 2904 * POOL_STATE_UNINITIALIZED state. 2905 * 2906 * The stats information (gen/count/ustats) is used to gather vdev statistics at 2907 * the same time open the pool, without having to keep around the spa_t in some 2908 * ambiguous state. 2909 */ 2910 static int 2911 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy, 2912 nvlist_t **config) 2913 { 2914 spa_t *spa; 2915 spa_load_state_t state = SPA_LOAD_OPEN; 2916 int error; 2917 int locked = B_FALSE; 2918 2919 *spapp = NULL; 2920 2921 /* 2922 * As disgusting as this is, we need to support recursive calls to this 2923 * function because dsl_dir_open() is called during spa_load(), and ends 2924 * up calling spa_open() again. The real fix is to figure out how to 2925 * avoid dsl_dir_open() calling this in the first place. 2926 */ 2927 if (mutex_owner(&spa_namespace_lock) != curthread) { 2928 mutex_enter(&spa_namespace_lock); 2929 locked = B_TRUE; 2930 } 2931 2932 if ((spa = spa_lookup(pool)) == NULL) { 2933 if (locked) 2934 mutex_exit(&spa_namespace_lock); 2935 return (SET_ERROR(ENOENT)); 2936 } 2937 2938 if (spa->spa_state == POOL_STATE_UNINITIALIZED) { 2939 zpool_rewind_policy_t policy; 2940 2941 zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config, 2942 &policy); 2943 if (policy.zrp_request & ZPOOL_DO_REWIND) 2944 state = SPA_LOAD_RECOVER; 2945 2946 spa_activate(spa, spa_mode_global); 2947 2948 if (state != SPA_LOAD_RECOVER) 2949 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 2950 2951 error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg, 2952 policy.zrp_request); 2953 2954 if (error == EBADF) { 2955 /* 2956 * If vdev_validate() returns failure (indicated by 2957 * EBADF), it indicates that one of the vdevs indicates 2958 * that the pool has been exported or destroyed. If 2959 * this is the case, the config cache is out of sync and 2960 * we should remove the pool from the namespace. 2961 */ 2962 spa_unload(spa); 2963 spa_deactivate(spa); 2964 spa_config_sync(spa, B_TRUE, B_TRUE); 2965 spa_remove(spa); 2966 if (locked) 2967 mutex_exit(&spa_namespace_lock); 2968 return (SET_ERROR(ENOENT)); 2969 } 2970 2971 if (error) { 2972 /* 2973 * We can't open the pool, but we still have useful 2974 * information: the state of each vdev after the 2975 * attempted vdev_open(). Return this to the user. 2976 */ 2977 if (config != NULL && spa->spa_config) { 2978 VERIFY(nvlist_dup(spa->spa_config, config, 2979 KM_SLEEP) == 0); 2980 VERIFY(nvlist_add_nvlist(*config, 2981 ZPOOL_CONFIG_LOAD_INFO, 2982 spa->spa_load_info) == 0); 2983 } 2984 spa_unload(spa); 2985 spa_deactivate(spa); 2986 spa->spa_last_open_failed = error; 2987 if (locked) 2988 mutex_exit(&spa_namespace_lock); 2989 *spapp = NULL; 2990 return (error); 2991 } 2992 } 2993 2994 spa_open_ref(spa, tag); 2995 2996 if (config != NULL) 2997 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 2998 2999 /* 3000 * If we've recovered the pool, pass back any information we 3001 * gathered while doing the load. 3002 */ 3003 if (state == SPA_LOAD_RECOVER) { 3004 VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO, 3005 spa->spa_load_info) == 0); 3006 } 3007 3008 if (locked) { 3009 spa->spa_last_open_failed = 0; 3010 spa->spa_last_ubsync_txg = 0; 3011 spa->spa_load_txg = 0; 3012 mutex_exit(&spa_namespace_lock); 3013 } 3014 3015 *spapp = spa; 3016 3017 return (0); 3018 } 3019 3020 int 3021 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy, 3022 nvlist_t **config) 3023 { 3024 return (spa_open_common(name, spapp, tag, policy, config)); 3025 } 3026 3027 int 3028 spa_open(const char *name, spa_t **spapp, void *tag) 3029 { 3030 return (spa_open_common(name, spapp, tag, NULL, NULL)); 3031 } 3032 3033 /* 3034 * Lookup the given spa_t, incrementing the inject count in the process, 3035 * preventing it from being exported or destroyed. 3036 */ 3037 spa_t * 3038 spa_inject_addref(char *name) 3039 { 3040 spa_t *spa; 3041 3042 mutex_enter(&spa_namespace_lock); 3043 if ((spa = spa_lookup(name)) == NULL) { 3044 mutex_exit(&spa_namespace_lock); 3045 return (NULL); 3046 } 3047 spa->spa_inject_ref++; 3048 mutex_exit(&spa_namespace_lock); 3049 3050 return (spa); 3051 } 3052 3053 void 3054 spa_inject_delref(spa_t *spa) 3055 { 3056 mutex_enter(&spa_namespace_lock); 3057 spa->spa_inject_ref--; 3058 mutex_exit(&spa_namespace_lock); 3059 } 3060 3061 /* 3062 * Add spares device information to the nvlist. 3063 */ 3064 static void 3065 spa_add_spares(spa_t *spa, nvlist_t *config) 3066 { 3067 nvlist_t **spares; 3068 uint_t i, nspares; 3069 nvlist_t *nvroot; 3070 uint64_t guid; 3071 vdev_stat_t *vs; 3072 uint_t vsc; 3073 uint64_t pool; 3074 3075 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 3076 3077 if (spa->spa_spares.sav_count == 0) 3078 return; 3079 3080 VERIFY(nvlist_lookup_nvlist(config, 3081 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 3082 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 3083 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 3084 if (nspares != 0) { 3085 VERIFY(nvlist_add_nvlist_array(nvroot, 3086 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 3087 VERIFY(nvlist_lookup_nvlist_array(nvroot, 3088 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 3089 3090 /* 3091 * Go through and find any spares which have since been 3092 * repurposed as an active spare. If this is the case, update 3093 * their status appropriately. 3094 */ 3095 for (i = 0; i < nspares; i++) { 3096 VERIFY(nvlist_lookup_uint64(spares[i], 3097 ZPOOL_CONFIG_GUID, &guid) == 0); 3098 if (spa_spare_exists(guid, &pool, NULL) && 3099 pool != 0ULL) { 3100 VERIFY(nvlist_lookup_uint64_array( 3101 spares[i], ZPOOL_CONFIG_VDEV_STATS, 3102 (uint64_t **)&vs, &vsc) == 0); 3103 vs->vs_state = VDEV_STATE_CANT_OPEN; 3104 vs->vs_aux = VDEV_AUX_SPARED; 3105 } 3106 } 3107 } 3108 } 3109 3110 /* 3111 * Add l2cache device information to the nvlist, including vdev stats. 3112 */ 3113 static void 3114 spa_add_l2cache(spa_t *spa, nvlist_t *config) 3115 { 3116 nvlist_t **l2cache; 3117 uint_t i, j, nl2cache; 3118 nvlist_t *nvroot; 3119 uint64_t guid; 3120 vdev_t *vd; 3121 vdev_stat_t *vs; 3122 uint_t vsc; 3123 3124 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 3125 3126 if (spa->spa_l2cache.sav_count == 0) 3127 return; 3128 3129 VERIFY(nvlist_lookup_nvlist(config, 3130 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 3131 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 3132 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 3133 if (nl2cache != 0) { 3134 VERIFY(nvlist_add_nvlist_array(nvroot, 3135 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 3136 VERIFY(nvlist_lookup_nvlist_array(nvroot, 3137 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 3138 3139 /* 3140 * Update level 2 cache device stats. 3141 */ 3142 3143 for (i = 0; i < nl2cache; i++) { 3144 VERIFY(nvlist_lookup_uint64(l2cache[i], 3145 ZPOOL_CONFIG_GUID, &guid) == 0); 3146 3147 vd = NULL; 3148 for (j = 0; j < spa->spa_l2cache.sav_count; j++) { 3149 if (guid == 3150 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) { 3151 vd = spa->spa_l2cache.sav_vdevs[j]; 3152 break; 3153 } 3154 } 3155 ASSERT(vd != NULL); 3156 3157 VERIFY(nvlist_lookup_uint64_array(l2cache[i], 3158 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc) 3159 == 0); 3160 vdev_get_stats(vd, vs); 3161 } 3162 } 3163 } 3164 3165 static void 3166 spa_add_feature_stats(spa_t *spa, nvlist_t *config) 3167 { 3168 nvlist_t *features; 3169 zap_cursor_t zc; 3170 zap_attribute_t za; 3171 3172 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 3173 VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0); 3174 3175 if (spa->spa_feat_for_read_obj != 0) { 3176 for (zap_cursor_init(&zc, spa->spa_meta_objset, 3177 spa->spa_feat_for_read_obj); 3178 zap_cursor_retrieve(&zc, &za) == 0; 3179 zap_cursor_advance(&zc)) { 3180 ASSERT(za.za_integer_length == sizeof (uint64_t) && 3181 za.za_num_integers == 1); 3182 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name, 3183 za.za_first_integer)); 3184 } 3185 zap_cursor_fini(&zc); 3186 } 3187 3188 if (spa->spa_feat_for_write_obj != 0) { 3189 for (zap_cursor_init(&zc, spa->spa_meta_objset, 3190 spa->spa_feat_for_write_obj); 3191 zap_cursor_retrieve(&zc, &za) == 0; 3192 zap_cursor_advance(&zc)) { 3193 ASSERT(za.za_integer_length == sizeof (uint64_t) && 3194 za.za_num_integers == 1); 3195 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name, 3196 za.za_first_integer)); 3197 } 3198 zap_cursor_fini(&zc); 3199 } 3200 3201 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS, 3202 features) == 0); 3203 nvlist_free(features); 3204 } 3205 3206 int 3207 spa_get_stats(const char *name, nvlist_t **config, 3208 char *altroot, size_t buflen) 3209 { 3210 int error; 3211 spa_t *spa; 3212 3213 *config = NULL; 3214 error = spa_open_common(name, &spa, FTAG, NULL, config); 3215 3216 if (spa != NULL) { 3217 /* 3218 * This still leaves a window of inconsistency where the spares 3219 * or l2cache devices could change and the config would be 3220 * self-inconsistent. 3221 */ 3222 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 3223 3224 if (*config != NULL) { 3225 uint64_t loadtimes[2]; 3226 3227 loadtimes[0] = spa->spa_loaded_ts.tv_sec; 3228 loadtimes[1] = spa->spa_loaded_ts.tv_nsec; 3229 VERIFY(nvlist_add_uint64_array(*config, 3230 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0); 3231 3232 VERIFY(nvlist_add_uint64(*config, 3233 ZPOOL_CONFIG_ERRCOUNT, 3234 spa_get_errlog_size(spa)) == 0); 3235 3236 if (spa_suspended(spa)) 3237 VERIFY(nvlist_add_uint64(*config, 3238 ZPOOL_CONFIG_SUSPENDED, 3239 spa->spa_failmode) == 0); 3240 3241 spa_add_spares(spa, *config); 3242 spa_add_l2cache(spa, *config); 3243 spa_add_feature_stats(spa, *config); 3244 } 3245 } 3246 3247 /* 3248 * We want to get the alternate root even for faulted pools, so we cheat 3249 * and call spa_lookup() directly. 3250 */ 3251 if (altroot) { 3252 if (spa == NULL) { 3253 mutex_enter(&spa_namespace_lock); 3254 spa = spa_lookup(name); 3255 if (spa) 3256 spa_altroot(spa, altroot, buflen); 3257 else 3258 altroot[0] = '\0'; 3259 spa = NULL; 3260 mutex_exit(&spa_namespace_lock); 3261 } else { 3262 spa_altroot(spa, altroot, buflen); 3263 } 3264 } 3265 3266 if (spa != NULL) { 3267 spa_config_exit(spa, SCL_CONFIG, FTAG); 3268 spa_close(spa, FTAG); 3269 } 3270 3271 return (error); 3272 } 3273 3274 /* 3275 * Validate that the auxiliary device array is well formed. We must have an 3276 * array of nvlists, each which describes a valid leaf vdev. If this is an 3277 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be 3278 * specified, as long as they are well-formed. 3279 */ 3280 static int 3281 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode, 3282 spa_aux_vdev_t *sav, const char *config, uint64_t version, 3283 vdev_labeltype_t label) 3284 { 3285 nvlist_t **dev; 3286 uint_t i, ndev; 3287 vdev_t *vd; 3288 int error; 3289 3290 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 3291 3292 /* 3293 * It's acceptable to have no devs specified. 3294 */ 3295 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0) 3296 return (0); 3297 3298 if (ndev == 0) 3299 return (SET_ERROR(EINVAL)); 3300 3301 /* 3302 * Make sure the pool is formatted with a version that supports this 3303 * device type. 3304 */ 3305 if (spa_version(spa) < version) 3306 return (SET_ERROR(ENOTSUP)); 3307 3308 /* 3309 * Set the pending device list so we correctly handle device in-use 3310 * checking. 3311 */ 3312 sav->sav_pending = dev; 3313 sav->sav_npending = ndev; 3314 3315 for (i = 0; i < ndev; i++) { 3316 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0, 3317 mode)) != 0) 3318 goto out; 3319 3320 if (!vd->vdev_ops->vdev_op_leaf) { 3321 vdev_free(vd); 3322 error = SET_ERROR(EINVAL); 3323 goto out; 3324 } 3325 3326 /* 3327 * The L2ARC currently only supports disk devices in 3328 * kernel context. For user-level testing, we allow it. 3329 */ 3330 #ifdef _KERNEL 3331 if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) && 3332 strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) { 3333 error = SET_ERROR(ENOTBLK); 3334 vdev_free(vd); 3335 goto out; 3336 } 3337 #endif 3338 vd->vdev_top = vd; 3339 3340 if ((error = vdev_open(vd)) == 0 && 3341 (error = vdev_label_init(vd, crtxg, label)) == 0) { 3342 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID, 3343 vd->vdev_guid) == 0); 3344 } 3345 3346 vdev_free(vd); 3347 3348 if (error && 3349 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE)) 3350 goto out; 3351 else 3352 error = 0; 3353 } 3354 3355 out: 3356 sav->sav_pending = NULL; 3357 sav->sav_npending = 0; 3358 return (error); 3359 } 3360 3361 static int 3362 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode) 3363 { 3364 int error; 3365 3366 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 3367 3368 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode, 3369 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES, 3370 VDEV_LABEL_SPARE)) != 0) { 3371 return (error); 3372 } 3373 3374 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode, 3375 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE, 3376 VDEV_LABEL_L2CACHE)); 3377 } 3378 3379 static void 3380 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs, 3381 const char *config) 3382 { 3383 int i; 3384 3385 if (sav->sav_config != NULL) { 3386 nvlist_t **olddevs; 3387 uint_t oldndevs; 3388 nvlist_t **newdevs; 3389 3390 /* 3391 * Generate new dev list by concatentating with the 3392 * current dev list. 3393 */ 3394 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config, 3395 &olddevs, &oldndevs) == 0); 3396 3397 newdevs = kmem_alloc(sizeof (void *) * 3398 (ndevs + oldndevs), KM_SLEEP); 3399 for (i = 0; i < oldndevs; i++) 3400 VERIFY(nvlist_dup(olddevs[i], &newdevs[i], 3401 KM_SLEEP) == 0); 3402 for (i = 0; i < ndevs; i++) 3403 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs], 3404 KM_SLEEP) == 0); 3405 3406 VERIFY(nvlist_remove(sav->sav_config, config, 3407 DATA_TYPE_NVLIST_ARRAY) == 0); 3408 3409 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 3410 config, newdevs, ndevs + oldndevs) == 0); 3411 for (i = 0; i < oldndevs + ndevs; i++) 3412 nvlist_free(newdevs[i]); 3413 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *)); 3414 } else { 3415 /* 3416 * Generate a new dev list. 3417 */ 3418 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME, 3419 KM_SLEEP) == 0); 3420 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config, 3421 devs, ndevs) == 0); 3422 } 3423 } 3424 3425 /* 3426 * Stop and drop level 2 ARC devices 3427 */ 3428 void 3429 spa_l2cache_drop(spa_t *spa) 3430 { 3431 vdev_t *vd; 3432 int i; 3433 spa_aux_vdev_t *sav = &spa->spa_l2cache; 3434 3435 for (i = 0; i < sav->sav_count; i++) { 3436 uint64_t pool; 3437 3438 vd = sav->sav_vdevs[i]; 3439 ASSERT(vd != NULL); 3440 3441 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 3442 pool != 0ULL && l2arc_vdev_present(vd)) 3443 l2arc_remove_vdev(vd); 3444 } 3445 } 3446 3447 /* 3448 * Pool Creation 3449 */ 3450 int 3451 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props, 3452 nvlist_t *zplprops) 3453 { 3454 spa_t *spa; 3455 char *altroot = NULL; 3456 vdev_t *rvd; 3457 dsl_pool_t *dp; 3458 dmu_tx_t *tx; 3459 int error = 0; 3460 uint64_t txg = TXG_INITIAL; 3461 nvlist_t **spares, **l2cache; 3462 uint_t nspares, nl2cache; 3463 uint64_t version, obj; 3464 boolean_t has_features; 3465 3466 /* 3467 * If this pool already exists, return failure. 3468 */ 3469 mutex_enter(&spa_namespace_lock); 3470 if (spa_lookup(pool) != NULL) { 3471 mutex_exit(&spa_namespace_lock); 3472 return (SET_ERROR(EEXIST)); 3473 } 3474 3475 /* 3476 * Allocate a new spa_t structure. 3477 */ 3478 (void) nvlist_lookup_string(props, 3479 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 3480 spa = spa_add(pool, NULL, altroot); 3481 spa_activate(spa, spa_mode_global); 3482 3483 if (props && (error = spa_prop_validate(spa, props))) { 3484 spa_deactivate(spa); 3485 spa_remove(spa); 3486 mutex_exit(&spa_namespace_lock); 3487 return (error); 3488 } 3489 3490 has_features = B_FALSE; 3491 for (nvpair_t *elem = nvlist_next_nvpair(props, NULL); 3492 elem != NULL; elem = nvlist_next_nvpair(props, elem)) { 3493 if (zpool_prop_feature(nvpair_name(elem))) 3494 has_features = B_TRUE; 3495 } 3496 3497 if (has_features || nvlist_lookup_uint64(props, 3498 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) { 3499 version = SPA_VERSION; 3500 } 3501 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 3502 3503 spa->spa_first_txg = txg; 3504 spa->spa_uberblock.ub_txg = txg - 1; 3505 spa->spa_uberblock.ub_version = version; 3506 spa->spa_ubsync = spa->spa_uberblock; 3507 3508 /* 3509 * Create "The Godfather" zio to hold all async IOs 3510 */ 3511 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *), 3512 KM_SLEEP); 3513 for (int i = 0; i < max_ncpus; i++) { 3514 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL, 3515 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 3516 ZIO_FLAG_GODFATHER); 3517 } 3518 3519 /* 3520 * Create the root vdev. 3521 */ 3522 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3523 3524 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD); 3525 3526 ASSERT(error != 0 || rvd != NULL); 3527 ASSERT(error != 0 || spa->spa_root_vdev == rvd); 3528 3529 if (error == 0 && !zfs_allocatable_devs(nvroot)) 3530 error = SET_ERROR(EINVAL); 3531 3532 if (error == 0 && 3533 (error = vdev_create(rvd, txg, B_FALSE)) == 0 && 3534 (error = spa_validate_aux(spa, nvroot, txg, 3535 VDEV_ALLOC_ADD)) == 0) { 3536 for (int c = 0; c < rvd->vdev_children; c++) { 3537 vdev_metaslab_set_size(rvd->vdev_child[c]); 3538 vdev_expand(rvd->vdev_child[c], txg); 3539 } 3540 } 3541 3542 spa_config_exit(spa, SCL_ALL, FTAG); 3543 3544 if (error != 0) { 3545 spa_unload(spa); 3546 spa_deactivate(spa); 3547 spa_remove(spa); 3548 mutex_exit(&spa_namespace_lock); 3549 return (error); 3550 } 3551 3552 /* 3553 * Get the list of spares, if specified. 3554 */ 3555 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 3556 &spares, &nspares) == 0) { 3557 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME, 3558 KM_SLEEP) == 0); 3559 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 3560 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 3561 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3562 spa_load_spares(spa); 3563 spa_config_exit(spa, SCL_ALL, FTAG); 3564 spa->spa_spares.sav_sync = B_TRUE; 3565 } 3566 3567 /* 3568 * Get the list of level 2 cache devices, if specified. 3569 */ 3570 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 3571 &l2cache, &nl2cache) == 0) { 3572 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 3573 NV_UNIQUE_NAME, KM_SLEEP) == 0); 3574 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 3575 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 3576 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3577 spa_load_l2cache(spa); 3578 spa_config_exit(spa, SCL_ALL, FTAG); 3579 spa->spa_l2cache.sav_sync = B_TRUE; 3580 } 3581 3582 spa->spa_is_initializing = B_TRUE; 3583 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg); 3584 spa->spa_meta_objset = dp->dp_meta_objset; 3585 spa->spa_is_initializing = B_FALSE; 3586 3587 /* 3588 * Create DDTs (dedup tables). 3589 */ 3590 ddt_create(spa); 3591 3592 spa_update_dspace(spa); 3593 3594 tx = dmu_tx_create_assigned(dp, txg); 3595 3596 /* 3597 * Create the pool config object. 3598 */ 3599 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset, 3600 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE, 3601 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx); 3602 3603 if (zap_add(spa->spa_meta_objset, 3604 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG, 3605 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) { 3606 cmn_err(CE_PANIC, "failed to add pool config"); 3607 } 3608 3609 if (spa_version(spa) >= SPA_VERSION_FEATURES) 3610 spa_feature_create_zap_objects(spa, tx); 3611 3612 if (zap_add(spa->spa_meta_objset, 3613 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION, 3614 sizeof (uint64_t), 1, &version, tx) != 0) { 3615 cmn_err(CE_PANIC, "failed to add pool version"); 3616 } 3617 3618 /* Newly created pools with the right version are always deflated. */ 3619 if (version >= SPA_VERSION_RAIDZ_DEFLATE) { 3620 spa->spa_deflate = TRUE; 3621 if (zap_add(spa->spa_meta_objset, 3622 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 3623 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) { 3624 cmn_err(CE_PANIC, "failed to add deflate"); 3625 } 3626 } 3627 3628 /* 3629 * Create the deferred-free bpobj. Turn off compression 3630 * because sync-to-convergence takes longer if the blocksize 3631 * keeps changing. 3632 */ 3633 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx); 3634 dmu_object_set_compress(spa->spa_meta_objset, obj, 3635 ZIO_COMPRESS_OFF, tx); 3636 if (zap_add(spa->spa_meta_objset, 3637 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ, 3638 sizeof (uint64_t), 1, &obj, tx) != 0) { 3639 cmn_err(CE_PANIC, "failed to add bpobj"); 3640 } 3641 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj, 3642 spa->spa_meta_objset, obj)); 3643 3644 /* 3645 * Create the pool's history object. 3646 */ 3647 if (version >= SPA_VERSION_ZPOOL_HISTORY) 3648 spa_history_create_obj(spa, tx); 3649 3650 /* 3651 * Set pool properties. 3652 */ 3653 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS); 3654 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 3655 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE); 3656 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND); 3657 3658 if (props != NULL) { 3659 spa_configfile_set(spa, props, B_FALSE); 3660 spa_sync_props(props, tx); 3661 } 3662 3663 dmu_tx_commit(tx); 3664 3665 spa->spa_sync_on = B_TRUE; 3666 txg_sync_start(spa->spa_dsl_pool); 3667 3668 /* 3669 * We explicitly wait for the first transaction to complete so that our 3670 * bean counters are appropriately updated. 3671 */ 3672 txg_wait_synced(spa->spa_dsl_pool, txg); 3673 3674 spa_config_sync(spa, B_FALSE, B_TRUE); 3675 3676 spa_history_log_version(spa, "create"); 3677 3678 spa->spa_minref = refcount_count(&spa->spa_refcount); 3679 3680 mutex_exit(&spa_namespace_lock); 3681 3682 return (0); 3683 } 3684 3685 #ifdef _KERNEL 3686 /* 3687 * Get the root pool information from the root disk, then import the root pool 3688 * during the system boot up time. 3689 */ 3690 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **); 3691 3692 static nvlist_t * 3693 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid) 3694 { 3695 nvlist_t *config; 3696 nvlist_t *nvtop, *nvroot; 3697 uint64_t pgid; 3698 3699 if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0) 3700 return (NULL); 3701 3702 /* 3703 * Add this top-level vdev to the child array. 3704 */ 3705 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3706 &nvtop) == 0); 3707 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 3708 &pgid) == 0); 3709 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0); 3710 3711 /* 3712 * Put this pool's top-level vdevs into a root vdev. 3713 */ 3714 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 3715 VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, 3716 VDEV_TYPE_ROOT) == 0); 3717 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0); 3718 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0); 3719 VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 3720 &nvtop, 1) == 0); 3721 3722 /* 3723 * Replace the existing vdev_tree with the new root vdev in 3724 * this pool's configuration (remove the old, add the new). 3725 */ 3726 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0); 3727 nvlist_free(nvroot); 3728 return (config); 3729 } 3730 3731 /* 3732 * Walk the vdev tree and see if we can find a device with "better" 3733 * configuration. A configuration is "better" if the label on that 3734 * device has a more recent txg. 3735 */ 3736 static void 3737 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg) 3738 { 3739 for (int c = 0; c < vd->vdev_children; c++) 3740 spa_alt_rootvdev(vd->vdev_child[c], avd, txg); 3741 3742 if (vd->vdev_ops->vdev_op_leaf) { 3743 nvlist_t *label; 3744 uint64_t label_txg; 3745 3746 if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid, 3747 &label) != 0) 3748 return; 3749 3750 VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG, 3751 &label_txg) == 0); 3752 3753 /* 3754 * Do we have a better boot device? 3755 */ 3756 if (label_txg > *txg) { 3757 *txg = label_txg; 3758 *avd = vd; 3759 } 3760 nvlist_free(label); 3761 } 3762 } 3763 3764 /* 3765 * Import a root pool. 3766 * 3767 * For x86. devpath_list will consist of devid and/or physpath name of 3768 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a"). 3769 * The GRUB "findroot" command will return the vdev we should boot. 3770 * 3771 * For Sparc, devpath_list consists the physpath name of the booting device 3772 * no matter the rootpool is a single device pool or a mirrored pool. 3773 * e.g. 3774 * "/pci@1f,0/ide@d/disk@0,0:a" 3775 */ 3776 int 3777 spa_import_rootpool(char *devpath, char *devid) 3778 { 3779 spa_t *spa; 3780 vdev_t *rvd, *bvd, *avd = NULL; 3781 nvlist_t *config, *nvtop; 3782 uint64_t guid, txg; 3783 char *pname; 3784 int error; 3785 3786 /* 3787 * Read the label from the boot device and generate a configuration. 3788 */ 3789 config = spa_generate_rootconf(devpath, devid, &guid); 3790 #if defined(_OBP) && defined(_KERNEL) 3791 if (config == NULL) { 3792 if (strstr(devpath, "/iscsi/ssd") != NULL) { 3793 /* iscsi boot */ 3794 get_iscsi_bootpath_phy(devpath); 3795 config = spa_generate_rootconf(devpath, devid, &guid); 3796 } 3797 } 3798 #endif 3799 if (config == NULL) { 3800 cmn_err(CE_NOTE, "Cannot read the pool label from '%s'", 3801 devpath); 3802 return (SET_ERROR(EIO)); 3803 } 3804 3805 VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 3806 &pname) == 0); 3807 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0); 3808 3809 mutex_enter(&spa_namespace_lock); 3810 if ((spa = spa_lookup(pname)) != NULL) { 3811 /* 3812 * Remove the existing root pool from the namespace so that we 3813 * can replace it with the correct config we just read in. 3814 */ 3815 spa_remove(spa); 3816 } 3817 3818 spa = spa_add(pname, config, NULL); 3819 spa->spa_is_root = B_TRUE; 3820 spa->spa_import_flags = ZFS_IMPORT_VERBATIM; 3821 3822 /* 3823 * Build up a vdev tree based on the boot device's label config. 3824 */ 3825 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3826 &nvtop) == 0); 3827 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3828 error = spa_config_parse(spa, &rvd, nvtop, NULL, 0, 3829 VDEV_ALLOC_ROOTPOOL); 3830 spa_config_exit(spa, SCL_ALL, FTAG); 3831 if (error) { 3832 mutex_exit(&spa_namespace_lock); 3833 nvlist_free(config); 3834 cmn_err(CE_NOTE, "Can not parse the config for pool '%s'", 3835 pname); 3836 return (error); 3837 } 3838 3839 /* 3840 * Get the boot vdev. 3841 */ 3842 if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) { 3843 cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu", 3844 (u_longlong_t)guid); 3845 error = SET_ERROR(ENOENT); 3846 goto out; 3847 } 3848 3849 /* 3850 * Determine if there is a better boot device. 3851 */ 3852 avd = bvd; 3853 spa_alt_rootvdev(rvd, &avd, &txg); 3854 if (avd != bvd) { 3855 cmn_err(CE_NOTE, "The boot device is 'degraded'. Please " 3856 "try booting from '%s'", avd->vdev_path); 3857 error = SET_ERROR(EINVAL); 3858 goto out; 3859 } 3860 3861 /* 3862 * If the boot device is part of a spare vdev then ensure that 3863 * we're booting off the active spare. 3864 */ 3865 if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops && 3866 !bvd->vdev_isspare) { 3867 cmn_err(CE_NOTE, "The boot device is currently spared. Please " 3868 "try booting from '%s'", 3869 bvd->vdev_parent-> 3870 vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path); 3871 error = SET_ERROR(EINVAL); 3872 goto out; 3873 } 3874 3875 error = 0; 3876 out: 3877 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3878 vdev_free(rvd); 3879 spa_config_exit(spa, SCL_ALL, FTAG); 3880 mutex_exit(&spa_namespace_lock); 3881 3882 nvlist_free(config); 3883 return (error); 3884 } 3885 3886 #endif 3887 3888 /* 3889 * Import a non-root pool into the system. 3890 */ 3891 int 3892 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags) 3893 { 3894 spa_t *spa; 3895 char *altroot = NULL; 3896 spa_load_state_t state = SPA_LOAD_IMPORT; 3897 zpool_rewind_policy_t policy; 3898 uint64_t mode = spa_mode_global; 3899 uint64_t readonly = B_FALSE; 3900 int error; 3901 nvlist_t *nvroot; 3902 nvlist_t **spares, **l2cache; 3903 uint_t nspares, nl2cache; 3904 3905 /* 3906 * If a pool with this name exists, return failure. 3907 */ 3908 mutex_enter(&spa_namespace_lock); 3909 if (spa_lookup(pool) != NULL) { 3910 mutex_exit(&spa_namespace_lock); 3911 return (SET_ERROR(EEXIST)); 3912 } 3913 3914 /* 3915 * Create and initialize the spa structure. 3916 */ 3917 (void) nvlist_lookup_string(props, 3918 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 3919 (void) nvlist_lookup_uint64(props, 3920 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly); 3921 if (readonly) 3922 mode = FREAD; 3923 spa = spa_add(pool, config, altroot); 3924 spa->spa_import_flags = flags; 3925 3926 /* 3927 * Verbatim import - Take a pool and insert it into the namespace 3928 * as if it had been loaded at boot. 3929 */ 3930 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) { 3931 if (props != NULL) 3932 spa_configfile_set(spa, props, B_FALSE); 3933 3934 spa_config_sync(spa, B_FALSE, B_TRUE); 3935 3936 mutex_exit(&spa_namespace_lock); 3937 return (0); 3938 } 3939 3940 spa_activate(spa, mode); 3941 3942 /* 3943 * Don't start async tasks until we know everything is healthy. 3944 */ 3945 spa_async_suspend(spa); 3946 3947 zpool_get_rewind_policy(config, &policy); 3948 if (policy.zrp_request & ZPOOL_DO_REWIND) 3949 state = SPA_LOAD_RECOVER; 3950 3951 /* 3952 * Pass off the heavy lifting to spa_load(). Pass TRUE for mosconfig 3953 * because the user-supplied config is actually the one to trust when 3954 * doing an import. 3955 */ 3956 if (state != SPA_LOAD_RECOVER) 3957 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 3958 3959 error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg, 3960 policy.zrp_request); 3961 3962 /* 3963 * Propagate anything learned while loading the pool and pass it 3964 * back to caller (i.e. rewind info, missing devices, etc). 3965 */ 3966 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, 3967 spa->spa_load_info) == 0); 3968 3969 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3970 /* 3971 * Toss any existing sparelist, as it doesn't have any validity 3972 * anymore, and conflicts with spa_has_spare(). 3973 */ 3974 if (spa->spa_spares.sav_config) { 3975 nvlist_free(spa->spa_spares.sav_config); 3976 spa->spa_spares.sav_config = NULL; 3977 spa_load_spares(spa); 3978 } 3979 if (spa->spa_l2cache.sav_config) { 3980 nvlist_free(spa->spa_l2cache.sav_config); 3981 spa->spa_l2cache.sav_config = NULL; 3982 spa_load_l2cache(spa); 3983 } 3984 3985 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3986 &nvroot) == 0); 3987 if (error == 0) 3988 error = spa_validate_aux(spa, nvroot, -1ULL, 3989 VDEV_ALLOC_SPARE); 3990 if (error == 0) 3991 error = spa_validate_aux(spa, nvroot, -1ULL, 3992 VDEV_ALLOC_L2CACHE); 3993 spa_config_exit(spa, SCL_ALL, FTAG); 3994 3995 if (props != NULL) 3996 spa_configfile_set(spa, props, B_FALSE); 3997 3998 if (error != 0 || (props && spa_writeable(spa) && 3999 (error = spa_prop_set(spa, props)))) { 4000 spa_unload(spa); 4001 spa_deactivate(spa); 4002 spa_remove(spa); 4003 mutex_exit(&spa_namespace_lock); 4004 return (error); 4005 } 4006 4007 spa_async_resume(spa); 4008 4009 /* 4010 * Override any spares and level 2 cache devices as specified by 4011 * the user, as these may have correct device names/devids, etc. 4012 */ 4013 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 4014 &spares, &nspares) == 0) { 4015 if (spa->spa_spares.sav_config) 4016 VERIFY(nvlist_remove(spa->spa_spares.sav_config, 4017 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0); 4018 else 4019 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, 4020 NV_UNIQUE_NAME, KM_SLEEP) == 0); 4021 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 4022 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 4023 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4024 spa_load_spares(spa); 4025 spa_config_exit(spa, SCL_ALL, FTAG); 4026 spa->spa_spares.sav_sync = B_TRUE; 4027 } 4028 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 4029 &l2cache, &nl2cache) == 0) { 4030 if (spa->spa_l2cache.sav_config) 4031 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config, 4032 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0); 4033 else 4034 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 4035 NV_UNIQUE_NAME, KM_SLEEP) == 0); 4036 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 4037 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 4038 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4039 spa_load_l2cache(spa); 4040 spa_config_exit(spa, SCL_ALL, FTAG); 4041 spa->spa_l2cache.sav_sync = B_TRUE; 4042 } 4043 4044 /* 4045 * Check for any removed devices. 4046 */ 4047 if (spa->spa_autoreplace) { 4048 spa_aux_check_removed(&spa->spa_spares); 4049 spa_aux_check_removed(&spa->spa_l2cache); 4050 } 4051 4052 if (spa_writeable(spa)) { 4053 /* 4054 * Update the config cache to include the newly-imported pool. 4055 */ 4056 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 4057 } 4058 4059 /* 4060 * It's possible that the pool was expanded while it was exported. 4061 * We kick off an async task to handle this for us. 4062 */ 4063 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND); 4064 4065 mutex_exit(&spa_namespace_lock); 4066 spa_history_log_version(spa, "import"); 4067 4068 return (0); 4069 } 4070 4071 nvlist_t * 4072 spa_tryimport(nvlist_t *tryconfig) 4073 { 4074 nvlist_t *config = NULL; 4075 char *poolname; 4076 spa_t *spa; 4077 uint64_t state; 4078 int error; 4079 4080 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname)) 4081 return (NULL); 4082 4083 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state)) 4084 return (NULL); 4085 4086 /* 4087 * Create and initialize the spa structure. 4088 */ 4089 mutex_enter(&spa_namespace_lock); 4090 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL); 4091 spa_activate(spa, FREAD); 4092 4093 /* 4094 * Pass off the heavy lifting to spa_load(). 4095 * Pass TRUE for mosconfig because the user-supplied config 4096 * is actually the one to trust when doing an import. 4097 */ 4098 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE); 4099 4100 /* 4101 * If 'tryconfig' was at least parsable, return the current config. 4102 */ 4103 if (spa->spa_root_vdev != NULL) { 4104 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 4105 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, 4106 poolname) == 0); 4107 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 4108 state) == 0); 4109 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP, 4110 spa->spa_uberblock.ub_timestamp) == 0); 4111 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, 4112 spa->spa_load_info) == 0); 4113 4114 /* 4115 * If the bootfs property exists on this pool then we 4116 * copy it out so that external consumers can tell which 4117 * pools are bootable. 4118 */ 4119 if ((!error || error == EEXIST) && spa->spa_bootfs) { 4120 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 4121 4122 /* 4123 * We have to play games with the name since the 4124 * pool was opened as TRYIMPORT_NAME. 4125 */ 4126 if (dsl_dsobj_to_dsname(spa_name(spa), 4127 spa->spa_bootfs, tmpname) == 0) { 4128 char *cp; 4129 char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 4130 4131 cp = strchr(tmpname, '/'); 4132 if (cp == NULL) { 4133 (void) strlcpy(dsname, tmpname, 4134 MAXPATHLEN); 4135 } else { 4136 (void) snprintf(dsname, MAXPATHLEN, 4137 "%s/%s", poolname, ++cp); 4138 } 4139 VERIFY(nvlist_add_string(config, 4140 ZPOOL_CONFIG_BOOTFS, dsname) == 0); 4141 kmem_free(dsname, MAXPATHLEN); 4142 } 4143 kmem_free(tmpname, MAXPATHLEN); 4144 } 4145 4146 /* 4147 * Add the list of hot spares and level 2 cache devices. 4148 */ 4149 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 4150 spa_add_spares(spa, config); 4151 spa_add_l2cache(spa, config); 4152 spa_config_exit(spa, SCL_CONFIG, FTAG); 4153 } 4154 4155 spa_unload(spa); 4156 spa_deactivate(spa); 4157 spa_remove(spa); 4158 mutex_exit(&spa_namespace_lock); 4159 4160 return (config); 4161 } 4162 4163 /* 4164 * Pool export/destroy 4165 * 4166 * The act of destroying or exporting a pool is very simple. We make sure there 4167 * is no more pending I/O and any references to the pool are gone. Then, we 4168 * update the pool state and sync all the labels to disk, removing the 4169 * configuration from the cache afterwards. If the 'hardforce' flag is set, then 4170 * we don't sync the labels or remove the configuration cache. 4171 */ 4172 static int 4173 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig, 4174 boolean_t force, boolean_t hardforce) 4175 { 4176 spa_t *spa; 4177 4178 if (oldconfig) 4179 *oldconfig = NULL; 4180 4181 if (!(spa_mode_global & FWRITE)) 4182 return (SET_ERROR(EROFS)); 4183 4184 mutex_enter(&spa_namespace_lock); 4185 if ((spa = spa_lookup(pool)) == NULL) { 4186 mutex_exit(&spa_namespace_lock); 4187 return (SET_ERROR(ENOENT)); 4188 } 4189 4190 /* 4191 * Put a hold on the pool, drop the namespace lock, stop async tasks, 4192 * reacquire the namespace lock, and see if we can export. 4193 */ 4194 spa_open_ref(spa, FTAG); 4195 mutex_exit(&spa_namespace_lock); 4196 spa_async_suspend(spa); 4197 mutex_enter(&spa_namespace_lock); 4198 spa_close(spa, FTAG); 4199 4200 /* 4201 * The pool will be in core if it's openable, 4202 * in which case we can modify its state. 4203 */ 4204 if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) { 4205 /* 4206 * Objsets may be open only because they're dirty, so we 4207 * have to force it to sync before checking spa_refcnt. 4208 */ 4209 txg_wait_synced(spa->spa_dsl_pool, 0); 4210 4211 /* 4212 * A pool cannot be exported or destroyed if there are active 4213 * references. If we are resetting a pool, allow references by 4214 * fault injection handlers. 4215 */ 4216 if (!spa_refcount_zero(spa) || 4217 (spa->spa_inject_ref != 0 && 4218 new_state != POOL_STATE_UNINITIALIZED)) { 4219 spa_async_resume(spa); 4220 mutex_exit(&spa_namespace_lock); 4221 return (SET_ERROR(EBUSY)); 4222 } 4223 4224 /* 4225 * A pool cannot be exported if it has an active shared spare. 4226 * This is to prevent other pools stealing the active spare 4227 * from an exported pool. At user's own will, such pool can 4228 * be forcedly exported. 4229 */ 4230 if (!force && new_state == POOL_STATE_EXPORTED && 4231 spa_has_active_shared_spare(spa)) { 4232 spa_async_resume(spa); 4233 mutex_exit(&spa_namespace_lock); 4234 return (SET_ERROR(EXDEV)); 4235 } 4236 4237 /* 4238 * We want this to be reflected on every label, 4239 * so mark them all dirty. spa_unload() will do the 4240 * final sync that pushes these changes out. 4241 */ 4242 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) { 4243 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4244 spa->spa_state = new_state; 4245 spa->spa_final_txg = spa_last_synced_txg(spa) + 4246 TXG_DEFER_SIZE + 1; 4247 vdev_config_dirty(spa->spa_root_vdev); 4248 spa_config_exit(spa, SCL_ALL, FTAG); 4249 } 4250 } 4251 4252 spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY); 4253 4254 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 4255 spa_unload(spa); 4256 spa_deactivate(spa); 4257 } 4258 4259 if (oldconfig && spa->spa_config) 4260 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0); 4261 4262 if (new_state != POOL_STATE_UNINITIALIZED) { 4263 if (!hardforce) 4264 spa_config_sync(spa, B_TRUE, B_TRUE); 4265 spa_remove(spa); 4266 } 4267 mutex_exit(&spa_namespace_lock); 4268 4269 return (0); 4270 } 4271 4272 /* 4273 * Destroy a storage pool. 4274 */ 4275 int 4276 spa_destroy(char *pool) 4277 { 4278 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL, 4279 B_FALSE, B_FALSE)); 4280 } 4281 4282 /* 4283 * Export a storage pool. 4284 */ 4285 int 4286 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force, 4287 boolean_t hardforce) 4288 { 4289 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig, 4290 force, hardforce)); 4291 } 4292 4293 /* 4294 * Similar to spa_export(), this unloads the spa_t without actually removing it 4295 * from the namespace in any way. 4296 */ 4297 int 4298 spa_reset(char *pool) 4299 { 4300 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL, 4301 B_FALSE, B_FALSE)); 4302 } 4303 4304 /* 4305 * ========================================================================== 4306 * Device manipulation 4307 * ========================================================================== 4308 */ 4309 4310 /* 4311 * Add a device to a storage pool. 4312 */ 4313 int 4314 spa_vdev_add(spa_t *spa, nvlist_t *nvroot) 4315 { 4316 uint64_t txg, id; 4317 int error; 4318 vdev_t *rvd = spa->spa_root_vdev; 4319 vdev_t *vd, *tvd; 4320 nvlist_t **spares, **l2cache; 4321 uint_t nspares, nl2cache; 4322 4323 ASSERT(spa_writeable(spa)); 4324 4325 txg = spa_vdev_enter(spa); 4326 4327 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0, 4328 VDEV_ALLOC_ADD)) != 0) 4329 return (spa_vdev_exit(spa, NULL, txg, error)); 4330 4331 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */ 4332 4333 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, 4334 &nspares) != 0) 4335 nspares = 0; 4336 4337 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache, 4338 &nl2cache) != 0) 4339 nl2cache = 0; 4340 4341 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0) 4342 return (spa_vdev_exit(spa, vd, txg, EINVAL)); 4343 4344 if (vd->vdev_children != 0 && 4345 (error = vdev_create(vd, txg, B_FALSE)) != 0) 4346 return (spa_vdev_exit(spa, vd, txg, error)); 4347 4348 /* 4349 * We must validate the spares and l2cache devices after checking the 4350 * children. Otherwise, vdev_inuse() will blindly overwrite the spare. 4351 */ 4352 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0) 4353 return (spa_vdev_exit(spa, vd, txg, error)); 4354 4355 /* 4356 * Transfer each new top-level vdev from vd to rvd. 4357 */ 4358 for (int c = 0; c < vd->vdev_children; c++) { 4359 4360 /* 4361 * Set the vdev id to the first hole, if one exists. 4362 */ 4363 for (id = 0; id < rvd->vdev_children; id++) { 4364 if (rvd->vdev_child[id]->vdev_ishole) { 4365 vdev_free(rvd->vdev_child[id]); 4366 break; 4367 } 4368 } 4369 tvd = vd->vdev_child[c]; 4370 vdev_remove_child(vd, tvd); 4371 tvd->vdev_id = id; 4372 vdev_add_child(rvd, tvd); 4373 vdev_config_dirty(tvd); 4374 } 4375 4376 if (nspares != 0) { 4377 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares, 4378 ZPOOL_CONFIG_SPARES); 4379 spa_load_spares(spa); 4380 spa->spa_spares.sav_sync = B_TRUE; 4381 } 4382 4383 if (nl2cache != 0) { 4384 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache, 4385 ZPOOL_CONFIG_L2CACHE); 4386 spa_load_l2cache(spa); 4387 spa->spa_l2cache.sav_sync = B_TRUE; 4388 } 4389 4390 /* 4391 * We have to be careful when adding new vdevs to an existing pool. 4392 * If other threads start allocating from these vdevs before we 4393 * sync the config cache, and we lose power, then upon reboot we may 4394 * fail to open the pool because there are DVAs that the config cache 4395 * can't translate. Therefore, we first add the vdevs without 4396 * initializing metaslabs; sync the config cache (via spa_vdev_exit()); 4397 * and then let spa_config_update() initialize the new metaslabs. 4398 * 4399 * spa_load() checks for added-but-not-initialized vdevs, so that 4400 * if we lose power at any point in this sequence, the remaining 4401 * steps will be completed the next time we load the pool. 4402 */ 4403 (void) spa_vdev_exit(spa, vd, txg, 0); 4404 4405 mutex_enter(&spa_namespace_lock); 4406 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 4407 mutex_exit(&spa_namespace_lock); 4408 4409 return (0); 4410 } 4411 4412 /* 4413 * Attach a device to a mirror. The arguments are the path to any device 4414 * in the mirror, and the nvroot for the new device. If the path specifies 4415 * a device that is not mirrored, we automatically insert the mirror vdev. 4416 * 4417 * If 'replacing' is specified, the new device is intended to replace the 4418 * existing device; in this case the two devices are made into their own 4419 * mirror using the 'replacing' vdev, which is functionally identical to 4420 * the mirror vdev (it actually reuses all the same ops) but has a few 4421 * extra rules: you can't attach to it after it's been created, and upon 4422 * completion of resilvering, the first disk (the one being replaced) 4423 * is automatically detached. 4424 */ 4425 int 4426 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing) 4427 { 4428 uint64_t txg, dtl_max_txg; 4429 vdev_t *rvd = spa->spa_root_vdev; 4430 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd; 4431 vdev_ops_t *pvops; 4432 char *oldvdpath, *newvdpath; 4433 int newvd_isspare; 4434 int error; 4435 4436 ASSERT(spa_writeable(spa)); 4437 4438 txg = spa_vdev_enter(spa); 4439 4440 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE); 4441 4442 if (oldvd == NULL) 4443 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 4444 4445 if (!oldvd->vdev_ops->vdev_op_leaf) 4446 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4447 4448 pvd = oldvd->vdev_parent; 4449 4450 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0, 4451 VDEV_ALLOC_ATTACH)) != 0) 4452 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4453 4454 if (newrootvd->vdev_children != 1) 4455 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 4456 4457 newvd = newrootvd->vdev_child[0]; 4458 4459 if (!newvd->vdev_ops->vdev_op_leaf) 4460 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 4461 4462 if ((error = vdev_create(newrootvd, txg, replacing)) != 0) 4463 return (spa_vdev_exit(spa, newrootvd, txg, error)); 4464 4465 /* 4466 * Spares can't replace logs 4467 */ 4468 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare) 4469 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4470 4471 if (!replacing) { 4472 /* 4473 * For attach, the only allowable parent is a mirror or the root 4474 * vdev. 4475 */ 4476 if (pvd->vdev_ops != &vdev_mirror_ops && 4477 pvd->vdev_ops != &vdev_root_ops) 4478 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4479 4480 pvops = &vdev_mirror_ops; 4481 } else { 4482 /* 4483 * Active hot spares can only be replaced by inactive hot 4484 * spares. 4485 */ 4486 if (pvd->vdev_ops == &vdev_spare_ops && 4487 oldvd->vdev_isspare && 4488 !spa_has_spare(spa, newvd->vdev_guid)) 4489 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4490 4491 /* 4492 * If the source is a hot spare, and the parent isn't already a 4493 * spare, then we want to create a new hot spare. Otherwise, we 4494 * want to create a replacing vdev. The user is not allowed to 4495 * attach to a spared vdev child unless the 'isspare' state is 4496 * the same (spare replaces spare, non-spare replaces 4497 * non-spare). 4498 */ 4499 if (pvd->vdev_ops == &vdev_replacing_ops && 4500 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) { 4501 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4502 } else if (pvd->vdev_ops == &vdev_spare_ops && 4503 newvd->vdev_isspare != oldvd->vdev_isspare) { 4504 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4505 } 4506 4507 if (newvd->vdev_isspare) 4508 pvops = &vdev_spare_ops; 4509 else 4510 pvops = &vdev_replacing_ops; 4511 } 4512 4513 /* 4514 * Make sure the new device is big enough. 4515 */ 4516 if (newvd->vdev_asize < vdev_get_min_asize(oldvd)) 4517 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW)); 4518 4519 /* 4520 * The new device cannot have a higher alignment requirement 4521 * than the top-level vdev. 4522 */ 4523 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift) 4524 return (spa_vdev_exit(spa, newrootvd, txg, EDOM)); 4525 4526 /* 4527 * If this is an in-place replacement, update oldvd's path and devid 4528 * to make it distinguishable from newvd, and unopenable from now on. 4529 */ 4530 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) { 4531 spa_strfree(oldvd->vdev_path); 4532 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5, 4533 KM_SLEEP); 4534 (void) sprintf(oldvd->vdev_path, "%s/%s", 4535 newvd->vdev_path, "old"); 4536 if (oldvd->vdev_devid != NULL) { 4537 spa_strfree(oldvd->vdev_devid); 4538 oldvd->vdev_devid = NULL; 4539 } 4540 } 4541 4542 /* mark the device being resilvered */ 4543 newvd->vdev_resilver_txg = txg; 4544 4545 /* 4546 * If the parent is not a mirror, or if we're replacing, insert the new 4547 * mirror/replacing/spare vdev above oldvd. 4548 */ 4549 if (pvd->vdev_ops != pvops) 4550 pvd = vdev_add_parent(oldvd, pvops); 4551 4552 ASSERT(pvd->vdev_top->vdev_parent == rvd); 4553 ASSERT(pvd->vdev_ops == pvops); 4554 ASSERT(oldvd->vdev_parent == pvd); 4555 4556 /* 4557 * Extract the new device from its root and add it to pvd. 4558 */ 4559 vdev_remove_child(newrootvd, newvd); 4560 newvd->vdev_id = pvd->vdev_children; 4561 newvd->vdev_crtxg = oldvd->vdev_crtxg; 4562 vdev_add_child(pvd, newvd); 4563 4564 tvd = newvd->vdev_top; 4565 ASSERT(pvd->vdev_top == tvd); 4566 ASSERT(tvd->vdev_parent == rvd); 4567 4568 vdev_config_dirty(tvd); 4569 4570 /* 4571 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account 4572 * for any dmu_sync-ed blocks. It will propagate upward when 4573 * spa_vdev_exit() calls vdev_dtl_reassess(). 4574 */ 4575 dtl_max_txg = txg + TXG_CONCURRENT_STATES; 4576 4577 vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL, 4578 dtl_max_txg - TXG_INITIAL); 4579 4580 if (newvd->vdev_isspare) { 4581 spa_spare_activate(newvd); 4582 spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE); 4583 } 4584 4585 oldvdpath = spa_strdup(oldvd->vdev_path); 4586 newvdpath = spa_strdup(newvd->vdev_path); 4587 newvd_isspare = newvd->vdev_isspare; 4588 4589 /* 4590 * Mark newvd's DTL dirty in this txg. 4591 */ 4592 vdev_dirty(tvd, VDD_DTL, newvd, txg); 4593 4594 /* 4595 * Schedule the resilver to restart in the future. We do this to 4596 * ensure that dmu_sync-ed blocks have been stitched into the 4597 * respective datasets. 4598 */ 4599 dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg); 4600 4601 /* 4602 * Commit the config 4603 */ 4604 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0); 4605 4606 spa_history_log_internal(spa, "vdev attach", NULL, 4607 "%s vdev=%s %s vdev=%s", 4608 replacing && newvd_isspare ? "spare in" : 4609 replacing ? "replace" : "attach", newvdpath, 4610 replacing ? "for" : "to", oldvdpath); 4611 4612 spa_strfree(oldvdpath); 4613 spa_strfree(newvdpath); 4614 4615 if (spa->spa_bootfs) 4616 spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH); 4617 4618 return (0); 4619 } 4620 4621 /* 4622 * Detach a device from a mirror or replacing vdev. 4623 * 4624 * If 'replace_done' is specified, only detach if the parent 4625 * is a replacing vdev. 4626 */ 4627 int 4628 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done) 4629 { 4630 uint64_t txg; 4631 int error; 4632 vdev_t *rvd = spa->spa_root_vdev; 4633 vdev_t *vd, *pvd, *cvd, *tvd; 4634 boolean_t unspare = B_FALSE; 4635 uint64_t unspare_guid = 0; 4636 char *vdpath; 4637 4638 ASSERT(spa_writeable(spa)); 4639 4640 txg = spa_vdev_enter(spa); 4641 4642 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 4643 4644 if (vd == NULL) 4645 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 4646 4647 if (!vd->vdev_ops->vdev_op_leaf) 4648 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4649 4650 pvd = vd->vdev_parent; 4651 4652 /* 4653 * If the parent/child relationship is not as expected, don't do it. 4654 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing 4655 * vdev that's replacing B with C. The user's intent in replacing 4656 * is to go from M(A,B) to M(A,C). If the user decides to cancel 4657 * the replace by detaching C, the expected behavior is to end up 4658 * M(A,B). But suppose that right after deciding to detach C, 4659 * the replacement of B completes. We would have M(A,C), and then 4660 * ask to detach C, which would leave us with just A -- not what 4661 * the user wanted. To prevent this, we make sure that the 4662 * parent/child relationship hasn't changed -- in this example, 4663 * that C's parent is still the replacing vdev R. 4664 */ 4665 if (pvd->vdev_guid != pguid && pguid != 0) 4666 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 4667 4668 /* 4669 * Only 'replacing' or 'spare' vdevs can be replaced. 4670 */ 4671 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops && 4672 pvd->vdev_ops != &vdev_spare_ops) 4673 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4674 4675 ASSERT(pvd->vdev_ops != &vdev_spare_ops || 4676 spa_version(spa) >= SPA_VERSION_SPARES); 4677 4678 /* 4679 * Only mirror, replacing, and spare vdevs support detach. 4680 */ 4681 if (pvd->vdev_ops != &vdev_replacing_ops && 4682 pvd->vdev_ops != &vdev_mirror_ops && 4683 pvd->vdev_ops != &vdev_spare_ops) 4684 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4685 4686 /* 4687 * If this device has the only valid copy of some data, 4688 * we cannot safely detach it. 4689 */ 4690 if (vdev_dtl_required(vd)) 4691 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 4692 4693 ASSERT(pvd->vdev_children >= 2); 4694 4695 /* 4696 * If we are detaching the second disk from a replacing vdev, then 4697 * check to see if we changed the original vdev's path to have "/old" 4698 * at the end in spa_vdev_attach(). If so, undo that change now. 4699 */ 4700 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 && 4701 vd->vdev_path != NULL) { 4702 size_t len = strlen(vd->vdev_path); 4703 4704 for (int c = 0; c < pvd->vdev_children; c++) { 4705 cvd = pvd->vdev_child[c]; 4706 4707 if (cvd == vd || cvd->vdev_path == NULL) 4708 continue; 4709 4710 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 && 4711 strcmp(cvd->vdev_path + len, "/old") == 0) { 4712 spa_strfree(cvd->vdev_path); 4713 cvd->vdev_path = spa_strdup(vd->vdev_path); 4714 break; 4715 } 4716 } 4717 } 4718 4719 /* 4720 * If we are detaching the original disk from a spare, then it implies 4721 * that the spare should become a real disk, and be removed from the 4722 * active spare list for the pool. 4723 */ 4724 if (pvd->vdev_ops == &vdev_spare_ops && 4725 vd->vdev_id == 0 && 4726 pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare) 4727 unspare = B_TRUE; 4728 4729 /* 4730 * Erase the disk labels so the disk can be used for other things. 4731 * This must be done after all other error cases are handled, 4732 * but before we disembowel vd (so we can still do I/O to it). 4733 * But if we can't do it, don't treat the error as fatal -- 4734 * it may be that the unwritability of the disk is the reason 4735 * it's being detached! 4736 */ 4737 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 4738 4739 /* 4740 * Remove vd from its parent and compact the parent's children. 4741 */ 4742 vdev_remove_child(pvd, vd); 4743 vdev_compact_children(pvd); 4744 4745 /* 4746 * Remember one of the remaining children so we can get tvd below. 4747 */ 4748 cvd = pvd->vdev_child[pvd->vdev_children - 1]; 4749 4750 /* 4751 * If we need to remove the remaining child from the list of hot spares, 4752 * do it now, marking the vdev as no longer a spare in the process. 4753 * We must do this before vdev_remove_parent(), because that can 4754 * change the GUID if it creates a new toplevel GUID. For a similar 4755 * reason, we must remove the spare now, in the same txg as the detach; 4756 * otherwise someone could attach a new sibling, change the GUID, and 4757 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail. 4758 */ 4759 if (unspare) { 4760 ASSERT(cvd->vdev_isspare); 4761 spa_spare_remove(cvd); 4762 unspare_guid = cvd->vdev_guid; 4763 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE); 4764 cvd->vdev_unspare = B_TRUE; 4765 } 4766 4767 /* 4768 * If the parent mirror/replacing vdev only has one child, 4769 * the parent is no longer needed. Remove it from the tree. 4770 */ 4771 if (pvd->vdev_children == 1) { 4772 if (pvd->vdev_ops == &vdev_spare_ops) 4773 cvd->vdev_unspare = B_FALSE; 4774 vdev_remove_parent(cvd); 4775 } 4776 4777 4778 /* 4779 * We don't set tvd until now because the parent we just removed 4780 * may have been the previous top-level vdev. 4781 */ 4782 tvd = cvd->vdev_top; 4783 ASSERT(tvd->vdev_parent == rvd); 4784 4785 /* 4786 * Reevaluate the parent vdev state. 4787 */ 4788 vdev_propagate_state(cvd); 4789 4790 /* 4791 * If the 'autoexpand' property is set on the pool then automatically 4792 * try to expand the size of the pool. For example if the device we 4793 * just detached was smaller than the others, it may be possible to 4794 * add metaslabs (i.e. grow the pool). We need to reopen the vdev 4795 * first so that we can obtain the updated sizes of the leaf vdevs. 4796 */ 4797 if (spa->spa_autoexpand) { 4798 vdev_reopen(tvd); 4799 vdev_expand(tvd, txg); 4800 } 4801 4802 vdev_config_dirty(tvd); 4803 4804 /* 4805 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that 4806 * vd->vdev_detached is set and free vd's DTL object in syncing context. 4807 * But first make sure we're not on any *other* txg's DTL list, to 4808 * prevent vd from being accessed after it's freed. 4809 */ 4810 vdpath = spa_strdup(vd->vdev_path); 4811 for (int t = 0; t < TXG_SIZE; t++) 4812 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t); 4813 vd->vdev_detached = B_TRUE; 4814 vdev_dirty(tvd, VDD_DTL, vd, txg); 4815 4816 spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE); 4817 4818 /* hang on to the spa before we release the lock */ 4819 spa_open_ref(spa, FTAG); 4820 4821 error = spa_vdev_exit(spa, vd, txg, 0); 4822 4823 spa_history_log_internal(spa, "detach", NULL, 4824 "vdev=%s", vdpath); 4825 spa_strfree(vdpath); 4826 4827 /* 4828 * If this was the removal of the original device in a hot spare vdev, 4829 * then we want to go through and remove the device from the hot spare 4830 * list of every other pool. 4831 */ 4832 if (unspare) { 4833 spa_t *altspa = NULL; 4834 4835 mutex_enter(&spa_namespace_lock); 4836 while ((altspa = spa_next(altspa)) != NULL) { 4837 if (altspa->spa_state != POOL_STATE_ACTIVE || 4838 altspa == spa) 4839 continue; 4840 4841 spa_open_ref(altspa, FTAG); 4842 mutex_exit(&spa_namespace_lock); 4843 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE); 4844 mutex_enter(&spa_namespace_lock); 4845 spa_close(altspa, FTAG); 4846 } 4847 mutex_exit(&spa_namespace_lock); 4848 4849 /* search the rest of the vdevs for spares to remove */ 4850 spa_vdev_resilver_done(spa); 4851 } 4852 4853 /* all done with the spa; OK to release */ 4854 mutex_enter(&spa_namespace_lock); 4855 spa_close(spa, FTAG); 4856 mutex_exit(&spa_namespace_lock); 4857 4858 return (error); 4859 } 4860 4861 /* 4862 * Split a set of devices from their mirrors, and create a new pool from them. 4863 */ 4864 int 4865 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config, 4866 nvlist_t *props, boolean_t exp) 4867 { 4868 int error = 0; 4869 uint64_t txg, *glist; 4870 spa_t *newspa; 4871 uint_t c, children, lastlog; 4872 nvlist_t **child, *nvl, *tmp; 4873 dmu_tx_t *tx; 4874 char *altroot = NULL; 4875 vdev_t *rvd, **vml = NULL; /* vdev modify list */ 4876 boolean_t activate_slog; 4877 4878 ASSERT(spa_writeable(spa)); 4879 4880 txg = spa_vdev_enter(spa); 4881 4882 /* clear the log and flush everything up to now */ 4883 activate_slog = spa_passivate_log(spa); 4884 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 4885 error = spa_offline_log(spa); 4886 txg = spa_vdev_config_enter(spa); 4887 4888 if (activate_slog) 4889 spa_activate_log(spa); 4890 4891 if (error != 0) 4892 return (spa_vdev_exit(spa, NULL, txg, error)); 4893 4894 /* check new spa name before going any further */ 4895 if (spa_lookup(newname) != NULL) 4896 return (spa_vdev_exit(spa, NULL, txg, EEXIST)); 4897 4898 /* 4899 * scan through all the children to ensure they're all mirrors 4900 */ 4901 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 || 4902 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child, 4903 &children) != 0) 4904 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4905 4906 /* first, check to ensure we've got the right child count */ 4907 rvd = spa->spa_root_vdev; 4908 lastlog = 0; 4909 for (c = 0; c < rvd->vdev_children; c++) { 4910 vdev_t *vd = rvd->vdev_child[c]; 4911 4912 /* don't count the holes & logs as children */ 4913 if (vd->vdev_islog || vd->vdev_ishole) { 4914 if (lastlog == 0) 4915 lastlog = c; 4916 continue; 4917 } 4918 4919 lastlog = 0; 4920 } 4921 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children)) 4922 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4923 4924 /* next, ensure no spare or cache devices are part of the split */ 4925 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 || 4926 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0) 4927 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4928 4929 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP); 4930 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP); 4931 4932 /* then, loop over each vdev and validate it */ 4933 for (c = 0; c < children; c++) { 4934 uint64_t is_hole = 0; 4935 4936 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE, 4937 &is_hole); 4938 4939 if (is_hole != 0) { 4940 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole || 4941 spa->spa_root_vdev->vdev_child[c]->vdev_islog) { 4942 continue; 4943 } else { 4944 error = SET_ERROR(EINVAL); 4945 break; 4946 } 4947 } 4948 4949 /* which disk is going to be split? */ 4950 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID, 4951 &glist[c]) != 0) { 4952 error = SET_ERROR(EINVAL); 4953 break; 4954 } 4955 4956 /* look it up in the spa */ 4957 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE); 4958 if (vml[c] == NULL) { 4959 error = SET_ERROR(ENODEV); 4960 break; 4961 } 4962 4963 /* make sure there's nothing stopping the split */ 4964 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops || 4965 vml[c]->vdev_islog || 4966 vml[c]->vdev_ishole || 4967 vml[c]->vdev_isspare || 4968 vml[c]->vdev_isl2cache || 4969 !vdev_writeable(vml[c]) || 4970 vml[c]->vdev_children != 0 || 4971 vml[c]->vdev_state != VDEV_STATE_HEALTHY || 4972 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) { 4973 error = SET_ERROR(EINVAL); 4974 break; 4975 } 4976 4977 if (vdev_dtl_required(vml[c])) { 4978 error = SET_ERROR(EBUSY); 4979 break; 4980 } 4981 4982 /* we need certain info from the top level */ 4983 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY, 4984 vml[c]->vdev_top->vdev_ms_array) == 0); 4985 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT, 4986 vml[c]->vdev_top->vdev_ms_shift) == 0); 4987 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE, 4988 vml[c]->vdev_top->vdev_asize) == 0); 4989 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT, 4990 vml[c]->vdev_top->vdev_ashift) == 0); 4991 } 4992 4993 if (error != 0) { 4994 kmem_free(vml, children * sizeof (vdev_t *)); 4995 kmem_free(glist, children * sizeof (uint64_t)); 4996 return (spa_vdev_exit(spa, NULL, txg, error)); 4997 } 4998 4999 /* stop writers from using the disks */ 5000 for (c = 0; c < children; c++) { 5001 if (vml[c] != NULL) 5002 vml[c]->vdev_offline = B_TRUE; 5003 } 5004 vdev_reopen(spa->spa_root_vdev); 5005 5006 /* 5007 * Temporarily record the splitting vdevs in the spa config. This 5008 * will disappear once the config is regenerated. 5009 */ 5010 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0); 5011 VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 5012 glist, children) == 0); 5013 kmem_free(glist, children * sizeof (uint64_t)); 5014 5015 mutex_enter(&spa->spa_props_lock); 5016 VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT, 5017 nvl) == 0); 5018 mutex_exit(&spa->spa_props_lock); 5019 spa->spa_config_splitting = nvl; 5020 vdev_config_dirty(spa->spa_root_vdev); 5021 5022 /* configure and create the new pool */ 5023 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0); 5024 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 5025 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0); 5026 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, 5027 spa_version(spa)) == 0); 5028 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, 5029 spa->spa_config_txg) == 0); 5030 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID, 5031 spa_generate_guid(NULL)) == 0); 5032 (void) nvlist_lookup_string(props, 5033 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 5034 5035 /* add the new pool to the namespace */ 5036 newspa = spa_add(newname, config, altroot); 5037 newspa->spa_config_txg = spa->spa_config_txg; 5038 spa_set_log_state(newspa, SPA_LOG_CLEAR); 5039 5040 /* release the spa config lock, retaining the namespace lock */ 5041 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 5042 5043 if (zio_injection_enabled) 5044 zio_handle_panic_injection(spa, FTAG, 1); 5045 5046 spa_activate(newspa, spa_mode_global); 5047 spa_async_suspend(newspa); 5048 5049 /* create the new pool from the disks of the original pool */ 5050 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE); 5051 if (error) 5052 goto out; 5053 5054 /* if that worked, generate a real config for the new pool */ 5055 if (newspa->spa_root_vdev != NULL) { 5056 VERIFY(nvlist_alloc(&newspa->spa_config_splitting, 5057 NV_UNIQUE_NAME, KM_SLEEP) == 0); 5058 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting, 5059 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0); 5060 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL, 5061 B_TRUE)); 5062 } 5063 5064 /* set the props */ 5065 if (props != NULL) { 5066 spa_configfile_set(newspa, props, B_FALSE); 5067 error = spa_prop_set(newspa, props); 5068 if (error) 5069 goto out; 5070 } 5071 5072 /* flush everything */ 5073 txg = spa_vdev_config_enter(newspa); 5074 vdev_config_dirty(newspa->spa_root_vdev); 5075 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG); 5076 5077 if (zio_injection_enabled) 5078 zio_handle_panic_injection(spa, FTAG, 2); 5079 5080 spa_async_resume(newspa); 5081 5082 /* finally, update the original pool's config */ 5083 txg = spa_vdev_config_enter(spa); 5084 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 5085 error = dmu_tx_assign(tx, TXG_WAIT); 5086 if (error != 0) 5087 dmu_tx_abort(tx); 5088 for (c = 0; c < children; c++) { 5089 if (vml[c] != NULL) { 5090 vdev_split(vml[c]); 5091 if (error == 0) 5092 spa_history_log_internal(spa, "detach", tx, 5093 "vdev=%s", vml[c]->vdev_path); 5094 vdev_free(vml[c]); 5095 } 5096 } 5097 vdev_config_dirty(spa->spa_root_vdev); 5098 spa->spa_config_splitting = NULL; 5099 nvlist_free(nvl); 5100 if (error == 0) 5101 dmu_tx_commit(tx); 5102 (void) spa_vdev_exit(spa, NULL, txg, 0); 5103 5104 if (zio_injection_enabled) 5105 zio_handle_panic_injection(spa, FTAG, 3); 5106 5107 /* split is complete; log a history record */ 5108 spa_history_log_internal(newspa, "split", NULL, 5109 "from pool %s", spa_name(spa)); 5110 5111 kmem_free(vml, children * sizeof (vdev_t *)); 5112 5113 /* if we're not going to mount the filesystems in userland, export */ 5114 if (exp) 5115 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL, 5116 B_FALSE, B_FALSE); 5117 5118 return (error); 5119 5120 out: 5121 spa_unload(newspa); 5122 spa_deactivate(newspa); 5123 spa_remove(newspa); 5124 5125 txg = spa_vdev_config_enter(spa); 5126 5127 /* re-online all offlined disks */ 5128 for (c = 0; c < children; c++) { 5129 if (vml[c] != NULL) 5130 vml[c]->vdev_offline = B_FALSE; 5131 } 5132 vdev_reopen(spa->spa_root_vdev); 5133 5134 nvlist_free(spa->spa_config_splitting); 5135 spa->spa_config_splitting = NULL; 5136 (void) spa_vdev_exit(spa, NULL, txg, error); 5137 5138 kmem_free(vml, children * sizeof (vdev_t *)); 5139 return (error); 5140 } 5141 5142 static nvlist_t * 5143 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid) 5144 { 5145 for (int i = 0; i < count; i++) { 5146 uint64_t guid; 5147 5148 VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID, 5149 &guid) == 0); 5150 5151 if (guid == target_guid) 5152 return (nvpp[i]); 5153 } 5154 5155 return (NULL); 5156 } 5157 5158 static void 5159 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count, 5160 nvlist_t *dev_to_remove) 5161 { 5162 nvlist_t **newdev = NULL; 5163 5164 if (count > 1) 5165 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP); 5166 5167 for (int i = 0, j = 0; i < count; i++) { 5168 if (dev[i] == dev_to_remove) 5169 continue; 5170 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0); 5171 } 5172 5173 VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0); 5174 VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0); 5175 5176 for (int i = 0; i < count - 1; i++) 5177 nvlist_free(newdev[i]); 5178 5179 if (count > 1) 5180 kmem_free(newdev, (count - 1) * sizeof (void *)); 5181 } 5182 5183 /* 5184 * Evacuate the device. 5185 */ 5186 static int 5187 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd) 5188 { 5189 uint64_t txg; 5190 int error = 0; 5191 5192 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 5193 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 5194 ASSERT(vd == vd->vdev_top); 5195 5196 /* 5197 * Evacuate the device. We don't hold the config lock as writer 5198 * since we need to do I/O but we do keep the 5199 * spa_namespace_lock held. Once this completes the device 5200 * should no longer have any blocks allocated on it. 5201 */ 5202 if (vd->vdev_islog) { 5203 if (vd->vdev_stat.vs_alloc != 0) 5204 error = spa_offline_log(spa); 5205 } else { 5206 error = SET_ERROR(ENOTSUP); 5207 } 5208 5209 if (error) 5210 return (error); 5211 5212 /* 5213 * The evacuation succeeded. Remove any remaining MOS metadata 5214 * associated with this vdev, and wait for these changes to sync. 5215 */ 5216 ASSERT0(vd->vdev_stat.vs_alloc); 5217 txg = spa_vdev_config_enter(spa); 5218 vd->vdev_removing = B_TRUE; 5219 vdev_dirty_leaves(vd, VDD_DTL, txg); 5220 vdev_config_dirty(vd); 5221 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 5222 5223 return (0); 5224 } 5225 5226 /* 5227 * Complete the removal by cleaning up the namespace. 5228 */ 5229 static void 5230 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd) 5231 { 5232 vdev_t *rvd = spa->spa_root_vdev; 5233 uint64_t id = vd->vdev_id; 5234 boolean_t last_vdev = (id == (rvd->vdev_children - 1)); 5235 5236 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 5237 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 5238 ASSERT(vd == vd->vdev_top); 5239 5240 /* 5241 * Only remove any devices which are empty. 5242 */ 5243 if (vd->vdev_stat.vs_alloc != 0) 5244 return; 5245 5246 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 5247 5248 if (list_link_active(&vd->vdev_state_dirty_node)) 5249 vdev_state_clean(vd); 5250 if (list_link_active(&vd->vdev_config_dirty_node)) 5251 vdev_config_clean(vd); 5252 5253 vdev_free(vd); 5254 5255 if (last_vdev) { 5256 vdev_compact_children(rvd); 5257 } else { 5258 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops); 5259 vdev_add_child(rvd, vd); 5260 } 5261 vdev_config_dirty(rvd); 5262 5263 /* 5264 * Reassess the health of our root vdev. 5265 */ 5266 vdev_reopen(rvd); 5267 } 5268 5269 /* 5270 * Remove a device from the pool - 5271 * 5272 * Removing a device from the vdev namespace requires several steps 5273 * and can take a significant amount of time. As a result we use 5274 * the spa_vdev_config_[enter/exit] functions which allow us to 5275 * grab and release the spa_config_lock while still holding the namespace 5276 * lock. During each step the configuration is synced out. 5277 * 5278 * Currently, this supports removing only hot spares, slogs, and level 2 ARC 5279 * devices. 5280 */ 5281 int 5282 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare) 5283 { 5284 vdev_t *vd; 5285 metaslab_group_t *mg; 5286 nvlist_t **spares, **l2cache, *nv; 5287 uint64_t txg = 0; 5288 uint_t nspares, nl2cache; 5289 int error = 0; 5290 boolean_t locked = MUTEX_HELD(&spa_namespace_lock); 5291 5292 ASSERT(spa_writeable(spa)); 5293 5294 if (!locked) 5295 txg = spa_vdev_enter(spa); 5296 5297 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 5298 5299 if (spa->spa_spares.sav_vdevs != NULL && 5300 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 5301 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 && 5302 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) { 5303 /* 5304 * Only remove the hot spare if it's not currently in use 5305 * in this pool. 5306 */ 5307 if (vd == NULL || unspare) { 5308 spa_vdev_remove_aux(spa->spa_spares.sav_config, 5309 ZPOOL_CONFIG_SPARES, spares, nspares, nv); 5310 spa_load_spares(spa); 5311 spa->spa_spares.sav_sync = B_TRUE; 5312 } else { 5313 error = SET_ERROR(EBUSY); 5314 } 5315 } else if (spa->spa_l2cache.sav_vdevs != NULL && 5316 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 5317 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 && 5318 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) { 5319 /* 5320 * Cache devices can always be removed. 5321 */ 5322 spa_vdev_remove_aux(spa->spa_l2cache.sav_config, 5323 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv); 5324 spa_load_l2cache(spa); 5325 spa->spa_l2cache.sav_sync = B_TRUE; 5326 } else if (vd != NULL && vd->vdev_islog) { 5327 ASSERT(!locked); 5328 ASSERT(vd == vd->vdev_top); 5329 5330 mg = vd->vdev_mg; 5331 5332 /* 5333 * Stop allocating from this vdev. 5334 */ 5335 metaslab_group_passivate(mg); 5336 5337 /* 5338 * Wait for the youngest allocations and frees to sync, 5339 * and then wait for the deferral of those frees to finish. 5340 */ 5341 spa_vdev_config_exit(spa, NULL, 5342 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG); 5343 5344 /* 5345 * Attempt to evacuate the vdev. 5346 */ 5347 error = spa_vdev_remove_evacuate(spa, vd); 5348 5349 txg = spa_vdev_config_enter(spa); 5350 5351 /* 5352 * If we couldn't evacuate the vdev, unwind. 5353 */ 5354 if (error) { 5355 metaslab_group_activate(mg); 5356 return (spa_vdev_exit(spa, NULL, txg, error)); 5357 } 5358 5359 /* 5360 * Clean up the vdev namespace. 5361 */ 5362 spa_vdev_remove_from_namespace(spa, vd); 5363 5364 } else if (vd != NULL) { 5365 /* 5366 * Normal vdevs cannot be removed (yet). 5367 */ 5368 error = SET_ERROR(ENOTSUP); 5369 } else { 5370 /* 5371 * There is no vdev of any kind with the specified guid. 5372 */ 5373 error = SET_ERROR(ENOENT); 5374 } 5375 5376 if (!locked) 5377 return (spa_vdev_exit(spa, NULL, txg, error)); 5378 5379 return (error); 5380 } 5381 5382 /* 5383 * Find any device that's done replacing, or a vdev marked 'unspare' that's 5384 * currently spared, so we can detach it. 5385 */ 5386 static vdev_t * 5387 spa_vdev_resilver_done_hunt(vdev_t *vd) 5388 { 5389 vdev_t *newvd, *oldvd; 5390 5391 for (int c = 0; c < vd->vdev_children; c++) { 5392 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]); 5393 if (oldvd != NULL) 5394 return (oldvd); 5395 } 5396 5397 /* 5398 * Check for a completed replacement. We always consider the first 5399 * vdev in the list to be the oldest vdev, and the last one to be 5400 * the newest (see spa_vdev_attach() for how that works). In 5401 * the case where the newest vdev is faulted, we will not automatically 5402 * remove it after a resilver completes. This is OK as it will require 5403 * user intervention to determine which disk the admin wishes to keep. 5404 */ 5405 if (vd->vdev_ops == &vdev_replacing_ops) { 5406 ASSERT(vd->vdev_children > 1); 5407 5408 newvd = vd->vdev_child[vd->vdev_children - 1]; 5409 oldvd = vd->vdev_child[0]; 5410 5411 if (vdev_dtl_empty(newvd, DTL_MISSING) && 5412 vdev_dtl_empty(newvd, DTL_OUTAGE) && 5413 !vdev_dtl_required(oldvd)) 5414 return (oldvd); 5415 } 5416 5417 /* 5418 * Check for a completed resilver with the 'unspare' flag set. 5419 */ 5420 if (vd->vdev_ops == &vdev_spare_ops) { 5421 vdev_t *first = vd->vdev_child[0]; 5422 vdev_t *last = vd->vdev_child[vd->vdev_children - 1]; 5423 5424 if (last->vdev_unspare) { 5425 oldvd = first; 5426 newvd = last; 5427 } else if (first->vdev_unspare) { 5428 oldvd = last; 5429 newvd = first; 5430 } else { 5431 oldvd = NULL; 5432 } 5433 5434 if (oldvd != NULL && 5435 vdev_dtl_empty(newvd, DTL_MISSING) && 5436 vdev_dtl_empty(newvd, DTL_OUTAGE) && 5437 !vdev_dtl_required(oldvd)) 5438 return (oldvd); 5439 5440 /* 5441 * If there are more than two spares attached to a disk, 5442 * and those spares are not required, then we want to 5443 * attempt to free them up now so that they can be used 5444 * by other pools. Once we're back down to a single 5445 * disk+spare, we stop removing them. 5446 */ 5447 if (vd->vdev_children > 2) { 5448 newvd = vd->vdev_child[1]; 5449 5450 if (newvd->vdev_isspare && last->vdev_isspare && 5451 vdev_dtl_empty(last, DTL_MISSING) && 5452 vdev_dtl_empty(last, DTL_OUTAGE) && 5453 !vdev_dtl_required(newvd)) 5454 return (newvd); 5455 } 5456 } 5457 5458 return (NULL); 5459 } 5460 5461 static void 5462 spa_vdev_resilver_done(spa_t *spa) 5463 { 5464 vdev_t *vd, *pvd, *ppvd; 5465 uint64_t guid, sguid, pguid, ppguid; 5466 5467 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5468 5469 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) { 5470 pvd = vd->vdev_parent; 5471 ppvd = pvd->vdev_parent; 5472 guid = vd->vdev_guid; 5473 pguid = pvd->vdev_guid; 5474 ppguid = ppvd->vdev_guid; 5475 sguid = 0; 5476 /* 5477 * If we have just finished replacing a hot spared device, then 5478 * we need to detach the parent's first child (the original hot 5479 * spare) as well. 5480 */ 5481 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 && 5482 ppvd->vdev_children == 2) { 5483 ASSERT(pvd->vdev_ops == &vdev_replacing_ops); 5484 sguid = ppvd->vdev_child[1]->vdev_guid; 5485 } 5486 ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd)); 5487 5488 spa_config_exit(spa, SCL_ALL, FTAG); 5489 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0) 5490 return; 5491 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0) 5492 return; 5493 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5494 } 5495 5496 spa_config_exit(spa, SCL_ALL, FTAG); 5497 } 5498 5499 /* 5500 * Update the stored path or FRU for this vdev. 5501 */ 5502 int 5503 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value, 5504 boolean_t ispath) 5505 { 5506 vdev_t *vd; 5507 boolean_t sync = B_FALSE; 5508 5509 ASSERT(spa_writeable(spa)); 5510 5511 spa_vdev_state_enter(spa, SCL_ALL); 5512 5513 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 5514 return (spa_vdev_state_exit(spa, NULL, ENOENT)); 5515 5516 if (!vd->vdev_ops->vdev_op_leaf) 5517 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 5518 5519 if (ispath) { 5520 if (strcmp(value, vd->vdev_path) != 0) { 5521 spa_strfree(vd->vdev_path); 5522 vd->vdev_path = spa_strdup(value); 5523 sync = B_TRUE; 5524 } 5525 } else { 5526 if (vd->vdev_fru == NULL) { 5527 vd->vdev_fru = spa_strdup(value); 5528 sync = B_TRUE; 5529 } else if (strcmp(value, vd->vdev_fru) != 0) { 5530 spa_strfree(vd->vdev_fru); 5531 vd->vdev_fru = spa_strdup(value); 5532 sync = B_TRUE; 5533 } 5534 } 5535 5536 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0)); 5537 } 5538 5539 int 5540 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath) 5541 { 5542 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE)); 5543 } 5544 5545 int 5546 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru) 5547 { 5548 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE)); 5549 } 5550 5551 /* 5552 * ========================================================================== 5553 * SPA Scanning 5554 * ========================================================================== 5555 */ 5556 5557 int 5558 spa_scan_stop(spa_t *spa) 5559 { 5560 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 5561 if (dsl_scan_resilvering(spa->spa_dsl_pool)) 5562 return (SET_ERROR(EBUSY)); 5563 return (dsl_scan_cancel(spa->spa_dsl_pool)); 5564 } 5565 5566 int 5567 spa_scan(spa_t *spa, pool_scan_func_t func) 5568 { 5569 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 5570 5571 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE) 5572 return (SET_ERROR(ENOTSUP)); 5573 5574 /* 5575 * If a resilver was requested, but there is no DTL on a 5576 * writeable leaf device, we have nothing to do. 5577 */ 5578 if (func == POOL_SCAN_RESILVER && 5579 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) { 5580 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 5581 return (0); 5582 } 5583 5584 return (dsl_scan(spa->spa_dsl_pool, func)); 5585 } 5586 5587 /* 5588 * ========================================================================== 5589 * SPA async task processing 5590 * ========================================================================== 5591 */ 5592 5593 static void 5594 spa_async_remove(spa_t *spa, vdev_t *vd) 5595 { 5596 if (vd->vdev_remove_wanted) { 5597 vd->vdev_remove_wanted = B_FALSE; 5598 vd->vdev_delayed_close = B_FALSE; 5599 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE); 5600 5601 /* 5602 * We want to clear the stats, but we don't want to do a full 5603 * vdev_clear() as that will cause us to throw away 5604 * degraded/faulted state as well as attempt to reopen the 5605 * device, all of which is a waste. 5606 */ 5607 vd->vdev_stat.vs_read_errors = 0; 5608 vd->vdev_stat.vs_write_errors = 0; 5609 vd->vdev_stat.vs_checksum_errors = 0; 5610 5611 vdev_state_dirty(vd->vdev_top); 5612 } 5613 5614 for (int c = 0; c < vd->vdev_children; c++) 5615 spa_async_remove(spa, vd->vdev_child[c]); 5616 } 5617 5618 static void 5619 spa_async_probe(spa_t *spa, vdev_t *vd) 5620 { 5621 if (vd->vdev_probe_wanted) { 5622 vd->vdev_probe_wanted = B_FALSE; 5623 vdev_reopen(vd); /* vdev_open() does the actual probe */ 5624 } 5625 5626 for (int c = 0; c < vd->vdev_children; c++) 5627 spa_async_probe(spa, vd->vdev_child[c]); 5628 } 5629 5630 static void 5631 spa_async_autoexpand(spa_t *spa, vdev_t *vd) 5632 { 5633 sysevent_id_t eid; 5634 nvlist_t *attr; 5635 char *physpath; 5636 5637 if (!spa->spa_autoexpand) 5638 return; 5639 5640 for (int c = 0; c < vd->vdev_children; c++) { 5641 vdev_t *cvd = vd->vdev_child[c]; 5642 spa_async_autoexpand(spa, cvd); 5643 } 5644 5645 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL) 5646 return; 5647 5648 physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP); 5649 (void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath); 5650 5651 VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0); 5652 VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0); 5653 5654 (void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS, 5655 ESC_DEV_DLE, attr, &eid, DDI_SLEEP); 5656 5657 nvlist_free(attr); 5658 kmem_free(physpath, MAXPATHLEN); 5659 } 5660 5661 static void 5662 spa_async_thread(spa_t *spa) 5663 { 5664 int tasks; 5665 5666 ASSERT(spa->spa_sync_on); 5667 5668 mutex_enter(&spa->spa_async_lock); 5669 tasks = spa->spa_async_tasks; 5670 spa->spa_async_tasks = 0; 5671 mutex_exit(&spa->spa_async_lock); 5672 5673 /* 5674 * See if the config needs to be updated. 5675 */ 5676 if (tasks & SPA_ASYNC_CONFIG_UPDATE) { 5677 uint64_t old_space, new_space; 5678 5679 mutex_enter(&spa_namespace_lock); 5680 old_space = metaslab_class_get_space(spa_normal_class(spa)); 5681 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 5682 new_space = metaslab_class_get_space(spa_normal_class(spa)); 5683 mutex_exit(&spa_namespace_lock); 5684 5685 /* 5686 * If the pool grew as a result of the config update, 5687 * then log an internal history event. 5688 */ 5689 if (new_space != old_space) { 5690 spa_history_log_internal(spa, "vdev online", NULL, 5691 "pool '%s' size: %llu(+%llu)", 5692 spa_name(spa), new_space, new_space - old_space); 5693 } 5694 } 5695 5696 /* 5697 * See if any devices need to be marked REMOVED. 5698 */ 5699 if (tasks & SPA_ASYNC_REMOVE) { 5700 spa_vdev_state_enter(spa, SCL_NONE); 5701 spa_async_remove(spa, spa->spa_root_vdev); 5702 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) 5703 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]); 5704 for (int i = 0; i < spa->spa_spares.sav_count; i++) 5705 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]); 5706 (void) spa_vdev_state_exit(spa, NULL, 0); 5707 } 5708 5709 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) { 5710 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 5711 spa_async_autoexpand(spa, spa->spa_root_vdev); 5712 spa_config_exit(spa, SCL_CONFIG, FTAG); 5713 } 5714 5715 /* 5716 * See if any devices need to be probed. 5717 */ 5718 if (tasks & SPA_ASYNC_PROBE) { 5719 spa_vdev_state_enter(spa, SCL_NONE); 5720 spa_async_probe(spa, spa->spa_root_vdev); 5721 (void) spa_vdev_state_exit(spa, NULL, 0); 5722 } 5723 5724 /* 5725 * If any devices are done replacing, detach them. 5726 */ 5727 if (tasks & SPA_ASYNC_RESILVER_DONE) 5728 spa_vdev_resilver_done(spa); 5729 5730 /* 5731 * Kick off a resilver. 5732 */ 5733 if (tasks & SPA_ASYNC_RESILVER) 5734 dsl_resilver_restart(spa->spa_dsl_pool, 0); 5735 5736 /* 5737 * Let the world know that we're done. 5738 */ 5739 mutex_enter(&spa->spa_async_lock); 5740 spa->spa_async_thread = NULL; 5741 cv_broadcast(&spa->spa_async_cv); 5742 mutex_exit(&spa->spa_async_lock); 5743 thread_exit(); 5744 } 5745 5746 void 5747 spa_async_suspend(spa_t *spa) 5748 { 5749 mutex_enter(&spa->spa_async_lock); 5750 spa->spa_async_suspended++; 5751 while (spa->spa_async_thread != NULL) 5752 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock); 5753 mutex_exit(&spa->spa_async_lock); 5754 } 5755 5756 void 5757 spa_async_resume(spa_t *spa) 5758 { 5759 mutex_enter(&spa->spa_async_lock); 5760 ASSERT(spa->spa_async_suspended != 0); 5761 spa->spa_async_suspended--; 5762 mutex_exit(&spa->spa_async_lock); 5763 } 5764 5765 static boolean_t 5766 spa_async_tasks_pending(spa_t *spa) 5767 { 5768 uint_t non_config_tasks; 5769 uint_t config_task; 5770 boolean_t config_task_suspended; 5771 5772 non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE; 5773 config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE; 5774 if (spa->spa_ccw_fail_time == 0) { 5775 config_task_suspended = B_FALSE; 5776 } else { 5777 config_task_suspended = 5778 (gethrtime() - spa->spa_ccw_fail_time) < 5779 (zfs_ccw_retry_interval * NANOSEC); 5780 } 5781 5782 return (non_config_tasks || (config_task && !config_task_suspended)); 5783 } 5784 5785 static void 5786 spa_async_dispatch(spa_t *spa) 5787 { 5788 mutex_enter(&spa->spa_async_lock); 5789 if (spa_async_tasks_pending(spa) && 5790 !spa->spa_async_suspended && 5791 spa->spa_async_thread == NULL && 5792 rootdir != NULL) 5793 spa->spa_async_thread = thread_create(NULL, 0, 5794 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri); 5795 mutex_exit(&spa->spa_async_lock); 5796 } 5797 5798 void 5799 spa_async_request(spa_t *spa, int task) 5800 { 5801 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task); 5802 mutex_enter(&spa->spa_async_lock); 5803 spa->spa_async_tasks |= task; 5804 mutex_exit(&spa->spa_async_lock); 5805 } 5806 5807 /* 5808 * ========================================================================== 5809 * SPA syncing routines 5810 * ========================================================================== 5811 */ 5812 5813 static int 5814 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 5815 { 5816 bpobj_t *bpo = arg; 5817 bpobj_enqueue(bpo, bp, tx); 5818 return (0); 5819 } 5820 5821 static int 5822 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 5823 { 5824 zio_t *zio = arg; 5825 5826 zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp, 5827 zio->io_flags)); 5828 return (0); 5829 } 5830 5831 /* 5832 * Note: this simple function is not inlined to make it easier to dtrace the 5833 * amount of time spent syncing frees. 5834 */ 5835 static void 5836 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx) 5837 { 5838 zio_t *zio = zio_root(spa, NULL, NULL, 0); 5839 bplist_iterate(bpl, spa_free_sync_cb, zio, tx); 5840 VERIFY(zio_wait(zio) == 0); 5841 } 5842 5843 /* 5844 * Note: this simple function is not inlined to make it easier to dtrace the 5845 * amount of time spent syncing deferred frees. 5846 */ 5847 static void 5848 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx) 5849 { 5850 zio_t *zio = zio_root(spa, NULL, NULL, 0); 5851 VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj, 5852 spa_free_sync_cb, zio, tx), ==, 0); 5853 VERIFY0(zio_wait(zio)); 5854 } 5855 5856 5857 static void 5858 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx) 5859 { 5860 char *packed = NULL; 5861 size_t bufsize; 5862 size_t nvsize = 0; 5863 dmu_buf_t *db; 5864 5865 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0); 5866 5867 /* 5868 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration 5869 * information. This avoids the dmu_buf_will_dirty() path and 5870 * saves us a pre-read to get data we don't actually care about. 5871 */ 5872 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE); 5873 packed = kmem_alloc(bufsize, KM_SLEEP); 5874 5875 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR, 5876 KM_SLEEP) == 0); 5877 bzero(packed + nvsize, bufsize - nvsize); 5878 5879 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx); 5880 5881 kmem_free(packed, bufsize); 5882 5883 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 5884 dmu_buf_will_dirty(db, tx); 5885 *(uint64_t *)db->db_data = nvsize; 5886 dmu_buf_rele(db, FTAG); 5887 } 5888 5889 static void 5890 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx, 5891 const char *config, const char *entry) 5892 { 5893 nvlist_t *nvroot; 5894 nvlist_t **list; 5895 int i; 5896 5897 if (!sav->sav_sync) 5898 return; 5899 5900 /* 5901 * Update the MOS nvlist describing the list of available devices. 5902 * spa_validate_aux() will have already made sure this nvlist is 5903 * valid and the vdevs are labeled appropriately. 5904 */ 5905 if (sav->sav_object == 0) { 5906 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset, 5907 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE, 5908 sizeof (uint64_t), tx); 5909 VERIFY(zap_update(spa->spa_meta_objset, 5910 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1, 5911 &sav->sav_object, tx) == 0); 5912 } 5913 5914 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 5915 if (sav->sav_count == 0) { 5916 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0); 5917 } else { 5918 list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 5919 for (i = 0; i < sav->sav_count; i++) 5920 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i], 5921 B_FALSE, VDEV_CONFIG_L2CACHE); 5922 VERIFY(nvlist_add_nvlist_array(nvroot, config, list, 5923 sav->sav_count) == 0); 5924 for (i = 0; i < sav->sav_count; i++) 5925 nvlist_free(list[i]); 5926 kmem_free(list, sav->sav_count * sizeof (void *)); 5927 } 5928 5929 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx); 5930 nvlist_free(nvroot); 5931 5932 sav->sav_sync = B_FALSE; 5933 } 5934 5935 static void 5936 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx) 5937 { 5938 nvlist_t *config; 5939 5940 if (list_is_empty(&spa->spa_config_dirty_list)) 5941 return; 5942 5943 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 5944 5945 config = spa_config_generate(spa, spa->spa_root_vdev, 5946 dmu_tx_get_txg(tx), B_FALSE); 5947 5948 /* 5949 * If we're upgrading the spa version then make sure that 5950 * the config object gets updated with the correct version. 5951 */ 5952 if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version) 5953 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, 5954 spa->spa_uberblock.ub_version); 5955 5956 spa_config_exit(spa, SCL_STATE, FTAG); 5957 5958 if (spa->spa_config_syncing) 5959 nvlist_free(spa->spa_config_syncing); 5960 spa->spa_config_syncing = config; 5961 5962 spa_sync_nvlist(spa, spa->spa_config_object, config, tx); 5963 } 5964 5965 static void 5966 spa_sync_version(void *arg, dmu_tx_t *tx) 5967 { 5968 uint64_t *versionp = arg; 5969 uint64_t version = *versionp; 5970 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 5971 5972 /* 5973 * Setting the version is special cased when first creating the pool. 5974 */ 5975 ASSERT(tx->tx_txg != TXG_INITIAL); 5976 5977 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 5978 ASSERT(version >= spa_version(spa)); 5979 5980 spa->spa_uberblock.ub_version = version; 5981 vdev_config_dirty(spa->spa_root_vdev); 5982 spa_history_log_internal(spa, "set", tx, "version=%lld", version); 5983 } 5984 5985 /* 5986 * Set zpool properties. 5987 */ 5988 static void 5989 spa_sync_props(void *arg, dmu_tx_t *tx) 5990 { 5991 nvlist_t *nvp = arg; 5992 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 5993 objset_t *mos = spa->spa_meta_objset; 5994 nvpair_t *elem = NULL; 5995 5996 mutex_enter(&spa->spa_props_lock); 5997 5998 while ((elem = nvlist_next_nvpair(nvp, elem))) { 5999 uint64_t intval; 6000 char *strval, *fname; 6001 zpool_prop_t prop; 6002 const char *propname; 6003 zprop_type_t proptype; 6004 spa_feature_t fid; 6005 6006 switch (prop = zpool_name_to_prop(nvpair_name(elem))) { 6007 case ZPROP_INVAL: 6008 /* 6009 * We checked this earlier in spa_prop_validate(). 6010 */ 6011 ASSERT(zpool_prop_feature(nvpair_name(elem))); 6012 6013 fname = strchr(nvpair_name(elem), '@') + 1; 6014 VERIFY0(zfeature_lookup_name(fname, &fid)); 6015 6016 spa_feature_enable(spa, fid, tx); 6017 spa_history_log_internal(spa, "set", tx, 6018 "%s=enabled", nvpair_name(elem)); 6019 break; 6020 6021 case ZPOOL_PROP_VERSION: 6022 intval = fnvpair_value_uint64(elem); 6023 /* 6024 * The version is synced seperatly before other 6025 * properties and should be correct by now. 6026 */ 6027 ASSERT3U(spa_version(spa), >=, intval); 6028 break; 6029 6030 case ZPOOL_PROP_ALTROOT: 6031 /* 6032 * 'altroot' is a non-persistent property. It should 6033 * have been set temporarily at creation or import time. 6034 */ 6035 ASSERT(spa->spa_root != NULL); 6036 break; 6037 6038 case ZPOOL_PROP_READONLY: 6039 case ZPOOL_PROP_CACHEFILE: 6040 /* 6041 * 'readonly' and 'cachefile' are also non-persisitent 6042 * properties. 6043 */ 6044 break; 6045 case ZPOOL_PROP_COMMENT: 6046 strval = fnvpair_value_string(elem); 6047 if (spa->spa_comment != NULL) 6048 spa_strfree(spa->spa_comment); 6049 spa->spa_comment = spa_strdup(strval); 6050 /* 6051 * We need to dirty the configuration on all the vdevs 6052 * so that their labels get updated. It's unnecessary 6053 * to do this for pool creation since the vdev's 6054 * configuratoin has already been dirtied. 6055 */ 6056 if (tx->tx_txg != TXG_INITIAL) 6057 vdev_config_dirty(spa->spa_root_vdev); 6058 spa_history_log_internal(spa, "set", tx, 6059 "%s=%s", nvpair_name(elem), strval); 6060 break; 6061 default: 6062 /* 6063 * Set pool property values in the poolprops mos object. 6064 */ 6065 if (spa->spa_pool_props_object == 0) { 6066 spa->spa_pool_props_object = 6067 zap_create_link(mos, DMU_OT_POOL_PROPS, 6068 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS, 6069 tx); 6070 } 6071 6072 /* normalize the property name */ 6073 propname = zpool_prop_to_name(prop); 6074 proptype = zpool_prop_get_type(prop); 6075 6076 if (nvpair_type(elem) == DATA_TYPE_STRING) { 6077 ASSERT(proptype == PROP_TYPE_STRING); 6078 strval = fnvpair_value_string(elem); 6079 VERIFY0(zap_update(mos, 6080 spa->spa_pool_props_object, propname, 6081 1, strlen(strval) + 1, strval, tx)); 6082 spa_history_log_internal(spa, "set", tx, 6083 "%s=%s", nvpair_name(elem), strval); 6084 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) { 6085 intval = fnvpair_value_uint64(elem); 6086 6087 if (proptype == PROP_TYPE_INDEX) { 6088 const char *unused; 6089 VERIFY0(zpool_prop_index_to_string( 6090 prop, intval, &unused)); 6091 } 6092 VERIFY0(zap_update(mos, 6093 spa->spa_pool_props_object, propname, 6094 8, 1, &intval, tx)); 6095 spa_history_log_internal(spa, "set", tx, 6096 "%s=%lld", nvpair_name(elem), intval); 6097 } else { 6098 ASSERT(0); /* not allowed */ 6099 } 6100 6101 switch (prop) { 6102 case ZPOOL_PROP_DELEGATION: 6103 spa->spa_delegation = intval; 6104 break; 6105 case ZPOOL_PROP_BOOTFS: 6106 spa->spa_bootfs = intval; 6107 break; 6108 case ZPOOL_PROP_FAILUREMODE: 6109 spa->spa_failmode = intval; 6110 break; 6111 case ZPOOL_PROP_AUTOEXPAND: 6112 spa->spa_autoexpand = intval; 6113 if (tx->tx_txg != TXG_INITIAL) 6114 spa_async_request(spa, 6115 SPA_ASYNC_AUTOEXPAND); 6116 break; 6117 case ZPOOL_PROP_DEDUPDITTO: 6118 spa->spa_dedup_ditto = intval; 6119 break; 6120 default: 6121 break; 6122 } 6123 } 6124 6125 } 6126 6127 mutex_exit(&spa->spa_props_lock); 6128 } 6129 6130 /* 6131 * Perform one-time upgrade on-disk changes. spa_version() does not 6132 * reflect the new version this txg, so there must be no changes this 6133 * txg to anything that the upgrade code depends on after it executes. 6134 * Therefore this must be called after dsl_pool_sync() does the sync 6135 * tasks. 6136 */ 6137 static void 6138 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx) 6139 { 6140 dsl_pool_t *dp = spa->spa_dsl_pool; 6141 6142 ASSERT(spa->spa_sync_pass == 1); 6143 6144 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); 6145 6146 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN && 6147 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) { 6148 dsl_pool_create_origin(dp, tx); 6149 6150 /* Keeping the origin open increases spa_minref */ 6151 spa->spa_minref += 3; 6152 } 6153 6154 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES && 6155 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) { 6156 dsl_pool_upgrade_clones(dp, tx); 6157 } 6158 6159 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES && 6160 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) { 6161 dsl_pool_upgrade_dir_clones(dp, tx); 6162 6163 /* Keeping the freedir open increases spa_minref */ 6164 spa->spa_minref += 3; 6165 } 6166 6167 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES && 6168 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) { 6169 spa_feature_create_zap_objects(spa, tx); 6170 } 6171 6172 /* 6173 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable 6174 * when possibility to use lz4 compression for metadata was added 6175 * Old pools that have this feature enabled must be upgraded to have 6176 * this feature active 6177 */ 6178 if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) { 6179 boolean_t lz4_en = spa_feature_is_enabled(spa, 6180 SPA_FEATURE_LZ4_COMPRESS); 6181 boolean_t lz4_ac = spa_feature_is_active(spa, 6182 SPA_FEATURE_LZ4_COMPRESS); 6183 6184 if (lz4_en && !lz4_ac) 6185 spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx); 6186 } 6187 rrw_exit(&dp->dp_config_rwlock, FTAG); 6188 } 6189 6190 /* 6191 * Sync the specified transaction group. New blocks may be dirtied as 6192 * part of the process, so we iterate until it converges. 6193 */ 6194 void 6195 spa_sync(spa_t *spa, uint64_t txg) 6196 { 6197 dsl_pool_t *dp = spa->spa_dsl_pool; 6198 objset_t *mos = spa->spa_meta_objset; 6199 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK]; 6200 vdev_t *rvd = spa->spa_root_vdev; 6201 vdev_t *vd; 6202 dmu_tx_t *tx; 6203 int error; 6204 6205 VERIFY(spa_writeable(spa)); 6206 6207 /* 6208 * Lock out configuration changes. 6209 */ 6210 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 6211 6212 spa->spa_syncing_txg = txg; 6213 spa->spa_sync_pass = 0; 6214 6215 /* 6216 * If there are any pending vdev state changes, convert them 6217 * into config changes that go out with this transaction group. 6218 */ 6219 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 6220 while (list_head(&spa->spa_state_dirty_list) != NULL) { 6221 /* 6222 * We need the write lock here because, for aux vdevs, 6223 * calling vdev_config_dirty() modifies sav_config. 6224 * This is ugly and will become unnecessary when we 6225 * eliminate the aux vdev wart by integrating all vdevs 6226 * into the root vdev tree. 6227 */ 6228 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 6229 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER); 6230 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) { 6231 vdev_state_clean(vd); 6232 vdev_config_dirty(vd); 6233 } 6234 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 6235 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 6236 } 6237 spa_config_exit(spa, SCL_STATE, FTAG); 6238 6239 tx = dmu_tx_create_assigned(dp, txg); 6240 6241 spa->spa_sync_starttime = gethrtime(); 6242 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, 6243 spa->spa_sync_starttime + spa->spa_deadman_synctime)); 6244 6245 /* 6246 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg, 6247 * set spa_deflate if we have no raid-z vdevs. 6248 */ 6249 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE && 6250 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) { 6251 int i; 6252 6253 for (i = 0; i < rvd->vdev_children; i++) { 6254 vd = rvd->vdev_child[i]; 6255 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE) 6256 break; 6257 } 6258 if (i == rvd->vdev_children) { 6259 spa->spa_deflate = TRUE; 6260 VERIFY(0 == zap_add(spa->spa_meta_objset, 6261 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 6262 sizeof (uint64_t), 1, &spa->spa_deflate, tx)); 6263 } 6264 } 6265 6266 /* 6267 * Iterate to convergence. 6268 */ 6269 do { 6270 int pass = ++spa->spa_sync_pass; 6271 6272 spa_sync_config_object(spa, tx); 6273 spa_sync_aux_dev(spa, &spa->spa_spares, tx, 6274 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES); 6275 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx, 6276 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE); 6277 spa_errlog_sync(spa, txg); 6278 dsl_pool_sync(dp, txg); 6279 6280 if (pass < zfs_sync_pass_deferred_free) { 6281 spa_sync_frees(spa, free_bpl, tx); 6282 } else { 6283 /* 6284 * We can not defer frees in pass 1, because 6285 * we sync the deferred frees later in pass 1. 6286 */ 6287 ASSERT3U(pass, >, 1); 6288 bplist_iterate(free_bpl, bpobj_enqueue_cb, 6289 &spa->spa_deferred_bpobj, tx); 6290 } 6291 6292 ddt_sync(spa, txg); 6293 dsl_scan_sync(dp, tx); 6294 6295 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) 6296 vdev_sync(vd, txg); 6297 6298 if (pass == 1) { 6299 spa_sync_upgrades(spa, tx); 6300 ASSERT3U(txg, >=, 6301 spa->spa_uberblock.ub_rootbp.blk_birth); 6302 /* 6303 * Note: We need to check if the MOS is dirty 6304 * because we could have marked the MOS dirty 6305 * without updating the uberblock (e.g. if we 6306 * have sync tasks but no dirty user data). We 6307 * need to check the uberblock's rootbp because 6308 * it is updated if we have synced out dirty 6309 * data (though in this case the MOS will most 6310 * likely also be dirty due to second order 6311 * effects, we don't want to rely on that here). 6312 */ 6313 if (spa->spa_uberblock.ub_rootbp.blk_birth < txg && 6314 !dmu_objset_is_dirty(mos, txg)) { 6315 /* 6316 * Nothing changed on the first pass, 6317 * therefore this TXG is a no-op. Avoid 6318 * syncing deferred frees, so that we 6319 * can keep this TXG as a no-op. 6320 */ 6321 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, 6322 txg)); 6323 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); 6324 ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg)); 6325 break; 6326 } 6327 spa_sync_deferred_frees(spa, tx); 6328 } 6329 6330 } while (dmu_objset_is_dirty(mos, txg)); 6331 6332 /* 6333 * Rewrite the vdev configuration (which includes the uberblock) 6334 * to commit the transaction group. 6335 * 6336 * If there are no dirty vdevs, we sync the uberblock to a few 6337 * random top-level vdevs that are known to be visible in the 6338 * config cache (see spa_vdev_add() for a complete description). 6339 * If there *are* dirty vdevs, sync the uberblock to all vdevs. 6340 */ 6341 for (;;) { 6342 /* 6343 * We hold SCL_STATE to prevent vdev open/close/etc. 6344 * while we're attempting to write the vdev labels. 6345 */ 6346 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 6347 6348 if (list_is_empty(&spa->spa_config_dirty_list)) { 6349 vdev_t *svd[SPA_DVAS_PER_BP]; 6350 int svdcount = 0; 6351 int children = rvd->vdev_children; 6352 int c0 = spa_get_random(children); 6353 6354 for (int c = 0; c < children; c++) { 6355 vd = rvd->vdev_child[(c0 + c) % children]; 6356 if (vd->vdev_ms_array == 0 || vd->vdev_islog) 6357 continue; 6358 svd[svdcount++] = vd; 6359 if (svdcount == SPA_DVAS_PER_BP) 6360 break; 6361 } 6362 error = vdev_config_sync(svd, svdcount, txg, B_FALSE); 6363 if (error != 0) 6364 error = vdev_config_sync(svd, svdcount, txg, 6365 B_TRUE); 6366 } else { 6367 error = vdev_config_sync(rvd->vdev_child, 6368 rvd->vdev_children, txg, B_FALSE); 6369 if (error != 0) 6370 error = vdev_config_sync(rvd->vdev_child, 6371 rvd->vdev_children, txg, B_TRUE); 6372 } 6373 6374 if (error == 0) 6375 spa->spa_last_synced_guid = rvd->vdev_guid; 6376 6377 spa_config_exit(spa, SCL_STATE, FTAG); 6378 6379 if (error == 0) 6380 break; 6381 zio_suspend(spa, NULL); 6382 zio_resume_wait(spa); 6383 } 6384 dmu_tx_commit(tx); 6385 6386 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY)); 6387 6388 /* 6389 * Clear the dirty config list. 6390 */ 6391 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL) 6392 vdev_config_clean(vd); 6393 6394 /* 6395 * Now that the new config has synced transactionally, 6396 * let it become visible to the config cache. 6397 */ 6398 if (spa->spa_config_syncing != NULL) { 6399 spa_config_set(spa, spa->spa_config_syncing); 6400 spa->spa_config_txg = txg; 6401 spa->spa_config_syncing = NULL; 6402 } 6403 6404 spa->spa_ubsync = spa->spa_uberblock; 6405 6406 dsl_pool_sync_done(dp, txg); 6407 6408 /* 6409 * Update usable space statistics. 6410 */ 6411 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg))) 6412 vdev_sync_done(vd, txg); 6413 6414 spa_update_dspace(spa); 6415 6416 /* 6417 * It had better be the case that we didn't dirty anything 6418 * since vdev_config_sync(). 6419 */ 6420 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg)); 6421 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); 6422 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg)); 6423 6424 spa->spa_sync_pass = 0; 6425 6426 spa_config_exit(spa, SCL_CONFIG, FTAG); 6427 6428 spa_handle_ignored_writes(spa); 6429 6430 /* 6431 * If any async tasks have been requested, kick them off. 6432 */ 6433 spa_async_dispatch(spa); 6434 } 6435 6436 /* 6437 * Sync all pools. We don't want to hold the namespace lock across these 6438 * operations, so we take a reference on the spa_t and drop the lock during the 6439 * sync. 6440 */ 6441 void 6442 spa_sync_allpools(void) 6443 { 6444 spa_t *spa = NULL; 6445 mutex_enter(&spa_namespace_lock); 6446 while ((spa = spa_next(spa)) != NULL) { 6447 if (spa_state(spa) != POOL_STATE_ACTIVE || 6448 !spa_writeable(spa) || spa_suspended(spa)) 6449 continue; 6450 spa_open_ref(spa, FTAG); 6451 mutex_exit(&spa_namespace_lock); 6452 txg_wait_synced(spa_get_dsl(spa), 0); 6453 mutex_enter(&spa_namespace_lock); 6454 spa_close(spa, FTAG); 6455 } 6456 mutex_exit(&spa_namespace_lock); 6457 } 6458 6459 /* 6460 * ========================================================================== 6461 * Miscellaneous routines 6462 * ========================================================================== 6463 */ 6464 6465 /* 6466 * Remove all pools in the system. 6467 */ 6468 void 6469 spa_evict_all(void) 6470 { 6471 spa_t *spa; 6472 6473 /* 6474 * Remove all cached state. All pools should be closed now, 6475 * so every spa in the AVL tree should be unreferenced. 6476 */ 6477 mutex_enter(&spa_namespace_lock); 6478 while ((spa = spa_next(NULL)) != NULL) { 6479 /* 6480 * Stop async tasks. The async thread may need to detach 6481 * a device that's been replaced, which requires grabbing 6482 * spa_namespace_lock, so we must drop it here. 6483 */ 6484 spa_open_ref(spa, FTAG); 6485 mutex_exit(&spa_namespace_lock); 6486 spa_async_suspend(spa); 6487 mutex_enter(&spa_namespace_lock); 6488 spa_close(spa, FTAG); 6489 6490 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 6491 spa_unload(spa); 6492 spa_deactivate(spa); 6493 } 6494 spa_remove(spa); 6495 } 6496 mutex_exit(&spa_namespace_lock); 6497 } 6498 6499 vdev_t * 6500 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux) 6501 { 6502 vdev_t *vd; 6503 int i; 6504 6505 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL) 6506 return (vd); 6507 6508 if (aux) { 6509 for (i = 0; i < spa->spa_l2cache.sav_count; i++) { 6510 vd = spa->spa_l2cache.sav_vdevs[i]; 6511 if (vd->vdev_guid == guid) 6512 return (vd); 6513 } 6514 6515 for (i = 0; i < spa->spa_spares.sav_count; i++) { 6516 vd = spa->spa_spares.sav_vdevs[i]; 6517 if (vd->vdev_guid == guid) 6518 return (vd); 6519 } 6520 } 6521 6522 return (NULL); 6523 } 6524 6525 void 6526 spa_upgrade(spa_t *spa, uint64_t version) 6527 { 6528 ASSERT(spa_writeable(spa)); 6529 6530 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 6531 6532 /* 6533 * This should only be called for a non-faulted pool, and since a 6534 * future version would result in an unopenable pool, this shouldn't be 6535 * possible. 6536 */ 6537 ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version)); 6538 ASSERT3U(version, >=, spa->spa_uberblock.ub_version); 6539 6540 spa->spa_uberblock.ub_version = version; 6541 vdev_config_dirty(spa->spa_root_vdev); 6542 6543 spa_config_exit(spa, SCL_ALL, FTAG); 6544 6545 txg_wait_synced(spa_get_dsl(spa), 0); 6546 } 6547 6548 boolean_t 6549 spa_has_spare(spa_t *spa, uint64_t guid) 6550 { 6551 int i; 6552 uint64_t spareguid; 6553 spa_aux_vdev_t *sav = &spa->spa_spares; 6554 6555 for (i = 0; i < sav->sav_count; i++) 6556 if (sav->sav_vdevs[i]->vdev_guid == guid) 6557 return (B_TRUE); 6558 6559 for (i = 0; i < sav->sav_npending; i++) { 6560 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID, 6561 &spareguid) == 0 && spareguid == guid) 6562 return (B_TRUE); 6563 } 6564 6565 return (B_FALSE); 6566 } 6567 6568 /* 6569 * Check if a pool has an active shared spare device. 6570 * Note: reference count of an active spare is 2, as a spare and as a replace 6571 */ 6572 static boolean_t 6573 spa_has_active_shared_spare(spa_t *spa) 6574 { 6575 int i, refcnt; 6576 uint64_t pool; 6577 spa_aux_vdev_t *sav = &spa->spa_spares; 6578 6579 for (i = 0; i < sav->sav_count; i++) { 6580 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool, 6581 &refcnt) && pool != 0ULL && pool == spa_guid(spa) && 6582 refcnt > 2) 6583 return (B_TRUE); 6584 } 6585 6586 return (B_FALSE); 6587 } 6588 6589 /* 6590 * Post a sysevent corresponding to the given event. The 'name' must be one of 6591 * the event definitions in sys/sysevent/eventdefs.h. The payload will be 6592 * filled in from the spa and (optionally) the vdev. This doesn't do anything 6593 * in the userland libzpool, as we don't want consumers to misinterpret ztest 6594 * or zdb as real changes. 6595 */ 6596 void 6597 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name) 6598 { 6599 #ifdef _KERNEL 6600 sysevent_t *ev; 6601 sysevent_attr_list_t *attr = NULL; 6602 sysevent_value_t value; 6603 sysevent_id_t eid; 6604 6605 ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs", 6606 SE_SLEEP); 6607 6608 value.value_type = SE_DATA_TYPE_STRING; 6609 value.value.sv_string = spa_name(spa); 6610 if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0) 6611 goto done; 6612 6613 value.value_type = SE_DATA_TYPE_UINT64; 6614 value.value.sv_uint64 = spa_guid(spa); 6615 if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0) 6616 goto done; 6617 6618 if (vd) { 6619 value.value_type = SE_DATA_TYPE_UINT64; 6620 value.value.sv_uint64 = vd->vdev_guid; 6621 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value, 6622 SE_SLEEP) != 0) 6623 goto done; 6624 6625 if (vd->vdev_path) { 6626 value.value_type = SE_DATA_TYPE_STRING; 6627 value.value.sv_string = vd->vdev_path; 6628 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH, 6629 &value, SE_SLEEP) != 0) 6630 goto done; 6631 } 6632 } 6633 6634 if (sysevent_attach_attributes(ev, attr) != 0) 6635 goto done; 6636 attr = NULL; 6637 6638 (void) log_sysevent(ev, SE_SLEEP, &eid); 6639 6640 done: 6641 if (attr) 6642 sysevent_free_attr(attr); 6643 sysevent_free(ev); 6644 #endif 6645 } 6646