xref: /titanic_51/usr/src/uts/common/fs/zfs/spa.c (revision 825277341c15b6b0d2c4b8b622ae7b1d2bdc0390)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  * This file contains all the routines used when modifying on-disk SPA state.
29  * This includes opening, importing, destroying, exporting a pool, and syncing a
30  * pool.
31  */
32 
33 #include <sys/zfs_context.h>
34 #include <sys/fm/fs/zfs.h>
35 #include <sys/spa_impl.h>
36 #include <sys/zio.h>
37 #include <sys/zio_checksum.h>
38 #include <sys/dmu.h>
39 #include <sys/dmu_tx.h>
40 #include <sys/zap.h>
41 #include <sys/zil.h>
42 #include <sys/ddt.h>
43 #include <sys/vdev_impl.h>
44 #include <sys/metaslab.h>
45 #include <sys/metaslab_impl.h>
46 #include <sys/uberblock_impl.h>
47 #include <sys/txg.h>
48 #include <sys/avl.h>
49 #include <sys/dmu_traverse.h>
50 #include <sys/dmu_objset.h>
51 #include <sys/unique.h>
52 #include <sys/dsl_pool.h>
53 #include <sys/dsl_dataset.h>
54 #include <sys/dsl_dir.h>
55 #include <sys/dsl_prop.h>
56 #include <sys/dsl_synctask.h>
57 #include <sys/fs/zfs.h>
58 #include <sys/arc.h>
59 #include <sys/callb.h>
60 #include <sys/systeminfo.h>
61 #include <sys/sunddi.h>
62 #include <sys/spa_boot.h>
63 #include <sys/zfs_ioctl.h>
64 
65 #ifdef	_KERNEL
66 #include <sys/zone.h>
67 #include <sys/bootprops.h>
68 #endif	/* _KERNEL */
69 
70 #include "zfs_prop.h"
71 #include "zfs_comutil.h"
72 
73 enum zti_modes {
74 	zti_mode_fixed,			/* value is # of threads (min 1) */
75 	zti_mode_online_percent,	/* value is % of online CPUs */
76 	zti_mode_tune,			/* fill from zio_taskq_tune_* */
77 	zti_nmodes
78 };
79 
80 #define	ZTI_THREAD_FIX(n)	{ zti_mode_fixed, (n) }
81 #define	ZTI_THREAD_PCT(n)	{ zti_mode_online_percent, (n) }
82 #define	ZTI_THREAD_TUNE		{ zti_mode_tune, 0 }
83 
84 #define	ZTI_THREAD_ONE		ZTI_THREAD_FIX(1)
85 
86 typedef struct zio_taskq_info {
87 	const char *zti_name;
88 	struct {
89 		enum zti_modes zti_mode;
90 		uint_t zti_value;
91 	} zti_nthreads[ZIO_TASKQ_TYPES];
92 } zio_taskq_info_t;
93 
94 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
95 				"issue",		"intr"
96 };
97 
98 const zio_taskq_info_t zio_taskqs[ZIO_TYPES] = {
99 	/*			ISSUE			INTR		*/
100 	{ "spa_zio_null",	{ ZTI_THREAD_ONE,	ZTI_THREAD_ONE } },
101 	{ "spa_zio_read",	{ ZTI_THREAD_FIX(8),	ZTI_THREAD_TUNE } },
102 	{ "spa_zio_write",	{ ZTI_THREAD_TUNE,	ZTI_THREAD_FIX(8) } },
103 	{ "spa_zio_free",	{ ZTI_THREAD_ONE,	ZTI_THREAD_ONE } },
104 	{ "spa_zio_claim",	{ ZTI_THREAD_ONE,	ZTI_THREAD_ONE } },
105 	{ "spa_zio_ioctl",	{ ZTI_THREAD_ONE,	ZTI_THREAD_ONE } },
106 };
107 
108 enum zti_modes zio_taskq_tune_mode = zti_mode_online_percent;
109 uint_t zio_taskq_tune_value = 80;	/* #threads = 80% of # online CPUs */
110 
111 static void spa_sync_props(void *arg1, void *arg2, cred_t *cr, dmu_tx_t *tx);
112 static boolean_t spa_has_active_shared_spare(spa_t *spa);
113 
114 /*
115  * ==========================================================================
116  * SPA properties routines
117  * ==========================================================================
118  */
119 
120 /*
121  * Add a (source=src, propname=propval) list to an nvlist.
122  */
123 static void
124 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
125     uint64_t intval, zprop_source_t src)
126 {
127 	const char *propname = zpool_prop_to_name(prop);
128 	nvlist_t *propval;
129 
130 	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
131 	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
132 
133 	if (strval != NULL)
134 		VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
135 	else
136 		VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
137 
138 	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
139 	nvlist_free(propval);
140 }
141 
142 /*
143  * Get property values from the spa configuration.
144  */
145 static void
146 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
147 {
148 	uint64_t size;
149 	uint64_t alloc;
150 	uint64_t cap, version;
151 	zprop_source_t src = ZPROP_SRC_NONE;
152 	spa_config_dirent_t *dp;
153 
154 	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
155 
156 	if (spa->spa_root_vdev != NULL) {
157 		alloc = metaslab_class_get_alloc(spa_normal_class(spa));
158 		size = metaslab_class_get_space(spa_normal_class(spa));
159 		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
160 		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
161 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
162 		spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
163 		    size - alloc, src);
164 
165 		cap = (size == 0) ? 0 : (alloc * 100 / size);
166 		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
167 
168 		spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
169 		    ddt_get_pool_dedup_ratio(spa), src);
170 
171 		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
172 		    spa->spa_root_vdev->vdev_state, src);
173 
174 		version = spa_version(spa);
175 		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
176 			src = ZPROP_SRC_DEFAULT;
177 		else
178 			src = ZPROP_SRC_LOCAL;
179 		spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
180 	}
181 
182 	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
183 
184 	if (spa->spa_root != NULL)
185 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
186 		    0, ZPROP_SRC_LOCAL);
187 
188 	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
189 		if (dp->scd_path == NULL) {
190 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
191 			    "none", 0, ZPROP_SRC_LOCAL);
192 		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
193 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
194 			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
195 		}
196 	}
197 }
198 
199 /*
200  * Get zpool property values.
201  */
202 int
203 spa_prop_get(spa_t *spa, nvlist_t **nvp)
204 {
205 	objset_t *mos = spa->spa_meta_objset;
206 	zap_cursor_t zc;
207 	zap_attribute_t za;
208 	int err;
209 
210 	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
211 
212 	mutex_enter(&spa->spa_props_lock);
213 
214 	/*
215 	 * Get properties from the spa config.
216 	 */
217 	spa_prop_get_config(spa, nvp);
218 
219 	/* If no pool property object, no more prop to get. */
220 	if (spa->spa_pool_props_object == 0) {
221 		mutex_exit(&spa->spa_props_lock);
222 		return (0);
223 	}
224 
225 	/*
226 	 * Get properties from the MOS pool property object.
227 	 */
228 	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
229 	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
230 	    zap_cursor_advance(&zc)) {
231 		uint64_t intval = 0;
232 		char *strval = NULL;
233 		zprop_source_t src = ZPROP_SRC_DEFAULT;
234 		zpool_prop_t prop;
235 
236 		if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
237 			continue;
238 
239 		switch (za.za_integer_length) {
240 		case 8:
241 			/* integer property */
242 			if (za.za_first_integer !=
243 			    zpool_prop_default_numeric(prop))
244 				src = ZPROP_SRC_LOCAL;
245 
246 			if (prop == ZPOOL_PROP_BOOTFS) {
247 				dsl_pool_t *dp;
248 				dsl_dataset_t *ds = NULL;
249 
250 				dp = spa_get_dsl(spa);
251 				rw_enter(&dp->dp_config_rwlock, RW_READER);
252 				if (err = dsl_dataset_hold_obj(dp,
253 				    za.za_first_integer, FTAG, &ds)) {
254 					rw_exit(&dp->dp_config_rwlock);
255 					break;
256 				}
257 
258 				strval = kmem_alloc(
259 				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
260 				    KM_SLEEP);
261 				dsl_dataset_name(ds, strval);
262 				dsl_dataset_rele(ds, FTAG);
263 				rw_exit(&dp->dp_config_rwlock);
264 			} else {
265 				strval = NULL;
266 				intval = za.za_first_integer;
267 			}
268 
269 			spa_prop_add_list(*nvp, prop, strval, intval, src);
270 
271 			if (strval != NULL)
272 				kmem_free(strval,
273 				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
274 
275 			break;
276 
277 		case 1:
278 			/* string property */
279 			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
280 			err = zap_lookup(mos, spa->spa_pool_props_object,
281 			    za.za_name, 1, za.za_num_integers, strval);
282 			if (err) {
283 				kmem_free(strval, za.za_num_integers);
284 				break;
285 			}
286 			spa_prop_add_list(*nvp, prop, strval, 0, src);
287 			kmem_free(strval, za.za_num_integers);
288 			break;
289 
290 		default:
291 			break;
292 		}
293 	}
294 	zap_cursor_fini(&zc);
295 	mutex_exit(&spa->spa_props_lock);
296 out:
297 	if (err && err != ENOENT) {
298 		nvlist_free(*nvp);
299 		*nvp = NULL;
300 		return (err);
301 	}
302 
303 	return (0);
304 }
305 
306 /*
307  * Validate the given pool properties nvlist and modify the list
308  * for the property values to be set.
309  */
310 static int
311 spa_prop_validate(spa_t *spa, nvlist_t *props)
312 {
313 	nvpair_t *elem;
314 	int error = 0, reset_bootfs = 0;
315 	uint64_t objnum;
316 
317 	elem = NULL;
318 	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
319 		zpool_prop_t prop;
320 		char *propname, *strval;
321 		uint64_t intval;
322 		objset_t *os;
323 		char *slash;
324 
325 		propname = nvpair_name(elem);
326 
327 		if ((prop = zpool_name_to_prop(propname)) == ZPROP_INVAL)
328 			return (EINVAL);
329 
330 		switch (prop) {
331 		case ZPOOL_PROP_VERSION:
332 			error = nvpair_value_uint64(elem, &intval);
333 			if (!error &&
334 			    (intval < spa_version(spa) || intval > SPA_VERSION))
335 				error = EINVAL;
336 			break;
337 
338 		case ZPOOL_PROP_DELEGATION:
339 		case ZPOOL_PROP_AUTOREPLACE:
340 		case ZPOOL_PROP_LISTSNAPS:
341 		case ZPOOL_PROP_AUTOEXPAND:
342 			error = nvpair_value_uint64(elem, &intval);
343 			if (!error && intval > 1)
344 				error = EINVAL;
345 			break;
346 
347 		case ZPOOL_PROP_BOOTFS:
348 			/*
349 			 * If the pool version is less than SPA_VERSION_BOOTFS,
350 			 * or the pool is still being created (version == 0),
351 			 * the bootfs property cannot be set.
352 			 */
353 			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
354 				error = ENOTSUP;
355 				break;
356 			}
357 
358 			/*
359 			 * Make sure the vdev config is bootable
360 			 */
361 			if (!vdev_is_bootable(spa->spa_root_vdev)) {
362 				error = ENOTSUP;
363 				break;
364 			}
365 
366 			reset_bootfs = 1;
367 
368 			error = nvpair_value_string(elem, &strval);
369 
370 			if (!error) {
371 				uint64_t compress;
372 
373 				if (strval == NULL || strval[0] == '\0') {
374 					objnum = zpool_prop_default_numeric(
375 					    ZPOOL_PROP_BOOTFS);
376 					break;
377 				}
378 
379 				if (error = dmu_objset_hold(strval, FTAG, &os))
380 					break;
381 
382 				/* Must be ZPL and not gzip compressed. */
383 
384 				if (dmu_objset_type(os) != DMU_OST_ZFS) {
385 					error = ENOTSUP;
386 				} else if ((error = dsl_prop_get_integer(strval,
387 				    zfs_prop_to_name(ZFS_PROP_COMPRESSION),
388 				    &compress, NULL)) == 0 &&
389 				    !BOOTFS_COMPRESS_VALID(compress)) {
390 					error = ENOTSUP;
391 				} else {
392 					objnum = dmu_objset_id(os);
393 				}
394 				dmu_objset_rele(os, FTAG);
395 			}
396 			break;
397 
398 		case ZPOOL_PROP_FAILUREMODE:
399 			error = nvpair_value_uint64(elem, &intval);
400 			if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
401 			    intval > ZIO_FAILURE_MODE_PANIC))
402 				error = EINVAL;
403 
404 			/*
405 			 * This is a special case which only occurs when
406 			 * the pool has completely failed. This allows
407 			 * the user to change the in-core failmode property
408 			 * without syncing it out to disk (I/Os might
409 			 * currently be blocked). We do this by returning
410 			 * EIO to the caller (spa_prop_set) to trick it
411 			 * into thinking we encountered a property validation
412 			 * error.
413 			 */
414 			if (!error && spa_suspended(spa)) {
415 				spa->spa_failmode = intval;
416 				error = EIO;
417 			}
418 			break;
419 
420 		case ZPOOL_PROP_CACHEFILE:
421 			if ((error = nvpair_value_string(elem, &strval)) != 0)
422 				break;
423 
424 			if (strval[0] == '\0')
425 				break;
426 
427 			if (strcmp(strval, "none") == 0)
428 				break;
429 
430 			if (strval[0] != '/') {
431 				error = EINVAL;
432 				break;
433 			}
434 
435 			slash = strrchr(strval, '/');
436 			ASSERT(slash != NULL);
437 
438 			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
439 			    strcmp(slash, "/..") == 0)
440 				error = EINVAL;
441 			break;
442 
443 		case ZPOOL_PROP_DEDUPDITTO:
444 			if (spa_version(spa) < SPA_VERSION_DEDUP)
445 				error = ENOTSUP;
446 			else
447 				error = nvpair_value_uint64(elem, &intval);
448 			if (error == 0 &&
449 			    intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
450 				error = EINVAL;
451 			break;
452 		}
453 
454 		if (error)
455 			break;
456 	}
457 
458 	if (!error && reset_bootfs) {
459 		error = nvlist_remove(props,
460 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
461 
462 		if (!error) {
463 			error = nvlist_add_uint64(props,
464 			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
465 		}
466 	}
467 
468 	return (error);
469 }
470 
471 void
472 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
473 {
474 	char *cachefile;
475 	spa_config_dirent_t *dp;
476 
477 	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
478 	    &cachefile) != 0)
479 		return;
480 
481 	dp = kmem_alloc(sizeof (spa_config_dirent_t),
482 	    KM_SLEEP);
483 
484 	if (cachefile[0] == '\0')
485 		dp->scd_path = spa_strdup(spa_config_path);
486 	else if (strcmp(cachefile, "none") == 0)
487 		dp->scd_path = NULL;
488 	else
489 		dp->scd_path = spa_strdup(cachefile);
490 
491 	list_insert_head(&spa->spa_config_list, dp);
492 	if (need_sync)
493 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
494 }
495 
496 int
497 spa_prop_set(spa_t *spa, nvlist_t *nvp)
498 {
499 	int error;
500 	nvpair_t *elem;
501 	boolean_t need_sync = B_FALSE;
502 	zpool_prop_t prop;
503 
504 	if ((error = spa_prop_validate(spa, nvp)) != 0)
505 		return (error);
506 
507 	elem = NULL;
508 	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
509 		if ((prop = zpool_name_to_prop(
510 		    nvpair_name(elem))) == ZPROP_INVAL)
511 			return (EINVAL);
512 
513 		if (prop == ZPOOL_PROP_CACHEFILE || prop == ZPOOL_PROP_ALTROOT)
514 			continue;
515 
516 		need_sync = B_TRUE;
517 		break;
518 	}
519 
520 	if (need_sync)
521 		return (dsl_sync_task_do(spa_get_dsl(spa), NULL, spa_sync_props,
522 		    spa, nvp, 3));
523 	else
524 		return (0);
525 }
526 
527 /*
528  * If the bootfs property value is dsobj, clear it.
529  */
530 void
531 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
532 {
533 	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
534 		VERIFY(zap_remove(spa->spa_meta_objset,
535 		    spa->spa_pool_props_object,
536 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
537 		spa->spa_bootfs = 0;
538 	}
539 }
540 
541 /*
542  * ==========================================================================
543  * SPA state manipulation (open/create/destroy/import/export)
544  * ==========================================================================
545  */
546 
547 static int
548 spa_error_entry_compare(const void *a, const void *b)
549 {
550 	spa_error_entry_t *sa = (spa_error_entry_t *)a;
551 	spa_error_entry_t *sb = (spa_error_entry_t *)b;
552 	int ret;
553 
554 	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
555 	    sizeof (zbookmark_t));
556 
557 	if (ret < 0)
558 		return (-1);
559 	else if (ret > 0)
560 		return (1);
561 	else
562 		return (0);
563 }
564 
565 /*
566  * Utility function which retrieves copies of the current logs and
567  * re-initializes them in the process.
568  */
569 void
570 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
571 {
572 	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
573 
574 	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
575 	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
576 
577 	avl_create(&spa->spa_errlist_scrub,
578 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
579 	    offsetof(spa_error_entry_t, se_avl));
580 	avl_create(&spa->spa_errlist_last,
581 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
582 	    offsetof(spa_error_entry_t, se_avl));
583 }
584 
585 /*
586  * Activate an uninitialized pool.
587  */
588 static void
589 spa_activate(spa_t *spa, int mode)
590 {
591 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
592 
593 	spa->spa_state = POOL_STATE_ACTIVE;
594 	spa->spa_mode = mode;
595 
596 	spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
597 	spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
598 
599 	for (int t = 0; t < ZIO_TYPES; t++) {
600 		const zio_taskq_info_t *ztip = &zio_taskqs[t];
601 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
602 			enum zti_modes mode = ztip->zti_nthreads[q].zti_mode;
603 			uint_t value = ztip->zti_nthreads[q].zti_value;
604 			char name[32];
605 
606 			(void) snprintf(name, sizeof (name),
607 			    "%s_%s", ztip->zti_name, zio_taskq_types[q]);
608 
609 			if (mode == zti_mode_tune) {
610 				mode = zio_taskq_tune_mode;
611 				value = zio_taskq_tune_value;
612 				if (mode == zti_mode_tune)
613 					mode = zti_mode_online_percent;
614 			}
615 
616 			switch (mode) {
617 			case zti_mode_fixed:
618 				ASSERT3U(value, >=, 1);
619 				value = MAX(value, 1);
620 
621 				spa->spa_zio_taskq[t][q] = taskq_create(name,
622 				    value, maxclsyspri, 50, INT_MAX,
623 				    TASKQ_PREPOPULATE);
624 				break;
625 
626 			case zti_mode_online_percent:
627 				spa->spa_zio_taskq[t][q] = taskq_create(name,
628 				    value, maxclsyspri, 50, INT_MAX,
629 				    TASKQ_PREPOPULATE | TASKQ_THREADS_CPU_PCT);
630 				break;
631 
632 			case zti_mode_tune:
633 			default:
634 				panic("unrecognized mode for "
635 				    "zio_taskqs[%u]->zti_nthreads[%u] (%u:%u) "
636 				    "in spa_activate()",
637 				    t, q, mode, value);
638 				break;
639 			}
640 		}
641 	}
642 
643 	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
644 	    offsetof(vdev_t, vdev_config_dirty_node));
645 	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
646 	    offsetof(vdev_t, vdev_state_dirty_node));
647 
648 	txg_list_create(&spa->spa_vdev_txg_list,
649 	    offsetof(struct vdev, vdev_txg_node));
650 
651 	avl_create(&spa->spa_errlist_scrub,
652 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
653 	    offsetof(spa_error_entry_t, se_avl));
654 	avl_create(&spa->spa_errlist_last,
655 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
656 	    offsetof(spa_error_entry_t, se_avl));
657 }
658 
659 /*
660  * Opposite of spa_activate().
661  */
662 static void
663 spa_deactivate(spa_t *spa)
664 {
665 	ASSERT(spa->spa_sync_on == B_FALSE);
666 	ASSERT(spa->spa_dsl_pool == NULL);
667 	ASSERT(spa->spa_root_vdev == NULL);
668 	ASSERT(spa->spa_async_zio_root == NULL);
669 	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
670 
671 	txg_list_destroy(&spa->spa_vdev_txg_list);
672 
673 	list_destroy(&spa->spa_config_dirty_list);
674 	list_destroy(&spa->spa_state_dirty_list);
675 
676 	for (int t = 0; t < ZIO_TYPES; t++) {
677 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
678 			taskq_destroy(spa->spa_zio_taskq[t][q]);
679 			spa->spa_zio_taskq[t][q] = NULL;
680 		}
681 	}
682 
683 	metaslab_class_destroy(spa->spa_normal_class);
684 	spa->spa_normal_class = NULL;
685 
686 	metaslab_class_destroy(spa->spa_log_class);
687 	spa->spa_log_class = NULL;
688 
689 	/*
690 	 * If this was part of an import or the open otherwise failed, we may
691 	 * still have errors left in the queues.  Empty them just in case.
692 	 */
693 	spa_errlog_drain(spa);
694 
695 	avl_destroy(&spa->spa_errlist_scrub);
696 	avl_destroy(&spa->spa_errlist_last);
697 
698 	spa->spa_state = POOL_STATE_UNINITIALIZED;
699 }
700 
701 /*
702  * Verify a pool configuration, and construct the vdev tree appropriately.  This
703  * will create all the necessary vdevs in the appropriate layout, with each vdev
704  * in the CLOSED state.  This will prep the pool before open/creation/import.
705  * All vdev validation is done by the vdev_alloc() routine.
706  */
707 static int
708 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
709     uint_t id, int atype)
710 {
711 	nvlist_t **child;
712 	uint_t children;
713 	int error;
714 
715 	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
716 		return (error);
717 
718 	if ((*vdp)->vdev_ops->vdev_op_leaf)
719 		return (0);
720 
721 	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
722 	    &child, &children);
723 
724 	if (error == ENOENT)
725 		return (0);
726 
727 	if (error) {
728 		vdev_free(*vdp);
729 		*vdp = NULL;
730 		return (EINVAL);
731 	}
732 
733 	for (int c = 0; c < children; c++) {
734 		vdev_t *vd;
735 		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
736 		    atype)) != 0) {
737 			vdev_free(*vdp);
738 			*vdp = NULL;
739 			return (error);
740 		}
741 	}
742 
743 	ASSERT(*vdp != NULL);
744 
745 	return (0);
746 }
747 
748 /*
749  * Opposite of spa_load().
750  */
751 static void
752 spa_unload(spa_t *spa)
753 {
754 	int i;
755 
756 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
757 
758 	/*
759 	 * Stop async tasks.
760 	 */
761 	spa_async_suspend(spa);
762 
763 	/*
764 	 * Stop syncing.
765 	 */
766 	if (spa->spa_sync_on) {
767 		txg_sync_stop(spa->spa_dsl_pool);
768 		spa->spa_sync_on = B_FALSE;
769 	}
770 
771 	/*
772 	 * Wait for any outstanding async I/O to complete.
773 	 */
774 	if (spa->spa_async_zio_root != NULL) {
775 		(void) zio_wait(spa->spa_async_zio_root);
776 		spa->spa_async_zio_root = NULL;
777 	}
778 
779 	/*
780 	 * Close the dsl pool.
781 	 */
782 	if (spa->spa_dsl_pool) {
783 		dsl_pool_close(spa->spa_dsl_pool);
784 		spa->spa_dsl_pool = NULL;
785 	}
786 
787 	ddt_unload(spa);
788 
789 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
790 
791 	/*
792 	 * Drop and purge level 2 cache
793 	 */
794 	spa_l2cache_drop(spa);
795 
796 	/*
797 	 * Close all vdevs.
798 	 */
799 	if (spa->spa_root_vdev)
800 		vdev_free(spa->spa_root_vdev);
801 	ASSERT(spa->spa_root_vdev == NULL);
802 
803 	for (i = 0; i < spa->spa_spares.sav_count; i++)
804 		vdev_free(spa->spa_spares.sav_vdevs[i]);
805 	if (spa->spa_spares.sav_vdevs) {
806 		kmem_free(spa->spa_spares.sav_vdevs,
807 		    spa->spa_spares.sav_count * sizeof (void *));
808 		spa->spa_spares.sav_vdevs = NULL;
809 	}
810 	if (spa->spa_spares.sav_config) {
811 		nvlist_free(spa->spa_spares.sav_config);
812 		spa->spa_spares.sav_config = NULL;
813 	}
814 	spa->spa_spares.sav_count = 0;
815 
816 	for (i = 0; i < spa->spa_l2cache.sav_count; i++)
817 		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
818 	if (spa->spa_l2cache.sav_vdevs) {
819 		kmem_free(spa->spa_l2cache.sav_vdevs,
820 		    spa->spa_l2cache.sav_count * sizeof (void *));
821 		spa->spa_l2cache.sav_vdevs = NULL;
822 	}
823 	if (spa->spa_l2cache.sav_config) {
824 		nvlist_free(spa->spa_l2cache.sav_config);
825 		spa->spa_l2cache.sav_config = NULL;
826 	}
827 	spa->spa_l2cache.sav_count = 0;
828 
829 	spa->spa_async_suspended = 0;
830 
831 	spa_config_exit(spa, SCL_ALL, FTAG);
832 }
833 
834 /*
835  * Load (or re-load) the current list of vdevs describing the active spares for
836  * this pool.  When this is called, we have some form of basic information in
837  * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
838  * then re-generate a more complete list including status information.
839  */
840 static void
841 spa_load_spares(spa_t *spa)
842 {
843 	nvlist_t **spares;
844 	uint_t nspares;
845 	int i;
846 	vdev_t *vd, *tvd;
847 
848 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
849 
850 	/*
851 	 * First, close and free any existing spare vdevs.
852 	 */
853 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
854 		vd = spa->spa_spares.sav_vdevs[i];
855 
856 		/* Undo the call to spa_activate() below */
857 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
858 		    B_FALSE)) != NULL && tvd->vdev_isspare)
859 			spa_spare_remove(tvd);
860 		vdev_close(vd);
861 		vdev_free(vd);
862 	}
863 
864 	if (spa->spa_spares.sav_vdevs)
865 		kmem_free(spa->spa_spares.sav_vdevs,
866 		    spa->spa_spares.sav_count * sizeof (void *));
867 
868 	if (spa->spa_spares.sav_config == NULL)
869 		nspares = 0;
870 	else
871 		VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
872 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
873 
874 	spa->spa_spares.sav_count = (int)nspares;
875 	spa->spa_spares.sav_vdevs = NULL;
876 
877 	if (nspares == 0)
878 		return;
879 
880 	/*
881 	 * Construct the array of vdevs, opening them to get status in the
882 	 * process.   For each spare, there is potentially two different vdev_t
883 	 * structures associated with it: one in the list of spares (used only
884 	 * for basic validation purposes) and one in the active vdev
885 	 * configuration (if it's spared in).  During this phase we open and
886 	 * validate each vdev on the spare list.  If the vdev also exists in the
887 	 * active configuration, then we also mark this vdev as an active spare.
888 	 */
889 	spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
890 	    KM_SLEEP);
891 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
892 		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
893 		    VDEV_ALLOC_SPARE) == 0);
894 		ASSERT(vd != NULL);
895 
896 		spa->spa_spares.sav_vdevs[i] = vd;
897 
898 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
899 		    B_FALSE)) != NULL) {
900 			if (!tvd->vdev_isspare)
901 				spa_spare_add(tvd);
902 
903 			/*
904 			 * We only mark the spare active if we were successfully
905 			 * able to load the vdev.  Otherwise, importing a pool
906 			 * with a bad active spare would result in strange
907 			 * behavior, because multiple pool would think the spare
908 			 * is actively in use.
909 			 *
910 			 * There is a vulnerability here to an equally bizarre
911 			 * circumstance, where a dead active spare is later
912 			 * brought back to life (onlined or otherwise).  Given
913 			 * the rarity of this scenario, and the extra complexity
914 			 * it adds, we ignore the possibility.
915 			 */
916 			if (!vdev_is_dead(tvd))
917 				spa_spare_activate(tvd);
918 		}
919 
920 		vd->vdev_top = vd;
921 		vd->vdev_aux = &spa->spa_spares;
922 
923 		if (vdev_open(vd) != 0)
924 			continue;
925 
926 		if (vdev_validate_aux(vd) == 0)
927 			spa_spare_add(vd);
928 	}
929 
930 	/*
931 	 * Recompute the stashed list of spares, with status information
932 	 * this time.
933 	 */
934 	VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
935 	    DATA_TYPE_NVLIST_ARRAY) == 0);
936 
937 	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
938 	    KM_SLEEP);
939 	for (i = 0; i < spa->spa_spares.sav_count; i++)
940 		spares[i] = vdev_config_generate(spa,
941 		    spa->spa_spares.sav_vdevs[i], B_TRUE, B_TRUE, B_FALSE);
942 	VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
943 	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
944 	for (i = 0; i < spa->spa_spares.sav_count; i++)
945 		nvlist_free(spares[i]);
946 	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
947 }
948 
949 /*
950  * Load (or re-load) the current list of vdevs describing the active l2cache for
951  * this pool.  When this is called, we have some form of basic information in
952  * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
953  * then re-generate a more complete list including status information.
954  * Devices which are already active have their details maintained, and are
955  * not re-opened.
956  */
957 static void
958 spa_load_l2cache(spa_t *spa)
959 {
960 	nvlist_t **l2cache;
961 	uint_t nl2cache;
962 	int i, j, oldnvdevs;
963 	uint64_t guid;
964 	vdev_t *vd, **oldvdevs, **newvdevs;
965 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
966 
967 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
968 
969 	if (sav->sav_config != NULL) {
970 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
971 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
972 		newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
973 	} else {
974 		nl2cache = 0;
975 	}
976 
977 	oldvdevs = sav->sav_vdevs;
978 	oldnvdevs = sav->sav_count;
979 	sav->sav_vdevs = NULL;
980 	sav->sav_count = 0;
981 
982 	/*
983 	 * Process new nvlist of vdevs.
984 	 */
985 	for (i = 0; i < nl2cache; i++) {
986 		VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
987 		    &guid) == 0);
988 
989 		newvdevs[i] = NULL;
990 		for (j = 0; j < oldnvdevs; j++) {
991 			vd = oldvdevs[j];
992 			if (vd != NULL && guid == vd->vdev_guid) {
993 				/*
994 				 * Retain previous vdev for add/remove ops.
995 				 */
996 				newvdevs[i] = vd;
997 				oldvdevs[j] = NULL;
998 				break;
999 			}
1000 		}
1001 
1002 		if (newvdevs[i] == NULL) {
1003 			/*
1004 			 * Create new vdev
1005 			 */
1006 			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1007 			    VDEV_ALLOC_L2CACHE) == 0);
1008 			ASSERT(vd != NULL);
1009 			newvdevs[i] = vd;
1010 
1011 			/*
1012 			 * Commit this vdev as an l2cache device,
1013 			 * even if it fails to open.
1014 			 */
1015 			spa_l2cache_add(vd);
1016 
1017 			vd->vdev_top = vd;
1018 			vd->vdev_aux = sav;
1019 
1020 			spa_l2cache_activate(vd);
1021 
1022 			if (vdev_open(vd) != 0)
1023 				continue;
1024 
1025 			(void) vdev_validate_aux(vd);
1026 
1027 			if (!vdev_is_dead(vd))
1028 				l2arc_add_vdev(spa, vd);
1029 		}
1030 	}
1031 
1032 	/*
1033 	 * Purge vdevs that were dropped
1034 	 */
1035 	for (i = 0; i < oldnvdevs; i++) {
1036 		uint64_t pool;
1037 
1038 		vd = oldvdevs[i];
1039 		if (vd != NULL) {
1040 			if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1041 			    pool != 0ULL && l2arc_vdev_present(vd))
1042 				l2arc_remove_vdev(vd);
1043 			(void) vdev_close(vd);
1044 			spa_l2cache_remove(vd);
1045 		}
1046 	}
1047 
1048 	if (oldvdevs)
1049 		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1050 
1051 	if (sav->sav_config == NULL)
1052 		goto out;
1053 
1054 	sav->sav_vdevs = newvdevs;
1055 	sav->sav_count = (int)nl2cache;
1056 
1057 	/*
1058 	 * Recompute the stashed list of l2cache devices, with status
1059 	 * information this time.
1060 	 */
1061 	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1062 	    DATA_TYPE_NVLIST_ARRAY) == 0);
1063 
1064 	l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1065 	for (i = 0; i < sav->sav_count; i++)
1066 		l2cache[i] = vdev_config_generate(spa,
1067 		    sav->sav_vdevs[i], B_TRUE, B_FALSE, B_TRUE);
1068 	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1069 	    ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1070 out:
1071 	for (i = 0; i < sav->sav_count; i++)
1072 		nvlist_free(l2cache[i]);
1073 	if (sav->sav_count)
1074 		kmem_free(l2cache, sav->sav_count * sizeof (void *));
1075 }
1076 
1077 static int
1078 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1079 {
1080 	dmu_buf_t *db;
1081 	char *packed = NULL;
1082 	size_t nvsize = 0;
1083 	int error;
1084 	*value = NULL;
1085 
1086 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
1087 	nvsize = *(uint64_t *)db->db_data;
1088 	dmu_buf_rele(db, FTAG);
1089 
1090 	packed = kmem_alloc(nvsize, KM_SLEEP);
1091 	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1092 	    DMU_READ_PREFETCH);
1093 	if (error == 0)
1094 		error = nvlist_unpack(packed, nvsize, value, 0);
1095 	kmem_free(packed, nvsize);
1096 
1097 	return (error);
1098 }
1099 
1100 /*
1101  * Checks to see if the given vdev could not be opened, in which case we post a
1102  * sysevent to notify the autoreplace code that the device has been removed.
1103  */
1104 static void
1105 spa_check_removed(vdev_t *vd)
1106 {
1107 	for (int c = 0; c < vd->vdev_children; c++)
1108 		spa_check_removed(vd->vdev_child[c]);
1109 
1110 	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd)) {
1111 		zfs_post_autoreplace(vd->vdev_spa, vd);
1112 		spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1113 	}
1114 }
1115 
1116 /*
1117  * Load the slog device state from the config object since it's possible
1118  * that the label does not contain the most up-to-date information.
1119  */
1120 void
1121 spa_load_log_state(spa_t *spa, nvlist_t *nv)
1122 {
1123 	vdev_t *ovd, *rvd = spa->spa_root_vdev;
1124 
1125 	/*
1126 	 * Load the original root vdev tree from the passed config.
1127 	 */
1128 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1129 	VERIFY(spa_config_parse(spa, &ovd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1130 
1131 	for (int c = 0; c < rvd->vdev_children; c++) {
1132 		vdev_t *cvd = rvd->vdev_child[c];
1133 		if (cvd->vdev_islog)
1134 			vdev_load_log_state(cvd, ovd->vdev_child[c]);
1135 	}
1136 	vdev_free(ovd);
1137 	spa_config_exit(spa, SCL_ALL, FTAG);
1138 }
1139 
1140 /*
1141  * Check for missing log devices
1142  */
1143 int
1144 spa_check_logs(spa_t *spa)
1145 {
1146 	switch (spa->spa_log_state) {
1147 	case SPA_LOG_MISSING:
1148 		/* need to recheck in case slog has been restored */
1149 	case SPA_LOG_UNKNOWN:
1150 		if (dmu_objset_find(spa->spa_name, zil_check_log_chain, NULL,
1151 		    DS_FIND_CHILDREN)) {
1152 			spa->spa_log_state = SPA_LOG_MISSING;
1153 			return (1);
1154 		}
1155 		break;
1156 	}
1157 	return (0);
1158 }
1159 
1160 static void
1161 spa_aux_check_removed(spa_aux_vdev_t *sav)
1162 {
1163 	for (int i = 0; i < sav->sav_count; i++)
1164 		spa_check_removed(sav->sav_vdevs[i]);
1165 }
1166 
1167 void
1168 spa_claim_notify(zio_t *zio)
1169 {
1170 	spa_t *spa = zio->io_spa;
1171 
1172 	if (zio->io_error)
1173 		return;
1174 
1175 	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
1176 	if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1177 		spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1178 	mutex_exit(&spa->spa_props_lock);
1179 }
1180 
1181 typedef struct spa_load_error {
1182 	uint64_t	sle_metadata_count;
1183 	uint64_t	sle_data_count;
1184 } spa_load_error_t;
1185 
1186 static void
1187 spa_load_verify_done(zio_t *zio)
1188 {
1189 	blkptr_t *bp = zio->io_bp;
1190 	spa_load_error_t *sle = zio->io_private;
1191 	dmu_object_type_t type = BP_GET_TYPE(bp);
1192 	int error = zio->io_error;
1193 
1194 	if (error) {
1195 		if ((BP_GET_LEVEL(bp) != 0 || dmu_ot[type].ot_metadata) &&
1196 		    type != DMU_OT_INTENT_LOG)
1197 			atomic_add_64(&sle->sle_metadata_count, 1);
1198 		else
1199 			atomic_add_64(&sle->sle_data_count, 1);
1200 	}
1201 	zio_data_buf_free(zio->io_data, zio->io_size);
1202 }
1203 
1204 /*ARGSUSED*/
1205 static int
1206 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1207     const zbookmark_t *zb, const dnode_phys_t *dnp, void *arg)
1208 {
1209 	if (bp != NULL) {
1210 		zio_t *rio = arg;
1211 		size_t size = BP_GET_PSIZE(bp);
1212 		void *data = zio_data_buf_alloc(size);
1213 
1214 		zio_nowait(zio_read(rio, spa, bp, data, size,
1215 		    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1216 		    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1217 		    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1218 	}
1219 	return (0);
1220 }
1221 
1222 static int
1223 spa_load_verify(spa_t *spa)
1224 {
1225 	zio_t *rio;
1226 	spa_load_error_t sle = { 0 };
1227 	zpool_rewind_policy_t policy;
1228 	boolean_t verify_ok = B_FALSE;
1229 	int error;
1230 
1231 	rio = zio_root(spa, NULL, &sle,
1232 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1233 
1234 	error = traverse_pool(spa, spa_load_verify_cb, rio,
1235 	    spa->spa_verify_min_txg);
1236 
1237 	(void) zio_wait(rio);
1238 
1239 	zpool_get_rewind_policy(spa->spa_config, &policy);
1240 
1241 	spa->spa_load_meta_errors = sle.sle_metadata_count;
1242 	spa->spa_load_data_errors = sle.sle_data_count;
1243 
1244 	if (!error && sle.sle_metadata_count <= policy.zrp_maxmeta &&
1245 	    sle.sle_data_count <= policy.zrp_maxdata) {
1246 		verify_ok = B_TRUE;
1247 		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
1248 		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
1249 	}
1250 
1251 	if (error) {
1252 		if (error != ENXIO && error != EIO)
1253 			error = EIO;
1254 		return (error);
1255 	}
1256 
1257 	return (verify_ok ? 0 : EIO);
1258 }
1259 
1260 /*
1261  * Load an existing storage pool, using the pool's builtin spa_config as a
1262  * source of configuration information.
1263  */
1264 static int
1265 spa_load(spa_t *spa, spa_load_state_t state, int mosconfig)
1266 {
1267 	int error = 0;
1268 	nvlist_t *nvconfig, *nvroot = NULL;
1269 	vdev_t *rvd;
1270 	uberblock_t *ub = &spa->spa_uberblock;
1271 	uint64_t config_cache_txg = spa->spa_config_txg;
1272 	uint64_t pool_guid;
1273 	uint64_t version;
1274 	uint64_t autoreplace = 0;
1275 	int orig_mode = spa->spa_mode;
1276 	char *ereport = FM_EREPORT_ZFS_POOL;
1277 	nvlist_t *config = spa->spa_config;
1278 
1279 	/*
1280 	 * If this is an untrusted config, access the pool in read-only mode.
1281 	 * This prevents things like resilvering recently removed devices.
1282 	 */
1283 	if (!mosconfig)
1284 		spa->spa_mode = FREAD;
1285 
1286 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1287 
1288 	spa->spa_load_state = state;
1289 
1290 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) ||
1291 	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
1292 		error = EINVAL;
1293 		goto out;
1294 	}
1295 
1296 	/*
1297 	 * Versioning wasn't explicitly added to the label until later, so if
1298 	 * it's not present treat it as the initial version.
1299 	 */
1300 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, &version) != 0)
1301 		version = SPA_VERSION_INITIAL;
1302 
1303 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
1304 	    &spa->spa_config_txg);
1305 
1306 	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
1307 	    spa_guid_exists(pool_guid, 0)) {
1308 		error = EEXIST;
1309 		goto out;
1310 	}
1311 
1312 	spa->spa_load_guid = pool_guid;
1313 
1314 	/*
1315 	 * Create "The Godfather" zio to hold all async IOs
1316 	 */
1317 	spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
1318 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
1319 
1320 	/*
1321 	 * Parse the configuration into a vdev tree.  We explicitly set the
1322 	 * value that will be returned by spa_version() since parsing the
1323 	 * configuration requires knowing the version number.
1324 	 */
1325 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1326 	spa->spa_ubsync.ub_version = version;
1327 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_LOAD);
1328 	spa_config_exit(spa, SCL_ALL, FTAG);
1329 
1330 	if (error != 0)
1331 		goto out;
1332 
1333 	ASSERT(spa->spa_root_vdev == rvd);
1334 	ASSERT(spa_guid(spa) == pool_guid);
1335 
1336 	/*
1337 	 * Try to open all vdevs, loading each label in the process.
1338 	 */
1339 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1340 	error = vdev_open(rvd);
1341 	spa_config_exit(spa, SCL_ALL, FTAG);
1342 	if (error != 0)
1343 		goto out;
1344 
1345 	/*
1346 	 * We need to validate the vdev labels against the configuration that
1347 	 * we have in hand, which is dependent on the setting of mosconfig. If
1348 	 * mosconfig is true then we're validating the vdev labels based on
1349 	 * that config. Otherwise, we're validating against the cached config
1350 	 * (zpool.cache) that was read when we loaded the zfs module, and then
1351 	 * later we will recursively call spa_load() and validate against
1352 	 * the vdev config.
1353 	 */
1354 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1355 	error = vdev_validate(rvd);
1356 	spa_config_exit(spa, SCL_ALL, FTAG);
1357 	if (error != 0)
1358 		goto out;
1359 
1360 	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
1361 		error = ENXIO;
1362 		goto out;
1363 	}
1364 
1365 	/*
1366 	 * Find the best uberblock.
1367 	 */
1368 	vdev_uberblock_load(NULL, rvd, ub);
1369 
1370 	/*
1371 	 * If we weren't able to find a single valid uberblock, return failure.
1372 	 */
1373 	if (ub->ub_txg == 0) {
1374 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1375 		    VDEV_AUX_CORRUPT_DATA);
1376 		error = ENXIO;
1377 		goto out;
1378 	}
1379 
1380 	/*
1381 	 * If the pool is newer than the code, we can't open it.
1382 	 */
1383 	if (ub->ub_version > SPA_VERSION) {
1384 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1385 		    VDEV_AUX_VERSION_NEWER);
1386 		error = ENOTSUP;
1387 		goto out;
1388 	}
1389 
1390 	/*
1391 	 * If the vdev guid sum doesn't match the uberblock, we have an
1392 	 * incomplete configuration.
1393 	 */
1394 	if (rvd->vdev_guid_sum != ub->ub_guid_sum && mosconfig) {
1395 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1396 		    VDEV_AUX_BAD_GUID_SUM);
1397 		error = ENXIO;
1398 		goto out;
1399 	}
1400 
1401 	/*
1402 	 * Initialize internal SPA structures.
1403 	 */
1404 	spa->spa_state = POOL_STATE_ACTIVE;
1405 	spa->spa_ubsync = spa->spa_uberblock;
1406 	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
1407 	    TXG_INITIAL : spa_last_synced_txg(spa) - TXG_DEFER_SIZE;
1408 	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
1409 	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
1410 	spa->spa_claim_max_txg = spa->spa_first_txg;
1411 
1412 	error = dsl_pool_open(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
1413 	if (error) {
1414 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1415 		    VDEV_AUX_CORRUPT_DATA);
1416 		error = EIO;
1417 		goto out;
1418 	}
1419 	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
1420 
1421 	if (zap_lookup(spa->spa_meta_objset,
1422 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
1423 	    sizeof (uint64_t), 1, &spa->spa_config_object) != 0) {
1424 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1425 		    VDEV_AUX_CORRUPT_DATA);
1426 		error = EIO;
1427 		goto out;
1428 	}
1429 
1430 	if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0) {
1431 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1432 		    VDEV_AUX_CORRUPT_DATA);
1433 		error = EIO;
1434 		goto out;
1435 	}
1436 
1437 	if (!mosconfig) {
1438 		uint64_t hostid;
1439 
1440 		if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
1441 		    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
1442 			char *hostname;
1443 			unsigned long myhostid = 0;
1444 
1445 			VERIFY(nvlist_lookup_string(nvconfig,
1446 			    ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
1447 
1448 #ifdef	_KERNEL
1449 			myhostid = zone_get_hostid(NULL);
1450 #else	/* _KERNEL */
1451 			/*
1452 			 * We're emulating the system's hostid in userland, so
1453 			 * we can't use zone_get_hostid().
1454 			 */
1455 			(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
1456 #endif	/* _KERNEL */
1457 			if (hostid != 0 && myhostid != 0 &&
1458 			    hostid != myhostid) {
1459 				cmn_err(CE_WARN, "pool '%s' could not be "
1460 				    "loaded as it was last accessed by "
1461 				    "another system (host: %s hostid: 0x%lx). "
1462 				    "See: http://www.sun.com/msg/ZFS-8000-EY",
1463 				    spa_name(spa), hostname,
1464 				    (unsigned long)hostid);
1465 				error = EBADF;
1466 				goto out;
1467 			}
1468 		}
1469 
1470 		spa_config_set(spa, nvconfig);
1471 		spa_unload(spa);
1472 		spa_deactivate(spa);
1473 		spa_activate(spa, orig_mode);
1474 
1475 		return (spa_load(spa, state, B_TRUE));
1476 	}
1477 
1478 	if (zap_lookup(spa->spa_meta_objset,
1479 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST,
1480 	    sizeof (uint64_t), 1, &spa->spa_deferred_bplist_obj) != 0) {
1481 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1482 		    VDEV_AUX_CORRUPT_DATA);
1483 		error = EIO;
1484 		goto out;
1485 	}
1486 
1487 	/*
1488 	 * Load the bit that tells us to use the new accounting function
1489 	 * (raid-z deflation).  If we have an older pool, this will not
1490 	 * be present.
1491 	 */
1492 	error = zap_lookup(spa->spa_meta_objset,
1493 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
1494 	    sizeof (uint64_t), 1, &spa->spa_deflate);
1495 	if (error != 0 && error != ENOENT) {
1496 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1497 		    VDEV_AUX_CORRUPT_DATA);
1498 		error = EIO;
1499 		goto out;
1500 	}
1501 
1502 	/*
1503 	 * Load the persistent error log.  If we have an older pool, this will
1504 	 * not be present.
1505 	 */
1506 	error = zap_lookup(spa->spa_meta_objset,
1507 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_LAST,
1508 	    sizeof (uint64_t), 1, &spa->spa_errlog_last);
1509 	if (error != 0 && error != ENOENT) {
1510 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1511 		    VDEV_AUX_CORRUPT_DATA);
1512 		error = EIO;
1513 		goto out;
1514 	}
1515 
1516 	error = zap_lookup(spa->spa_meta_objset,
1517 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_SCRUB,
1518 	    sizeof (uint64_t), 1, &spa->spa_errlog_scrub);
1519 	if (error != 0 && error != ENOENT) {
1520 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1521 		    VDEV_AUX_CORRUPT_DATA);
1522 		error = EIO;
1523 		goto out;
1524 	}
1525 
1526 	/*
1527 	 * Load the history object.  If we have an older pool, this
1528 	 * will not be present.
1529 	 */
1530 	error = zap_lookup(spa->spa_meta_objset,
1531 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_HISTORY,
1532 	    sizeof (uint64_t), 1, &spa->spa_history);
1533 	if (error != 0 && error != ENOENT) {
1534 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1535 		    VDEV_AUX_CORRUPT_DATA);
1536 		error = EIO;
1537 		goto out;
1538 	}
1539 
1540 	/*
1541 	 * Load any hot spares for this pool.
1542 	 */
1543 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1544 	    DMU_POOL_SPARES, sizeof (uint64_t), 1, &spa->spa_spares.sav_object);
1545 	if (error != 0 && error != ENOENT) {
1546 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1547 		    VDEV_AUX_CORRUPT_DATA);
1548 		error = EIO;
1549 		goto out;
1550 	}
1551 	if (error == 0) {
1552 		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
1553 		if (load_nvlist(spa, spa->spa_spares.sav_object,
1554 		    &spa->spa_spares.sav_config) != 0) {
1555 			vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1556 			    VDEV_AUX_CORRUPT_DATA);
1557 			error = EIO;
1558 			goto out;
1559 		}
1560 
1561 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1562 		spa_load_spares(spa);
1563 		spa_config_exit(spa, SCL_ALL, FTAG);
1564 	}
1565 
1566 	/*
1567 	 * Load any level 2 ARC devices for this pool.
1568 	 */
1569 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1570 	    DMU_POOL_L2CACHE, sizeof (uint64_t), 1,
1571 	    &spa->spa_l2cache.sav_object);
1572 	if (error != 0 && error != ENOENT) {
1573 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1574 		    VDEV_AUX_CORRUPT_DATA);
1575 		error = EIO;
1576 		goto out;
1577 	}
1578 	if (error == 0) {
1579 		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
1580 		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
1581 		    &spa->spa_l2cache.sav_config) != 0) {
1582 			vdev_set_state(rvd, B_TRUE,
1583 			    VDEV_STATE_CANT_OPEN,
1584 			    VDEV_AUX_CORRUPT_DATA);
1585 			error = EIO;
1586 			goto out;
1587 		}
1588 
1589 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1590 		spa_load_l2cache(spa);
1591 		spa_config_exit(spa, SCL_ALL, FTAG);
1592 	}
1593 
1594 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
1595 
1596 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1597 	    DMU_POOL_PROPS, sizeof (uint64_t), 1, &spa->spa_pool_props_object);
1598 
1599 	if (error && error != ENOENT) {
1600 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1601 		    VDEV_AUX_CORRUPT_DATA);
1602 		error = EIO;
1603 		goto out;
1604 	}
1605 
1606 	if (error == 0) {
1607 		(void) zap_lookup(spa->spa_meta_objset,
1608 		    spa->spa_pool_props_object,
1609 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS),
1610 		    sizeof (uint64_t), 1, &spa->spa_bootfs);
1611 		(void) zap_lookup(spa->spa_meta_objset,
1612 		    spa->spa_pool_props_object,
1613 		    zpool_prop_to_name(ZPOOL_PROP_AUTOREPLACE),
1614 		    sizeof (uint64_t), 1, &autoreplace);
1615 		spa->spa_autoreplace = (autoreplace != 0);
1616 		(void) zap_lookup(spa->spa_meta_objset,
1617 		    spa->spa_pool_props_object,
1618 		    zpool_prop_to_name(ZPOOL_PROP_DELEGATION),
1619 		    sizeof (uint64_t), 1, &spa->spa_delegation);
1620 		(void) zap_lookup(spa->spa_meta_objset,
1621 		    spa->spa_pool_props_object,
1622 		    zpool_prop_to_name(ZPOOL_PROP_FAILUREMODE),
1623 		    sizeof (uint64_t), 1, &spa->spa_failmode);
1624 		(void) zap_lookup(spa->spa_meta_objset,
1625 		    spa->spa_pool_props_object,
1626 		    zpool_prop_to_name(ZPOOL_PROP_AUTOEXPAND),
1627 		    sizeof (uint64_t), 1, &spa->spa_autoexpand);
1628 		(void) zap_lookup(spa->spa_meta_objset,
1629 		    spa->spa_pool_props_object,
1630 		    zpool_prop_to_name(ZPOOL_PROP_DEDUPDITTO),
1631 		    sizeof (uint64_t), 1, &spa->spa_dedup_ditto);
1632 	}
1633 
1634 	/*
1635 	 * If the 'autoreplace' property is set, then post a resource notifying
1636 	 * the ZFS DE that it should not issue any faults for unopenable
1637 	 * devices.  We also iterate over the vdevs, and post a sysevent for any
1638 	 * unopenable vdevs so that the normal autoreplace handler can take
1639 	 * over.
1640 	 */
1641 	if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
1642 		spa_check_removed(spa->spa_root_vdev);
1643 		/*
1644 		 * For the import case, this is done in spa_import(), because
1645 		 * at this point we're using the spare definitions from
1646 		 * the MOS config, not necessarily from the userland config.
1647 		 */
1648 		if (state != SPA_LOAD_IMPORT) {
1649 			spa_aux_check_removed(&spa->spa_spares);
1650 			spa_aux_check_removed(&spa->spa_l2cache);
1651 		}
1652 	}
1653 
1654 	/*
1655 	 * Load the vdev state for all toplevel vdevs.
1656 	 */
1657 	vdev_load(rvd);
1658 
1659 	/*
1660 	 * Propagate the leaf DTLs we just loaded all the way up the tree.
1661 	 */
1662 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1663 	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
1664 	spa_config_exit(spa, SCL_ALL, FTAG);
1665 
1666 	/*
1667 	 * Check the state of the root vdev.  If it can't be opened, it
1668 	 * indicates one or more toplevel vdevs are faulted.
1669 	 */
1670 	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
1671 		error = ENXIO;
1672 		goto out;
1673 	}
1674 
1675 	/*
1676 	 * Load the DDTs (dedup tables).
1677 	 */
1678 	error = ddt_load(spa);
1679 	if (error != 0) {
1680 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1681 		    VDEV_AUX_CORRUPT_DATA);
1682 		error = EIO;
1683 		goto out;
1684 	}
1685 
1686 	spa_update_dspace(spa);
1687 
1688 	if (state != SPA_LOAD_TRYIMPORT) {
1689 		error = spa_load_verify(spa);
1690 		if (error) {
1691 			vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1692 			    VDEV_AUX_CORRUPT_DATA);
1693 			goto out;
1694 		}
1695 	}
1696 
1697 	/*
1698 	 * Load the intent log state and check log integrity.
1699 	 */
1700 	VERIFY(nvlist_lookup_nvlist(nvconfig, ZPOOL_CONFIG_VDEV_TREE,
1701 	    &nvroot) == 0);
1702 	spa_load_log_state(spa, nvroot);
1703 	nvlist_free(nvconfig);
1704 
1705 	if (spa_check_logs(spa)) {
1706 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1707 		    VDEV_AUX_BAD_LOG);
1708 		error = ENXIO;
1709 		ereport = FM_EREPORT_ZFS_LOG_REPLAY;
1710 		goto out;
1711 	}
1712 
1713 	if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
1714 	    spa->spa_load_max_txg == UINT64_MAX)) {
1715 		dmu_tx_t *tx;
1716 		int need_update = B_FALSE;
1717 
1718 		ASSERT(state != SPA_LOAD_TRYIMPORT);
1719 
1720 		/*
1721 		 * Claim log blocks that haven't been committed yet.
1722 		 * This must all happen in a single txg.
1723 		 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
1724 		 * invoked from zil_claim_log_block()'s i/o done callback.
1725 		 * Price of rollback is that we abandon the log.
1726 		 */
1727 		spa->spa_claiming = B_TRUE;
1728 
1729 		tx = dmu_tx_create_assigned(spa_get_dsl(spa),
1730 		    spa_first_txg(spa));
1731 		(void) dmu_objset_find(spa_name(spa),
1732 		    zil_claim, tx, DS_FIND_CHILDREN);
1733 		dmu_tx_commit(tx);
1734 
1735 		spa->spa_claiming = B_FALSE;
1736 
1737 		spa->spa_log_state = SPA_LOG_GOOD;
1738 		spa->spa_sync_on = B_TRUE;
1739 		txg_sync_start(spa->spa_dsl_pool);
1740 
1741 		/*
1742 		 * Wait for all claims to sync.  We sync up to the highest
1743 		 * claimed log block birth time so that claimed log blocks
1744 		 * don't appear to be from the future.  spa_claim_max_txg
1745 		 * will have been set for us by either zil_check_log_chain()
1746 		 * (invoked from spa_check_logs()) or zil_claim() above.
1747 		 */
1748 		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
1749 
1750 		/*
1751 		 * If the config cache is stale, or we have uninitialized
1752 		 * metaslabs (see spa_vdev_add()), then update the config.
1753 		 *
1754 		 * If spa_load_verbatim is true, trust the current
1755 		 * in-core spa_config and update the disk labels.
1756 		 */
1757 		if (config_cache_txg != spa->spa_config_txg ||
1758 		    state == SPA_LOAD_IMPORT || spa->spa_load_verbatim ||
1759 		    state == SPA_LOAD_RECOVER)
1760 			need_update = B_TRUE;
1761 
1762 		for (int c = 0; c < rvd->vdev_children; c++)
1763 			if (rvd->vdev_child[c]->vdev_ms_array == 0)
1764 				need_update = B_TRUE;
1765 
1766 		/*
1767 		 * Update the config cache asychronously in case we're the
1768 		 * root pool, in which case the config cache isn't writable yet.
1769 		 */
1770 		if (need_update)
1771 			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
1772 
1773 		/*
1774 		 * Check all DTLs to see if anything needs resilvering.
1775 		 */
1776 		if (vdev_resilver_needed(rvd, NULL, NULL))
1777 			spa_async_request(spa, SPA_ASYNC_RESILVER);
1778 
1779 		/*
1780 		 * Delete any inconsistent datasets.
1781 		 */
1782 		(void) dmu_objset_find(spa_name(spa),
1783 		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
1784 
1785 		/*
1786 		 * Clean up any stale temporary dataset userrefs.
1787 		 */
1788 		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
1789 	}
1790 
1791 	error = 0;
1792 out:
1793 
1794 	spa->spa_minref = refcount_count(&spa->spa_refcount);
1795 	if (error && error != EBADF)
1796 		zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
1797 	spa->spa_load_state = SPA_LOAD_NONE;
1798 	spa->spa_ena = 0;
1799 
1800 	return (error);
1801 }
1802 
1803 static int
1804 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
1805 {
1806 	spa_unload(spa);
1807 	spa_deactivate(spa);
1808 
1809 	spa->spa_load_max_txg--;
1810 
1811 	spa_activate(spa, spa_mode_global);
1812 	spa_async_suspend(spa);
1813 
1814 	return (spa_load(spa, state, mosconfig));
1815 }
1816 
1817 static int
1818 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
1819     uint64_t max_request, boolean_t extreme)
1820 {
1821 	nvlist_t *config = NULL;
1822 	int load_error, rewind_error;
1823 	uint64_t safe_rollback_txg;
1824 	uint64_t min_txg;
1825 
1826 	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER)
1827 		spa->spa_load_max_txg = spa->spa_load_txg;
1828 	else
1829 		spa->spa_load_max_txg = max_request;
1830 
1831 	load_error = rewind_error = spa_load(spa, state, mosconfig);
1832 	if (load_error == 0)
1833 		return (0);
1834 
1835 	if (spa->spa_root_vdev != NULL)
1836 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
1837 
1838 	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
1839 	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
1840 
1841 	/* specific txg requested */
1842 	if (spa->spa_load_max_txg != UINT64_MAX && !extreme) {
1843 		nvlist_free(config);
1844 		return (load_error);
1845 	}
1846 
1847 	/* Price of rolling back is discarding txgs, including log */
1848 	if (state == SPA_LOAD_RECOVER)
1849 		spa->spa_log_state = SPA_LOG_CLEAR;
1850 
1851 	spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
1852 	safe_rollback_txg = spa->spa_uberblock.ub_txg - TXG_DEFER_SIZE;
1853 
1854 	min_txg = extreme ? TXG_INITIAL : safe_rollback_txg;
1855 	while (rewind_error && (spa->spa_uberblock.ub_txg >= min_txg)) {
1856 		if (spa->spa_load_max_txg < safe_rollback_txg)
1857 			spa->spa_extreme_rewind = B_TRUE;
1858 		rewind_error = spa_load_retry(spa, state, mosconfig);
1859 	}
1860 
1861 	if (config)
1862 		spa_rewind_data_to_nvlist(spa, config);
1863 
1864 	spa->spa_extreme_rewind = B_FALSE;
1865 	spa->spa_load_max_txg = UINT64_MAX;
1866 
1867 	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
1868 		spa_config_set(spa, config);
1869 
1870 	return (state == SPA_LOAD_RECOVER ? rewind_error : load_error);
1871 }
1872 
1873 /*
1874  * Pool Open/Import
1875  *
1876  * The import case is identical to an open except that the configuration is sent
1877  * down from userland, instead of grabbed from the configuration cache.  For the
1878  * case of an open, the pool configuration will exist in the
1879  * POOL_STATE_UNINITIALIZED state.
1880  *
1881  * The stats information (gen/count/ustats) is used to gather vdev statistics at
1882  * the same time open the pool, without having to keep around the spa_t in some
1883  * ambiguous state.
1884  */
1885 static int
1886 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
1887     nvlist_t **config)
1888 {
1889 	spa_t *spa;
1890 	boolean_t norewind;
1891 	boolean_t extreme;
1892 	zpool_rewind_policy_t policy;
1893 	spa_load_state_t state = SPA_LOAD_OPEN;
1894 	int error;
1895 	int locked = B_FALSE;
1896 
1897 	*spapp = NULL;
1898 
1899 	zpool_get_rewind_policy(nvpolicy, &policy);
1900 	if (policy.zrp_request & ZPOOL_DO_REWIND)
1901 		state = SPA_LOAD_RECOVER;
1902 	norewind = (policy.zrp_request == ZPOOL_NO_REWIND);
1903 	extreme = ((policy.zrp_request & ZPOOL_EXTREME_REWIND) != 0);
1904 
1905 	/*
1906 	 * As disgusting as this is, we need to support recursive calls to this
1907 	 * function because dsl_dir_open() is called during spa_load(), and ends
1908 	 * up calling spa_open() again.  The real fix is to figure out how to
1909 	 * avoid dsl_dir_open() calling this in the first place.
1910 	 */
1911 	if (mutex_owner(&spa_namespace_lock) != curthread) {
1912 		mutex_enter(&spa_namespace_lock);
1913 		locked = B_TRUE;
1914 	}
1915 
1916 	if ((spa = spa_lookup(pool)) == NULL) {
1917 		if (locked)
1918 			mutex_exit(&spa_namespace_lock);
1919 		return (ENOENT);
1920 	}
1921 
1922 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
1923 
1924 		spa_activate(spa, spa_mode_global);
1925 
1926 		if (spa->spa_last_open_failed && norewind) {
1927 			if (config != NULL && spa->spa_config)
1928 				VERIFY(nvlist_dup(spa->spa_config,
1929 				    config, KM_SLEEP) == 0);
1930 			spa_deactivate(spa);
1931 			if (locked)
1932 				mutex_exit(&spa_namespace_lock);
1933 			return (spa->spa_last_open_failed);
1934 		}
1935 
1936 		if (state != SPA_LOAD_RECOVER)
1937 			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
1938 
1939 		error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
1940 		    extreme);
1941 
1942 		if (error == EBADF) {
1943 			/*
1944 			 * If vdev_validate() returns failure (indicated by
1945 			 * EBADF), it indicates that one of the vdevs indicates
1946 			 * that the pool has been exported or destroyed.  If
1947 			 * this is the case, the config cache is out of sync and
1948 			 * we should remove the pool from the namespace.
1949 			 */
1950 			spa_unload(spa);
1951 			spa_deactivate(spa);
1952 			spa_config_sync(spa, B_TRUE, B_TRUE);
1953 			spa_remove(spa);
1954 			if (locked)
1955 				mutex_exit(&spa_namespace_lock);
1956 			return (ENOENT);
1957 		}
1958 
1959 		if (error) {
1960 			/*
1961 			 * We can't open the pool, but we still have useful
1962 			 * information: the state of each vdev after the
1963 			 * attempted vdev_open().  Return this to the user.
1964 			 */
1965 			if (config != NULL && spa->spa_config)
1966 				VERIFY(nvlist_dup(spa->spa_config, config,
1967 				    KM_SLEEP) == 0);
1968 			spa_unload(spa);
1969 			spa_deactivate(spa);
1970 			spa->spa_last_open_failed = error;
1971 			if (locked)
1972 				mutex_exit(&spa_namespace_lock);
1973 			*spapp = NULL;
1974 			return (error);
1975 		}
1976 
1977 	}
1978 
1979 	spa_open_ref(spa, tag);
1980 
1981 	spa->spa_last_open_failed = 0;
1982 
1983 	if (config != NULL)
1984 		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
1985 
1986 	spa->spa_last_ubsync_txg = 0;
1987 	spa->spa_load_txg = 0;
1988 
1989 	if (locked)
1990 		mutex_exit(&spa_namespace_lock);
1991 
1992 	*spapp = spa;
1993 
1994 	return (0);
1995 }
1996 
1997 int
1998 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
1999     nvlist_t **config)
2000 {
2001 	return (spa_open_common(name, spapp, tag, policy, config));
2002 }
2003 
2004 int
2005 spa_open(const char *name, spa_t **spapp, void *tag)
2006 {
2007 	return (spa_open_common(name, spapp, tag, NULL, NULL));
2008 }
2009 
2010 /*
2011  * Lookup the given spa_t, incrementing the inject count in the process,
2012  * preventing it from being exported or destroyed.
2013  */
2014 spa_t *
2015 spa_inject_addref(char *name)
2016 {
2017 	spa_t *spa;
2018 
2019 	mutex_enter(&spa_namespace_lock);
2020 	if ((spa = spa_lookup(name)) == NULL) {
2021 		mutex_exit(&spa_namespace_lock);
2022 		return (NULL);
2023 	}
2024 	spa->spa_inject_ref++;
2025 	mutex_exit(&spa_namespace_lock);
2026 
2027 	return (spa);
2028 }
2029 
2030 void
2031 spa_inject_delref(spa_t *spa)
2032 {
2033 	mutex_enter(&spa_namespace_lock);
2034 	spa->spa_inject_ref--;
2035 	mutex_exit(&spa_namespace_lock);
2036 }
2037 
2038 /*
2039  * Add spares device information to the nvlist.
2040  */
2041 static void
2042 spa_add_spares(spa_t *spa, nvlist_t *config)
2043 {
2044 	nvlist_t **spares;
2045 	uint_t i, nspares;
2046 	nvlist_t *nvroot;
2047 	uint64_t guid;
2048 	vdev_stat_t *vs;
2049 	uint_t vsc;
2050 	uint64_t pool;
2051 
2052 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
2053 
2054 	if (spa->spa_spares.sav_count == 0)
2055 		return;
2056 
2057 	VERIFY(nvlist_lookup_nvlist(config,
2058 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
2059 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
2060 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
2061 	if (nspares != 0) {
2062 		VERIFY(nvlist_add_nvlist_array(nvroot,
2063 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
2064 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
2065 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
2066 
2067 		/*
2068 		 * Go through and find any spares which have since been
2069 		 * repurposed as an active spare.  If this is the case, update
2070 		 * their status appropriately.
2071 		 */
2072 		for (i = 0; i < nspares; i++) {
2073 			VERIFY(nvlist_lookup_uint64(spares[i],
2074 			    ZPOOL_CONFIG_GUID, &guid) == 0);
2075 			if (spa_spare_exists(guid, &pool, NULL) &&
2076 			    pool != 0ULL) {
2077 				VERIFY(nvlist_lookup_uint64_array(
2078 				    spares[i], ZPOOL_CONFIG_STATS,
2079 				    (uint64_t **)&vs, &vsc) == 0);
2080 				vs->vs_state = VDEV_STATE_CANT_OPEN;
2081 				vs->vs_aux = VDEV_AUX_SPARED;
2082 			}
2083 		}
2084 	}
2085 }
2086 
2087 /*
2088  * Add l2cache device information to the nvlist, including vdev stats.
2089  */
2090 static void
2091 spa_add_l2cache(spa_t *spa, nvlist_t *config)
2092 {
2093 	nvlist_t **l2cache;
2094 	uint_t i, j, nl2cache;
2095 	nvlist_t *nvroot;
2096 	uint64_t guid;
2097 	vdev_t *vd;
2098 	vdev_stat_t *vs;
2099 	uint_t vsc;
2100 
2101 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
2102 
2103 	if (spa->spa_l2cache.sav_count == 0)
2104 		return;
2105 
2106 	VERIFY(nvlist_lookup_nvlist(config,
2107 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
2108 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
2109 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
2110 	if (nl2cache != 0) {
2111 		VERIFY(nvlist_add_nvlist_array(nvroot,
2112 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
2113 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
2114 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
2115 
2116 		/*
2117 		 * Update level 2 cache device stats.
2118 		 */
2119 
2120 		for (i = 0; i < nl2cache; i++) {
2121 			VERIFY(nvlist_lookup_uint64(l2cache[i],
2122 			    ZPOOL_CONFIG_GUID, &guid) == 0);
2123 
2124 			vd = NULL;
2125 			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
2126 				if (guid ==
2127 				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
2128 					vd = spa->spa_l2cache.sav_vdevs[j];
2129 					break;
2130 				}
2131 			}
2132 			ASSERT(vd != NULL);
2133 
2134 			VERIFY(nvlist_lookup_uint64_array(l2cache[i],
2135 			    ZPOOL_CONFIG_STATS, (uint64_t **)&vs, &vsc) == 0);
2136 			vdev_get_stats(vd, vs);
2137 		}
2138 	}
2139 }
2140 
2141 int
2142 spa_get_stats(const char *name, nvlist_t **config, char *altroot, size_t buflen)
2143 {
2144 	int error;
2145 	spa_t *spa;
2146 
2147 	*config = NULL;
2148 	error = spa_open_common(name, &spa, FTAG, NULL, config);
2149 
2150 	if (spa != NULL) {
2151 		/*
2152 		 * This still leaves a window of inconsistency where the spares
2153 		 * or l2cache devices could change and the config would be
2154 		 * self-inconsistent.
2155 		 */
2156 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
2157 
2158 		if (*config != NULL) {
2159 			VERIFY(nvlist_add_uint64(*config,
2160 			    ZPOOL_CONFIG_ERRCOUNT,
2161 			    spa_get_errlog_size(spa)) == 0);
2162 
2163 			if (spa_suspended(spa))
2164 				VERIFY(nvlist_add_uint64(*config,
2165 				    ZPOOL_CONFIG_SUSPENDED,
2166 				    spa->spa_failmode) == 0);
2167 
2168 			spa_add_spares(spa, *config);
2169 			spa_add_l2cache(spa, *config);
2170 		}
2171 	}
2172 
2173 	/*
2174 	 * We want to get the alternate root even for faulted pools, so we cheat
2175 	 * and call spa_lookup() directly.
2176 	 */
2177 	if (altroot) {
2178 		if (spa == NULL) {
2179 			mutex_enter(&spa_namespace_lock);
2180 			spa = spa_lookup(name);
2181 			if (spa)
2182 				spa_altroot(spa, altroot, buflen);
2183 			else
2184 				altroot[0] = '\0';
2185 			spa = NULL;
2186 			mutex_exit(&spa_namespace_lock);
2187 		} else {
2188 			spa_altroot(spa, altroot, buflen);
2189 		}
2190 	}
2191 
2192 	if (spa != NULL) {
2193 		spa_config_exit(spa, SCL_CONFIG, FTAG);
2194 		spa_close(spa, FTAG);
2195 	}
2196 
2197 	return (error);
2198 }
2199 
2200 /*
2201  * Validate that the auxiliary device array is well formed.  We must have an
2202  * array of nvlists, each which describes a valid leaf vdev.  If this is an
2203  * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
2204  * specified, as long as they are well-formed.
2205  */
2206 static int
2207 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
2208     spa_aux_vdev_t *sav, const char *config, uint64_t version,
2209     vdev_labeltype_t label)
2210 {
2211 	nvlist_t **dev;
2212 	uint_t i, ndev;
2213 	vdev_t *vd;
2214 	int error;
2215 
2216 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
2217 
2218 	/*
2219 	 * It's acceptable to have no devs specified.
2220 	 */
2221 	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
2222 		return (0);
2223 
2224 	if (ndev == 0)
2225 		return (EINVAL);
2226 
2227 	/*
2228 	 * Make sure the pool is formatted with a version that supports this
2229 	 * device type.
2230 	 */
2231 	if (spa_version(spa) < version)
2232 		return (ENOTSUP);
2233 
2234 	/*
2235 	 * Set the pending device list so we correctly handle device in-use
2236 	 * checking.
2237 	 */
2238 	sav->sav_pending = dev;
2239 	sav->sav_npending = ndev;
2240 
2241 	for (i = 0; i < ndev; i++) {
2242 		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
2243 		    mode)) != 0)
2244 			goto out;
2245 
2246 		if (!vd->vdev_ops->vdev_op_leaf) {
2247 			vdev_free(vd);
2248 			error = EINVAL;
2249 			goto out;
2250 		}
2251 
2252 		/*
2253 		 * The L2ARC currently only supports disk devices in
2254 		 * kernel context.  For user-level testing, we allow it.
2255 		 */
2256 #ifdef _KERNEL
2257 		if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
2258 		    strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
2259 			error = ENOTBLK;
2260 			goto out;
2261 		}
2262 #endif
2263 		vd->vdev_top = vd;
2264 
2265 		if ((error = vdev_open(vd)) == 0 &&
2266 		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
2267 			VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
2268 			    vd->vdev_guid) == 0);
2269 		}
2270 
2271 		vdev_free(vd);
2272 
2273 		if (error &&
2274 		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
2275 			goto out;
2276 		else
2277 			error = 0;
2278 	}
2279 
2280 out:
2281 	sav->sav_pending = NULL;
2282 	sav->sav_npending = 0;
2283 	return (error);
2284 }
2285 
2286 static int
2287 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
2288 {
2289 	int error;
2290 
2291 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
2292 
2293 	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
2294 	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
2295 	    VDEV_LABEL_SPARE)) != 0) {
2296 		return (error);
2297 	}
2298 
2299 	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
2300 	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
2301 	    VDEV_LABEL_L2CACHE));
2302 }
2303 
2304 static void
2305 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
2306     const char *config)
2307 {
2308 	int i;
2309 
2310 	if (sav->sav_config != NULL) {
2311 		nvlist_t **olddevs;
2312 		uint_t oldndevs;
2313 		nvlist_t **newdevs;
2314 
2315 		/*
2316 		 * Generate new dev list by concatentating with the
2317 		 * current dev list.
2318 		 */
2319 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
2320 		    &olddevs, &oldndevs) == 0);
2321 
2322 		newdevs = kmem_alloc(sizeof (void *) *
2323 		    (ndevs + oldndevs), KM_SLEEP);
2324 		for (i = 0; i < oldndevs; i++)
2325 			VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
2326 			    KM_SLEEP) == 0);
2327 		for (i = 0; i < ndevs; i++)
2328 			VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
2329 			    KM_SLEEP) == 0);
2330 
2331 		VERIFY(nvlist_remove(sav->sav_config, config,
2332 		    DATA_TYPE_NVLIST_ARRAY) == 0);
2333 
2334 		VERIFY(nvlist_add_nvlist_array(sav->sav_config,
2335 		    config, newdevs, ndevs + oldndevs) == 0);
2336 		for (i = 0; i < oldndevs + ndevs; i++)
2337 			nvlist_free(newdevs[i]);
2338 		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
2339 	} else {
2340 		/*
2341 		 * Generate a new dev list.
2342 		 */
2343 		VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
2344 		    KM_SLEEP) == 0);
2345 		VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
2346 		    devs, ndevs) == 0);
2347 	}
2348 }
2349 
2350 /*
2351  * Stop and drop level 2 ARC devices
2352  */
2353 void
2354 spa_l2cache_drop(spa_t *spa)
2355 {
2356 	vdev_t *vd;
2357 	int i;
2358 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
2359 
2360 	for (i = 0; i < sav->sav_count; i++) {
2361 		uint64_t pool;
2362 
2363 		vd = sav->sav_vdevs[i];
2364 		ASSERT(vd != NULL);
2365 
2366 		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
2367 		    pool != 0ULL && l2arc_vdev_present(vd))
2368 			l2arc_remove_vdev(vd);
2369 		if (vd->vdev_isl2cache)
2370 			spa_l2cache_remove(vd);
2371 		vdev_clear_stats(vd);
2372 		(void) vdev_close(vd);
2373 	}
2374 }
2375 
2376 /*
2377  * Pool Creation
2378  */
2379 int
2380 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
2381     const char *history_str, nvlist_t *zplprops)
2382 {
2383 	spa_t *spa;
2384 	char *altroot = NULL;
2385 	vdev_t *rvd;
2386 	dsl_pool_t *dp;
2387 	dmu_tx_t *tx;
2388 	int error = 0;
2389 	uint64_t txg = TXG_INITIAL;
2390 	nvlist_t **spares, **l2cache;
2391 	uint_t nspares, nl2cache;
2392 	uint64_t version;
2393 
2394 	/*
2395 	 * If this pool already exists, return failure.
2396 	 */
2397 	mutex_enter(&spa_namespace_lock);
2398 	if (spa_lookup(pool) != NULL) {
2399 		mutex_exit(&spa_namespace_lock);
2400 		return (EEXIST);
2401 	}
2402 
2403 	/*
2404 	 * Allocate a new spa_t structure.
2405 	 */
2406 	(void) nvlist_lookup_string(props,
2407 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
2408 	spa = spa_add(pool, NULL, altroot);
2409 	spa_activate(spa, spa_mode_global);
2410 
2411 	if (props && (error = spa_prop_validate(spa, props))) {
2412 		spa_deactivate(spa);
2413 		spa_remove(spa);
2414 		mutex_exit(&spa_namespace_lock);
2415 		return (error);
2416 	}
2417 
2418 	if (nvlist_lookup_uint64(props, zpool_prop_to_name(ZPOOL_PROP_VERSION),
2419 	    &version) != 0)
2420 		version = SPA_VERSION;
2421 	ASSERT(version <= SPA_VERSION);
2422 
2423 	spa->spa_first_txg = txg;
2424 	spa->spa_uberblock.ub_txg = txg - 1;
2425 	spa->spa_uberblock.ub_version = version;
2426 	spa->spa_ubsync = spa->spa_uberblock;
2427 
2428 	/*
2429 	 * Create "The Godfather" zio to hold all async IOs
2430 	 */
2431 	spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
2432 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
2433 
2434 	/*
2435 	 * Create the root vdev.
2436 	 */
2437 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2438 
2439 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
2440 
2441 	ASSERT(error != 0 || rvd != NULL);
2442 	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
2443 
2444 	if (error == 0 && !zfs_allocatable_devs(nvroot))
2445 		error = EINVAL;
2446 
2447 	if (error == 0 &&
2448 	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
2449 	    (error = spa_validate_aux(spa, nvroot, txg,
2450 	    VDEV_ALLOC_ADD)) == 0) {
2451 		for (int c = 0; c < rvd->vdev_children; c++) {
2452 			vdev_metaslab_set_size(rvd->vdev_child[c]);
2453 			vdev_expand(rvd->vdev_child[c], txg);
2454 		}
2455 	}
2456 
2457 	spa_config_exit(spa, SCL_ALL, FTAG);
2458 
2459 	if (error != 0) {
2460 		spa_unload(spa);
2461 		spa_deactivate(spa);
2462 		spa_remove(spa);
2463 		mutex_exit(&spa_namespace_lock);
2464 		return (error);
2465 	}
2466 
2467 	/*
2468 	 * Get the list of spares, if specified.
2469 	 */
2470 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
2471 	    &spares, &nspares) == 0) {
2472 		VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
2473 		    KM_SLEEP) == 0);
2474 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
2475 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
2476 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2477 		spa_load_spares(spa);
2478 		spa_config_exit(spa, SCL_ALL, FTAG);
2479 		spa->spa_spares.sav_sync = B_TRUE;
2480 	}
2481 
2482 	/*
2483 	 * Get the list of level 2 cache devices, if specified.
2484 	 */
2485 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
2486 	    &l2cache, &nl2cache) == 0) {
2487 		VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
2488 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
2489 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
2490 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
2491 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2492 		spa_load_l2cache(spa);
2493 		spa_config_exit(spa, SCL_ALL, FTAG);
2494 		spa->spa_l2cache.sav_sync = B_TRUE;
2495 	}
2496 
2497 	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
2498 	spa->spa_meta_objset = dp->dp_meta_objset;
2499 
2500 	/*
2501 	 * Create DDTs (dedup tables).
2502 	 */
2503 	ddt_create(spa);
2504 
2505 	spa_update_dspace(spa);
2506 
2507 	tx = dmu_tx_create_assigned(dp, txg);
2508 
2509 	/*
2510 	 * Create the pool config object.
2511 	 */
2512 	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
2513 	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
2514 	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
2515 
2516 	if (zap_add(spa->spa_meta_objset,
2517 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
2518 	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
2519 		cmn_err(CE_PANIC, "failed to add pool config");
2520 	}
2521 
2522 	/* Newly created pools with the right version are always deflated. */
2523 	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
2524 		spa->spa_deflate = TRUE;
2525 		if (zap_add(spa->spa_meta_objset,
2526 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
2527 		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
2528 			cmn_err(CE_PANIC, "failed to add deflate");
2529 		}
2530 	}
2531 
2532 	/*
2533 	 * Create the deferred-free bplist object.  Turn off compression
2534 	 * because sync-to-convergence takes longer if the blocksize
2535 	 * keeps changing.
2536 	 */
2537 	spa->spa_deferred_bplist_obj = bplist_create(spa->spa_meta_objset,
2538 	    1 << 14, tx);
2539 	dmu_object_set_compress(spa->spa_meta_objset,
2540 	    spa->spa_deferred_bplist_obj, ZIO_COMPRESS_OFF, tx);
2541 
2542 	if (zap_add(spa->spa_meta_objset,
2543 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST,
2544 	    sizeof (uint64_t), 1, &spa->spa_deferred_bplist_obj, tx) != 0) {
2545 		cmn_err(CE_PANIC, "failed to add bplist");
2546 	}
2547 
2548 	/*
2549 	 * Create the pool's history object.
2550 	 */
2551 	if (version >= SPA_VERSION_ZPOOL_HISTORY)
2552 		spa_history_create_obj(spa, tx);
2553 
2554 	/*
2555 	 * Set pool properties.
2556 	 */
2557 	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
2558 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2559 	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
2560 	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
2561 
2562 	if (props != NULL) {
2563 		spa_configfile_set(spa, props, B_FALSE);
2564 		spa_sync_props(spa, props, CRED(), tx);
2565 	}
2566 
2567 	dmu_tx_commit(tx);
2568 
2569 	spa->spa_sync_on = B_TRUE;
2570 	txg_sync_start(spa->spa_dsl_pool);
2571 
2572 	/*
2573 	 * We explicitly wait for the first transaction to complete so that our
2574 	 * bean counters are appropriately updated.
2575 	 */
2576 	txg_wait_synced(spa->spa_dsl_pool, txg);
2577 
2578 	spa_config_sync(spa, B_FALSE, B_TRUE);
2579 
2580 	if (version >= SPA_VERSION_ZPOOL_HISTORY && history_str != NULL)
2581 		(void) spa_history_log(spa, history_str, LOG_CMD_POOL_CREATE);
2582 	spa_history_log_version(spa, LOG_POOL_CREATE);
2583 
2584 	spa->spa_minref = refcount_count(&spa->spa_refcount);
2585 
2586 	mutex_exit(&spa_namespace_lock);
2587 
2588 	return (0);
2589 }
2590 
2591 #ifdef _KERNEL
2592 /*
2593  * Get the root pool information from the root disk, then import the root pool
2594  * during the system boot up time.
2595  */
2596 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
2597 
2598 static nvlist_t *
2599 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
2600 {
2601 	nvlist_t *config;
2602 	nvlist_t *nvtop, *nvroot;
2603 	uint64_t pgid;
2604 
2605 	if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
2606 		return (NULL);
2607 
2608 	/*
2609 	 * Add this top-level vdev to the child array.
2610 	 */
2611 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
2612 	    &nvtop) == 0);
2613 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
2614 	    &pgid) == 0);
2615 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
2616 
2617 	/*
2618 	 * Put this pool's top-level vdevs into a root vdev.
2619 	 */
2620 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
2621 	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
2622 	    VDEV_TYPE_ROOT) == 0);
2623 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
2624 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
2625 	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
2626 	    &nvtop, 1) == 0);
2627 
2628 	/*
2629 	 * Replace the existing vdev_tree with the new root vdev in
2630 	 * this pool's configuration (remove the old, add the new).
2631 	 */
2632 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
2633 	nvlist_free(nvroot);
2634 	return (config);
2635 }
2636 
2637 /*
2638  * Walk the vdev tree and see if we can find a device with "better"
2639  * configuration. A configuration is "better" if the label on that
2640  * device has a more recent txg.
2641  */
2642 static void
2643 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
2644 {
2645 	for (int c = 0; c < vd->vdev_children; c++)
2646 		spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
2647 
2648 	if (vd->vdev_ops->vdev_op_leaf) {
2649 		nvlist_t *label;
2650 		uint64_t label_txg;
2651 
2652 		if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
2653 		    &label) != 0)
2654 			return;
2655 
2656 		VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
2657 		    &label_txg) == 0);
2658 
2659 		/*
2660 		 * Do we have a better boot device?
2661 		 */
2662 		if (label_txg > *txg) {
2663 			*txg = label_txg;
2664 			*avd = vd;
2665 		}
2666 		nvlist_free(label);
2667 	}
2668 }
2669 
2670 /*
2671  * Import a root pool.
2672  *
2673  * For x86. devpath_list will consist of devid and/or physpath name of
2674  * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
2675  * The GRUB "findroot" command will return the vdev we should boot.
2676  *
2677  * For Sparc, devpath_list consists the physpath name of the booting device
2678  * no matter the rootpool is a single device pool or a mirrored pool.
2679  * e.g.
2680  *	"/pci@1f,0/ide@d/disk@0,0:a"
2681  */
2682 int
2683 spa_import_rootpool(char *devpath, char *devid)
2684 {
2685 	spa_t *spa;
2686 	vdev_t *rvd, *bvd, *avd = NULL;
2687 	nvlist_t *config, *nvtop;
2688 	uint64_t guid, txg;
2689 	char *pname;
2690 	int error;
2691 
2692 	/*
2693 	 * Read the label from the boot device and generate a configuration.
2694 	 */
2695 	config = spa_generate_rootconf(devpath, devid, &guid);
2696 #if defined(_OBP) && defined(_KERNEL)
2697 	if (config == NULL) {
2698 		if (strstr(devpath, "/iscsi/ssd") != NULL) {
2699 			/* iscsi boot */
2700 			get_iscsi_bootpath_phy(devpath);
2701 			config = spa_generate_rootconf(devpath, devid, &guid);
2702 		}
2703 	}
2704 #endif
2705 	if (config == NULL) {
2706 		cmn_err(CE_NOTE, "Can not read the pool label from '%s'",
2707 		    devpath);
2708 		return (EIO);
2709 	}
2710 
2711 	VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
2712 	    &pname) == 0);
2713 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
2714 
2715 	mutex_enter(&spa_namespace_lock);
2716 	if ((spa = spa_lookup(pname)) != NULL) {
2717 		/*
2718 		 * Remove the existing root pool from the namespace so that we
2719 		 * can replace it with the correct config we just read in.
2720 		 */
2721 		spa_remove(spa);
2722 	}
2723 
2724 	spa = spa_add(pname, config, NULL);
2725 	spa->spa_is_root = B_TRUE;
2726 	spa->spa_load_verbatim = B_TRUE;
2727 
2728 	/*
2729 	 * Build up a vdev tree based on the boot device's label config.
2730 	 */
2731 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
2732 	    &nvtop) == 0);
2733 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2734 	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
2735 	    VDEV_ALLOC_ROOTPOOL);
2736 	spa_config_exit(spa, SCL_ALL, FTAG);
2737 	if (error) {
2738 		mutex_exit(&spa_namespace_lock);
2739 		nvlist_free(config);
2740 		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
2741 		    pname);
2742 		return (error);
2743 	}
2744 
2745 	/*
2746 	 * Get the boot vdev.
2747 	 */
2748 	if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
2749 		cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
2750 		    (u_longlong_t)guid);
2751 		error = ENOENT;
2752 		goto out;
2753 	}
2754 
2755 	/*
2756 	 * Determine if there is a better boot device.
2757 	 */
2758 	avd = bvd;
2759 	spa_alt_rootvdev(rvd, &avd, &txg);
2760 	if (avd != bvd) {
2761 		cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
2762 		    "try booting from '%s'", avd->vdev_path);
2763 		error = EINVAL;
2764 		goto out;
2765 	}
2766 
2767 	/*
2768 	 * If the boot device is part of a spare vdev then ensure that
2769 	 * we're booting off the active spare.
2770 	 */
2771 	if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2772 	    !bvd->vdev_isspare) {
2773 		cmn_err(CE_NOTE, "The boot device is currently spared. Please "
2774 		    "try booting from '%s'",
2775 		    bvd->vdev_parent->vdev_child[1]->vdev_path);
2776 		error = EINVAL;
2777 		goto out;
2778 	}
2779 
2780 	error = 0;
2781 	spa_history_log_version(spa, LOG_POOL_IMPORT);
2782 out:
2783 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2784 	vdev_free(rvd);
2785 	spa_config_exit(spa, SCL_ALL, FTAG);
2786 	mutex_exit(&spa_namespace_lock);
2787 
2788 	nvlist_free(config);
2789 	return (error);
2790 }
2791 
2792 #endif
2793 
2794 /*
2795  * Take a pool and insert it into the namespace as if it had been loaded at
2796  * boot.
2797  */
2798 int
2799 spa_import_verbatim(const char *pool, nvlist_t *config, nvlist_t *props)
2800 {
2801 	spa_t *spa;
2802 	zpool_rewind_policy_t policy;
2803 	char *altroot = NULL;
2804 
2805 	mutex_enter(&spa_namespace_lock);
2806 	if (spa_lookup(pool) != NULL) {
2807 		mutex_exit(&spa_namespace_lock);
2808 		return (EEXIST);
2809 	}
2810 
2811 	(void) nvlist_lookup_string(props,
2812 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
2813 	spa = spa_add(pool, config, altroot);
2814 
2815 	zpool_get_rewind_policy(config, &policy);
2816 	spa->spa_load_max_txg = policy.zrp_txg;
2817 
2818 	spa->spa_load_verbatim = B_TRUE;
2819 
2820 	if (props != NULL)
2821 		spa_configfile_set(spa, props, B_FALSE);
2822 
2823 	spa_config_sync(spa, B_FALSE, B_TRUE);
2824 
2825 	mutex_exit(&spa_namespace_lock);
2826 	spa_history_log_version(spa, LOG_POOL_IMPORT);
2827 
2828 	return (0);
2829 }
2830 
2831 /*
2832  * Import a non-root pool into the system.
2833  */
2834 int
2835 spa_import(const char *pool, nvlist_t *config, nvlist_t *props)
2836 {
2837 	spa_t *spa;
2838 	char *altroot = NULL;
2839 	spa_load_state_t state = SPA_LOAD_IMPORT;
2840 	zpool_rewind_policy_t policy;
2841 	int error;
2842 	nvlist_t *nvroot;
2843 	nvlist_t **spares, **l2cache;
2844 	uint_t nspares, nl2cache;
2845 
2846 	/*
2847 	 * If a pool with this name exists, return failure.
2848 	 */
2849 	mutex_enter(&spa_namespace_lock);
2850 	if ((spa = spa_lookup(pool)) != NULL) {
2851 		mutex_exit(&spa_namespace_lock);
2852 		return (EEXIST);
2853 	}
2854 
2855 	zpool_get_rewind_policy(config, &policy);
2856 	if (policy.zrp_request & ZPOOL_DO_REWIND)
2857 		state = SPA_LOAD_RECOVER;
2858 
2859 	/*
2860 	 * Create and initialize the spa structure.
2861 	 */
2862 	(void) nvlist_lookup_string(props,
2863 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
2864 	spa = spa_add(pool, config, altroot);
2865 	spa_activate(spa, spa_mode_global);
2866 
2867 	/*
2868 	 * Don't start async tasks until we know everything is healthy.
2869 	 */
2870 	spa_async_suspend(spa);
2871 
2872 	/*
2873 	 * Pass off the heavy lifting to spa_load().  Pass TRUE for mosconfig
2874 	 * because the user-supplied config is actually the one to trust when
2875 	 * doing an import.
2876 	 */
2877 	if (state != SPA_LOAD_RECOVER)
2878 		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
2879 	error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
2880 	    ((policy.zrp_request & ZPOOL_EXTREME_REWIND) != 0));
2881 
2882 	/*
2883 	 * Propagate anything learned about failing or best txgs
2884 	 * back to caller
2885 	 */
2886 	spa_rewind_data_to_nvlist(spa, config);
2887 
2888 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2889 	/*
2890 	 * Toss any existing sparelist, as it doesn't have any validity
2891 	 * anymore, and conflicts with spa_has_spare().
2892 	 */
2893 	if (spa->spa_spares.sav_config) {
2894 		nvlist_free(spa->spa_spares.sav_config);
2895 		spa->spa_spares.sav_config = NULL;
2896 		spa_load_spares(spa);
2897 	}
2898 	if (spa->spa_l2cache.sav_config) {
2899 		nvlist_free(spa->spa_l2cache.sav_config);
2900 		spa->spa_l2cache.sav_config = NULL;
2901 		spa_load_l2cache(spa);
2902 	}
2903 
2904 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
2905 	    &nvroot) == 0);
2906 	if (error == 0)
2907 		error = spa_validate_aux(spa, nvroot, -1ULL,
2908 		    VDEV_ALLOC_SPARE);
2909 	if (error == 0)
2910 		error = spa_validate_aux(spa, nvroot, -1ULL,
2911 		    VDEV_ALLOC_L2CACHE);
2912 	spa_config_exit(spa, SCL_ALL, FTAG);
2913 
2914 	if (props != NULL)
2915 		spa_configfile_set(spa, props, B_FALSE);
2916 
2917 	if (error != 0 || (props && spa_writeable(spa) &&
2918 	    (error = spa_prop_set(spa, props)))) {
2919 		spa_unload(spa);
2920 		spa_deactivate(spa);
2921 		spa_remove(spa);
2922 		mutex_exit(&spa_namespace_lock);
2923 		return (error);
2924 	}
2925 
2926 	spa_async_resume(spa);
2927 
2928 	/*
2929 	 * Override any spares and level 2 cache devices as specified by
2930 	 * the user, as these may have correct device names/devids, etc.
2931 	 */
2932 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
2933 	    &spares, &nspares) == 0) {
2934 		if (spa->spa_spares.sav_config)
2935 			VERIFY(nvlist_remove(spa->spa_spares.sav_config,
2936 			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
2937 		else
2938 			VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
2939 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
2940 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
2941 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
2942 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2943 		spa_load_spares(spa);
2944 		spa_config_exit(spa, SCL_ALL, FTAG);
2945 		spa->spa_spares.sav_sync = B_TRUE;
2946 	}
2947 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
2948 	    &l2cache, &nl2cache) == 0) {
2949 		if (spa->spa_l2cache.sav_config)
2950 			VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
2951 			    ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
2952 		else
2953 			VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
2954 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
2955 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
2956 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
2957 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2958 		spa_load_l2cache(spa);
2959 		spa_config_exit(spa, SCL_ALL, FTAG);
2960 		spa->spa_l2cache.sav_sync = B_TRUE;
2961 	}
2962 
2963 	/*
2964 	 * Check for any removed devices.
2965 	 */
2966 	if (spa->spa_autoreplace) {
2967 		spa_aux_check_removed(&spa->spa_spares);
2968 		spa_aux_check_removed(&spa->spa_l2cache);
2969 	}
2970 
2971 	if (spa_writeable(spa)) {
2972 		/*
2973 		 * Update the config cache to include the newly-imported pool.
2974 		 */
2975 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
2976 	}
2977 
2978 	/*
2979 	 * It's possible that the pool was expanded while it was exported.
2980 	 * We kick off an async task to handle this for us.
2981 	 */
2982 	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
2983 
2984 	mutex_exit(&spa_namespace_lock);
2985 	spa_history_log_version(spa, LOG_POOL_IMPORT);
2986 
2987 	return (0);
2988 }
2989 
2990 
2991 /*
2992  * This (illegal) pool name is used when temporarily importing a spa_t in order
2993  * to get the vdev stats associated with the imported devices.
2994  */
2995 #define	TRYIMPORT_NAME	"$import"
2996 
2997 nvlist_t *
2998 spa_tryimport(nvlist_t *tryconfig)
2999 {
3000 	nvlist_t *config = NULL;
3001 	char *poolname;
3002 	spa_t *spa;
3003 	uint64_t state;
3004 	int error;
3005 
3006 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
3007 		return (NULL);
3008 
3009 	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
3010 		return (NULL);
3011 
3012 	/*
3013 	 * Create and initialize the spa structure.
3014 	 */
3015 	mutex_enter(&spa_namespace_lock);
3016 	spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
3017 	spa_activate(spa, FREAD);
3018 
3019 	/*
3020 	 * Pass off the heavy lifting to spa_load().
3021 	 * Pass TRUE for mosconfig because the user-supplied config
3022 	 * is actually the one to trust when doing an import.
3023 	 */
3024 	error = spa_load(spa, SPA_LOAD_TRYIMPORT, B_TRUE);
3025 
3026 	/*
3027 	 * If 'tryconfig' was at least parsable, return the current config.
3028 	 */
3029 	if (spa->spa_root_vdev != NULL) {
3030 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
3031 		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
3032 		    poolname) == 0);
3033 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
3034 		    state) == 0);
3035 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
3036 		    spa->spa_uberblock.ub_timestamp) == 0);
3037 
3038 		/*
3039 		 * If the bootfs property exists on this pool then we
3040 		 * copy it out so that external consumers can tell which
3041 		 * pools are bootable.
3042 		 */
3043 		if ((!error || error == EEXIST) && spa->spa_bootfs) {
3044 			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
3045 
3046 			/*
3047 			 * We have to play games with the name since the
3048 			 * pool was opened as TRYIMPORT_NAME.
3049 			 */
3050 			if (dsl_dsobj_to_dsname(spa_name(spa),
3051 			    spa->spa_bootfs, tmpname) == 0) {
3052 				char *cp;
3053 				char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
3054 
3055 				cp = strchr(tmpname, '/');
3056 				if (cp == NULL) {
3057 					(void) strlcpy(dsname, tmpname,
3058 					    MAXPATHLEN);
3059 				} else {
3060 					(void) snprintf(dsname, MAXPATHLEN,
3061 					    "%s/%s", poolname, ++cp);
3062 				}
3063 				VERIFY(nvlist_add_string(config,
3064 				    ZPOOL_CONFIG_BOOTFS, dsname) == 0);
3065 				kmem_free(dsname, MAXPATHLEN);
3066 			}
3067 			kmem_free(tmpname, MAXPATHLEN);
3068 		}
3069 
3070 		/*
3071 		 * Add the list of hot spares and level 2 cache devices.
3072 		 */
3073 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3074 		spa_add_spares(spa, config);
3075 		spa_add_l2cache(spa, config);
3076 		spa_config_exit(spa, SCL_CONFIG, FTAG);
3077 	}
3078 
3079 	spa_unload(spa);
3080 	spa_deactivate(spa);
3081 	spa_remove(spa);
3082 	mutex_exit(&spa_namespace_lock);
3083 
3084 	return (config);
3085 }
3086 
3087 /*
3088  * Pool export/destroy
3089  *
3090  * The act of destroying or exporting a pool is very simple.  We make sure there
3091  * is no more pending I/O and any references to the pool are gone.  Then, we
3092  * update the pool state and sync all the labels to disk, removing the
3093  * configuration from the cache afterwards. If the 'hardforce' flag is set, then
3094  * we don't sync the labels or remove the configuration cache.
3095  */
3096 static int
3097 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
3098     boolean_t force, boolean_t hardforce)
3099 {
3100 	spa_t *spa;
3101 
3102 	if (oldconfig)
3103 		*oldconfig = NULL;
3104 
3105 	if (!(spa_mode_global & FWRITE))
3106 		return (EROFS);
3107 
3108 	mutex_enter(&spa_namespace_lock);
3109 	if ((spa = spa_lookup(pool)) == NULL) {
3110 		mutex_exit(&spa_namespace_lock);
3111 		return (ENOENT);
3112 	}
3113 
3114 	/*
3115 	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
3116 	 * reacquire the namespace lock, and see if we can export.
3117 	 */
3118 	spa_open_ref(spa, FTAG);
3119 	mutex_exit(&spa_namespace_lock);
3120 	spa_async_suspend(spa);
3121 	mutex_enter(&spa_namespace_lock);
3122 	spa_close(spa, FTAG);
3123 
3124 	/*
3125 	 * The pool will be in core if it's openable,
3126 	 * in which case we can modify its state.
3127 	 */
3128 	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
3129 		/*
3130 		 * Objsets may be open only because they're dirty, so we
3131 		 * have to force it to sync before checking spa_refcnt.
3132 		 */
3133 		txg_wait_synced(spa->spa_dsl_pool, 0);
3134 
3135 		/*
3136 		 * A pool cannot be exported or destroyed if there are active
3137 		 * references.  If we are resetting a pool, allow references by
3138 		 * fault injection handlers.
3139 		 */
3140 		if (!spa_refcount_zero(spa) ||
3141 		    (spa->spa_inject_ref != 0 &&
3142 		    new_state != POOL_STATE_UNINITIALIZED)) {
3143 			spa_async_resume(spa);
3144 			mutex_exit(&spa_namespace_lock);
3145 			return (EBUSY);
3146 		}
3147 
3148 		/*
3149 		 * A pool cannot be exported if it has an active shared spare.
3150 		 * This is to prevent other pools stealing the active spare
3151 		 * from an exported pool. At user's own will, such pool can
3152 		 * be forcedly exported.
3153 		 */
3154 		if (!force && new_state == POOL_STATE_EXPORTED &&
3155 		    spa_has_active_shared_spare(spa)) {
3156 			spa_async_resume(spa);
3157 			mutex_exit(&spa_namespace_lock);
3158 			return (EXDEV);
3159 		}
3160 
3161 		/*
3162 		 * We want this to be reflected on every label,
3163 		 * so mark them all dirty.  spa_unload() will do the
3164 		 * final sync that pushes these changes out.
3165 		 */
3166 		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
3167 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3168 			spa->spa_state = new_state;
3169 			spa->spa_final_txg = spa_last_synced_txg(spa) + 1;
3170 			vdev_config_dirty(spa->spa_root_vdev);
3171 			spa_config_exit(spa, SCL_ALL, FTAG);
3172 		}
3173 	}
3174 
3175 	spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
3176 
3177 	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
3178 		spa_unload(spa);
3179 		spa_deactivate(spa);
3180 	}
3181 
3182 	if (oldconfig && spa->spa_config)
3183 		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
3184 
3185 	if (new_state != POOL_STATE_UNINITIALIZED) {
3186 		if (!hardforce)
3187 			spa_config_sync(spa, B_TRUE, B_TRUE);
3188 		spa_remove(spa);
3189 	}
3190 	mutex_exit(&spa_namespace_lock);
3191 
3192 	return (0);
3193 }
3194 
3195 /*
3196  * Destroy a storage pool.
3197  */
3198 int
3199 spa_destroy(char *pool)
3200 {
3201 	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
3202 	    B_FALSE, B_FALSE));
3203 }
3204 
3205 /*
3206  * Export a storage pool.
3207  */
3208 int
3209 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
3210     boolean_t hardforce)
3211 {
3212 	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
3213 	    force, hardforce));
3214 }
3215 
3216 /*
3217  * Similar to spa_export(), this unloads the spa_t without actually removing it
3218  * from the namespace in any way.
3219  */
3220 int
3221 spa_reset(char *pool)
3222 {
3223 	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
3224 	    B_FALSE, B_FALSE));
3225 }
3226 
3227 /*
3228  * ==========================================================================
3229  * Device manipulation
3230  * ==========================================================================
3231  */
3232 
3233 /*
3234  * Add a device to a storage pool.
3235  */
3236 int
3237 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
3238 {
3239 	uint64_t txg, id;
3240 	int error;
3241 	vdev_t *rvd = spa->spa_root_vdev;
3242 	vdev_t *vd, *tvd;
3243 	nvlist_t **spares, **l2cache;
3244 	uint_t nspares, nl2cache;
3245 
3246 	txg = spa_vdev_enter(spa);
3247 
3248 	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
3249 	    VDEV_ALLOC_ADD)) != 0)
3250 		return (spa_vdev_exit(spa, NULL, txg, error));
3251 
3252 	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
3253 
3254 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
3255 	    &nspares) != 0)
3256 		nspares = 0;
3257 
3258 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
3259 	    &nl2cache) != 0)
3260 		nl2cache = 0;
3261 
3262 	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
3263 		return (spa_vdev_exit(spa, vd, txg, EINVAL));
3264 
3265 	if (vd->vdev_children != 0 &&
3266 	    (error = vdev_create(vd, txg, B_FALSE)) != 0)
3267 		return (spa_vdev_exit(spa, vd, txg, error));
3268 
3269 	/*
3270 	 * We must validate the spares and l2cache devices after checking the
3271 	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
3272 	 */
3273 	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
3274 		return (spa_vdev_exit(spa, vd, txg, error));
3275 
3276 	/*
3277 	 * Transfer each new top-level vdev from vd to rvd.
3278 	 */
3279 	for (int c = 0; c < vd->vdev_children; c++) {
3280 
3281 		/*
3282 		 * Set the vdev id to the first hole, if one exists.
3283 		 */
3284 		for (id = 0; id < rvd->vdev_children; id++) {
3285 			if (rvd->vdev_child[id]->vdev_ishole) {
3286 				vdev_free(rvd->vdev_child[id]);
3287 				break;
3288 			}
3289 		}
3290 		tvd = vd->vdev_child[c];
3291 		vdev_remove_child(vd, tvd);
3292 		tvd->vdev_id = id;
3293 		vdev_add_child(rvd, tvd);
3294 		vdev_config_dirty(tvd);
3295 	}
3296 
3297 	if (nspares != 0) {
3298 		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
3299 		    ZPOOL_CONFIG_SPARES);
3300 		spa_load_spares(spa);
3301 		spa->spa_spares.sav_sync = B_TRUE;
3302 	}
3303 
3304 	if (nl2cache != 0) {
3305 		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
3306 		    ZPOOL_CONFIG_L2CACHE);
3307 		spa_load_l2cache(spa);
3308 		spa->spa_l2cache.sav_sync = B_TRUE;
3309 	}
3310 
3311 	/*
3312 	 * We have to be careful when adding new vdevs to an existing pool.
3313 	 * If other threads start allocating from these vdevs before we
3314 	 * sync the config cache, and we lose power, then upon reboot we may
3315 	 * fail to open the pool because there are DVAs that the config cache
3316 	 * can't translate.  Therefore, we first add the vdevs without
3317 	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
3318 	 * and then let spa_config_update() initialize the new metaslabs.
3319 	 *
3320 	 * spa_load() checks for added-but-not-initialized vdevs, so that
3321 	 * if we lose power at any point in this sequence, the remaining
3322 	 * steps will be completed the next time we load the pool.
3323 	 */
3324 	(void) spa_vdev_exit(spa, vd, txg, 0);
3325 
3326 	mutex_enter(&spa_namespace_lock);
3327 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
3328 	mutex_exit(&spa_namespace_lock);
3329 
3330 	return (0);
3331 }
3332 
3333 /*
3334  * Attach a device to a mirror.  The arguments are the path to any device
3335  * in the mirror, and the nvroot for the new device.  If the path specifies
3336  * a device that is not mirrored, we automatically insert the mirror vdev.
3337  *
3338  * If 'replacing' is specified, the new device is intended to replace the
3339  * existing device; in this case the two devices are made into their own
3340  * mirror using the 'replacing' vdev, which is functionally identical to
3341  * the mirror vdev (it actually reuses all the same ops) but has a few
3342  * extra rules: you can't attach to it after it's been created, and upon
3343  * completion of resilvering, the first disk (the one being replaced)
3344  * is automatically detached.
3345  */
3346 int
3347 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
3348 {
3349 	uint64_t txg, open_txg;
3350 	vdev_t *rvd = spa->spa_root_vdev;
3351 	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
3352 	vdev_ops_t *pvops;
3353 	char *oldvdpath, *newvdpath;
3354 	int newvd_isspare;
3355 	int error;
3356 
3357 	txg = spa_vdev_enter(spa);
3358 
3359 	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
3360 
3361 	if (oldvd == NULL)
3362 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
3363 
3364 	if (!oldvd->vdev_ops->vdev_op_leaf)
3365 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3366 
3367 	pvd = oldvd->vdev_parent;
3368 
3369 	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
3370 	    VDEV_ALLOC_ADD)) != 0)
3371 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
3372 
3373 	if (newrootvd->vdev_children != 1)
3374 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
3375 
3376 	newvd = newrootvd->vdev_child[0];
3377 
3378 	if (!newvd->vdev_ops->vdev_op_leaf)
3379 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
3380 
3381 	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
3382 		return (spa_vdev_exit(spa, newrootvd, txg, error));
3383 
3384 	/*
3385 	 * Spares can't replace logs
3386 	 */
3387 	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
3388 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3389 
3390 	if (!replacing) {
3391 		/*
3392 		 * For attach, the only allowable parent is a mirror or the root
3393 		 * vdev.
3394 		 */
3395 		if (pvd->vdev_ops != &vdev_mirror_ops &&
3396 		    pvd->vdev_ops != &vdev_root_ops)
3397 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3398 
3399 		pvops = &vdev_mirror_ops;
3400 	} else {
3401 		/*
3402 		 * Active hot spares can only be replaced by inactive hot
3403 		 * spares.
3404 		 */
3405 		if (pvd->vdev_ops == &vdev_spare_ops &&
3406 		    pvd->vdev_child[1] == oldvd &&
3407 		    !spa_has_spare(spa, newvd->vdev_guid))
3408 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3409 
3410 		/*
3411 		 * If the source is a hot spare, and the parent isn't already a
3412 		 * spare, then we want to create a new hot spare.  Otherwise, we
3413 		 * want to create a replacing vdev.  The user is not allowed to
3414 		 * attach to a spared vdev child unless the 'isspare' state is
3415 		 * the same (spare replaces spare, non-spare replaces
3416 		 * non-spare).
3417 		 */
3418 		if (pvd->vdev_ops == &vdev_replacing_ops)
3419 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3420 		else if (pvd->vdev_ops == &vdev_spare_ops &&
3421 		    newvd->vdev_isspare != oldvd->vdev_isspare)
3422 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3423 		else if (pvd->vdev_ops != &vdev_spare_ops &&
3424 		    newvd->vdev_isspare)
3425 			pvops = &vdev_spare_ops;
3426 		else
3427 			pvops = &vdev_replacing_ops;
3428 	}
3429 
3430 	/*
3431 	 * Make sure the new device is big enough.
3432 	 */
3433 	if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
3434 		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
3435 
3436 	/*
3437 	 * The new device cannot have a higher alignment requirement
3438 	 * than the top-level vdev.
3439 	 */
3440 	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
3441 		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
3442 
3443 	/*
3444 	 * If this is an in-place replacement, update oldvd's path and devid
3445 	 * to make it distinguishable from newvd, and unopenable from now on.
3446 	 */
3447 	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
3448 		spa_strfree(oldvd->vdev_path);
3449 		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
3450 		    KM_SLEEP);
3451 		(void) sprintf(oldvd->vdev_path, "%s/%s",
3452 		    newvd->vdev_path, "old");
3453 		if (oldvd->vdev_devid != NULL) {
3454 			spa_strfree(oldvd->vdev_devid);
3455 			oldvd->vdev_devid = NULL;
3456 		}
3457 	}
3458 
3459 	/*
3460 	 * If the parent is not a mirror, or if we're replacing, insert the new
3461 	 * mirror/replacing/spare vdev above oldvd.
3462 	 */
3463 	if (pvd->vdev_ops != pvops)
3464 		pvd = vdev_add_parent(oldvd, pvops);
3465 
3466 	ASSERT(pvd->vdev_top->vdev_parent == rvd);
3467 	ASSERT(pvd->vdev_ops == pvops);
3468 	ASSERT(oldvd->vdev_parent == pvd);
3469 
3470 	/*
3471 	 * Extract the new device from its root and add it to pvd.
3472 	 */
3473 	vdev_remove_child(newrootvd, newvd);
3474 	newvd->vdev_id = pvd->vdev_children;
3475 	newvd->vdev_crtxg = oldvd->vdev_crtxg;
3476 	vdev_add_child(pvd, newvd);
3477 
3478 	tvd = newvd->vdev_top;
3479 	ASSERT(pvd->vdev_top == tvd);
3480 	ASSERT(tvd->vdev_parent == rvd);
3481 
3482 	vdev_config_dirty(tvd);
3483 
3484 	/*
3485 	 * Set newvd's DTL to [TXG_INITIAL, open_txg].  It will propagate
3486 	 * upward when spa_vdev_exit() calls vdev_dtl_reassess().
3487 	 */
3488 	open_txg = txg + TXG_CONCURRENT_STATES - 1;
3489 
3490 	vdev_dtl_dirty(newvd, DTL_MISSING,
3491 	    TXG_INITIAL, open_txg - TXG_INITIAL + 1);
3492 
3493 	if (newvd->vdev_isspare) {
3494 		spa_spare_activate(newvd);
3495 		spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
3496 	}
3497 
3498 	oldvdpath = spa_strdup(oldvd->vdev_path);
3499 	newvdpath = spa_strdup(newvd->vdev_path);
3500 	newvd_isspare = newvd->vdev_isspare;
3501 
3502 	/*
3503 	 * Mark newvd's DTL dirty in this txg.
3504 	 */
3505 	vdev_dirty(tvd, VDD_DTL, newvd, txg);
3506 
3507 	(void) spa_vdev_exit(spa, newrootvd, open_txg, 0);
3508 
3509 	spa_history_internal_log(LOG_POOL_VDEV_ATTACH, spa, NULL,
3510 	    CRED(),  "%s vdev=%s %s vdev=%s",
3511 	    replacing && newvd_isspare ? "spare in" :
3512 	    replacing ? "replace" : "attach", newvdpath,
3513 	    replacing ? "for" : "to", oldvdpath);
3514 
3515 	spa_strfree(oldvdpath);
3516 	spa_strfree(newvdpath);
3517 
3518 	/*
3519 	 * Kick off a resilver to update newvd.
3520 	 */
3521 	VERIFY3U(spa_scrub(spa, POOL_SCRUB_RESILVER), ==, 0);
3522 
3523 	return (0);
3524 }
3525 
3526 /*
3527  * Detach a device from a mirror or replacing vdev.
3528  * If 'replace_done' is specified, only detach if the parent
3529  * is a replacing vdev.
3530  */
3531 int
3532 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
3533 {
3534 	uint64_t txg;
3535 	int error;
3536 	vdev_t *rvd = spa->spa_root_vdev;
3537 	vdev_t *vd, *pvd, *cvd, *tvd;
3538 	boolean_t unspare = B_FALSE;
3539 	uint64_t unspare_guid;
3540 	size_t len;
3541 
3542 	txg = spa_vdev_enter(spa);
3543 
3544 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
3545 
3546 	if (vd == NULL)
3547 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
3548 
3549 	if (!vd->vdev_ops->vdev_op_leaf)
3550 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3551 
3552 	pvd = vd->vdev_parent;
3553 
3554 	/*
3555 	 * If the parent/child relationship is not as expected, don't do it.
3556 	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
3557 	 * vdev that's replacing B with C.  The user's intent in replacing
3558 	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
3559 	 * the replace by detaching C, the expected behavior is to end up
3560 	 * M(A,B).  But suppose that right after deciding to detach C,
3561 	 * the replacement of B completes.  We would have M(A,C), and then
3562 	 * ask to detach C, which would leave us with just A -- not what
3563 	 * the user wanted.  To prevent this, we make sure that the
3564 	 * parent/child relationship hasn't changed -- in this example,
3565 	 * that C's parent is still the replacing vdev R.
3566 	 */
3567 	if (pvd->vdev_guid != pguid && pguid != 0)
3568 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
3569 
3570 	/*
3571 	 * If replace_done is specified, only remove this device if it's
3572 	 * the first child of a replacing vdev.  For the 'spare' vdev, either
3573 	 * disk can be removed.
3574 	 */
3575 	if (replace_done) {
3576 		if (pvd->vdev_ops == &vdev_replacing_ops) {
3577 			if (vd->vdev_id != 0)
3578 				return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3579 		} else if (pvd->vdev_ops != &vdev_spare_ops) {
3580 			return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3581 		}
3582 	}
3583 
3584 	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
3585 	    spa_version(spa) >= SPA_VERSION_SPARES);
3586 
3587 	/*
3588 	 * Only mirror, replacing, and spare vdevs support detach.
3589 	 */
3590 	if (pvd->vdev_ops != &vdev_replacing_ops &&
3591 	    pvd->vdev_ops != &vdev_mirror_ops &&
3592 	    pvd->vdev_ops != &vdev_spare_ops)
3593 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3594 
3595 	/*
3596 	 * If this device has the only valid copy of some data,
3597 	 * we cannot safely detach it.
3598 	 */
3599 	if (vdev_dtl_required(vd))
3600 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
3601 
3602 	ASSERT(pvd->vdev_children >= 2);
3603 
3604 	/*
3605 	 * If we are detaching the second disk from a replacing vdev, then
3606 	 * check to see if we changed the original vdev's path to have "/old"
3607 	 * at the end in spa_vdev_attach().  If so, undo that change now.
3608 	 */
3609 	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id == 1 &&
3610 	    pvd->vdev_child[0]->vdev_path != NULL &&
3611 	    pvd->vdev_child[1]->vdev_path != NULL) {
3612 		ASSERT(pvd->vdev_child[1] == vd);
3613 		cvd = pvd->vdev_child[0];
3614 		len = strlen(vd->vdev_path);
3615 		if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
3616 		    strcmp(cvd->vdev_path + len, "/old") == 0) {
3617 			spa_strfree(cvd->vdev_path);
3618 			cvd->vdev_path = spa_strdup(vd->vdev_path);
3619 		}
3620 	}
3621 
3622 	/*
3623 	 * If we are detaching the original disk from a spare, then it implies
3624 	 * that the spare should become a real disk, and be removed from the
3625 	 * active spare list for the pool.
3626 	 */
3627 	if (pvd->vdev_ops == &vdev_spare_ops &&
3628 	    vd->vdev_id == 0 && pvd->vdev_child[1]->vdev_isspare)
3629 		unspare = B_TRUE;
3630 
3631 	/*
3632 	 * Erase the disk labels so the disk can be used for other things.
3633 	 * This must be done after all other error cases are handled,
3634 	 * but before we disembowel vd (so we can still do I/O to it).
3635 	 * But if we can't do it, don't treat the error as fatal --
3636 	 * it may be that the unwritability of the disk is the reason
3637 	 * it's being detached!
3638 	 */
3639 	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
3640 
3641 	/*
3642 	 * Remove vd from its parent and compact the parent's children.
3643 	 */
3644 	vdev_remove_child(pvd, vd);
3645 	vdev_compact_children(pvd);
3646 
3647 	/*
3648 	 * Remember one of the remaining children so we can get tvd below.
3649 	 */
3650 	cvd = pvd->vdev_child[0];
3651 
3652 	/*
3653 	 * If we need to remove the remaining child from the list of hot spares,
3654 	 * do it now, marking the vdev as no longer a spare in the process.
3655 	 * We must do this before vdev_remove_parent(), because that can
3656 	 * change the GUID if it creates a new toplevel GUID.  For a similar
3657 	 * reason, we must remove the spare now, in the same txg as the detach;
3658 	 * otherwise someone could attach a new sibling, change the GUID, and
3659 	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
3660 	 */
3661 	if (unspare) {
3662 		ASSERT(cvd->vdev_isspare);
3663 		spa_spare_remove(cvd);
3664 		unspare_guid = cvd->vdev_guid;
3665 		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
3666 	}
3667 
3668 	/*
3669 	 * If the parent mirror/replacing vdev only has one child,
3670 	 * the parent is no longer needed.  Remove it from the tree.
3671 	 */
3672 	if (pvd->vdev_children == 1)
3673 		vdev_remove_parent(cvd);
3674 
3675 	/*
3676 	 * We don't set tvd until now because the parent we just removed
3677 	 * may have been the previous top-level vdev.
3678 	 */
3679 	tvd = cvd->vdev_top;
3680 	ASSERT(tvd->vdev_parent == rvd);
3681 
3682 	/*
3683 	 * Reevaluate the parent vdev state.
3684 	 */
3685 	vdev_propagate_state(cvd);
3686 
3687 	/*
3688 	 * If the 'autoexpand' property is set on the pool then automatically
3689 	 * try to expand the size of the pool. For example if the device we
3690 	 * just detached was smaller than the others, it may be possible to
3691 	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
3692 	 * first so that we can obtain the updated sizes of the leaf vdevs.
3693 	 */
3694 	if (spa->spa_autoexpand) {
3695 		vdev_reopen(tvd);
3696 		vdev_expand(tvd, txg);
3697 	}
3698 
3699 	vdev_config_dirty(tvd);
3700 
3701 	/*
3702 	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
3703 	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
3704 	 * But first make sure we're not on any *other* txg's DTL list, to
3705 	 * prevent vd from being accessed after it's freed.
3706 	 */
3707 	for (int t = 0; t < TXG_SIZE; t++)
3708 		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
3709 	vd->vdev_detached = B_TRUE;
3710 	vdev_dirty(tvd, VDD_DTL, vd, txg);
3711 
3712 	spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
3713 
3714 	error = spa_vdev_exit(spa, vd, txg, 0);
3715 
3716 	/*
3717 	 * If this was the removal of the original device in a hot spare vdev,
3718 	 * then we want to go through and remove the device from the hot spare
3719 	 * list of every other pool.
3720 	 */
3721 	if (unspare) {
3722 		spa_t *myspa = spa;
3723 		spa = NULL;
3724 		mutex_enter(&spa_namespace_lock);
3725 		while ((spa = spa_next(spa)) != NULL) {
3726 			if (spa->spa_state != POOL_STATE_ACTIVE)
3727 				continue;
3728 			if (spa == myspa)
3729 				continue;
3730 			spa_open_ref(spa, FTAG);
3731 			mutex_exit(&spa_namespace_lock);
3732 			(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
3733 			mutex_enter(&spa_namespace_lock);
3734 			spa_close(spa, FTAG);
3735 		}
3736 		mutex_exit(&spa_namespace_lock);
3737 	}
3738 
3739 	return (error);
3740 }
3741 
3742 static nvlist_t *
3743 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
3744 {
3745 	for (int i = 0; i < count; i++) {
3746 		uint64_t guid;
3747 
3748 		VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
3749 		    &guid) == 0);
3750 
3751 		if (guid == target_guid)
3752 			return (nvpp[i]);
3753 	}
3754 
3755 	return (NULL);
3756 }
3757 
3758 static void
3759 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
3760 	nvlist_t *dev_to_remove)
3761 {
3762 	nvlist_t **newdev = NULL;
3763 
3764 	if (count > 1)
3765 		newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
3766 
3767 	for (int i = 0, j = 0; i < count; i++) {
3768 		if (dev[i] == dev_to_remove)
3769 			continue;
3770 		VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
3771 	}
3772 
3773 	VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
3774 	VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
3775 
3776 	for (int i = 0; i < count - 1; i++)
3777 		nvlist_free(newdev[i]);
3778 
3779 	if (count > 1)
3780 		kmem_free(newdev, (count - 1) * sizeof (void *));
3781 }
3782 
3783 /*
3784  * Removing a device from the vdev namespace requires several steps
3785  * and can take a significant amount of time.  As a result we use
3786  * the spa_vdev_config_[enter/exit] functions which allow us to
3787  * grab and release the spa_config_lock while still holding the namespace
3788  * lock.  During each step the configuration is synced out.
3789  */
3790 
3791 /*
3792  * Evacuate the device.
3793  */
3794 int
3795 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
3796 {
3797 	int error = 0;
3798 	uint64_t txg;
3799 
3800 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
3801 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
3802 	ASSERT(vd == vd->vdev_top);
3803 
3804 	/*
3805 	 * Evacuate the device.  We don't hold the config lock as writer
3806 	 * since we need to do I/O but we do keep the
3807 	 * spa_namespace_lock held.  Once this completes the device
3808 	 * should no longer have any blocks allocated on it.
3809 	 */
3810 	if (vd->vdev_islog) {
3811 		error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
3812 		    NULL, DS_FIND_CHILDREN);
3813 	} else {
3814 		error = ENOTSUP;	/* until we have bp rewrite */
3815 	}
3816 
3817 	txg_wait_synced(spa_get_dsl(spa), 0);
3818 
3819 	if (error)
3820 		return (error);
3821 
3822 	/*
3823 	 * The evacuation succeeded.  Remove any remaining MOS metadata
3824 	 * associated with this vdev, and wait for these changes to sync.
3825 	 */
3826 	txg = spa_vdev_config_enter(spa);
3827 	vd->vdev_removing = B_TRUE;
3828 	vdev_dirty(vd, 0, NULL, txg);
3829 	vdev_config_dirty(vd);
3830 	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
3831 
3832 	return (0);
3833 }
3834 
3835 /*
3836  * Complete the removal by cleaning up the namespace.
3837  */
3838 void
3839 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
3840 {
3841 	vdev_t *rvd = spa->spa_root_vdev;
3842 	uint64_t id = vd->vdev_id;
3843 	boolean_t last_vdev = (id == (rvd->vdev_children - 1));
3844 
3845 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
3846 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3847 	ASSERT(vd == vd->vdev_top);
3848 
3849 	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
3850 
3851 	if (list_link_active(&vd->vdev_state_dirty_node))
3852 		vdev_state_clean(vd);
3853 	if (list_link_active(&vd->vdev_config_dirty_node))
3854 		vdev_config_clean(vd);
3855 
3856 	vdev_free(vd);
3857 
3858 	if (last_vdev) {
3859 		vdev_compact_children(rvd);
3860 	} else {
3861 		vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
3862 		vdev_add_child(rvd, vd);
3863 	}
3864 	vdev_config_dirty(rvd);
3865 
3866 	/*
3867 	 * Reassess the health of our root vdev.
3868 	 */
3869 	vdev_reopen(rvd);
3870 }
3871 
3872 /*
3873  * Remove a device from the pool.  Currently, this supports removing only hot
3874  * spares, slogs, and level 2 ARC devices.
3875  */
3876 int
3877 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
3878 {
3879 	vdev_t *vd;
3880 	metaslab_group_t *mg;
3881 	nvlist_t **spares, **l2cache, *nv;
3882 	uint64_t txg = 0;
3883 	uint_t nspares, nl2cache;
3884 	int error = 0;
3885 	boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
3886 
3887 	if (!locked)
3888 		txg = spa_vdev_enter(spa);
3889 
3890 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
3891 
3892 	if (spa->spa_spares.sav_vdevs != NULL &&
3893 	    nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
3894 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
3895 	    (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
3896 		/*
3897 		 * Only remove the hot spare if it's not currently in use
3898 		 * in this pool.
3899 		 */
3900 		if (vd == NULL || unspare) {
3901 			spa_vdev_remove_aux(spa->spa_spares.sav_config,
3902 			    ZPOOL_CONFIG_SPARES, spares, nspares, nv);
3903 			spa_load_spares(spa);
3904 			spa->spa_spares.sav_sync = B_TRUE;
3905 		} else {
3906 			error = EBUSY;
3907 		}
3908 	} else if (spa->spa_l2cache.sav_vdevs != NULL &&
3909 	    nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3910 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
3911 	    (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
3912 		/*
3913 		 * Cache devices can always be removed.
3914 		 */
3915 		spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
3916 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
3917 		spa_load_l2cache(spa);
3918 		spa->spa_l2cache.sav_sync = B_TRUE;
3919 	} else if (vd != NULL && vd->vdev_islog) {
3920 		ASSERT(!locked);
3921 		ASSERT(vd == vd->vdev_top);
3922 
3923 		/*
3924 		 * XXX - Once we have bp-rewrite this should
3925 		 * become the common case.
3926 		 */
3927 
3928 		mg = vd->vdev_mg;
3929 
3930 		/*
3931 		 * Stop allocating from this vdev.
3932 		 */
3933 		metaslab_group_passivate(mg);
3934 
3935 		/*
3936 		 * Wait for the youngest allocations and frees to sync,
3937 		 * and then wait for the deferral of those frees to finish.
3938 		 */
3939 		spa_vdev_config_exit(spa, NULL,
3940 		    txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
3941 
3942 		/*
3943 		 * Attempt to evacuate the vdev.
3944 		 */
3945 		error = spa_vdev_remove_evacuate(spa, vd);
3946 
3947 		txg = spa_vdev_config_enter(spa);
3948 
3949 		/*
3950 		 * If we couldn't evacuate the vdev, unwind.
3951 		 */
3952 		if (error) {
3953 			metaslab_group_activate(mg);
3954 			return (spa_vdev_exit(spa, NULL, txg, error));
3955 		}
3956 
3957 		/*
3958 		 * Clean up the vdev namespace.
3959 		 */
3960 		spa_vdev_remove_from_namespace(spa, vd);
3961 
3962 	} else if (vd != NULL) {
3963 		/*
3964 		 * Normal vdevs cannot be removed (yet).
3965 		 */
3966 		error = ENOTSUP;
3967 	} else {
3968 		/*
3969 		 * There is no vdev of any kind with the specified guid.
3970 		 */
3971 		error = ENOENT;
3972 	}
3973 
3974 	if (!locked)
3975 		return (spa_vdev_exit(spa, NULL, txg, error));
3976 
3977 	return (error);
3978 }
3979 
3980 /*
3981  * Find any device that's done replacing, or a vdev marked 'unspare' that's
3982  * current spared, so we can detach it.
3983  */
3984 static vdev_t *
3985 spa_vdev_resilver_done_hunt(vdev_t *vd)
3986 {
3987 	vdev_t *newvd, *oldvd;
3988 
3989 	for (int c = 0; c < vd->vdev_children; c++) {
3990 		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
3991 		if (oldvd != NULL)
3992 			return (oldvd);
3993 	}
3994 
3995 	/*
3996 	 * Check for a completed replacement.
3997 	 */
3998 	if (vd->vdev_ops == &vdev_replacing_ops && vd->vdev_children == 2) {
3999 		oldvd = vd->vdev_child[0];
4000 		newvd = vd->vdev_child[1];
4001 
4002 		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
4003 		    !vdev_dtl_required(oldvd))
4004 			return (oldvd);
4005 	}
4006 
4007 	/*
4008 	 * Check for a completed resilver with the 'unspare' flag set.
4009 	 */
4010 	if (vd->vdev_ops == &vdev_spare_ops && vd->vdev_children == 2) {
4011 		newvd = vd->vdev_child[0];
4012 		oldvd = vd->vdev_child[1];
4013 
4014 		if (newvd->vdev_unspare &&
4015 		    vdev_dtl_empty(newvd, DTL_MISSING) &&
4016 		    !vdev_dtl_required(oldvd)) {
4017 			newvd->vdev_unspare = 0;
4018 			return (oldvd);
4019 		}
4020 	}
4021 
4022 	return (NULL);
4023 }
4024 
4025 static void
4026 spa_vdev_resilver_done(spa_t *spa)
4027 {
4028 	vdev_t *vd, *pvd, *ppvd;
4029 	uint64_t guid, sguid, pguid, ppguid;
4030 
4031 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4032 
4033 	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
4034 		pvd = vd->vdev_parent;
4035 		ppvd = pvd->vdev_parent;
4036 		guid = vd->vdev_guid;
4037 		pguid = pvd->vdev_guid;
4038 		ppguid = ppvd->vdev_guid;
4039 		sguid = 0;
4040 		/*
4041 		 * If we have just finished replacing a hot spared device, then
4042 		 * we need to detach the parent's first child (the original hot
4043 		 * spare) as well.
4044 		 */
4045 		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0) {
4046 			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
4047 			ASSERT(ppvd->vdev_children == 2);
4048 			sguid = ppvd->vdev_child[1]->vdev_guid;
4049 		}
4050 		spa_config_exit(spa, SCL_ALL, FTAG);
4051 		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
4052 			return;
4053 		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
4054 			return;
4055 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4056 	}
4057 
4058 	spa_config_exit(spa, SCL_ALL, FTAG);
4059 }
4060 
4061 /*
4062  * Update the stored path or FRU for this vdev.  Dirty the vdev configuration,
4063  * relying on spa_vdev_enter/exit() to synchronize the labels and cache.
4064  */
4065 int
4066 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
4067     boolean_t ispath)
4068 {
4069 	vdev_t *vd;
4070 	uint64_t txg;
4071 
4072 	txg = spa_vdev_enter(spa);
4073 
4074 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4075 		return (spa_vdev_exit(spa, NULL, txg, ENOENT));
4076 
4077 	if (!vd->vdev_ops->vdev_op_leaf)
4078 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4079 
4080 	if (ispath) {
4081 		spa_strfree(vd->vdev_path);
4082 		vd->vdev_path = spa_strdup(value);
4083 	} else {
4084 		if (vd->vdev_fru != NULL)
4085 			spa_strfree(vd->vdev_fru);
4086 		vd->vdev_fru = spa_strdup(value);
4087 	}
4088 
4089 	vdev_config_dirty(vd->vdev_top);
4090 
4091 	return (spa_vdev_exit(spa, NULL, txg, 0));
4092 }
4093 
4094 int
4095 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
4096 {
4097 	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
4098 }
4099 
4100 int
4101 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
4102 {
4103 	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
4104 }
4105 
4106 /*
4107  * ==========================================================================
4108  * SPA Scrubbing
4109  * ==========================================================================
4110  */
4111 
4112 int
4113 spa_scrub(spa_t *spa, pool_scrub_type_t type)
4114 {
4115 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
4116 
4117 	if ((uint_t)type >= POOL_SCRUB_TYPES)
4118 		return (ENOTSUP);
4119 
4120 	/*
4121 	 * If a resilver was requested, but there is no DTL on a
4122 	 * writeable leaf device, we have nothing to do.
4123 	 */
4124 	if (type == POOL_SCRUB_RESILVER &&
4125 	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
4126 		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
4127 		return (0);
4128 	}
4129 
4130 	if (type == POOL_SCRUB_EVERYTHING &&
4131 	    spa->spa_dsl_pool->dp_scrub_func != SCRUB_FUNC_NONE &&
4132 	    spa->spa_dsl_pool->dp_scrub_isresilver)
4133 		return (EBUSY);
4134 
4135 	if (type == POOL_SCRUB_EVERYTHING || type == POOL_SCRUB_RESILVER) {
4136 		return (dsl_pool_scrub_clean(spa->spa_dsl_pool));
4137 	} else if (type == POOL_SCRUB_NONE) {
4138 		return (dsl_pool_scrub_cancel(spa->spa_dsl_pool));
4139 	} else {
4140 		return (EINVAL);
4141 	}
4142 }
4143 
4144 /*
4145  * ==========================================================================
4146  * SPA async task processing
4147  * ==========================================================================
4148  */
4149 
4150 static void
4151 spa_async_remove(spa_t *spa, vdev_t *vd)
4152 {
4153 	if (vd->vdev_remove_wanted) {
4154 		vd->vdev_remove_wanted = 0;
4155 		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
4156 
4157 		/*
4158 		 * We want to clear the stats, but we don't want to do a full
4159 		 * vdev_clear() as that will cause us to throw away
4160 		 * degraded/faulted state as well as attempt to reopen the
4161 		 * device, all of which is a waste.
4162 		 */
4163 		vd->vdev_stat.vs_read_errors = 0;
4164 		vd->vdev_stat.vs_write_errors = 0;
4165 		vd->vdev_stat.vs_checksum_errors = 0;
4166 
4167 		vdev_state_dirty(vd->vdev_top);
4168 	}
4169 
4170 	for (int c = 0; c < vd->vdev_children; c++)
4171 		spa_async_remove(spa, vd->vdev_child[c]);
4172 }
4173 
4174 static void
4175 spa_async_probe(spa_t *spa, vdev_t *vd)
4176 {
4177 	if (vd->vdev_probe_wanted) {
4178 		vd->vdev_probe_wanted = 0;
4179 		vdev_reopen(vd);	/* vdev_open() does the actual probe */
4180 	}
4181 
4182 	for (int c = 0; c < vd->vdev_children; c++)
4183 		spa_async_probe(spa, vd->vdev_child[c]);
4184 }
4185 
4186 static void
4187 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
4188 {
4189 	sysevent_id_t eid;
4190 	nvlist_t *attr;
4191 	char *physpath;
4192 
4193 	if (!spa->spa_autoexpand)
4194 		return;
4195 
4196 	for (int c = 0; c < vd->vdev_children; c++) {
4197 		vdev_t *cvd = vd->vdev_child[c];
4198 		spa_async_autoexpand(spa, cvd);
4199 	}
4200 
4201 	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
4202 		return;
4203 
4204 	physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
4205 	(void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
4206 
4207 	VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4208 	VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
4209 
4210 	(void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
4211 	    ESC_DEV_DLE, attr, &eid, DDI_SLEEP);
4212 
4213 	nvlist_free(attr);
4214 	kmem_free(physpath, MAXPATHLEN);
4215 }
4216 
4217 static void
4218 spa_async_thread(spa_t *spa)
4219 {
4220 	int tasks;
4221 
4222 	ASSERT(spa->spa_sync_on);
4223 
4224 	mutex_enter(&spa->spa_async_lock);
4225 	tasks = spa->spa_async_tasks;
4226 	spa->spa_async_tasks = 0;
4227 	mutex_exit(&spa->spa_async_lock);
4228 
4229 	/*
4230 	 * See if the config needs to be updated.
4231 	 */
4232 	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
4233 		uint64_t old_space, new_space;
4234 
4235 		mutex_enter(&spa_namespace_lock);
4236 		old_space = metaslab_class_get_space(spa_normal_class(spa));
4237 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4238 		new_space = metaslab_class_get_space(spa_normal_class(spa));
4239 		mutex_exit(&spa_namespace_lock);
4240 
4241 		/*
4242 		 * If the pool grew as a result of the config update,
4243 		 * then log an internal history event.
4244 		 */
4245 		if (new_space != old_space) {
4246 			spa_history_internal_log(LOG_POOL_VDEV_ONLINE,
4247 			    spa, NULL, CRED(),
4248 			    "pool '%s' size: %llu(+%llu)",
4249 			    spa_name(spa), new_space, new_space - old_space);
4250 		}
4251 	}
4252 
4253 	/*
4254 	 * See if any devices need to be marked REMOVED.
4255 	 */
4256 	if (tasks & SPA_ASYNC_REMOVE) {
4257 		spa_vdev_state_enter(spa, SCL_NONE);
4258 		spa_async_remove(spa, spa->spa_root_vdev);
4259 		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
4260 			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
4261 		for (int i = 0; i < spa->spa_spares.sav_count; i++)
4262 			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
4263 		(void) spa_vdev_state_exit(spa, NULL, 0);
4264 	}
4265 
4266 	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
4267 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4268 		spa_async_autoexpand(spa, spa->spa_root_vdev);
4269 		spa_config_exit(spa, SCL_CONFIG, FTAG);
4270 	}
4271 
4272 	/*
4273 	 * See if any devices need to be probed.
4274 	 */
4275 	if (tasks & SPA_ASYNC_PROBE) {
4276 		spa_vdev_state_enter(spa, SCL_NONE);
4277 		spa_async_probe(spa, spa->spa_root_vdev);
4278 		(void) spa_vdev_state_exit(spa, NULL, 0);
4279 	}
4280 
4281 	/*
4282 	 * If any devices are done replacing, detach them.
4283 	 */
4284 	if (tasks & SPA_ASYNC_RESILVER_DONE)
4285 		spa_vdev_resilver_done(spa);
4286 
4287 	/*
4288 	 * Kick off a resilver.
4289 	 */
4290 	if (tasks & SPA_ASYNC_RESILVER)
4291 		VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER) == 0);
4292 
4293 	/*
4294 	 * Let the world know that we're done.
4295 	 */
4296 	mutex_enter(&spa->spa_async_lock);
4297 	spa->spa_async_thread = NULL;
4298 	cv_broadcast(&spa->spa_async_cv);
4299 	mutex_exit(&spa->spa_async_lock);
4300 	thread_exit();
4301 }
4302 
4303 void
4304 spa_async_suspend(spa_t *spa)
4305 {
4306 	mutex_enter(&spa->spa_async_lock);
4307 	spa->spa_async_suspended++;
4308 	while (spa->spa_async_thread != NULL)
4309 		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
4310 	mutex_exit(&spa->spa_async_lock);
4311 }
4312 
4313 void
4314 spa_async_resume(spa_t *spa)
4315 {
4316 	mutex_enter(&spa->spa_async_lock);
4317 	ASSERT(spa->spa_async_suspended != 0);
4318 	spa->spa_async_suspended--;
4319 	mutex_exit(&spa->spa_async_lock);
4320 }
4321 
4322 static void
4323 spa_async_dispatch(spa_t *spa)
4324 {
4325 	mutex_enter(&spa->spa_async_lock);
4326 	if (spa->spa_async_tasks && !spa->spa_async_suspended &&
4327 	    spa->spa_async_thread == NULL &&
4328 	    rootdir != NULL && !vn_is_readonly(rootdir))
4329 		spa->spa_async_thread = thread_create(NULL, 0,
4330 		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
4331 	mutex_exit(&spa->spa_async_lock);
4332 }
4333 
4334 void
4335 spa_async_request(spa_t *spa, int task)
4336 {
4337 	mutex_enter(&spa->spa_async_lock);
4338 	spa->spa_async_tasks |= task;
4339 	mutex_exit(&spa->spa_async_lock);
4340 }
4341 
4342 /*
4343  * ==========================================================================
4344  * SPA syncing routines
4345  * ==========================================================================
4346  */
4347 static void
4348 spa_sync_deferred_bplist(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx, uint64_t txg)
4349 {
4350 	blkptr_t blk;
4351 	uint64_t itor = 0;
4352 	uint8_t c = 1;
4353 
4354 	while (bplist_iterate(bpl, &itor, &blk) == 0) {
4355 		ASSERT(blk.blk_birth < txg);
4356 		zio_free(spa, txg, &blk);
4357 	}
4358 
4359 	bplist_vacate(bpl, tx);
4360 
4361 	/*
4362 	 * Pre-dirty the first block so we sync to convergence faster.
4363 	 * (Usually only the first block is needed.)
4364 	 */
4365 	dmu_write(bpl->bpl_mos, spa->spa_deferred_bplist_obj, 0, 1, &c, tx);
4366 }
4367 
4368 static void
4369 spa_sync_free(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
4370 {
4371 	zio_t *zio = arg;
4372 
4373 	zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
4374 	    zio->io_flags));
4375 }
4376 
4377 static void
4378 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
4379 {
4380 	char *packed = NULL;
4381 	size_t bufsize;
4382 	size_t nvsize = 0;
4383 	dmu_buf_t *db;
4384 
4385 	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
4386 
4387 	/*
4388 	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
4389 	 * information.  This avoids the dbuf_will_dirty() path and
4390 	 * saves us a pre-read to get data we don't actually care about.
4391 	 */
4392 	bufsize = P2ROUNDUP(nvsize, SPA_CONFIG_BLOCKSIZE);
4393 	packed = kmem_alloc(bufsize, KM_SLEEP);
4394 
4395 	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
4396 	    KM_SLEEP) == 0);
4397 	bzero(packed + nvsize, bufsize - nvsize);
4398 
4399 	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
4400 
4401 	kmem_free(packed, bufsize);
4402 
4403 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
4404 	dmu_buf_will_dirty(db, tx);
4405 	*(uint64_t *)db->db_data = nvsize;
4406 	dmu_buf_rele(db, FTAG);
4407 }
4408 
4409 static void
4410 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
4411     const char *config, const char *entry)
4412 {
4413 	nvlist_t *nvroot;
4414 	nvlist_t **list;
4415 	int i;
4416 
4417 	if (!sav->sav_sync)
4418 		return;
4419 
4420 	/*
4421 	 * Update the MOS nvlist describing the list of available devices.
4422 	 * spa_validate_aux() will have already made sure this nvlist is
4423 	 * valid and the vdevs are labeled appropriately.
4424 	 */
4425 	if (sav->sav_object == 0) {
4426 		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
4427 		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
4428 		    sizeof (uint64_t), tx);
4429 		VERIFY(zap_update(spa->spa_meta_objset,
4430 		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
4431 		    &sav->sav_object, tx) == 0);
4432 	}
4433 
4434 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4435 	if (sav->sav_count == 0) {
4436 		VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
4437 	} else {
4438 		list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
4439 		for (i = 0; i < sav->sav_count; i++)
4440 			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
4441 			    B_FALSE, B_FALSE, B_TRUE);
4442 		VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
4443 		    sav->sav_count) == 0);
4444 		for (i = 0; i < sav->sav_count; i++)
4445 			nvlist_free(list[i]);
4446 		kmem_free(list, sav->sav_count * sizeof (void *));
4447 	}
4448 
4449 	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
4450 	nvlist_free(nvroot);
4451 
4452 	sav->sav_sync = B_FALSE;
4453 }
4454 
4455 static void
4456 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
4457 {
4458 	nvlist_t *config;
4459 
4460 	if (list_is_empty(&spa->spa_config_dirty_list))
4461 		return;
4462 
4463 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
4464 
4465 	config = spa_config_generate(spa, spa->spa_root_vdev,
4466 	    dmu_tx_get_txg(tx), B_FALSE);
4467 
4468 	spa_config_exit(spa, SCL_STATE, FTAG);
4469 
4470 	if (spa->spa_config_syncing)
4471 		nvlist_free(spa->spa_config_syncing);
4472 	spa->spa_config_syncing = config;
4473 
4474 	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
4475 }
4476 
4477 /*
4478  * Set zpool properties.
4479  */
4480 static void
4481 spa_sync_props(void *arg1, void *arg2, cred_t *cr, dmu_tx_t *tx)
4482 {
4483 	spa_t *spa = arg1;
4484 	objset_t *mos = spa->spa_meta_objset;
4485 	nvlist_t *nvp = arg2;
4486 	nvpair_t *elem;
4487 	uint64_t intval;
4488 	char *strval;
4489 	zpool_prop_t prop;
4490 	const char *propname;
4491 	zprop_type_t proptype;
4492 
4493 	mutex_enter(&spa->spa_props_lock);
4494 
4495 	elem = NULL;
4496 	while ((elem = nvlist_next_nvpair(nvp, elem))) {
4497 		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
4498 		case ZPOOL_PROP_VERSION:
4499 			/*
4500 			 * Only set version for non-zpool-creation cases
4501 			 * (set/import). spa_create() needs special care
4502 			 * for version setting.
4503 			 */
4504 			if (tx->tx_txg != TXG_INITIAL) {
4505 				VERIFY(nvpair_value_uint64(elem,
4506 				    &intval) == 0);
4507 				ASSERT(intval <= SPA_VERSION);
4508 				ASSERT(intval >= spa_version(spa));
4509 				spa->spa_uberblock.ub_version = intval;
4510 				vdev_config_dirty(spa->spa_root_vdev);
4511 			}
4512 			break;
4513 
4514 		case ZPOOL_PROP_ALTROOT:
4515 			/*
4516 			 * 'altroot' is a non-persistent property. It should
4517 			 * have been set temporarily at creation or import time.
4518 			 */
4519 			ASSERT(spa->spa_root != NULL);
4520 			break;
4521 
4522 		case ZPOOL_PROP_CACHEFILE:
4523 			/*
4524 			 * 'cachefile' is also a non-persisitent property.
4525 			 */
4526 			break;
4527 		default:
4528 			/*
4529 			 * Set pool property values in the poolprops mos object.
4530 			 */
4531 			if (spa->spa_pool_props_object == 0) {
4532 				VERIFY((spa->spa_pool_props_object =
4533 				    zap_create(mos, DMU_OT_POOL_PROPS,
4534 				    DMU_OT_NONE, 0, tx)) > 0);
4535 
4536 				VERIFY(zap_update(mos,
4537 				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
4538 				    8, 1, &spa->spa_pool_props_object, tx)
4539 				    == 0);
4540 			}
4541 
4542 			/* normalize the property name */
4543 			propname = zpool_prop_to_name(prop);
4544 			proptype = zpool_prop_get_type(prop);
4545 
4546 			if (nvpair_type(elem) == DATA_TYPE_STRING) {
4547 				ASSERT(proptype == PROP_TYPE_STRING);
4548 				VERIFY(nvpair_value_string(elem, &strval) == 0);
4549 				VERIFY(zap_update(mos,
4550 				    spa->spa_pool_props_object, propname,
4551 				    1, strlen(strval) + 1, strval, tx) == 0);
4552 
4553 			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
4554 				VERIFY(nvpair_value_uint64(elem, &intval) == 0);
4555 
4556 				if (proptype == PROP_TYPE_INDEX) {
4557 					const char *unused;
4558 					VERIFY(zpool_prop_index_to_string(
4559 					    prop, intval, &unused) == 0);
4560 				}
4561 				VERIFY(zap_update(mos,
4562 				    spa->spa_pool_props_object, propname,
4563 				    8, 1, &intval, tx) == 0);
4564 			} else {
4565 				ASSERT(0); /* not allowed */
4566 			}
4567 
4568 			switch (prop) {
4569 			case ZPOOL_PROP_DELEGATION:
4570 				spa->spa_delegation = intval;
4571 				break;
4572 			case ZPOOL_PROP_BOOTFS:
4573 				spa->spa_bootfs = intval;
4574 				break;
4575 			case ZPOOL_PROP_FAILUREMODE:
4576 				spa->spa_failmode = intval;
4577 				break;
4578 			case ZPOOL_PROP_AUTOEXPAND:
4579 				spa->spa_autoexpand = intval;
4580 				spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
4581 				break;
4582 			case ZPOOL_PROP_DEDUPDITTO:
4583 				spa->spa_dedup_ditto = intval;
4584 				break;
4585 			default:
4586 				break;
4587 			}
4588 		}
4589 
4590 		/* log internal history if this is not a zpool create */
4591 		if (spa_version(spa) >= SPA_VERSION_ZPOOL_HISTORY &&
4592 		    tx->tx_txg != TXG_INITIAL) {
4593 			spa_history_internal_log(LOG_POOL_PROPSET,
4594 			    spa, tx, cr, "%s %lld %s",
4595 			    nvpair_name(elem), intval, spa_name(spa));
4596 		}
4597 	}
4598 
4599 	mutex_exit(&spa->spa_props_lock);
4600 }
4601 
4602 /*
4603  * Sync the specified transaction group.  New blocks may be dirtied as
4604  * part of the process, so we iterate until it converges.
4605  */
4606 void
4607 spa_sync(spa_t *spa, uint64_t txg)
4608 {
4609 	dsl_pool_t *dp = spa->spa_dsl_pool;
4610 	objset_t *mos = spa->spa_meta_objset;
4611 	bplist_t *defer_bpl = &spa->spa_deferred_bplist;
4612 	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
4613 	vdev_t *rvd = spa->spa_root_vdev;
4614 	vdev_t *vd;
4615 	dmu_tx_t *tx;
4616 	int error;
4617 
4618 	/*
4619 	 * Lock out configuration changes.
4620 	 */
4621 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4622 
4623 	spa->spa_syncing_txg = txg;
4624 	spa->spa_sync_pass = 0;
4625 
4626 	/*
4627 	 * If there are any pending vdev state changes, convert them
4628 	 * into config changes that go out with this transaction group.
4629 	 */
4630 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
4631 	while (list_head(&spa->spa_state_dirty_list) != NULL) {
4632 		/*
4633 		 * We need the write lock here because, for aux vdevs,
4634 		 * calling vdev_config_dirty() modifies sav_config.
4635 		 * This is ugly and will become unnecessary when we
4636 		 * eliminate the aux vdev wart by integrating all vdevs
4637 		 * into the root vdev tree.
4638 		 */
4639 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
4640 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
4641 		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
4642 			vdev_state_clean(vd);
4643 			vdev_config_dirty(vd);
4644 		}
4645 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
4646 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
4647 	}
4648 	spa_config_exit(spa, SCL_STATE, FTAG);
4649 
4650 	VERIFY(0 == bplist_open(defer_bpl, mos, spa->spa_deferred_bplist_obj));
4651 
4652 	tx = dmu_tx_create_assigned(dp, txg);
4653 
4654 	/*
4655 	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
4656 	 * set spa_deflate if we have no raid-z vdevs.
4657 	 */
4658 	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
4659 	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
4660 		int i;
4661 
4662 		for (i = 0; i < rvd->vdev_children; i++) {
4663 			vd = rvd->vdev_child[i];
4664 			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
4665 				break;
4666 		}
4667 		if (i == rvd->vdev_children) {
4668 			spa->spa_deflate = TRUE;
4669 			VERIFY(0 == zap_add(spa->spa_meta_objset,
4670 			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
4671 			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
4672 		}
4673 	}
4674 
4675 	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
4676 	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
4677 		dsl_pool_create_origin(dp, tx);
4678 
4679 		/* Keeping the origin open increases spa_minref */
4680 		spa->spa_minref += 3;
4681 	}
4682 
4683 	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
4684 	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
4685 		dsl_pool_upgrade_clones(dp, tx);
4686 	}
4687 
4688 	/*
4689 	 * If anything has changed in this txg, push the deferred frees
4690 	 * from the previous txg.  If not, leave them alone so that we
4691 	 * don't generate work on an otherwise idle system.
4692 	 */
4693 	if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
4694 	    !txg_list_empty(&dp->dp_dirty_dirs, txg) ||
4695 	    !txg_list_empty(&dp->dp_sync_tasks, txg))
4696 		spa_sync_deferred_bplist(spa, defer_bpl, tx, txg);
4697 
4698 	/*
4699 	 * Iterate to convergence.
4700 	 */
4701 	do {
4702 		int pass = ++spa->spa_sync_pass;
4703 
4704 		spa_sync_config_object(spa, tx);
4705 		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
4706 		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
4707 		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
4708 		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
4709 		spa_errlog_sync(spa, txg);
4710 		dsl_pool_sync(dp, txg);
4711 
4712 		if (pass <= SYNC_PASS_DEFERRED_FREE) {
4713 			zio_t *zio = zio_root(spa, NULL, NULL, 0);
4714 			bplist_sync(free_bpl, spa_sync_free, zio, tx);
4715 			VERIFY(zio_wait(zio) == 0);
4716 		} else {
4717 			bplist_sync(free_bpl, bplist_enqueue_cb, defer_bpl, tx);
4718 		}
4719 
4720 		ddt_sync(spa, txg);
4721 
4722 		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
4723 			vdev_sync(vd, txg);
4724 
4725 	} while (dmu_objset_is_dirty(mos, txg));
4726 
4727 	ASSERT(free_bpl->bpl_queue == NULL);
4728 
4729 	bplist_close(defer_bpl);
4730 
4731 	/*
4732 	 * Rewrite the vdev configuration (which includes the uberblock)
4733 	 * to commit the transaction group.
4734 	 *
4735 	 * If there are no dirty vdevs, we sync the uberblock to a few
4736 	 * random top-level vdevs that are known to be visible in the
4737 	 * config cache (see spa_vdev_add() for a complete description).
4738 	 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
4739 	 */
4740 	for (;;) {
4741 		/*
4742 		 * We hold SCL_STATE to prevent vdev open/close/etc.
4743 		 * while we're attempting to write the vdev labels.
4744 		 */
4745 		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
4746 
4747 		if (list_is_empty(&spa->spa_config_dirty_list)) {
4748 			vdev_t *svd[SPA_DVAS_PER_BP];
4749 			int svdcount = 0;
4750 			int children = rvd->vdev_children;
4751 			int c0 = spa_get_random(children);
4752 
4753 			for (int c = 0; c < children; c++) {
4754 				vd = rvd->vdev_child[(c0 + c) % children];
4755 				if (vd->vdev_ms_array == 0 || vd->vdev_islog)
4756 					continue;
4757 				svd[svdcount++] = vd;
4758 				if (svdcount == SPA_DVAS_PER_BP)
4759 					break;
4760 			}
4761 			error = vdev_config_sync(svd, svdcount, txg, B_FALSE);
4762 			if (error != 0)
4763 				error = vdev_config_sync(svd, svdcount, txg,
4764 				    B_TRUE);
4765 		} else {
4766 			error = vdev_config_sync(rvd->vdev_child,
4767 			    rvd->vdev_children, txg, B_FALSE);
4768 			if (error != 0)
4769 				error = vdev_config_sync(rvd->vdev_child,
4770 				    rvd->vdev_children, txg, B_TRUE);
4771 		}
4772 
4773 		spa_config_exit(spa, SCL_STATE, FTAG);
4774 
4775 		if (error == 0)
4776 			break;
4777 		zio_suspend(spa, NULL);
4778 		zio_resume_wait(spa);
4779 	}
4780 	dmu_tx_commit(tx);
4781 
4782 	/*
4783 	 * Clear the dirty config list.
4784 	 */
4785 	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
4786 		vdev_config_clean(vd);
4787 
4788 	/*
4789 	 * Now that the new config has synced transactionally,
4790 	 * let it become visible to the config cache.
4791 	 */
4792 	if (spa->spa_config_syncing != NULL) {
4793 		spa_config_set(spa, spa->spa_config_syncing);
4794 		spa->spa_config_txg = txg;
4795 		spa->spa_config_syncing = NULL;
4796 	}
4797 
4798 	spa->spa_ubsync = spa->spa_uberblock;
4799 
4800 	dsl_pool_sync_done(dp, txg);
4801 
4802 	/*
4803 	 * Update usable space statistics.
4804 	 */
4805 	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
4806 		vdev_sync_done(vd, txg);
4807 
4808 	spa_update_dspace(spa);
4809 
4810 	/*
4811 	 * It had better be the case that we didn't dirty anything
4812 	 * since vdev_config_sync().
4813 	 */
4814 	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
4815 	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
4816 	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
4817 	ASSERT(defer_bpl->bpl_queue == NULL);
4818 	ASSERT(free_bpl->bpl_queue == NULL);
4819 
4820 	spa->spa_sync_pass = 0;
4821 
4822 	spa_config_exit(spa, SCL_CONFIG, FTAG);
4823 
4824 	spa_handle_ignored_writes(spa);
4825 
4826 	/*
4827 	 * If any async tasks have been requested, kick them off.
4828 	 */
4829 	spa_async_dispatch(spa);
4830 }
4831 
4832 /*
4833  * Sync all pools.  We don't want to hold the namespace lock across these
4834  * operations, so we take a reference on the spa_t and drop the lock during the
4835  * sync.
4836  */
4837 void
4838 spa_sync_allpools(void)
4839 {
4840 	spa_t *spa = NULL;
4841 	mutex_enter(&spa_namespace_lock);
4842 	while ((spa = spa_next(spa)) != NULL) {
4843 		if (spa_state(spa) != POOL_STATE_ACTIVE || spa_suspended(spa))
4844 			continue;
4845 		spa_open_ref(spa, FTAG);
4846 		mutex_exit(&spa_namespace_lock);
4847 		txg_wait_synced(spa_get_dsl(spa), 0);
4848 		mutex_enter(&spa_namespace_lock);
4849 		spa_close(spa, FTAG);
4850 	}
4851 	mutex_exit(&spa_namespace_lock);
4852 }
4853 
4854 /*
4855  * ==========================================================================
4856  * Miscellaneous routines
4857  * ==========================================================================
4858  */
4859 
4860 /*
4861  * Remove all pools in the system.
4862  */
4863 void
4864 spa_evict_all(void)
4865 {
4866 	spa_t *spa;
4867 
4868 	/*
4869 	 * Remove all cached state.  All pools should be closed now,
4870 	 * so every spa in the AVL tree should be unreferenced.
4871 	 */
4872 	mutex_enter(&spa_namespace_lock);
4873 	while ((spa = spa_next(NULL)) != NULL) {
4874 		/*
4875 		 * Stop async tasks.  The async thread may need to detach
4876 		 * a device that's been replaced, which requires grabbing
4877 		 * spa_namespace_lock, so we must drop it here.
4878 		 */
4879 		spa_open_ref(spa, FTAG);
4880 		mutex_exit(&spa_namespace_lock);
4881 		spa_async_suspend(spa);
4882 		mutex_enter(&spa_namespace_lock);
4883 		spa_close(spa, FTAG);
4884 
4885 		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4886 			spa_unload(spa);
4887 			spa_deactivate(spa);
4888 		}
4889 		spa_remove(spa);
4890 	}
4891 	mutex_exit(&spa_namespace_lock);
4892 }
4893 
4894 vdev_t *
4895 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
4896 {
4897 	vdev_t *vd;
4898 	int i;
4899 
4900 	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
4901 		return (vd);
4902 
4903 	if (aux) {
4904 		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
4905 			vd = spa->spa_l2cache.sav_vdevs[i];
4906 			if (vd->vdev_guid == guid)
4907 				return (vd);
4908 		}
4909 
4910 		for (i = 0; i < spa->spa_spares.sav_count; i++) {
4911 			vd = spa->spa_spares.sav_vdevs[i];
4912 			if (vd->vdev_guid == guid)
4913 				return (vd);
4914 		}
4915 	}
4916 
4917 	return (NULL);
4918 }
4919 
4920 void
4921 spa_upgrade(spa_t *spa, uint64_t version)
4922 {
4923 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4924 
4925 	/*
4926 	 * This should only be called for a non-faulted pool, and since a
4927 	 * future version would result in an unopenable pool, this shouldn't be
4928 	 * possible.
4929 	 */
4930 	ASSERT(spa->spa_uberblock.ub_version <= SPA_VERSION);
4931 	ASSERT(version >= spa->spa_uberblock.ub_version);
4932 
4933 	spa->spa_uberblock.ub_version = version;
4934 	vdev_config_dirty(spa->spa_root_vdev);
4935 
4936 	spa_config_exit(spa, SCL_ALL, FTAG);
4937 
4938 	txg_wait_synced(spa_get_dsl(spa), 0);
4939 }
4940 
4941 boolean_t
4942 spa_has_spare(spa_t *spa, uint64_t guid)
4943 {
4944 	int i;
4945 	uint64_t spareguid;
4946 	spa_aux_vdev_t *sav = &spa->spa_spares;
4947 
4948 	for (i = 0; i < sav->sav_count; i++)
4949 		if (sav->sav_vdevs[i]->vdev_guid == guid)
4950 			return (B_TRUE);
4951 
4952 	for (i = 0; i < sav->sav_npending; i++) {
4953 		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
4954 		    &spareguid) == 0 && spareguid == guid)
4955 			return (B_TRUE);
4956 	}
4957 
4958 	return (B_FALSE);
4959 }
4960 
4961 /*
4962  * Check if a pool has an active shared spare device.
4963  * Note: reference count of an active spare is 2, as a spare and as a replace
4964  */
4965 static boolean_t
4966 spa_has_active_shared_spare(spa_t *spa)
4967 {
4968 	int i, refcnt;
4969 	uint64_t pool;
4970 	spa_aux_vdev_t *sav = &spa->spa_spares;
4971 
4972 	for (i = 0; i < sav->sav_count; i++) {
4973 		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
4974 		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
4975 		    refcnt > 2)
4976 			return (B_TRUE);
4977 	}
4978 
4979 	return (B_FALSE);
4980 }
4981 
4982 /*
4983  * Post a sysevent corresponding to the given event.  The 'name' must be one of
4984  * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
4985  * filled in from the spa and (optionally) the vdev.  This doesn't do anything
4986  * in the userland libzpool, as we don't want consumers to misinterpret ztest
4987  * or zdb as real changes.
4988  */
4989 void
4990 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
4991 {
4992 #ifdef _KERNEL
4993 	sysevent_t		*ev;
4994 	sysevent_attr_list_t	*attr = NULL;
4995 	sysevent_value_t	value;
4996 	sysevent_id_t		eid;
4997 
4998 	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
4999 	    SE_SLEEP);
5000 
5001 	value.value_type = SE_DATA_TYPE_STRING;
5002 	value.value.sv_string = spa_name(spa);
5003 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
5004 		goto done;
5005 
5006 	value.value_type = SE_DATA_TYPE_UINT64;
5007 	value.value.sv_uint64 = spa_guid(spa);
5008 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
5009 		goto done;
5010 
5011 	if (vd) {
5012 		value.value_type = SE_DATA_TYPE_UINT64;
5013 		value.value.sv_uint64 = vd->vdev_guid;
5014 		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
5015 		    SE_SLEEP) != 0)
5016 			goto done;
5017 
5018 		if (vd->vdev_path) {
5019 			value.value_type = SE_DATA_TYPE_STRING;
5020 			value.value.sv_string = vd->vdev_path;
5021 			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
5022 			    &value, SE_SLEEP) != 0)
5023 				goto done;
5024 		}
5025 	}
5026 
5027 	if (sysevent_attach_attributes(ev, attr) != 0)
5028 		goto done;
5029 	attr = NULL;
5030 
5031 	(void) log_sysevent(ev, SE_SLEEP, &eid);
5032 
5033 done:
5034 	if (attr)
5035 		sysevent_free_attr(attr);
5036 	sysevent_free(ev);
5037 #endif
5038 }
5039