xref: /titanic_51/usr/src/uts/common/fs/zfs/spa.c (revision 8162146132b0fb9b7c6dc3371ff205edc236ebfa)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * This file contains all the routines used when modifying on-disk SPA state.
31  * This includes opening, importing, destroying, exporting a pool, and syncing a
32  * pool.
33  */
34 
35 #include <sys/zfs_context.h>
36 #include <sys/fm/fs/zfs.h>
37 #include <sys/spa_impl.h>
38 #include <sys/zio.h>
39 #include <sys/zio_checksum.h>
40 #include <sys/zio_compress.h>
41 #include <sys/dmu.h>
42 #include <sys/dmu_tx.h>
43 #include <sys/zap.h>
44 #include <sys/zil.h>
45 #include <sys/vdev_impl.h>
46 #include <sys/metaslab.h>
47 #include <sys/uberblock_impl.h>
48 #include <sys/txg.h>
49 #include <sys/avl.h>
50 #include <sys/dmu_traverse.h>
51 #include <sys/unique.h>
52 #include <sys/dsl_pool.h>
53 #include <sys/dsl_dir.h>
54 #include <sys/dsl_prop.h>
55 #include <sys/fs/zfs.h>
56 #include <sys/callb.h>
57 
58 int zio_taskq_threads = 8;
59 
60 /*
61  * ==========================================================================
62  * SPA state manipulation (open/create/destroy/import/export)
63  * ==========================================================================
64  */
65 
66 static int
67 spa_error_entry_compare(const void *a, const void *b)
68 {
69 	spa_error_entry_t *sa = (spa_error_entry_t *)a;
70 	spa_error_entry_t *sb = (spa_error_entry_t *)b;
71 	int ret;
72 
73 	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
74 	    sizeof (zbookmark_t));
75 
76 	if (ret < 0)
77 		return (-1);
78 	else if (ret > 0)
79 		return (1);
80 	else
81 		return (0);
82 }
83 
84 /*
85  * Utility function which retrieves copies of the current logs and
86  * re-initializes them in the process.
87  */
88 void
89 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
90 {
91 	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
92 
93 	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
94 	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
95 
96 	avl_create(&spa->spa_errlist_scrub,
97 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
98 	    offsetof(spa_error_entry_t, se_avl));
99 	avl_create(&spa->spa_errlist_last,
100 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
101 	    offsetof(spa_error_entry_t, se_avl));
102 }
103 
104 /*
105  * Activate an uninitialized pool.
106  */
107 static void
108 spa_activate(spa_t *spa)
109 {
110 	int t;
111 
112 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
113 
114 	spa->spa_state = POOL_STATE_ACTIVE;
115 
116 	spa->spa_normal_class = metaslab_class_create();
117 
118 	for (t = 0; t < ZIO_TYPES; t++) {
119 		spa->spa_zio_issue_taskq[t] = taskq_create("spa_zio_issue",
120 		    zio_taskq_threads, maxclsyspri, 50, INT_MAX,
121 		    TASKQ_PREPOPULATE);
122 		spa->spa_zio_intr_taskq[t] = taskq_create("spa_zio_intr",
123 		    zio_taskq_threads, maxclsyspri, 50, INT_MAX,
124 		    TASKQ_PREPOPULATE);
125 	}
126 
127 	rw_init(&spa->spa_traverse_lock, NULL, RW_DEFAULT, NULL);
128 
129 	mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
130 	mutex_init(&spa->spa_config_cache_lock, NULL, MUTEX_DEFAULT, NULL);
131 	mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
132 	mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
133 	mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
134 	mutex_init(&spa->spa_config_lock.scl_lock, NULL, MUTEX_DEFAULT, NULL);
135 	mutex_init(&spa->spa_sync_bplist.bpl_lock, NULL, MUTEX_DEFAULT, NULL);
136 	mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
137 
138 	list_create(&spa->spa_dirty_list, sizeof (vdev_t),
139 	    offsetof(vdev_t, vdev_dirty_node));
140 
141 	txg_list_create(&spa->spa_vdev_txg_list,
142 	    offsetof(struct vdev, vdev_txg_node));
143 
144 	avl_create(&spa->spa_errlist_scrub,
145 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
146 	    offsetof(spa_error_entry_t, se_avl));
147 	avl_create(&spa->spa_errlist_last,
148 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
149 	    offsetof(spa_error_entry_t, se_avl));
150 }
151 
152 /*
153  * Opposite of spa_activate().
154  */
155 static void
156 spa_deactivate(spa_t *spa)
157 {
158 	int t;
159 
160 	ASSERT(spa->spa_sync_on == B_FALSE);
161 	ASSERT(spa->spa_dsl_pool == NULL);
162 	ASSERT(spa->spa_root_vdev == NULL);
163 
164 	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
165 
166 	txg_list_destroy(&spa->spa_vdev_txg_list);
167 
168 	list_destroy(&spa->spa_dirty_list);
169 
170 	rw_destroy(&spa->spa_traverse_lock);
171 
172 	for (t = 0; t < ZIO_TYPES; t++) {
173 		taskq_destroy(spa->spa_zio_issue_taskq[t]);
174 		taskq_destroy(spa->spa_zio_intr_taskq[t]);
175 		spa->spa_zio_issue_taskq[t] = NULL;
176 		spa->spa_zio_intr_taskq[t] = NULL;
177 	}
178 
179 	metaslab_class_destroy(spa->spa_normal_class);
180 	spa->spa_normal_class = NULL;
181 
182 	/*
183 	 * If this was part of an import or the open otherwise failed, we may
184 	 * still have errors left in the queues.  Empty them just in case.
185 	 */
186 	spa_errlog_drain(spa);
187 
188 	avl_destroy(&spa->spa_errlist_scrub);
189 	avl_destroy(&spa->spa_errlist_last);
190 
191 	spa->spa_state = POOL_STATE_UNINITIALIZED;
192 }
193 
194 /*
195  * Verify a pool configuration, and construct the vdev tree appropriately.  This
196  * will create all the necessary vdevs in the appropriate layout, with each vdev
197  * in the CLOSED state.  This will prep the pool before open/creation/import.
198  * All vdev validation is done by the vdev_alloc() routine.
199  */
200 static int
201 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
202     uint_t id, int atype)
203 {
204 	nvlist_t **child;
205 	uint_t c, children;
206 	int error;
207 
208 	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
209 		return (error);
210 
211 	if ((*vdp)->vdev_ops->vdev_op_leaf)
212 		return (0);
213 
214 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
215 	    &child, &children) != 0) {
216 		vdev_free(*vdp);
217 		*vdp = NULL;
218 		return (EINVAL);
219 	}
220 
221 	for (c = 0; c < children; c++) {
222 		vdev_t *vd;
223 		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
224 		    atype)) != 0) {
225 			vdev_free(*vdp);
226 			*vdp = NULL;
227 			return (error);
228 		}
229 	}
230 
231 	ASSERT(*vdp != NULL);
232 
233 	return (0);
234 }
235 
236 /*
237  * Opposite of spa_load().
238  */
239 static void
240 spa_unload(spa_t *spa)
241 {
242 	int i;
243 
244 	/*
245 	 * Stop async tasks.
246 	 */
247 	spa_async_suspend(spa);
248 
249 	/*
250 	 * Stop syncing.
251 	 */
252 	if (spa->spa_sync_on) {
253 		txg_sync_stop(spa->spa_dsl_pool);
254 		spa->spa_sync_on = B_FALSE;
255 	}
256 
257 	/*
258 	 * Wait for any outstanding prefetch I/O to complete.
259 	 */
260 	spa_config_enter(spa, RW_WRITER, FTAG);
261 	spa_config_exit(spa, FTAG);
262 
263 	/*
264 	 * Close the dsl pool.
265 	 */
266 	if (spa->spa_dsl_pool) {
267 		dsl_pool_close(spa->spa_dsl_pool);
268 		spa->spa_dsl_pool = NULL;
269 	}
270 
271 	/*
272 	 * Close all vdevs.
273 	 */
274 	if (spa->spa_root_vdev)
275 		vdev_free(spa->spa_root_vdev);
276 	ASSERT(spa->spa_root_vdev == NULL);
277 
278 	for (i = 0; i < spa->spa_nspares; i++)
279 		vdev_free(spa->spa_spares[i]);
280 	if (spa->spa_spares) {
281 		kmem_free(spa->spa_spares, spa->spa_nspares * sizeof (void *));
282 		spa->spa_spares = NULL;
283 	}
284 	if (spa->spa_sparelist) {
285 		nvlist_free(spa->spa_sparelist);
286 		spa->spa_sparelist = NULL;
287 	}
288 
289 	spa->spa_async_suspended = 0;
290 }
291 
292 /*
293  * Load (or re-load) the current list of vdevs describing the active spares for
294  * this pool.  When this is called, we have some form of basic information in
295  * 'spa_sparelist'.  We parse this into vdevs, try to open them, and then
296  * re-generate a more complete list including status information.
297  */
298 static void
299 spa_load_spares(spa_t *spa)
300 {
301 	nvlist_t **spares;
302 	uint_t nspares;
303 	int i;
304 
305 	/*
306 	 * First, close and free any existing spare vdevs.
307 	 */
308 	for (i = 0; i < spa->spa_nspares; i++) {
309 		vdev_close(spa->spa_spares[i]);
310 		vdev_free(spa->spa_spares[i]);
311 	}
312 	if (spa->spa_spares)
313 		kmem_free(spa->spa_spares, spa->spa_nspares * sizeof (void *));
314 
315 	if (spa->spa_sparelist == NULL)
316 		nspares = 0;
317 	else
318 		VERIFY(nvlist_lookup_nvlist_array(spa->spa_sparelist,
319 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
320 
321 	spa->spa_nspares = (int)nspares;
322 	spa->spa_spares = NULL;
323 
324 	if (nspares == 0)
325 		return;
326 
327 	/*
328 	 * Construct the array of vdevs, opening them to get status in the
329 	 * process.
330 	 */
331 	spa->spa_spares = kmem_alloc(nspares * sizeof (void *), KM_SLEEP);
332 	for (i = 0; i < spa->spa_nspares; i++) {
333 		vdev_t *vd;
334 
335 		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
336 		    VDEV_ALLOC_SPARE) == 0);
337 		ASSERT(vd != NULL);
338 
339 		spa->spa_spares[i] = vd;
340 
341 		if (vdev_open(vd) != 0)
342 			continue;
343 
344 		vd->vdev_top = vd;
345 		(void) vdev_validate_spare(vd);
346 	}
347 
348 	/*
349 	 * Recompute the stashed list of spares, with status information
350 	 * this time.
351 	 */
352 	VERIFY(nvlist_remove(spa->spa_sparelist, ZPOOL_CONFIG_SPARES,
353 	    DATA_TYPE_NVLIST_ARRAY) == 0);
354 
355 	spares = kmem_alloc(spa->spa_nspares * sizeof (void *), KM_SLEEP);
356 	for (i = 0; i < spa->spa_nspares; i++)
357 		spares[i] = vdev_config_generate(spa, spa->spa_spares[i],
358 		    B_TRUE, B_TRUE);
359 	VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist, ZPOOL_CONFIG_SPARES,
360 	    spares, spa->spa_nspares) == 0);
361 	for (i = 0; i < spa->spa_nspares; i++)
362 		nvlist_free(spares[i]);
363 	kmem_free(spares, spa->spa_nspares * sizeof (void *));
364 }
365 
366 static int
367 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
368 {
369 	dmu_buf_t *db;
370 	char *packed = NULL;
371 	size_t nvsize = 0;
372 	int error;
373 	*value = NULL;
374 
375 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
376 	nvsize = *(uint64_t *)db->db_data;
377 	dmu_buf_rele(db, FTAG);
378 
379 	packed = kmem_alloc(nvsize, KM_SLEEP);
380 	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed);
381 	if (error == 0)
382 		error = nvlist_unpack(packed, nvsize, value, 0);
383 	kmem_free(packed, nvsize);
384 
385 	return (error);
386 }
387 
388 /*
389  * Load an existing storage pool, using the pool's builtin spa_config as a
390  * source of configuration information.
391  */
392 static int
393 spa_load(spa_t *spa, nvlist_t *config, spa_load_state_t state, int mosconfig)
394 {
395 	int error = 0;
396 	nvlist_t *nvroot = NULL;
397 	vdev_t *rvd;
398 	uberblock_t *ub = &spa->spa_uberblock;
399 	uint64_t config_cache_txg = spa->spa_config_txg;
400 	uint64_t pool_guid;
401 	uint64_t version;
402 	zio_t *zio;
403 
404 	spa->spa_load_state = state;
405 
406 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) ||
407 	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
408 		error = EINVAL;
409 		goto out;
410 	}
411 
412 	/*
413 	 * Versioning wasn't explicitly added to the label until later, so if
414 	 * it's not present treat it as the initial version.
415 	 */
416 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, &version) != 0)
417 		version = ZFS_VERSION_INITIAL;
418 
419 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
420 	    &spa->spa_config_txg);
421 
422 	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
423 	    spa_guid_exists(pool_guid, 0)) {
424 		error = EEXIST;
425 		goto out;
426 	}
427 
428 	spa->spa_load_guid = pool_guid;
429 
430 	/*
431 	 * Parse the configuration into a vdev tree.  We explicitly set the
432 	 * value that will be returned by spa_version() since parsing the
433 	 * configuration requires knowing the version number.
434 	 */
435 	spa_config_enter(spa, RW_WRITER, FTAG);
436 	spa->spa_ubsync.ub_version = version;
437 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_LOAD);
438 	spa_config_exit(spa, FTAG);
439 
440 	if (error != 0)
441 		goto out;
442 
443 	ASSERT(spa->spa_root_vdev == rvd);
444 	ASSERT(spa_guid(spa) == pool_guid);
445 
446 	/*
447 	 * Try to open all vdevs, loading each label in the process.
448 	 */
449 	if (vdev_open(rvd) != 0) {
450 		error = ENXIO;
451 		goto out;
452 	}
453 
454 	/*
455 	 * Validate the labels for all leaf vdevs.  We need to grab the config
456 	 * lock because all label I/O is done with the ZIO_FLAG_CONFIG_HELD
457 	 * flag.
458 	 */
459 	spa_config_enter(spa, RW_READER, FTAG);
460 	error = vdev_validate(rvd);
461 	spa_config_exit(spa, FTAG);
462 
463 	if (error != 0) {
464 		error = EBADF;
465 		goto out;
466 	}
467 
468 	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
469 		error = ENXIO;
470 		goto out;
471 	}
472 
473 	/*
474 	 * Find the best uberblock.
475 	 */
476 	bzero(ub, sizeof (uberblock_t));
477 
478 	zio = zio_root(spa, NULL, NULL,
479 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
480 	vdev_uberblock_load(zio, rvd, ub);
481 	error = zio_wait(zio);
482 
483 	/*
484 	 * If we weren't able to find a single valid uberblock, return failure.
485 	 */
486 	if (ub->ub_txg == 0) {
487 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
488 		    VDEV_AUX_CORRUPT_DATA);
489 		error = ENXIO;
490 		goto out;
491 	}
492 
493 	/*
494 	 * If the pool is newer than the code, we can't open it.
495 	 */
496 	if (ub->ub_version > ZFS_VERSION) {
497 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
498 		    VDEV_AUX_VERSION_NEWER);
499 		error = ENOTSUP;
500 		goto out;
501 	}
502 
503 	/*
504 	 * If the vdev guid sum doesn't match the uberblock, we have an
505 	 * incomplete configuration.
506 	 */
507 	if (rvd->vdev_guid_sum != ub->ub_guid_sum && mosconfig) {
508 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
509 		    VDEV_AUX_BAD_GUID_SUM);
510 		error = ENXIO;
511 		goto out;
512 	}
513 
514 	/*
515 	 * Initialize internal SPA structures.
516 	 */
517 	spa->spa_state = POOL_STATE_ACTIVE;
518 	spa->spa_ubsync = spa->spa_uberblock;
519 	spa->spa_first_txg = spa_last_synced_txg(spa) + 1;
520 	error = dsl_pool_open(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
521 	if (error) {
522 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
523 		    VDEV_AUX_CORRUPT_DATA);
524 		goto out;
525 	}
526 	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
527 
528 	if (zap_lookup(spa->spa_meta_objset,
529 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
530 	    sizeof (uint64_t), 1, &spa->spa_config_object) != 0) {
531 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
532 		    VDEV_AUX_CORRUPT_DATA);
533 		error = EIO;
534 		goto out;
535 	}
536 
537 	if (!mosconfig) {
538 		nvlist_t *newconfig;
539 
540 		if (load_nvlist(spa, spa->spa_config_object, &newconfig) != 0) {
541 			vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
542 			    VDEV_AUX_CORRUPT_DATA);
543 			error = EIO;
544 			goto out;
545 		}
546 
547 		spa_config_set(spa, newconfig);
548 		spa_unload(spa);
549 		spa_deactivate(spa);
550 		spa_activate(spa);
551 
552 		return (spa_load(spa, newconfig, state, B_TRUE));
553 	}
554 
555 	if (zap_lookup(spa->spa_meta_objset,
556 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST,
557 	    sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj) != 0) {
558 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
559 		    VDEV_AUX_CORRUPT_DATA);
560 		error = EIO;
561 		goto out;
562 	}
563 
564 	/*
565 	 * Load the bit that tells us to use the new accounting function
566 	 * (raid-z deflation).  If we have an older pool, this will not
567 	 * be present.
568 	 */
569 	error = zap_lookup(spa->spa_meta_objset,
570 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
571 	    sizeof (uint64_t), 1, &spa->spa_deflate);
572 	if (error != 0 && error != ENOENT) {
573 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
574 		    VDEV_AUX_CORRUPT_DATA);
575 		error = EIO;
576 		goto out;
577 	}
578 
579 	/*
580 	 * Load the persistent error log.  If we have an older pool, this will
581 	 * not be present.
582 	 */
583 	error = zap_lookup(spa->spa_meta_objset,
584 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_LAST,
585 	    sizeof (uint64_t), 1, &spa->spa_errlog_last);
586 	if (error != 0 && error != ENOENT) {
587 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
588 		    VDEV_AUX_CORRUPT_DATA);
589 		error = EIO;
590 		goto out;
591 	}
592 
593 	error = zap_lookup(spa->spa_meta_objset,
594 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_SCRUB,
595 	    sizeof (uint64_t), 1, &spa->spa_errlog_scrub);
596 	if (error != 0 && error != ENOENT) {
597 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
598 		    VDEV_AUX_CORRUPT_DATA);
599 		error = EIO;
600 		goto out;
601 	}
602 
603 	/*
604 	 * Load the history object.  If we have an older pool, this
605 	 * will not be present.
606 	 */
607 	error = zap_lookup(spa->spa_meta_objset,
608 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_HISTORY,
609 	    sizeof (uint64_t), 1, &spa->spa_history);
610 	if (error != 0 && error != ENOENT) {
611 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
612 		    VDEV_AUX_CORRUPT_DATA);
613 		error = EIO;
614 		goto out;
615 	}
616 
617 	/*
618 	 * Load any hot spares for this pool.
619 	 */
620 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
621 	    DMU_POOL_SPARES, sizeof (uint64_t), 1, &spa->spa_spares_object);
622 	if (error != 0 && error != ENOENT) {
623 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
624 		    VDEV_AUX_CORRUPT_DATA);
625 		error = EIO;
626 		goto out;
627 	}
628 	if (error == 0) {
629 		ASSERT(spa_version(spa) >= ZFS_VERSION_SPARES);
630 		if (load_nvlist(spa, spa->spa_spares_object,
631 		    &spa->spa_sparelist) != 0) {
632 			vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
633 			    VDEV_AUX_CORRUPT_DATA);
634 			error = EIO;
635 			goto out;
636 		}
637 
638 		spa_config_enter(spa, RW_WRITER, FTAG);
639 		spa_load_spares(spa);
640 		spa_config_exit(spa, FTAG);
641 	}
642 
643 	/*
644 	 * Load the vdev state for all toplevel vdevs.
645 	 */
646 	vdev_load(rvd);
647 
648 	/*
649 	 * Propagate the leaf DTLs we just loaded all the way up the tree.
650 	 */
651 	spa_config_enter(spa, RW_WRITER, FTAG);
652 	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
653 	spa_config_exit(spa, FTAG);
654 
655 	/*
656 	 * Check the state of the root vdev.  If it can't be opened, it
657 	 * indicates one or more toplevel vdevs are faulted.
658 	 */
659 	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
660 		error = ENXIO;
661 		goto out;
662 	}
663 
664 	if ((spa_mode & FWRITE) && state != SPA_LOAD_TRYIMPORT) {
665 		dmu_tx_t *tx;
666 		int need_update = B_FALSE;
667 		int c;
668 
669 		/*
670 		 * Claim log blocks that haven't been committed yet.
671 		 * This must all happen in a single txg.
672 		 */
673 		tx = dmu_tx_create_assigned(spa_get_dsl(spa),
674 		    spa_first_txg(spa));
675 		(void) dmu_objset_find(spa->spa_name,
676 		    zil_claim, tx, DS_FIND_CHILDREN);
677 		dmu_tx_commit(tx);
678 
679 		spa->spa_sync_on = B_TRUE;
680 		txg_sync_start(spa->spa_dsl_pool);
681 
682 		/*
683 		 * Wait for all claims to sync.
684 		 */
685 		txg_wait_synced(spa->spa_dsl_pool, 0);
686 
687 		/*
688 		 * If the config cache is stale, or we have uninitialized
689 		 * metaslabs (see spa_vdev_add()), then update the config.
690 		 */
691 		if (config_cache_txg != spa->spa_config_txg ||
692 		    state == SPA_LOAD_IMPORT)
693 			need_update = B_TRUE;
694 
695 		for (c = 0; c < rvd->vdev_children; c++)
696 			if (rvd->vdev_child[c]->vdev_ms_array == 0)
697 				need_update = B_TRUE;
698 
699 		/*
700 		 * Update the config cache asychronously in case we're the
701 		 * root pool, in which case the config cache isn't writable yet.
702 		 */
703 		if (need_update)
704 			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
705 	}
706 
707 	error = 0;
708 out:
709 	if (error && error != EBADF)
710 		zfs_ereport_post(FM_EREPORT_ZFS_POOL, spa, NULL, NULL, 0, 0);
711 	spa->spa_load_state = SPA_LOAD_NONE;
712 	spa->spa_ena = 0;
713 
714 	return (error);
715 }
716 
717 /*
718  * Pool Open/Import
719  *
720  * The import case is identical to an open except that the configuration is sent
721  * down from userland, instead of grabbed from the configuration cache.  For the
722  * case of an open, the pool configuration will exist in the
723  * POOL_STATE_UNITIALIZED state.
724  *
725  * The stats information (gen/count/ustats) is used to gather vdev statistics at
726  * the same time open the pool, without having to keep around the spa_t in some
727  * ambiguous state.
728  */
729 static int
730 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t **config)
731 {
732 	spa_t *spa;
733 	int error;
734 	int loaded = B_FALSE;
735 	int locked = B_FALSE;
736 
737 	*spapp = NULL;
738 
739 	/*
740 	 * As disgusting as this is, we need to support recursive calls to this
741 	 * function because dsl_dir_open() is called during spa_load(), and ends
742 	 * up calling spa_open() again.  The real fix is to figure out how to
743 	 * avoid dsl_dir_open() calling this in the first place.
744 	 */
745 	if (mutex_owner(&spa_namespace_lock) != curthread) {
746 		mutex_enter(&spa_namespace_lock);
747 		locked = B_TRUE;
748 	}
749 
750 	if ((spa = spa_lookup(pool)) == NULL) {
751 		if (locked)
752 			mutex_exit(&spa_namespace_lock);
753 		return (ENOENT);
754 	}
755 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
756 
757 		spa_activate(spa);
758 
759 		error = spa_load(spa, spa->spa_config, SPA_LOAD_OPEN, B_FALSE);
760 
761 		if (error == EBADF) {
762 			/*
763 			 * If vdev_validate() returns failure (indicated by
764 			 * EBADF), it indicates that one of the vdevs indicates
765 			 * that the pool has been exported or destroyed.  If
766 			 * this is the case, the config cache is out of sync and
767 			 * we should remove the pool from the namespace.
768 			 */
769 			zfs_post_ok(spa, NULL);
770 			spa_unload(spa);
771 			spa_deactivate(spa);
772 			spa_remove(spa);
773 			spa_config_sync();
774 			if (locked)
775 				mutex_exit(&spa_namespace_lock);
776 			return (ENOENT);
777 		}
778 
779 		if (error) {
780 			/*
781 			 * We can't open the pool, but we still have useful
782 			 * information: the state of each vdev after the
783 			 * attempted vdev_open().  Return this to the user.
784 			 */
785 			if (config != NULL && spa->spa_root_vdev != NULL) {
786 				spa_config_enter(spa, RW_READER, FTAG);
787 				*config = spa_config_generate(spa, NULL, -1ULL,
788 				    B_TRUE);
789 				spa_config_exit(spa, FTAG);
790 			}
791 			spa_unload(spa);
792 			spa_deactivate(spa);
793 			spa->spa_last_open_failed = B_TRUE;
794 			if (locked)
795 				mutex_exit(&spa_namespace_lock);
796 			*spapp = NULL;
797 			return (error);
798 		} else {
799 			zfs_post_ok(spa, NULL);
800 			spa->spa_last_open_failed = B_FALSE;
801 		}
802 
803 		loaded = B_TRUE;
804 	}
805 
806 	spa_open_ref(spa, tag);
807 	if (locked)
808 		mutex_exit(&spa_namespace_lock);
809 
810 	*spapp = spa;
811 
812 	if (config != NULL) {
813 		spa_config_enter(spa, RW_READER, FTAG);
814 		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
815 		spa_config_exit(spa, FTAG);
816 	}
817 
818 	/*
819 	 * If we just loaded the pool, resilver anything that's out of date.
820 	 */
821 	if (loaded && (spa_mode & FWRITE))
822 		VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
823 
824 	return (0);
825 }
826 
827 int
828 spa_open(const char *name, spa_t **spapp, void *tag)
829 {
830 	return (spa_open_common(name, spapp, tag, NULL));
831 }
832 
833 /*
834  * Lookup the given spa_t, incrementing the inject count in the process,
835  * preventing it from being exported or destroyed.
836  */
837 spa_t *
838 spa_inject_addref(char *name)
839 {
840 	spa_t *spa;
841 
842 	mutex_enter(&spa_namespace_lock);
843 	if ((spa = spa_lookup(name)) == NULL) {
844 		mutex_exit(&spa_namespace_lock);
845 		return (NULL);
846 	}
847 	spa->spa_inject_ref++;
848 	mutex_exit(&spa_namespace_lock);
849 
850 	return (spa);
851 }
852 
853 void
854 spa_inject_delref(spa_t *spa)
855 {
856 	mutex_enter(&spa_namespace_lock);
857 	spa->spa_inject_ref--;
858 	mutex_exit(&spa_namespace_lock);
859 }
860 
861 static void
862 spa_add_spares(spa_t *spa, nvlist_t *config)
863 {
864 	nvlist_t **spares;
865 	uint_t i, nspares;
866 	nvlist_t *nvroot;
867 	uint64_t guid;
868 	vdev_stat_t *vs;
869 	uint_t vsc;
870 
871 	if (spa->spa_nspares == 0)
872 		return;
873 
874 	VERIFY(nvlist_lookup_nvlist(config,
875 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
876 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_sparelist,
877 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
878 	if (nspares != 0) {
879 		VERIFY(nvlist_add_nvlist_array(nvroot,
880 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
881 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
882 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
883 
884 		/*
885 		 * Go through and find any spares which have since been
886 		 * repurposed as an active spare.  If this is the case, update
887 		 * their status appropriately.
888 		 */
889 		for (i = 0; i < nspares; i++) {
890 			VERIFY(nvlist_lookup_uint64(spares[i],
891 			    ZPOOL_CONFIG_GUID, &guid) == 0);
892 			if (spa_spare_inuse(guid)) {
893 				VERIFY(nvlist_lookup_uint64_array(
894 				    spares[i], ZPOOL_CONFIG_STATS,
895 				    (uint64_t **)&vs, &vsc) == 0);
896 				vs->vs_state = VDEV_STATE_CANT_OPEN;
897 				vs->vs_aux = VDEV_AUX_SPARED;
898 			}
899 		}
900 	}
901 }
902 
903 int
904 spa_get_stats(const char *name, nvlist_t **config, char *altroot, size_t buflen)
905 {
906 	int error;
907 	spa_t *spa;
908 
909 	*config = NULL;
910 	error = spa_open_common(name, &spa, FTAG, config);
911 
912 	if (spa && *config != NULL) {
913 		VERIFY(nvlist_add_uint64(*config, ZPOOL_CONFIG_ERRCOUNT,
914 		    spa_get_errlog_size(spa)) == 0);
915 
916 		spa_add_spares(spa, *config);
917 	}
918 
919 	/*
920 	 * We want to get the alternate root even for faulted pools, so we cheat
921 	 * and call spa_lookup() directly.
922 	 */
923 	if (altroot) {
924 		if (spa == NULL) {
925 			mutex_enter(&spa_namespace_lock);
926 			spa = spa_lookup(name);
927 			if (spa)
928 				spa_altroot(spa, altroot, buflen);
929 			else
930 				altroot[0] = '\0';
931 			spa = NULL;
932 			mutex_exit(&spa_namespace_lock);
933 		} else {
934 			spa_altroot(spa, altroot, buflen);
935 		}
936 	}
937 
938 	if (spa != NULL)
939 		spa_close(spa, FTAG);
940 
941 	return (error);
942 }
943 
944 /*
945  * Validate that the 'spares' array is well formed.  We must have an array of
946  * nvlists, each which describes a valid leaf vdev.
947  */
948 static int
949 spa_validate_spares(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
950 {
951 	nvlist_t **spares;
952 	uint_t i, nspares;
953 	vdev_t *vd;
954 	int error;
955 
956 	/*
957 	 * It's acceptable to have no spares specified.
958 	 */
959 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
960 	    &spares, &nspares) != 0)
961 		return (0);
962 
963 	if (nspares == 0)
964 		return (EINVAL);
965 
966 	/*
967 	 * Make sure the pool is formatted with a version that supports hot
968 	 * spares.
969 	 */
970 	if (spa_version(spa) < ZFS_VERSION_SPARES)
971 		return (ENOTSUP);
972 
973 	for (i = 0; i < nspares; i++) {
974 		if ((error = spa_config_parse(spa, &vd, spares[i], NULL, 0,
975 		    mode)) != 0)
976 			return (error);
977 
978 		if (!vd->vdev_ops->vdev_op_leaf) {
979 			vdev_free(vd);
980 			return (EINVAL);
981 		}
982 
983 		if ((error = vdev_open(vd)) != 0) {
984 			vdev_free(vd);
985 			return (error);
986 		}
987 
988 		vd->vdev_top = vd;
989 		if ((error = vdev_label_spare(vd, crtxg)) != 0) {
990 			vdev_free(vd);
991 			return (error);
992 		}
993 
994 		VERIFY(nvlist_add_uint64(spares[i], ZPOOL_CONFIG_GUID,
995 		    vd->vdev_guid) == 0);
996 
997 		vdev_free(vd);
998 	}
999 
1000 	return (0);
1001 }
1002 
1003 /*
1004  * Pool Creation
1005  */
1006 int
1007 spa_create(const char *pool, nvlist_t *nvroot, const char *altroot)
1008 {
1009 	spa_t *spa;
1010 	vdev_t *rvd;
1011 	dsl_pool_t *dp;
1012 	dmu_tx_t *tx;
1013 	int c, error = 0;
1014 	uint64_t txg = TXG_INITIAL;
1015 	nvlist_t **spares;
1016 	uint_t nspares;
1017 
1018 	/*
1019 	 * If this pool already exists, return failure.
1020 	 */
1021 	mutex_enter(&spa_namespace_lock);
1022 	if (spa_lookup(pool) != NULL) {
1023 		mutex_exit(&spa_namespace_lock);
1024 		return (EEXIST);
1025 	}
1026 
1027 	/*
1028 	 * Allocate a new spa_t structure.
1029 	 */
1030 	spa = spa_add(pool, altroot);
1031 	spa_activate(spa);
1032 
1033 	spa->spa_uberblock.ub_txg = txg - 1;
1034 	spa->spa_uberblock.ub_version = ZFS_VERSION;
1035 	spa->spa_ubsync = spa->spa_uberblock;
1036 
1037 	/*
1038 	 * Create the root vdev.
1039 	 */
1040 	spa_config_enter(spa, RW_WRITER, FTAG);
1041 
1042 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
1043 
1044 	ASSERT(error != 0 || rvd != NULL);
1045 	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
1046 
1047 	if (error == 0 && rvd->vdev_children == 0)
1048 		error = EINVAL;
1049 
1050 	if (error == 0 &&
1051 	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
1052 	    (error = spa_validate_spares(spa, nvroot, txg,
1053 	    VDEV_ALLOC_ADD)) == 0) {
1054 		for (c = 0; c < rvd->vdev_children; c++)
1055 			vdev_init(rvd->vdev_child[c], txg);
1056 		vdev_config_dirty(rvd);
1057 	}
1058 
1059 	spa_config_exit(spa, FTAG);
1060 
1061 	if (error != 0) {
1062 		spa_unload(spa);
1063 		spa_deactivate(spa);
1064 		spa_remove(spa);
1065 		mutex_exit(&spa_namespace_lock);
1066 		return (error);
1067 	}
1068 
1069 	/*
1070 	 * Get the list of spares, if specified.
1071 	 */
1072 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1073 	    &spares, &nspares) == 0) {
1074 		VERIFY(nvlist_alloc(&spa->spa_sparelist, NV_UNIQUE_NAME,
1075 		    KM_SLEEP) == 0);
1076 		VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist,
1077 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
1078 		spa_config_enter(spa, RW_WRITER, FTAG);
1079 		spa_load_spares(spa);
1080 		spa_config_exit(spa, FTAG);
1081 		spa->spa_sync_spares = B_TRUE;
1082 	}
1083 
1084 	spa->spa_dsl_pool = dp = dsl_pool_create(spa, txg);
1085 	spa->spa_meta_objset = dp->dp_meta_objset;
1086 
1087 	tx = dmu_tx_create_assigned(dp, txg);
1088 
1089 	/*
1090 	 * Create the pool config object.
1091 	 */
1092 	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
1093 	    DMU_OT_PACKED_NVLIST, 1 << 14,
1094 	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
1095 
1096 	if (zap_add(spa->spa_meta_objset,
1097 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
1098 	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
1099 		cmn_err(CE_PANIC, "failed to add pool config");
1100 	}
1101 
1102 	/* Newly created pools are always deflated. */
1103 	spa->spa_deflate = TRUE;
1104 	if (zap_add(spa->spa_meta_objset,
1105 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
1106 	    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
1107 		cmn_err(CE_PANIC, "failed to add deflate");
1108 	}
1109 
1110 	/*
1111 	 * Create the deferred-free bplist object.  Turn off compression
1112 	 * because sync-to-convergence takes longer if the blocksize
1113 	 * keeps changing.
1114 	 */
1115 	spa->spa_sync_bplist_obj = bplist_create(spa->spa_meta_objset,
1116 	    1 << 14, tx);
1117 	dmu_object_set_compress(spa->spa_meta_objset, spa->spa_sync_bplist_obj,
1118 	    ZIO_COMPRESS_OFF, tx);
1119 
1120 	if (zap_add(spa->spa_meta_objset,
1121 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST,
1122 	    sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj, tx) != 0) {
1123 		cmn_err(CE_PANIC, "failed to add bplist");
1124 	}
1125 
1126 	/*
1127 	 * Create the pool's history object.
1128 	 */
1129 	spa_history_create_obj(spa, tx);
1130 
1131 	dmu_tx_commit(tx);
1132 
1133 	spa->spa_sync_on = B_TRUE;
1134 	txg_sync_start(spa->spa_dsl_pool);
1135 
1136 	/*
1137 	 * We explicitly wait for the first transaction to complete so that our
1138 	 * bean counters are appropriately updated.
1139 	 */
1140 	txg_wait_synced(spa->spa_dsl_pool, txg);
1141 
1142 	spa_config_sync();
1143 
1144 	mutex_exit(&spa_namespace_lock);
1145 
1146 	return (0);
1147 }
1148 
1149 /*
1150  * Import the given pool into the system.  We set up the necessary spa_t and
1151  * then call spa_load() to do the dirty work.
1152  */
1153 int
1154 spa_import(const char *pool, nvlist_t *config, const char *altroot)
1155 {
1156 	spa_t *spa;
1157 	int error;
1158 	nvlist_t *nvroot;
1159 	nvlist_t **spares;
1160 	uint_t nspares;
1161 
1162 	if (!(spa_mode & FWRITE))
1163 		return (EROFS);
1164 
1165 	/*
1166 	 * If a pool with this name exists, return failure.
1167 	 */
1168 	mutex_enter(&spa_namespace_lock);
1169 	if (spa_lookup(pool) != NULL) {
1170 		mutex_exit(&spa_namespace_lock);
1171 		return (EEXIST);
1172 	}
1173 
1174 	/*
1175 	 * Create and initialize the spa structure.
1176 	 */
1177 	spa = spa_add(pool, altroot);
1178 	spa_activate(spa);
1179 
1180 	/*
1181 	 * Pass off the heavy lifting to spa_load().
1182 	 * Pass TRUE for mosconfig because the user-supplied config
1183 	 * is actually the one to trust when doing an import.
1184 	 */
1185 	error = spa_load(spa, config, SPA_LOAD_IMPORT, B_TRUE);
1186 
1187 	spa_config_enter(spa, RW_WRITER, FTAG);
1188 	/*
1189 	 * Toss any existing sparelist, as it doesn't have any validity anymore,
1190 	 * and conflicts with spa_has_spare().
1191 	 */
1192 	if (spa->spa_sparelist) {
1193 		nvlist_free(spa->spa_sparelist);
1194 		spa->spa_sparelist = NULL;
1195 		spa_load_spares(spa);
1196 	}
1197 
1198 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
1199 	    &nvroot) == 0);
1200 	if (error == 0)
1201 		error = spa_validate_spares(spa, nvroot, -1ULL,
1202 		    VDEV_ALLOC_SPARE);
1203 	spa_config_exit(spa, FTAG);
1204 
1205 	if (error != 0) {
1206 		spa_unload(spa);
1207 		spa_deactivate(spa);
1208 		spa_remove(spa);
1209 		mutex_exit(&spa_namespace_lock);
1210 		return (error);
1211 	}
1212 
1213 	/*
1214 	 * Override any spares as specified by the user, as these may have
1215 	 * correct device names/devids, etc.
1216 	 */
1217 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1218 	    &spares, &nspares) == 0) {
1219 		if (spa->spa_sparelist)
1220 			VERIFY(nvlist_remove(spa->spa_sparelist,
1221 			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
1222 		else
1223 			VERIFY(nvlist_alloc(&spa->spa_sparelist,
1224 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
1225 		VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist,
1226 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
1227 		spa_config_enter(spa, RW_WRITER, FTAG);
1228 		spa_load_spares(spa);
1229 		spa_config_exit(spa, FTAG);
1230 		spa->spa_sync_spares = B_TRUE;
1231 	}
1232 
1233 	/*
1234 	 * Update the config cache to include the newly-imported pool.
1235 	 */
1236 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
1237 
1238 	mutex_exit(&spa_namespace_lock);
1239 
1240 	/*
1241 	 * Resilver anything that's out of date.
1242 	 */
1243 	if (spa_mode & FWRITE)
1244 		VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
1245 
1246 	return (0);
1247 }
1248 
1249 /*
1250  * This (illegal) pool name is used when temporarily importing a spa_t in order
1251  * to get the vdev stats associated with the imported devices.
1252  */
1253 #define	TRYIMPORT_NAME	"$import"
1254 
1255 nvlist_t *
1256 spa_tryimport(nvlist_t *tryconfig)
1257 {
1258 	nvlist_t *config = NULL;
1259 	char *poolname;
1260 	spa_t *spa;
1261 	uint64_t state;
1262 
1263 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
1264 		return (NULL);
1265 
1266 	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
1267 		return (NULL);
1268 
1269 	/*
1270 	 * Create and initialize the spa structure.
1271 	 */
1272 	mutex_enter(&spa_namespace_lock);
1273 	spa = spa_add(TRYIMPORT_NAME, NULL);
1274 	spa_activate(spa);
1275 
1276 	/*
1277 	 * Pass off the heavy lifting to spa_load().
1278 	 * Pass TRUE for mosconfig because the user-supplied config
1279 	 * is actually the one to trust when doing an import.
1280 	 */
1281 	(void) spa_load(spa, tryconfig, SPA_LOAD_TRYIMPORT, B_TRUE);
1282 
1283 	/*
1284 	 * If 'tryconfig' was at least parsable, return the current config.
1285 	 */
1286 	if (spa->spa_root_vdev != NULL) {
1287 		spa_config_enter(spa, RW_READER, FTAG);
1288 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
1289 		spa_config_exit(spa, FTAG);
1290 		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
1291 		    poolname) == 0);
1292 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
1293 		    state) == 0);
1294 
1295 		/*
1296 		 * Add the list of hot spares.
1297 		 */
1298 		spa_add_spares(spa, config);
1299 	}
1300 
1301 	spa_unload(spa);
1302 	spa_deactivate(spa);
1303 	spa_remove(spa);
1304 	mutex_exit(&spa_namespace_lock);
1305 
1306 	return (config);
1307 }
1308 
1309 /*
1310  * Pool export/destroy
1311  *
1312  * The act of destroying or exporting a pool is very simple.  We make sure there
1313  * is no more pending I/O and any references to the pool are gone.  Then, we
1314  * update the pool state and sync all the labels to disk, removing the
1315  * configuration from the cache afterwards.
1316  */
1317 static int
1318 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig)
1319 {
1320 	spa_t *spa;
1321 
1322 	if (oldconfig)
1323 		*oldconfig = NULL;
1324 
1325 	if (!(spa_mode & FWRITE))
1326 		return (EROFS);
1327 
1328 	mutex_enter(&spa_namespace_lock);
1329 	if ((spa = spa_lookup(pool)) == NULL) {
1330 		mutex_exit(&spa_namespace_lock);
1331 		return (ENOENT);
1332 	}
1333 
1334 	/*
1335 	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
1336 	 * reacquire the namespace lock, and see if we can export.
1337 	 */
1338 	spa_open_ref(spa, FTAG);
1339 	mutex_exit(&spa_namespace_lock);
1340 	spa_async_suspend(spa);
1341 	mutex_enter(&spa_namespace_lock);
1342 	spa_close(spa, FTAG);
1343 
1344 	/*
1345 	 * The pool will be in core if it's openable,
1346 	 * in which case we can modify its state.
1347 	 */
1348 	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
1349 		/*
1350 		 * Objsets may be open only because they're dirty, so we
1351 		 * have to force it to sync before checking spa_refcnt.
1352 		 */
1353 		spa_scrub_suspend(spa);
1354 		txg_wait_synced(spa->spa_dsl_pool, 0);
1355 
1356 		/*
1357 		 * A pool cannot be exported or destroyed if there are active
1358 		 * references.  If we are resetting a pool, allow references by
1359 		 * fault injection handlers.
1360 		 */
1361 		if (!spa_refcount_zero(spa) ||
1362 		    (spa->spa_inject_ref != 0 &&
1363 		    new_state != POOL_STATE_UNINITIALIZED)) {
1364 			spa_scrub_resume(spa);
1365 			spa_async_resume(spa);
1366 			mutex_exit(&spa_namespace_lock);
1367 			return (EBUSY);
1368 		}
1369 
1370 		spa_scrub_resume(spa);
1371 		VERIFY(spa_scrub(spa, POOL_SCRUB_NONE, B_TRUE) == 0);
1372 
1373 		/*
1374 		 * We want this to be reflected on every label,
1375 		 * so mark them all dirty.  spa_unload() will do the
1376 		 * final sync that pushes these changes out.
1377 		 */
1378 		if (new_state != POOL_STATE_UNINITIALIZED) {
1379 			spa_config_enter(spa, RW_WRITER, FTAG);
1380 			spa->spa_state = new_state;
1381 			spa->spa_final_txg = spa_last_synced_txg(spa) + 1;
1382 			vdev_config_dirty(spa->spa_root_vdev);
1383 			spa_config_exit(spa, FTAG);
1384 		}
1385 	}
1386 
1387 	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
1388 		spa_unload(spa);
1389 		spa_deactivate(spa);
1390 	}
1391 
1392 	if (oldconfig && spa->spa_config)
1393 		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
1394 
1395 	if (new_state != POOL_STATE_UNINITIALIZED) {
1396 		spa_remove(spa);
1397 		spa_config_sync();
1398 	}
1399 	mutex_exit(&spa_namespace_lock);
1400 
1401 	return (0);
1402 }
1403 
1404 /*
1405  * Destroy a storage pool.
1406  */
1407 int
1408 spa_destroy(char *pool)
1409 {
1410 	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL));
1411 }
1412 
1413 /*
1414  * Export a storage pool.
1415  */
1416 int
1417 spa_export(char *pool, nvlist_t **oldconfig)
1418 {
1419 	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig));
1420 }
1421 
1422 /*
1423  * Similar to spa_export(), this unloads the spa_t without actually removing it
1424  * from the namespace in any way.
1425  */
1426 int
1427 spa_reset(char *pool)
1428 {
1429 	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL));
1430 }
1431 
1432 
1433 /*
1434  * ==========================================================================
1435  * Device manipulation
1436  * ==========================================================================
1437  */
1438 
1439 /*
1440  * Add capacity to a storage pool.
1441  */
1442 int
1443 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
1444 {
1445 	uint64_t txg;
1446 	int c, error;
1447 	vdev_t *rvd = spa->spa_root_vdev;
1448 	vdev_t *vd, *tvd;
1449 	nvlist_t **spares;
1450 	uint_t i, nspares;
1451 
1452 	txg = spa_vdev_enter(spa);
1453 
1454 	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
1455 	    VDEV_ALLOC_ADD)) != 0)
1456 		return (spa_vdev_exit(spa, NULL, txg, error));
1457 
1458 	if ((error = spa_validate_spares(spa, nvroot, txg,
1459 	    VDEV_ALLOC_ADD)) != 0)
1460 		return (spa_vdev_exit(spa, vd, txg, error));
1461 
1462 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1463 	    &spares, &nspares) != 0)
1464 		nspares = 0;
1465 
1466 	if (vd->vdev_children == 0 && nspares == 0)
1467 		return (spa_vdev_exit(spa, vd, txg, EINVAL));
1468 
1469 	if (vd->vdev_children != 0) {
1470 		if ((error = vdev_create(vd, txg, B_FALSE)) != 0)
1471 			return (spa_vdev_exit(spa, vd, txg, error));
1472 
1473 		/*
1474 		 * Transfer each new top-level vdev from vd to rvd.
1475 		 */
1476 		for (c = 0; c < vd->vdev_children; c++) {
1477 			tvd = vd->vdev_child[c];
1478 			vdev_remove_child(vd, tvd);
1479 			tvd->vdev_id = rvd->vdev_children;
1480 			vdev_add_child(rvd, tvd);
1481 			vdev_config_dirty(tvd);
1482 		}
1483 	}
1484 
1485 	if (nspares != 0) {
1486 		if (spa->spa_sparelist != NULL) {
1487 			nvlist_t **oldspares;
1488 			uint_t oldnspares;
1489 			nvlist_t **newspares;
1490 
1491 			VERIFY(nvlist_lookup_nvlist_array(spa->spa_sparelist,
1492 			    ZPOOL_CONFIG_SPARES, &oldspares, &oldnspares) == 0);
1493 
1494 			newspares = kmem_alloc(sizeof (void *) *
1495 			    (nspares + oldnspares), KM_SLEEP);
1496 			for (i = 0; i < oldnspares; i++)
1497 				VERIFY(nvlist_dup(oldspares[i],
1498 				    &newspares[i], KM_SLEEP) == 0);
1499 			for (i = 0; i < nspares; i++)
1500 				VERIFY(nvlist_dup(spares[i],
1501 				    &newspares[i + oldnspares],
1502 				    KM_SLEEP) == 0);
1503 
1504 			VERIFY(nvlist_remove(spa->spa_sparelist,
1505 			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
1506 
1507 			VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist,
1508 			    ZPOOL_CONFIG_SPARES, newspares,
1509 			    nspares + oldnspares) == 0);
1510 			for (i = 0; i < oldnspares + nspares; i++)
1511 				nvlist_free(newspares[i]);
1512 			kmem_free(newspares, (oldnspares + nspares) *
1513 			    sizeof (void *));
1514 		} else {
1515 			VERIFY(nvlist_alloc(&spa->spa_sparelist,
1516 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
1517 			VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist,
1518 			    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
1519 		}
1520 
1521 		spa_load_spares(spa);
1522 		spa->spa_sync_spares = B_TRUE;
1523 	}
1524 
1525 	/*
1526 	 * We have to be careful when adding new vdevs to an existing pool.
1527 	 * If other threads start allocating from these vdevs before we
1528 	 * sync the config cache, and we lose power, then upon reboot we may
1529 	 * fail to open the pool because there are DVAs that the config cache
1530 	 * can't translate.  Therefore, we first add the vdevs without
1531 	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
1532 	 * and then let spa_config_update() initialize the new metaslabs.
1533 	 *
1534 	 * spa_load() checks for added-but-not-initialized vdevs, so that
1535 	 * if we lose power at any point in this sequence, the remaining
1536 	 * steps will be completed the next time we load the pool.
1537 	 */
1538 	(void) spa_vdev_exit(spa, vd, txg, 0);
1539 
1540 	mutex_enter(&spa_namespace_lock);
1541 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
1542 	mutex_exit(&spa_namespace_lock);
1543 
1544 	return (0);
1545 }
1546 
1547 /*
1548  * Attach a device to a mirror.  The arguments are the path to any device
1549  * in the mirror, and the nvroot for the new device.  If the path specifies
1550  * a device that is not mirrored, we automatically insert the mirror vdev.
1551  *
1552  * If 'replacing' is specified, the new device is intended to replace the
1553  * existing device; in this case the two devices are made into their own
1554  * mirror using the 'replacing' vdev, which is functionally idendical to
1555  * the mirror vdev (it actually reuses all the same ops) but has a few
1556  * extra rules: you can't attach to it after it's been created, and upon
1557  * completion of resilvering, the first disk (the one being replaced)
1558  * is automatically detached.
1559  */
1560 int
1561 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
1562 {
1563 	uint64_t txg, open_txg;
1564 	int error;
1565 	vdev_t *rvd = spa->spa_root_vdev;
1566 	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
1567 	vdev_ops_t *pvops;
1568 
1569 	txg = spa_vdev_enter(spa);
1570 
1571 	oldvd = vdev_lookup_by_guid(rvd, guid);
1572 
1573 	if (oldvd == NULL)
1574 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
1575 
1576 	if (!oldvd->vdev_ops->vdev_op_leaf)
1577 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1578 
1579 	pvd = oldvd->vdev_parent;
1580 
1581 	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
1582 	    VDEV_ALLOC_ADD)) != 0 || newrootvd->vdev_children != 1)
1583 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
1584 
1585 	newvd = newrootvd->vdev_child[0];
1586 
1587 	if (!newvd->vdev_ops->vdev_op_leaf)
1588 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
1589 
1590 	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
1591 		return (spa_vdev_exit(spa, newrootvd, txg, error));
1592 
1593 	if (!replacing) {
1594 		/*
1595 		 * For attach, the only allowable parent is a mirror or the root
1596 		 * vdev.
1597 		 */
1598 		if (pvd->vdev_ops != &vdev_mirror_ops &&
1599 		    pvd->vdev_ops != &vdev_root_ops)
1600 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
1601 
1602 		pvops = &vdev_mirror_ops;
1603 	} else {
1604 		/*
1605 		 * Active hot spares can only be replaced by inactive hot
1606 		 * spares.
1607 		 */
1608 		if (pvd->vdev_ops == &vdev_spare_ops &&
1609 		    pvd->vdev_child[1] == oldvd &&
1610 		    !spa_has_spare(spa, newvd->vdev_guid))
1611 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
1612 
1613 		/*
1614 		 * If the source is a hot spare, and the parent isn't already a
1615 		 * spare, then we want to create a new hot spare.  Otherwise, we
1616 		 * want to create a replacing vdev.
1617 		 */
1618 		if (pvd->vdev_ops == &vdev_replacing_ops)
1619 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
1620 		else if (pvd->vdev_ops != &vdev_spare_ops &&
1621 		    newvd->vdev_isspare)
1622 			pvops = &vdev_spare_ops;
1623 		else
1624 			pvops = &vdev_replacing_ops;
1625 	}
1626 
1627 	/*
1628 	 * Compare the new device size with the replaceable/attachable
1629 	 * device size.
1630 	 */
1631 	if (newvd->vdev_psize < vdev_get_rsize(oldvd))
1632 		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
1633 
1634 	/*
1635 	 * The new device cannot have a higher alignment requirement
1636 	 * than the top-level vdev.
1637 	 */
1638 	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
1639 		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
1640 
1641 	/*
1642 	 * If this is an in-place replacement, update oldvd's path and devid
1643 	 * to make it distinguishable from newvd, and unopenable from now on.
1644 	 */
1645 	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
1646 		spa_strfree(oldvd->vdev_path);
1647 		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
1648 		    KM_SLEEP);
1649 		(void) sprintf(oldvd->vdev_path, "%s/%s",
1650 		    newvd->vdev_path, "old");
1651 		if (oldvd->vdev_devid != NULL) {
1652 			spa_strfree(oldvd->vdev_devid);
1653 			oldvd->vdev_devid = NULL;
1654 		}
1655 	}
1656 
1657 	/*
1658 	 * If the parent is not a mirror, or if we're replacing, insert the new
1659 	 * mirror/replacing/spare vdev above oldvd.
1660 	 */
1661 	if (pvd->vdev_ops != pvops)
1662 		pvd = vdev_add_parent(oldvd, pvops);
1663 
1664 	ASSERT(pvd->vdev_top->vdev_parent == rvd);
1665 	ASSERT(pvd->vdev_ops == pvops);
1666 	ASSERT(oldvd->vdev_parent == pvd);
1667 
1668 	/*
1669 	 * Extract the new device from its root and add it to pvd.
1670 	 */
1671 	vdev_remove_child(newrootvd, newvd);
1672 	newvd->vdev_id = pvd->vdev_children;
1673 	vdev_add_child(pvd, newvd);
1674 
1675 	/*
1676 	 * If newvd is smaller than oldvd, but larger than its rsize,
1677 	 * the addition of newvd may have decreased our parent's asize.
1678 	 */
1679 	pvd->vdev_asize = MIN(pvd->vdev_asize, newvd->vdev_asize);
1680 
1681 	tvd = newvd->vdev_top;
1682 	ASSERT(pvd->vdev_top == tvd);
1683 	ASSERT(tvd->vdev_parent == rvd);
1684 
1685 	vdev_config_dirty(tvd);
1686 
1687 	/*
1688 	 * Set newvd's DTL to [TXG_INITIAL, open_txg].  It will propagate
1689 	 * upward when spa_vdev_exit() calls vdev_dtl_reassess().
1690 	 */
1691 	open_txg = txg + TXG_CONCURRENT_STATES - 1;
1692 
1693 	mutex_enter(&newvd->vdev_dtl_lock);
1694 	space_map_add(&newvd->vdev_dtl_map, TXG_INITIAL,
1695 	    open_txg - TXG_INITIAL + 1);
1696 	mutex_exit(&newvd->vdev_dtl_lock);
1697 
1698 	dprintf("attached %s in txg %llu\n", newvd->vdev_path, txg);
1699 
1700 	/*
1701 	 * Mark newvd's DTL dirty in this txg.
1702 	 */
1703 	vdev_dirty(tvd, VDD_DTL, newvd, txg);
1704 
1705 	(void) spa_vdev_exit(spa, newrootvd, open_txg, 0);
1706 
1707 	/*
1708 	 * Kick off a resilver to update newvd.
1709 	 */
1710 	VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
1711 
1712 	return (0);
1713 }
1714 
1715 /*
1716  * Detach a device from a mirror or replacing vdev.
1717  * If 'replace_done' is specified, only detach if the parent
1718  * is a replacing vdev.
1719  */
1720 int
1721 spa_vdev_detach(spa_t *spa, uint64_t guid, int replace_done)
1722 {
1723 	uint64_t txg;
1724 	int c, t, error;
1725 	vdev_t *rvd = spa->spa_root_vdev;
1726 	vdev_t *vd, *pvd, *cvd, *tvd;
1727 	boolean_t unspare = B_FALSE;
1728 	uint64_t unspare_guid;
1729 
1730 	txg = spa_vdev_enter(spa);
1731 
1732 	vd = vdev_lookup_by_guid(rvd, guid);
1733 
1734 	if (vd == NULL)
1735 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
1736 
1737 	if (!vd->vdev_ops->vdev_op_leaf)
1738 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1739 
1740 	pvd = vd->vdev_parent;
1741 
1742 	/*
1743 	 * If replace_done is specified, only remove this device if it's
1744 	 * the first child of a replacing vdev.  For the 'spare' vdev, either
1745 	 * disk can be removed.
1746 	 */
1747 	if (replace_done) {
1748 		if (pvd->vdev_ops == &vdev_replacing_ops) {
1749 			if (vd->vdev_id != 0)
1750 				return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1751 		} else if (pvd->vdev_ops != &vdev_spare_ops) {
1752 			return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1753 		}
1754 	}
1755 
1756 	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
1757 	    spa_version(spa) >= ZFS_VERSION_SPARES);
1758 
1759 	/*
1760 	 * Only mirror, replacing, and spare vdevs support detach.
1761 	 */
1762 	if (pvd->vdev_ops != &vdev_replacing_ops &&
1763 	    pvd->vdev_ops != &vdev_mirror_ops &&
1764 	    pvd->vdev_ops != &vdev_spare_ops)
1765 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1766 
1767 	/*
1768 	 * If there's only one replica, you can't detach it.
1769 	 */
1770 	if (pvd->vdev_children <= 1)
1771 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
1772 
1773 	/*
1774 	 * If all siblings have non-empty DTLs, this device may have the only
1775 	 * valid copy of the data, which means we cannot safely detach it.
1776 	 *
1777 	 * XXX -- as in the vdev_offline() case, we really want a more
1778 	 * precise DTL check.
1779 	 */
1780 	for (c = 0; c < pvd->vdev_children; c++) {
1781 		uint64_t dirty;
1782 
1783 		cvd = pvd->vdev_child[c];
1784 		if (cvd == vd)
1785 			continue;
1786 		if (vdev_is_dead(cvd))
1787 			continue;
1788 		mutex_enter(&cvd->vdev_dtl_lock);
1789 		dirty = cvd->vdev_dtl_map.sm_space |
1790 		    cvd->vdev_dtl_scrub.sm_space;
1791 		mutex_exit(&cvd->vdev_dtl_lock);
1792 		if (!dirty)
1793 			break;
1794 	}
1795 
1796 	/*
1797 	 * If we are a replacing or spare vdev, then we can always detach the
1798 	 * latter child, as that is how one cancels the operation.
1799 	 */
1800 	if ((pvd->vdev_ops == &vdev_mirror_ops || vd->vdev_id != 1) &&
1801 	    c == pvd->vdev_children)
1802 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
1803 
1804 	/*
1805 	 * If we are detaching the original disk from a spare, then it implies
1806 	 * that the spare should become a real disk, and be removed from the
1807 	 * active spare list for the pool.
1808 	 */
1809 	if (pvd->vdev_ops == &vdev_spare_ops &&
1810 	    vd->vdev_id == 0)
1811 		unspare = B_TRUE;
1812 
1813 	/*
1814 	 * Erase the disk labels so the disk can be used for other things.
1815 	 * This must be done after all other error cases are handled,
1816 	 * but before we disembowel vd (so we can still do I/O to it).
1817 	 * But if we can't do it, don't treat the error as fatal --
1818 	 * it may be that the unwritability of the disk is the reason
1819 	 * it's being detached!
1820 	 */
1821 	error = vdev_label_init(vd, 0, B_FALSE);
1822 	if (error)
1823 		dprintf("unable to erase labels on %s\n", vdev_description(vd));
1824 
1825 	/*
1826 	 * Remove vd from its parent and compact the parent's children.
1827 	 */
1828 	vdev_remove_child(pvd, vd);
1829 	vdev_compact_children(pvd);
1830 
1831 	/*
1832 	 * Remember one of the remaining children so we can get tvd below.
1833 	 */
1834 	cvd = pvd->vdev_child[0];
1835 
1836 	/*
1837 	 * If we need to remove the remaining child from the list of hot spares,
1838 	 * do it now, marking the vdev as no longer a spare in the process.  We
1839 	 * must do this before vdev_remove_parent(), because that can change the
1840 	 * GUID if it creates a new toplevel GUID.
1841 	 */
1842 	if (unspare) {
1843 		ASSERT(cvd->vdev_isspare);
1844 		spa_spare_remove(cvd->vdev_guid);
1845 		cvd->vdev_isspare = B_FALSE;
1846 		unspare_guid = cvd->vdev_guid;
1847 	}
1848 
1849 	/*
1850 	 * If the parent mirror/replacing vdev only has one child,
1851 	 * the parent is no longer needed.  Remove it from the tree.
1852 	 */
1853 	if (pvd->vdev_children == 1)
1854 		vdev_remove_parent(cvd);
1855 
1856 	/*
1857 	 * We don't set tvd until now because the parent we just removed
1858 	 * may have been the previous top-level vdev.
1859 	 */
1860 	tvd = cvd->vdev_top;
1861 	ASSERT(tvd->vdev_parent == rvd);
1862 
1863 	/*
1864 	 * Reopen this top-level vdev to reassess health after detach.
1865 	 */
1866 	vdev_reopen(tvd);
1867 
1868 	/*
1869 	 * If the device we just detached was smaller than the others,
1870 	 * it may be possible to add metaslabs (i.e. grow the pool).
1871 	 * vdev_metaslab_init() can't fail because the existing metaslabs
1872 	 * are already in core, so there's nothing to read from disk.
1873 	 */
1874 	VERIFY(vdev_metaslab_init(tvd, txg) == 0);
1875 
1876 	vdev_config_dirty(tvd);
1877 
1878 	/*
1879 	 * Mark vd's DTL as dirty in this txg.
1880 	 * vdev_dtl_sync() will see that vd->vdev_detached is set
1881 	 * and free vd's DTL object in syncing context.
1882 	 * But first make sure we're not on any *other* txg's DTL list,
1883 	 * to prevent vd from being accessed after it's freed.
1884 	 */
1885 	for (t = 0; t < TXG_SIZE; t++)
1886 		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
1887 	vd->vdev_detached = B_TRUE;
1888 	vdev_dirty(tvd, VDD_DTL, vd, txg);
1889 
1890 	dprintf("detached %s in txg %llu\n", vd->vdev_path, txg);
1891 
1892 	error = spa_vdev_exit(spa, vd, txg, 0);
1893 
1894 	/*
1895 	 * If we are supposed to remove the given vdev from the list of spares,
1896 	 * iterate over all pools in the system and replace it if it's present.
1897 	 */
1898 	if (unspare) {
1899 		spa = NULL;
1900 		mutex_enter(&spa_namespace_lock);
1901 		while ((spa = spa_next(spa)) != NULL) {
1902 			if (spa->spa_state != POOL_STATE_ACTIVE)
1903 				continue;
1904 
1905 			(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
1906 		}
1907 		mutex_exit(&spa_namespace_lock);
1908 	}
1909 
1910 	return (error);
1911 }
1912 
1913 /*
1914  * Remove a device from the pool.  Currently, this supports removing only hot
1915  * spares.
1916  */
1917 int
1918 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
1919 {
1920 	vdev_t *vd;
1921 	nvlist_t **spares, *nv, **newspares;
1922 	uint_t i, j, nspares;
1923 	int ret = 0;
1924 
1925 	spa_config_enter(spa, RW_WRITER, FTAG);
1926 
1927 	vd = spa_lookup_by_guid(spa, guid);
1928 
1929 	nv = NULL;
1930 	if (spa->spa_spares != NULL &&
1931 	    nvlist_lookup_nvlist_array(spa->spa_sparelist, ZPOOL_CONFIG_SPARES,
1932 	    &spares, &nspares) == 0) {
1933 		for (i = 0; i < nspares; i++) {
1934 			uint64_t theguid;
1935 
1936 			VERIFY(nvlist_lookup_uint64(spares[i],
1937 			    ZPOOL_CONFIG_GUID, &theguid) == 0);
1938 			if (theguid == guid) {
1939 				nv = spares[i];
1940 				break;
1941 			}
1942 		}
1943 	}
1944 
1945 	/*
1946 	 * We only support removing a hot spare, and only if it's not currently
1947 	 * in use in this pool.
1948 	 */
1949 	if (nv == NULL && vd == NULL) {
1950 		ret = ENOENT;
1951 		goto out;
1952 	}
1953 
1954 	if (nv == NULL && vd != NULL) {
1955 		ret = ENOTSUP;
1956 		goto out;
1957 	}
1958 
1959 	if (!unspare && nv != NULL && vd != NULL) {
1960 		ret = EBUSY;
1961 		goto out;
1962 	}
1963 
1964 	if (nspares == 1) {
1965 		newspares = NULL;
1966 	} else {
1967 		newspares = kmem_alloc((nspares - 1) * sizeof (void *),
1968 		    KM_SLEEP);
1969 		for (i = 0, j = 0; i < nspares; i++) {
1970 			if (spares[i] != nv)
1971 				VERIFY(nvlist_dup(spares[i],
1972 				    &newspares[j++], KM_SLEEP) == 0);
1973 		}
1974 	}
1975 
1976 	VERIFY(nvlist_remove(spa->spa_sparelist, ZPOOL_CONFIG_SPARES,
1977 	    DATA_TYPE_NVLIST_ARRAY) == 0);
1978 	VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist, ZPOOL_CONFIG_SPARES,
1979 	    newspares, nspares - 1) == 0);
1980 	for (i = 0; i < nspares - 1; i++)
1981 		nvlist_free(newspares[i]);
1982 	kmem_free(newspares, (nspares - 1) * sizeof (void *));
1983 	spa_load_spares(spa);
1984 	spa->spa_sync_spares = B_TRUE;
1985 
1986 out:
1987 	spa_config_exit(spa, FTAG);
1988 
1989 	return (ret);
1990 }
1991 
1992 /*
1993  * Find any device that's done replacing, so we can detach it.
1994  */
1995 static vdev_t *
1996 spa_vdev_replace_done_hunt(vdev_t *vd)
1997 {
1998 	vdev_t *newvd, *oldvd;
1999 	int c;
2000 
2001 	for (c = 0; c < vd->vdev_children; c++) {
2002 		oldvd = spa_vdev_replace_done_hunt(vd->vdev_child[c]);
2003 		if (oldvd != NULL)
2004 			return (oldvd);
2005 	}
2006 
2007 	if (vd->vdev_ops == &vdev_replacing_ops && vd->vdev_children == 2) {
2008 		oldvd = vd->vdev_child[0];
2009 		newvd = vd->vdev_child[1];
2010 
2011 		mutex_enter(&newvd->vdev_dtl_lock);
2012 		if (newvd->vdev_dtl_map.sm_space == 0 &&
2013 		    newvd->vdev_dtl_scrub.sm_space == 0) {
2014 			mutex_exit(&newvd->vdev_dtl_lock);
2015 			return (oldvd);
2016 		}
2017 		mutex_exit(&newvd->vdev_dtl_lock);
2018 	}
2019 
2020 	return (NULL);
2021 }
2022 
2023 static void
2024 spa_vdev_replace_done(spa_t *spa)
2025 {
2026 	vdev_t *vd;
2027 	vdev_t *pvd;
2028 	uint64_t guid;
2029 	uint64_t pguid = 0;
2030 
2031 	spa_config_enter(spa, RW_READER, FTAG);
2032 
2033 	while ((vd = spa_vdev_replace_done_hunt(spa->spa_root_vdev)) != NULL) {
2034 		guid = vd->vdev_guid;
2035 		/*
2036 		 * If we have just finished replacing a hot spared device, then
2037 		 * we need to detach the parent's first child (the original hot
2038 		 * spare) as well.
2039 		 */
2040 		pvd = vd->vdev_parent;
2041 		if (pvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2042 		    pvd->vdev_id == 0) {
2043 			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
2044 			ASSERT(pvd->vdev_parent->vdev_children == 2);
2045 			pguid = pvd->vdev_parent->vdev_child[1]->vdev_guid;
2046 		}
2047 		spa_config_exit(spa, FTAG);
2048 		if (spa_vdev_detach(spa, guid, B_TRUE) != 0)
2049 			return;
2050 		if (pguid != 0 && spa_vdev_detach(spa, pguid, B_TRUE) != 0)
2051 			return;
2052 		spa_config_enter(spa, RW_READER, FTAG);
2053 	}
2054 
2055 	spa_config_exit(spa, FTAG);
2056 }
2057 
2058 /*
2059  * Update the stored path for this vdev.  Dirty the vdev configuration, relying
2060  * on spa_vdev_enter/exit() to synchronize the labels and cache.
2061  */
2062 int
2063 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
2064 {
2065 	vdev_t *rvd, *vd;
2066 	uint64_t txg;
2067 
2068 	rvd = spa->spa_root_vdev;
2069 
2070 	txg = spa_vdev_enter(spa);
2071 
2072 	if ((vd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
2073 		/*
2074 		 * Determine if this is a reference to a hot spare.  In that
2075 		 * case, update the path as stored in the spare list.
2076 		 */
2077 		nvlist_t **spares;
2078 		uint_t i, nspares;
2079 		if (spa->spa_sparelist != NULL) {
2080 			VERIFY(nvlist_lookup_nvlist_array(spa->spa_sparelist,
2081 			    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
2082 			for (i = 0; i < nspares; i++) {
2083 				uint64_t theguid;
2084 				VERIFY(nvlist_lookup_uint64(spares[i],
2085 				    ZPOOL_CONFIG_GUID, &theguid) == 0);
2086 				if (theguid == guid)
2087 					break;
2088 			}
2089 
2090 			if (i == nspares)
2091 				return (spa_vdev_exit(spa, NULL, txg, ENOENT));
2092 
2093 			VERIFY(nvlist_add_string(spares[i],
2094 			    ZPOOL_CONFIG_PATH, newpath) == 0);
2095 			spa_load_spares(spa);
2096 			spa->spa_sync_spares = B_TRUE;
2097 			return (spa_vdev_exit(spa, NULL, txg, 0));
2098 		} else {
2099 			return (spa_vdev_exit(spa, NULL, txg, ENOENT));
2100 		}
2101 	}
2102 
2103 	if (!vd->vdev_ops->vdev_op_leaf)
2104 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
2105 
2106 	spa_strfree(vd->vdev_path);
2107 	vd->vdev_path = spa_strdup(newpath);
2108 
2109 	vdev_config_dirty(vd->vdev_top);
2110 
2111 	return (spa_vdev_exit(spa, NULL, txg, 0));
2112 }
2113 
2114 /*
2115  * ==========================================================================
2116  * SPA Scrubbing
2117  * ==========================================================================
2118  */
2119 
2120 void
2121 spa_scrub_throttle(spa_t *spa, int direction)
2122 {
2123 	mutex_enter(&spa->spa_scrub_lock);
2124 	spa->spa_scrub_throttled += direction;
2125 	ASSERT(spa->spa_scrub_throttled >= 0);
2126 	if (spa->spa_scrub_throttled == 0)
2127 		cv_broadcast(&spa->spa_scrub_io_cv);
2128 	mutex_exit(&spa->spa_scrub_lock);
2129 }
2130 
2131 static void
2132 spa_scrub_io_done(zio_t *zio)
2133 {
2134 	spa_t *spa = zio->io_spa;
2135 
2136 	zio_data_buf_free(zio->io_data, zio->io_size);
2137 
2138 	mutex_enter(&spa->spa_scrub_lock);
2139 	if (zio->io_error && !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
2140 		vdev_t *vd = zio->io_vd ? zio->io_vd : spa->spa_root_vdev;
2141 		spa->spa_scrub_errors++;
2142 		mutex_enter(&vd->vdev_stat_lock);
2143 		vd->vdev_stat.vs_scrub_errors++;
2144 		mutex_exit(&vd->vdev_stat_lock);
2145 	}
2146 	if (--spa->spa_scrub_inflight == 0) {
2147 		cv_broadcast(&spa->spa_scrub_io_cv);
2148 		ASSERT(spa->spa_scrub_throttled == 0);
2149 	}
2150 	mutex_exit(&spa->spa_scrub_lock);
2151 }
2152 
2153 static void
2154 spa_scrub_io_start(spa_t *spa, blkptr_t *bp, int priority, int flags,
2155     zbookmark_t *zb)
2156 {
2157 	size_t size = BP_GET_LSIZE(bp);
2158 	void *data = zio_data_buf_alloc(size);
2159 
2160 	mutex_enter(&spa->spa_scrub_lock);
2161 	spa->spa_scrub_inflight++;
2162 	mutex_exit(&spa->spa_scrub_lock);
2163 
2164 	if (zb->zb_level == -1 && BP_GET_TYPE(bp) != DMU_OT_OBJSET)
2165 		flags |= ZIO_FLAG_SPECULATIVE;	/* intent log block */
2166 
2167 	flags |= ZIO_FLAG_SCRUB_THREAD | ZIO_FLAG_CANFAIL;
2168 
2169 	zio_nowait(zio_read(NULL, spa, bp, data, size,
2170 	    spa_scrub_io_done, NULL, priority, flags, zb));
2171 }
2172 
2173 /* ARGSUSED */
2174 static int
2175 spa_scrub_cb(traverse_blk_cache_t *bc, spa_t *spa, void *a)
2176 {
2177 	blkptr_t *bp = &bc->bc_blkptr;
2178 	vdev_t *vd = spa->spa_root_vdev;
2179 	dva_t *dva = bp->blk_dva;
2180 	int needs_resilver = B_FALSE;
2181 	int d;
2182 
2183 	if (bc->bc_errno) {
2184 		/*
2185 		 * We can't scrub this block, but we can continue to scrub
2186 		 * the rest of the pool.  Note the error and move along.
2187 		 */
2188 		mutex_enter(&spa->spa_scrub_lock);
2189 		spa->spa_scrub_errors++;
2190 		mutex_exit(&spa->spa_scrub_lock);
2191 
2192 		mutex_enter(&vd->vdev_stat_lock);
2193 		vd->vdev_stat.vs_scrub_errors++;
2194 		mutex_exit(&vd->vdev_stat_lock);
2195 
2196 		return (ERESTART);
2197 	}
2198 
2199 	ASSERT(bp->blk_birth < spa->spa_scrub_maxtxg);
2200 
2201 	for (d = 0; d < BP_GET_NDVAS(bp); d++) {
2202 		vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]));
2203 
2204 		ASSERT(vd != NULL);
2205 
2206 		/*
2207 		 * Keep track of how much data we've examined so that
2208 		 * zpool(1M) status can make useful progress reports.
2209 		 */
2210 		mutex_enter(&vd->vdev_stat_lock);
2211 		vd->vdev_stat.vs_scrub_examined += DVA_GET_ASIZE(&dva[d]);
2212 		mutex_exit(&vd->vdev_stat_lock);
2213 
2214 		if (spa->spa_scrub_type == POOL_SCRUB_RESILVER) {
2215 			if (DVA_GET_GANG(&dva[d])) {
2216 				/*
2217 				 * Gang members may be spread across multiple
2218 				 * vdevs, so the best we can do is look at the
2219 				 * pool-wide DTL.
2220 				 * XXX -- it would be better to change our
2221 				 * allocation policy to ensure that this can't
2222 				 * happen.
2223 				 */
2224 				vd = spa->spa_root_vdev;
2225 			}
2226 			if (vdev_dtl_contains(&vd->vdev_dtl_map,
2227 			    bp->blk_birth, 1))
2228 				needs_resilver = B_TRUE;
2229 		}
2230 	}
2231 
2232 	if (spa->spa_scrub_type == POOL_SCRUB_EVERYTHING)
2233 		spa_scrub_io_start(spa, bp, ZIO_PRIORITY_SCRUB,
2234 		    ZIO_FLAG_SCRUB, &bc->bc_bookmark);
2235 	else if (needs_resilver)
2236 		spa_scrub_io_start(spa, bp, ZIO_PRIORITY_RESILVER,
2237 		    ZIO_FLAG_RESILVER, &bc->bc_bookmark);
2238 
2239 	return (0);
2240 }
2241 
2242 static void
2243 spa_scrub_thread(spa_t *spa)
2244 {
2245 	callb_cpr_t cprinfo;
2246 	traverse_handle_t *th = spa->spa_scrub_th;
2247 	vdev_t *rvd = spa->spa_root_vdev;
2248 	pool_scrub_type_t scrub_type = spa->spa_scrub_type;
2249 	int error = 0;
2250 	boolean_t complete;
2251 
2252 	CALLB_CPR_INIT(&cprinfo, &spa->spa_scrub_lock, callb_generic_cpr, FTAG);
2253 
2254 	/*
2255 	 * If we're restarting due to a snapshot create/delete,
2256 	 * wait for that to complete.
2257 	 */
2258 	txg_wait_synced(spa_get_dsl(spa), 0);
2259 
2260 	dprintf("start %s mintxg=%llu maxtxg=%llu\n",
2261 	    scrub_type == POOL_SCRUB_RESILVER ? "resilver" : "scrub",
2262 	    spa->spa_scrub_mintxg, spa->spa_scrub_maxtxg);
2263 
2264 	spa_config_enter(spa, RW_WRITER, FTAG);
2265 	vdev_reopen(rvd);		/* purge all vdev caches */
2266 	vdev_config_dirty(rvd);		/* rewrite all disk labels */
2267 	vdev_scrub_stat_update(rvd, scrub_type, B_FALSE);
2268 	spa_config_exit(spa, FTAG);
2269 
2270 	mutex_enter(&spa->spa_scrub_lock);
2271 	spa->spa_scrub_errors = 0;
2272 	spa->spa_scrub_active = 1;
2273 	ASSERT(spa->spa_scrub_inflight == 0);
2274 	ASSERT(spa->spa_scrub_throttled == 0);
2275 
2276 	while (!spa->spa_scrub_stop) {
2277 		CALLB_CPR_SAFE_BEGIN(&cprinfo);
2278 		while (spa->spa_scrub_suspended) {
2279 			spa->spa_scrub_active = 0;
2280 			cv_broadcast(&spa->spa_scrub_cv);
2281 			cv_wait(&spa->spa_scrub_cv, &spa->spa_scrub_lock);
2282 			spa->spa_scrub_active = 1;
2283 		}
2284 		CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_scrub_lock);
2285 
2286 		if (spa->spa_scrub_restart_txg != 0)
2287 			break;
2288 
2289 		mutex_exit(&spa->spa_scrub_lock);
2290 		error = traverse_more(th);
2291 		mutex_enter(&spa->spa_scrub_lock);
2292 		if (error != EAGAIN)
2293 			break;
2294 
2295 		while (spa->spa_scrub_throttled > 0)
2296 			cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2297 	}
2298 
2299 	while (spa->spa_scrub_inflight)
2300 		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2301 
2302 	spa->spa_scrub_active = 0;
2303 	cv_broadcast(&spa->spa_scrub_cv);
2304 
2305 	mutex_exit(&spa->spa_scrub_lock);
2306 
2307 	spa_config_enter(spa, RW_WRITER, FTAG);
2308 
2309 	mutex_enter(&spa->spa_scrub_lock);
2310 
2311 	/*
2312 	 * Note: we check spa_scrub_restart_txg under both spa_scrub_lock
2313 	 * AND the spa config lock to synchronize with any config changes
2314 	 * that revise the DTLs under spa_vdev_enter() / spa_vdev_exit().
2315 	 */
2316 	if (spa->spa_scrub_restart_txg != 0)
2317 		error = ERESTART;
2318 
2319 	if (spa->spa_scrub_stop)
2320 		error = EINTR;
2321 
2322 	/*
2323 	 * Even if there were uncorrectable errors, we consider the scrub
2324 	 * completed.  The downside is that if there is a transient error during
2325 	 * a resilver, we won't resilver the data properly to the target.  But
2326 	 * if the damage is permanent (more likely) we will resilver forever,
2327 	 * which isn't really acceptable.  Since there is enough information for
2328 	 * the user to know what has failed and why, this seems like a more
2329 	 * tractable approach.
2330 	 */
2331 	complete = (error == 0);
2332 
2333 	dprintf("end %s to maxtxg=%llu %s, traverse=%d, %llu errors, stop=%u\n",
2334 	    scrub_type == POOL_SCRUB_RESILVER ? "resilver" : "scrub",
2335 	    spa->spa_scrub_maxtxg, complete ? "done" : "FAILED",
2336 	    error, spa->spa_scrub_errors, spa->spa_scrub_stop);
2337 
2338 	mutex_exit(&spa->spa_scrub_lock);
2339 
2340 	/*
2341 	 * If the scrub/resilver completed, update all DTLs to reflect this.
2342 	 * Whether it succeeded or not, vacate all temporary scrub DTLs.
2343 	 */
2344 	vdev_dtl_reassess(rvd, spa_last_synced_txg(spa) + 1,
2345 	    complete ? spa->spa_scrub_maxtxg : 0, B_TRUE);
2346 	vdev_scrub_stat_update(rvd, POOL_SCRUB_NONE, complete);
2347 	spa_errlog_rotate(spa);
2348 
2349 	spa_config_exit(spa, FTAG);
2350 
2351 	mutex_enter(&spa->spa_scrub_lock);
2352 
2353 	/*
2354 	 * We may have finished replacing a device.
2355 	 * Let the async thread assess this and handle the detach.
2356 	 */
2357 	spa_async_request(spa, SPA_ASYNC_REPLACE_DONE);
2358 
2359 	/*
2360 	 * If we were told to restart, our final act is to start a new scrub.
2361 	 */
2362 	if (error == ERESTART)
2363 		spa_async_request(spa, scrub_type == POOL_SCRUB_RESILVER ?
2364 		    SPA_ASYNC_RESILVER : SPA_ASYNC_SCRUB);
2365 
2366 	spa->spa_scrub_type = POOL_SCRUB_NONE;
2367 	spa->spa_scrub_active = 0;
2368 	spa->spa_scrub_thread = NULL;
2369 	cv_broadcast(&spa->spa_scrub_cv);
2370 	CALLB_CPR_EXIT(&cprinfo);	/* drops &spa->spa_scrub_lock */
2371 	thread_exit();
2372 }
2373 
2374 void
2375 spa_scrub_suspend(spa_t *spa)
2376 {
2377 	mutex_enter(&spa->spa_scrub_lock);
2378 	spa->spa_scrub_suspended++;
2379 	while (spa->spa_scrub_active) {
2380 		cv_broadcast(&spa->spa_scrub_cv);
2381 		cv_wait(&spa->spa_scrub_cv, &spa->spa_scrub_lock);
2382 	}
2383 	while (spa->spa_scrub_inflight)
2384 		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2385 	mutex_exit(&spa->spa_scrub_lock);
2386 }
2387 
2388 void
2389 spa_scrub_resume(spa_t *spa)
2390 {
2391 	mutex_enter(&spa->spa_scrub_lock);
2392 	ASSERT(spa->spa_scrub_suspended != 0);
2393 	if (--spa->spa_scrub_suspended == 0)
2394 		cv_broadcast(&spa->spa_scrub_cv);
2395 	mutex_exit(&spa->spa_scrub_lock);
2396 }
2397 
2398 void
2399 spa_scrub_restart(spa_t *spa, uint64_t txg)
2400 {
2401 	/*
2402 	 * Something happened (e.g. snapshot create/delete) that means
2403 	 * we must restart any in-progress scrubs.  The itinerary will
2404 	 * fix this properly.
2405 	 */
2406 	mutex_enter(&spa->spa_scrub_lock);
2407 	spa->spa_scrub_restart_txg = txg;
2408 	mutex_exit(&spa->spa_scrub_lock);
2409 }
2410 
2411 int
2412 spa_scrub(spa_t *spa, pool_scrub_type_t type, boolean_t force)
2413 {
2414 	space_seg_t *ss;
2415 	uint64_t mintxg, maxtxg;
2416 	vdev_t *rvd = spa->spa_root_vdev;
2417 
2418 	if ((uint_t)type >= POOL_SCRUB_TYPES)
2419 		return (ENOTSUP);
2420 
2421 	mutex_enter(&spa->spa_scrub_lock);
2422 
2423 	/*
2424 	 * If there's a scrub or resilver already in progress, stop it.
2425 	 */
2426 	while (spa->spa_scrub_thread != NULL) {
2427 		/*
2428 		 * Don't stop a resilver unless forced.
2429 		 */
2430 		if (spa->spa_scrub_type == POOL_SCRUB_RESILVER && !force) {
2431 			mutex_exit(&spa->spa_scrub_lock);
2432 			return (EBUSY);
2433 		}
2434 		spa->spa_scrub_stop = 1;
2435 		cv_broadcast(&spa->spa_scrub_cv);
2436 		cv_wait(&spa->spa_scrub_cv, &spa->spa_scrub_lock);
2437 	}
2438 
2439 	/*
2440 	 * Terminate the previous traverse.
2441 	 */
2442 	if (spa->spa_scrub_th != NULL) {
2443 		traverse_fini(spa->spa_scrub_th);
2444 		spa->spa_scrub_th = NULL;
2445 	}
2446 
2447 	if (rvd == NULL) {
2448 		ASSERT(spa->spa_scrub_stop == 0);
2449 		ASSERT(spa->spa_scrub_type == type);
2450 		ASSERT(spa->spa_scrub_restart_txg == 0);
2451 		mutex_exit(&spa->spa_scrub_lock);
2452 		return (0);
2453 	}
2454 
2455 	mintxg = TXG_INITIAL - 1;
2456 	maxtxg = spa_last_synced_txg(spa) + 1;
2457 
2458 	mutex_enter(&rvd->vdev_dtl_lock);
2459 
2460 	if (rvd->vdev_dtl_map.sm_space == 0) {
2461 		/*
2462 		 * The pool-wide DTL is empty.
2463 		 * If this is a resilver, there's nothing to do except
2464 		 * check whether any in-progress replacements have completed.
2465 		 */
2466 		if (type == POOL_SCRUB_RESILVER) {
2467 			type = POOL_SCRUB_NONE;
2468 			spa_async_request(spa, SPA_ASYNC_REPLACE_DONE);
2469 		}
2470 	} else {
2471 		/*
2472 		 * The pool-wide DTL is non-empty.
2473 		 * If this is a normal scrub, upgrade to a resilver instead.
2474 		 */
2475 		if (type == POOL_SCRUB_EVERYTHING)
2476 			type = POOL_SCRUB_RESILVER;
2477 	}
2478 
2479 	if (type == POOL_SCRUB_RESILVER) {
2480 		/*
2481 		 * Determine the resilvering boundaries.
2482 		 *
2483 		 * Note: (mintxg, maxtxg) is an open interval,
2484 		 * i.e. mintxg and maxtxg themselves are not included.
2485 		 *
2486 		 * Note: for maxtxg, we MIN with spa_last_synced_txg(spa) + 1
2487 		 * so we don't claim to resilver a txg that's still changing.
2488 		 */
2489 		ss = avl_first(&rvd->vdev_dtl_map.sm_root);
2490 		mintxg = ss->ss_start - 1;
2491 		ss = avl_last(&rvd->vdev_dtl_map.sm_root);
2492 		maxtxg = MIN(ss->ss_end, maxtxg);
2493 	}
2494 
2495 	mutex_exit(&rvd->vdev_dtl_lock);
2496 
2497 	spa->spa_scrub_stop = 0;
2498 	spa->spa_scrub_type = type;
2499 	spa->spa_scrub_restart_txg = 0;
2500 
2501 	if (type != POOL_SCRUB_NONE) {
2502 		spa->spa_scrub_mintxg = mintxg;
2503 		spa->spa_scrub_maxtxg = maxtxg;
2504 		spa->spa_scrub_th = traverse_init(spa, spa_scrub_cb, NULL,
2505 		    ADVANCE_PRE | ADVANCE_PRUNE | ADVANCE_ZIL,
2506 		    ZIO_FLAG_CANFAIL);
2507 		traverse_add_pool(spa->spa_scrub_th, mintxg, maxtxg);
2508 		spa->spa_scrub_thread = thread_create(NULL, 0,
2509 		    spa_scrub_thread, spa, 0, &p0, TS_RUN, minclsyspri);
2510 	}
2511 
2512 	mutex_exit(&spa->spa_scrub_lock);
2513 
2514 	return (0);
2515 }
2516 
2517 /*
2518  * ==========================================================================
2519  * SPA async task processing
2520  * ==========================================================================
2521  */
2522 
2523 static void
2524 spa_async_reopen(spa_t *spa)
2525 {
2526 	vdev_t *rvd = spa->spa_root_vdev;
2527 	vdev_t *tvd;
2528 	int c;
2529 
2530 	spa_config_enter(spa, RW_WRITER, FTAG);
2531 
2532 	for (c = 0; c < rvd->vdev_children; c++) {
2533 		tvd = rvd->vdev_child[c];
2534 		if (tvd->vdev_reopen_wanted) {
2535 			tvd->vdev_reopen_wanted = 0;
2536 			vdev_reopen(tvd);
2537 		}
2538 	}
2539 
2540 	spa_config_exit(spa, FTAG);
2541 }
2542 
2543 static void
2544 spa_async_thread(spa_t *spa)
2545 {
2546 	int tasks;
2547 
2548 	ASSERT(spa->spa_sync_on);
2549 
2550 	mutex_enter(&spa->spa_async_lock);
2551 	tasks = spa->spa_async_tasks;
2552 	spa->spa_async_tasks = 0;
2553 	mutex_exit(&spa->spa_async_lock);
2554 
2555 	/*
2556 	 * See if the config needs to be updated.
2557 	 */
2558 	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
2559 		mutex_enter(&spa_namespace_lock);
2560 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
2561 		mutex_exit(&spa_namespace_lock);
2562 	}
2563 
2564 	/*
2565 	 * See if any devices need to be reopened.
2566 	 */
2567 	if (tasks & SPA_ASYNC_REOPEN)
2568 		spa_async_reopen(spa);
2569 
2570 	/*
2571 	 * If any devices are done replacing, detach them.
2572 	 */
2573 	if (tasks & SPA_ASYNC_REPLACE_DONE)
2574 		spa_vdev_replace_done(spa);
2575 
2576 	/*
2577 	 * Kick off a scrub.
2578 	 */
2579 	if (tasks & SPA_ASYNC_SCRUB)
2580 		VERIFY(spa_scrub(spa, POOL_SCRUB_EVERYTHING, B_TRUE) == 0);
2581 
2582 	/*
2583 	 * Kick off a resilver.
2584 	 */
2585 	if (tasks & SPA_ASYNC_RESILVER)
2586 		VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
2587 
2588 	/*
2589 	 * Let the world know that we're done.
2590 	 */
2591 	mutex_enter(&spa->spa_async_lock);
2592 	spa->spa_async_thread = NULL;
2593 	cv_broadcast(&spa->spa_async_cv);
2594 	mutex_exit(&spa->spa_async_lock);
2595 	thread_exit();
2596 }
2597 
2598 void
2599 spa_async_suspend(spa_t *spa)
2600 {
2601 	mutex_enter(&spa->spa_async_lock);
2602 	spa->spa_async_suspended++;
2603 	while (spa->spa_async_thread != NULL)
2604 		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
2605 	mutex_exit(&spa->spa_async_lock);
2606 }
2607 
2608 void
2609 spa_async_resume(spa_t *spa)
2610 {
2611 	mutex_enter(&spa->spa_async_lock);
2612 	ASSERT(spa->spa_async_suspended != 0);
2613 	spa->spa_async_suspended--;
2614 	mutex_exit(&spa->spa_async_lock);
2615 }
2616 
2617 static void
2618 spa_async_dispatch(spa_t *spa)
2619 {
2620 	mutex_enter(&spa->spa_async_lock);
2621 	if (spa->spa_async_tasks && !spa->spa_async_suspended &&
2622 	    spa->spa_async_thread == NULL &&
2623 	    rootdir != NULL && !vn_is_readonly(rootdir))
2624 		spa->spa_async_thread = thread_create(NULL, 0,
2625 		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
2626 	mutex_exit(&spa->spa_async_lock);
2627 }
2628 
2629 void
2630 spa_async_request(spa_t *spa, int task)
2631 {
2632 	mutex_enter(&spa->spa_async_lock);
2633 	spa->spa_async_tasks |= task;
2634 	mutex_exit(&spa->spa_async_lock);
2635 }
2636 
2637 /*
2638  * ==========================================================================
2639  * SPA syncing routines
2640  * ==========================================================================
2641  */
2642 
2643 static void
2644 spa_sync_deferred_frees(spa_t *spa, uint64_t txg)
2645 {
2646 	bplist_t *bpl = &spa->spa_sync_bplist;
2647 	dmu_tx_t *tx;
2648 	blkptr_t blk;
2649 	uint64_t itor = 0;
2650 	zio_t *zio;
2651 	int error;
2652 	uint8_t c = 1;
2653 
2654 	zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CONFIG_HELD);
2655 
2656 	while (bplist_iterate(bpl, &itor, &blk) == 0)
2657 		zio_nowait(zio_free(zio, spa, txg, &blk, NULL, NULL));
2658 
2659 	error = zio_wait(zio);
2660 	ASSERT3U(error, ==, 0);
2661 
2662 	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2663 	bplist_vacate(bpl, tx);
2664 
2665 	/*
2666 	 * Pre-dirty the first block so we sync to convergence faster.
2667 	 * (Usually only the first block is needed.)
2668 	 */
2669 	dmu_write(spa->spa_meta_objset, spa->spa_sync_bplist_obj, 0, 1, &c, tx);
2670 	dmu_tx_commit(tx);
2671 }
2672 
2673 static void
2674 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
2675 {
2676 	char *packed = NULL;
2677 	size_t nvsize = 0;
2678 	dmu_buf_t *db;
2679 
2680 	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
2681 
2682 	packed = kmem_alloc(nvsize, KM_SLEEP);
2683 
2684 	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
2685 	    KM_SLEEP) == 0);
2686 
2687 	dmu_write(spa->spa_meta_objset, obj, 0, nvsize, packed, tx);
2688 
2689 	kmem_free(packed, nvsize);
2690 
2691 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
2692 	dmu_buf_will_dirty(db, tx);
2693 	*(uint64_t *)db->db_data = nvsize;
2694 	dmu_buf_rele(db, FTAG);
2695 }
2696 
2697 static void
2698 spa_sync_spares(spa_t *spa, dmu_tx_t *tx)
2699 {
2700 	nvlist_t *nvroot;
2701 	nvlist_t **spares;
2702 	int i;
2703 
2704 	if (!spa->spa_sync_spares)
2705 		return;
2706 
2707 	/*
2708 	 * Update the MOS nvlist describing the list of available spares.
2709 	 * spa_validate_spares() will have already made sure this nvlist is
2710 	 * valid and the vdevs are labelled appropriately.
2711 	 */
2712 	if (spa->spa_spares_object == 0) {
2713 		spa->spa_spares_object = dmu_object_alloc(spa->spa_meta_objset,
2714 		    DMU_OT_PACKED_NVLIST, 1 << 14,
2715 		    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
2716 		VERIFY(zap_update(spa->spa_meta_objset,
2717 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SPARES,
2718 		    sizeof (uint64_t), 1, &spa->spa_spares_object, tx) == 0);
2719 	}
2720 
2721 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
2722 	if (spa->spa_nspares == 0) {
2723 		VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
2724 		    NULL, 0) == 0);
2725 	} else {
2726 		spares = kmem_alloc(spa->spa_nspares * sizeof (void *),
2727 		    KM_SLEEP);
2728 		for (i = 0; i < spa->spa_nspares; i++)
2729 			spares[i] = vdev_config_generate(spa,
2730 			    spa->spa_spares[i], B_FALSE, B_TRUE);
2731 		VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
2732 		    spares, spa->spa_nspares) == 0);
2733 		for (i = 0; i < spa->spa_nspares; i++)
2734 			nvlist_free(spares[i]);
2735 		kmem_free(spares, spa->spa_nspares * sizeof (void *));
2736 	}
2737 
2738 	spa_sync_nvlist(spa, spa->spa_spares_object, nvroot, tx);
2739 	nvlist_free(nvroot);
2740 
2741 	spa->spa_sync_spares = B_FALSE;
2742 }
2743 
2744 static void
2745 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
2746 {
2747 	nvlist_t *config;
2748 
2749 	if (list_is_empty(&spa->spa_dirty_list))
2750 		return;
2751 
2752 	config = spa_config_generate(spa, NULL, dmu_tx_get_txg(tx), B_FALSE);
2753 
2754 	if (spa->spa_config_syncing)
2755 		nvlist_free(spa->spa_config_syncing);
2756 	spa->spa_config_syncing = config;
2757 
2758 	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
2759 }
2760 
2761 /*
2762  * Sync the specified transaction group.  New blocks may be dirtied as
2763  * part of the process, so we iterate until it converges.
2764  */
2765 void
2766 spa_sync(spa_t *spa, uint64_t txg)
2767 {
2768 	dsl_pool_t *dp = spa->spa_dsl_pool;
2769 	objset_t *mos = spa->spa_meta_objset;
2770 	bplist_t *bpl = &spa->spa_sync_bplist;
2771 	vdev_t *rvd = spa->spa_root_vdev;
2772 	vdev_t *vd;
2773 	dmu_tx_t *tx;
2774 	int dirty_vdevs;
2775 
2776 	/*
2777 	 * Lock out configuration changes.
2778 	 */
2779 	spa_config_enter(spa, RW_READER, FTAG);
2780 
2781 	spa->spa_syncing_txg = txg;
2782 	spa->spa_sync_pass = 0;
2783 
2784 	VERIFY(0 == bplist_open(bpl, mos, spa->spa_sync_bplist_obj));
2785 
2786 	tx = dmu_tx_create_assigned(dp, txg);
2787 
2788 	/*
2789 	 * If we are upgrading to ZFS_VERSION_RAIDZ_DEFLATE this txg,
2790 	 * set spa_deflate if we have no raid-z vdevs.
2791 	 */
2792 	if (spa->spa_ubsync.ub_version < ZFS_VERSION_RAIDZ_DEFLATE &&
2793 	    spa->spa_uberblock.ub_version >= ZFS_VERSION_RAIDZ_DEFLATE) {
2794 		int i;
2795 
2796 		for (i = 0; i < rvd->vdev_children; i++) {
2797 			vd = rvd->vdev_child[i];
2798 			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
2799 				break;
2800 		}
2801 		if (i == rvd->vdev_children) {
2802 			spa->spa_deflate = TRUE;
2803 			VERIFY(0 == zap_add(spa->spa_meta_objset,
2804 			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
2805 			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
2806 		}
2807 	}
2808 
2809 	/*
2810 	 * If anything has changed in this txg, push the deferred frees
2811 	 * from the previous txg.  If not, leave them alone so that we
2812 	 * don't generate work on an otherwise idle system.
2813 	 */
2814 	if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
2815 	    !txg_list_empty(&dp->dp_dirty_dirs, txg) ||
2816 	    !txg_list_empty(&dp->dp_sync_tasks, txg))
2817 		spa_sync_deferred_frees(spa, txg);
2818 
2819 	/*
2820 	 * Iterate to convergence.
2821 	 */
2822 	do {
2823 		spa->spa_sync_pass++;
2824 
2825 		spa_sync_config_object(spa, tx);
2826 		spa_sync_spares(spa, tx);
2827 		spa_errlog_sync(spa, txg);
2828 		dsl_pool_sync(dp, txg);
2829 
2830 		dirty_vdevs = 0;
2831 		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) {
2832 			vdev_sync(vd, txg);
2833 			dirty_vdevs++;
2834 		}
2835 
2836 		bplist_sync(bpl, tx);
2837 	} while (dirty_vdevs);
2838 
2839 	bplist_close(bpl);
2840 
2841 	dprintf("txg %llu passes %d\n", txg, spa->spa_sync_pass);
2842 
2843 	/*
2844 	 * Rewrite the vdev configuration (which includes the uberblock)
2845 	 * to commit the transaction group.
2846 	 *
2847 	 * If there are any dirty vdevs, sync the uberblock to all vdevs.
2848 	 * Otherwise, pick a random top-level vdev that's known to be
2849 	 * visible in the config cache (see spa_vdev_add() for details).
2850 	 * If the write fails, try the next vdev until we're tried them all.
2851 	 */
2852 	if (!list_is_empty(&spa->spa_dirty_list)) {
2853 		VERIFY(vdev_config_sync(rvd, txg) == 0);
2854 	} else {
2855 		int children = rvd->vdev_children;
2856 		int c0 = spa_get_random(children);
2857 		int c;
2858 
2859 		for (c = 0; c < children; c++) {
2860 			vd = rvd->vdev_child[(c0 + c) % children];
2861 			if (vd->vdev_ms_array == 0)
2862 				continue;
2863 			if (vdev_config_sync(vd, txg) == 0)
2864 				break;
2865 		}
2866 		if (c == children)
2867 			VERIFY(vdev_config_sync(rvd, txg) == 0);
2868 	}
2869 
2870 	dmu_tx_commit(tx);
2871 
2872 	/*
2873 	 * Clear the dirty config list.
2874 	 */
2875 	while ((vd = list_head(&spa->spa_dirty_list)) != NULL)
2876 		vdev_config_clean(vd);
2877 
2878 	/*
2879 	 * Now that the new config has synced transactionally,
2880 	 * let it become visible to the config cache.
2881 	 */
2882 	if (spa->spa_config_syncing != NULL) {
2883 		spa_config_set(spa, spa->spa_config_syncing);
2884 		spa->spa_config_txg = txg;
2885 		spa->spa_config_syncing = NULL;
2886 	}
2887 
2888 	/*
2889 	 * Make a stable copy of the fully synced uberblock.
2890 	 * We use this as the root for pool traversals.
2891 	 */
2892 	spa->spa_traverse_wanted = 1;	/* tells traverse_more() to stop */
2893 
2894 	spa_scrub_suspend(spa);		/* stop scrubbing and finish I/Os */
2895 
2896 	rw_enter(&spa->spa_traverse_lock, RW_WRITER);
2897 	spa->spa_traverse_wanted = 0;
2898 	spa->spa_ubsync = spa->spa_uberblock;
2899 	rw_exit(&spa->spa_traverse_lock);
2900 
2901 	spa_scrub_resume(spa);		/* resume scrub with new ubsync */
2902 
2903 	/*
2904 	 * Clean up the ZIL records for the synced txg.
2905 	 */
2906 	dsl_pool_zil_clean(dp);
2907 
2908 	/*
2909 	 * Update usable space statistics.
2910 	 */
2911 	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
2912 		vdev_sync_done(vd, txg);
2913 
2914 	/*
2915 	 * It had better be the case that we didn't dirty anything
2916 	 * since vdev_config_sync().
2917 	 */
2918 	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
2919 	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
2920 	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
2921 	ASSERT(bpl->bpl_queue == NULL);
2922 
2923 	spa_config_exit(spa, FTAG);
2924 
2925 	/*
2926 	 * If any async tasks have been requested, kick them off.
2927 	 */
2928 	spa_async_dispatch(spa);
2929 }
2930 
2931 /*
2932  * Sync all pools.  We don't want to hold the namespace lock across these
2933  * operations, so we take a reference on the spa_t and drop the lock during the
2934  * sync.
2935  */
2936 void
2937 spa_sync_allpools(void)
2938 {
2939 	spa_t *spa = NULL;
2940 	mutex_enter(&spa_namespace_lock);
2941 	while ((spa = spa_next(spa)) != NULL) {
2942 		if (spa_state(spa) != POOL_STATE_ACTIVE)
2943 			continue;
2944 		spa_open_ref(spa, FTAG);
2945 		mutex_exit(&spa_namespace_lock);
2946 		txg_wait_synced(spa_get_dsl(spa), 0);
2947 		mutex_enter(&spa_namespace_lock);
2948 		spa_close(spa, FTAG);
2949 	}
2950 	mutex_exit(&spa_namespace_lock);
2951 }
2952 
2953 /*
2954  * ==========================================================================
2955  * Miscellaneous routines
2956  * ==========================================================================
2957  */
2958 
2959 /*
2960  * Remove all pools in the system.
2961  */
2962 void
2963 spa_evict_all(void)
2964 {
2965 	spa_t *spa;
2966 
2967 	/*
2968 	 * Remove all cached state.  All pools should be closed now,
2969 	 * so every spa in the AVL tree should be unreferenced.
2970 	 */
2971 	mutex_enter(&spa_namespace_lock);
2972 	while ((spa = spa_next(NULL)) != NULL) {
2973 		/*
2974 		 * Stop async tasks.  The async thread may need to detach
2975 		 * a device that's been replaced, which requires grabbing
2976 		 * spa_namespace_lock, so we must drop it here.
2977 		 */
2978 		spa_open_ref(spa, FTAG);
2979 		mutex_exit(&spa_namespace_lock);
2980 		spa_async_suspend(spa);
2981 		VERIFY(spa_scrub(spa, POOL_SCRUB_NONE, B_TRUE) == 0);
2982 		mutex_enter(&spa_namespace_lock);
2983 		spa_close(spa, FTAG);
2984 
2985 		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
2986 			spa_unload(spa);
2987 			spa_deactivate(spa);
2988 		}
2989 		spa_remove(spa);
2990 	}
2991 	mutex_exit(&spa_namespace_lock);
2992 }
2993 
2994 vdev_t *
2995 spa_lookup_by_guid(spa_t *spa, uint64_t guid)
2996 {
2997 	return (vdev_lookup_by_guid(spa->spa_root_vdev, guid));
2998 }
2999 
3000 void
3001 spa_upgrade(spa_t *spa)
3002 {
3003 	spa_config_enter(spa, RW_WRITER, FTAG);
3004 
3005 	/*
3006 	 * This should only be called for a non-faulted pool, and since a
3007 	 * future version would result in an unopenable pool, this shouldn't be
3008 	 * possible.
3009 	 */
3010 	ASSERT(spa->spa_uberblock.ub_version <= ZFS_VERSION);
3011 
3012 	spa->spa_uberblock.ub_version = ZFS_VERSION;
3013 	vdev_config_dirty(spa->spa_root_vdev);
3014 
3015 	spa_config_exit(spa, FTAG);
3016 
3017 	txg_wait_synced(spa_get_dsl(spa), 0);
3018 }
3019 
3020 boolean_t
3021 spa_has_spare(spa_t *spa, uint64_t guid)
3022 {
3023 	int i;
3024 
3025 	for (i = 0; i < spa->spa_nspares; i++)
3026 		if (spa->spa_spares[i]->vdev_guid == guid)
3027 			return (B_TRUE);
3028 
3029 	return (B_FALSE);
3030 }
3031