1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2013 by Delphix. All rights reserved. 25 * Copyright 2013 Nexenta Systems, Inc. All rights reserved. 26 */ 27 28 /* 29 * SPA: Storage Pool Allocator 30 * 31 * This file contains all the routines used when modifying on-disk SPA state. 32 * This includes opening, importing, destroying, exporting a pool, and syncing a 33 * pool. 34 */ 35 36 #include <sys/zfs_context.h> 37 #include <sys/fm/fs/zfs.h> 38 #include <sys/spa_impl.h> 39 #include <sys/zio.h> 40 #include <sys/zio_checksum.h> 41 #include <sys/dmu.h> 42 #include <sys/dmu_tx.h> 43 #include <sys/zap.h> 44 #include <sys/zil.h> 45 #include <sys/ddt.h> 46 #include <sys/vdev_impl.h> 47 #include <sys/metaslab.h> 48 #include <sys/metaslab_impl.h> 49 #include <sys/uberblock_impl.h> 50 #include <sys/txg.h> 51 #include <sys/avl.h> 52 #include <sys/dmu_traverse.h> 53 #include <sys/dmu_objset.h> 54 #include <sys/unique.h> 55 #include <sys/dsl_pool.h> 56 #include <sys/dsl_dataset.h> 57 #include <sys/dsl_dir.h> 58 #include <sys/dsl_prop.h> 59 #include <sys/dsl_synctask.h> 60 #include <sys/fs/zfs.h> 61 #include <sys/arc.h> 62 #include <sys/callb.h> 63 #include <sys/systeminfo.h> 64 #include <sys/spa_boot.h> 65 #include <sys/zfs_ioctl.h> 66 #include <sys/dsl_scan.h> 67 #include <sys/zfeature.h> 68 #include <sys/dsl_destroy.h> 69 70 #ifdef _KERNEL 71 #include <sys/bootprops.h> 72 #include <sys/callb.h> 73 #include <sys/cpupart.h> 74 #include <sys/pool.h> 75 #include <sys/sysdc.h> 76 #include <sys/zone.h> 77 #endif /* _KERNEL */ 78 79 #include "zfs_prop.h" 80 #include "zfs_comutil.h" 81 82 /* 83 * The interval, in seconds, at which failed configuration cache file writes 84 * should be retried. 85 */ 86 static int zfs_ccw_retry_interval = 300; 87 88 typedef enum zti_modes { 89 ZTI_MODE_FIXED, /* value is # of threads (min 1) */ 90 ZTI_MODE_BATCH, /* cpu-intensive; value is ignored */ 91 ZTI_MODE_NULL, /* don't create a taskq */ 92 ZTI_NMODES 93 } zti_modes_t; 94 95 #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) } 96 #define ZTI_BATCH { ZTI_MODE_BATCH, 0, 1 } 97 #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 } 98 99 #define ZTI_N(n) ZTI_P(n, 1) 100 #define ZTI_ONE ZTI_N(1) 101 102 typedef struct zio_taskq_info { 103 zti_modes_t zti_mode; 104 uint_t zti_value; 105 uint_t zti_count; 106 } zio_taskq_info_t; 107 108 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = { 109 "issue", "issue_high", "intr", "intr_high" 110 }; 111 112 /* 113 * This table defines the taskq settings for each ZFS I/O type. When 114 * initializing a pool, we use this table to create an appropriately sized 115 * taskq. Some operations are low volume and therefore have a small, static 116 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE 117 * macros. Other operations process a large amount of data; the ZTI_BATCH 118 * macro causes us to create a taskq oriented for throughput. Some operations 119 * are so high frequency and short-lived that the taskq itself can become a a 120 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an 121 * additional degree of parallelism specified by the number of threads per- 122 * taskq and the number of taskqs; when dispatching an event in this case, the 123 * particular taskq is chosen at random. 124 * 125 * The different taskq priorities are to handle the different contexts (issue 126 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that 127 * need to be handled with minimum delay. 128 */ 129 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = { 130 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */ 131 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */ 132 { ZTI_N(8), ZTI_NULL, ZTI_BATCH, ZTI_NULL }, /* READ */ 133 { ZTI_BATCH, ZTI_N(5), ZTI_N(8), ZTI_N(5) }, /* WRITE */ 134 { ZTI_P(12, 8), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */ 135 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */ 136 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* IOCTL */ 137 }; 138 139 static void spa_sync_version(void *arg, dmu_tx_t *tx); 140 static void spa_sync_props(void *arg, dmu_tx_t *tx); 141 static boolean_t spa_has_active_shared_spare(spa_t *spa); 142 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config, 143 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig, 144 char **ereport); 145 static void spa_vdev_resilver_done(spa_t *spa); 146 147 uint_t zio_taskq_batch_pct = 75; /* 1 thread per cpu in pset */ 148 id_t zio_taskq_psrset_bind = PS_NONE; 149 boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */ 150 uint_t zio_taskq_basedc = 80; /* base duty cycle */ 151 152 boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */ 153 extern int zfs_sync_pass_deferred_free; 154 155 /* 156 * This (illegal) pool name is used when temporarily importing a spa_t in order 157 * to get the vdev stats associated with the imported devices. 158 */ 159 #define TRYIMPORT_NAME "$import" 160 161 /* 162 * ========================================================================== 163 * SPA properties routines 164 * ========================================================================== 165 */ 166 167 /* 168 * Add a (source=src, propname=propval) list to an nvlist. 169 */ 170 static void 171 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval, 172 uint64_t intval, zprop_source_t src) 173 { 174 const char *propname = zpool_prop_to_name(prop); 175 nvlist_t *propval; 176 177 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0); 178 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0); 179 180 if (strval != NULL) 181 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0); 182 else 183 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0); 184 185 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0); 186 nvlist_free(propval); 187 } 188 189 /* 190 * Get property values from the spa configuration. 191 */ 192 static void 193 spa_prop_get_config(spa_t *spa, nvlist_t **nvp) 194 { 195 vdev_t *rvd = spa->spa_root_vdev; 196 dsl_pool_t *pool = spa->spa_dsl_pool; 197 uint64_t size; 198 uint64_t alloc; 199 uint64_t space; 200 uint64_t cap, version; 201 zprop_source_t src = ZPROP_SRC_NONE; 202 spa_config_dirent_t *dp; 203 204 ASSERT(MUTEX_HELD(&spa->spa_props_lock)); 205 206 if (rvd != NULL) { 207 alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 208 size = metaslab_class_get_space(spa_normal_class(spa)); 209 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src); 210 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src); 211 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src); 212 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL, 213 size - alloc, src); 214 215 space = 0; 216 for (int c = 0; c < rvd->vdev_children; c++) { 217 vdev_t *tvd = rvd->vdev_child[c]; 218 space += tvd->vdev_max_asize - tvd->vdev_asize; 219 } 220 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL, space, 221 src); 222 223 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL, 224 (spa_mode(spa) == FREAD), src); 225 226 cap = (size == 0) ? 0 : (alloc * 100 / size); 227 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src); 228 229 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL, 230 ddt_get_pool_dedup_ratio(spa), src); 231 232 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL, 233 rvd->vdev_state, src); 234 235 version = spa_version(spa); 236 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) 237 src = ZPROP_SRC_DEFAULT; 238 else 239 src = ZPROP_SRC_LOCAL; 240 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src); 241 } 242 243 if (pool != NULL) { 244 dsl_dir_t *freedir = pool->dp_free_dir; 245 246 /* 247 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS, 248 * when opening pools before this version freedir will be NULL. 249 */ 250 if (freedir != NULL) { 251 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL, 252 freedir->dd_phys->dd_used_bytes, src); 253 } else { 254 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, 255 NULL, 0, src); 256 } 257 } 258 259 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src); 260 261 if (spa->spa_comment != NULL) { 262 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment, 263 0, ZPROP_SRC_LOCAL); 264 } 265 266 if (spa->spa_root != NULL) 267 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root, 268 0, ZPROP_SRC_LOCAL); 269 270 if ((dp = list_head(&spa->spa_config_list)) != NULL) { 271 if (dp->scd_path == NULL) { 272 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 273 "none", 0, ZPROP_SRC_LOCAL); 274 } else if (strcmp(dp->scd_path, spa_config_path) != 0) { 275 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 276 dp->scd_path, 0, ZPROP_SRC_LOCAL); 277 } 278 } 279 } 280 281 /* 282 * Get zpool property values. 283 */ 284 int 285 spa_prop_get(spa_t *spa, nvlist_t **nvp) 286 { 287 objset_t *mos = spa->spa_meta_objset; 288 zap_cursor_t zc; 289 zap_attribute_t za; 290 int err; 291 292 VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0); 293 294 mutex_enter(&spa->spa_props_lock); 295 296 /* 297 * Get properties from the spa config. 298 */ 299 spa_prop_get_config(spa, nvp); 300 301 /* If no pool property object, no more prop to get. */ 302 if (mos == NULL || spa->spa_pool_props_object == 0) { 303 mutex_exit(&spa->spa_props_lock); 304 return (0); 305 } 306 307 /* 308 * Get properties from the MOS pool property object. 309 */ 310 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object); 311 (err = zap_cursor_retrieve(&zc, &za)) == 0; 312 zap_cursor_advance(&zc)) { 313 uint64_t intval = 0; 314 char *strval = NULL; 315 zprop_source_t src = ZPROP_SRC_DEFAULT; 316 zpool_prop_t prop; 317 318 if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL) 319 continue; 320 321 switch (za.za_integer_length) { 322 case 8: 323 /* integer property */ 324 if (za.za_first_integer != 325 zpool_prop_default_numeric(prop)) 326 src = ZPROP_SRC_LOCAL; 327 328 if (prop == ZPOOL_PROP_BOOTFS) { 329 dsl_pool_t *dp; 330 dsl_dataset_t *ds = NULL; 331 332 dp = spa_get_dsl(spa); 333 dsl_pool_config_enter(dp, FTAG); 334 if (err = dsl_dataset_hold_obj(dp, 335 za.za_first_integer, FTAG, &ds)) { 336 dsl_pool_config_exit(dp, FTAG); 337 break; 338 } 339 340 strval = kmem_alloc( 341 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1, 342 KM_SLEEP); 343 dsl_dataset_name(ds, strval); 344 dsl_dataset_rele(ds, FTAG); 345 dsl_pool_config_exit(dp, FTAG); 346 } else { 347 strval = NULL; 348 intval = za.za_first_integer; 349 } 350 351 spa_prop_add_list(*nvp, prop, strval, intval, src); 352 353 if (strval != NULL) 354 kmem_free(strval, 355 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1); 356 357 break; 358 359 case 1: 360 /* string property */ 361 strval = kmem_alloc(za.za_num_integers, KM_SLEEP); 362 err = zap_lookup(mos, spa->spa_pool_props_object, 363 za.za_name, 1, za.za_num_integers, strval); 364 if (err) { 365 kmem_free(strval, za.za_num_integers); 366 break; 367 } 368 spa_prop_add_list(*nvp, prop, strval, 0, src); 369 kmem_free(strval, za.za_num_integers); 370 break; 371 372 default: 373 break; 374 } 375 } 376 zap_cursor_fini(&zc); 377 mutex_exit(&spa->spa_props_lock); 378 out: 379 if (err && err != ENOENT) { 380 nvlist_free(*nvp); 381 *nvp = NULL; 382 return (err); 383 } 384 385 return (0); 386 } 387 388 /* 389 * Validate the given pool properties nvlist and modify the list 390 * for the property values to be set. 391 */ 392 static int 393 spa_prop_validate(spa_t *spa, nvlist_t *props) 394 { 395 nvpair_t *elem; 396 int error = 0, reset_bootfs = 0; 397 uint64_t objnum = 0; 398 boolean_t has_feature = B_FALSE; 399 400 elem = NULL; 401 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) { 402 uint64_t intval; 403 char *strval, *slash, *check, *fname; 404 const char *propname = nvpair_name(elem); 405 zpool_prop_t prop = zpool_name_to_prop(propname); 406 407 switch (prop) { 408 case ZPROP_INVAL: 409 if (!zpool_prop_feature(propname)) { 410 error = SET_ERROR(EINVAL); 411 break; 412 } 413 414 /* 415 * Sanitize the input. 416 */ 417 if (nvpair_type(elem) != DATA_TYPE_UINT64) { 418 error = SET_ERROR(EINVAL); 419 break; 420 } 421 422 if (nvpair_value_uint64(elem, &intval) != 0) { 423 error = SET_ERROR(EINVAL); 424 break; 425 } 426 427 if (intval != 0) { 428 error = SET_ERROR(EINVAL); 429 break; 430 } 431 432 fname = strchr(propname, '@') + 1; 433 if (zfeature_lookup_name(fname, NULL) != 0) { 434 error = SET_ERROR(EINVAL); 435 break; 436 } 437 438 has_feature = B_TRUE; 439 break; 440 441 case ZPOOL_PROP_VERSION: 442 error = nvpair_value_uint64(elem, &intval); 443 if (!error && 444 (intval < spa_version(spa) || 445 intval > SPA_VERSION_BEFORE_FEATURES || 446 has_feature)) 447 error = SET_ERROR(EINVAL); 448 break; 449 450 case ZPOOL_PROP_DELEGATION: 451 case ZPOOL_PROP_AUTOREPLACE: 452 case ZPOOL_PROP_LISTSNAPS: 453 case ZPOOL_PROP_AUTOEXPAND: 454 error = nvpair_value_uint64(elem, &intval); 455 if (!error && intval > 1) 456 error = SET_ERROR(EINVAL); 457 break; 458 459 case ZPOOL_PROP_BOOTFS: 460 /* 461 * If the pool version is less than SPA_VERSION_BOOTFS, 462 * or the pool is still being created (version == 0), 463 * the bootfs property cannot be set. 464 */ 465 if (spa_version(spa) < SPA_VERSION_BOOTFS) { 466 error = SET_ERROR(ENOTSUP); 467 break; 468 } 469 470 /* 471 * Make sure the vdev config is bootable 472 */ 473 if (!vdev_is_bootable(spa->spa_root_vdev)) { 474 error = SET_ERROR(ENOTSUP); 475 break; 476 } 477 478 reset_bootfs = 1; 479 480 error = nvpair_value_string(elem, &strval); 481 482 if (!error) { 483 objset_t *os; 484 uint64_t compress; 485 486 if (strval == NULL || strval[0] == '\0') { 487 objnum = zpool_prop_default_numeric( 488 ZPOOL_PROP_BOOTFS); 489 break; 490 } 491 492 if (error = dmu_objset_hold(strval, FTAG, &os)) 493 break; 494 495 /* Must be ZPL and not gzip compressed. */ 496 497 if (dmu_objset_type(os) != DMU_OST_ZFS) { 498 error = SET_ERROR(ENOTSUP); 499 } else if ((error = 500 dsl_prop_get_int_ds(dmu_objset_ds(os), 501 zfs_prop_to_name(ZFS_PROP_COMPRESSION), 502 &compress)) == 0 && 503 !BOOTFS_COMPRESS_VALID(compress)) { 504 error = SET_ERROR(ENOTSUP); 505 } else { 506 objnum = dmu_objset_id(os); 507 } 508 dmu_objset_rele(os, FTAG); 509 } 510 break; 511 512 case ZPOOL_PROP_FAILUREMODE: 513 error = nvpair_value_uint64(elem, &intval); 514 if (!error && (intval < ZIO_FAILURE_MODE_WAIT || 515 intval > ZIO_FAILURE_MODE_PANIC)) 516 error = SET_ERROR(EINVAL); 517 518 /* 519 * This is a special case which only occurs when 520 * the pool has completely failed. This allows 521 * the user to change the in-core failmode property 522 * without syncing it out to disk (I/Os might 523 * currently be blocked). We do this by returning 524 * EIO to the caller (spa_prop_set) to trick it 525 * into thinking we encountered a property validation 526 * error. 527 */ 528 if (!error && spa_suspended(spa)) { 529 spa->spa_failmode = intval; 530 error = SET_ERROR(EIO); 531 } 532 break; 533 534 case ZPOOL_PROP_CACHEFILE: 535 if ((error = nvpair_value_string(elem, &strval)) != 0) 536 break; 537 538 if (strval[0] == '\0') 539 break; 540 541 if (strcmp(strval, "none") == 0) 542 break; 543 544 if (strval[0] != '/') { 545 error = SET_ERROR(EINVAL); 546 break; 547 } 548 549 slash = strrchr(strval, '/'); 550 ASSERT(slash != NULL); 551 552 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 || 553 strcmp(slash, "/..") == 0) 554 error = SET_ERROR(EINVAL); 555 break; 556 557 case ZPOOL_PROP_COMMENT: 558 if ((error = nvpair_value_string(elem, &strval)) != 0) 559 break; 560 for (check = strval; *check != '\0'; check++) { 561 /* 562 * The kernel doesn't have an easy isprint() 563 * check. For this kernel check, we merely 564 * check ASCII apart from DEL. Fix this if 565 * there is an easy-to-use kernel isprint(). 566 */ 567 if (*check >= 0x7f) { 568 error = SET_ERROR(EINVAL); 569 break; 570 } 571 check++; 572 } 573 if (strlen(strval) > ZPROP_MAX_COMMENT) 574 error = E2BIG; 575 break; 576 577 case ZPOOL_PROP_DEDUPDITTO: 578 if (spa_version(spa) < SPA_VERSION_DEDUP) 579 error = SET_ERROR(ENOTSUP); 580 else 581 error = nvpair_value_uint64(elem, &intval); 582 if (error == 0 && 583 intval != 0 && intval < ZIO_DEDUPDITTO_MIN) 584 error = SET_ERROR(EINVAL); 585 break; 586 } 587 588 if (error) 589 break; 590 } 591 592 if (!error && reset_bootfs) { 593 error = nvlist_remove(props, 594 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING); 595 596 if (!error) { 597 error = nvlist_add_uint64(props, 598 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum); 599 } 600 } 601 602 return (error); 603 } 604 605 void 606 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync) 607 { 608 char *cachefile; 609 spa_config_dirent_t *dp; 610 611 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE), 612 &cachefile) != 0) 613 return; 614 615 dp = kmem_alloc(sizeof (spa_config_dirent_t), 616 KM_SLEEP); 617 618 if (cachefile[0] == '\0') 619 dp->scd_path = spa_strdup(spa_config_path); 620 else if (strcmp(cachefile, "none") == 0) 621 dp->scd_path = NULL; 622 else 623 dp->scd_path = spa_strdup(cachefile); 624 625 list_insert_head(&spa->spa_config_list, dp); 626 if (need_sync) 627 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 628 } 629 630 int 631 spa_prop_set(spa_t *spa, nvlist_t *nvp) 632 { 633 int error; 634 nvpair_t *elem = NULL; 635 boolean_t need_sync = B_FALSE; 636 637 if ((error = spa_prop_validate(spa, nvp)) != 0) 638 return (error); 639 640 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) { 641 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem)); 642 643 if (prop == ZPOOL_PROP_CACHEFILE || 644 prop == ZPOOL_PROP_ALTROOT || 645 prop == ZPOOL_PROP_READONLY) 646 continue; 647 648 if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) { 649 uint64_t ver; 650 651 if (prop == ZPOOL_PROP_VERSION) { 652 VERIFY(nvpair_value_uint64(elem, &ver) == 0); 653 } else { 654 ASSERT(zpool_prop_feature(nvpair_name(elem))); 655 ver = SPA_VERSION_FEATURES; 656 need_sync = B_TRUE; 657 } 658 659 /* Save time if the version is already set. */ 660 if (ver == spa_version(spa)) 661 continue; 662 663 /* 664 * In addition to the pool directory object, we might 665 * create the pool properties object, the features for 666 * read object, the features for write object, or the 667 * feature descriptions object. 668 */ 669 error = dsl_sync_task(spa->spa_name, NULL, 670 spa_sync_version, &ver, 6); 671 if (error) 672 return (error); 673 continue; 674 } 675 676 need_sync = B_TRUE; 677 break; 678 } 679 680 if (need_sync) { 681 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props, 682 nvp, 6)); 683 } 684 685 return (0); 686 } 687 688 /* 689 * If the bootfs property value is dsobj, clear it. 690 */ 691 void 692 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx) 693 { 694 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) { 695 VERIFY(zap_remove(spa->spa_meta_objset, 696 spa->spa_pool_props_object, 697 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0); 698 spa->spa_bootfs = 0; 699 } 700 } 701 702 /*ARGSUSED*/ 703 static int 704 spa_change_guid_check(void *arg, dmu_tx_t *tx) 705 { 706 uint64_t *newguid = arg; 707 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 708 vdev_t *rvd = spa->spa_root_vdev; 709 uint64_t vdev_state; 710 711 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 712 vdev_state = rvd->vdev_state; 713 spa_config_exit(spa, SCL_STATE, FTAG); 714 715 if (vdev_state != VDEV_STATE_HEALTHY) 716 return (SET_ERROR(ENXIO)); 717 718 ASSERT3U(spa_guid(spa), !=, *newguid); 719 720 return (0); 721 } 722 723 static void 724 spa_change_guid_sync(void *arg, dmu_tx_t *tx) 725 { 726 uint64_t *newguid = arg; 727 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 728 uint64_t oldguid; 729 vdev_t *rvd = spa->spa_root_vdev; 730 731 oldguid = spa_guid(spa); 732 733 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 734 rvd->vdev_guid = *newguid; 735 rvd->vdev_guid_sum += (*newguid - oldguid); 736 vdev_config_dirty(rvd); 737 spa_config_exit(spa, SCL_STATE, FTAG); 738 739 spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu", 740 oldguid, *newguid); 741 } 742 743 /* 744 * Change the GUID for the pool. This is done so that we can later 745 * re-import a pool built from a clone of our own vdevs. We will modify 746 * the root vdev's guid, our own pool guid, and then mark all of our 747 * vdevs dirty. Note that we must make sure that all our vdevs are 748 * online when we do this, or else any vdevs that weren't present 749 * would be orphaned from our pool. We are also going to issue a 750 * sysevent to update any watchers. 751 */ 752 int 753 spa_change_guid(spa_t *spa) 754 { 755 int error; 756 uint64_t guid; 757 758 mutex_enter(&spa->spa_vdev_top_lock); 759 mutex_enter(&spa_namespace_lock); 760 guid = spa_generate_guid(NULL); 761 762 error = dsl_sync_task(spa->spa_name, spa_change_guid_check, 763 spa_change_guid_sync, &guid, 5); 764 765 if (error == 0) { 766 spa_config_sync(spa, B_FALSE, B_TRUE); 767 spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID); 768 } 769 770 mutex_exit(&spa_namespace_lock); 771 mutex_exit(&spa->spa_vdev_top_lock); 772 773 return (error); 774 } 775 776 /* 777 * ========================================================================== 778 * SPA state manipulation (open/create/destroy/import/export) 779 * ========================================================================== 780 */ 781 782 static int 783 spa_error_entry_compare(const void *a, const void *b) 784 { 785 spa_error_entry_t *sa = (spa_error_entry_t *)a; 786 spa_error_entry_t *sb = (spa_error_entry_t *)b; 787 int ret; 788 789 ret = bcmp(&sa->se_bookmark, &sb->se_bookmark, 790 sizeof (zbookmark_t)); 791 792 if (ret < 0) 793 return (-1); 794 else if (ret > 0) 795 return (1); 796 else 797 return (0); 798 } 799 800 /* 801 * Utility function which retrieves copies of the current logs and 802 * re-initializes them in the process. 803 */ 804 void 805 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub) 806 { 807 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock)); 808 809 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t)); 810 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t)); 811 812 avl_create(&spa->spa_errlist_scrub, 813 spa_error_entry_compare, sizeof (spa_error_entry_t), 814 offsetof(spa_error_entry_t, se_avl)); 815 avl_create(&spa->spa_errlist_last, 816 spa_error_entry_compare, sizeof (spa_error_entry_t), 817 offsetof(spa_error_entry_t, se_avl)); 818 } 819 820 static void 821 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q) 822 { 823 const zio_taskq_info_t *ztip = &zio_taskqs[t][q]; 824 enum zti_modes mode = ztip->zti_mode; 825 uint_t value = ztip->zti_value; 826 uint_t count = ztip->zti_count; 827 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 828 char name[32]; 829 uint_t flags = 0; 830 boolean_t batch = B_FALSE; 831 832 if (mode == ZTI_MODE_NULL) { 833 tqs->stqs_count = 0; 834 tqs->stqs_taskq = NULL; 835 return; 836 } 837 838 ASSERT3U(count, >, 0); 839 840 tqs->stqs_count = count; 841 tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP); 842 843 switch (mode) { 844 case ZTI_MODE_FIXED: 845 ASSERT3U(value, >=, 1); 846 value = MAX(value, 1); 847 break; 848 849 case ZTI_MODE_BATCH: 850 batch = B_TRUE; 851 flags |= TASKQ_THREADS_CPU_PCT; 852 value = zio_taskq_batch_pct; 853 break; 854 855 default: 856 panic("unrecognized mode for %s_%s taskq (%u:%u) in " 857 "spa_activate()", 858 zio_type_name[t], zio_taskq_types[q], mode, value); 859 break; 860 } 861 862 for (uint_t i = 0; i < count; i++) { 863 taskq_t *tq; 864 865 if (count > 1) { 866 (void) snprintf(name, sizeof (name), "%s_%s_%u", 867 zio_type_name[t], zio_taskq_types[q], i); 868 } else { 869 (void) snprintf(name, sizeof (name), "%s_%s", 870 zio_type_name[t], zio_taskq_types[q]); 871 } 872 873 if (zio_taskq_sysdc && spa->spa_proc != &p0) { 874 if (batch) 875 flags |= TASKQ_DC_BATCH; 876 877 tq = taskq_create_sysdc(name, value, 50, INT_MAX, 878 spa->spa_proc, zio_taskq_basedc, flags); 879 } else { 880 pri_t pri = maxclsyspri; 881 /* 882 * The write issue taskq can be extremely CPU 883 * intensive. Run it at slightly lower priority 884 * than the other taskqs. 885 */ 886 if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE) 887 pri--; 888 889 tq = taskq_create_proc(name, value, pri, 50, 890 INT_MAX, spa->spa_proc, flags); 891 } 892 893 tqs->stqs_taskq[i] = tq; 894 } 895 } 896 897 static void 898 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q) 899 { 900 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 901 902 if (tqs->stqs_taskq == NULL) { 903 ASSERT0(tqs->stqs_count); 904 return; 905 } 906 907 for (uint_t i = 0; i < tqs->stqs_count; i++) { 908 ASSERT3P(tqs->stqs_taskq[i], !=, NULL); 909 taskq_destroy(tqs->stqs_taskq[i]); 910 } 911 912 kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *)); 913 tqs->stqs_taskq = NULL; 914 } 915 916 /* 917 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority. 918 * Note that a type may have multiple discrete taskqs to avoid lock contention 919 * on the taskq itself. In that case we choose which taskq at random by using 920 * the low bits of gethrtime(). 921 */ 922 void 923 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q, 924 task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent) 925 { 926 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 927 taskq_t *tq; 928 929 ASSERT3P(tqs->stqs_taskq, !=, NULL); 930 ASSERT3U(tqs->stqs_count, !=, 0); 931 932 if (tqs->stqs_count == 1) { 933 tq = tqs->stqs_taskq[0]; 934 } else { 935 tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count]; 936 } 937 938 taskq_dispatch_ent(tq, func, arg, flags, ent); 939 } 940 941 static void 942 spa_create_zio_taskqs(spa_t *spa) 943 { 944 for (int t = 0; t < ZIO_TYPES; t++) { 945 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 946 spa_taskqs_init(spa, t, q); 947 } 948 } 949 } 950 951 #ifdef _KERNEL 952 static void 953 spa_thread(void *arg) 954 { 955 callb_cpr_t cprinfo; 956 957 spa_t *spa = arg; 958 user_t *pu = PTOU(curproc); 959 960 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr, 961 spa->spa_name); 962 963 ASSERT(curproc != &p0); 964 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs), 965 "zpool-%s", spa->spa_name); 966 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm)); 967 968 /* bind this thread to the requested psrset */ 969 if (zio_taskq_psrset_bind != PS_NONE) { 970 pool_lock(); 971 mutex_enter(&cpu_lock); 972 mutex_enter(&pidlock); 973 mutex_enter(&curproc->p_lock); 974 975 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind, 976 0, NULL, NULL) == 0) { 977 curthread->t_bind_pset = zio_taskq_psrset_bind; 978 } else { 979 cmn_err(CE_WARN, 980 "Couldn't bind process for zfs pool \"%s\" to " 981 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind); 982 } 983 984 mutex_exit(&curproc->p_lock); 985 mutex_exit(&pidlock); 986 mutex_exit(&cpu_lock); 987 pool_unlock(); 988 } 989 990 if (zio_taskq_sysdc) { 991 sysdc_thread_enter(curthread, 100, 0); 992 } 993 994 spa->spa_proc = curproc; 995 spa->spa_did = curthread->t_did; 996 997 spa_create_zio_taskqs(spa); 998 999 mutex_enter(&spa->spa_proc_lock); 1000 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED); 1001 1002 spa->spa_proc_state = SPA_PROC_ACTIVE; 1003 cv_broadcast(&spa->spa_proc_cv); 1004 1005 CALLB_CPR_SAFE_BEGIN(&cprinfo); 1006 while (spa->spa_proc_state == SPA_PROC_ACTIVE) 1007 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 1008 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock); 1009 1010 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE); 1011 spa->spa_proc_state = SPA_PROC_GONE; 1012 spa->spa_proc = &p0; 1013 cv_broadcast(&spa->spa_proc_cv); 1014 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */ 1015 1016 mutex_enter(&curproc->p_lock); 1017 lwp_exit(); 1018 } 1019 #endif 1020 1021 /* 1022 * Activate an uninitialized pool. 1023 */ 1024 static void 1025 spa_activate(spa_t *spa, int mode) 1026 { 1027 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED); 1028 1029 spa->spa_state = POOL_STATE_ACTIVE; 1030 spa->spa_mode = mode; 1031 1032 spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops); 1033 spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops); 1034 1035 /* Try to create a covering process */ 1036 mutex_enter(&spa->spa_proc_lock); 1037 ASSERT(spa->spa_proc_state == SPA_PROC_NONE); 1038 ASSERT(spa->spa_proc == &p0); 1039 spa->spa_did = 0; 1040 1041 /* Only create a process if we're going to be around a while. */ 1042 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) { 1043 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri, 1044 NULL, 0) == 0) { 1045 spa->spa_proc_state = SPA_PROC_CREATED; 1046 while (spa->spa_proc_state == SPA_PROC_CREATED) { 1047 cv_wait(&spa->spa_proc_cv, 1048 &spa->spa_proc_lock); 1049 } 1050 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 1051 ASSERT(spa->spa_proc != &p0); 1052 ASSERT(spa->spa_did != 0); 1053 } else { 1054 #ifdef _KERNEL 1055 cmn_err(CE_WARN, 1056 "Couldn't create process for zfs pool \"%s\"\n", 1057 spa->spa_name); 1058 #endif 1059 } 1060 } 1061 mutex_exit(&spa->spa_proc_lock); 1062 1063 /* If we didn't create a process, we need to create our taskqs. */ 1064 if (spa->spa_proc == &p0) { 1065 spa_create_zio_taskqs(spa); 1066 } 1067 1068 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t), 1069 offsetof(vdev_t, vdev_config_dirty_node)); 1070 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t), 1071 offsetof(vdev_t, vdev_state_dirty_node)); 1072 1073 txg_list_create(&spa->spa_vdev_txg_list, 1074 offsetof(struct vdev, vdev_txg_node)); 1075 1076 avl_create(&spa->spa_errlist_scrub, 1077 spa_error_entry_compare, sizeof (spa_error_entry_t), 1078 offsetof(spa_error_entry_t, se_avl)); 1079 avl_create(&spa->spa_errlist_last, 1080 spa_error_entry_compare, sizeof (spa_error_entry_t), 1081 offsetof(spa_error_entry_t, se_avl)); 1082 } 1083 1084 /* 1085 * Opposite of spa_activate(). 1086 */ 1087 static void 1088 spa_deactivate(spa_t *spa) 1089 { 1090 ASSERT(spa->spa_sync_on == B_FALSE); 1091 ASSERT(spa->spa_dsl_pool == NULL); 1092 ASSERT(spa->spa_root_vdev == NULL); 1093 ASSERT(spa->spa_async_zio_root == NULL); 1094 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED); 1095 1096 txg_list_destroy(&spa->spa_vdev_txg_list); 1097 1098 list_destroy(&spa->spa_config_dirty_list); 1099 list_destroy(&spa->spa_state_dirty_list); 1100 1101 for (int t = 0; t < ZIO_TYPES; t++) { 1102 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 1103 spa_taskqs_fini(spa, t, q); 1104 } 1105 } 1106 1107 metaslab_class_destroy(spa->spa_normal_class); 1108 spa->spa_normal_class = NULL; 1109 1110 metaslab_class_destroy(spa->spa_log_class); 1111 spa->spa_log_class = NULL; 1112 1113 /* 1114 * If this was part of an import or the open otherwise failed, we may 1115 * still have errors left in the queues. Empty them just in case. 1116 */ 1117 spa_errlog_drain(spa); 1118 1119 avl_destroy(&spa->spa_errlist_scrub); 1120 avl_destroy(&spa->spa_errlist_last); 1121 1122 spa->spa_state = POOL_STATE_UNINITIALIZED; 1123 1124 mutex_enter(&spa->spa_proc_lock); 1125 if (spa->spa_proc_state != SPA_PROC_NONE) { 1126 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 1127 spa->spa_proc_state = SPA_PROC_DEACTIVATE; 1128 cv_broadcast(&spa->spa_proc_cv); 1129 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) { 1130 ASSERT(spa->spa_proc != &p0); 1131 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 1132 } 1133 ASSERT(spa->spa_proc_state == SPA_PROC_GONE); 1134 spa->spa_proc_state = SPA_PROC_NONE; 1135 } 1136 ASSERT(spa->spa_proc == &p0); 1137 mutex_exit(&spa->spa_proc_lock); 1138 1139 /* 1140 * We want to make sure spa_thread() has actually exited the ZFS 1141 * module, so that the module can't be unloaded out from underneath 1142 * it. 1143 */ 1144 if (spa->spa_did != 0) { 1145 thread_join(spa->spa_did); 1146 spa->spa_did = 0; 1147 } 1148 } 1149 1150 /* 1151 * Verify a pool configuration, and construct the vdev tree appropriately. This 1152 * will create all the necessary vdevs in the appropriate layout, with each vdev 1153 * in the CLOSED state. This will prep the pool before open/creation/import. 1154 * All vdev validation is done by the vdev_alloc() routine. 1155 */ 1156 static int 1157 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, 1158 uint_t id, int atype) 1159 { 1160 nvlist_t **child; 1161 uint_t children; 1162 int error; 1163 1164 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0) 1165 return (error); 1166 1167 if ((*vdp)->vdev_ops->vdev_op_leaf) 1168 return (0); 1169 1170 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 1171 &child, &children); 1172 1173 if (error == ENOENT) 1174 return (0); 1175 1176 if (error) { 1177 vdev_free(*vdp); 1178 *vdp = NULL; 1179 return (SET_ERROR(EINVAL)); 1180 } 1181 1182 for (int c = 0; c < children; c++) { 1183 vdev_t *vd; 1184 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c, 1185 atype)) != 0) { 1186 vdev_free(*vdp); 1187 *vdp = NULL; 1188 return (error); 1189 } 1190 } 1191 1192 ASSERT(*vdp != NULL); 1193 1194 return (0); 1195 } 1196 1197 /* 1198 * Opposite of spa_load(). 1199 */ 1200 static void 1201 spa_unload(spa_t *spa) 1202 { 1203 int i; 1204 1205 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1206 1207 /* 1208 * Stop async tasks. 1209 */ 1210 spa_async_suspend(spa); 1211 1212 /* 1213 * Stop syncing. 1214 */ 1215 if (spa->spa_sync_on) { 1216 txg_sync_stop(spa->spa_dsl_pool); 1217 spa->spa_sync_on = B_FALSE; 1218 } 1219 1220 /* 1221 * Wait for any outstanding async I/O to complete. 1222 */ 1223 if (spa->spa_async_zio_root != NULL) { 1224 (void) zio_wait(spa->spa_async_zio_root); 1225 spa->spa_async_zio_root = NULL; 1226 } 1227 1228 bpobj_close(&spa->spa_deferred_bpobj); 1229 1230 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1231 1232 /* 1233 * Close all vdevs. 1234 */ 1235 if (spa->spa_root_vdev) 1236 vdev_free(spa->spa_root_vdev); 1237 ASSERT(spa->spa_root_vdev == NULL); 1238 1239 /* 1240 * Close the dsl pool. 1241 */ 1242 if (spa->spa_dsl_pool) { 1243 dsl_pool_close(spa->spa_dsl_pool); 1244 spa->spa_dsl_pool = NULL; 1245 spa->spa_meta_objset = NULL; 1246 } 1247 1248 ddt_unload(spa); 1249 1250 1251 /* 1252 * Drop and purge level 2 cache 1253 */ 1254 spa_l2cache_drop(spa); 1255 1256 for (i = 0; i < spa->spa_spares.sav_count; i++) 1257 vdev_free(spa->spa_spares.sav_vdevs[i]); 1258 if (spa->spa_spares.sav_vdevs) { 1259 kmem_free(spa->spa_spares.sav_vdevs, 1260 spa->spa_spares.sav_count * sizeof (void *)); 1261 spa->spa_spares.sav_vdevs = NULL; 1262 } 1263 if (spa->spa_spares.sav_config) { 1264 nvlist_free(spa->spa_spares.sav_config); 1265 spa->spa_spares.sav_config = NULL; 1266 } 1267 spa->spa_spares.sav_count = 0; 1268 1269 for (i = 0; i < spa->spa_l2cache.sav_count; i++) { 1270 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]); 1271 vdev_free(spa->spa_l2cache.sav_vdevs[i]); 1272 } 1273 if (spa->spa_l2cache.sav_vdevs) { 1274 kmem_free(spa->spa_l2cache.sav_vdevs, 1275 spa->spa_l2cache.sav_count * sizeof (void *)); 1276 spa->spa_l2cache.sav_vdevs = NULL; 1277 } 1278 if (spa->spa_l2cache.sav_config) { 1279 nvlist_free(spa->spa_l2cache.sav_config); 1280 spa->spa_l2cache.sav_config = NULL; 1281 } 1282 spa->spa_l2cache.sav_count = 0; 1283 1284 spa->spa_async_suspended = 0; 1285 1286 if (spa->spa_comment != NULL) { 1287 spa_strfree(spa->spa_comment); 1288 spa->spa_comment = NULL; 1289 } 1290 1291 spa_config_exit(spa, SCL_ALL, FTAG); 1292 } 1293 1294 /* 1295 * Load (or re-load) the current list of vdevs describing the active spares for 1296 * this pool. When this is called, we have some form of basic information in 1297 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and 1298 * then re-generate a more complete list including status information. 1299 */ 1300 static void 1301 spa_load_spares(spa_t *spa) 1302 { 1303 nvlist_t **spares; 1304 uint_t nspares; 1305 int i; 1306 vdev_t *vd, *tvd; 1307 1308 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1309 1310 /* 1311 * First, close and free any existing spare vdevs. 1312 */ 1313 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1314 vd = spa->spa_spares.sav_vdevs[i]; 1315 1316 /* Undo the call to spa_activate() below */ 1317 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1318 B_FALSE)) != NULL && tvd->vdev_isspare) 1319 spa_spare_remove(tvd); 1320 vdev_close(vd); 1321 vdev_free(vd); 1322 } 1323 1324 if (spa->spa_spares.sav_vdevs) 1325 kmem_free(spa->spa_spares.sav_vdevs, 1326 spa->spa_spares.sav_count * sizeof (void *)); 1327 1328 if (spa->spa_spares.sav_config == NULL) 1329 nspares = 0; 1330 else 1331 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 1332 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 1333 1334 spa->spa_spares.sav_count = (int)nspares; 1335 spa->spa_spares.sav_vdevs = NULL; 1336 1337 if (nspares == 0) 1338 return; 1339 1340 /* 1341 * Construct the array of vdevs, opening them to get status in the 1342 * process. For each spare, there is potentially two different vdev_t 1343 * structures associated with it: one in the list of spares (used only 1344 * for basic validation purposes) and one in the active vdev 1345 * configuration (if it's spared in). During this phase we open and 1346 * validate each vdev on the spare list. If the vdev also exists in the 1347 * active configuration, then we also mark this vdev as an active spare. 1348 */ 1349 spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *), 1350 KM_SLEEP); 1351 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1352 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0, 1353 VDEV_ALLOC_SPARE) == 0); 1354 ASSERT(vd != NULL); 1355 1356 spa->spa_spares.sav_vdevs[i] = vd; 1357 1358 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1359 B_FALSE)) != NULL) { 1360 if (!tvd->vdev_isspare) 1361 spa_spare_add(tvd); 1362 1363 /* 1364 * We only mark the spare active if we were successfully 1365 * able to load the vdev. Otherwise, importing a pool 1366 * with a bad active spare would result in strange 1367 * behavior, because multiple pool would think the spare 1368 * is actively in use. 1369 * 1370 * There is a vulnerability here to an equally bizarre 1371 * circumstance, where a dead active spare is later 1372 * brought back to life (onlined or otherwise). Given 1373 * the rarity of this scenario, and the extra complexity 1374 * it adds, we ignore the possibility. 1375 */ 1376 if (!vdev_is_dead(tvd)) 1377 spa_spare_activate(tvd); 1378 } 1379 1380 vd->vdev_top = vd; 1381 vd->vdev_aux = &spa->spa_spares; 1382 1383 if (vdev_open(vd) != 0) 1384 continue; 1385 1386 if (vdev_validate_aux(vd) == 0) 1387 spa_spare_add(vd); 1388 } 1389 1390 /* 1391 * Recompute the stashed list of spares, with status information 1392 * this time. 1393 */ 1394 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, 1395 DATA_TYPE_NVLIST_ARRAY) == 0); 1396 1397 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *), 1398 KM_SLEEP); 1399 for (i = 0; i < spa->spa_spares.sav_count; i++) 1400 spares[i] = vdev_config_generate(spa, 1401 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE); 1402 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 1403 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0); 1404 for (i = 0; i < spa->spa_spares.sav_count; i++) 1405 nvlist_free(spares[i]); 1406 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *)); 1407 } 1408 1409 /* 1410 * Load (or re-load) the current list of vdevs describing the active l2cache for 1411 * this pool. When this is called, we have some form of basic information in 1412 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and 1413 * then re-generate a more complete list including status information. 1414 * Devices which are already active have their details maintained, and are 1415 * not re-opened. 1416 */ 1417 static void 1418 spa_load_l2cache(spa_t *spa) 1419 { 1420 nvlist_t **l2cache; 1421 uint_t nl2cache; 1422 int i, j, oldnvdevs; 1423 uint64_t guid; 1424 vdev_t *vd, **oldvdevs, **newvdevs; 1425 spa_aux_vdev_t *sav = &spa->spa_l2cache; 1426 1427 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1428 1429 if (sav->sav_config != NULL) { 1430 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 1431 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 1432 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP); 1433 } else { 1434 nl2cache = 0; 1435 newvdevs = NULL; 1436 } 1437 1438 oldvdevs = sav->sav_vdevs; 1439 oldnvdevs = sav->sav_count; 1440 sav->sav_vdevs = NULL; 1441 sav->sav_count = 0; 1442 1443 /* 1444 * Process new nvlist of vdevs. 1445 */ 1446 for (i = 0; i < nl2cache; i++) { 1447 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID, 1448 &guid) == 0); 1449 1450 newvdevs[i] = NULL; 1451 for (j = 0; j < oldnvdevs; j++) { 1452 vd = oldvdevs[j]; 1453 if (vd != NULL && guid == vd->vdev_guid) { 1454 /* 1455 * Retain previous vdev for add/remove ops. 1456 */ 1457 newvdevs[i] = vd; 1458 oldvdevs[j] = NULL; 1459 break; 1460 } 1461 } 1462 1463 if (newvdevs[i] == NULL) { 1464 /* 1465 * Create new vdev 1466 */ 1467 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0, 1468 VDEV_ALLOC_L2CACHE) == 0); 1469 ASSERT(vd != NULL); 1470 newvdevs[i] = vd; 1471 1472 /* 1473 * Commit this vdev as an l2cache device, 1474 * even if it fails to open. 1475 */ 1476 spa_l2cache_add(vd); 1477 1478 vd->vdev_top = vd; 1479 vd->vdev_aux = sav; 1480 1481 spa_l2cache_activate(vd); 1482 1483 if (vdev_open(vd) != 0) 1484 continue; 1485 1486 (void) vdev_validate_aux(vd); 1487 1488 if (!vdev_is_dead(vd)) 1489 l2arc_add_vdev(spa, vd); 1490 } 1491 } 1492 1493 /* 1494 * Purge vdevs that were dropped 1495 */ 1496 for (i = 0; i < oldnvdevs; i++) { 1497 uint64_t pool; 1498 1499 vd = oldvdevs[i]; 1500 if (vd != NULL) { 1501 ASSERT(vd->vdev_isl2cache); 1502 1503 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 1504 pool != 0ULL && l2arc_vdev_present(vd)) 1505 l2arc_remove_vdev(vd); 1506 vdev_clear_stats(vd); 1507 vdev_free(vd); 1508 } 1509 } 1510 1511 if (oldvdevs) 1512 kmem_free(oldvdevs, oldnvdevs * sizeof (void *)); 1513 1514 if (sav->sav_config == NULL) 1515 goto out; 1516 1517 sav->sav_vdevs = newvdevs; 1518 sav->sav_count = (int)nl2cache; 1519 1520 /* 1521 * Recompute the stashed list of l2cache devices, with status 1522 * information this time. 1523 */ 1524 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE, 1525 DATA_TYPE_NVLIST_ARRAY) == 0); 1526 1527 l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 1528 for (i = 0; i < sav->sav_count; i++) 1529 l2cache[i] = vdev_config_generate(spa, 1530 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE); 1531 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 1532 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0); 1533 out: 1534 for (i = 0; i < sav->sav_count; i++) 1535 nvlist_free(l2cache[i]); 1536 if (sav->sav_count) 1537 kmem_free(l2cache, sav->sav_count * sizeof (void *)); 1538 } 1539 1540 static int 1541 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value) 1542 { 1543 dmu_buf_t *db; 1544 char *packed = NULL; 1545 size_t nvsize = 0; 1546 int error; 1547 *value = NULL; 1548 1549 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 1550 nvsize = *(uint64_t *)db->db_data; 1551 dmu_buf_rele(db, FTAG); 1552 1553 packed = kmem_alloc(nvsize, KM_SLEEP); 1554 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed, 1555 DMU_READ_PREFETCH); 1556 if (error == 0) 1557 error = nvlist_unpack(packed, nvsize, value, 0); 1558 kmem_free(packed, nvsize); 1559 1560 return (error); 1561 } 1562 1563 /* 1564 * Checks to see if the given vdev could not be opened, in which case we post a 1565 * sysevent to notify the autoreplace code that the device has been removed. 1566 */ 1567 static void 1568 spa_check_removed(vdev_t *vd) 1569 { 1570 for (int c = 0; c < vd->vdev_children; c++) 1571 spa_check_removed(vd->vdev_child[c]); 1572 1573 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) && 1574 !vd->vdev_ishole) { 1575 zfs_post_autoreplace(vd->vdev_spa, vd); 1576 spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK); 1577 } 1578 } 1579 1580 /* 1581 * Validate the current config against the MOS config 1582 */ 1583 static boolean_t 1584 spa_config_valid(spa_t *spa, nvlist_t *config) 1585 { 1586 vdev_t *mrvd, *rvd = spa->spa_root_vdev; 1587 nvlist_t *nv; 1588 1589 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0); 1590 1591 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1592 VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0); 1593 1594 ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children); 1595 1596 /* 1597 * If we're doing a normal import, then build up any additional 1598 * diagnostic information about missing devices in this config. 1599 * We'll pass this up to the user for further processing. 1600 */ 1601 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) { 1602 nvlist_t **child, *nv; 1603 uint64_t idx = 0; 1604 1605 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **), 1606 KM_SLEEP); 1607 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0); 1608 1609 for (int c = 0; c < rvd->vdev_children; c++) { 1610 vdev_t *tvd = rvd->vdev_child[c]; 1611 vdev_t *mtvd = mrvd->vdev_child[c]; 1612 1613 if (tvd->vdev_ops == &vdev_missing_ops && 1614 mtvd->vdev_ops != &vdev_missing_ops && 1615 mtvd->vdev_islog) 1616 child[idx++] = vdev_config_generate(spa, mtvd, 1617 B_FALSE, 0); 1618 } 1619 1620 if (idx) { 1621 VERIFY(nvlist_add_nvlist_array(nv, 1622 ZPOOL_CONFIG_CHILDREN, child, idx) == 0); 1623 VERIFY(nvlist_add_nvlist(spa->spa_load_info, 1624 ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0); 1625 1626 for (int i = 0; i < idx; i++) 1627 nvlist_free(child[i]); 1628 } 1629 nvlist_free(nv); 1630 kmem_free(child, rvd->vdev_children * sizeof (char **)); 1631 } 1632 1633 /* 1634 * Compare the root vdev tree with the information we have 1635 * from the MOS config (mrvd). Check each top-level vdev 1636 * with the corresponding MOS config top-level (mtvd). 1637 */ 1638 for (int c = 0; c < rvd->vdev_children; c++) { 1639 vdev_t *tvd = rvd->vdev_child[c]; 1640 vdev_t *mtvd = mrvd->vdev_child[c]; 1641 1642 /* 1643 * Resolve any "missing" vdevs in the current configuration. 1644 * If we find that the MOS config has more accurate information 1645 * about the top-level vdev then use that vdev instead. 1646 */ 1647 if (tvd->vdev_ops == &vdev_missing_ops && 1648 mtvd->vdev_ops != &vdev_missing_ops) { 1649 1650 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) 1651 continue; 1652 1653 /* 1654 * Device specific actions. 1655 */ 1656 if (mtvd->vdev_islog) { 1657 spa_set_log_state(spa, SPA_LOG_CLEAR); 1658 } else { 1659 /* 1660 * XXX - once we have 'readonly' pool 1661 * support we should be able to handle 1662 * missing data devices by transitioning 1663 * the pool to readonly. 1664 */ 1665 continue; 1666 } 1667 1668 /* 1669 * Swap the missing vdev with the data we were 1670 * able to obtain from the MOS config. 1671 */ 1672 vdev_remove_child(rvd, tvd); 1673 vdev_remove_child(mrvd, mtvd); 1674 1675 vdev_add_child(rvd, mtvd); 1676 vdev_add_child(mrvd, tvd); 1677 1678 spa_config_exit(spa, SCL_ALL, FTAG); 1679 vdev_load(mtvd); 1680 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1681 1682 vdev_reopen(rvd); 1683 } else if (mtvd->vdev_islog) { 1684 /* 1685 * Load the slog device's state from the MOS config 1686 * since it's possible that the label does not 1687 * contain the most up-to-date information. 1688 */ 1689 vdev_load_log_state(tvd, mtvd); 1690 vdev_reopen(tvd); 1691 } 1692 } 1693 vdev_free(mrvd); 1694 spa_config_exit(spa, SCL_ALL, FTAG); 1695 1696 /* 1697 * Ensure we were able to validate the config. 1698 */ 1699 return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum); 1700 } 1701 1702 /* 1703 * Check for missing log devices 1704 */ 1705 static boolean_t 1706 spa_check_logs(spa_t *spa) 1707 { 1708 boolean_t rv = B_FALSE; 1709 1710 switch (spa->spa_log_state) { 1711 case SPA_LOG_MISSING: 1712 /* need to recheck in case slog has been restored */ 1713 case SPA_LOG_UNKNOWN: 1714 rv = (dmu_objset_find(spa->spa_name, zil_check_log_chain, 1715 NULL, DS_FIND_CHILDREN) != 0); 1716 if (rv) 1717 spa_set_log_state(spa, SPA_LOG_MISSING); 1718 break; 1719 } 1720 return (rv); 1721 } 1722 1723 static boolean_t 1724 spa_passivate_log(spa_t *spa) 1725 { 1726 vdev_t *rvd = spa->spa_root_vdev; 1727 boolean_t slog_found = B_FALSE; 1728 1729 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1730 1731 if (!spa_has_slogs(spa)) 1732 return (B_FALSE); 1733 1734 for (int c = 0; c < rvd->vdev_children; c++) { 1735 vdev_t *tvd = rvd->vdev_child[c]; 1736 metaslab_group_t *mg = tvd->vdev_mg; 1737 1738 if (tvd->vdev_islog) { 1739 metaslab_group_passivate(mg); 1740 slog_found = B_TRUE; 1741 } 1742 } 1743 1744 return (slog_found); 1745 } 1746 1747 static void 1748 spa_activate_log(spa_t *spa) 1749 { 1750 vdev_t *rvd = spa->spa_root_vdev; 1751 1752 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1753 1754 for (int c = 0; c < rvd->vdev_children; c++) { 1755 vdev_t *tvd = rvd->vdev_child[c]; 1756 metaslab_group_t *mg = tvd->vdev_mg; 1757 1758 if (tvd->vdev_islog) 1759 metaslab_group_activate(mg); 1760 } 1761 } 1762 1763 int 1764 spa_offline_log(spa_t *spa) 1765 { 1766 int error; 1767 1768 error = dmu_objset_find(spa_name(spa), zil_vdev_offline, 1769 NULL, DS_FIND_CHILDREN); 1770 if (error == 0) { 1771 /* 1772 * We successfully offlined the log device, sync out the 1773 * current txg so that the "stubby" block can be removed 1774 * by zil_sync(). 1775 */ 1776 txg_wait_synced(spa->spa_dsl_pool, 0); 1777 } 1778 return (error); 1779 } 1780 1781 static void 1782 spa_aux_check_removed(spa_aux_vdev_t *sav) 1783 { 1784 for (int i = 0; i < sav->sav_count; i++) 1785 spa_check_removed(sav->sav_vdevs[i]); 1786 } 1787 1788 void 1789 spa_claim_notify(zio_t *zio) 1790 { 1791 spa_t *spa = zio->io_spa; 1792 1793 if (zio->io_error) 1794 return; 1795 1796 mutex_enter(&spa->spa_props_lock); /* any mutex will do */ 1797 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth) 1798 spa->spa_claim_max_txg = zio->io_bp->blk_birth; 1799 mutex_exit(&spa->spa_props_lock); 1800 } 1801 1802 typedef struct spa_load_error { 1803 uint64_t sle_meta_count; 1804 uint64_t sle_data_count; 1805 } spa_load_error_t; 1806 1807 static void 1808 spa_load_verify_done(zio_t *zio) 1809 { 1810 blkptr_t *bp = zio->io_bp; 1811 spa_load_error_t *sle = zio->io_private; 1812 dmu_object_type_t type = BP_GET_TYPE(bp); 1813 int error = zio->io_error; 1814 1815 if (error) { 1816 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) && 1817 type != DMU_OT_INTENT_LOG) 1818 atomic_add_64(&sle->sle_meta_count, 1); 1819 else 1820 atomic_add_64(&sle->sle_data_count, 1); 1821 } 1822 zio_data_buf_free(zio->io_data, zio->io_size); 1823 } 1824 1825 /*ARGSUSED*/ 1826 static int 1827 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 1828 const zbookmark_t *zb, const dnode_phys_t *dnp, void *arg) 1829 { 1830 if (bp != NULL) { 1831 zio_t *rio = arg; 1832 size_t size = BP_GET_PSIZE(bp); 1833 void *data = zio_data_buf_alloc(size); 1834 1835 zio_nowait(zio_read(rio, spa, bp, data, size, 1836 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB, 1837 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL | 1838 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb)); 1839 } 1840 return (0); 1841 } 1842 1843 static int 1844 spa_load_verify(spa_t *spa) 1845 { 1846 zio_t *rio; 1847 spa_load_error_t sle = { 0 }; 1848 zpool_rewind_policy_t policy; 1849 boolean_t verify_ok = B_FALSE; 1850 int error; 1851 1852 zpool_get_rewind_policy(spa->spa_config, &policy); 1853 1854 if (policy.zrp_request & ZPOOL_NEVER_REWIND) 1855 return (0); 1856 1857 rio = zio_root(spa, NULL, &sle, 1858 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE); 1859 1860 error = traverse_pool(spa, spa->spa_verify_min_txg, 1861 TRAVERSE_PRE | TRAVERSE_PREFETCH, spa_load_verify_cb, rio); 1862 1863 (void) zio_wait(rio); 1864 1865 spa->spa_load_meta_errors = sle.sle_meta_count; 1866 spa->spa_load_data_errors = sle.sle_data_count; 1867 1868 if (!error && sle.sle_meta_count <= policy.zrp_maxmeta && 1869 sle.sle_data_count <= policy.zrp_maxdata) { 1870 int64_t loss = 0; 1871 1872 verify_ok = B_TRUE; 1873 spa->spa_load_txg = spa->spa_uberblock.ub_txg; 1874 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp; 1875 1876 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts; 1877 VERIFY(nvlist_add_uint64(spa->spa_load_info, 1878 ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0); 1879 VERIFY(nvlist_add_int64(spa->spa_load_info, 1880 ZPOOL_CONFIG_REWIND_TIME, loss) == 0); 1881 VERIFY(nvlist_add_uint64(spa->spa_load_info, 1882 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0); 1883 } else { 1884 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg; 1885 } 1886 1887 if (error) { 1888 if (error != ENXIO && error != EIO) 1889 error = SET_ERROR(EIO); 1890 return (error); 1891 } 1892 1893 return (verify_ok ? 0 : EIO); 1894 } 1895 1896 /* 1897 * Find a value in the pool props object. 1898 */ 1899 static void 1900 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val) 1901 { 1902 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object, 1903 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val); 1904 } 1905 1906 /* 1907 * Find a value in the pool directory object. 1908 */ 1909 static int 1910 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val) 1911 { 1912 return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 1913 name, sizeof (uint64_t), 1, val)); 1914 } 1915 1916 static int 1917 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err) 1918 { 1919 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux); 1920 return (err); 1921 } 1922 1923 /* 1924 * Fix up config after a partly-completed split. This is done with the 1925 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off 1926 * pool have that entry in their config, but only the splitting one contains 1927 * a list of all the guids of the vdevs that are being split off. 1928 * 1929 * This function determines what to do with that list: either rejoin 1930 * all the disks to the pool, or complete the splitting process. To attempt 1931 * the rejoin, each disk that is offlined is marked online again, and 1932 * we do a reopen() call. If the vdev label for every disk that was 1933 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL) 1934 * then we call vdev_split() on each disk, and complete the split. 1935 * 1936 * Otherwise we leave the config alone, with all the vdevs in place in 1937 * the original pool. 1938 */ 1939 static void 1940 spa_try_repair(spa_t *spa, nvlist_t *config) 1941 { 1942 uint_t extracted; 1943 uint64_t *glist; 1944 uint_t i, gcount; 1945 nvlist_t *nvl; 1946 vdev_t **vd; 1947 boolean_t attempt_reopen; 1948 1949 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0) 1950 return; 1951 1952 /* check that the config is complete */ 1953 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 1954 &glist, &gcount) != 0) 1955 return; 1956 1957 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP); 1958 1959 /* attempt to online all the vdevs & validate */ 1960 attempt_reopen = B_TRUE; 1961 for (i = 0; i < gcount; i++) { 1962 if (glist[i] == 0) /* vdev is hole */ 1963 continue; 1964 1965 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE); 1966 if (vd[i] == NULL) { 1967 /* 1968 * Don't bother attempting to reopen the disks; 1969 * just do the split. 1970 */ 1971 attempt_reopen = B_FALSE; 1972 } else { 1973 /* attempt to re-online it */ 1974 vd[i]->vdev_offline = B_FALSE; 1975 } 1976 } 1977 1978 if (attempt_reopen) { 1979 vdev_reopen(spa->spa_root_vdev); 1980 1981 /* check each device to see what state it's in */ 1982 for (extracted = 0, i = 0; i < gcount; i++) { 1983 if (vd[i] != NULL && 1984 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL) 1985 break; 1986 ++extracted; 1987 } 1988 } 1989 1990 /* 1991 * If every disk has been moved to the new pool, or if we never 1992 * even attempted to look at them, then we split them off for 1993 * good. 1994 */ 1995 if (!attempt_reopen || gcount == extracted) { 1996 for (i = 0; i < gcount; i++) 1997 if (vd[i] != NULL) 1998 vdev_split(vd[i]); 1999 vdev_reopen(spa->spa_root_vdev); 2000 } 2001 2002 kmem_free(vd, gcount * sizeof (vdev_t *)); 2003 } 2004 2005 static int 2006 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type, 2007 boolean_t mosconfig) 2008 { 2009 nvlist_t *config = spa->spa_config; 2010 char *ereport = FM_EREPORT_ZFS_POOL; 2011 char *comment; 2012 int error; 2013 uint64_t pool_guid; 2014 nvlist_t *nvl; 2015 2016 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) 2017 return (SET_ERROR(EINVAL)); 2018 2019 ASSERT(spa->spa_comment == NULL); 2020 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0) 2021 spa->spa_comment = spa_strdup(comment); 2022 2023 /* 2024 * Versioning wasn't explicitly added to the label until later, so if 2025 * it's not present treat it as the initial version. 2026 */ 2027 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, 2028 &spa->spa_ubsync.ub_version) != 0) 2029 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL; 2030 2031 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, 2032 &spa->spa_config_txg); 2033 2034 if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) && 2035 spa_guid_exists(pool_guid, 0)) { 2036 error = SET_ERROR(EEXIST); 2037 } else { 2038 spa->spa_config_guid = pool_guid; 2039 2040 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, 2041 &nvl) == 0) { 2042 VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting, 2043 KM_SLEEP) == 0); 2044 } 2045 2046 nvlist_free(spa->spa_load_info); 2047 spa->spa_load_info = fnvlist_alloc(); 2048 2049 gethrestime(&spa->spa_loaded_ts); 2050 error = spa_load_impl(spa, pool_guid, config, state, type, 2051 mosconfig, &ereport); 2052 } 2053 2054 spa->spa_minref = refcount_count(&spa->spa_refcount); 2055 if (error) { 2056 if (error != EEXIST) { 2057 spa->spa_loaded_ts.tv_sec = 0; 2058 spa->spa_loaded_ts.tv_nsec = 0; 2059 } 2060 if (error != EBADF) { 2061 zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0); 2062 } 2063 } 2064 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE; 2065 spa->spa_ena = 0; 2066 2067 return (error); 2068 } 2069 2070 /* 2071 * Load an existing storage pool, using the pool's builtin spa_config as a 2072 * source of configuration information. 2073 */ 2074 static int 2075 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config, 2076 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig, 2077 char **ereport) 2078 { 2079 int error = 0; 2080 nvlist_t *nvroot = NULL; 2081 nvlist_t *label; 2082 vdev_t *rvd; 2083 uberblock_t *ub = &spa->spa_uberblock; 2084 uint64_t children, config_cache_txg = spa->spa_config_txg; 2085 int orig_mode = spa->spa_mode; 2086 int parse; 2087 uint64_t obj; 2088 boolean_t missing_feat_write = B_FALSE; 2089 2090 /* 2091 * If this is an untrusted config, access the pool in read-only mode. 2092 * This prevents things like resilvering recently removed devices. 2093 */ 2094 if (!mosconfig) 2095 spa->spa_mode = FREAD; 2096 2097 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 2098 2099 spa->spa_load_state = state; 2100 2101 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot)) 2102 return (SET_ERROR(EINVAL)); 2103 2104 parse = (type == SPA_IMPORT_EXISTING ? 2105 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT); 2106 2107 /* 2108 * Create "The Godfather" zio to hold all async IOs 2109 */ 2110 spa->spa_async_zio_root = zio_root(spa, NULL, NULL, 2111 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER); 2112 2113 /* 2114 * Parse the configuration into a vdev tree. We explicitly set the 2115 * value that will be returned by spa_version() since parsing the 2116 * configuration requires knowing the version number. 2117 */ 2118 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2119 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse); 2120 spa_config_exit(spa, SCL_ALL, FTAG); 2121 2122 if (error != 0) 2123 return (error); 2124 2125 ASSERT(spa->spa_root_vdev == rvd); 2126 2127 if (type != SPA_IMPORT_ASSEMBLE) { 2128 ASSERT(spa_guid(spa) == pool_guid); 2129 } 2130 2131 /* 2132 * Try to open all vdevs, loading each label in the process. 2133 */ 2134 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2135 error = vdev_open(rvd); 2136 spa_config_exit(spa, SCL_ALL, FTAG); 2137 if (error != 0) 2138 return (error); 2139 2140 /* 2141 * We need to validate the vdev labels against the configuration that 2142 * we have in hand, which is dependent on the setting of mosconfig. If 2143 * mosconfig is true then we're validating the vdev labels based on 2144 * that config. Otherwise, we're validating against the cached config 2145 * (zpool.cache) that was read when we loaded the zfs module, and then 2146 * later we will recursively call spa_load() and validate against 2147 * the vdev config. 2148 * 2149 * If we're assembling a new pool that's been split off from an 2150 * existing pool, the labels haven't yet been updated so we skip 2151 * validation for now. 2152 */ 2153 if (type != SPA_IMPORT_ASSEMBLE) { 2154 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2155 error = vdev_validate(rvd, mosconfig); 2156 spa_config_exit(spa, SCL_ALL, FTAG); 2157 2158 if (error != 0) 2159 return (error); 2160 2161 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) 2162 return (SET_ERROR(ENXIO)); 2163 } 2164 2165 /* 2166 * Find the best uberblock. 2167 */ 2168 vdev_uberblock_load(rvd, ub, &label); 2169 2170 /* 2171 * If we weren't able to find a single valid uberblock, return failure. 2172 */ 2173 if (ub->ub_txg == 0) { 2174 nvlist_free(label); 2175 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO)); 2176 } 2177 2178 /* 2179 * If the pool has an unsupported version we can't open it. 2180 */ 2181 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) { 2182 nvlist_free(label); 2183 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP)); 2184 } 2185 2186 if (ub->ub_version >= SPA_VERSION_FEATURES) { 2187 nvlist_t *features; 2188 2189 /* 2190 * If we weren't able to find what's necessary for reading the 2191 * MOS in the label, return failure. 2192 */ 2193 if (label == NULL || nvlist_lookup_nvlist(label, 2194 ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) { 2195 nvlist_free(label); 2196 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 2197 ENXIO)); 2198 } 2199 2200 /* 2201 * Update our in-core representation with the definitive values 2202 * from the label. 2203 */ 2204 nvlist_free(spa->spa_label_features); 2205 VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0); 2206 } 2207 2208 nvlist_free(label); 2209 2210 /* 2211 * Look through entries in the label nvlist's features_for_read. If 2212 * there is a feature listed there which we don't understand then we 2213 * cannot open a pool. 2214 */ 2215 if (ub->ub_version >= SPA_VERSION_FEATURES) { 2216 nvlist_t *unsup_feat; 2217 2218 VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) == 2219 0); 2220 2221 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features, 2222 NULL); nvp != NULL; 2223 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) { 2224 if (!zfeature_is_supported(nvpair_name(nvp))) { 2225 VERIFY(nvlist_add_string(unsup_feat, 2226 nvpair_name(nvp), "") == 0); 2227 } 2228 } 2229 2230 if (!nvlist_empty(unsup_feat)) { 2231 VERIFY(nvlist_add_nvlist(spa->spa_load_info, 2232 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0); 2233 nvlist_free(unsup_feat); 2234 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, 2235 ENOTSUP)); 2236 } 2237 2238 nvlist_free(unsup_feat); 2239 } 2240 2241 /* 2242 * If the vdev guid sum doesn't match the uberblock, we have an 2243 * incomplete configuration. We first check to see if the pool 2244 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN). 2245 * If it is, defer the vdev_guid_sum check till later so we 2246 * can handle missing vdevs. 2247 */ 2248 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN, 2249 &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE && 2250 rvd->vdev_guid_sum != ub->ub_guid_sum) 2251 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO)); 2252 2253 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) { 2254 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2255 spa_try_repair(spa, config); 2256 spa_config_exit(spa, SCL_ALL, FTAG); 2257 nvlist_free(spa->spa_config_splitting); 2258 spa->spa_config_splitting = NULL; 2259 } 2260 2261 /* 2262 * Initialize internal SPA structures. 2263 */ 2264 spa->spa_state = POOL_STATE_ACTIVE; 2265 spa->spa_ubsync = spa->spa_uberblock; 2266 spa->spa_verify_min_txg = spa->spa_extreme_rewind ? 2267 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1; 2268 spa->spa_first_txg = spa->spa_last_ubsync_txg ? 2269 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1; 2270 spa->spa_claim_max_txg = spa->spa_first_txg; 2271 spa->spa_prev_software_version = ub->ub_software_version; 2272 2273 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool); 2274 if (error) 2275 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2276 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset; 2277 2278 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0) 2279 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2280 2281 if (spa_version(spa) >= SPA_VERSION_FEATURES) { 2282 boolean_t missing_feat_read = B_FALSE; 2283 nvlist_t *unsup_feat, *enabled_feat; 2284 2285 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ, 2286 &spa->spa_feat_for_read_obj) != 0) { 2287 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2288 } 2289 2290 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE, 2291 &spa->spa_feat_for_write_obj) != 0) { 2292 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2293 } 2294 2295 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS, 2296 &spa->spa_feat_desc_obj) != 0) { 2297 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2298 } 2299 2300 enabled_feat = fnvlist_alloc(); 2301 unsup_feat = fnvlist_alloc(); 2302 2303 if (!spa_features_check(spa, B_FALSE, 2304 unsup_feat, enabled_feat)) 2305 missing_feat_read = B_TRUE; 2306 2307 if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) { 2308 if (!spa_features_check(spa, B_TRUE, 2309 unsup_feat, enabled_feat)) { 2310 missing_feat_write = B_TRUE; 2311 } 2312 } 2313 2314 fnvlist_add_nvlist(spa->spa_load_info, 2315 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat); 2316 2317 if (!nvlist_empty(unsup_feat)) { 2318 fnvlist_add_nvlist(spa->spa_load_info, 2319 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat); 2320 } 2321 2322 fnvlist_free(enabled_feat); 2323 fnvlist_free(unsup_feat); 2324 2325 if (!missing_feat_read) { 2326 fnvlist_add_boolean(spa->spa_load_info, 2327 ZPOOL_CONFIG_CAN_RDONLY); 2328 } 2329 2330 /* 2331 * If the state is SPA_LOAD_TRYIMPORT, our objective is 2332 * twofold: to determine whether the pool is available for 2333 * import in read-write mode and (if it is not) whether the 2334 * pool is available for import in read-only mode. If the pool 2335 * is available for import in read-write mode, it is displayed 2336 * as available in userland; if it is not available for import 2337 * in read-only mode, it is displayed as unavailable in 2338 * userland. If the pool is available for import in read-only 2339 * mode but not read-write mode, it is displayed as unavailable 2340 * in userland with a special note that the pool is actually 2341 * available for open in read-only mode. 2342 * 2343 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are 2344 * missing a feature for write, we must first determine whether 2345 * the pool can be opened read-only before returning to 2346 * userland in order to know whether to display the 2347 * abovementioned note. 2348 */ 2349 if (missing_feat_read || (missing_feat_write && 2350 spa_writeable(spa))) { 2351 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, 2352 ENOTSUP)); 2353 } 2354 } 2355 2356 spa->spa_is_initializing = B_TRUE; 2357 error = dsl_pool_open(spa->spa_dsl_pool); 2358 spa->spa_is_initializing = B_FALSE; 2359 if (error != 0) 2360 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2361 2362 if (!mosconfig) { 2363 uint64_t hostid; 2364 nvlist_t *policy = NULL, *nvconfig; 2365 2366 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0) 2367 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2368 2369 if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig, 2370 ZPOOL_CONFIG_HOSTID, &hostid) == 0) { 2371 char *hostname; 2372 unsigned long myhostid = 0; 2373 2374 VERIFY(nvlist_lookup_string(nvconfig, 2375 ZPOOL_CONFIG_HOSTNAME, &hostname) == 0); 2376 2377 #ifdef _KERNEL 2378 myhostid = zone_get_hostid(NULL); 2379 #else /* _KERNEL */ 2380 /* 2381 * We're emulating the system's hostid in userland, so 2382 * we can't use zone_get_hostid(). 2383 */ 2384 (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid); 2385 #endif /* _KERNEL */ 2386 if (hostid != 0 && myhostid != 0 && 2387 hostid != myhostid) { 2388 nvlist_free(nvconfig); 2389 cmn_err(CE_WARN, "pool '%s' could not be " 2390 "loaded as it was last accessed by " 2391 "another system (host: %s hostid: 0x%lx). " 2392 "See: http://illumos.org/msg/ZFS-8000-EY", 2393 spa_name(spa), hostname, 2394 (unsigned long)hostid); 2395 return (SET_ERROR(EBADF)); 2396 } 2397 } 2398 if (nvlist_lookup_nvlist(spa->spa_config, 2399 ZPOOL_REWIND_POLICY, &policy) == 0) 2400 VERIFY(nvlist_add_nvlist(nvconfig, 2401 ZPOOL_REWIND_POLICY, policy) == 0); 2402 2403 spa_config_set(spa, nvconfig); 2404 spa_unload(spa); 2405 spa_deactivate(spa); 2406 spa_activate(spa, orig_mode); 2407 2408 return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE)); 2409 } 2410 2411 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0) 2412 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2413 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj); 2414 if (error != 0) 2415 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2416 2417 /* 2418 * Load the bit that tells us to use the new accounting function 2419 * (raid-z deflation). If we have an older pool, this will not 2420 * be present. 2421 */ 2422 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate); 2423 if (error != 0 && error != ENOENT) 2424 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2425 2426 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION, 2427 &spa->spa_creation_version); 2428 if (error != 0 && error != ENOENT) 2429 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2430 2431 /* 2432 * Load the persistent error log. If we have an older pool, this will 2433 * not be present. 2434 */ 2435 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last); 2436 if (error != 0 && error != ENOENT) 2437 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2438 2439 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB, 2440 &spa->spa_errlog_scrub); 2441 if (error != 0 && error != ENOENT) 2442 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2443 2444 /* 2445 * Load the history object. If we have an older pool, this 2446 * will not be present. 2447 */ 2448 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history); 2449 if (error != 0 && error != ENOENT) 2450 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2451 2452 /* 2453 * If we're assembling the pool from the split-off vdevs of 2454 * an existing pool, we don't want to attach the spares & cache 2455 * devices. 2456 */ 2457 2458 /* 2459 * Load any hot spares for this pool. 2460 */ 2461 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object); 2462 if (error != 0 && error != ENOENT) 2463 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2464 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 2465 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES); 2466 if (load_nvlist(spa, spa->spa_spares.sav_object, 2467 &spa->spa_spares.sav_config) != 0) 2468 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2469 2470 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2471 spa_load_spares(spa); 2472 spa_config_exit(spa, SCL_ALL, FTAG); 2473 } else if (error == 0) { 2474 spa->spa_spares.sav_sync = B_TRUE; 2475 } 2476 2477 /* 2478 * Load any level 2 ARC devices for this pool. 2479 */ 2480 error = spa_dir_prop(spa, DMU_POOL_L2CACHE, 2481 &spa->spa_l2cache.sav_object); 2482 if (error != 0 && error != ENOENT) 2483 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2484 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 2485 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE); 2486 if (load_nvlist(spa, spa->spa_l2cache.sav_object, 2487 &spa->spa_l2cache.sav_config) != 0) 2488 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2489 2490 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2491 spa_load_l2cache(spa); 2492 spa_config_exit(spa, SCL_ALL, FTAG); 2493 } else if (error == 0) { 2494 spa->spa_l2cache.sav_sync = B_TRUE; 2495 } 2496 2497 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 2498 2499 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object); 2500 if (error && error != ENOENT) 2501 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2502 2503 if (error == 0) { 2504 uint64_t autoreplace; 2505 2506 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs); 2507 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace); 2508 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation); 2509 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode); 2510 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand); 2511 spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO, 2512 &spa->spa_dedup_ditto); 2513 2514 spa->spa_autoreplace = (autoreplace != 0); 2515 } 2516 2517 /* 2518 * If the 'autoreplace' property is set, then post a resource notifying 2519 * the ZFS DE that it should not issue any faults for unopenable 2520 * devices. We also iterate over the vdevs, and post a sysevent for any 2521 * unopenable vdevs so that the normal autoreplace handler can take 2522 * over. 2523 */ 2524 if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) { 2525 spa_check_removed(spa->spa_root_vdev); 2526 /* 2527 * For the import case, this is done in spa_import(), because 2528 * at this point we're using the spare definitions from 2529 * the MOS config, not necessarily from the userland config. 2530 */ 2531 if (state != SPA_LOAD_IMPORT) { 2532 spa_aux_check_removed(&spa->spa_spares); 2533 spa_aux_check_removed(&spa->spa_l2cache); 2534 } 2535 } 2536 2537 /* 2538 * Load the vdev state for all toplevel vdevs. 2539 */ 2540 vdev_load(rvd); 2541 2542 /* 2543 * Propagate the leaf DTLs we just loaded all the way up the tree. 2544 */ 2545 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2546 vdev_dtl_reassess(rvd, 0, 0, B_FALSE); 2547 spa_config_exit(spa, SCL_ALL, FTAG); 2548 2549 /* 2550 * Load the DDTs (dedup tables). 2551 */ 2552 error = ddt_load(spa); 2553 if (error != 0) 2554 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2555 2556 spa_update_dspace(spa); 2557 2558 /* 2559 * Validate the config, using the MOS config to fill in any 2560 * information which might be missing. If we fail to validate 2561 * the config then declare the pool unfit for use. If we're 2562 * assembling a pool from a split, the log is not transferred 2563 * over. 2564 */ 2565 if (type != SPA_IMPORT_ASSEMBLE) { 2566 nvlist_t *nvconfig; 2567 2568 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0) 2569 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2570 2571 if (!spa_config_valid(spa, nvconfig)) { 2572 nvlist_free(nvconfig); 2573 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, 2574 ENXIO)); 2575 } 2576 nvlist_free(nvconfig); 2577 2578 /* 2579 * Now that we've validated the config, check the state of the 2580 * root vdev. If it can't be opened, it indicates one or 2581 * more toplevel vdevs are faulted. 2582 */ 2583 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) 2584 return (SET_ERROR(ENXIO)); 2585 2586 if (spa_check_logs(spa)) { 2587 *ereport = FM_EREPORT_ZFS_LOG_REPLAY; 2588 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO)); 2589 } 2590 } 2591 2592 if (missing_feat_write) { 2593 ASSERT(state == SPA_LOAD_TRYIMPORT); 2594 2595 /* 2596 * At this point, we know that we can open the pool in 2597 * read-only mode but not read-write mode. We now have enough 2598 * information and can return to userland. 2599 */ 2600 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP)); 2601 } 2602 2603 /* 2604 * We've successfully opened the pool, verify that we're ready 2605 * to start pushing transactions. 2606 */ 2607 if (state != SPA_LOAD_TRYIMPORT) { 2608 if (error = spa_load_verify(spa)) 2609 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 2610 error)); 2611 } 2612 2613 if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER || 2614 spa->spa_load_max_txg == UINT64_MAX)) { 2615 dmu_tx_t *tx; 2616 int need_update = B_FALSE; 2617 2618 ASSERT(state != SPA_LOAD_TRYIMPORT); 2619 2620 /* 2621 * Claim log blocks that haven't been committed yet. 2622 * This must all happen in a single txg. 2623 * Note: spa_claim_max_txg is updated by spa_claim_notify(), 2624 * invoked from zil_claim_log_block()'s i/o done callback. 2625 * Price of rollback is that we abandon the log. 2626 */ 2627 spa->spa_claiming = B_TRUE; 2628 2629 tx = dmu_tx_create_assigned(spa_get_dsl(spa), 2630 spa_first_txg(spa)); 2631 (void) dmu_objset_find(spa_name(spa), 2632 zil_claim, tx, DS_FIND_CHILDREN); 2633 dmu_tx_commit(tx); 2634 2635 spa->spa_claiming = B_FALSE; 2636 2637 spa_set_log_state(spa, SPA_LOG_GOOD); 2638 spa->spa_sync_on = B_TRUE; 2639 txg_sync_start(spa->spa_dsl_pool); 2640 2641 /* 2642 * Wait for all claims to sync. We sync up to the highest 2643 * claimed log block birth time so that claimed log blocks 2644 * don't appear to be from the future. spa_claim_max_txg 2645 * will have been set for us by either zil_check_log_chain() 2646 * (invoked from spa_check_logs()) or zil_claim() above. 2647 */ 2648 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg); 2649 2650 /* 2651 * If the config cache is stale, or we have uninitialized 2652 * metaslabs (see spa_vdev_add()), then update the config. 2653 * 2654 * If this is a verbatim import, trust the current 2655 * in-core spa_config and update the disk labels. 2656 */ 2657 if (config_cache_txg != spa->spa_config_txg || 2658 state == SPA_LOAD_IMPORT || 2659 state == SPA_LOAD_RECOVER || 2660 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM)) 2661 need_update = B_TRUE; 2662 2663 for (int c = 0; c < rvd->vdev_children; c++) 2664 if (rvd->vdev_child[c]->vdev_ms_array == 0) 2665 need_update = B_TRUE; 2666 2667 /* 2668 * Update the config cache asychronously in case we're the 2669 * root pool, in which case the config cache isn't writable yet. 2670 */ 2671 if (need_update) 2672 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 2673 2674 /* 2675 * Check all DTLs to see if anything needs resilvering. 2676 */ 2677 if (!dsl_scan_resilvering(spa->spa_dsl_pool) && 2678 vdev_resilver_needed(rvd, NULL, NULL)) 2679 spa_async_request(spa, SPA_ASYNC_RESILVER); 2680 2681 /* 2682 * Log the fact that we booted up (so that we can detect if 2683 * we rebooted in the middle of an operation). 2684 */ 2685 spa_history_log_version(spa, "open"); 2686 2687 /* 2688 * Delete any inconsistent datasets. 2689 */ 2690 (void) dmu_objset_find(spa_name(spa), 2691 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN); 2692 2693 /* 2694 * Clean up any stale temporary dataset userrefs. 2695 */ 2696 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool); 2697 } 2698 2699 return (0); 2700 } 2701 2702 static int 2703 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig) 2704 { 2705 int mode = spa->spa_mode; 2706 2707 spa_unload(spa); 2708 spa_deactivate(spa); 2709 2710 spa->spa_load_max_txg--; 2711 2712 spa_activate(spa, mode); 2713 spa_async_suspend(spa); 2714 2715 return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig)); 2716 } 2717 2718 /* 2719 * If spa_load() fails this function will try loading prior txg's. If 2720 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool 2721 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this 2722 * function will not rewind the pool and will return the same error as 2723 * spa_load(). 2724 */ 2725 static int 2726 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig, 2727 uint64_t max_request, int rewind_flags) 2728 { 2729 nvlist_t *loadinfo = NULL; 2730 nvlist_t *config = NULL; 2731 int load_error, rewind_error; 2732 uint64_t safe_rewind_txg; 2733 uint64_t min_txg; 2734 2735 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) { 2736 spa->spa_load_max_txg = spa->spa_load_txg; 2737 spa_set_log_state(spa, SPA_LOG_CLEAR); 2738 } else { 2739 spa->spa_load_max_txg = max_request; 2740 } 2741 2742 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING, 2743 mosconfig); 2744 if (load_error == 0) 2745 return (0); 2746 2747 if (spa->spa_root_vdev != NULL) 2748 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 2749 2750 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg; 2751 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp; 2752 2753 if (rewind_flags & ZPOOL_NEVER_REWIND) { 2754 nvlist_free(config); 2755 return (load_error); 2756 } 2757 2758 if (state == SPA_LOAD_RECOVER) { 2759 /* Price of rolling back is discarding txgs, including log */ 2760 spa_set_log_state(spa, SPA_LOG_CLEAR); 2761 } else { 2762 /* 2763 * If we aren't rolling back save the load info from our first 2764 * import attempt so that we can restore it after attempting 2765 * to rewind. 2766 */ 2767 loadinfo = spa->spa_load_info; 2768 spa->spa_load_info = fnvlist_alloc(); 2769 } 2770 2771 spa->spa_load_max_txg = spa->spa_last_ubsync_txg; 2772 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE; 2773 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ? 2774 TXG_INITIAL : safe_rewind_txg; 2775 2776 /* 2777 * Continue as long as we're finding errors, we're still within 2778 * the acceptable rewind range, and we're still finding uberblocks 2779 */ 2780 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg && 2781 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) { 2782 if (spa->spa_load_max_txg < safe_rewind_txg) 2783 spa->spa_extreme_rewind = B_TRUE; 2784 rewind_error = spa_load_retry(spa, state, mosconfig); 2785 } 2786 2787 spa->spa_extreme_rewind = B_FALSE; 2788 spa->spa_load_max_txg = UINT64_MAX; 2789 2790 if (config && (rewind_error || state != SPA_LOAD_RECOVER)) 2791 spa_config_set(spa, config); 2792 2793 if (state == SPA_LOAD_RECOVER) { 2794 ASSERT3P(loadinfo, ==, NULL); 2795 return (rewind_error); 2796 } else { 2797 /* Store the rewind info as part of the initial load info */ 2798 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO, 2799 spa->spa_load_info); 2800 2801 /* Restore the initial load info */ 2802 fnvlist_free(spa->spa_load_info); 2803 spa->spa_load_info = loadinfo; 2804 2805 return (load_error); 2806 } 2807 } 2808 2809 /* 2810 * Pool Open/Import 2811 * 2812 * The import case is identical to an open except that the configuration is sent 2813 * down from userland, instead of grabbed from the configuration cache. For the 2814 * case of an open, the pool configuration will exist in the 2815 * POOL_STATE_UNINITIALIZED state. 2816 * 2817 * The stats information (gen/count/ustats) is used to gather vdev statistics at 2818 * the same time open the pool, without having to keep around the spa_t in some 2819 * ambiguous state. 2820 */ 2821 static int 2822 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy, 2823 nvlist_t **config) 2824 { 2825 spa_t *spa; 2826 spa_load_state_t state = SPA_LOAD_OPEN; 2827 int error; 2828 int locked = B_FALSE; 2829 2830 *spapp = NULL; 2831 2832 /* 2833 * As disgusting as this is, we need to support recursive calls to this 2834 * function because dsl_dir_open() is called during spa_load(), and ends 2835 * up calling spa_open() again. The real fix is to figure out how to 2836 * avoid dsl_dir_open() calling this in the first place. 2837 */ 2838 if (mutex_owner(&spa_namespace_lock) != curthread) { 2839 mutex_enter(&spa_namespace_lock); 2840 locked = B_TRUE; 2841 } 2842 2843 if ((spa = spa_lookup(pool)) == NULL) { 2844 if (locked) 2845 mutex_exit(&spa_namespace_lock); 2846 return (SET_ERROR(ENOENT)); 2847 } 2848 2849 if (spa->spa_state == POOL_STATE_UNINITIALIZED) { 2850 zpool_rewind_policy_t policy; 2851 2852 zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config, 2853 &policy); 2854 if (policy.zrp_request & ZPOOL_DO_REWIND) 2855 state = SPA_LOAD_RECOVER; 2856 2857 spa_activate(spa, spa_mode_global); 2858 2859 if (state != SPA_LOAD_RECOVER) 2860 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 2861 2862 error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg, 2863 policy.zrp_request); 2864 2865 if (error == EBADF) { 2866 /* 2867 * If vdev_validate() returns failure (indicated by 2868 * EBADF), it indicates that one of the vdevs indicates 2869 * that the pool has been exported or destroyed. If 2870 * this is the case, the config cache is out of sync and 2871 * we should remove the pool from the namespace. 2872 */ 2873 spa_unload(spa); 2874 spa_deactivate(spa); 2875 spa_config_sync(spa, B_TRUE, B_TRUE); 2876 spa_remove(spa); 2877 if (locked) 2878 mutex_exit(&spa_namespace_lock); 2879 return (SET_ERROR(ENOENT)); 2880 } 2881 2882 if (error) { 2883 /* 2884 * We can't open the pool, but we still have useful 2885 * information: the state of each vdev after the 2886 * attempted vdev_open(). Return this to the user. 2887 */ 2888 if (config != NULL && spa->spa_config) { 2889 VERIFY(nvlist_dup(spa->spa_config, config, 2890 KM_SLEEP) == 0); 2891 VERIFY(nvlist_add_nvlist(*config, 2892 ZPOOL_CONFIG_LOAD_INFO, 2893 spa->spa_load_info) == 0); 2894 } 2895 spa_unload(spa); 2896 spa_deactivate(spa); 2897 spa->spa_last_open_failed = error; 2898 if (locked) 2899 mutex_exit(&spa_namespace_lock); 2900 *spapp = NULL; 2901 return (error); 2902 } 2903 } 2904 2905 spa_open_ref(spa, tag); 2906 2907 if (config != NULL) 2908 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 2909 2910 /* 2911 * If we've recovered the pool, pass back any information we 2912 * gathered while doing the load. 2913 */ 2914 if (state == SPA_LOAD_RECOVER) { 2915 VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO, 2916 spa->spa_load_info) == 0); 2917 } 2918 2919 if (locked) { 2920 spa->spa_last_open_failed = 0; 2921 spa->spa_last_ubsync_txg = 0; 2922 spa->spa_load_txg = 0; 2923 mutex_exit(&spa_namespace_lock); 2924 } 2925 2926 *spapp = spa; 2927 2928 return (0); 2929 } 2930 2931 int 2932 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy, 2933 nvlist_t **config) 2934 { 2935 return (spa_open_common(name, spapp, tag, policy, config)); 2936 } 2937 2938 int 2939 spa_open(const char *name, spa_t **spapp, void *tag) 2940 { 2941 return (spa_open_common(name, spapp, tag, NULL, NULL)); 2942 } 2943 2944 /* 2945 * Lookup the given spa_t, incrementing the inject count in the process, 2946 * preventing it from being exported or destroyed. 2947 */ 2948 spa_t * 2949 spa_inject_addref(char *name) 2950 { 2951 spa_t *spa; 2952 2953 mutex_enter(&spa_namespace_lock); 2954 if ((spa = spa_lookup(name)) == NULL) { 2955 mutex_exit(&spa_namespace_lock); 2956 return (NULL); 2957 } 2958 spa->spa_inject_ref++; 2959 mutex_exit(&spa_namespace_lock); 2960 2961 return (spa); 2962 } 2963 2964 void 2965 spa_inject_delref(spa_t *spa) 2966 { 2967 mutex_enter(&spa_namespace_lock); 2968 spa->spa_inject_ref--; 2969 mutex_exit(&spa_namespace_lock); 2970 } 2971 2972 /* 2973 * Add spares device information to the nvlist. 2974 */ 2975 static void 2976 spa_add_spares(spa_t *spa, nvlist_t *config) 2977 { 2978 nvlist_t **spares; 2979 uint_t i, nspares; 2980 nvlist_t *nvroot; 2981 uint64_t guid; 2982 vdev_stat_t *vs; 2983 uint_t vsc; 2984 uint64_t pool; 2985 2986 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 2987 2988 if (spa->spa_spares.sav_count == 0) 2989 return; 2990 2991 VERIFY(nvlist_lookup_nvlist(config, 2992 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 2993 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 2994 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 2995 if (nspares != 0) { 2996 VERIFY(nvlist_add_nvlist_array(nvroot, 2997 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 2998 VERIFY(nvlist_lookup_nvlist_array(nvroot, 2999 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 3000 3001 /* 3002 * Go through and find any spares which have since been 3003 * repurposed as an active spare. If this is the case, update 3004 * their status appropriately. 3005 */ 3006 for (i = 0; i < nspares; i++) { 3007 VERIFY(nvlist_lookup_uint64(spares[i], 3008 ZPOOL_CONFIG_GUID, &guid) == 0); 3009 if (spa_spare_exists(guid, &pool, NULL) && 3010 pool != 0ULL) { 3011 VERIFY(nvlist_lookup_uint64_array( 3012 spares[i], ZPOOL_CONFIG_VDEV_STATS, 3013 (uint64_t **)&vs, &vsc) == 0); 3014 vs->vs_state = VDEV_STATE_CANT_OPEN; 3015 vs->vs_aux = VDEV_AUX_SPARED; 3016 } 3017 } 3018 } 3019 } 3020 3021 /* 3022 * Add l2cache device information to the nvlist, including vdev stats. 3023 */ 3024 static void 3025 spa_add_l2cache(spa_t *spa, nvlist_t *config) 3026 { 3027 nvlist_t **l2cache; 3028 uint_t i, j, nl2cache; 3029 nvlist_t *nvroot; 3030 uint64_t guid; 3031 vdev_t *vd; 3032 vdev_stat_t *vs; 3033 uint_t vsc; 3034 3035 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 3036 3037 if (spa->spa_l2cache.sav_count == 0) 3038 return; 3039 3040 VERIFY(nvlist_lookup_nvlist(config, 3041 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 3042 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 3043 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 3044 if (nl2cache != 0) { 3045 VERIFY(nvlist_add_nvlist_array(nvroot, 3046 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 3047 VERIFY(nvlist_lookup_nvlist_array(nvroot, 3048 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 3049 3050 /* 3051 * Update level 2 cache device stats. 3052 */ 3053 3054 for (i = 0; i < nl2cache; i++) { 3055 VERIFY(nvlist_lookup_uint64(l2cache[i], 3056 ZPOOL_CONFIG_GUID, &guid) == 0); 3057 3058 vd = NULL; 3059 for (j = 0; j < spa->spa_l2cache.sav_count; j++) { 3060 if (guid == 3061 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) { 3062 vd = spa->spa_l2cache.sav_vdevs[j]; 3063 break; 3064 } 3065 } 3066 ASSERT(vd != NULL); 3067 3068 VERIFY(nvlist_lookup_uint64_array(l2cache[i], 3069 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc) 3070 == 0); 3071 vdev_get_stats(vd, vs); 3072 } 3073 } 3074 } 3075 3076 static void 3077 spa_add_feature_stats(spa_t *spa, nvlist_t *config) 3078 { 3079 nvlist_t *features; 3080 zap_cursor_t zc; 3081 zap_attribute_t za; 3082 3083 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 3084 VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0); 3085 3086 if (spa->spa_feat_for_read_obj != 0) { 3087 for (zap_cursor_init(&zc, spa->spa_meta_objset, 3088 spa->spa_feat_for_read_obj); 3089 zap_cursor_retrieve(&zc, &za) == 0; 3090 zap_cursor_advance(&zc)) { 3091 ASSERT(za.za_integer_length == sizeof (uint64_t) && 3092 za.za_num_integers == 1); 3093 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name, 3094 za.za_first_integer)); 3095 } 3096 zap_cursor_fini(&zc); 3097 } 3098 3099 if (spa->spa_feat_for_write_obj != 0) { 3100 for (zap_cursor_init(&zc, spa->spa_meta_objset, 3101 spa->spa_feat_for_write_obj); 3102 zap_cursor_retrieve(&zc, &za) == 0; 3103 zap_cursor_advance(&zc)) { 3104 ASSERT(za.za_integer_length == sizeof (uint64_t) && 3105 za.za_num_integers == 1); 3106 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name, 3107 za.za_first_integer)); 3108 } 3109 zap_cursor_fini(&zc); 3110 } 3111 3112 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS, 3113 features) == 0); 3114 nvlist_free(features); 3115 } 3116 3117 int 3118 spa_get_stats(const char *name, nvlist_t **config, 3119 char *altroot, size_t buflen) 3120 { 3121 int error; 3122 spa_t *spa; 3123 3124 *config = NULL; 3125 error = spa_open_common(name, &spa, FTAG, NULL, config); 3126 3127 if (spa != NULL) { 3128 /* 3129 * This still leaves a window of inconsistency where the spares 3130 * or l2cache devices could change and the config would be 3131 * self-inconsistent. 3132 */ 3133 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 3134 3135 if (*config != NULL) { 3136 uint64_t loadtimes[2]; 3137 3138 loadtimes[0] = spa->spa_loaded_ts.tv_sec; 3139 loadtimes[1] = spa->spa_loaded_ts.tv_nsec; 3140 VERIFY(nvlist_add_uint64_array(*config, 3141 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0); 3142 3143 VERIFY(nvlist_add_uint64(*config, 3144 ZPOOL_CONFIG_ERRCOUNT, 3145 spa_get_errlog_size(spa)) == 0); 3146 3147 if (spa_suspended(spa)) 3148 VERIFY(nvlist_add_uint64(*config, 3149 ZPOOL_CONFIG_SUSPENDED, 3150 spa->spa_failmode) == 0); 3151 3152 spa_add_spares(spa, *config); 3153 spa_add_l2cache(spa, *config); 3154 spa_add_feature_stats(spa, *config); 3155 } 3156 } 3157 3158 /* 3159 * We want to get the alternate root even for faulted pools, so we cheat 3160 * and call spa_lookup() directly. 3161 */ 3162 if (altroot) { 3163 if (spa == NULL) { 3164 mutex_enter(&spa_namespace_lock); 3165 spa = spa_lookup(name); 3166 if (spa) 3167 spa_altroot(spa, altroot, buflen); 3168 else 3169 altroot[0] = '\0'; 3170 spa = NULL; 3171 mutex_exit(&spa_namespace_lock); 3172 } else { 3173 spa_altroot(spa, altroot, buflen); 3174 } 3175 } 3176 3177 if (spa != NULL) { 3178 spa_config_exit(spa, SCL_CONFIG, FTAG); 3179 spa_close(spa, FTAG); 3180 } 3181 3182 return (error); 3183 } 3184 3185 /* 3186 * Validate that the auxiliary device array is well formed. We must have an 3187 * array of nvlists, each which describes a valid leaf vdev. If this is an 3188 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be 3189 * specified, as long as they are well-formed. 3190 */ 3191 static int 3192 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode, 3193 spa_aux_vdev_t *sav, const char *config, uint64_t version, 3194 vdev_labeltype_t label) 3195 { 3196 nvlist_t **dev; 3197 uint_t i, ndev; 3198 vdev_t *vd; 3199 int error; 3200 3201 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 3202 3203 /* 3204 * It's acceptable to have no devs specified. 3205 */ 3206 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0) 3207 return (0); 3208 3209 if (ndev == 0) 3210 return (SET_ERROR(EINVAL)); 3211 3212 /* 3213 * Make sure the pool is formatted with a version that supports this 3214 * device type. 3215 */ 3216 if (spa_version(spa) < version) 3217 return (SET_ERROR(ENOTSUP)); 3218 3219 /* 3220 * Set the pending device list so we correctly handle device in-use 3221 * checking. 3222 */ 3223 sav->sav_pending = dev; 3224 sav->sav_npending = ndev; 3225 3226 for (i = 0; i < ndev; i++) { 3227 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0, 3228 mode)) != 0) 3229 goto out; 3230 3231 if (!vd->vdev_ops->vdev_op_leaf) { 3232 vdev_free(vd); 3233 error = SET_ERROR(EINVAL); 3234 goto out; 3235 } 3236 3237 /* 3238 * The L2ARC currently only supports disk devices in 3239 * kernel context. For user-level testing, we allow it. 3240 */ 3241 #ifdef _KERNEL 3242 if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) && 3243 strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) { 3244 error = SET_ERROR(ENOTBLK); 3245 vdev_free(vd); 3246 goto out; 3247 } 3248 #endif 3249 vd->vdev_top = vd; 3250 3251 if ((error = vdev_open(vd)) == 0 && 3252 (error = vdev_label_init(vd, crtxg, label)) == 0) { 3253 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID, 3254 vd->vdev_guid) == 0); 3255 } 3256 3257 vdev_free(vd); 3258 3259 if (error && 3260 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE)) 3261 goto out; 3262 else 3263 error = 0; 3264 } 3265 3266 out: 3267 sav->sav_pending = NULL; 3268 sav->sav_npending = 0; 3269 return (error); 3270 } 3271 3272 static int 3273 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode) 3274 { 3275 int error; 3276 3277 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 3278 3279 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode, 3280 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES, 3281 VDEV_LABEL_SPARE)) != 0) { 3282 return (error); 3283 } 3284 3285 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode, 3286 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE, 3287 VDEV_LABEL_L2CACHE)); 3288 } 3289 3290 static void 3291 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs, 3292 const char *config) 3293 { 3294 int i; 3295 3296 if (sav->sav_config != NULL) { 3297 nvlist_t **olddevs; 3298 uint_t oldndevs; 3299 nvlist_t **newdevs; 3300 3301 /* 3302 * Generate new dev list by concatentating with the 3303 * current dev list. 3304 */ 3305 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config, 3306 &olddevs, &oldndevs) == 0); 3307 3308 newdevs = kmem_alloc(sizeof (void *) * 3309 (ndevs + oldndevs), KM_SLEEP); 3310 for (i = 0; i < oldndevs; i++) 3311 VERIFY(nvlist_dup(olddevs[i], &newdevs[i], 3312 KM_SLEEP) == 0); 3313 for (i = 0; i < ndevs; i++) 3314 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs], 3315 KM_SLEEP) == 0); 3316 3317 VERIFY(nvlist_remove(sav->sav_config, config, 3318 DATA_TYPE_NVLIST_ARRAY) == 0); 3319 3320 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 3321 config, newdevs, ndevs + oldndevs) == 0); 3322 for (i = 0; i < oldndevs + ndevs; i++) 3323 nvlist_free(newdevs[i]); 3324 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *)); 3325 } else { 3326 /* 3327 * Generate a new dev list. 3328 */ 3329 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME, 3330 KM_SLEEP) == 0); 3331 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config, 3332 devs, ndevs) == 0); 3333 } 3334 } 3335 3336 /* 3337 * Stop and drop level 2 ARC devices 3338 */ 3339 void 3340 spa_l2cache_drop(spa_t *spa) 3341 { 3342 vdev_t *vd; 3343 int i; 3344 spa_aux_vdev_t *sav = &spa->spa_l2cache; 3345 3346 for (i = 0; i < sav->sav_count; i++) { 3347 uint64_t pool; 3348 3349 vd = sav->sav_vdevs[i]; 3350 ASSERT(vd != NULL); 3351 3352 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 3353 pool != 0ULL && l2arc_vdev_present(vd)) 3354 l2arc_remove_vdev(vd); 3355 } 3356 } 3357 3358 /* 3359 * Pool Creation 3360 */ 3361 int 3362 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props, 3363 nvlist_t *zplprops) 3364 { 3365 spa_t *spa; 3366 char *altroot = NULL; 3367 vdev_t *rvd; 3368 dsl_pool_t *dp; 3369 dmu_tx_t *tx; 3370 int error = 0; 3371 uint64_t txg = TXG_INITIAL; 3372 nvlist_t **spares, **l2cache; 3373 uint_t nspares, nl2cache; 3374 uint64_t version, obj; 3375 boolean_t has_features; 3376 3377 /* 3378 * If this pool already exists, return failure. 3379 */ 3380 mutex_enter(&spa_namespace_lock); 3381 if (spa_lookup(pool) != NULL) { 3382 mutex_exit(&spa_namespace_lock); 3383 return (SET_ERROR(EEXIST)); 3384 } 3385 3386 /* 3387 * Allocate a new spa_t structure. 3388 */ 3389 (void) nvlist_lookup_string(props, 3390 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 3391 spa = spa_add(pool, NULL, altroot); 3392 spa_activate(spa, spa_mode_global); 3393 3394 if (props && (error = spa_prop_validate(spa, props))) { 3395 spa_deactivate(spa); 3396 spa_remove(spa); 3397 mutex_exit(&spa_namespace_lock); 3398 return (error); 3399 } 3400 3401 has_features = B_FALSE; 3402 for (nvpair_t *elem = nvlist_next_nvpair(props, NULL); 3403 elem != NULL; elem = nvlist_next_nvpair(props, elem)) { 3404 if (zpool_prop_feature(nvpair_name(elem))) 3405 has_features = B_TRUE; 3406 } 3407 3408 if (has_features || nvlist_lookup_uint64(props, 3409 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) { 3410 version = SPA_VERSION; 3411 } 3412 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 3413 3414 spa->spa_first_txg = txg; 3415 spa->spa_uberblock.ub_txg = txg - 1; 3416 spa->spa_uberblock.ub_version = version; 3417 spa->spa_ubsync = spa->spa_uberblock; 3418 3419 /* 3420 * Create "The Godfather" zio to hold all async IOs 3421 */ 3422 spa->spa_async_zio_root = zio_root(spa, NULL, NULL, 3423 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER); 3424 3425 /* 3426 * Create the root vdev. 3427 */ 3428 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3429 3430 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD); 3431 3432 ASSERT(error != 0 || rvd != NULL); 3433 ASSERT(error != 0 || spa->spa_root_vdev == rvd); 3434 3435 if (error == 0 && !zfs_allocatable_devs(nvroot)) 3436 error = SET_ERROR(EINVAL); 3437 3438 if (error == 0 && 3439 (error = vdev_create(rvd, txg, B_FALSE)) == 0 && 3440 (error = spa_validate_aux(spa, nvroot, txg, 3441 VDEV_ALLOC_ADD)) == 0) { 3442 for (int c = 0; c < rvd->vdev_children; c++) { 3443 vdev_metaslab_set_size(rvd->vdev_child[c]); 3444 vdev_expand(rvd->vdev_child[c], txg); 3445 } 3446 } 3447 3448 spa_config_exit(spa, SCL_ALL, FTAG); 3449 3450 if (error != 0) { 3451 spa_unload(spa); 3452 spa_deactivate(spa); 3453 spa_remove(spa); 3454 mutex_exit(&spa_namespace_lock); 3455 return (error); 3456 } 3457 3458 /* 3459 * Get the list of spares, if specified. 3460 */ 3461 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 3462 &spares, &nspares) == 0) { 3463 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME, 3464 KM_SLEEP) == 0); 3465 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 3466 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 3467 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3468 spa_load_spares(spa); 3469 spa_config_exit(spa, SCL_ALL, FTAG); 3470 spa->spa_spares.sav_sync = B_TRUE; 3471 } 3472 3473 /* 3474 * Get the list of level 2 cache devices, if specified. 3475 */ 3476 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 3477 &l2cache, &nl2cache) == 0) { 3478 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 3479 NV_UNIQUE_NAME, KM_SLEEP) == 0); 3480 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 3481 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 3482 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3483 spa_load_l2cache(spa); 3484 spa_config_exit(spa, SCL_ALL, FTAG); 3485 spa->spa_l2cache.sav_sync = B_TRUE; 3486 } 3487 3488 spa->spa_is_initializing = B_TRUE; 3489 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg); 3490 spa->spa_meta_objset = dp->dp_meta_objset; 3491 spa->spa_is_initializing = B_FALSE; 3492 3493 /* 3494 * Create DDTs (dedup tables). 3495 */ 3496 ddt_create(spa); 3497 3498 spa_update_dspace(spa); 3499 3500 tx = dmu_tx_create_assigned(dp, txg); 3501 3502 /* 3503 * Create the pool config object. 3504 */ 3505 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset, 3506 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE, 3507 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx); 3508 3509 if (zap_add(spa->spa_meta_objset, 3510 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG, 3511 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) { 3512 cmn_err(CE_PANIC, "failed to add pool config"); 3513 } 3514 3515 if (spa_version(spa) >= SPA_VERSION_FEATURES) 3516 spa_feature_create_zap_objects(spa, tx); 3517 3518 if (zap_add(spa->spa_meta_objset, 3519 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION, 3520 sizeof (uint64_t), 1, &version, tx) != 0) { 3521 cmn_err(CE_PANIC, "failed to add pool version"); 3522 } 3523 3524 /* Newly created pools with the right version are always deflated. */ 3525 if (version >= SPA_VERSION_RAIDZ_DEFLATE) { 3526 spa->spa_deflate = TRUE; 3527 if (zap_add(spa->spa_meta_objset, 3528 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 3529 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) { 3530 cmn_err(CE_PANIC, "failed to add deflate"); 3531 } 3532 } 3533 3534 /* 3535 * Create the deferred-free bpobj. Turn off compression 3536 * because sync-to-convergence takes longer if the blocksize 3537 * keeps changing. 3538 */ 3539 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx); 3540 dmu_object_set_compress(spa->spa_meta_objset, obj, 3541 ZIO_COMPRESS_OFF, tx); 3542 if (zap_add(spa->spa_meta_objset, 3543 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ, 3544 sizeof (uint64_t), 1, &obj, tx) != 0) { 3545 cmn_err(CE_PANIC, "failed to add bpobj"); 3546 } 3547 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj, 3548 spa->spa_meta_objset, obj)); 3549 3550 /* 3551 * Create the pool's history object. 3552 */ 3553 if (version >= SPA_VERSION_ZPOOL_HISTORY) 3554 spa_history_create_obj(spa, tx); 3555 3556 /* 3557 * Set pool properties. 3558 */ 3559 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS); 3560 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 3561 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE); 3562 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND); 3563 3564 if (props != NULL) { 3565 spa_configfile_set(spa, props, B_FALSE); 3566 spa_sync_props(props, tx); 3567 } 3568 3569 dmu_tx_commit(tx); 3570 3571 spa->spa_sync_on = B_TRUE; 3572 txg_sync_start(spa->spa_dsl_pool); 3573 3574 /* 3575 * We explicitly wait for the first transaction to complete so that our 3576 * bean counters are appropriately updated. 3577 */ 3578 txg_wait_synced(spa->spa_dsl_pool, txg); 3579 3580 spa_config_sync(spa, B_FALSE, B_TRUE); 3581 3582 spa_history_log_version(spa, "create"); 3583 3584 spa->spa_minref = refcount_count(&spa->spa_refcount); 3585 3586 mutex_exit(&spa_namespace_lock); 3587 3588 return (0); 3589 } 3590 3591 #ifdef _KERNEL 3592 /* 3593 * Get the root pool information from the root disk, then import the root pool 3594 * during the system boot up time. 3595 */ 3596 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **); 3597 3598 static nvlist_t * 3599 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid) 3600 { 3601 nvlist_t *config; 3602 nvlist_t *nvtop, *nvroot; 3603 uint64_t pgid; 3604 3605 if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0) 3606 return (NULL); 3607 3608 /* 3609 * Add this top-level vdev to the child array. 3610 */ 3611 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3612 &nvtop) == 0); 3613 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 3614 &pgid) == 0); 3615 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0); 3616 3617 /* 3618 * Put this pool's top-level vdevs into a root vdev. 3619 */ 3620 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 3621 VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, 3622 VDEV_TYPE_ROOT) == 0); 3623 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0); 3624 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0); 3625 VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 3626 &nvtop, 1) == 0); 3627 3628 /* 3629 * Replace the existing vdev_tree with the new root vdev in 3630 * this pool's configuration (remove the old, add the new). 3631 */ 3632 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0); 3633 nvlist_free(nvroot); 3634 return (config); 3635 } 3636 3637 /* 3638 * Walk the vdev tree and see if we can find a device with "better" 3639 * configuration. A configuration is "better" if the label on that 3640 * device has a more recent txg. 3641 */ 3642 static void 3643 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg) 3644 { 3645 for (int c = 0; c < vd->vdev_children; c++) 3646 spa_alt_rootvdev(vd->vdev_child[c], avd, txg); 3647 3648 if (vd->vdev_ops->vdev_op_leaf) { 3649 nvlist_t *label; 3650 uint64_t label_txg; 3651 3652 if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid, 3653 &label) != 0) 3654 return; 3655 3656 VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG, 3657 &label_txg) == 0); 3658 3659 /* 3660 * Do we have a better boot device? 3661 */ 3662 if (label_txg > *txg) { 3663 *txg = label_txg; 3664 *avd = vd; 3665 } 3666 nvlist_free(label); 3667 } 3668 } 3669 3670 /* 3671 * Import a root pool. 3672 * 3673 * For x86. devpath_list will consist of devid and/or physpath name of 3674 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a"). 3675 * The GRUB "findroot" command will return the vdev we should boot. 3676 * 3677 * For Sparc, devpath_list consists the physpath name of the booting device 3678 * no matter the rootpool is a single device pool or a mirrored pool. 3679 * e.g. 3680 * "/pci@1f,0/ide@d/disk@0,0:a" 3681 */ 3682 int 3683 spa_import_rootpool(char *devpath, char *devid) 3684 { 3685 spa_t *spa; 3686 vdev_t *rvd, *bvd, *avd = NULL; 3687 nvlist_t *config, *nvtop; 3688 uint64_t guid, txg; 3689 char *pname; 3690 int error; 3691 3692 /* 3693 * Read the label from the boot device and generate a configuration. 3694 */ 3695 config = spa_generate_rootconf(devpath, devid, &guid); 3696 #if defined(_OBP) && defined(_KERNEL) 3697 if (config == NULL) { 3698 if (strstr(devpath, "/iscsi/ssd") != NULL) { 3699 /* iscsi boot */ 3700 get_iscsi_bootpath_phy(devpath); 3701 config = spa_generate_rootconf(devpath, devid, &guid); 3702 } 3703 } 3704 #endif 3705 if (config == NULL) { 3706 cmn_err(CE_NOTE, "Cannot read the pool label from '%s'", 3707 devpath); 3708 return (SET_ERROR(EIO)); 3709 } 3710 3711 VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 3712 &pname) == 0); 3713 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0); 3714 3715 mutex_enter(&spa_namespace_lock); 3716 if ((spa = spa_lookup(pname)) != NULL) { 3717 /* 3718 * Remove the existing root pool from the namespace so that we 3719 * can replace it with the correct config we just read in. 3720 */ 3721 spa_remove(spa); 3722 } 3723 3724 spa = spa_add(pname, config, NULL); 3725 spa->spa_is_root = B_TRUE; 3726 spa->spa_import_flags = ZFS_IMPORT_VERBATIM; 3727 3728 /* 3729 * Build up a vdev tree based on the boot device's label config. 3730 */ 3731 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3732 &nvtop) == 0); 3733 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3734 error = spa_config_parse(spa, &rvd, nvtop, NULL, 0, 3735 VDEV_ALLOC_ROOTPOOL); 3736 spa_config_exit(spa, SCL_ALL, FTAG); 3737 if (error) { 3738 mutex_exit(&spa_namespace_lock); 3739 nvlist_free(config); 3740 cmn_err(CE_NOTE, "Can not parse the config for pool '%s'", 3741 pname); 3742 return (error); 3743 } 3744 3745 /* 3746 * Get the boot vdev. 3747 */ 3748 if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) { 3749 cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu", 3750 (u_longlong_t)guid); 3751 error = SET_ERROR(ENOENT); 3752 goto out; 3753 } 3754 3755 /* 3756 * Determine if there is a better boot device. 3757 */ 3758 avd = bvd; 3759 spa_alt_rootvdev(rvd, &avd, &txg); 3760 if (avd != bvd) { 3761 cmn_err(CE_NOTE, "The boot device is 'degraded'. Please " 3762 "try booting from '%s'", avd->vdev_path); 3763 error = SET_ERROR(EINVAL); 3764 goto out; 3765 } 3766 3767 /* 3768 * If the boot device is part of a spare vdev then ensure that 3769 * we're booting off the active spare. 3770 */ 3771 if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops && 3772 !bvd->vdev_isspare) { 3773 cmn_err(CE_NOTE, "The boot device is currently spared. Please " 3774 "try booting from '%s'", 3775 bvd->vdev_parent-> 3776 vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path); 3777 error = SET_ERROR(EINVAL); 3778 goto out; 3779 } 3780 3781 error = 0; 3782 out: 3783 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3784 vdev_free(rvd); 3785 spa_config_exit(spa, SCL_ALL, FTAG); 3786 mutex_exit(&spa_namespace_lock); 3787 3788 nvlist_free(config); 3789 return (error); 3790 } 3791 3792 #endif 3793 3794 /* 3795 * Import a non-root pool into the system. 3796 */ 3797 int 3798 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags) 3799 { 3800 spa_t *spa; 3801 char *altroot = NULL; 3802 spa_load_state_t state = SPA_LOAD_IMPORT; 3803 zpool_rewind_policy_t policy; 3804 uint64_t mode = spa_mode_global; 3805 uint64_t readonly = B_FALSE; 3806 int error; 3807 nvlist_t *nvroot; 3808 nvlist_t **spares, **l2cache; 3809 uint_t nspares, nl2cache; 3810 3811 /* 3812 * If a pool with this name exists, return failure. 3813 */ 3814 mutex_enter(&spa_namespace_lock); 3815 if (spa_lookup(pool) != NULL) { 3816 mutex_exit(&spa_namespace_lock); 3817 return (SET_ERROR(EEXIST)); 3818 } 3819 3820 /* 3821 * Create and initialize the spa structure. 3822 */ 3823 (void) nvlist_lookup_string(props, 3824 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 3825 (void) nvlist_lookup_uint64(props, 3826 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly); 3827 if (readonly) 3828 mode = FREAD; 3829 spa = spa_add(pool, config, altroot); 3830 spa->spa_import_flags = flags; 3831 3832 /* 3833 * Verbatim import - Take a pool and insert it into the namespace 3834 * as if it had been loaded at boot. 3835 */ 3836 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) { 3837 if (props != NULL) 3838 spa_configfile_set(spa, props, B_FALSE); 3839 3840 spa_config_sync(spa, B_FALSE, B_TRUE); 3841 3842 mutex_exit(&spa_namespace_lock); 3843 return (0); 3844 } 3845 3846 spa_activate(spa, mode); 3847 3848 /* 3849 * Don't start async tasks until we know everything is healthy. 3850 */ 3851 spa_async_suspend(spa); 3852 3853 zpool_get_rewind_policy(config, &policy); 3854 if (policy.zrp_request & ZPOOL_DO_REWIND) 3855 state = SPA_LOAD_RECOVER; 3856 3857 /* 3858 * Pass off the heavy lifting to spa_load(). Pass TRUE for mosconfig 3859 * because the user-supplied config is actually the one to trust when 3860 * doing an import. 3861 */ 3862 if (state != SPA_LOAD_RECOVER) 3863 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 3864 3865 error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg, 3866 policy.zrp_request); 3867 3868 /* 3869 * Propagate anything learned while loading the pool and pass it 3870 * back to caller (i.e. rewind info, missing devices, etc). 3871 */ 3872 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, 3873 spa->spa_load_info) == 0); 3874 3875 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3876 /* 3877 * Toss any existing sparelist, as it doesn't have any validity 3878 * anymore, and conflicts with spa_has_spare(). 3879 */ 3880 if (spa->spa_spares.sav_config) { 3881 nvlist_free(spa->spa_spares.sav_config); 3882 spa->spa_spares.sav_config = NULL; 3883 spa_load_spares(spa); 3884 } 3885 if (spa->spa_l2cache.sav_config) { 3886 nvlist_free(spa->spa_l2cache.sav_config); 3887 spa->spa_l2cache.sav_config = NULL; 3888 spa_load_l2cache(spa); 3889 } 3890 3891 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3892 &nvroot) == 0); 3893 if (error == 0) 3894 error = spa_validate_aux(spa, nvroot, -1ULL, 3895 VDEV_ALLOC_SPARE); 3896 if (error == 0) 3897 error = spa_validate_aux(spa, nvroot, -1ULL, 3898 VDEV_ALLOC_L2CACHE); 3899 spa_config_exit(spa, SCL_ALL, FTAG); 3900 3901 if (props != NULL) 3902 spa_configfile_set(spa, props, B_FALSE); 3903 3904 if (error != 0 || (props && spa_writeable(spa) && 3905 (error = spa_prop_set(spa, props)))) { 3906 spa_unload(spa); 3907 spa_deactivate(spa); 3908 spa_remove(spa); 3909 mutex_exit(&spa_namespace_lock); 3910 return (error); 3911 } 3912 3913 spa_async_resume(spa); 3914 3915 /* 3916 * Override any spares and level 2 cache devices as specified by 3917 * the user, as these may have correct device names/devids, etc. 3918 */ 3919 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 3920 &spares, &nspares) == 0) { 3921 if (spa->spa_spares.sav_config) 3922 VERIFY(nvlist_remove(spa->spa_spares.sav_config, 3923 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0); 3924 else 3925 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, 3926 NV_UNIQUE_NAME, KM_SLEEP) == 0); 3927 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 3928 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 3929 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3930 spa_load_spares(spa); 3931 spa_config_exit(spa, SCL_ALL, FTAG); 3932 spa->spa_spares.sav_sync = B_TRUE; 3933 } 3934 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 3935 &l2cache, &nl2cache) == 0) { 3936 if (spa->spa_l2cache.sav_config) 3937 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config, 3938 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0); 3939 else 3940 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 3941 NV_UNIQUE_NAME, KM_SLEEP) == 0); 3942 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 3943 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 3944 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3945 spa_load_l2cache(spa); 3946 spa_config_exit(spa, SCL_ALL, FTAG); 3947 spa->spa_l2cache.sav_sync = B_TRUE; 3948 } 3949 3950 /* 3951 * Check for any removed devices. 3952 */ 3953 if (spa->spa_autoreplace) { 3954 spa_aux_check_removed(&spa->spa_spares); 3955 spa_aux_check_removed(&spa->spa_l2cache); 3956 } 3957 3958 if (spa_writeable(spa)) { 3959 /* 3960 * Update the config cache to include the newly-imported pool. 3961 */ 3962 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 3963 } 3964 3965 /* 3966 * It's possible that the pool was expanded while it was exported. 3967 * We kick off an async task to handle this for us. 3968 */ 3969 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND); 3970 3971 mutex_exit(&spa_namespace_lock); 3972 spa_history_log_version(spa, "import"); 3973 3974 return (0); 3975 } 3976 3977 nvlist_t * 3978 spa_tryimport(nvlist_t *tryconfig) 3979 { 3980 nvlist_t *config = NULL; 3981 char *poolname; 3982 spa_t *spa; 3983 uint64_t state; 3984 int error; 3985 3986 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname)) 3987 return (NULL); 3988 3989 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state)) 3990 return (NULL); 3991 3992 /* 3993 * Create and initialize the spa structure. 3994 */ 3995 mutex_enter(&spa_namespace_lock); 3996 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL); 3997 spa_activate(spa, FREAD); 3998 3999 /* 4000 * Pass off the heavy lifting to spa_load(). 4001 * Pass TRUE for mosconfig because the user-supplied config 4002 * is actually the one to trust when doing an import. 4003 */ 4004 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE); 4005 4006 /* 4007 * If 'tryconfig' was at least parsable, return the current config. 4008 */ 4009 if (spa->spa_root_vdev != NULL) { 4010 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 4011 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, 4012 poolname) == 0); 4013 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 4014 state) == 0); 4015 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP, 4016 spa->spa_uberblock.ub_timestamp) == 0); 4017 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, 4018 spa->spa_load_info) == 0); 4019 4020 /* 4021 * If the bootfs property exists on this pool then we 4022 * copy it out so that external consumers can tell which 4023 * pools are bootable. 4024 */ 4025 if ((!error || error == EEXIST) && spa->spa_bootfs) { 4026 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 4027 4028 /* 4029 * We have to play games with the name since the 4030 * pool was opened as TRYIMPORT_NAME. 4031 */ 4032 if (dsl_dsobj_to_dsname(spa_name(spa), 4033 spa->spa_bootfs, tmpname) == 0) { 4034 char *cp; 4035 char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 4036 4037 cp = strchr(tmpname, '/'); 4038 if (cp == NULL) { 4039 (void) strlcpy(dsname, tmpname, 4040 MAXPATHLEN); 4041 } else { 4042 (void) snprintf(dsname, MAXPATHLEN, 4043 "%s/%s", poolname, ++cp); 4044 } 4045 VERIFY(nvlist_add_string(config, 4046 ZPOOL_CONFIG_BOOTFS, dsname) == 0); 4047 kmem_free(dsname, MAXPATHLEN); 4048 } 4049 kmem_free(tmpname, MAXPATHLEN); 4050 } 4051 4052 /* 4053 * Add the list of hot spares and level 2 cache devices. 4054 */ 4055 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 4056 spa_add_spares(spa, config); 4057 spa_add_l2cache(spa, config); 4058 spa_config_exit(spa, SCL_CONFIG, FTAG); 4059 } 4060 4061 spa_unload(spa); 4062 spa_deactivate(spa); 4063 spa_remove(spa); 4064 mutex_exit(&spa_namespace_lock); 4065 4066 return (config); 4067 } 4068 4069 /* 4070 * Pool export/destroy 4071 * 4072 * The act of destroying or exporting a pool is very simple. We make sure there 4073 * is no more pending I/O and any references to the pool are gone. Then, we 4074 * update the pool state and sync all the labels to disk, removing the 4075 * configuration from the cache afterwards. If the 'hardforce' flag is set, then 4076 * we don't sync the labels or remove the configuration cache. 4077 */ 4078 static int 4079 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig, 4080 boolean_t force, boolean_t hardforce) 4081 { 4082 spa_t *spa; 4083 4084 if (oldconfig) 4085 *oldconfig = NULL; 4086 4087 if (!(spa_mode_global & FWRITE)) 4088 return (SET_ERROR(EROFS)); 4089 4090 mutex_enter(&spa_namespace_lock); 4091 if ((spa = spa_lookup(pool)) == NULL) { 4092 mutex_exit(&spa_namespace_lock); 4093 return (SET_ERROR(ENOENT)); 4094 } 4095 4096 /* 4097 * Put a hold on the pool, drop the namespace lock, stop async tasks, 4098 * reacquire the namespace lock, and see if we can export. 4099 */ 4100 spa_open_ref(spa, FTAG); 4101 mutex_exit(&spa_namespace_lock); 4102 spa_async_suspend(spa); 4103 mutex_enter(&spa_namespace_lock); 4104 spa_close(spa, FTAG); 4105 4106 /* 4107 * The pool will be in core if it's openable, 4108 * in which case we can modify its state. 4109 */ 4110 if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) { 4111 /* 4112 * Objsets may be open only because they're dirty, so we 4113 * have to force it to sync before checking spa_refcnt. 4114 */ 4115 txg_wait_synced(spa->spa_dsl_pool, 0); 4116 4117 /* 4118 * A pool cannot be exported or destroyed if there are active 4119 * references. If we are resetting a pool, allow references by 4120 * fault injection handlers. 4121 */ 4122 if (!spa_refcount_zero(spa) || 4123 (spa->spa_inject_ref != 0 && 4124 new_state != POOL_STATE_UNINITIALIZED)) { 4125 spa_async_resume(spa); 4126 mutex_exit(&spa_namespace_lock); 4127 return (SET_ERROR(EBUSY)); 4128 } 4129 4130 /* 4131 * A pool cannot be exported if it has an active shared spare. 4132 * This is to prevent other pools stealing the active spare 4133 * from an exported pool. At user's own will, such pool can 4134 * be forcedly exported. 4135 */ 4136 if (!force && new_state == POOL_STATE_EXPORTED && 4137 spa_has_active_shared_spare(spa)) { 4138 spa_async_resume(spa); 4139 mutex_exit(&spa_namespace_lock); 4140 return (SET_ERROR(EXDEV)); 4141 } 4142 4143 /* 4144 * We want this to be reflected on every label, 4145 * so mark them all dirty. spa_unload() will do the 4146 * final sync that pushes these changes out. 4147 */ 4148 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) { 4149 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4150 spa->spa_state = new_state; 4151 spa->spa_final_txg = spa_last_synced_txg(spa) + 4152 TXG_DEFER_SIZE + 1; 4153 vdev_config_dirty(spa->spa_root_vdev); 4154 spa_config_exit(spa, SCL_ALL, FTAG); 4155 } 4156 } 4157 4158 spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY); 4159 4160 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 4161 spa_unload(spa); 4162 spa_deactivate(spa); 4163 } 4164 4165 if (oldconfig && spa->spa_config) 4166 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0); 4167 4168 if (new_state != POOL_STATE_UNINITIALIZED) { 4169 if (!hardforce) 4170 spa_config_sync(spa, B_TRUE, B_TRUE); 4171 spa_remove(spa); 4172 } 4173 mutex_exit(&spa_namespace_lock); 4174 4175 return (0); 4176 } 4177 4178 /* 4179 * Destroy a storage pool. 4180 */ 4181 int 4182 spa_destroy(char *pool) 4183 { 4184 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL, 4185 B_FALSE, B_FALSE)); 4186 } 4187 4188 /* 4189 * Export a storage pool. 4190 */ 4191 int 4192 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force, 4193 boolean_t hardforce) 4194 { 4195 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig, 4196 force, hardforce)); 4197 } 4198 4199 /* 4200 * Similar to spa_export(), this unloads the spa_t without actually removing it 4201 * from the namespace in any way. 4202 */ 4203 int 4204 spa_reset(char *pool) 4205 { 4206 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL, 4207 B_FALSE, B_FALSE)); 4208 } 4209 4210 /* 4211 * ========================================================================== 4212 * Device manipulation 4213 * ========================================================================== 4214 */ 4215 4216 /* 4217 * Add a device to a storage pool. 4218 */ 4219 int 4220 spa_vdev_add(spa_t *spa, nvlist_t *nvroot) 4221 { 4222 uint64_t txg, id; 4223 int error; 4224 vdev_t *rvd = spa->spa_root_vdev; 4225 vdev_t *vd, *tvd; 4226 nvlist_t **spares, **l2cache; 4227 uint_t nspares, nl2cache; 4228 4229 ASSERT(spa_writeable(spa)); 4230 4231 txg = spa_vdev_enter(spa); 4232 4233 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0, 4234 VDEV_ALLOC_ADD)) != 0) 4235 return (spa_vdev_exit(spa, NULL, txg, error)); 4236 4237 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */ 4238 4239 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, 4240 &nspares) != 0) 4241 nspares = 0; 4242 4243 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache, 4244 &nl2cache) != 0) 4245 nl2cache = 0; 4246 4247 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0) 4248 return (spa_vdev_exit(spa, vd, txg, EINVAL)); 4249 4250 if (vd->vdev_children != 0 && 4251 (error = vdev_create(vd, txg, B_FALSE)) != 0) 4252 return (spa_vdev_exit(spa, vd, txg, error)); 4253 4254 /* 4255 * We must validate the spares and l2cache devices after checking the 4256 * children. Otherwise, vdev_inuse() will blindly overwrite the spare. 4257 */ 4258 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0) 4259 return (spa_vdev_exit(spa, vd, txg, error)); 4260 4261 /* 4262 * Transfer each new top-level vdev from vd to rvd. 4263 */ 4264 for (int c = 0; c < vd->vdev_children; c++) { 4265 4266 /* 4267 * Set the vdev id to the first hole, if one exists. 4268 */ 4269 for (id = 0; id < rvd->vdev_children; id++) { 4270 if (rvd->vdev_child[id]->vdev_ishole) { 4271 vdev_free(rvd->vdev_child[id]); 4272 break; 4273 } 4274 } 4275 tvd = vd->vdev_child[c]; 4276 vdev_remove_child(vd, tvd); 4277 tvd->vdev_id = id; 4278 vdev_add_child(rvd, tvd); 4279 vdev_config_dirty(tvd); 4280 } 4281 4282 if (nspares != 0) { 4283 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares, 4284 ZPOOL_CONFIG_SPARES); 4285 spa_load_spares(spa); 4286 spa->spa_spares.sav_sync = B_TRUE; 4287 } 4288 4289 if (nl2cache != 0) { 4290 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache, 4291 ZPOOL_CONFIG_L2CACHE); 4292 spa_load_l2cache(spa); 4293 spa->spa_l2cache.sav_sync = B_TRUE; 4294 } 4295 4296 /* 4297 * We have to be careful when adding new vdevs to an existing pool. 4298 * If other threads start allocating from these vdevs before we 4299 * sync the config cache, and we lose power, then upon reboot we may 4300 * fail to open the pool because there are DVAs that the config cache 4301 * can't translate. Therefore, we first add the vdevs without 4302 * initializing metaslabs; sync the config cache (via spa_vdev_exit()); 4303 * and then let spa_config_update() initialize the new metaslabs. 4304 * 4305 * spa_load() checks for added-but-not-initialized vdevs, so that 4306 * if we lose power at any point in this sequence, the remaining 4307 * steps will be completed the next time we load the pool. 4308 */ 4309 (void) spa_vdev_exit(spa, vd, txg, 0); 4310 4311 mutex_enter(&spa_namespace_lock); 4312 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 4313 mutex_exit(&spa_namespace_lock); 4314 4315 return (0); 4316 } 4317 4318 /* 4319 * Attach a device to a mirror. The arguments are the path to any device 4320 * in the mirror, and the nvroot for the new device. If the path specifies 4321 * a device that is not mirrored, we automatically insert the mirror vdev. 4322 * 4323 * If 'replacing' is specified, the new device is intended to replace the 4324 * existing device; in this case the two devices are made into their own 4325 * mirror using the 'replacing' vdev, which is functionally identical to 4326 * the mirror vdev (it actually reuses all the same ops) but has a few 4327 * extra rules: you can't attach to it after it's been created, and upon 4328 * completion of resilvering, the first disk (the one being replaced) 4329 * is automatically detached. 4330 */ 4331 int 4332 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing) 4333 { 4334 uint64_t txg, dtl_max_txg; 4335 vdev_t *rvd = spa->spa_root_vdev; 4336 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd; 4337 vdev_ops_t *pvops; 4338 char *oldvdpath, *newvdpath; 4339 int newvd_isspare; 4340 int error; 4341 4342 ASSERT(spa_writeable(spa)); 4343 4344 txg = spa_vdev_enter(spa); 4345 4346 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE); 4347 4348 if (oldvd == NULL) 4349 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 4350 4351 if (!oldvd->vdev_ops->vdev_op_leaf) 4352 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4353 4354 pvd = oldvd->vdev_parent; 4355 4356 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0, 4357 VDEV_ALLOC_ATTACH)) != 0) 4358 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4359 4360 if (newrootvd->vdev_children != 1) 4361 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 4362 4363 newvd = newrootvd->vdev_child[0]; 4364 4365 if (!newvd->vdev_ops->vdev_op_leaf) 4366 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 4367 4368 if ((error = vdev_create(newrootvd, txg, replacing)) != 0) 4369 return (spa_vdev_exit(spa, newrootvd, txg, error)); 4370 4371 /* 4372 * Spares can't replace logs 4373 */ 4374 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare) 4375 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4376 4377 if (!replacing) { 4378 /* 4379 * For attach, the only allowable parent is a mirror or the root 4380 * vdev. 4381 */ 4382 if (pvd->vdev_ops != &vdev_mirror_ops && 4383 pvd->vdev_ops != &vdev_root_ops) 4384 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4385 4386 pvops = &vdev_mirror_ops; 4387 } else { 4388 /* 4389 * Active hot spares can only be replaced by inactive hot 4390 * spares. 4391 */ 4392 if (pvd->vdev_ops == &vdev_spare_ops && 4393 oldvd->vdev_isspare && 4394 !spa_has_spare(spa, newvd->vdev_guid)) 4395 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4396 4397 /* 4398 * If the source is a hot spare, and the parent isn't already a 4399 * spare, then we want to create a new hot spare. Otherwise, we 4400 * want to create a replacing vdev. The user is not allowed to 4401 * attach to a spared vdev child unless the 'isspare' state is 4402 * the same (spare replaces spare, non-spare replaces 4403 * non-spare). 4404 */ 4405 if (pvd->vdev_ops == &vdev_replacing_ops && 4406 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) { 4407 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4408 } else if (pvd->vdev_ops == &vdev_spare_ops && 4409 newvd->vdev_isspare != oldvd->vdev_isspare) { 4410 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4411 } 4412 4413 if (newvd->vdev_isspare) 4414 pvops = &vdev_spare_ops; 4415 else 4416 pvops = &vdev_replacing_ops; 4417 } 4418 4419 /* 4420 * Make sure the new device is big enough. 4421 */ 4422 if (newvd->vdev_asize < vdev_get_min_asize(oldvd)) 4423 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW)); 4424 4425 /* 4426 * The new device cannot have a higher alignment requirement 4427 * than the top-level vdev. 4428 */ 4429 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift) 4430 return (spa_vdev_exit(spa, newrootvd, txg, EDOM)); 4431 4432 /* 4433 * If this is an in-place replacement, update oldvd's path and devid 4434 * to make it distinguishable from newvd, and unopenable from now on. 4435 */ 4436 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) { 4437 spa_strfree(oldvd->vdev_path); 4438 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5, 4439 KM_SLEEP); 4440 (void) sprintf(oldvd->vdev_path, "%s/%s", 4441 newvd->vdev_path, "old"); 4442 if (oldvd->vdev_devid != NULL) { 4443 spa_strfree(oldvd->vdev_devid); 4444 oldvd->vdev_devid = NULL; 4445 } 4446 } 4447 4448 /* mark the device being resilvered */ 4449 newvd->vdev_resilver_txg = txg; 4450 4451 /* 4452 * If the parent is not a mirror, or if we're replacing, insert the new 4453 * mirror/replacing/spare vdev above oldvd. 4454 */ 4455 if (pvd->vdev_ops != pvops) 4456 pvd = vdev_add_parent(oldvd, pvops); 4457 4458 ASSERT(pvd->vdev_top->vdev_parent == rvd); 4459 ASSERT(pvd->vdev_ops == pvops); 4460 ASSERT(oldvd->vdev_parent == pvd); 4461 4462 /* 4463 * Extract the new device from its root and add it to pvd. 4464 */ 4465 vdev_remove_child(newrootvd, newvd); 4466 newvd->vdev_id = pvd->vdev_children; 4467 newvd->vdev_crtxg = oldvd->vdev_crtxg; 4468 vdev_add_child(pvd, newvd); 4469 4470 tvd = newvd->vdev_top; 4471 ASSERT(pvd->vdev_top == tvd); 4472 ASSERT(tvd->vdev_parent == rvd); 4473 4474 vdev_config_dirty(tvd); 4475 4476 /* 4477 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account 4478 * for any dmu_sync-ed blocks. It will propagate upward when 4479 * spa_vdev_exit() calls vdev_dtl_reassess(). 4480 */ 4481 dtl_max_txg = txg + TXG_CONCURRENT_STATES; 4482 4483 vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL, 4484 dtl_max_txg - TXG_INITIAL); 4485 4486 if (newvd->vdev_isspare) { 4487 spa_spare_activate(newvd); 4488 spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE); 4489 } 4490 4491 oldvdpath = spa_strdup(oldvd->vdev_path); 4492 newvdpath = spa_strdup(newvd->vdev_path); 4493 newvd_isspare = newvd->vdev_isspare; 4494 4495 /* 4496 * Mark newvd's DTL dirty in this txg. 4497 */ 4498 vdev_dirty(tvd, VDD_DTL, newvd, txg); 4499 4500 /* 4501 * Schedule the resilver to restart in the future. We do this to 4502 * ensure that dmu_sync-ed blocks have been stitched into the 4503 * respective datasets. 4504 */ 4505 dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg); 4506 4507 /* 4508 * Commit the config 4509 */ 4510 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0); 4511 4512 spa_history_log_internal(spa, "vdev attach", NULL, 4513 "%s vdev=%s %s vdev=%s", 4514 replacing && newvd_isspare ? "spare in" : 4515 replacing ? "replace" : "attach", newvdpath, 4516 replacing ? "for" : "to", oldvdpath); 4517 4518 spa_strfree(oldvdpath); 4519 spa_strfree(newvdpath); 4520 4521 if (spa->spa_bootfs) 4522 spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH); 4523 4524 return (0); 4525 } 4526 4527 /* 4528 * Detach a device from a mirror or replacing vdev. 4529 * 4530 * If 'replace_done' is specified, only detach if the parent 4531 * is a replacing vdev. 4532 */ 4533 int 4534 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done) 4535 { 4536 uint64_t txg; 4537 int error; 4538 vdev_t *rvd = spa->spa_root_vdev; 4539 vdev_t *vd, *pvd, *cvd, *tvd; 4540 boolean_t unspare = B_FALSE; 4541 uint64_t unspare_guid = 0; 4542 char *vdpath; 4543 4544 ASSERT(spa_writeable(spa)); 4545 4546 txg = spa_vdev_enter(spa); 4547 4548 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 4549 4550 if (vd == NULL) 4551 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 4552 4553 if (!vd->vdev_ops->vdev_op_leaf) 4554 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4555 4556 pvd = vd->vdev_parent; 4557 4558 /* 4559 * If the parent/child relationship is not as expected, don't do it. 4560 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing 4561 * vdev that's replacing B with C. The user's intent in replacing 4562 * is to go from M(A,B) to M(A,C). If the user decides to cancel 4563 * the replace by detaching C, the expected behavior is to end up 4564 * M(A,B). But suppose that right after deciding to detach C, 4565 * the replacement of B completes. We would have M(A,C), and then 4566 * ask to detach C, which would leave us with just A -- not what 4567 * the user wanted. To prevent this, we make sure that the 4568 * parent/child relationship hasn't changed -- in this example, 4569 * that C's parent is still the replacing vdev R. 4570 */ 4571 if (pvd->vdev_guid != pguid && pguid != 0) 4572 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 4573 4574 /* 4575 * Only 'replacing' or 'spare' vdevs can be replaced. 4576 */ 4577 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops && 4578 pvd->vdev_ops != &vdev_spare_ops) 4579 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4580 4581 ASSERT(pvd->vdev_ops != &vdev_spare_ops || 4582 spa_version(spa) >= SPA_VERSION_SPARES); 4583 4584 /* 4585 * Only mirror, replacing, and spare vdevs support detach. 4586 */ 4587 if (pvd->vdev_ops != &vdev_replacing_ops && 4588 pvd->vdev_ops != &vdev_mirror_ops && 4589 pvd->vdev_ops != &vdev_spare_ops) 4590 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4591 4592 /* 4593 * If this device has the only valid copy of some data, 4594 * we cannot safely detach it. 4595 */ 4596 if (vdev_dtl_required(vd)) 4597 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 4598 4599 ASSERT(pvd->vdev_children >= 2); 4600 4601 /* 4602 * If we are detaching the second disk from a replacing vdev, then 4603 * check to see if we changed the original vdev's path to have "/old" 4604 * at the end in spa_vdev_attach(). If so, undo that change now. 4605 */ 4606 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 && 4607 vd->vdev_path != NULL) { 4608 size_t len = strlen(vd->vdev_path); 4609 4610 for (int c = 0; c < pvd->vdev_children; c++) { 4611 cvd = pvd->vdev_child[c]; 4612 4613 if (cvd == vd || cvd->vdev_path == NULL) 4614 continue; 4615 4616 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 && 4617 strcmp(cvd->vdev_path + len, "/old") == 0) { 4618 spa_strfree(cvd->vdev_path); 4619 cvd->vdev_path = spa_strdup(vd->vdev_path); 4620 break; 4621 } 4622 } 4623 } 4624 4625 /* 4626 * If we are detaching the original disk from a spare, then it implies 4627 * that the spare should become a real disk, and be removed from the 4628 * active spare list for the pool. 4629 */ 4630 if (pvd->vdev_ops == &vdev_spare_ops && 4631 vd->vdev_id == 0 && 4632 pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare) 4633 unspare = B_TRUE; 4634 4635 /* 4636 * Erase the disk labels so the disk can be used for other things. 4637 * This must be done after all other error cases are handled, 4638 * but before we disembowel vd (so we can still do I/O to it). 4639 * But if we can't do it, don't treat the error as fatal -- 4640 * it may be that the unwritability of the disk is the reason 4641 * it's being detached! 4642 */ 4643 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 4644 4645 /* 4646 * Remove vd from its parent and compact the parent's children. 4647 */ 4648 vdev_remove_child(pvd, vd); 4649 vdev_compact_children(pvd); 4650 4651 /* 4652 * Remember one of the remaining children so we can get tvd below. 4653 */ 4654 cvd = pvd->vdev_child[pvd->vdev_children - 1]; 4655 4656 /* 4657 * If we need to remove the remaining child from the list of hot spares, 4658 * do it now, marking the vdev as no longer a spare in the process. 4659 * We must do this before vdev_remove_parent(), because that can 4660 * change the GUID if it creates a new toplevel GUID. For a similar 4661 * reason, we must remove the spare now, in the same txg as the detach; 4662 * otherwise someone could attach a new sibling, change the GUID, and 4663 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail. 4664 */ 4665 if (unspare) { 4666 ASSERT(cvd->vdev_isspare); 4667 spa_spare_remove(cvd); 4668 unspare_guid = cvd->vdev_guid; 4669 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE); 4670 cvd->vdev_unspare = B_TRUE; 4671 } 4672 4673 /* 4674 * If the parent mirror/replacing vdev only has one child, 4675 * the parent is no longer needed. Remove it from the tree. 4676 */ 4677 if (pvd->vdev_children == 1) { 4678 if (pvd->vdev_ops == &vdev_spare_ops) 4679 cvd->vdev_unspare = B_FALSE; 4680 vdev_remove_parent(cvd); 4681 } 4682 4683 4684 /* 4685 * We don't set tvd until now because the parent we just removed 4686 * may have been the previous top-level vdev. 4687 */ 4688 tvd = cvd->vdev_top; 4689 ASSERT(tvd->vdev_parent == rvd); 4690 4691 /* 4692 * Reevaluate the parent vdev state. 4693 */ 4694 vdev_propagate_state(cvd); 4695 4696 /* 4697 * If the 'autoexpand' property is set on the pool then automatically 4698 * try to expand the size of the pool. For example if the device we 4699 * just detached was smaller than the others, it may be possible to 4700 * add metaslabs (i.e. grow the pool). We need to reopen the vdev 4701 * first so that we can obtain the updated sizes of the leaf vdevs. 4702 */ 4703 if (spa->spa_autoexpand) { 4704 vdev_reopen(tvd); 4705 vdev_expand(tvd, txg); 4706 } 4707 4708 vdev_config_dirty(tvd); 4709 4710 /* 4711 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that 4712 * vd->vdev_detached is set and free vd's DTL object in syncing context. 4713 * But first make sure we're not on any *other* txg's DTL list, to 4714 * prevent vd from being accessed after it's freed. 4715 */ 4716 vdpath = spa_strdup(vd->vdev_path); 4717 for (int t = 0; t < TXG_SIZE; t++) 4718 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t); 4719 vd->vdev_detached = B_TRUE; 4720 vdev_dirty(tvd, VDD_DTL, vd, txg); 4721 4722 spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE); 4723 4724 /* hang on to the spa before we release the lock */ 4725 spa_open_ref(spa, FTAG); 4726 4727 error = spa_vdev_exit(spa, vd, txg, 0); 4728 4729 spa_history_log_internal(spa, "detach", NULL, 4730 "vdev=%s", vdpath); 4731 spa_strfree(vdpath); 4732 4733 /* 4734 * If this was the removal of the original device in a hot spare vdev, 4735 * then we want to go through and remove the device from the hot spare 4736 * list of every other pool. 4737 */ 4738 if (unspare) { 4739 spa_t *altspa = NULL; 4740 4741 mutex_enter(&spa_namespace_lock); 4742 while ((altspa = spa_next(altspa)) != NULL) { 4743 if (altspa->spa_state != POOL_STATE_ACTIVE || 4744 altspa == spa) 4745 continue; 4746 4747 spa_open_ref(altspa, FTAG); 4748 mutex_exit(&spa_namespace_lock); 4749 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE); 4750 mutex_enter(&spa_namespace_lock); 4751 spa_close(altspa, FTAG); 4752 } 4753 mutex_exit(&spa_namespace_lock); 4754 4755 /* search the rest of the vdevs for spares to remove */ 4756 spa_vdev_resilver_done(spa); 4757 } 4758 4759 /* all done with the spa; OK to release */ 4760 mutex_enter(&spa_namespace_lock); 4761 spa_close(spa, FTAG); 4762 mutex_exit(&spa_namespace_lock); 4763 4764 return (error); 4765 } 4766 4767 /* 4768 * Split a set of devices from their mirrors, and create a new pool from them. 4769 */ 4770 int 4771 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config, 4772 nvlist_t *props, boolean_t exp) 4773 { 4774 int error = 0; 4775 uint64_t txg, *glist; 4776 spa_t *newspa; 4777 uint_t c, children, lastlog; 4778 nvlist_t **child, *nvl, *tmp; 4779 dmu_tx_t *tx; 4780 char *altroot = NULL; 4781 vdev_t *rvd, **vml = NULL; /* vdev modify list */ 4782 boolean_t activate_slog; 4783 4784 ASSERT(spa_writeable(spa)); 4785 4786 txg = spa_vdev_enter(spa); 4787 4788 /* clear the log and flush everything up to now */ 4789 activate_slog = spa_passivate_log(spa); 4790 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 4791 error = spa_offline_log(spa); 4792 txg = spa_vdev_config_enter(spa); 4793 4794 if (activate_slog) 4795 spa_activate_log(spa); 4796 4797 if (error != 0) 4798 return (spa_vdev_exit(spa, NULL, txg, error)); 4799 4800 /* check new spa name before going any further */ 4801 if (spa_lookup(newname) != NULL) 4802 return (spa_vdev_exit(spa, NULL, txg, EEXIST)); 4803 4804 /* 4805 * scan through all the children to ensure they're all mirrors 4806 */ 4807 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 || 4808 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child, 4809 &children) != 0) 4810 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4811 4812 /* first, check to ensure we've got the right child count */ 4813 rvd = spa->spa_root_vdev; 4814 lastlog = 0; 4815 for (c = 0; c < rvd->vdev_children; c++) { 4816 vdev_t *vd = rvd->vdev_child[c]; 4817 4818 /* don't count the holes & logs as children */ 4819 if (vd->vdev_islog || vd->vdev_ishole) { 4820 if (lastlog == 0) 4821 lastlog = c; 4822 continue; 4823 } 4824 4825 lastlog = 0; 4826 } 4827 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children)) 4828 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4829 4830 /* next, ensure no spare or cache devices are part of the split */ 4831 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 || 4832 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0) 4833 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4834 4835 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP); 4836 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP); 4837 4838 /* then, loop over each vdev and validate it */ 4839 for (c = 0; c < children; c++) { 4840 uint64_t is_hole = 0; 4841 4842 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE, 4843 &is_hole); 4844 4845 if (is_hole != 0) { 4846 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole || 4847 spa->spa_root_vdev->vdev_child[c]->vdev_islog) { 4848 continue; 4849 } else { 4850 error = SET_ERROR(EINVAL); 4851 break; 4852 } 4853 } 4854 4855 /* which disk is going to be split? */ 4856 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID, 4857 &glist[c]) != 0) { 4858 error = SET_ERROR(EINVAL); 4859 break; 4860 } 4861 4862 /* look it up in the spa */ 4863 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE); 4864 if (vml[c] == NULL) { 4865 error = SET_ERROR(ENODEV); 4866 break; 4867 } 4868 4869 /* make sure there's nothing stopping the split */ 4870 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops || 4871 vml[c]->vdev_islog || 4872 vml[c]->vdev_ishole || 4873 vml[c]->vdev_isspare || 4874 vml[c]->vdev_isl2cache || 4875 !vdev_writeable(vml[c]) || 4876 vml[c]->vdev_children != 0 || 4877 vml[c]->vdev_state != VDEV_STATE_HEALTHY || 4878 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) { 4879 error = SET_ERROR(EINVAL); 4880 break; 4881 } 4882 4883 if (vdev_dtl_required(vml[c])) { 4884 error = SET_ERROR(EBUSY); 4885 break; 4886 } 4887 4888 /* we need certain info from the top level */ 4889 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY, 4890 vml[c]->vdev_top->vdev_ms_array) == 0); 4891 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT, 4892 vml[c]->vdev_top->vdev_ms_shift) == 0); 4893 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE, 4894 vml[c]->vdev_top->vdev_asize) == 0); 4895 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT, 4896 vml[c]->vdev_top->vdev_ashift) == 0); 4897 } 4898 4899 if (error != 0) { 4900 kmem_free(vml, children * sizeof (vdev_t *)); 4901 kmem_free(glist, children * sizeof (uint64_t)); 4902 return (spa_vdev_exit(spa, NULL, txg, error)); 4903 } 4904 4905 /* stop writers from using the disks */ 4906 for (c = 0; c < children; c++) { 4907 if (vml[c] != NULL) 4908 vml[c]->vdev_offline = B_TRUE; 4909 } 4910 vdev_reopen(spa->spa_root_vdev); 4911 4912 /* 4913 * Temporarily record the splitting vdevs in the spa config. This 4914 * will disappear once the config is regenerated. 4915 */ 4916 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0); 4917 VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 4918 glist, children) == 0); 4919 kmem_free(glist, children * sizeof (uint64_t)); 4920 4921 mutex_enter(&spa->spa_props_lock); 4922 VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT, 4923 nvl) == 0); 4924 mutex_exit(&spa->spa_props_lock); 4925 spa->spa_config_splitting = nvl; 4926 vdev_config_dirty(spa->spa_root_vdev); 4927 4928 /* configure and create the new pool */ 4929 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0); 4930 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 4931 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0); 4932 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, 4933 spa_version(spa)) == 0); 4934 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, 4935 spa->spa_config_txg) == 0); 4936 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID, 4937 spa_generate_guid(NULL)) == 0); 4938 (void) nvlist_lookup_string(props, 4939 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 4940 4941 /* add the new pool to the namespace */ 4942 newspa = spa_add(newname, config, altroot); 4943 newspa->spa_config_txg = spa->spa_config_txg; 4944 spa_set_log_state(newspa, SPA_LOG_CLEAR); 4945 4946 /* release the spa config lock, retaining the namespace lock */ 4947 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 4948 4949 if (zio_injection_enabled) 4950 zio_handle_panic_injection(spa, FTAG, 1); 4951 4952 spa_activate(newspa, spa_mode_global); 4953 spa_async_suspend(newspa); 4954 4955 /* create the new pool from the disks of the original pool */ 4956 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE); 4957 if (error) 4958 goto out; 4959 4960 /* if that worked, generate a real config for the new pool */ 4961 if (newspa->spa_root_vdev != NULL) { 4962 VERIFY(nvlist_alloc(&newspa->spa_config_splitting, 4963 NV_UNIQUE_NAME, KM_SLEEP) == 0); 4964 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting, 4965 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0); 4966 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL, 4967 B_TRUE)); 4968 } 4969 4970 /* set the props */ 4971 if (props != NULL) { 4972 spa_configfile_set(newspa, props, B_FALSE); 4973 error = spa_prop_set(newspa, props); 4974 if (error) 4975 goto out; 4976 } 4977 4978 /* flush everything */ 4979 txg = spa_vdev_config_enter(newspa); 4980 vdev_config_dirty(newspa->spa_root_vdev); 4981 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG); 4982 4983 if (zio_injection_enabled) 4984 zio_handle_panic_injection(spa, FTAG, 2); 4985 4986 spa_async_resume(newspa); 4987 4988 /* finally, update the original pool's config */ 4989 txg = spa_vdev_config_enter(spa); 4990 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 4991 error = dmu_tx_assign(tx, TXG_WAIT); 4992 if (error != 0) 4993 dmu_tx_abort(tx); 4994 for (c = 0; c < children; c++) { 4995 if (vml[c] != NULL) { 4996 vdev_split(vml[c]); 4997 if (error == 0) 4998 spa_history_log_internal(spa, "detach", tx, 4999 "vdev=%s", vml[c]->vdev_path); 5000 vdev_free(vml[c]); 5001 } 5002 } 5003 vdev_config_dirty(spa->spa_root_vdev); 5004 spa->spa_config_splitting = NULL; 5005 nvlist_free(nvl); 5006 if (error == 0) 5007 dmu_tx_commit(tx); 5008 (void) spa_vdev_exit(spa, NULL, txg, 0); 5009 5010 if (zio_injection_enabled) 5011 zio_handle_panic_injection(spa, FTAG, 3); 5012 5013 /* split is complete; log a history record */ 5014 spa_history_log_internal(newspa, "split", NULL, 5015 "from pool %s", spa_name(spa)); 5016 5017 kmem_free(vml, children * sizeof (vdev_t *)); 5018 5019 /* if we're not going to mount the filesystems in userland, export */ 5020 if (exp) 5021 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL, 5022 B_FALSE, B_FALSE); 5023 5024 return (error); 5025 5026 out: 5027 spa_unload(newspa); 5028 spa_deactivate(newspa); 5029 spa_remove(newspa); 5030 5031 txg = spa_vdev_config_enter(spa); 5032 5033 /* re-online all offlined disks */ 5034 for (c = 0; c < children; c++) { 5035 if (vml[c] != NULL) 5036 vml[c]->vdev_offline = B_FALSE; 5037 } 5038 vdev_reopen(spa->spa_root_vdev); 5039 5040 nvlist_free(spa->spa_config_splitting); 5041 spa->spa_config_splitting = NULL; 5042 (void) spa_vdev_exit(spa, NULL, txg, error); 5043 5044 kmem_free(vml, children * sizeof (vdev_t *)); 5045 return (error); 5046 } 5047 5048 static nvlist_t * 5049 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid) 5050 { 5051 for (int i = 0; i < count; i++) { 5052 uint64_t guid; 5053 5054 VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID, 5055 &guid) == 0); 5056 5057 if (guid == target_guid) 5058 return (nvpp[i]); 5059 } 5060 5061 return (NULL); 5062 } 5063 5064 static void 5065 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count, 5066 nvlist_t *dev_to_remove) 5067 { 5068 nvlist_t **newdev = NULL; 5069 5070 if (count > 1) 5071 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP); 5072 5073 for (int i = 0, j = 0; i < count; i++) { 5074 if (dev[i] == dev_to_remove) 5075 continue; 5076 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0); 5077 } 5078 5079 VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0); 5080 VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0); 5081 5082 for (int i = 0; i < count - 1; i++) 5083 nvlist_free(newdev[i]); 5084 5085 if (count > 1) 5086 kmem_free(newdev, (count - 1) * sizeof (void *)); 5087 } 5088 5089 /* 5090 * Evacuate the device. 5091 */ 5092 static int 5093 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd) 5094 { 5095 uint64_t txg; 5096 int error = 0; 5097 5098 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 5099 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 5100 ASSERT(vd == vd->vdev_top); 5101 5102 /* 5103 * Evacuate the device. We don't hold the config lock as writer 5104 * since we need to do I/O but we do keep the 5105 * spa_namespace_lock held. Once this completes the device 5106 * should no longer have any blocks allocated on it. 5107 */ 5108 if (vd->vdev_islog) { 5109 if (vd->vdev_stat.vs_alloc != 0) 5110 error = spa_offline_log(spa); 5111 } else { 5112 error = SET_ERROR(ENOTSUP); 5113 } 5114 5115 if (error) 5116 return (error); 5117 5118 /* 5119 * The evacuation succeeded. Remove any remaining MOS metadata 5120 * associated with this vdev, and wait for these changes to sync. 5121 */ 5122 ASSERT0(vd->vdev_stat.vs_alloc); 5123 txg = spa_vdev_config_enter(spa); 5124 vd->vdev_removing = B_TRUE; 5125 vdev_dirty_leaves(vd, VDD_DTL, txg); 5126 vdev_config_dirty(vd); 5127 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 5128 5129 return (0); 5130 } 5131 5132 /* 5133 * Complete the removal by cleaning up the namespace. 5134 */ 5135 static void 5136 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd) 5137 { 5138 vdev_t *rvd = spa->spa_root_vdev; 5139 uint64_t id = vd->vdev_id; 5140 boolean_t last_vdev = (id == (rvd->vdev_children - 1)); 5141 5142 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 5143 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 5144 ASSERT(vd == vd->vdev_top); 5145 5146 /* 5147 * Only remove any devices which are empty. 5148 */ 5149 if (vd->vdev_stat.vs_alloc != 0) 5150 return; 5151 5152 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 5153 5154 if (list_link_active(&vd->vdev_state_dirty_node)) 5155 vdev_state_clean(vd); 5156 if (list_link_active(&vd->vdev_config_dirty_node)) 5157 vdev_config_clean(vd); 5158 5159 vdev_free(vd); 5160 5161 if (last_vdev) { 5162 vdev_compact_children(rvd); 5163 } else { 5164 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops); 5165 vdev_add_child(rvd, vd); 5166 } 5167 vdev_config_dirty(rvd); 5168 5169 /* 5170 * Reassess the health of our root vdev. 5171 */ 5172 vdev_reopen(rvd); 5173 } 5174 5175 /* 5176 * Remove a device from the pool - 5177 * 5178 * Removing a device from the vdev namespace requires several steps 5179 * and can take a significant amount of time. As a result we use 5180 * the spa_vdev_config_[enter/exit] functions which allow us to 5181 * grab and release the spa_config_lock while still holding the namespace 5182 * lock. During each step the configuration is synced out. 5183 * 5184 * Currently, this supports removing only hot spares, slogs, and level 2 ARC 5185 * devices. 5186 */ 5187 int 5188 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare) 5189 { 5190 vdev_t *vd; 5191 metaslab_group_t *mg; 5192 nvlist_t **spares, **l2cache, *nv; 5193 uint64_t txg = 0; 5194 uint_t nspares, nl2cache; 5195 int error = 0; 5196 boolean_t locked = MUTEX_HELD(&spa_namespace_lock); 5197 5198 ASSERT(spa_writeable(spa)); 5199 5200 if (!locked) 5201 txg = spa_vdev_enter(spa); 5202 5203 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 5204 5205 if (spa->spa_spares.sav_vdevs != NULL && 5206 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 5207 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 && 5208 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) { 5209 /* 5210 * Only remove the hot spare if it's not currently in use 5211 * in this pool. 5212 */ 5213 if (vd == NULL || unspare) { 5214 spa_vdev_remove_aux(spa->spa_spares.sav_config, 5215 ZPOOL_CONFIG_SPARES, spares, nspares, nv); 5216 spa_load_spares(spa); 5217 spa->spa_spares.sav_sync = B_TRUE; 5218 } else { 5219 error = SET_ERROR(EBUSY); 5220 } 5221 } else if (spa->spa_l2cache.sav_vdevs != NULL && 5222 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 5223 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 && 5224 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) { 5225 /* 5226 * Cache devices can always be removed. 5227 */ 5228 spa_vdev_remove_aux(spa->spa_l2cache.sav_config, 5229 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv); 5230 spa_load_l2cache(spa); 5231 spa->spa_l2cache.sav_sync = B_TRUE; 5232 } else if (vd != NULL && vd->vdev_islog) { 5233 ASSERT(!locked); 5234 ASSERT(vd == vd->vdev_top); 5235 5236 /* 5237 * XXX - Once we have bp-rewrite this should 5238 * become the common case. 5239 */ 5240 5241 mg = vd->vdev_mg; 5242 5243 /* 5244 * Stop allocating from this vdev. 5245 */ 5246 metaslab_group_passivate(mg); 5247 5248 /* 5249 * Wait for the youngest allocations and frees to sync, 5250 * and then wait for the deferral of those frees to finish. 5251 */ 5252 spa_vdev_config_exit(spa, NULL, 5253 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG); 5254 5255 /* 5256 * Attempt to evacuate the vdev. 5257 */ 5258 error = spa_vdev_remove_evacuate(spa, vd); 5259 5260 txg = spa_vdev_config_enter(spa); 5261 5262 /* 5263 * If we couldn't evacuate the vdev, unwind. 5264 */ 5265 if (error) { 5266 metaslab_group_activate(mg); 5267 return (spa_vdev_exit(spa, NULL, txg, error)); 5268 } 5269 5270 /* 5271 * Clean up the vdev namespace. 5272 */ 5273 spa_vdev_remove_from_namespace(spa, vd); 5274 5275 } else if (vd != NULL) { 5276 /* 5277 * Normal vdevs cannot be removed (yet). 5278 */ 5279 error = SET_ERROR(ENOTSUP); 5280 } else { 5281 /* 5282 * There is no vdev of any kind with the specified guid. 5283 */ 5284 error = SET_ERROR(ENOENT); 5285 } 5286 5287 if (!locked) 5288 return (spa_vdev_exit(spa, NULL, txg, error)); 5289 5290 return (error); 5291 } 5292 5293 /* 5294 * Find any device that's done replacing, or a vdev marked 'unspare' that's 5295 * currently spared, so we can detach it. 5296 */ 5297 static vdev_t * 5298 spa_vdev_resilver_done_hunt(vdev_t *vd) 5299 { 5300 vdev_t *newvd, *oldvd; 5301 5302 for (int c = 0; c < vd->vdev_children; c++) { 5303 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]); 5304 if (oldvd != NULL) 5305 return (oldvd); 5306 } 5307 5308 /* 5309 * Check for a completed replacement. We always consider the first 5310 * vdev in the list to be the oldest vdev, and the last one to be 5311 * the newest (see spa_vdev_attach() for how that works). In 5312 * the case where the newest vdev is faulted, we will not automatically 5313 * remove it after a resilver completes. This is OK as it will require 5314 * user intervention to determine which disk the admin wishes to keep. 5315 */ 5316 if (vd->vdev_ops == &vdev_replacing_ops) { 5317 ASSERT(vd->vdev_children > 1); 5318 5319 newvd = vd->vdev_child[vd->vdev_children - 1]; 5320 oldvd = vd->vdev_child[0]; 5321 5322 if (vdev_dtl_empty(newvd, DTL_MISSING) && 5323 vdev_dtl_empty(newvd, DTL_OUTAGE) && 5324 !vdev_dtl_required(oldvd)) 5325 return (oldvd); 5326 } 5327 5328 /* 5329 * Check for a completed resilver with the 'unspare' flag set. 5330 */ 5331 if (vd->vdev_ops == &vdev_spare_ops) { 5332 vdev_t *first = vd->vdev_child[0]; 5333 vdev_t *last = vd->vdev_child[vd->vdev_children - 1]; 5334 5335 if (last->vdev_unspare) { 5336 oldvd = first; 5337 newvd = last; 5338 } else if (first->vdev_unspare) { 5339 oldvd = last; 5340 newvd = first; 5341 } else { 5342 oldvd = NULL; 5343 } 5344 5345 if (oldvd != NULL && 5346 vdev_dtl_empty(newvd, DTL_MISSING) && 5347 vdev_dtl_empty(newvd, DTL_OUTAGE) && 5348 !vdev_dtl_required(oldvd)) 5349 return (oldvd); 5350 5351 /* 5352 * If there are more than two spares attached to a disk, 5353 * and those spares are not required, then we want to 5354 * attempt to free them up now so that they can be used 5355 * by other pools. Once we're back down to a single 5356 * disk+spare, we stop removing them. 5357 */ 5358 if (vd->vdev_children > 2) { 5359 newvd = vd->vdev_child[1]; 5360 5361 if (newvd->vdev_isspare && last->vdev_isspare && 5362 vdev_dtl_empty(last, DTL_MISSING) && 5363 vdev_dtl_empty(last, DTL_OUTAGE) && 5364 !vdev_dtl_required(newvd)) 5365 return (newvd); 5366 } 5367 } 5368 5369 return (NULL); 5370 } 5371 5372 static void 5373 spa_vdev_resilver_done(spa_t *spa) 5374 { 5375 vdev_t *vd, *pvd, *ppvd; 5376 uint64_t guid, sguid, pguid, ppguid; 5377 5378 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5379 5380 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) { 5381 pvd = vd->vdev_parent; 5382 ppvd = pvd->vdev_parent; 5383 guid = vd->vdev_guid; 5384 pguid = pvd->vdev_guid; 5385 ppguid = ppvd->vdev_guid; 5386 sguid = 0; 5387 /* 5388 * If we have just finished replacing a hot spared device, then 5389 * we need to detach the parent's first child (the original hot 5390 * spare) as well. 5391 */ 5392 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 && 5393 ppvd->vdev_children == 2) { 5394 ASSERT(pvd->vdev_ops == &vdev_replacing_ops); 5395 sguid = ppvd->vdev_child[1]->vdev_guid; 5396 } 5397 ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd)); 5398 5399 spa_config_exit(spa, SCL_ALL, FTAG); 5400 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0) 5401 return; 5402 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0) 5403 return; 5404 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5405 } 5406 5407 spa_config_exit(spa, SCL_ALL, FTAG); 5408 } 5409 5410 /* 5411 * Update the stored path or FRU for this vdev. 5412 */ 5413 int 5414 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value, 5415 boolean_t ispath) 5416 { 5417 vdev_t *vd; 5418 boolean_t sync = B_FALSE; 5419 5420 ASSERT(spa_writeable(spa)); 5421 5422 spa_vdev_state_enter(spa, SCL_ALL); 5423 5424 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 5425 return (spa_vdev_state_exit(spa, NULL, ENOENT)); 5426 5427 if (!vd->vdev_ops->vdev_op_leaf) 5428 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 5429 5430 if (ispath) { 5431 if (strcmp(value, vd->vdev_path) != 0) { 5432 spa_strfree(vd->vdev_path); 5433 vd->vdev_path = spa_strdup(value); 5434 sync = B_TRUE; 5435 } 5436 } else { 5437 if (vd->vdev_fru == NULL) { 5438 vd->vdev_fru = spa_strdup(value); 5439 sync = B_TRUE; 5440 } else if (strcmp(value, vd->vdev_fru) != 0) { 5441 spa_strfree(vd->vdev_fru); 5442 vd->vdev_fru = spa_strdup(value); 5443 sync = B_TRUE; 5444 } 5445 } 5446 5447 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0)); 5448 } 5449 5450 int 5451 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath) 5452 { 5453 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE)); 5454 } 5455 5456 int 5457 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru) 5458 { 5459 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE)); 5460 } 5461 5462 /* 5463 * ========================================================================== 5464 * SPA Scanning 5465 * ========================================================================== 5466 */ 5467 5468 int 5469 spa_scan_stop(spa_t *spa) 5470 { 5471 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 5472 if (dsl_scan_resilvering(spa->spa_dsl_pool)) 5473 return (SET_ERROR(EBUSY)); 5474 return (dsl_scan_cancel(spa->spa_dsl_pool)); 5475 } 5476 5477 int 5478 spa_scan(spa_t *spa, pool_scan_func_t func) 5479 { 5480 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 5481 5482 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE) 5483 return (SET_ERROR(ENOTSUP)); 5484 5485 /* 5486 * If a resilver was requested, but there is no DTL on a 5487 * writeable leaf device, we have nothing to do. 5488 */ 5489 if (func == POOL_SCAN_RESILVER && 5490 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) { 5491 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 5492 return (0); 5493 } 5494 5495 return (dsl_scan(spa->spa_dsl_pool, func)); 5496 } 5497 5498 /* 5499 * ========================================================================== 5500 * SPA async task processing 5501 * ========================================================================== 5502 */ 5503 5504 static void 5505 spa_async_remove(spa_t *spa, vdev_t *vd) 5506 { 5507 if (vd->vdev_remove_wanted) { 5508 vd->vdev_remove_wanted = B_FALSE; 5509 vd->vdev_delayed_close = B_FALSE; 5510 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE); 5511 5512 /* 5513 * We want to clear the stats, but we don't want to do a full 5514 * vdev_clear() as that will cause us to throw away 5515 * degraded/faulted state as well as attempt to reopen the 5516 * device, all of which is a waste. 5517 */ 5518 vd->vdev_stat.vs_read_errors = 0; 5519 vd->vdev_stat.vs_write_errors = 0; 5520 vd->vdev_stat.vs_checksum_errors = 0; 5521 5522 vdev_state_dirty(vd->vdev_top); 5523 } 5524 5525 for (int c = 0; c < vd->vdev_children; c++) 5526 spa_async_remove(spa, vd->vdev_child[c]); 5527 } 5528 5529 static void 5530 spa_async_probe(spa_t *spa, vdev_t *vd) 5531 { 5532 if (vd->vdev_probe_wanted) { 5533 vd->vdev_probe_wanted = B_FALSE; 5534 vdev_reopen(vd); /* vdev_open() does the actual probe */ 5535 } 5536 5537 for (int c = 0; c < vd->vdev_children; c++) 5538 spa_async_probe(spa, vd->vdev_child[c]); 5539 } 5540 5541 static void 5542 spa_async_autoexpand(spa_t *spa, vdev_t *vd) 5543 { 5544 sysevent_id_t eid; 5545 nvlist_t *attr; 5546 char *physpath; 5547 5548 if (!spa->spa_autoexpand) 5549 return; 5550 5551 for (int c = 0; c < vd->vdev_children; c++) { 5552 vdev_t *cvd = vd->vdev_child[c]; 5553 spa_async_autoexpand(spa, cvd); 5554 } 5555 5556 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL) 5557 return; 5558 5559 physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP); 5560 (void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath); 5561 5562 VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0); 5563 VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0); 5564 5565 (void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS, 5566 ESC_DEV_DLE, attr, &eid, DDI_SLEEP); 5567 5568 nvlist_free(attr); 5569 kmem_free(physpath, MAXPATHLEN); 5570 } 5571 5572 static void 5573 spa_async_thread(spa_t *spa) 5574 { 5575 int tasks; 5576 5577 ASSERT(spa->spa_sync_on); 5578 5579 mutex_enter(&spa->spa_async_lock); 5580 tasks = spa->spa_async_tasks; 5581 spa->spa_async_tasks = 0; 5582 mutex_exit(&spa->spa_async_lock); 5583 5584 /* 5585 * See if the config needs to be updated. 5586 */ 5587 if (tasks & SPA_ASYNC_CONFIG_UPDATE) { 5588 uint64_t old_space, new_space; 5589 5590 mutex_enter(&spa_namespace_lock); 5591 old_space = metaslab_class_get_space(spa_normal_class(spa)); 5592 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 5593 new_space = metaslab_class_get_space(spa_normal_class(spa)); 5594 mutex_exit(&spa_namespace_lock); 5595 5596 /* 5597 * If the pool grew as a result of the config update, 5598 * then log an internal history event. 5599 */ 5600 if (new_space != old_space) { 5601 spa_history_log_internal(spa, "vdev online", NULL, 5602 "pool '%s' size: %llu(+%llu)", 5603 spa_name(spa), new_space, new_space - old_space); 5604 } 5605 } 5606 5607 /* 5608 * See if any devices need to be marked REMOVED. 5609 */ 5610 if (tasks & SPA_ASYNC_REMOVE) { 5611 spa_vdev_state_enter(spa, SCL_NONE); 5612 spa_async_remove(spa, spa->spa_root_vdev); 5613 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) 5614 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]); 5615 for (int i = 0; i < spa->spa_spares.sav_count; i++) 5616 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]); 5617 (void) spa_vdev_state_exit(spa, NULL, 0); 5618 } 5619 5620 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) { 5621 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 5622 spa_async_autoexpand(spa, spa->spa_root_vdev); 5623 spa_config_exit(spa, SCL_CONFIG, FTAG); 5624 } 5625 5626 /* 5627 * See if any devices need to be probed. 5628 */ 5629 if (tasks & SPA_ASYNC_PROBE) { 5630 spa_vdev_state_enter(spa, SCL_NONE); 5631 spa_async_probe(spa, spa->spa_root_vdev); 5632 (void) spa_vdev_state_exit(spa, NULL, 0); 5633 } 5634 5635 /* 5636 * If any devices are done replacing, detach them. 5637 */ 5638 if (tasks & SPA_ASYNC_RESILVER_DONE) 5639 spa_vdev_resilver_done(spa); 5640 5641 /* 5642 * Kick off a resilver. 5643 */ 5644 if (tasks & SPA_ASYNC_RESILVER) 5645 dsl_resilver_restart(spa->spa_dsl_pool, 0); 5646 5647 /* 5648 * Let the world know that we're done. 5649 */ 5650 mutex_enter(&spa->spa_async_lock); 5651 spa->spa_async_thread = NULL; 5652 cv_broadcast(&spa->spa_async_cv); 5653 mutex_exit(&spa->spa_async_lock); 5654 thread_exit(); 5655 } 5656 5657 void 5658 spa_async_suspend(spa_t *spa) 5659 { 5660 mutex_enter(&spa->spa_async_lock); 5661 spa->spa_async_suspended++; 5662 while (spa->spa_async_thread != NULL) 5663 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock); 5664 mutex_exit(&spa->spa_async_lock); 5665 } 5666 5667 void 5668 spa_async_resume(spa_t *spa) 5669 { 5670 mutex_enter(&spa->spa_async_lock); 5671 ASSERT(spa->spa_async_suspended != 0); 5672 spa->spa_async_suspended--; 5673 mutex_exit(&spa->spa_async_lock); 5674 } 5675 5676 static boolean_t 5677 spa_async_tasks_pending(spa_t *spa) 5678 { 5679 uint_t non_config_tasks; 5680 uint_t config_task; 5681 boolean_t config_task_suspended; 5682 5683 non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE; 5684 config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE; 5685 if (spa->spa_ccw_fail_time == 0) { 5686 config_task_suspended = B_FALSE; 5687 } else { 5688 config_task_suspended = 5689 (gethrtime() - spa->spa_ccw_fail_time) < 5690 (zfs_ccw_retry_interval * NANOSEC); 5691 } 5692 5693 return (non_config_tasks || (config_task && !config_task_suspended)); 5694 } 5695 5696 static void 5697 spa_async_dispatch(spa_t *spa) 5698 { 5699 mutex_enter(&spa->spa_async_lock); 5700 if (spa_async_tasks_pending(spa) && 5701 !spa->spa_async_suspended && 5702 spa->spa_async_thread == NULL && 5703 rootdir != NULL) 5704 spa->spa_async_thread = thread_create(NULL, 0, 5705 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri); 5706 mutex_exit(&spa->spa_async_lock); 5707 } 5708 5709 void 5710 spa_async_request(spa_t *spa, int task) 5711 { 5712 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task); 5713 mutex_enter(&spa->spa_async_lock); 5714 spa->spa_async_tasks |= task; 5715 mutex_exit(&spa->spa_async_lock); 5716 } 5717 5718 /* 5719 * ========================================================================== 5720 * SPA syncing routines 5721 * ========================================================================== 5722 */ 5723 5724 static int 5725 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 5726 { 5727 bpobj_t *bpo = arg; 5728 bpobj_enqueue(bpo, bp, tx); 5729 return (0); 5730 } 5731 5732 static int 5733 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 5734 { 5735 zio_t *zio = arg; 5736 5737 zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp, 5738 zio->io_flags)); 5739 return (0); 5740 } 5741 5742 /* 5743 * Note: this simple function is not inlined to make it easier to dtrace the 5744 * amount of time spent syncing frees. 5745 */ 5746 static void 5747 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx) 5748 { 5749 zio_t *zio = zio_root(spa, NULL, NULL, 0); 5750 bplist_iterate(bpl, spa_free_sync_cb, zio, tx); 5751 VERIFY(zio_wait(zio) == 0); 5752 } 5753 5754 /* 5755 * Note: this simple function is not inlined to make it easier to dtrace the 5756 * amount of time spent syncing deferred frees. 5757 */ 5758 static void 5759 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx) 5760 { 5761 zio_t *zio = zio_root(spa, NULL, NULL, 0); 5762 VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj, 5763 spa_free_sync_cb, zio, tx), ==, 0); 5764 VERIFY0(zio_wait(zio)); 5765 } 5766 5767 5768 static void 5769 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx) 5770 { 5771 char *packed = NULL; 5772 size_t bufsize; 5773 size_t nvsize = 0; 5774 dmu_buf_t *db; 5775 5776 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0); 5777 5778 /* 5779 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration 5780 * information. This avoids the dbuf_will_dirty() path and 5781 * saves us a pre-read to get data we don't actually care about. 5782 */ 5783 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE); 5784 packed = kmem_alloc(bufsize, KM_SLEEP); 5785 5786 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR, 5787 KM_SLEEP) == 0); 5788 bzero(packed + nvsize, bufsize - nvsize); 5789 5790 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx); 5791 5792 kmem_free(packed, bufsize); 5793 5794 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 5795 dmu_buf_will_dirty(db, tx); 5796 *(uint64_t *)db->db_data = nvsize; 5797 dmu_buf_rele(db, FTAG); 5798 } 5799 5800 static void 5801 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx, 5802 const char *config, const char *entry) 5803 { 5804 nvlist_t *nvroot; 5805 nvlist_t **list; 5806 int i; 5807 5808 if (!sav->sav_sync) 5809 return; 5810 5811 /* 5812 * Update the MOS nvlist describing the list of available devices. 5813 * spa_validate_aux() will have already made sure this nvlist is 5814 * valid and the vdevs are labeled appropriately. 5815 */ 5816 if (sav->sav_object == 0) { 5817 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset, 5818 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE, 5819 sizeof (uint64_t), tx); 5820 VERIFY(zap_update(spa->spa_meta_objset, 5821 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1, 5822 &sav->sav_object, tx) == 0); 5823 } 5824 5825 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 5826 if (sav->sav_count == 0) { 5827 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0); 5828 } else { 5829 list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 5830 for (i = 0; i < sav->sav_count; i++) 5831 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i], 5832 B_FALSE, VDEV_CONFIG_L2CACHE); 5833 VERIFY(nvlist_add_nvlist_array(nvroot, config, list, 5834 sav->sav_count) == 0); 5835 for (i = 0; i < sav->sav_count; i++) 5836 nvlist_free(list[i]); 5837 kmem_free(list, sav->sav_count * sizeof (void *)); 5838 } 5839 5840 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx); 5841 nvlist_free(nvroot); 5842 5843 sav->sav_sync = B_FALSE; 5844 } 5845 5846 static void 5847 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx) 5848 { 5849 nvlist_t *config; 5850 5851 if (list_is_empty(&spa->spa_config_dirty_list)) 5852 return; 5853 5854 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 5855 5856 config = spa_config_generate(spa, spa->spa_root_vdev, 5857 dmu_tx_get_txg(tx), B_FALSE); 5858 5859 /* 5860 * If we're upgrading the spa version then make sure that 5861 * the config object gets updated with the correct version. 5862 */ 5863 if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version) 5864 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, 5865 spa->spa_uberblock.ub_version); 5866 5867 spa_config_exit(spa, SCL_STATE, FTAG); 5868 5869 if (spa->spa_config_syncing) 5870 nvlist_free(spa->spa_config_syncing); 5871 spa->spa_config_syncing = config; 5872 5873 spa_sync_nvlist(spa, spa->spa_config_object, config, tx); 5874 } 5875 5876 static void 5877 spa_sync_version(void *arg, dmu_tx_t *tx) 5878 { 5879 uint64_t *versionp = arg; 5880 uint64_t version = *versionp; 5881 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 5882 5883 /* 5884 * Setting the version is special cased when first creating the pool. 5885 */ 5886 ASSERT(tx->tx_txg != TXG_INITIAL); 5887 5888 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 5889 ASSERT(version >= spa_version(spa)); 5890 5891 spa->spa_uberblock.ub_version = version; 5892 vdev_config_dirty(spa->spa_root_vdev); 5893 spa_history_log_internal(spa, "set", tx, "version=%lld", version); 5894 } 5895 5896 /* 5897 * Set zpool properties. 5898 */ 5899 static void 5900 spa_sync_props(void *arg, dmu_tx_t *tx) 5901 { 5902 nvlist_t *nvp = arg; 5903 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 5904 objset_t *mos = spa->spa_meta_objset; 5905 nvpair_t *elem = NULL; 5906 5907 mutex_enter(&spa->spa_props_lock); 5908 5909 while ((elem = nvlist_next_nvpair(nvp, elem))) { 5910 uint64_t intval; 5911 char *strval, *fname; 5912 zpool_prop_t prop; 5913 const char *propname; 5914 zprop_type_t proptype; 5915 spa_feature_t fid; 5916 5917 switch (prop = zpool_name_to_prop(nvpair_name(elem))) { 5918 case ZPROP_INVAL: 5919 /* 5920 * We checked this earlier in spa_prop_validate(). 5921 */ 5922 ASSERT(zpool_prop_feature(nvpair_name(elem))); 5923 5924 fname = strchr(nvpair_name(elem), '@') + 1; 5925 VERIFY0(zfeature_lookup_name(fname, &fid)); 5926 5927 spa_feature_enable(spa, fid, tx); 5928 spa_history_log_internal(spa, "set", tx, 5929 "%s=enabled", nvpair_name(elem)); 5930 break; 5931 5932 case ZPOOL_PROP_VERSION: 5933 intval = fnvpair_value_uint64(elem); 5934 /* 5935 * The version is synced seperatly before other 5936 * properties and should be correct by now. 5937 */ 5938 ASSERT3U(spa_version(spa), >=, intval); 5939 break; 5940 5941 case ZPOOL_PROP_ALTROOT: 5942 /* 5943 * 'altroot' is a non-persistent property. It should 5944 * have been set temporarily at creation or import time. 5945 */ 5946 ASSERT(spa->spa_root != NULL); 5947 break; 5948 5949 case ZPOOL_PROP_READONLY: 5950 case ZPOOL_PROP_CACHEFILE: 5951 /* 5952 * 'readonly' and 'cachefile' are also non-persisitent 5953 * properties. 5954 */ 5955 break; 5956 case ZPOOL_PROP_COMMENT: 5957 strval = fnvpair_value_string(elem); 5958 if (spa->spa_comment != NULL) 5959 spa_strfree(spa->spa_comment); 5960 spa->spa_comment = spa_strdup(strval); 5961 /* 5962 * We need to dirty the configuration on all the vdevs 5963 * so that their labels get updated. It's unnecessary 5964 * to do this for pool creation since the vdev's 5965 * configuratoin has already been dirtied. 5966 */ 5967 if (tx->tx_txg != TXG_INITIAL) 5968 vdev_config_dirty(spa->spa_root_vdev); 5969 spa_history_log_internal(spa, "set", tx, 5970 "%s=%s", nvpair_name(elem), strval); 5971 break; 5972 default: 5973 /* 5974 * Set pool property values in the poolprops mos object. 5975 */ 5976 if (spa->spa_pool_props_object == 0) { 5977 spa->spa_pool_props_object = 5978 zap_create_link(mos, DMU_OT_POOL_PROPS, 5979 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS, 5980 tx); 5981 } 5982 5983 /* normalize the property name */ 5984 propname = zpool_prop_to_name(prop); 5985 proptype = zpool_prop_get_type(prop); 5986 5987 if (nvpair_type(elem) == DATA_TYPE_STRING) { 5988 ASSERT(proptype == PROP_TYPE_STRING); 5989 strval = fnvpair_value_string(elem); 5990 VERIFY0(zap_update(mos, 5991 spa->spa_pool_props_object, propname, 5992 1, strlen(strval) + 1, strval, tx)); 5993 spa_history_log_internal(spa, "set", tx, 5994 "%s=%s", nvpair_name(elem), strval); 5995 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) { 5996 intval = fnvpair_value_uint64(elem); 5997 5998 if (proptype == PROP_TYPE_INDEX) { 5999 const char *unused; 6000 VERIFY0(zpool_prop_index_to_string( 6001 prop, intval, &unused)); 6002 } 6003 VERIFY0(zap_update(mos, 6004 spa->spa_pool_props_object, propname, 6005 8, 1, &intval, tx)); 6006 spa_history_log_internal(spa, "set", tx, 6007 "%s=%lld", nvpair_name(elem), intval); 6008 } else { 6009 ASSERT(0); /* not allowed */ 6010 } 6011 6012 switch (prop) { 6013 case ZPOOL_PROP_DELEGATION: 6014 spa->spa_delegation = intval; 6015 break; 6016 case ZPOOL_PROP_BOOTFS: 6017 spa->spa_bootfs = intval; 6018 break; 6019 case ZPOOL_PROP_FAILUREMODE: 6020 spa->spa_failmode = intval; 6021 break; 6022 case ZPOOL_PROP_AUTOEXPAND: 6023 spa->spa_autoexpand = intval; 6024 if (tx->tx_txg != TXG_INITIAL) 6025 spa_async_request(spa, 6026 SPA_ASYNC_AUTOEXPAND); 6027 break; 6028 case ZPOOL_PROP_DEDUPDITTO: 6029 spa->spa_dedup_ditto = intval; 6030 break; 6031 default: 6032 break; 6033 } 6034 } 6035 6036 } 6037 6038 mutex_exit(&spa->spa_props_lock); 6039 } 6040 6041 /* 6042 * Perform one-time upgrade on-disk changes. spa_version() does not 6043 * reflect the new version this txg, so there must be no changes this 6044 * txg to anything that the upgrade code depends on after it executes. 6045 * Therefore this must be called after dsl_pool_sync() does the sync 6046 * tasks. 6047 */ 6048 static void 6049 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx) 6050 { 6051 dsl_pool_t *dp = spa->spa_dsl_pool; 6052 6053 ASSERT(spa->spa_sync_pass == 1); 6054 6055 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); 6056 6057 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN && 6058 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) { 6059 dsl_pool_create_origin(dp, tx); 6060 6061 /* Keeping the origin open increases spa_minref */ 6062 spa->spa_minref += 3; 6063 } 6064 6065 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES && 6066 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) { 6067 dsl_pool_upgrade_clones(dp, tx); 6068 } 6069 6070 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES && 6071 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) { 6072 dsl_pool_upgrade_dir_clones(dp, tx); 6073 6074 /* Keeping the freedir open increases spa_minref */ 6075 spa->spa_minref += 3; 6076 } 6077 6078 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES && 6079 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) { 6080 spa_feature_create_zap_objects(spa, tx); 6081 } 6082 rrw_exit(&dp->dp_config_rwlock, FTAG); 6083 } 6084 6085 /* 6086 * Sync the specified transaction group. New blocks may be dirtied as 6087 * part of the process, so we iterate until it converges. 6088 */ 6089 void 6090 spa_sync(spa_t *spa, uint64_t txg) 6091 { 6092 dsl_pool_t *dp = spa->spa_dsl_pool; 6093 objset_t *mos = spa->spa_meta_objset; 6094 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK]; 6095 vdev_t *rvd = spa->spa_root_vdev; 6096 vdev_t *vd; 6097 dmu_tx_t *tx; 6098 int error; 6099 6100 VERIFY(spa_writeable(spa)); 6101 6102 /* 6103 * Lock out configuration changes. 6104 */ 6105 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 6106 6107 spa->spa_syncing_txg = txg; 6108 spa->spa_sync_pass = 0; 6109 6110 /* 6111 * If there are any pending vdev state changes, convert them 6112 * into config changes that go out with this transaction group. 6113 */ 6114 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 6115 while (list_head(&spa->spa_state_dirty_list) != NULL) { 6116 /* 6117 * We need the write lock here because, for aux vdevs, 6118 * calling vdev_config_dirty() modifies sav_config. 6119 * This is ugly and will become unnecessary when we 6120 * eliminate the aux vdev wart by integrating all vdevs 6121 * into the root vdev tree. 6122 */ 6123 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 6124 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER); 6125 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) { 6126 vdev_state_clean(vd); 6127 vdev_config_dirty(vd); 6128 } 6129 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 6130 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 6131 } 6132 spa_config_exit(spa, SCL_STATE, FTAG); 6133 6134 tx = dmu_tx_create_assigned(dp, txg); 6135 6136 spa->spa_sync_starttime = gethrtime(); 6137 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, 6138 spa->spa_sync_starttime + spa->spa_deadman_synctime)); 6139 6140 /* 6141 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg, 6142 * set spa_deflate if we have no raid-z vdevs. 6143 */ 6144 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE && 6145 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) { 6146 int i; 6147 6148 for (i = 0; i < rvd->vdev_children; i++) { 6149 vd = rvd->vdev_child[i]; 6150 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE) 6151 break; 6152 } 6153 if (i == rvd->vdev_children) { 6154 spa->spa_deflate = TRUE; 6155 VERIFY(0 == zap_add(spa->spa_meta_objset, 6156 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 6157 sizeof (uint64_t), 1, &spa->spa_deflate, tx)); 6158 } 6159 } 6160 6161 /* 6162 * If anything has changed in this txg, or if someone is waiting 6163 * for this txg to sync (eg, spa_vdev_remove()), push the 6164 * deferred frees from the previous txg. If not, leave them 6165 * alone so that we don't generate work on an otherwise idle 6166 * system. 6167 */ 6168 if (!txg_list_empty(&dp->dp_dirty_datasets, txg) || 6169 !txg_list_empty(&dp->dp_dirty_dirs, txg) || 6170 !txg_list_empty(&dp->dp_sync_tasks, txg) || 6171 ((dsl_scan_active(dp->dp_scan) || 6172 txg_sync_waiting(dp)) && !spa_shutting_down(spa))) { 6173 spa_sync_deferred_frees(spa, tx); 6174 } 6175 6176 /* 6177 * Iterate to convergence. 6178 */ 6179 do { 6180 int pass = ++spa->spa_sync_pass; 6181 6182 spa_sync_config_object(spa, tx); 6183 spa_sync_aux_dev(spa, &spa->spa_spares, tx, 6184 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES); 6185 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx, 6186 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE); 6187 spa_errlog_sync(spa, txg); 6188 dsl_pool_sync(dp, txg); 6189 6190 if (pass < zfs_sync_pass_deferred_free) { 6191 spa_sync_frees(spa, free_bpl, tx); 6192 } else { 6193 bplist_iterate(free_bpl, bpobj_enqueue_cb, 6194 &spa->spa_deferred_bpobj, tx); 6195 } 6196 6197 ddt_sync(spa, txg); 6198 dsl_scan_sync(dp, tx); 6199 6200 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) 6201 vdev_sync(vd, txg); 6202 6203 if (pass == 1) 6204 spa_sync_upgrades(spa, tx); 6205 6206 } while (dmu_objset_is_dirty(mos, txg)); 6207 6208 /* 6209 * Rewrite the vdev configuration (which includes the uberblock) 6210 * to commit the transaction group. 6211 * 6212 * If there are no dirty vdevs, we sync the uberblock to a few 6213 * random top-level vdevs that are known to be visible in the 6214 * config cache (see spa_vdev_add() for a complete description). 6215 * If there *are* dirty vdevs, sync the uberblock to all vdevs. 6216 */ 6217 for (;;) { 6218 /* 6219 * We hold SCL_STATE to prevent vdev open/close/etc. 6220 * while we're attempting to write the vdev labels. 6221 */ 6222 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 6223 6224 if (list_is_empty(&spa->spa_config_dirty_list)) { 6225 vdev_t *svd[SPA_DVAS_PER_BP]; 6226 int svdcount = 0; 6227 int children = rvd->vdev_children; 6228 int c0 = spa_get_random(children); 6229 6230 for (int c = 0; c < children; c++) { 6231 vd = rvd->vdev_child[(c0 + c) % children]; 6232 if (vd->vdev_ms_array == 0 || vd->vdev_islog) 6233 continue; 6234 svd[svdcount++] = vd; 6235 if (svdcount == SPA_DVAS_PER_BP) 6236 break; 6237 } 6238 error = vdev_config_sync(svd, svdcount, txg, B_FALSE); 6239 if (error != 0) 6240 error = vdev_config_sync(svd, svdcount, txg, 6241 B_TRUE); 6242 } else { 6243 error = vdev_config_sync(rvd->vdev_child, 6244 rvd->vdev_children, txg, B_FALSE); 6245 if (error != 0) 6246 error = vdev_config_sync(rvd->vdev_child, 6247 rvd->vdev_children, txg, B_TRUE); 6248 } 6249 6250 if (error == 0) 6251 spa->spa_last_synced_guid = rvd->vdev_guid; 6252 6253 spa_config_exit(spa, SCL_STATE, FTAG); 6254 6255 if (error == 0) 6256 break; 6257 zio_suspend(spa, NULL); 6258 zio_resume_wait(spa); 6259 } 6260 dmu_tx_commit(tx); 6261 6262 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY)); 6263 6264 /* 6265 * Clear the dirty config list. 6266 */ 6267 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL) 6268 vdev_config_clean(vd); 6269 6270 /* 6271 * Now that the new config has synced transactionally, 6272 * let it become visible to the config cache. 6273 */ 6274 if (spa->spa_config_syncing != NULL) { 6275 spa_config_set(spa, spa->spa_config_syncing); 6276 spa->spa_config_txg = txg; 6277 spa->spa_config_syncing = NULL; 6278 } 6279 6280 spa->spa_ubsync = spa->spa_uberblock; 6281 6282 dsl_pool_sync_done(dp, txg); 6283 6284 /* 6285 * Update usable space statistics. 6286 */ 6287 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg))) 6288 vdev_sync_done(vd, txg); 6289 6290 spa_update_dspace(spa); 6291 6292 /* 6293 * It had better be the case that we didn't dirty anything 6294 * since vdev_config_sync(). 6295 */ 6296 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg)); 6297 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); 6298 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg)); 6299 6300 spa->spa_sync_pass = 0; 6301 6302 spa_config_exit(spa, SCL_CONFIG, FTAG); 6303 6304 spa_handle_ignored_writes(spa); 6305 6306 /* 6307 * If any async tasks have been requested, kick them off. 6308 */ 6309 spa_async_dispatch(spa); 6310 } 6311 6312 /* 6313 * Sync all pools. We don't want to hold the namespace lock across these 6314 * operations, so we take a reference on the spa_t and drop the lock during the 6315 * sync. 6316 */ 6317 void 6318 spa_sync_allpools(void) 6319 { 6320 spa_t *spa = NULL; 6321 mutex_enter(&spa_namespace_lock); 6322 while ((spa = spa_next(spa)) != NULL) { 6323 if (spa_state(spa) != POOL_STATE_ACTIVE || 6324 !spa_writeable(spa) || spa_suspended(spa)) 6325 continue; 6326 spa_open_ref(spa, FTAG); 6327 mutex_exit(&spa_namespace_lock); 6328 txg_wait_synced(spa_get_dsl(spa), 0); 6329 mutex_enter(&spa_namespace_lock); 6330 spa_close(spa, FTAG); 6331 } 6332 mutex_exit(&spa_namespace_lock); 6333 } 6334 6335 /* 6336 * ========================================================================== 6337 * Miscellaneous routines 6338 * ========================================================================== 6339 */ 6340 6341 /* 6342 * Remove all pools in the system. 6343 */ 6344 void 6345 spa_evict_all(void) 6346 { 6347 spa_t *spa; 6348 6349 /* 6350 * Remove all cached state. All pools should be closed now, 6351 * so every spa in the AVL tree should be unreferenced. 6352 */ 6353 mutex_enter(&spa_namespace_lock); 6354 while ((spa = spa_next(NULL)) != NULL) { 6355 /* 6356 * Stop async tasks. The async thread may need to detach 6357 * a device that's been replaced, which requires grabbing 6358 * spa_namespace_lock, so we must drop it here. 6359 */ 6360 spa_open_ref(spa, FTAG); 6361 mutex_exit(&spa_namespace_lock); 6362 spa_async_suspend(spa); 6363 mutex_enter(&spa_namespace_lock); 6364 spa_close(spa, FTAG); 6365 6366 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 6367 spa_unload(spa); 6368 spa_deactivate(spa); 6369 } 6370 spa_remove(spa); 6371 } 6372 mutex_exit(&spa_namespace_lock); 6373 } 6374 6375 vdev_t * 6376 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux) 6377 { 6378 vdev_t *vd; 6379 int i; 6380 6381 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL) 6382 return (vd); 6383 6384 if (aux) { 6385 for (i = 0; i < spa->spa_l2cache.sav_count; i++) { 6386 vd = spa->spa_l2cache.sav_vdevs[i]; 6387 if (vd->vdev_guid == guid) 6388 return (vd); 6389 } 6390 6391 for (i = 0; i < spa->spa_spares.sav_count; i++) { 6392 vd = spa->spa_spares.sav_vdevs[i]; 6393 if (vd->vdev_guid == guid) 6394 return (vd); 6395 } 6396 } 6397 6398 return (NULL); 6399 } 6400 6401 void 6402 spa_upgrade(spa_t *spa, uint64_t version) 6403 { 6404 ASSERT(spa_writeable(spa)); 6405 6406 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 6407 6408 /* 6409 * This should only be called for a non-faulted pool, and since a 6410 * future version would result in an unopenable pool, this shouldn't be 6411 * possible. 6412 */ 6413 ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version)); 6414 ASSERT(version >= spa->spa_uberblock.ub_version); 6415 6416 spa->spa_uberblock.ub_version = version; 6417 vdev_config_dirty(spa->spa_root_vdev); 6418 6419 spa_config_exit(spa, SCL_ALL, FTAG); 6420 6421 txg_wait_synced(spa_get_dsl(spa), 0); 6422 } 6423 6424 boolean_t 6425 spa_has_spare(spa_t *spa, uint64_t guid) 6426 { 6427 int i; 6428 uint64_t spareguid; 6429 spa_aux_vdev_t *sav = &spa->spa_spares; 6430 6431 for (i = 0; i < sav->sav_count; i++) 6432 if (sav->sav_vdevs[i]->vdev_guid == guid) 6433 return (B_TRUE); 6434 6435 for (i = 0; i < sav->sav_npending; i++) { 6436 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID, 6437 &spareguid) == 0 && spareguid == guid) 6438 return (B_TRUE); 6439 } 6440 6441 return (B_FALSE); 6442 } 6443 6444 /* 6445 * Check if a pool has an active shared spare device. 6446 * Note: reference count of an active spare is 2, as a spare and as a replace 6447 */ 6448 static boolean_t 6449 spa_has_active_shared_spare(spa_t *spa) 6450 { 6451 int i, refcnt; 6452 uint64_t pool; 6453 spa_aux_vdev_t *sav = &spa->spa_spares; 6454 6455 for (i = 0; i < sav->sav_count; i++) { 6456 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool, 6457 &refcnt) && pool != 0ULL && pool == spa_guid(spa) && 6458 refcnt > 2) 6459 return (B_TRUE); 6460 } 6461 6462 return (B_FALSE); 6463 } 6464 6465 /* 6466 * Post a sysevent corresponding to the given event. The 'name' must be one of 6467 * the event definitions in sys/sysevent/eventdefs.h. The payload will be 6468 * filled in from the spa and (optionally) the vdev. This doesn't do anything 6469 * in the userland libzpool, as we don't want consumers to misinterpret ztest 6470 * or zdb as real changes. 6471 */ 6472 void 6473 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name) 6474 { 6475 #ifdef _KERNEL 6476 sysevent_t *ev; 6477 sysevent_attr_list_t *attr = NULL; 6478 sysevent_value_t value; 6479 sysevent_id_t eid; 6480 6481 ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs", 6482 SE_SLEEP); 6483 6484 value.value_type = SE_DATA_TYPE_STRING; 6485 value.value.sv_string = spa_name(spa); 6486 if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0) 6487 goto done; 6488 6489 value.value_type = SE_DATA_TYPE_UINT64; 6490 value.value.sv_uint64 = spa_guid(spa); 6491 if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0) 6492 goto done; 6493 6494 if (vd) { 6495 value.value_type = SE_DATA_TYPE_UINT64; 6496 value.value.sv_uint64 = vd->vdev_guid; 6497 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value, 6498 SE_SLEEP) != 0) 6499 goto done; 6500 6501 if (vd->vdev_path) { 6502 value.value_type = SE_DATA_TYPE_STRING; 6503 value.value.sv_string = vd->vdev_path; 6504 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH, 6505 &value, SE_SLEEP) != 0) 6506 goto done; 6507 } 6508 } 6509 6510 if (sysevent_attach_attributes(ev, attr) != 0) 6511 goto done; 6512 attr = NULL; 6513 6514 (void) log_sysevent(ev, SE_SLEEP, &eid); 6515 6516 done: 6517 if (attr) 6518 sysevent_free_attr(attr); 6519 sysevent_free(ev); 6520 #endif 6521 } 6522