xref: /titanic_51/usr/src/uts/common/fs/zfs/spa.c (revision 6b18442ed40ea8c13ec62a482d09f1a30d51fbbe)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * This file contains all the routines used when modifying on-disk SPA state.
31  * This includes opening, importing, destroying, exporting a pool, and syncing a
32  * pool.
33  */
34 
35 #include <sys/zfs_context.h>
36 #include <sys/fm/fs/zfs.h>
37 #include <sys/spa_impl.h>
38 #include <sys/zio.h>
39 #include <sys/zio_checksum.h>
40 #include <sys/zio_compress.h>
41 #include <sys/dmu.h>
42 #include <sys/dmu_tx.h>
43 #include <sys/zap.h>
44 #include <sys/zil.h>
45 #include <sys/vdev_impl.h>
46 #include <sys/metaslab.h>
47 #include <sys/uberblock_impl.h>
48 #include <sys/txg.h>
49 #include <sys/avl.h>
50 #include <sys/dmu_traverse.h>
51 #include <sys/unique.h>
52 #include <sys/dsl_pool.h>
53 #include <sys/dsl_dir.h>
54 #include <sys/dsl_prop.h>
55 #include <sys/fs/zfs.h>
56 #include <sys/callb.h>
57 
58 /*
59  * ==========================================================================
60  * SPA state manipulation (open/create/destroy/import/export)
61  * ==========================================================================
62  */
63 
64 static int
65 spa_error_entry_compare(const void *a, const void *b)
66 {
67 	spa_error_entry_t *sa = (spa_error_entry_t *)a;
68 	spa_error_entry_t *sb = (spa_error_entry_t *)b;
69 	int ret;
70 
71 	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
72 	    sizeof (zbookmark_t));
73 
74 	if (ret < 0)
75 		return (-1);
76 	else if (ret > 0)
77 		return (1);
78 	else
79 		return (0);
80 }
81 
82 /*
83  * Utility function which retrieves copies of the current logs and
84  * re-initializes them in the process.
85  */
86 void
87 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
88 {
89 	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
90 
91 	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
92 	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
93 
94 	avl_create(&spa->spa_errlist_scrub,
95 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
96 	    offsetof(spa_error_entry_t, se_avl));
97 	avl_create(&spa->spa_errlist_last,
98 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
99 	    offsetof(spa_error_entry_t, se_avl));
100 }
101 
102 /*
103  * Activate an uninitialized pool.
104  */
105 static void
106 spa_activate(spa_t *spa)
107 {
108 	int t;
109 
110 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
111 
112 	spa->spa_state = POOL_STATE_ACTIVE;
113 
114 	spa->spa_normal_class = metaslab_class_create();
115 
116 	for (t = 0; t < ZIO_TYPES; t++) {
117 		spa->spa_zio_issue_taskq[t] = taskq_create("spa_zio_issue",
118 		    8, maxclsyspri, 50, INT_MAX,
119 		    TASKQ_PREPOPULATE);
120 		spa->spa_zio_intr_taskq[t] = taskq_create("spa_zio_intr",
121 		    8, maxclsyspri, 50, INT_MAX,
122 		    TASKQ_PREPOPULATE);
123 	}
124 
125 	rw_init(&spa->spa_traverse_lock, NULL, RW_DEFAULT, NULL);
126 
127 	list_create(&spa->spa_dirty_list, sizeof (vdev_t),
128 	    offsetof(vdev_t, vdev_dirty_node));
129 
130 	txg_list_create(&spa->spa_vdev_txg_list,
131 	    offsetof(struct vdev, vdev_txg_node));
132 
133 	avl_create(&spa->spa_errlist_scrub,
134 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
135 	    offsetof(spa_error_entry_t, se_avl));
136 	avl_create(&spa->spa_errlist_last,
137 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
138 	    offsetof(spa_error_entry_t, se_avl));
139 }
140 
141 /*
142  * Opposite of spa_activate().
143  */
144 static void
145 spa_deactivate(spa_t *spa)
146 {
147 	int t;
148 
149 	ASSERT(spa->spa_sync_on == B_FALSE);
150 	ASSERT(spa->spa_dsl_pool == NULL);
151 	ASSERT(spa->spa_root_vdev == NULL);
152 
153 	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
154 
155 	txg_list_destroy(&spa->spa_vdev_txg_list);
156 
157 	list_destroy(&spa->spa_dirty_list);
158 
159 	rw_destroy(&spa->spa_traverse_lock);
160 
161 	for (t = 0; t < ZIO_TYPES; t++) {
162 		taskq_destroy(spa->spa_zio_issue_taskq[t]);
163 		taskq_destroy(spa->spa_zio_intr_taskq[t]);
164 		spa->spa_zio_issue_taskq[t] = NULL;
165 		spa->spa_zio_intr_taskq[t] = NULL;
166 	}
167 
168 	metaslab_class_destroy(spa->spa_normal_class);
169 	spa->spa_normal_class = NULL;
170 
171 	/*
172 	 * If this was part of an import or the open otherwise failed, we may
173 	 * still have errors left in the queues.  Empty them just in case.
174 	 */
175 	spa_errlog_drain(spa);
176 
177 	avl_destroy(&spa->spa_errlist_scrub);
178 	avl_destroy(&spa->spa_errlist_last);
179 
180 	spa->spa_state = POOL_STATE_UNINITIALIZED;
181 }
182 
183 /*
184  * Verify a pool configuration, and construct the vdev tree appropriately.  This
185  * will create all the necessary vdevs in the appropriate layout, with each vdev
186  * in the CLOSED state.  This will prep the pool before open/creation/import.
187  * All vdev validation is done by the vdev_alloc() routine.
188  */
189 static int
190 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
191     uint_t id, int atype)
192 {
193 	nvlist_t **child;
194 	uint_t c, children;
195 	int error;
196 
197 	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
198 		return (error);
199 
200 	if ((*vdp)->vdev_ops->vdev_op_leaf)
201 		return (0);
202 
203 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
204 	    &child, &children) != 0) {
205 		vdev_free(*vdp);
206 		*vdp = NULL;
207 		return (EINVAL);
208 	}
209 
210 	for (c = 0; c < children; c++) {
211 		vdev_t *vd;
212 		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
213 		    atype)) != 0) {
214 			vdev_free(*vdp);
215 			*vdp = NULL;
216 			return (error);
217 		}
218 	}
219 
220 	ASSERT(*vdp != NULL);
221 
222 	return (0);
223 }
224 
225 /*
226  * Opposite of spa_load().
227  */
228 static void
229 spa_unload(spa_t *spa)
230 {
231 	int i;
232 
233 	/*
234 	 * Stop async tasks.
235 	 */
236 	spa_async_suspend(spa);
237 
238 	/*
239 	 * Stop syncing.
240 	 */
241 	if (spa->spa_sync_on) {
242 		txg_sync_stop(spa->spa_dsl_pool);
243 		spa->spa_sync_on = B_FALSE;
244 	}
245 
246 	/*
247 	 * Wait for any outstanding prefetch I/O to complete.
248 	 */
249 	spa_config_enter(spa, RW_WRITER, FTAG);
250 	spa_config_exit(spa, FTAG);
251 
252 	/*
253 	 * Close the dsl pool.
254 	 */
255 	if (spa->spa_dsl_pool) {
256 		dsl_pool_close(spa->spa_dsl_pool);
257 		spa->spa_dsl_pool = NULL;
258 	}
259 
260 	/*
261 	 * Close all vdevs.
262 	 */
263 	if (spa->spa_root_vdev)
264 		vdev_free(spa->spa_root_vdev);
265 	ASSERT(spa->spa_root_vdev == NULL);
266 
267 	for (i = 0; i < spa->spa_nspares; i++)
268 		vdev_free(spa->spa_spares[i]);
269 	if (spa->spa_spares) {
270 		kmem_free(spa->spa_spares, spa->spa_nspares * sizeof (void *));
271 		spa->spa_spares = NULL;
272 	}
273 	if (spa->spa_sparelist) {
274 		nvlist_free(spa->spa_sparelist);
275 		spa->spa_sparelist = NULL;
276 	}
277 
278 	spa->spa_async_suspended = 0;
279 }
280 
281 /*
282  * Load (or re-load) the current list of vdevs describing the active spares for
283  * this pool.  When this is called, we have some form of basic information in
284  * 'spa_sparelist'.  We parse this into vdevs, try to open them, and then
285  * re-generate a more complete list including status information.
286  */
287 static void
288 spa_load_spares(spa_t *spa)
289 {
290 	nvlist_t **spares;
291 	uint_t nspares;
292 	int i;
293 
294 	/*
295 	 * First, close and free any existing spare vdevs.
296 	 */
297 	for (i = 0; i < spa->spa_nspares; i++) {
298 		vdev_close(spa->spa_spares[i]);
299 		vdev_free(spa->spa_spares[i]);
300 	}
301 	if (spa->spa_spares)
302 		kmem_free(spa->spa_spares, spa->spa_nspares * sizeof (void *));
303 
304 	if (spa->spa_sparelist == NULL)
305 		nspares = 0;
306 	else
307 		VERIFY(nvlist_lookup_nvlist_array(spa->spa_sparelist,
308 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
309 
310 	spa->spa_nspares = (int)nspares;
311 	spa->spa_spares = NULL;
312 
313 	if (nspares == 0)
314 		return;
315 
316 	/*
317 	 * Construct the array of vdevs, opening them to get status in the
318 	 * process.
319 	 */
320 	spa->spa_spares = kmem_alloc(nspares * sizeof (void *), KM_SLEEP);
321 	for (i = 0; i < spa->spa_nspares; i++) {
322 		vdev_t *vd;
323 
324 		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
325 		    VDEV_ALLOC_SPARE) == 0);
326 		ASSERT(vd != NULL);
327 
328 		spa->spa_spares[i] = vd;
329 
330 		if (vdev_open(vd) != 0)
331 			continue;
332 
333 		vd->vdev_top = vd;
334 		(void) vdev_validate_spare(vd);
335 	}
336 
337 	/*
338 	 * Recompute the stashed list of spares, with status information
339 	 * this time.
340 	 */
341 	VERIFY(nvlist_remove(spa->spa_sparelist, ZPOOL_CONFIG_SPARES,
342 	    DATA_TYPE_NVLIST_ARRAY) == 0);
343 
344 	spares = kmem_alloc(spa->spa_nspares * sizeof (void *), KM_SLEEP);
345 	for (i = 0; i < spa->spa_nspares; i++)
346 		spares[i] = vdev_config_generate(spa, spa->spa_spares[i],
347 		    B_TRUE, B_TRUE);
348 	VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist, ZPOOL_CONFIG_SPARES,
349 	    spares, spa->spa_nspares) == 0);
350 	for (i = 0; i < spa->spa_nspares; i++)
351 		nvlist_free(spares[i]);
352 	kmem_free(spares, spa->spa_nspares * sizeof (void *));
353 }
354 
355 static int
356 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
357 {
358 	dmu_buf_t *db;
359 	char *packed = NULL;
360 	size_t nvsize = 0;
361 	int error;
362 	*value = NULL;
363 
364 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
365 	nvsize = *(uint64_t *)db->db_data;
366 	dmu_buf_rele(db, FTAG);
367 
368 	packed = kmem_alloc(nvsize, KM_SLEEP);
369 	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed);
370 	if (error == 0)
371 		error = nvlist_unpack(packed, nvsize, value, 0);
372 	kmem_free(packed, nvsize);
373 
374 	return (error);
375 }
376 
377 /*
378  * Load an existing storage pool, using the pool's builtin spa_config as a
379  * source of configuration information.
380  */
381 static int
382 spa_load(spa_t *spa, nvlist_t *config, spa_load_state_t state, int mosconfig)
383 {
384 	int error = 0;
385 	nvlist_t *nvroot = NULL;
386 	vdev_t *rvd;
387 	uberblock_t *ub = &spa->spa_uberblock;
388 	uint64_t config_cache_txg = spa->spa_config_txg;
389 	uint64_t pool_guid;
390 	uint64_t version;
391 	zio_t *zio;
392 
393 	spa->spa_load_state = state;
394 
395 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) ||
396 	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
397 		error = EINVAL;
398 		goto out;
399 	}
400 
401 	/*
402 	 * Versioning wasn't explicitly added to the label until later, so if
403 	 * it's not present treat it as the initial version.
404 	 */
405 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, &version) != 0)
406 		version = ZFS_VERSION_INITIAL;
407 
408 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
409 	    &spa->spa_config_txg);
410 
411 	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
412 	    spa_guid_exists(pool_guid, 0)) {
413 		error = EEXIST;
414 		goto out;
415 	}
416 
417 	spa->spa_load_guid = pool_guid;
418 
419 	/*
420 	 * Parse the configuration into a vdev tree.  We explicitly set the
421 	 * value that will be returned by spa_version() since parsing the
422 	 * configuration requires knowing the version number.
423 	 */
424 	spa_config_enter(spa, RW_WRITER, FTAG);
425 	spa->spa_ubsync.ub_version = version;
426 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_LOAD);
427 	spa_config_exit(spa, FTAG);
428 
429 	if (error != 0)
430 		goto out;
431 
432 	ASSERT(spa->spa_root_vdev == rvd);
433 	ASSERT(spa_guid(spa) == pool_guid);
434 
435 	/*
436 	 * Try to open all vdevs, loading each label in the process.
437 	 */
438 	if (vdev_open(rvd) != 0) {
439 		error = ENXIO;
440 		goto out;
441 	}
442 
443 	/*
444 	 * Validate the labels for all leaf vdevs.  We need to grab the config
445 	 * lock because all label I/O is done with the ZIO_FLAG_CONFIG_HELD
446 	 * flag.
447 	 */
448 	spa_config_enter(spa, RW_READER, FTAG);
449 	error = vdev_validate(rvd);
450 	spa_config_exit(spa, FTAG);
451 
452 	if (error != 0) {
453 		error = EBADF;
454 		goto out;
455 	}
456 
457 	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
458 		error = ENXIO;
459 		goto out;
460 	}
461 
462 	/*
463 	 * Find the best uberblock.
464 	 */
465 	bzero(ub, sizeof (uberblock_t));
466 
467 	zio = zio_root(spa, NULL, NULL,
468 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
469 	vdev_uberblock_load(zio, rvd, ub);
470 	error = zio_wait(zio);
471 
472 	/*
473 	 * If we weren't able to find a single valid uberblock, return failure.
474 	 */
475 	if (ub->ub_txg == 0) {
476 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
477 		    VDEV_AUX_CORRUPT_DATA);
478 		error = ENXIO;
479 		goto out;
480 	}
481 
482 	/*
483 	 * If the pool is newer than the code, we can't open it.
484 	 */
485 	if (ub->ub_version > ZFS_VERSION) {
486 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
487 		    VDEV_AUX_VERSION_NEWER);
488 		error = ENOTSUP;
489 		goto out;
490 	}
491 
492 	/*
493 	 * If the vdev guid sum doesn't match the uberblock, we have an
494 	 * incomplete configuration.
495 	 */
496 	if (rvd->vdev_guid_sum != ub->ub_guid_sum && mosconfig) {
497 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
498 		    VDEV_AUX_BAD_GUID_SUM);
499 		error = ENXIO;
500 		goto out;
501 	}
502 
503 	/*
504 	 * Initialize internal SPA structures.
505 	 */
506 	spa->spa_state = POOL_STATE_ACTIVE;
507 	spa->spa_ubsync = spa->spa_uberblock;
508 	spa->spa_first_txg = spa_last_synced_txg(spa) + 1;
509 	error = dsl_pool_open(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
510 	if (error) {
511 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
512 		    VDEV_AUX_CORRUPT_DATA);
513 		goto out;
514 	}
515 	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
516 
517 	if (zap_lookup(spa->spa_meta_objset,
518 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
519 	    sizeof (uint64_t), 1, &spa->spa_config_object) != 0) {
520 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
521 		    VDEV_AUX_CORRUPT_DATA);
522 		error = EIO;
523 		goto out;
524 	}
525 
526 	if (!mosconfig) {
527 		nvlist_t *newconfig;
528 
529 		if (load_nvlist(spa, spa->spa_config_object, &newconfig) != 0) {
530 			vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
531 			    VDEV_AUX_CORRUPT_DATA);
532 			error = EIO;
533 			goto out;
534 		}
535 
536 		spa_config_set(spa, newconfig);
537 		spa_unload(spa);
538 		spa_deactivate(spa);
539 		spa_activate(spa);
540 
541 		return (spa_load(spa, newconfig, state, B_TRUE));
542 	}
543 
544 	if (zap_lookup(spa->spa_meta_objset,
545 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST,
546 	    sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj) != 0) {
547 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
548 		    VDEV_AUX_CORRUPT_DATA);
549 		error = EIO;
550 		goto out;
551 	}
552 
553 	/*
554 	 * Load the bit that tells us to use the new accounting function
555 	 * (raid-z deflation).  If we have an older pool, this will not
556 	 * be present.
557 	 */
558 	error = zap_lookup(spa->spa_meta_objset,
559 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
560 	    sizeof (uint64_t), 1, &spa->spa_deflate);
561 	if (error != 0 && error != ENOENT) {
562 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
563 		    VDEV_AUX_CORRUPT_DATA);
564 		error = EIO;
565 		goto out;
566 	}
567 
568 	/*
569 	 * Load the persistent error log.  If we have an older pool, this will
570 	 * not be present.
571 	 */
572 	error = zap_lookup(spa->spa_meta_objset,
573 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_LAST,
574 	    sizeof (uint64_t), 1, &spa->spa_errlog_last);
575 	if (error != 0 && error != ENOENT) {
576 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
577 		    VDEV_AUX_CORRUPT_DATA);
578 		error = EIO;
579 		goto out;
580 	}
581 
582 	error = zap_lookup(spa->spa_meta_objset,
583 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_SCRUB,
584 	    sizeof (uint64_t), 1, &spa->spa_errlog_scrub);
585 	if (error != 0 && error != ENOENT) {
586 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
587 		    VDEV_AUX_CORRUPT_DATA);
588 		error = EIO;
589 		goto out;
590 	}
591 
592 	/*
593 	 * Load any hot spares for this pool.
594 	 */
595 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
596 	    DMU_POOL_SPARES, sizeof (uint64_t), 1, &spa->spa_spares_object);
597 	if (error != 0 && error != ENOENT) {
598 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
599 		    VDEV_AUX_CORRUPT_DATA);
600 		error = EIO;
601 		goto out;
602 	}
603 	if (error == 0) {
604 		ASSERT(spa_version(spa) >= ZFS_VERSION_SPARES);
605 		if (load_nvlist(spa, spa->spa_spares_object,
606 		    &spa->spa_sparelist) != 0) {
607 			vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
608 			    VDEV_AUX_CORRUPT_DATA);
609 			error = EIO;
610 			goto out;
611 		}
612 
613 		spa_config_enter(spa, RW_WRITER, FTAG);
614 		spa_load_spares(spa);
615 		spa_config_exit(spa, FTAG);
616 	}
617 
618 	/*
619 	 * Load the vdev state for all toplevel vdevs.
620 	 */
621 	vdev_load(rvd);
622 
623 	/*
624 	 * Propagate the leaf DTLs we just loaded all the way up the tree.
625 	 */
626 	spa_config_enter(spa, RW_WRITER, FTAG);
627 	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
628 	spa_config_exit(spa, FTAG);
629 
630 	/*
631 	 * Check the state of the root vdev.  If it can't be opened, it
632 	 * indicates one or more toplevel vdevs are faulted.
633 	 */
634 	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
635 		error = ENXIO;
636 		goto out;
637 	}
638 
639 	if ((spa_mode & FWRITE) && state != SPA_LOAD_TRYIMPORT) {
640 		dmu_tx_t *tx;
641 		int need_update = B_FALSE;
642 		int c;
643 
644 		/*
645 		 * Claim log blocks that haven't been committed yet.
646 		 * This must all happen in a single txg.
647 		 */
648 		tx = dmu_tx_create_assigned(spa_get_dsl(spa),
649 		    spa_first_txg(spa));
650 		(void) dmu_objset_find(spa->spa_name, zil_claim, tx, 0);
651 		dmu_tx_commit(tx);
652 
653 		spa->spa_sync_on = B_TRUE;
654 		txg_sync_start(spa->spa_dsl_pool);
655 
656 		/*
657 		 * Wait for all claims to sync.
658 		 */
659 		txg_wait_synced(spa->spa_dsl_pool, 0);
660 
661 		/*
662 		 * If the config cache is stale, or we have uninitialized
663 		 * metaslabs (see spa_vdev_add()), then update the config.
664 		 */
665 		if (config_cache_txg != spa->spa_config_txg ||
666 		    state == SPA_LOAD_IMPORT)
667 			need_update = B_TRUE;
668 
669 		for (c = 0; c < rvd->vdev_children; c++)
670 			if (rvd->vdev_child[c]->vdev_ms_array == 0)
671 				need_update = B_TRUE;
672 
673 		/*
674 		 * Update the config cache asychronously in case we're the
675 		 * root pool, in which case the config cache isn't writable yet.
676 		 */
677 		if (need_update)
678 			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
679 	}
680 
681 	error = 0;
682 out:
683 	if (error && error != EBADF)
684 		zfs_ereport_post(FM_EREPORT_ZFS_POOL, spa, NULL, NULL, 0, 0);
685 	spa->spa_load_state = SPA_LOAD_NONE;
686 	spa->spa_ena = 0;
687 
688 	return (error);
689 }
690 
691 /*
692  * Pool Open/Import
693  *
694  * The import case is identical to an open except that the configuration is sent
695  * down from userland, instead of grabbed from the configuration cache.  For the
696  * case of an open, the pool configuration will exist in the
697  * POOL_STATE_UNITIALIZED state.
698  *
699  * The stats information (gen/count/ustats) is used to gather vdev statistics at
700  * the same time open the pool, without having to keep around the spa_t in some
701  * ambiguous state.
702  */
703 static int
704 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t **config)
705 {
706 	spa_t *spa;
707 	int error;
708 	int loaded = B_FALSE;
709 	int locked = B_FALSE;
710 
711 	*spapp = NULL;
712 
713 	/*
714 	 * As disgusting as this is, we need to support recursive calls to this
715 	 * function because dsl_dir_open() is called during spa_load(), and ends
716 	 * up calling spa_open() again.  The real fix is to figure out how to
717 	 * avoid dsl_dir_open() calling this in the first place.
718 	 */
719 	if (mutex_owner(&spa_namespace_lock) != curthread) {
720 		mutex_enter(&spa_namespace_lock);
721 		locked = B_TRUE;
722 	}
723 
724 	if ((spa = spa_lookup(pool)) == NULL) {
725 		if (locked)
726 			mutex_exit(&spa_namespace_lock);
727 		return (ENOENT);
728 	}
729 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
730 
731 		spa_activate(spa);
732 
733 		error = spa_load(spa, spa->spa_config, SPA_LOAD_OPEN, B_FALSE);
734 
735 		if (error == EBADF) {
736 			/*
737 			 * If vdev_validate() returns failure (indicated by
738 			 * EBADF), it indicates that one of the vdevs indicates
739 			 * that the pool has been exported or destroyed.  If
740 			 * this is the case, the config cache is out of sync and
741 			 * we should remove the pool from the namespace.
742 			 */
743 			zfs_post_ok(spa, NULL);
744 			spa_unload(spa);
745 			spa_deactivate(spa);
746 			spa_remove(spa);
747 			spa_config_sync();
748 			if (locked)
749 				mutex_exit(&spa_namespace_lock);
750 			return (ENOENT);
751 		}
752 
753 		if (error) {
754 			/*
755 			 * We can't open the pool, but we still have useful
756 			 * information: the state of each vdev after the
757 			 * attempted vdev_open().  Return this to the user.
758 			 */
759 			if (config != NULL && spa->spa_root_vdev != NULL) {
760 				spa_config_enter(spa, RW_READER, FTAG);
761 				*config = spa_config_generate(spa, NULL, -1ULL,
762 				    B_TRUE);
763 				spa_config_exit(spa, FTAG);
764 			}
765 			spa_unload(spa);
766 			spa_deactivate(spa);
767 			spa->spa_last_open_failed = B_TRUE;
768 			if (locked)
769 				mutex_exit(&spa_namespace_lock);
770 			*spapp = NULL;
771 			return (error);
772 		} else {
773 			zfs_post_ok(spa, NULL);
774 			spa->spa_last_open_failed = B_FALSE;
775 		}
776 
777 		loaded = B_TRUE;
778 	}
779 
780 	spa_open_ref(spa, tag);
781 	if (locked)
782 		mutex_exit(&spa_namespace_lock);
783 
784 	*spapp = spa;
785 
786 	if (config != NULL) {
787 		spa_config_enter(spa, RW_READER, FTAG);
788 		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
789 		spa_config_exit(spa, FTAG);
790 	}
791 
792 	/*
793 	 * If we just loaded the pool, resilver anything that's out of date.
794 	 */
795 	if (loaded && (spa_mode & FWRITE))
796 		VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
797 
798 	return (0);
799 }
800 
801 int
802 spa_open(const char *name, spa_t **spapp, void *tag)
803 {
804 	return (spa_open_common(name, spapp, tag, NULL));
805 }
806 
807 /*
808  * Lookup the given spa_t, incrementing the inject count in the process,
809  * preventing it from being exported or destroyed.
810  */
811 spa_t *
812 spa_inject_addref(char *name)
813 {
814 	spa_t *spa;
815 
816 	mutex_enter(&spa_namespace_lock);
817 	if ((spa = spa_lookup(name)) == NULL) {
818 		mutex_exit(&spa_namespace_lock);
819 		return (NULL);
820 	}
821 	spa->spa_inject_ref++;
822 	mutex_exit(&spa_namespace_lock);
823 
824 	return (spa);
825 }
826 
827 void
828 spa_inject_delref(spa_t *spa)
829 {
830 	mutex_enter(&spa_namespace_lock);
831 	spa->spa_inject_ref--;
832 	mutex_exit(&spa_namespace_lock);
833 }
834 
835 static void
836 spa_add_spares(spa_t *spa, nvlist_t *config)
837 {
838 	nvlist_t **spares;
839 	uint_t i, nspares;
840 	nvlist_t *nvroot;
841 	uint64_t guid;
842 	vdev_stat_t *vs;
843 	uint_t vsc;
844 
845 	if (spa->spa_nspares == 0)
846 		return;
847 
848 	VERIFY(nvlist_lookup_nvlist(config,
849 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
850 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_sparelist,
851 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
852 	if (nspares != 0) {
853 		VERIFY(nvlist_add_nvlist_array(nvroot,
854 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
855 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
856 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
857 
858 		/*
859 		 * Go through and find any spares which have since been
860 		 * repurposed as an active spare.  If this is the case, update
861 		 * their status appropriately.
862 		 */
863 		for (i = 0; i < nspares; i++) {
864 			VERIFY(nvlist_lookup_uint64(spares[i],
865 			    ZPOOL_CONFIG_GUID, &guid) == 0);
866 			if (spa_spare_inuse(guid)) {
867 				VERIFY(nvlist_lookup_uint64_array(
868 				    spares[i], ZPOOL_CONFIG_STATS,
869 				    (uint64_t **)&vs, &vsc) == 0);
870 				vs->vs_state = VDEV_STATE_CANT_OPEN;
871 				vs->vs_aux = VDEV_AUX_SPARED;
872 			}
873 		}
874 	}
875 }
876 
877 int
878 spa_get_stats(const char *name, nvlist_t **config, char *altroot, size_t buflen)
879 {
880 	int error;
881 	spa_t *spa;
882 
883 	*config = NULL;
884 	error = spa_open_common(name, &spa, FTAG, config);
885 
886 	if (spa && *config != NULL) {
887 		VERIFY(nvlist_add_uint64(*config, ZPOOL_CONFIG_ERRCOUNT,
888 		    spa_get_errlog_size(spa)) == 0);
889 
890 		spa_add_spares(spa, *config);
891 	}
892 
893 	/*
894 	 * We want to get the alternate root even for faulted pools, so we cheat
895 	 * and call spa_lookup() directly.
896 	 */
897 	if (altroot) {
898 		if (spa == NULL) {
899 			mutex_enter(&spa_namespace_lock);
900 			spa = spa_lookup(name);
901 			if (spa)
902 				spa_altroot(spa, altroot, buflen);
903 			else
904 				altroot[0] = '\0';
905 			spa = NULL;
906 			mutex_exit(&spa_namespace_lock);
907 		} else {
908 			spa_altroot(spa, altroot, buflen);
909 		}
910 	}
911 
912 	if (spa != NULL)
913 		spa_close(spa, FTAG);
914 
915 	return (error);
916 }
917 
918 /*
919  * Validate that the 'spares' array is well formed.  We must have an array of
920  * nvlists, each which describes a valid leaf vdev.
921  */
922 static int
923 spa_validate_spares(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
924 {
925 	nvlist_t **spares;
926 	uint_t i, nspares;
927 	vdev_t *vd;
928 	int error;
929 
930 	/*
931 	 * It's acceptable to have no spares specified.
932 	 */
933 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
934 	    &spares, &nspares) != 0)
935 		return (0);
936 
937 	if (nspares == 0)
938 		return (EINVAL);
939 
940 	/*
941 	 * Make sure the pool is formatted with a version that supports hot
942 	 * spares.
943 	 */
944 	if (spa_version(spa) < ZFS_VERSION_SPARES)
945 		return (ENOTSUP);
946 
947 	for (i = 0; i < nspares; i++) {
948 		if ((error = spa_config_parse(spa, &vd, spares[i], NULL, 0,
949 		    mode)) != 0)
950 			return (error);
951 
952 		if (!vd->vdev_ops->vdev_op_leaf) {
953 			vdev_free(vd);
954 			return (EINVAL);
955 		}
956 
957 		if ((error = vdev_open(vd)) != 0) {
958 			vdev_free(vd);
959 			return (error);
960 		}
961 
962 		vd->vdev_top = vd;
963 		if ((error = vdev_label_spare(vd, crtxg)) != 0) {
964 			vdev_free(vd);
965 			return (error);
966 		}
967 
968 		VERIFY(nvlist_add_uint64(spares[i], ZPOOL_CONFIG_GUID,
969 		    vd->vdev_guid) == 0);
970 
971 		vdev_free(vd);
972 	}
973 
974 	return (0);
975 }
976 
977 /*
978  * Pool Creation
979  */
980 int
981 spa_create(const char *pool, nvlist_t *nvroot, const char *altroot)
982 {
983 	spa_t *spa;
984 	vdev_t *rvd;
985 	dsl_pool_t *dp;
986 	dmu_tx_t *tx;
987 	int c, error = 0;
988 	uint64_t txg = TXG_INITIAL;
989 	nvlist_t **spares;
990 	uint_t nspares;
991 
992 	/*
993 	 * If this pool already exists, return failure.
994 	 */
995 	mutex_enter(&spa_namespace_lock);
996 	if (spa_lookup(pool) != NULL) {
997 		mutex_exit(&spa_namespace_lock);
998 		return (EEXIST);
999 	}
1000 
1001 	/*
1002 	 * Allocate a new spa_t structure.
1003 	 */
1004 	spa = spa_add(pool, altroot);
1005 	spa_activate(spa);
1006 
1007 	spa->spa_uberblock.ub_txg = txg - 1;
1008 	spa->spa_uberblock.ub_version = ZFS_VERSION;
1009 	spa->spa_ubsync = spa->spa_uberblock;
1010 
1011 	/*
1012 	 * Create the root vdev.
1013 	 */
1014 	spa_config_enter(spa, RW_WRITER, FTAG);
1015 
1016 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
1017 
1018 	ASSERT(error != 0 || rvd != NULL);
1019 	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
1020 
1021 	if (error == 0 && rvd->vdev_children == 0)
1022 		error = EINVAL;
1023 
1024 	if (error == 0 &&
1025 	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
1026 	    (error = spa_validate_spares(spa, nvroot, txg,
1027 	    VDEV_ALLOC_ADD)) == 0) {
1028 		for (c = 0; c < rvd->vdev_children; c++)
1029 			vdev_init(rvd->vdev_child[c], txg);
1030 		vdev_config_dirty(rvd);
1031 	}
1032 
1033 	spa_config_exit(spa, FTAG);
1034 
1035 	if (error != 0) {
1036 		spa_unload(spa);
1037 		spa_deactivate(spa);
1038 		spa_remove(spa);
1039 		mutex_exit(&spa_namespace_lock);
1040 		return (error);
1041 	}
1042 
1043 	/*
1044 	 * Get the list of spares, if specified.
1045 	 */
1046 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1047 	    &spares, &nspares) == 0) {
1048 		VERIFY(nvlist_alloc(&spa->spa_sparelist, NV_UNIQUE_NAME,
1049 		    KM_SLEEP) == 0);
1050 		VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist,
1051 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
1052 		spa_config_enter(spa, RW_WRITER, FTAG);
1053 		spa_load_spares(spa);
1054 		spa_config_exit(spa, FTAG);
1055 		spa->spa_sync_spares = B_TRUE;
1056 	}
1057 
1058 	spa->spa_dsl_pool = dp = dsl_pool_create(spa, txg);
1059 	spa->spa_meta_objset = dp->dp_meta_objset;
1060 
1061 	tx = dmu_tx_create_assigned(dp, txg);
1062 
1063 	/*
1064 	 * Create the pool config object.
1065 	 */
1066 	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
1067 	    DMU_OT_PACKED_NVLIST, 1 << 14,
1068 	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
1069 
1070 	if (zap_add(spa->spa_meta_objset,
1071 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
1072 	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
1073 		cmn_err(CE_PANIC, "failed to add pool config");
1074 	}
1075 
1076 	/* Newly created pools are always deflated. */
1077 	spa->spa_deflate = TRUE;
1078 	if (zap_add(spa->spa_meta_objset,
1079 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
1080 	    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
1081 		cmn_err(CE_PANIC, "failed to add deflate");
1082 	}
1083 
1084 	/*
1085 	 * Create the deferred-free bplist object.  Turn off compression
1086 	 * because sync-to-convergence takes longer if the blocksize
1087 	 * keeps changing.
1088 	 */
1089 	spa->spa_sync_bplist_obj = bplist_create(spa->spa_meta_objset,
1090 	    1 << 14, tx);
1091 	dmu_object_set_compress(spa->spa_meta_objset, spa->spa_sync_bplist_obj,
1092 	    ZIO_COMPRESS_OFF, tx);
1093 
1094 	if (zap_add(spa->spa_meta_objset,
1095 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST,
1096 	    sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj, tx) != 0) {
1097 		cmn_err(CE_PANIC, "failed to add bplist");
1098 	}
1099 
1100 	dmu_tx_commit(tx);
1101 
1102 	spa->spa_sync_on = B_TRUE;
1103 	txg_sync_start(spa->spa_dsl_pool);
1104 
1105 	/*
1106 	 * We explicitly wait for the first transaction to complete so that our
1107 	 * bean counters are appropriately updated.
1108 	 */
1109 	txg_wait_synced(spa->spa_dsl_pool, txg);
1110 
1111 	spa_config_sync();
1112 
1113 	mutex_exit(&spa_namespace_lock);
1114 
1115 	return (0);
1116 }
1117 
1118 /*
1119  * Import the given pool into the system.  We set up the necessary spa_t and
1120  * then call spa_load() to do the dirty work.
1121  */
1122 int
1123 spa_import(const char *pool, nvlist_t *config, const char *altroot)
1124 {
1125 	spa_t *spa;
1126 	int error;
1127 	nvlist_t *nvroot;
1128 	nvlist_t **spares;
1129 	uint_t nspares;
1130 
1131 	if (!(spa_mode & FWRITE))
1132 		return (EROFS);
1133 
1134 	/*
1135 	 * If a pool with this name exists, return failure.
1136 	 */
1137 	mutex_enter(&spa_namespace_lock);
1138 	if (spa_lookup(pool) != NULL) {
1139 		mutex_exit(&spa_namespace_lock);
1140 		return (EEXIST);
1141 	}
1142 
1143 	/*
1144 	 * Create and initialize the spa structure.
1145 	 */
1146 	spa = spa_add(pool, altroot);
1147 	spa_activate(spa);
1148 
1149 	/*
1150 	 * Pass off the heavy lifting to spa_load().
1151 	 * Pass TRUE for mosconfig because the user-supplied config
1152 	 * is actually the one to trust when doing an import.
1153 	 */
1154 	error = spa_load(spa, config, SPA_LOAD_IMPORT, B_TRUE);
1155 
1156 	spa_config_enter(spa, RW_WRITER, FTAG);
1157 	/*
1158 	 * Toss any existing sparelist, as it doesn't have any validity anymore,
1159 	 * and conflicts with spa_has_spare().
1160 	 */
1161 	if (spa->spa_sparelist) {
1162 		nvlist_free(spa->spa_sparelist);
1163 		spa->spa_sparelist = NULL;
1164 		spa_load_spares(spa);
1165 	}
1166 
1167 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
1168 	    &nvroot) == 0);
1169 	if (error == 0)
1170 		error = spa_validate_spares(spa, nvroot, -1ULL,
1171 		    VDEV_ALLOC_SPARE);
1172 	spa_config_exit(spa, FTAG);
1173 
1174 	if (error != 0) {
1175 		spa_unload(spa);
1176 		spa_deactivate(spa);
1177 		spa_remove(spa);
1178 		mutex_exit(&spa_namespace_lock);
1179 		return (error);
1180 	}
1181 
1182 	/*
1183 	 * Override any spares as specified by the user, as these may have
1184 	 * correct device names/devids, etc.
1185 	 */
1186 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1187 	    &spares, &nspares) == 0) {
1188 		if (spa->spa_sparelist)
1189 			VERIFY(nvlist_remove(spa->spa_sparelist,
1190 			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
1191 		else
1192 			VERIFY(nvlist_alloc(&spa->spa_sparelist,
1193 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
1194 		VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist,
1195 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
1196 		spa_config_enter(spa, RW_WRITER, FTAG);
1197 		spa_load_spares(spa);
1198 		spa_config_exit(spa, FTAG);
1199 		spa->spa_sync_spares = B_TRUE;
1200 	}
1201 
1202 	/*
1203 	 * Update the config cache to include the newly-imported pool.
1204 	 */
1205 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
1206 
1207 	mutex_exit(&spa_namespace_lock);
1208 
1209 	/*
1210 	 * Resilver anything that's out of date.
1211 	 */
1212 	if (spa_mode & FWRITE)
1213 		VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
1214 
1215 	return (0);
1216 }
1217 
1218 /*
1219  * This (illegal) pool name is used when temporarily importing a spa_t in order
1220  * to get the vdev stats associated with the imported devices.
1221  */
1222 #define	TRYIMPORT_NAME	"$import"
1223 
1224 nvlist_t *
1225 spa_tryimport(nvlist_t *tryconfig)
1226 {
1227 	nvlist_t *config = NULL;
1228 	char *poolname;
1229 	spa_t *spa;
1230 	uint64_t state;
1231 
1232 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
1233 		return (NULL);
1234 
1235 	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
1236 		return (NULL);
1237 
1238 	/*
1239 	 * Create and initialize the spa structure.
1240 	 */
1241 	mutex_enter(&spa_namespace_lock);
1242 	spa = spa_add(TRYIMPORT_NAME, NULL);
1243 	spa_activate(spa);
1244 
1245 	/*
1246 	 * Pass off the heavy lifting to spa_load().
1247 	 * Pass TRUE for mosconfig because the user-supplied config
1248 	 * is actually the one to trust when doing an import.
1249 	 */
1250 	(void) spa_load(spa, tryconfig, SPA_LOAD_TRYIMPORT, B_TRUE);
1251 
1252 	/*
1253 	 * If 'tryconfig' was at least parsable, return the current config.
1254 	 */
1255 	if (spa->spa_root_vdev != NULL) {
1256 		spa_config_enter(spa, RW_READER, FTAG);
1257 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
1258 		spa_config_exit(spa, FTAG);
1259 		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
1260 		    poolname) == 0);
1261 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
1262 		    state) == 0);
1263 
1264 		/*
1265 		 * Add the list of hot spares.
1266 		 */
1267 		spa_add_spares(spa, config);
1268 	}
1269 
1270 	spa_unload(spa);
1271 	spa_deactivate(spa);
1272 	spa_remove(spa);
1273 	mutex_exit(&spa_namespace_lock);
1274 
1275 	return (config);
1276 }
1277 
1278 /*
1279  * Pool export/destroy
1280  *
1281  * The act of destroying or exporting a pool is very simple.  We make sure there
1282  * is no more pending I/O and any references to the pool are gone.  Then, we
1283  * update the pool state and sync all the labels to disk, removing the
1284  * configuration from the cache afterwards.
1285  */
1286 static int
1287 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig)
1288 {
1289 	spa_t *spa;
1290 
1291 	if (oldconfig)
1292 		*oldconfig = NULL;
1293 
1294 	if (!(spa_mode & FWRITE))
1295 		return (EROFS);
1296 
1297 	mutex_enter(&spa_namespace_lock);
1298 	if ((spa = spa_lookup(pool)) == NULL) {
1299 		mutex_exit(&spa_namespace_lock);
1300 		return (ENOENT);
1301 	}
1302 
1303 	/*
1304 	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
1305 	 * reacquire the namespace lock, and see if we can export.
1306 	 */
1307 	spa_open_ref(spa, FTAG);
1308 	mutex_exit(&spa_namespace_lock);
1309 	spa_async_suspend(spa);
1310 	mutex_enter(&spa_namespace_lock);
1311 	spa_close(spa, FTAG);
1312 
1313 	/*
1314 	 * The pool will be in core if it's openable,
1315 	 * in which case we can modify its state.
1316 	 */
1317 	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
1318 		/*
1319 		 * Objsets may be open only because they're dirty, so we
1320 		 * have to force it to sync before checking spa_refcnt.
1321 		 */
1322 		spa_scrub_suspend(spa);
1323 		txg_wait_synced(spa->spa_dsl_pool, 0);
1324 
1325 		/*
1326 		 * A pool cannot be exported or destroyed if there are active
1327 		 * references.  If we are resetting a pool, allow references by
1328 		 * fault injection handlers.
1329 		 */
1330 		if (!spa_refcount_zero(spa) ||
1331 		    (spa->spa_inject_ref != 0 &&
1332 		    new_state != POOL_STATE_UNINITIALIZED)) {
1333 			spa_scrub_resume(spa);
1334 			spa_async_resume(spa);
1335 			mutex_exit(&spa_namespace_lock);
1336 			return (EBUSY);
1337 		}
1338 
1339 		spa_scrub_resume(spa);
1340 		VERIFY(spa_scrub(spa, POOL_SCRUB_NONE, B_TRUE) == 0);
1341 
1342 		/*
1343 		 * We want this to be reflected on every label,
1344 		 * so mark them all dirty.  spa_unload() will do the
1345 		 * final sync that pushes these changes out.
1346 		 */
1347 		if (new_state != POOL_STATE_UNINITIALIZED) {
1348 			spa_config_enter(spa, RW_WRITER, FTAG);
1349 			spa->spa_state = new_state;
1350 			spa->spa_final_txg = spa_last_synced_txg(spa) + 1;
1351 			vdev_config_dirty(spa->spa_root_vdev);
1352 			spa_config_exit(spa, FTAG);
1353 		}
1354 	}
1355 
1356 	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
1357 		spa_unload(spa);
1358 		spa_deactivate(spa);
1359 	}
1360 
1361 	if (oldconfig && spa->spa_config)
1362 		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
1363 
1364 	if (new_state != POOL_STATE_UNINITIALIZED) {
1365 		spa_remove(spa);
1366 		spa_config_sync();
1367 	}
1368 	mutex_exit(&spa_namespace_lock);
1369 
1370 	return (0);
1371 }
1372 
1373 /*
1374  * Destroy a storage pool.
1375  */
1376 int
1377 spa_destroy(char *pool)
1378 {
1379 	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL));
1380 }
1381 
1382 /*
1383  * Export a storage pool.
1384  */
1385 int
1386 spa_export(char *pool, nvlist_t **oldconfig)
1387 {
1388 	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig));
1389 }
1390 
1391 /*
1392  * Similar to spa_export(), this unloads the spa_t without actually removing it
1393  * from the namespace in any way.
1394  */
1395 int
1396 spa_reset(char *pool)
1397 {
1398 	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL));
1399 }
1400 
1401 
1402 /*
1403  * ==========================================================================
1404  * Device manipulation
1405  * ==========================================================================
1406  */
1407 
1408 /*
1409  * Add capacity to a storage pool.
1410  */
1411 int
1412 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
1413 {
1414 	uint64_t txg;
1415 	int c, error;
1416 	vdev_t *rvd = spa->spa_root_vdev;
1417 	vdev_t *vd, *tvd;
1418 	nvlist_t **spares;
1419 	uint_t i, nspares;
1420 
1421 	txg = spa_vdev_enter(spa);
1422 
1423 	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
1424 	    VDEV_ALLOC_ADD)) != 0)
1425 		return (spa_vdev_exit(spa, NULL, txg, error));
1426 
1427 	if ((error = spa_validate_spares(spa, nvroot, txg,
1428 	    VDEV_ALLOC_ADD)) != 0)
1429 		return (spa_vdev_exit(spa, vd, txg, error));
1430 
1431 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1432 	    &spares, &nspares) != 0)
1433 		nspares = 0;
1434 
1435 	if (vd->vdev_children == 0 && nspares == 0)
1436 		return (spa_vdev_exit(spa, vd, txg, EINVAL));
1437 
1438 	if (vd->vdev_children != 0) {
1439 		if ((error = vdev_create(vd, txg, B_FALSE)) != 0)
1440 			return (spa_vdev_exit(spa, vd, txg, error));
1441 
1442 		/*
1443 		 * Transfer each new top-level vdev from vd to rvd.
1444 		 */
1445 		for (c = 0; c < vd->vdev_children; c++) {
1446 			tvd = vd->vdev_child[c];
1447 			vdev_remove_child(vd, tvd);
1448 			tvd->vdev_id = rvd->vdev_children;
1449 			vdev_add_child(rvd, tvd);
1450 			vdev_config_dirty(tvd);
1451 		}
1452 	}
1453 
1454 	if (nspares != 0) {
1455 		if (spa->spa_sparelist != NULL) {
1456 			nvlist_t **oldspares;
1457 			uint_t oldnspares;
1458 			nvlist_t **newspares;
1459 
1460 			VERIFY(nvlist_lookup_nvlist_array(spa->spa_sparelist,
1461 			    ZPOOL_CONFIG_SPARES, &oldspares, &oldnspares) == 0);
1462 
1463 			newspares = kmem_alloc(sizeof (void *) *
1464 			    (nspares + oldnspares), KM_SLEEP);
1465 			for (i = 0; i < oldnspares; i++)
1466 				VERIFY(nvlist_dup(oldspares[i],
1467 				    &newspares[i], KM_SLEEP) == 0);
1468 			for (i = 0; i < nspares; i++)
1469 				VERIFY(nvlist_dup(spares[i],
1470 				    &newspares[i + oldnspares],
1471 				    KM_SLEEP) == 0);
1472 
1473 			VERIFY(nvlist_remove(spa->spa_sparelist,
1474 			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
1475 
1476 			VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist,
1477 			    ZPOOL_CONFIG_SPARES, newspares,
1478 			    nspares + oldnspares) == 0);
1479 			for (i = 0; i < oldnspares + nspares; i++)
1480 				nvlist_free(newspares[i]);
1481 			kmem_free(newspares, (oldnspares + nspares) *
1482 			    sizeof (void *));
1483 		} else {
1484 			VERIFY(nvlist_alloc(&spa->spa_sparelist,
1485 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
1486 			VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist,
1487 			    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
1488 		}
1489 
1490 		spa_load_spares(spa);
1491 		spa->spa_sync_spares = B_TRUE;
1492 	}
1493 
1494 	/*
1495 	 * We have to be careful when adding new vdevs to an existing pool.
1496 	 * If other threads start allocating from these vdevs before we
1497 	 * sync the config cache, and we lose power, then upon reboot we may
1498 	 * fail to open the pool because there are DVAs that the config cache
1499 	 * can't translate.  Therefore, we first add the vdevs without
1500 	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
1501 	 * and then let spa_config_update() initialize the new metaslabs.
1502 	 *
1503 	 * spa_load() checks for added-but-not-initialized vdevs, so that
1504 	 * if we lose power at any point in this sequence, the remaining
1505 	 * steps will be completed the next time we load the pool.
1506 	 */
1507 	(void) spa_vdev_exit(spa, vd, txg, 0);
1508 
1509 	mutex_enter(&spa_namespace_lock);
1510 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
1511 	mutex_exit(&spa_namespace_lock);
1512 
1513 	return (0);
1514 }
1515 
1516 /*
1517  * Attach a device to a mirror.  The arguments are the path to any device
1518  * in the mirror, and the nvroot for the new device.  If the path specifies
1519  * a device that is not mirrored, we automatically insert the mirror vdev.
1520  *
1521  * If 'replacing' is specified, the new device is intended to replace the
1522  * existing device; in this case the two devices are made into their own
1523  * mirror using the 'replacing' vdev, which is functionally idendical to
1524  * the mirror vdev (it actually reuses all the same ops) but has a few
1525  * extra rules: you can't attach to it after it's been created, and upon
1526  * completion of resilvering, the first disk (the one being replaced)
1527  * is automatically detached.
1528  */
1529 int
1530 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
1531 {
1532 	uint64_t txg, open_txg;
1533 	int error;
1534 	vdev_t *rvd = spa->spa_root_vdev;
1535 	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
1536 	vdev_ops_t *pvops;
1537 
1538 	txg = spa_vdev_enter(spa);
1539 
1540 	oldvd = vdev_lookup_by_guid(rvd, guid);
1541 
1542 	if (oldvd == NULL)
1543 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
1544 
1545 	if (!oldvd->vdev_ops->vdev_op_leaf)
1546 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1547 
1548 	pvd = oldvd->vdev_parent;
1549 
1550 	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
1551 	    VDEV_ALLOC_ADD)) != 0 || newrootvd->vdev_children != 1)
1552 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
1553 
1554 	newvd = newrootvd->vdev_child[0];
1555 
1556 	if (!newvd->vdev_ops->vdev_op_leaf)
1557 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
1558 
1559 	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
1560 		return (spa_vdev_exit(spa, newrootvd, txg, error));
1561 
1562 	if (!replacing) {
1563 		/*
1564 		 * For attach, the only allowable parent is a mirror or the root
1565 		 * vdev.
1566 		 */
1567 		if (pvd->vdev_ops != &vdev_mirror_ops &&
1568 		    pvd->vdev_ops != &vdev_root_ops)
1569 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
1570 
1571 		pvops = &vdev_mirror_ops;
1572 	} else {
1573 		/*
1574 		 * Active hot spares can only be replaced by inactive hot
1575 		 * spares.
1576 		 */
1577 		if (pvd->vdev_ops == &vdev_spare_ops &&
1578 		    pvd->vdev_child[1] == oldvd &&
1579 		    !spa_has_spare(spa, newvd->vdev_guid))
1580 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
1581 
1582 		/*
1583 		 * If the source is a hot spare, and the parent isn't already a
1584 		 * spare, then we want to create a new hot spare.  Otherwise, we
1585 		 * want to create a replacing vdev.
1586 		 */
1587 		if (pvd->vdev_ops == &vdev_replacing_ops)
1588 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
1589 		else if (pvd->vdev_ops != &vdev_spare_ops &&
1590 		    newvd->vdev_isspare)
1591 			pvops = &vdev_spare_ops;
1592 		else
1593 			pvops = &vdev_replacing_ops;
1594 	}
1595 
1596 	/*
1597 	 * Compare the new device size with the replaceable/attachable
1598 	 * device size.
1599 	 */
1600 	if (newvd->vdev_psize < vdev_get_rsize(oldvd))
1601 		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
1602 
1603 	/*
1604 	 * The new device cannot have a higher alignment requirement
1605 	 * than the top-level vdev.
1606 	 */
1607 	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
1608 		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
1609 
1610 	/*
1611 	 * If this is an in-place replacement, update oldvd's path and devid
1612 	 * to make it distinguishable from newvd, and unopenable from now on.
1613 	 */
1614 	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
1615 		spa_strfree(oldvd->vdev_path);
1616 		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
1617 		    KM_SLEEP);
1618 		(void) sprintf(oldvd->vdev_path, "%s/%s",
1619 		    newvd->vdev_path, "old");
1620 		if (oldvd->vdev_devid != NULL) {
1621 			spa_strfree(oldvd->vdev_devid);
1622 			oldvd->vdev_devid = NULL;
1623 		}
1624 	}
1625 
1626 	/*
1627 	 * If the parent is not a mirror, or if we're replacing, insert the new
1628 	 * mirror/replacing/spare vdev above oldvd.
1629 	 */
1630 	if (pvd->vdev_ops != pvops)
1631 		pvd = vdev_add_parent(oldvd, pvops);
1632 
1633 	ASSERT(pvd->vdev_top->vdev_parent == rvd);
1634 	ASSERT(pvd->vdev_ops == pvops);
1635 	ASSERT(oldvd->vdev_parent == pvd);
1636 
1637 	/*
1638 	 * Extract the new device from its root and add it to pvd.
1639 	 */
1640 	vdev_remove_child(newrootvd, newvd);
1641 	newvd->vdev_id = pvd->vdev_children;
1642 	vdev_add_child(pvd, newvd);
1643 
1644 	/*
1645 	 * If newvd is smaller than oldvd, but larger than its rsize,
1646 	 * the addition of newvd may have decreased our parent's asize.
1647 	 */
1648 	pvd->vdev_asize = MIN(pvd->vdev_asize, newvd->vdev_asize);
1649 
1650 	tvd = newvd->vdev_top;
1651 	ASSERT(pvd->vdev_top == tvd);
1652 	ASSERT(tvd->vdev_parent == rvd);
1653 
1654 	vdev_config_dirty(tvd);
1655 
1656 	/*
1657 	 * Set newvd's DTL to [TXG_INITIAL, open_txg].  It will propagate
1658 	 * upward when spa_vdev_exit() calls vdev_dtl_reassess().
1659 	 */
1660 	open_txg = txg + TXG_CONCURRENT_STATES - 1;
1661 
1662 	mutex_enter(&newvd->vdev_dtl_lock);
1663 	space_map_add(&newvd->vdev_dtl_map, TXG_INITIAL,
1664 	    open_txg - TXG_INITIAL + 1);
1665 	mutex_exit(&newvd->vdev_dtl_lock);
1666 
1667 	dprintf("attached %s in txg %llu\n", newvd->vdev_path, txg);
1668 
1669 	/*
1670 	 * Mark newvd's DTL dirty in this txg.
1671 	 */
1672 	vdev_dirty(tvd, VDD_DTL, newvd, txg);
1673 
1674 	(void) spa_vdev_exit(spa, newrootvd, open_txg, 0);
1675 
1676 	/*
1677 	 * Kick off a resilver to update newvd.
1678 	 */
1679 	VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
1680 
1681 	return (0);
1682 }
1683 
1684 /*
1685  * Detach a device from a mirror or replacing vdev.
1686  * If 'replace_done' is specified, only detach if the parent
1687  * is a replacing vdev.
1688  */
1689 int
1690 spa_vdev_detach(spa_t *spa, uint64_t guid, int replace_done)
1691 {
1692 	uint64_t txg;
1693 	int c, t, error;
1694 	vdev_t *rvd = spa->spa_root_vdev;
1695 	vdev_t *vd, *pvd, *cvd, *tvd;
1696 	boolean_t unspare = B_FALSE;
1697 	uint64_t unspare_guid;
1698 
1699 	txg = spa_vdev_enter(spa);
1700 
1701 	vd = vdev_lookup_by_guid(rvd, guid);
1702 
1703 	if (vd == NULL)
1704 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
1705 
1706 	if (!vd->vdev_ops->vdev_op_leaf)
1707 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1708 
1709 	pvd = vd->vdev_parent;
1710 
1711 	/*
1712 	 * If replace_done is specified, only remove this device if it's
1713 	 * the first child of a replacing vdev.  For the 'spare' vdev, either
1714 	 * disk can be removed.
1715 	 */
1716 	if (replace_done) {
1717 		if (pvd->vdev_ops == &vdev_replacing_ops) {
1718 			if (vd->vdev_id != 0)
1719 				return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1720 		} else if (pvd->vdev_ops != &vdev_spare_ops) {
1721 			return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1722 		}
1723 	}
1724 
1725 	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
1726 	    spa_version(spa) >= ZFS_VERSION_SPARES);
1727 
1728 	/*
1729 	 * Only mirror, replacing, and spare vdevs support detach.
1730 	 */
1731 	if (pvd->vdev_ops != &vdev_replacing_ops &&
1732 	    pvd->vdev_ops != &vdev_mirror_ops &&
1733 	    pvd->vdev_ops != &vdev_spare_ops)
1734 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1735 
1736 	/*
1737 	 * If there's only one replica, you can't detach it.
1738 	 */
1739 	if (pvd->vdev_children <= 1)
1740 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
1741 
1742 	/*
1743 	 * If all siblings have non-empty DTLs, this device may have the only
1744 	 * valid copy of the data, which means we cannot safely detach it.
1745 	 *
1746 	 * XXX -- as in the vdev_offline() case, we really want a more
1747 	 * precise DTL check.
1748 	 */
1749 	for (c = 0; c < pvd->vdev_children; c++) {
1750 		uint64_t dirty;
1751 
1752 		cvd = pvd->vdev_child[c];
1753 		if (cvd == vd)
1754 			continue;
1755 		if (vdev_is_dead(cvd))
1756 			continue;
1757 		mutex_enter(&cvd->vdev_dtl_lock);
1758 		dirty = cvd->vdev_dtl_map.sm_space |
1759 		    cvd->vdev_dtl_scrub.sm_space;
1760 		mutex_exit(&cvd->vdev_dtl_lock);
1761 		if (!dirty)
1762 			break;
1763 	}
1764 
1765 	/*
1766 	 * If we are a replacing or spare vdev, then we can always detach the
1767 	 * latter child, as that is how one cancels the operation.
1768 	 */
1769 	if ((pvd->vdev_ops == &vdev_mirror_ops || vd->vdev_id != 1) &&
1770 	    c == pvd->vdev_children)
1771 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
1772 
1773 	/*
1774 	 * If we are detaching the original disk from a spare, then it implies
1775 	 * that the spare should become a real disk, and be removed from the
1776 	 * active spare list for the pool.
1777 	 */
1778 	if (pvd->vdev_ops == &vdev_spare_ops &&
1779 	    vd->vdev_id == 0)
1780 		unspare = B_TRUE;
1781 
1782 	/*
1783 	 * Erase the disk labels so the disk can be used for other things.
1784 	 * This must be done after all other error cases are handled,
1785 	 * but before we disembowel vd (so we can still do I/O to it).
1786 	 * But if we can't do it, don't treat the error as fatal --
1787 	 * it may be that the unwritability of the disk is the reason
1788 	 * it's being detached!
1789 	 */
1790 	error = vdev_label_init(vd, 0, B_FALSE);
1791 	if (error)
1792 		dprintf("unable to erase labels on %s\n", vdev_description(vd));
1793 
1794 	/*
1795 	 * Remove vd from its parent and compact the parent's children.
1796 	 */
1797 	vdev_remove_child(pvd, vd);
1798 	vdev_compact_children(pvd);
1799 
1800 	/*
1801 	 * Remember one of the remaining children so we can get tvd below.
1802 	 */
1803 	cvd = pvd->vdev_child[0];
1804 
1805 	/*
1806 	 * If we need to remove the remaining child from the list of hot spares,
1807 	 * do it now, marking the vdev as no longer a spare in the process.  We
1808 	 * must do this before vdev_remove_parent(), because that can change the
1809 	 * GUID if it creates a new toplevel GUID.
1810 	 */
1811 	if (unspare) {
1812 		ASSERT(cvd->vdev_isspare);
1813 		spa_spare_remove(cvd->vdev_guid);
1814 		cvd->vdev_isspare = B_FALSE;
1815 		unspare_guid = cvd->vdev_guid;
1816 	}
1817 
1818 	/*
1819 	 * If the parent mirror/replacing vdev only has one child,
1820 	 * the parent is no longer needed.  Remove it from the tree.
1821 	 */
1822 	if (pvd->vdev_children == 1)
1823 		vdev_remove_parent(cvd);
1824 
1825 	/*
1826 	 * We don't set tvd until now because the parent we just removed
1827 	 * may have been the previous top-level vdev.
1828 	 */
1829 	tvd = cvd->vdev_top;
1830 	ASSERT(tvd->vdev_parent == rvd);
1831 
1832 	/*
1833 	 * Reopen this top-level vdev to reassess health after detach.
1834 	 */
1835 	vdev_reopen(tvd);
1836 
1837 	/*
1838 	 * If the device we just detached was smaller than the others,
1839 	 * it may be possible to add metaslabs (i.e. grow the pool).
1840 	 * vdev_metaslab_init() can't fail because the existing metaslabs
1841 	 * are already in core, so there's nothing to read from disk.
1842 	 */
1843 	VERIFY(vdev_metaslab_init(tvd, txg) == 0);
1844 
1845 	vdev_config_dirty(tvd);
1846 
1847 	/*
1848 	 * Mark vd's DTL as dirty in this txg.
1849 	 * vdev_dtl_sync() will see that vd->vdev_detached is set
1850 	 * and free vd's DTL object in syncing context.
1851 	 * But first make sure we're not on any *other* txg's DTL list,
1852 	 * to prevent vd from being accessed after it's freed.
1853 	 */
1854 	for (t = 0; t < TXG_SIZE; t++)
1855 		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
1856 	vd->vdev_detached = B_TRUE;
1857 	vdev_dirty(tvd, VDD_DTL, vd, txg);
1858 
1859 	dprintf("detached %s in txg %llu\n", vd->vdev_path, txg);
1860 
1861 	error = spa_vdev_exit(spa, vd, txg, 0);
1862 
1863 	/*
1864 	 * If we are supposed to remove the given vdev from the list of spares,
1865 	 * iterate over all pools in the system and replace it if it's present.
1866 	 */
1867 	if (unspare) {
1868 		spa = NULL;
1869 		mutex_enter(&spa_namespace_lock);
1870 		while ((spa = spa_next(spa)) != NULL) {
1871 			if (spa->spa_state != POOL_STATE_ACTIVE)
1872 				continue;
1873 
1874 			(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
1875 		}
1876 		mutex_exit(&spa_namespace_lock);
1877 	}
1878 
1879 	return (error);
1880 }
1881 
1882 /*
1883  * Remove a device from the pool.  Currently, this supports removing only hot
1884  * spares.
1885  */
1886 int
1887 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
1888 {
1889 	vdev_t *vd;
1890 	nvlist_t **spares, *nv, **newspares;
1891 	uint_t i, j, nspares;
1892 	int ret = 0;
1893 
1894 	spa_config_enter(spa, RW_WRITER, FTAG);
1895 
1896 	vd = spa_lookup_by_guid(spa, guid);
1897 
1898 	nv = NULL;
1899 	if (spa->spa_spares != NULL &&
1900 	    nvlist_lookup_nvlist_array(spa->spa_sparelist, ZPOOL_CONFIG_SPARES,
1901 	    &spares, &nspares) == 0) {
1902 		for (i = 0; i < nspares; i++) {
1903 			uint64_t theguid;
1904 
1905 			VERIFY(nvlist_lookup_uint64(spares[i],
1906 			    ZPOOL_CONFIG_GUID, &theguid) == 0);
1907 			if (theguid == guid) {
1908 				nv = spares[i];
1909 				break;
1910 			}
1911 		}
1912 	}
1913 
1914 	/*
1915 	 * We only support removing a hot spare, and only if it's not currently
1916 	 * in use in this pool.
1917 	 */
1918 	if (nv == NULL && vd == NULL) {
1919 		ret = ENOENT;
1920 		goto out;
1921 	}
1922 
1923 	if (nv == NULL && vd != NULL) {
1924 		ret = ENOTSUP;
1925 		goto out;
1926 	}
1927 
1928 	if (!unspare && nv != NULL && vd != NULL) {
1929 		ret = EBUSY;
1930 		goto out;
1931 	}
1932 
1933 	if (nspares == 1) {
1934 		newspares = NULL;
1935 	} else {
1936 		newspares = kmem_alloc((nspares - 1) * sizeof (void *),
1937 		    KM_SLEEP);
1938 		for (i = 0, j = 0; i < nspares; i++) {
1939 			if (spares[i] != nv)
1940 				VERIFY(nvlist_dup(spares[i],
1941 				    &newspares[j++], KM_SLEEP) == 0);
1942 		}
1943 	}
1944 
1945 	VERIFY(nvlist_remove(spa->spa_sparelist, ZPOOL_CONFIG_SPARES,
1946 	    DATA_TYPE_NVLIST_ARRAY) == 0);
1947 	VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist, ZPOOL_CONFIG_SPARES,
1948 	    newspares, nspares - 1) == 0);
1949 	for (i = 0; i < nspares - 1; i++)
1950 		nvlist_free(newspares[i]);
1951 	kmem_free(newspares, (nspares - 1) * sizeof (void *));
1952 	spa_load_spares(spa);
1953 	spa->spa_sync_spares = B_TRUE;
1954 
1955 out:
1956 	spa_config_exit(spa, FTAG);
1957 
1958 	return (ret);
1959 }
1960 
1961 /*
1962  * Find any device that's done replacing, so we can detach it.
1963  */
1964 static vdev_t *
1965 spa_vdev_replace_done_hunt(vdev_t *vd)
1966 {
1967 	vdev_t *newvd, *oldvd;
1968 	int c;
1969 
1970 	for (c = 0; c < vd->vdev_children; c++) {
1971 		oldvd = spa_vdev_replace_done_hunt(vd->vdev_child[c]);
1972 		if (oldvd != NULL)
1973 			return (oldvd);
1974 	}
1975 
1976 	if (vd->vdev_ops == &vdev_replacing_ops && vd->vdev_children == 2) {
1977 		oldvd = vd->vdev_child[0];
1978 		newvd = vd->vdev_child[1];
1979 
1980 		mutex_enter(&newvd->vdev_dtl_lock);
1981 		if (newvd->vdev_dtl_map.sm_space == 0 &&
1982 		    newvd->vdev_dtl_scrub.sm_space == 0) {
1983 			mutex_exit(&newvd->vdev_dtl_lock);
1984 			return (oldvd);
1985 		}
1986 		mutex_exit(&newvd->vdev_dtl_lock);
1987 	}
1988 
1989 	return (NULL);
1990 }
1991 
1992 static void
1993 spa_vdev_replace_done(spa_t *spa)
1994 {
1995 	vdev_t *vd;
1996 	vdev_t *pvd;
1997 	uint64_t guid;
1998 	uint64_t pguid = 0;
1999 
2000 	spa_config_enter(spa, RW_READER, FTAG);
2001 
2002 	while ((vd = spa_vdev_replace_done_hunt(spa->spa_root_vdev)) != NULL) {
2003 		guid = vd->vdev_guid;
2004 		/*
2005 		 * If we have just finished replacing a hot spared device, then
2006 		 * we need to detach the parent's first child (the original hot
2007 		 * spare) as well.
2008 		 */
2009 		pvd = vd->vdev_parent;
2010 		if (pvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2011 		    pvd->vdev_id == 0) {
2012 			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
2013 			ASSERT(pvd->vdev_parent->vdev_children == 2);
2014 			pguid = pvd->vdev_parent->vdev_child[1]->vdev_guid;
2015 		}
2016 		spa_config_exit(spa, FTAG);
2017 		if (spa_vdev_detach(spa, guid, B_TRUE) != 0)
2018 			return;
2019 		if (pguid != 0 && spa_vdev_detach(spa, pguid, B_TRUE) != 0)
2020 			return;
2021 		spa_config_enter(spa, RW_READER, FTAG);
2022 	}
2023 
2024 	spa_config_exit(spa, FTAG);
2025 }
2026 
2027 /*
2028  * Update the stored path for this vdev.  Dirty the vdev configuration, relying
2029  * on spa_vdev_enter/exit() to synchronize the labels and cache.
2030  */
2031 int
2032 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
2033 {
2034 	vdev_t *rvd, *vd;
2035 	uint64_t txg;
2036 
2037 	rvd = spa->spa_root_vdev;
2038 
2039 	txg = spa_vdev_enter(spa);
2040 
2041 	if ((vd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
2042 		/*
2043 		 * Determine if this is a reference to a hot spare.  In that
2044 		 * case, update the path as stored in the spare list.
2045 		 */
2046 		nvlist_t **spares;
2047 		uint_t i, nspares;
2048 		if (spa->spa_sparelist != NULL) {
2049 			VERIFY(nvlist_lookup_nvlist_array(spa->spa_sparelist,
2050 			    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
2051 			for (i = 0; i < nspares; i++) {
2052 				uint64_t theguid;
2053 				VERIFY(nvlist_lookup_uint64(spares[i],
2054 				    ZPOOL_CONFIG_GUID, &theguid) == 0);
2055 				if (theguid == guid)
2056 					break;
2057 			}
2058 
2059 			if (i == nspares)
2060 				return (spa_vdev_exit(spa, NULL, txg, ENOENT));
2061 
2062 			VERIFY(nvlist_add_string(spares[i],
2063 			    ZPOOL_CONFIG_PATH, newpath) == 0);
2064 			spa_load_spares(spa);
2065 			spa->spa_sync_spares = B_TRUE;
2066 			return (spa_vdev_exit(spa, NULL, txg, 0));
2067 		} else {
2068 			return (spa_vdev_exit(spa, NULL, txg, ENOENT));
2069 		}
2070 	}
2071 
2072 	if (!vd->vdev_ops->vdev_op_leaf)
2073 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
2074 
2075 	spa_strfree(vd->vdev_path);
2076 	vd->vdev_path = spa_strdup(newpath);
2077 
2078 	vdev_config_dirty(vd->vdev_top);
2079 
2080 	return (spa_vdev_exit(spa, NULL, txg, 0));
2081 }
2082 
2083 /*
2084  * ==========================================================================
2085  * SPA Scrubbing
2086  * ==========================================================================
2087  */
2088 
2089 void
2090 spa_scrub_throttle(spa_t *spa, int direction)
2091 {
2092 	mutex_enter(&spa->spa_scrub_lock);
2093 	spa->spa_scrub_throttled += direction;
2094 	ASSERT(spa->spa_scrub_throttled >= 0);
2095 	if (spa->spa_scrub_throttled == 0)
2096 		cv_broadcast(&spa->spa_scrub_io_cv);
2097 	mutex_exit(&spa->spa_scrub_lock);
2098 }
2099 
2100 static void
2101 spa_scrub_io_done(zio_t *zio)
2102 {
2103 	spa_t *spa = zio->io_spa;
2104 
2105 	zio_buf_free(zio->io_data, zio->io_size);
2106 
2107 	mutex_enter(&spa->spa_scrub_lock);
2108 	if (zio->io_error && !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
2109 		vdev_t *vd = zio->io_vd ? zio->io_vd : spa->spa_root_vdev;
2110 		spa->spa_scrub_errors++;
2111 		mutex_enter(&vd->vdev_stat_lock);
2112 		vd->vdev_stat.vs_scrub_errors++;
2113 		mutex_exit(&vd->vdev_stat_lock);
2114 	}
2115 	if (--spa->spa_scrub_inflight == 0) {
2116 		cv_broadcast(&spa->spa_scrub_io_cv);
2117 		ASSERT(spa->spa_scrub_throttled == 0);
2118 	}
2119 	mutex_exit(&spa->spa_scrub_lock);
2120 }
2121 
2122 static void
2123 spa_scrub_io_start(spa_t *spa, blkptr_t *bp, int priority, int flags,
2124     zbookmark_t *zb)
2125 {
2126 	size_t size = BP_GET_LSIZE(bp);
2127 	void *data = zio_buf_alloc(size);
2128 
2129 	mutex_enter(&spa->spa_scrub_lock);
2130 	spa->spa_scrub_inflight++;
2131 	mutex_exit(&spa->spa_scrub_lock);
2132 
2133 	if (zb->zb_level == -1 && BP_GET_TYPE(bp) != DMU_OT_OBJSET)
2134 		flags |= ZIO_FLAG_SPECULATIVE;	/* intent log block */
2135 
2136 	flags |= ZIO_FLAG_SCRUB_THREAD | ZIO_FLAG_CANFAIL;
2137 
2138 	zio_nowait(zio_read(NULL, spa, bp, data, size,
2139 	    spa_scrub_io_done, NULL, priority, flags, zb));
2140 }
2141 
2142 /* ARGSUSED */
2143 static int
2144 spa_scrub_cb(traverse_blk_cache_t *bc, spa_t *spa, void *a)
2145 {
2146 	blkptr_t *bp = &bc->bc_blkptr;
2147 	vdev_t *vd = spa->spa_root_vdev;
2148 	dva_t *dva = bp->blk_dva;
2149 	int needs_resilver = B_FALSE;
2150 	int d;
2151 
2152 	if (bc->bc_errno) {
2153 		/*
2154 		 * We can't scrub this block, but we can continue to scrub
2155 		 * the rest of the pool.  Note the error and move along.
2156 		 */
2157 		mutex_enter(&spa->spa_scrub_lock);
2158 		spa->spa_scrub_errors++;
2159 		mutex_exit(&spa->spa_scrub_lock);
2160 
2161 		mutex_enter(&vd->vdev_stat_lock);
2162 		vd->vdev_stat.vs_scrub_errors++;
2163 		mutex_exit(&vd->vdev_stat_lock);
2164 
2165 		return (ERESTART);
2166 	}
2167 
2168 	ASSERT(bp->blk_birth < spa->spa_scrub_maxtxg);
2169 
2170 	for (d = 0; d < BP_GET_NDVAS(bp); d++) {
2171 		vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]));
2172 
2173 		ASSERT(vd != NULL);
2174 
2175 		/*
2176 		 * Keep track of how much data we've examined so that
2177 		 * zpool(1M) status can make useful progress reports.
2178 		 */
2179 		mutex_enter(&vd->vdev_stat_lock);
2180 		vd->vdev_stat.vs_scrub_examined += DVA_GET_ASIZE(&dva[d]);
2181 		mutex_exit(&vd->vdev_stat_lock);
2182 
2183 		if (spa->spa_scrub_type == POOL_SCRUB_RESILVER) {
2184 			if (DVA_GET_GANG(&dva[d])) {
2185 				/*
2186 				 * Gang members may be spread across multiple
2187 				 * vdevs, so the best we can do is look at the
2188 				 * pool-wide DTL.
2189 				 * XXX -- it would be better to change our
2190 				 * allocation policy to ensure that this can't
2191 				 * happen.
2192 				 */
2193 				vd = spa->spa_root_vdev;
2194 			}
2195 			if (vdev_dtl_contains(&vd->vdev_dtl_map,
2196 			    bp->blk_birth, 1))
2197 				needs_resilver = B_TRUE;
2198 		}
2199 	}
2200 
2201 	if (spa->spa_scrub_type == POOL_SCRUB_EVERYTHING)
2202 		spa_scrub_io_start(spa, bp, ZIO_PRIORITY_SCRUB,
2203 		    ZIO_FLAG_SCRUB, &bc->bc_bookmark);
2204 	else if (needs_resilver)
2205 		spa_scrub_io_start(spa, bp, ZIO_PRIORITY_RESILVER,
2206 		    ZIO_FLAG_RESILVER, &bc->bc_bookmark);
2207 
2208 	return (0);
2209 }
2210 
2211 static void
2212 spa_scrub_thread(spa_t *spa)
2213 {
2214 	callb_cpr_t cprinfo;
2215 	traverse_handle_t *th = spa->spa_scrub_th;
2216 	vdev_t *rvd = spa->spa_root_vdev;
2217 	pool_scrub_type_t scrub_type = spa->spa_scrub_type;
2218 	int error = 0;
2219 	boolean_t complete;
2220 
2221 	CALLB_CPR_INIT(&cprinfo, &spa->spa_scrub_lock, callb_generic_cpr, FTAG);
2222 
2223 	/*
2224 	 * If we're restarting due to a snapshot create/delete,
2225 	 * wait for that to complete.
2226 	 */
2227 	txg_wait_synced(spa_get_dsl(spa), 0);
2228 
2229 	dprintf("start %s mintxg=%llu maxtxg=%llu\n",
2230 	    scrub_type == POOL_SCRUB_RESILVER ? "resilver" : "scrub",
2231 	    spa->spa_scrub_mintxg, spa->spa_scrub_maxtxg);
2232 
2233 	spa_config_enter(spa, RW_WRITER, FTAG);
2234 	vdev_reopen(rvd);		/* purge all vdev caches */
2235 	vdev_config_dirty(rvd);		/* rewrite all disk labels */
2236 	vdev_scrub_stat_update(rvd, scrub_type, B_FALSE);
2237 	spa_config_exit(spa, FTAG);
2238 
2239 	mutex_enter(&spa->spa_scrub_lock);
2240 	spa->spa_scrub_errors = 0;
2241 	spa->spa_scrub_active = 1;
2242 	ASSERT(spa->spa_scrub_inflight == 0);
2243 	ASSERT(spa->spa_scrub_throttled == 0);
2244 
2245 	while (!spa->spa_scrub_stop) {
2246 		CALLB_CPR_SAFE_BEGIN(&cprinfo);
2247 		while (spa->spa_scrub_suspended) {
2248 			spa->spa_scrub_active = 0;
2249 			cv_broadcast(&spa->spa_scrub_cv);
2250 			cv_wait(&spa->spa_scrub_cv, &spa->spa_scrub_lock);
2251 			spa->spa_scrub_active = 1;
2252 		}
2253 		CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_scrub_lock);
2254 
2255 		if (spa->spa_scrub_restart_txg != 0)
2256 			break;
2257 
2258 		mutex_exit(&spa->spa_scrub_lock);
2259 		error = traverse_more(th);
2260 		mutex_enter(&spa->spa_scrub_lock);
2261 		if (error != EAGAIN)
2262 			break;
2263 
2264 		while (spa->spa_scrub_throttled > 0)
2265 			cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2266 	}
2267 
2268 	while (spa->spa_scrub_inflight)
2269 		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2270 
2271 	spa->spa_scrub_active = 0;
2272 	cv_broadcast(&spa->spa_scrub_cv);
2273 
2274 	mutex_exit(&spa->spa_scrub_lock);
2275 
2276 	spa_config_enter(spa, RW_WRITER, FTAG);
2277 
2278 	mutex_enter(&spa->spa_scrub_lock);
2279 
2280 	/*
2281 	 * Note: we check spa_scrub_restart_txg under both spa_scrub_lock
2282 	 * AND the spa config lock to synchronize with any config changes
2283 	 * that revise the DTLs under spa_vdev_enter() / spa_vdev_exit().
2284 	 */
2285 	if (spa->spa_scrub_restart_txg != 0)
2286 		error = ERESTART;
2287 
2288 	if (spa->spa_scrub_stop)
2289 		error = EINTR;
2290 
2291 	/*
2292 	 * Even if there were uncorrectable errors, we consider the scrub
2293 	 * completed.  The downside is that if there is a transient error during
2294 	 * a resilver, we won't resilver the data properly to the target.  But
2295 	 * if the damage is permanent (more likely) we will resilver forever,
2296 	 * which isn't really acceptable.  Since there is enough information for
2297 	 * the user to know what has failed and why, this seems like a more
2298 	 * tractable approach.
2299 	 */
2300 	complete = (error == 0);
2301 
2302 	dprintf("end %s to maxtxg=%llu %s, traverse=%d, %llu errors, stop=%u\n",
2303 	    scrub_type == POOL_SCRUB_RESILVER ? "resilver" : "scrub",
2304 	    spa->spa_scrub_maxtxg, complete ? "done" : "FAILED",
2305 	    error, spa->spa_scrub_errors, spa->spa_scrub_stop);
2306 
2307 	mutex_exit(&spa->spa_scrub_lock);
2308 
2309 	/*
2310 	 * If the scrub/resilver completed, update all DTLs to reflect this.
2311 	 * Whether it succeeded or not, vacate all temporary scrub DTLs.
2312 	 */
2313 	vdev_dtl_reassess(rvd, spa_last_synced_txg(spa) + 1,
2314 	    complete ? spa->spa_scrub_maxtxg : 0, B_TRUE);
2315 	vdev_scrub_stat_update(rvd, POOL_SCRUB_NONE, complete);
2316 	spa_errlog_rotate(spa);
2317 
2318 	spa_config_exit(spa, FTAG);
2319 
2320 	mutex_enter(&spa->spa_scrub_lock);
2321 
2322 	/*
2323 	 * We may have finished replacing a device.
2324 	 * Let the async thread assess this and handle the detach.
2325 	 */
2326 	spa_async_request(spa, SPA_ASYNC_REPLACE_DONE);
2327 
2328 	/*
2329 	 * If we were told to restart, our final act is to start a new scrub.
2330 	 */
2331 	if (error == ERESTART)
2332 		spa_async_request(spa, scrub_type == POOL_SCRUB_RESILVER ?
2333 		    SPA_ASYNC_RESILVER : SPA_ASYNC_SCRUB);
2334 
2335 	spa->spa_scrub_type = POOL_SCRUB_NONE;
2336 	spa->spa_scrub_active = 0;
2337 	spa->spa_scrub_thread = NULL;
2338 	cv_broadcast(&spa->spa_scrub_cv);
2339 	CALLB_CPR_EXIT(&cprinfo);	/* drops &spa->spa_scrub_lock */
2340 	thread_exit();
2341 }
2342 
2343 void
2344 spa_scrub_suspend(spa_t *spa)
2345 {
2346 	mutex_enter(&spa->spa_scrub_lock);
2347 	spa->spa_scrub_suspended++;
2348 	while (spa->spa_scrub_active) {
2349 		cv_broadcast(&spa->spa_scrub_cv);
2350 		cv_wait(&spa->spa_scrub_cv, &spa->spa_scrub_lock);
2351 	}
2352 	while (spa->spa_scrub_inflight)
2353 		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2354 	mutex_exit(&spa->spa_scrub_lock);
2355 }
2356 
2357 void
2358 spa_scrub_resume(spa_t *spa)
2359 {
2360 	mutex_enter(&spa->spa_scrub_lock);
2361 	ASSERT(spa->spa_scrub_suspended != 0);
2362 	if (--spa->spa_scrub_suspended == 0)
2363 		cv_broadcast(&spa->spa_scrub_cv);
2364 	mutex_exit(&spa->spa_scrub_lock);
2365 }
2366 
2367 void
2368 spa_scrub_restart(spa_t *spa, uint64_t txg)
2369 {
2370 	/*
2371 	 * Something happened (e.g. snapshot create/delete) that means
2372 	 * we must restart any in-progress scrubs.  The itinerary will
2373 	 * fix this properly.
2374 	 */
2375 	mutex_enter(&spa->spa_scrub_lock);
2376 	spa->spa_scrub_restart_txg = txg;
2377 	mutex_exit(&spa->spa_scrub_lock);
2378 }
2379 
2380 int
2381 spa_scrub(spa_t *spa, pool_scrub_type_t type, boolean_t force)
2382 {
2383 	space_seg_t *ss;
2384 	uint64_t mintxg, maxtxg;
2385 	vdev_t *rvd = spa->spa_root_vdev;
2386 
2387 	if ((uint_t)type >= POOL_SCRUB_TYPES)
2388 		return (ENOTSUP);
2389 
2390 	mutex_enter(&spa->spa_scrub_lock);
2391 
2392 	/*
2393 	 * If there's a scrub or resilver already in progress, stop it.
2394 	 */
2395 	while (spa->spa_scrub_thread != NULL) {
2396 		/*
2397 		 * Don't stop a resilver unless forced.
2398 		 */
2399 		if (spa->spa_scrub_type == POOL_SCRUB_RESILVER && !force) {
2400 			mutex_exit(&spa->spa_scrub_lock);
2401 			return (EBUSY);
2402 		}
2403 		spa->spa_scrub_stop = 1;
2404 		cv_broadcast(&spa->spa_scrub_cv);
2405 		cv_wait(&spa->spa_scrub_cv, &spa->spa_scrub_lock);
2406 	}
2407 
2408 	/*
2409 	 * Terminate the previous traverse.
2410 	 */
2411 	if (spa->spa_scrub_th != NULL) {
2412 		traverse_fini(spa->spa_scrub_th);
2413 		spa->spa_scrub_th = NULL;
2414 	}
2415 
2416 	if (rvd == NULL) {
2417 		ASSERT(spa->spa_scrub_stop == 0);
2418 		ASSERT(spa->spa_scrub_type == type);
2419 		ASSERT(spa->spa_scrub_restart_txg == 0);
2420 		mutex_exit(&spa->spa_scrub_lock);
2421 		return (0);
2422 	}
2423 
2424 	mintxg = TXG_INITIAL - 1;
2425 	maxtxg = spa_last_synced_txg(spa) + 1;
2426 
2427 	mutex_enter(&rvd->vdev_dtl_lock);
2428 
2429 	if (rvd->vdev_dtl_map.sm_space == 0) {
2430 		/*
2431 		 * The pool-wide DTL is empty.
2432 		 * If this is a resilver, there's nothing to do except
2433 		 * check whether any in-progress replacements have completed.
2434 		 */
2435 		if (type == POOL_SCRUB_RESILVER) {
2436 			type = POOL_SCRUB_NONE;
2437 			spa_async_request(spa, SPA_ASYNC_REPLACE_DONE);
2438 		}
2439 	} else {
2440 		/*
2441 		 * The pool-wide DTL is non-empty.
2442 		 * If this is a normal scrub, upgrade to a resilver instead.
2443 		 */
2444 		if (type == POOL_SCRUB_EVERYTHING)
2445 			type = POOL_SCRUB_RESILVER;
2446 	}
2447 
2448 	if (type == POOL_SCRUB_RESILVER) {
2449 		/*
2450 		 * Determine the resilvering boundaries.
2451 		 *
2452 		 * Note: (mintxg, maxtxg) is an open interval,
2453 		 * i.e. mintxg and maxtxg themselves are not included.
2454 		 *
2455 		 * Note: for maxtxg, we MIN with spa_last_synced_txg(spa) + 1
2456 		 * so we don't claim to resilver a txg that's still changing.
2457 		 */
2458 		ss = avl_first(&rvd->vdev_dtl_map.sm_root);
2459 		mintxg = ss->ss_start - 1;
2460 		ss = avl_last(&rvd->vdev_dtl_map.sm_root);
2461 		maxtxg = MIN(ss->ss_end, maxtxg);
2462 	}
2463 
2464 	mutex_exit(&rvd->vdev_dtl_lock);
2465 
2466 	spa->spa_scrub_stop = 0;
2467 	spa->spa_scrub_type = type;
2468 	spa->spa_scrub_restart_txg = 0;
2469 
2470 	if (type != POOL_SCRUB_NONE) {
2471 		spa->spa_scrub_mintxg = mintxg;
2472 		spa->spa_scrub_maxtxg = maxtxg;
2473 		spa->spa_scrub_th = traverse_init(spa, spa_scrub_cb, NULL,
2474 		    ADVANCE_PRE | ADVANCE_PRUNE | ADVANCE_ZIL,
2475 		    ZIO_FLAG_CANFAIL);
2476 		traverse_add_pool(spa->spa_scrub_th, mintxg, maxtxg);
2477 		spa->spa_scrub_thread = thread_create(NULL, 0,
2478 		    spa_scrub_thread, spa, 0, &p0, TS_RUN, minclsyspri);
2479 	}
2480 
2481 	mutex_exit(&spa->spa_scrub_lock);
2482 
2483 	return (0);
2484 }
2485 
2486 /*
2487  * ==========================================================================
2488  * SPA async task processing
2489  * ==========================================================================
2490  */
2491 
2492 static void
2493 spa_async_reopen(spa_t *spa)
2494 {
2495 	vdev_t *rvd = spa->spa_root_vdev;
2496 	vdev_t *tvd;
2497 	int c;
2498 
2499 	spa_config_enter(spa, RW_WRITER, FTAG);
2500 
2501 	for (c = 0; c < rvd->vdev_children; c++) {
2502 		tvd = rvd->vdev_child[c];
2503 		if (tvd->vdev_reopen_wanted) {
2504 			tvd->vdev_reopen_wanted = 0;
2505 			vdev_reopen(tvd);
2506 		}
2507 	}
2508 
2509 	spa_config_exit(spa, FTAG);
2510 }
2511 
2512 static void
2513 spa_async_thread(spa_t *spa)
2514 {
2515 	int tasks;
2516 
2517 	ASSERT(spa->spa_sync_on);
2518 
2519 	mutex_enter(&spa->spa_async_lock);
2520 	tasks = spa->spa_async_tasks;
2521 	spa->spa_async_tasks = 0;
2522 	mutex_exit(&spa->spa_async_lock);
2523 
2524 	/*
2525 	 * See if the config needs to be updated.
2526 	 */
2527 	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
2528 		mutex_enter(&spa_namespace_lock);
2529 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
2530 		mutex_exit(&spa_namespace_lock);
2531 	}
2532 
2533 	/*
2534 	 * See if any devices need to be reopened.
2535 	 */
2536 	if (tasks & SPA_ASYNC_REOPEN)
2537 		spa_async_reopen(spa);
2538 
2539 	/*
2540 	 * If any devices are done replacing, detach them.
2541 	 */
2542 	if (tasks & SPA_ASYNC_REPLACE_DONE)
2543 		spa_vdev_replace_done(spa);
2544 
2545 	/*
2546 	 * Kick off a scrub.
2547 	 */
2548 	if (tasks & SPA_ASYNC_SCRUB)
2549 		VERIFY(spa_scrub(spa, POOL_SCRUB_EVERYTHING, B_TRUE) == 0);
2550 
2551 	/*
2552 	 * Kick off a resilver.
2553 	 */
2554 	if (tasks & SPA_ASYNC_RESILVER)
2555 		VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
2556 
2557 	/*
2558 	 * Let the world know that we're done.
2559 	 */
2560 	mutex_enter(&spa->spa_async_lock);
2561 	spa->spa_async_thread = NULL;
2562 	cv_broadcast(&spa->spa_async_cv);
2563 	mutex_exit(&spa->spa_async_lock);
2564 	thread_exit();
2565 }
2566 
2567 void
2568 spa_async_suspend(spa_t *spa)
2569 {
2570 	mutex_enter(&spa->spa_async_lock);
2571 	spa->spa_async_suspended++;
2572 	while (spa->spa_async_thread != NULL)
2573 		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
2574 	mutex_exit(&spa->spa_async_lock);
2575 }
2576 
2577 void
2578 spa_async_resume(spa_t *spa)
2579 {
2580 	mutex_enter(&spa->spa_async_lock);
2581 	ASSERT(spa->spa_async_suspended != 0);
2582 	spa->spa_async_suspended--;
2583 	mutex_exit(&spa->spa_async_lock);
2584 }
2585 
2586 static void
2587 spa_async_dispatch(spa_t *spa)
2588 {
2589 	mutex_enter(&spa->spa_async_lock);
2590 	if (spa->spa_async_tasks && !spa->spa_async_suspended &&
2591 	    spa->spa_async_thread == NULL &&
2592 	    rootdir != NULL && !vn_is_readonly(rootdir))
2593 		spa->spa_async_thread = thread_create(NULL, 0,
2594 		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
2595 	mutex_exit(&spa->spa_async_lock);
2596 }
2597 
2598 void
2599 spa_async_request(spa_t *spa, int task)
2600 {
2601 	mutex_enter(&spa->spa_async_lock);
2602 	spa->spa_async_tasks |= task;
2603 	mutex_exit(&spa->spa_async_lock);
2604 }
2605 
2606 /*
2607  * ==========================================================================
2608  * SPA syncing routines
2609  * ==========================================================================
2610  */
2611 
2612 static void
2613 spa_sync_deferred_frees(spa_t *spa, uint64_t txg)
2614 {
2615 	bplist_t *bpl = &spa->spa_sync_bplist;
2616 	dmu_tx_t *tx;
2617 	blkptr_t blk;
2618 	uint64_t itor = 0;
2619 	zio_t *zio;
2620 	int error;
2621 	uint8_t c = 1;
2622 
2623 	zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CONFIG_HELD);
2624 
2625 	while (bplist_iterate(bpl, &itor, &blk) == 0)
2626 		zio_nowait(zio_free(zio, spa, txg, &blk, NULL, NULL));
2627 
2628 	error = zio_wait(zio);
2629 	ASSERT3U(error, ==, 0);
2630 
2631 	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2632 	bplist_vacate(bpl, tx);
2633 
2634 	/*
2635 	 * Pre-dirty the first block so we sync to convergence faster.
2636 	 * (Usually only the first block is needed.)
2637 	 */
2638 	dmu_write(spa->spa_meta_objset, spa->spa_sync_bplist_obj, 0, 1, &c, tx);
2639 	dmu_tx_commit(tx);
2640 }
2641 
2642 static void
2643 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
2644 {
2645 	char *packed = NULL;
2646 	size_t nvsize = 0;
2647 	dmu_buf_t *db;
2648 
2649 	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
2650 
2651 	packed = kmem_alloc(nvsize, KM_SLEEP);
2652 
2653 	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
2654 	    KM_SLEEP) == 0);
2655 
2656 	dmu_write(spa->spa_meta_objset, obj, 0, nvsize, packed, tx);
2657 
2658 	kmem_free(packed, nvsize);
2659 
2660 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
2661 	dmu_buf_will_dirty(db, tx);
2662 	*(uint64_t *)db->db_data = nvsize;
2663 	dmu_buf_rele(db, FTAG);
2664 }
2665 
2666 static void
2667 spa_sync_spares(spa_t *spa, dmu_tx_t *tx)
2668 {
2669 	nvlist_t *nvroot;
2670 	nvlist_t **spares;
2671 	int i;
2672 
2673 	if (!spa->spa_sync_spares)
2674 		return;
2675 
2676 	/*
2677 	 * Update the MOS nvlist describing the list of available spares.
2678 	 * spa_validate_spares() will have already made sure this nvlist is
2679 	 * valid and the vdevs are labelled appropriately.
2680 	 */
2681 	if (spa->spa_spares_object == 0) {
2682 		spa->spa_spares_object = dmu_object_alloc(spa->spa_meta_objset,
2683 		    DMU_OT_PACKED_NVLIST, 1 << 14,
2684 		    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
2685 		VERIFY(zap_update(spa->spa_meta_objset,
2686 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SPARES,
2687 		    sizeof (uint64_t), 1, &spa->spa_spares_object, tx) == 0);
2688 	}
2689 
2690 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
2691 	if (spa->spa_nspares == 0) {
2692 		VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
2693 		    NULL, 0) == 0);
2694 	} else {
2695 		spares = kmem_alloc(spa->spa_nspares * sizeof (void *),
2696 		    KM_SLEEP);
2697 		for (i = 0; i < spa->spa_nspares; i++)
2698 			spares[i] = vdev_config_generate(spa,
2699 			    spa->spa_spares[i], B_FALSE, B_TRUE);
2700 		VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
2701 		    spares, spa->spa_nspares) == 0);
2702 		for (i = 0; i < spa->spa_nspares; i++)
2703 			nvlist_free(spares[i]);
2704 		kmem_free(spares, spa->spa_nspares * sizeof (void *));
2705 	}
2706 
2707 	spa_sync_nvlist(spa, spa->spa_spares_object, nvroot, tx);
2708 
2709 	spa->spa_sync_spares = B_FALSE;
2710 }
2711 
2712 static void
2713 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
2714 {
2715 	nvlist_t *config;
2716 
2717 	if (list_is_empty(&spa->spa_dirty_list))
2718 		return;
2719 
2720 	config = spa_config_generate(spa, NULL, dmu_tx_get_txg(tx), B_FALSE);
2721 
2722 	if (spa->spa_config_syncing)
2723 		nvlist_free(spa->spa_config_syncing);
2724 	spa->spa_config_syncing = config;
2725 
2726 	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
2727 }
2728 
2729 /*
2730  * Sync the specified transaction group.  New blocks may be dirtied as
2731  * part of the process, so we iterate until it converges.
2732  */
2733 void
2734 spa_sync(spa_t *spa, uint64_t txg)
2735 {
2736 	dsl_pool_t *dp = spa->spa_dsl_pool;
2737 	objset_t *mos = spa->spa_meta_objset;
2738 	bplist_t *bpl = &spa->spa_sync_bplist;
2739 	vdev_t *rvd = spa->spa_root_vdev;
2740 	vdev_t *vd;
2741 	dmu_tx_t *tx;
2742 	int dirty_vdevs;
2743 
2744 	/*
2745 	 * Lock out configuration changes.
2746 	 */
2747 	spa_config_enter(spa, RW_READER, FTAG);
2748 
2749 	spa->spa_syncing_txg = txg;
2750 	spa->spa_sync_pass = 0;
2751 
2752 	VERIFY(0 == bplist_open(bpl, mos, spa->spa_sync_bplist_obj));
2753 
2754 	tx = dmu_tx_create_assigned(dp, txg);
2755 
2756 	/*
2757 	 * If we are upgrading to ZFS_VERSION_RAIDZ_DEFLATE this txg,
2758 	 * set spa_deflate if we have no raid-z vdevs.
2759 	 */
2760 	if (spa->spa_ubsync.ub_version < ZFS_VERSION_RAIDZ_DEFLATE &&
2761 	    spa->spa_uberblock.ub_version >= ZFS_VERSION_RAIDZ_DEFLATE) {
2762 		int i;
2763 
2764 		for (i = 0; i < rvd->vdev_children; i++) {
2765 			vd = rvd->vdev_child[i];
2766 			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
2767 				break;
2768 		}
2769 		if (i == rvd->vdev_children) {
2770 			spa->spa_deflate = TRUE;
2771 			VERIFY(0 == zap_add(spa->spa_meta_objset,
2772 			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
2773 			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
2774 		}
2775 	}
2776 
2777 	/*
2778 	 * If anything has changed in this txg, push the deferred frees
2779 	 * from the previous txg.  If not, leave them alone so that we
2780 	 * don't generate work on an otherwise idle system.
2781 	 */
2782 	if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
2783 	    !txg_list_empty(&dp->dp_dirty_dirs, txg))
2784 		spa_sync_deferred_frees(spa, txg);
2785 
2786 	/*
2787 	 * Iterate to convergence.
2788 	 */
2789 	do {
2790 		spa->spa_sync_pass++;
2791 
2792 		spa_sync_config_object(spa, tx);
2793 		spa_sync_spares(spa, tx);
2794 		spa_errlog_sync(spa, txg);
2795 		dsl_pool_sync(dp, txg);
2796 
2797 		dirty_vdevs = 0;
2798 		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) {
2799 			vdev_sync(vd, txg);
2800 			dirty_vdevs++;
2801 		}
2802 
2803 		bplist_sync(bpl, tx);
2804 	} while (dirty_vdevs);
2805 
2806 	bplist_close(bpl);
2807 
2808 	dprintf("txg %llu passes %d\n", txg, spa->spa_sync_pass);
2809 
2810 	/*
2811 	 * Rewrite the vdev configuration (which includes the uberblock)
2812 	 * to commit the transaction group.
2813 	 *
2814 	 * If there are any dirty vdevs, sync the uberblock to all vdevs.
2815 	 * Otherwise, pick a random top-level vdev that's known to be
2816 	 * visible in the config cache (see spa_vdev_add() for details).
2817 	 * If the write fails, try the next vdev until we're tried them all.
2818 	 */
2819 	if (!list_is_empty(&spa->spa_dirty_list)) {
2820 		VERIFY(vdev_config_sync(rvd, txg) == 0);
2821 	} else {
2822 		int children = rvd->vdev_children;
2823 		int c0 = spa_get_random(children);
2824 		int c;
2825 
2826 		for (c = 0; c < children; c++) {
2827 			vd = rvd->vdev_child[(c0 + c) % children];
2828 			if (vd->vdev_ms_array == 0)
2829 				continue;
2830 			if (vdev_config_sync(vd, txg) == 0)
2831 				break;
2832 		}
2833 		if (c == children)
2834 			VERIFY(vdev_config_sync(rvd, txg) == 0);
2835 	}
2836 
2837 	dmu_tx_commit(tx);
2838 
2839 	/*
2840 	 * Clear the dirty config list.
2841 	 */
2842 	while ((vd = list_head(&spa->spa_dirty_list)) != NULL)
2843 		vdev_config_clean(vd);
2844 
2845 	/*
2846 	 * Now that the new config has synced transactionally,
2847 	 * let it become visible to the config cache.
2848 	 */
2849 	if (spa->spa_config_syncing != NULL) {
2850 		spa_config_set(spa, spa->spa_config_syncing);
2851 		spa->spa_config_txg = txg;
2852 		spa->spa_config_syncing = NULL;
2853 	}
2854 
2855 	/*
2856 	 * Make a stable copy of the fully synced uberblock.
2857 	 * We use this as the root for pool traversals.
2858 	 */
2859 	spa->spa_traverse_wanted = 1;	/* tells traverse_more() to stop */
2860 
2861 	spa_scrub_suspend(spa);		/* stop scrubbing and finish I/Os */
2862 
2863 	rw_enter(&spa->spa_traverse_lock, RW_WRITER);
2864 	spa->spa_traverse_wanted = 0;
2865 	spa->spa_ubsync = spa->spa_uberblock;
2866 	rw_exit(&spa->spa_traverse_lock);
2867 
2868 	spa_scrub_resume(spa);		/* resume scrub with new ubsync */
2869 
2870 	/*
2871 	 * Clean up the ZIL records for the synced txg.
2872 	 */
2873 	dsl_pool_zil_clean(dp);
2874 
2875 	/*
2876 	 * Update usable space statistics.
2877 	 */
2878 	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
2879 		vdev_sync_done(vd, txg);
2880 
2881 	/*
2882 	 * It had better be the case that we didn't dirty anything
2883 	 * since vdev_config_sync().
2884 	 */
2885 	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
2886 	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
2887 	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
2888 	ASSERT(bpl->bpl_queue == NULL);
2889 
2890 	spa_config_exit(spa, FTAG);
2891 
2892 	/*
2893 	 * If any async tasks have been requested, kick them off.
2894 	 */
2895 	spa_async_dispatch(spa);
2896 }
2897 
2898 /*
2899  * Sync all pools.  We don't want to hold the namespace lock across these
2900  * operations, so we take a reference on the spa_t and drop the lock during the
2901  * sync.
2902  */
2903 void
2904 spa_sync_allpools(void)
2905 {
2906 	spa_t *spa = NULL;
2907 	mutex_enter(&spa_namespace_lock);
2908 	while ((spa = spa_next(spa)) != NULL) {
2909 		if (spa_state(spa) != POOL_STATE_ACTIVE)
2910 			continue;
2911 		spa_open_ref(spa, FTAG);
2912 		mutex_exit(&spa_namespace_lock);
2913 		txg_wait_synced(spa_get_dsl(spa), 0);
2914 		mutex_enter(&spa_namespace_lock);
2915 		spa_close(spa, FTAG);
2916 	}
2917 	mutex_exit(&spa_namespace_lock);
2918 }
2919 
2920 /*
2921  * ==========================================================================
2922  * Miscellaneous routines
2923  * ==========================================================================
2924  */
2925 
2926 /*
2927  * Remove all pools in the system.
2928  */
2929 void
2930 spa_evict_all(void)
2931 {
2932 	spa_t *spa;
2933 
2934 	/*
2935 	 * Remove all cached state.  All pools should be closed now,
2936 	 * so every spa in the AVL tree should be unreferenced.
2937 	 */
2938 	mutex_enter(&spa_namespace_lock);
2939 	while ((spa = spa_next(NULL)) != NULL) {
2940 		/*
2941 		 * Stop async tasks.  The async thread may need to detach
2942 		 * a device that's been replaced, which requires grabbing
2943 		 * spa_namespace_lock, so we must drop it here.
2944 		 */
2945 		spa_open_ref(spa, FTAG);
2946 		mutex_exit(&spa_namespace_lock);
2947 		spa_async_suspend(spa);
2948 		VERIFY(spa_scrub(spa, POOL_SCRUB_NONE, B_TRUE) == 0);
2949 		mutex_enter(&spa_namespace_lock);
2950 		spa_close(spa, FTAG);
2951 
2952 		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
2953 			spa_unload(spa);
2954 			spa_deactivate(spa);
2955 		}
2956 		spa_remove(spa);
2957 	}
2958 	mutex_exit(&spa_namespace_lock);
2959 }
2960 
2961 vdev_t *
2962 spa_lookup_by_guid(spa_t *spa, uint64_t guid)
2963 {
2964 	return (vdev_lookup_by_guid(spa->spa_root_vdev, guid));
2965 }
2966 
2967 void
2968 spa_upgrade(spa_t *spa)
2969 {
2970 	spa_config_enter(spa, RW_WRITER, FTAG);
2971 
2972 	/*
2973 	 * This should only be called for a non-faulted pool, and since a
2974 	 * future version would result in an unopenable pool, this shouldn't be
2975 	 * possible.
2976 	 */
2977 	ASSERT(spa->spa_uberblock.ub_version <= ZFS_VERSION);
2978 
2979 	spa->spa_uberblock.ub_version = ZFS_VERSION;
2980 	vdev_config_dirty(spa->spa_root_vdev);
2981 
2982 	spa_config_exit(spa, FTAG);
2983 
2984 	txg_wait_synced(spa_get_dsl(spa), 0);
2985 }
2986 
2987 boolean_t
2988 spa_has_spare(spa_t *spa, uint64_t guid)
2989 {
2990 	int i;
2991 
2992 	for (i = 0; i < spa->spa_nspares; i++)
2993 		if (spa->spa_spares[i]->vdev_guid == guid)
2994 			return (B_TRUE);
2995 
2996 	return (B_FALSE);
2997 }
2998