1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* 28 * This file contains all the routines used when modifying on-disk SPA state. 29 * This includes opening, importing, destroying, exporting a pool, and syncing a 30 * pool. 31 */ 32 33 #include <sys/zfs_context.h> 34 #include <sys/fm/fs/zfs.h> 35 #include <sys/spa_impl.h> 36 #include <sys/zio.h> 37 #include <sys/zio_checksum.h> 38 #include <sys/zio_compress.h> 39 #include <sys/dmu.h> 40 #include <sys/dmu_tx.h> 41 #include <sys/zap.h> 42 #include <sys/zil.h> 43 #include <sys/vdev_impl.h> 44 #include <sys/metaslab.h> 45 #include <sys/uberblock_impl.h> 46 #include <sys/txg.h> 47 #include <sys/avl.h> 48 #include <sys/dmu_traverse.h> 49 #include <sys/dmu_objset.h> 50 #include <sys/unique.h> 51 #include <sys/dsl_pool.h> 52 #include <sys/dsl_dataset.h> 53 #include <sys/dsl_dir.h> 54 #include <sys/dsl_prop.h> 55 #include <sys/dsl_synctask.h> 56 #include <sys/fs/zfs.h> 57 #include <sys/arc.h> 58 #include <sys/callb.h> 59 #include <sys/systeminfo.h> 60 #include <sys/sunddi.h> 61 #include <sys/spa_boot.h> 62 #include <sys/zfs_ioctl.h> 63 64 #ifdef _KERNEL 65 #include <sys/zone.h> 66 #endif /* _KERNEL */ 67 68 #include "zfs_prop.h" 69 #include "zfs_comutil.h" 70 71 enum zti_modes { 72 zti_mode_fixed, /* value is # of threads (min 1) */ 73 zti_mode_online_percent, /* value is % of online CPUs */ 74 zti_mode_tune, /* fill from zio_taskq_tune_* */ 75 zti_nmodes 76 }; 77 78 #define ZTI_THREAD_FIX(n) { zti_mode_fixed, (n) } 79 #define ZTI_THREAD_PCT(n) { zti_mode_online_percent, (n) } 80 #define ZTI_THREAD_TUNE { zti_mode_tune, 0 } 81 82 #define ZTI_THREAD_ONE ZTI_THREAD_FIX(1) 83 84 typedef struct zio_taskq_info { 85 const char *zti_name; 86 struct { 87 enum zti_modes zti_mode; 88 uint_t zti_value; 89 } zti_nthreads[ZIO_TASKQ_TYPES]; 90 } zio_taskq_info_t; 91 92 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = { 93 "issue", "intr" 94 }; 95 96 const zio_taskq_info_t zio_taskqs[ZIO_TYPES] = { 97 /* ISSUE INTR */ 98 { "spa_zio_null", { ZTI_THREAD_ONE, ZTI_THREAD_ONE } }, 99 { "spa_zio_read", { ZTI_THREAD_FIX(8), ZTI_THREAD_TUNE } }, 100 { "spa_zio_write", { ZTI_THREAD_TUNE, ZTI_THREAD_FIX(8) } }, 101 { "spa_zio_free", { ZTI_THREAD_ONE, ZTI_THREAD_ONE } }, 102 { "spa_zio_claim", { ZTI_THREAD_ONE, ZTI_THREAD_ONE } }, 103 { "spa_zio_ioctl", { ZTI_THREAD_ONE, ZTI_THREAD_ONE } }, 104 }; 105 106 enum zti_modes zio_taskq_tune_mode = zti_mode_online_percent; 107 uint_t zio_taskq_tune_value = 80; /* #threads = 80% of # online CPUs */ 108 109 static void spa_sync_props(void *arg1, void *arg2, cred_t *cr, dmu_tx_t *tx); 110 static boolean_t spa_has_active_shared_spare(spa_t *spa); 111 112 /* 113 * ========================================================================== 114 * SPA properties routines 115 * ========================================================================== 116 */ 117 118 /* 119 * Add a (source=src, propname=propval) list to an nvlist. 120 */ 121 static void 122 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval, 123 uint64_t intval, zprop_source_t src) 124 { 125 const char *propname = zpool_prop_to_name(prop); 126 nvlist_t *propval; 127 128 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0); 129 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0); 130 131 if (strval != NULL) 132 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0); 133 else 134 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0); 135 136 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0); 137 nvlist_free(propval); 138 } 139 140 /* 141 * Get property values from the spa configuration. 142 */ 143 static void 144 spa_prop_get_config(spa_t *spa, nvlist_t **nvp) 145 { 146 uint64_t size; 147 uint64_t used; 148 uint64_t cap, version; 149 zprop_source_t src = ZPROP_SRC_NONE; 150 spa_config_dirent_t *dp; 151 152 ASSERT(MUTEX_HELD(&spa->spa_props_lock)); 153 154 if (spa->spa_root_vdev != NULL) { 155 size = spa_get_space(spa); 156 used = spa_get_alloc(spa); 157 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src); 158 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src); 159 spa_prop_add_list(*nvp, ZPOOL_PROP_USED, NULL, used, src); 160 spa_prop_add_list(*nvp, ZPOOL_PROP_AVAILABLE, NULL, 161 size - used, src); 162 163 cap = (size == 0) ? 0 : (used * 100 / size); 164 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src); 165 166 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL, 167 spa->spa_root_vdev->vdev_state, src); 168 169 version = spa_version(spa); 170 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) 171 src = ZPROP_SRC_DEFAULT; 172 else 173 src = ZPROP_SRC_LOCAL; 174 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src); 175 } 176 177 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src); 178 179 if (spa->spa_root != NULL) 180 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root, 181 0, ZPROP_SRC_LOCAL); 182 183 if ((dp = list_head(&spa->spa_config_list)) != NULL) { 184 if (dp->scd_path == NULL) { 185 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 186 "none", 0, ZPROP_SRC_LOCAL); 187 } else if (strcmp(dp->scd_path, spa_config_path) != 0) { 188 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 189 dp->scd_path, 0, ZPROP_SRC_LOCAL); 190 } 191 } 192 } 193 194 /* 195 * Get zpool property values. 196 */ 197 int 198 spa_prop_get(spa_t *spa, nvlist_t **nvp) 199 { 200 zap_cursor_t zc; 201 zap_attribute_t za; 202 objset_t *mos = spa->spa_meta_objset; 203 int err; 204 205 VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0); 206 207 mutex_enter(&spa->spa_props_lock); 208 209 /* 210 * Get properties from the spa config. 211 */ 212 spa_prop_get_config(spa, nvp); 213 214 /* If no pool property object, no more prop to get. */ 215 if (spa->spa_pool_props_object == 0) { 216 mutex_exit(&spa->spa_props_lock); 217 return (0); 218 } 219 220 /* 221 * Get properties from the MOS pool property object. 222 */ 223 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object); 224 (err = zap_cursor_retrieve(&zc, &za)) == 0; 225 zap_cursor_advance(&zc)) { 226 uint64_t intval = 0; 227 char *strval = NULL; 228 zprop_source_t src = ZPROP_SRC_DEFAULT; 229 zpool_prop_t prop; 230 231 if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL) 232 continue; 233 234 switch (za.za_integer_length) { 235 case 8: 236 /* integer property */ 237 if (za.za_first_integer != 238 zpool_prop_default_numeric(prop)) 239 src = ZPROP_SRC_LOCAL; 240 241 if (prop == ZPOOL_PROP_BOOTFS) { 242 dsl_pool_t *dp; 243 dsl_dataset_t *ds = NULL; 244 245 dp = spa_get_dsl(spa); 246 rw_enter(&dp->dp_config_rwlock, RW_READER); 247 if (err = dsl_dataset_hold_obj(dp, 248 za.za_first_integer, FTAG, &ds)) { 249 rw_exit(&dp->dp_config_rwlock); 250 break; 251 } 252 253 strval = kmem_alloc( 254 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1, 255 KM_SLEEP); 256 dsl_dataset_name(ds, strval); 257 dsl_dataset_rele(ds, FTAG); 258 rw_exit(&dp->dp_config_rwlock); 259 } else { 260 strval = NULL; 261 intval = za.za_first_integer; 262 } 263 264 spa_prop_add_list(*nvp, prop, strval, intval, src); 265 266 if (strval != NULL) 267 kmem_free(strval, 268 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1); 269 270 break; 271 272 case 1: 273 /* string property */ 274 strval = kmem_alloc(za.za_num_integers, KM_SLEEP); 275 err = zap_lookup(mos, spa->spa_pool_props_object, 276 za.za_name, 1, za.za_num_integers, strval); 277 if (err) { 278 kmem_free(strval, za.za_num_integers); 279 break; 280 } 281 spa_prop_add_list(*nvp, prop, strval, 0, src); 282 kmem_free(strval, za.za_num_integers); 283 break; 284 285 default: 286 break; 287 } 288 } 289 zap_cursor_fini(&zc); 290 mutex_exit(&spa->spa_props_lock); 291 out: 292 if (err && err != ENOENT) { 293 nvlist_free(*nvp); 294 *nvp = NULL; 295 return (err); 296 } 297 298 return (0); 299 } 300 301 /* 302 * Validate the given pool properties nvlist and modify the list 303 * for the property values to be set. 304 */ 305 static int 306 spa_prop_validate(spa_t *spa, nvlist_t *props) 307 { 308 nvpair_t *elem; 309 int error = 0, reset_bootfs = 0; 310 uint64_t objnum; 311 312 elem = NULL; 313 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) { 314 zpool_prop_t prop; 315 char *propname, *strval; 316 uint64_t intval; 317 objset_t *os; 318 char *slash; 319 320 propname = nvpair_name(elem); 321 322 if ((prop = zpool_name_to_prop(propname)) == ZPROP_INVAL) 323 return (EINVAL); 324 325 switch (prop) { 326 case ZPOOL_PROP_VERSION: 327 error = nvpair_value_uint64(elem, &intval); 328 if (!error && 329 (intval < spa_version(spa) || intval > SPA_VERSION)) 330 error = EINVAL; 331 break; 332 333 case ZPOOL_PROP_DELEGATION: 334 case ZPOOL_PROP_AUTOREPLACE: 335 case ZPOOL_PROP_LISTSNAPS: 336 case ZPOOL_PROP_AUTOEXPAND: 337 error = nvpair_value_uint64(elem, &intval); 338 if (!error && intval > 1) 339 error = EINVAL; 340 break; 341 342 case ZPOOL_PROP_BOOTFS: 343 /* 344 * If the pool version is less than SPA_VERSION_BOOTFS, 345 * or the pool is still being created (version == 0), 346 * the bootfs property cannot be set. 347 */ 348 if (spa_version(spa) < SPA_VERSION_BOOTFS) { 349 error = ENOTSUP; 350 break; 351 } 352 353 /* 354 * Make sure the vdev config is bootable 355 */ 356 if (!vdev_is_bootable(spa->spa_root_vdev)) { 357 error = ENOTSUP; 358 break; 359 } 360 361 reset_bootfs = 1; 362 363 error = nvpair_value_string(elem, &strval); 364 365 if (!error) { 366 uint64_t compress; 367 368 if (strval == NULL || strval[0] == '\0') { 369 objnum = zpool_prop_default_numeric( 370 ZPOOL_PROP_BOOTFS); 371 break; 372 } 373 374 if (error = dmu_objset_hold(strval, FTAG, &os)) 375 break; 376 377 /* Must be ZPL and not gzip compressed. */ 378 379 if (dmu_objset_type(os) != DMU_OST_ZFS) { 380 error = ENOTSUP; 381 } else if ((error = dsl_prop_get_integer(strval, 382 zfs_prop_to_name(ZFS_PROP_COMPRESSION), 383 &compress, NULL)) == 0 && 384 !BOOTFS_COMPRESS_VALID(compress)) { 385 error = ENOTSUP; 386 } else { 387 objnum = dmu_objset_id(os); 388 } 389 dmu_objset_rele(os, FTAG); 390 } 391 break; 392 393 case ZPOOL_PROP_FAILUREMODE: 394 error = nvpair_value_uint64(elem, &intval); 395 if (!error && (intval < ZIO_FAILURE_MODE_WAIT || 396 intval > ZIO_FAILURE_MODE_PANIC)) 397 error = EINVAL; 398 399 /* 400 * This is a special case which only occurs when 401 * the pool has completely failed. This allows 402 * the user to change the in-core failmode property 403 * without syncing it out to disk (I/Os might 404 * currently be blocked). We do this by returning 405 * EIO to the caller (spa_prop_set) to trick it 406 * into thinking we encountered a property validation 407 * error. 408 */ 409 if (!error && spa_suspended(spa)) { 410 spa->spa_failmode = intval; 411 error = EIO; 412 } 413 break; 414 415 case ZPOOL_PROP_CACHEFILE: 416 if ((error = nvpair_value_string(elem, &strval)) != 0) 417 break; 418 419 if (strval[0] == '\0') 420 break; 421 422 if (strcmp(strval, "none") == 0) 423 break; 424 425 if (strval[0] != '/') { 426 error = EINVAL; 427 break; 428 } 429 430 slash = strrchr(strval, '/'); 431 ASSERT(slash != NULL); 432 433 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 || 434 strcmp(slash, "/..") == 0) 435 error = EINVAL; 436 break; 437 } 438 439 if (error) 440 break; 441 } 442 443 if (!error && reset_bootfs) { 444 error = nvlist_remove(props, 445 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING); 446 447 if (!error) { 448 error = nvlist_add_uint64(props, 449 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum); 450 } 451 } 452 453 return (error); 454 } 455 456 void 457 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync) 458 { 459 char *cachefile; 460 spa_config_dirent_t *dp; 461 462 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE), 463 &cachefile) != 0) 464 return; 465 466 dp = kmem_alloc(sizeof (spa_config_dirent_t), 467 KM_SLEEP); 468 469 if (cachefile[0] == '\0') 470 dp->scd_path = spa_strdup(spa_config_path); 471 else if (strcmp(cachefile, "none") == 0) 472 dp->scd_path = NULL; 473 else 474 dp->scd_path = spa_strdup(cachefile); 475 476 list_insert_head(&spa->spa_config_list, dp); 477 if (need_sync) 478 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 479 } 480 481 int 482 spa_prop_set(spa_t *spa, nvlist_t *nvp) 483 { 484 int error; 485 nvpair_t *elem; 486 boolean_t need_sync = B_FALSE; 487 zpool_prop_t prop; 488 489 if ((error = spa_prop_validate(spa, nvp)) != 0) 490 return (error); 491 492 elem = NULL; 493 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) { 494 if ((prop = zpool_name_to_prop( 495 nvpair_name(elem))) == ZPROP_INVAL) 496 return (EINVAL); 497 498 if (prop == ZPOOL_PROP_CACHEFILE || prop == ZPOOL_PROP_ALTROOT) 499 continue; 500 501 need_sync = B_TRUE; 502 break; 503 } 504 505 if (need_sync) 506 return (dsl_sync_task_do(spa_get_dsl(spa), NULL, spa_sync_props, 507 spa, nvp, 3)); 508 else 509 return (0); 510 } 511 512 /* 513 * If the bootfs property value is dsobj, clear it. 514 */ 515 void 516 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx) 517 { 518 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) { 519 VERIFY(zap_remove(spa->spa_meta_objset, 520 spa->spa_pool_props_object, 521 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0); 522 spa->spa_bootfs = 0; 523 } 524 } 525 526 /* 527 * ========================================================================== 528 * SPA state manipulation (open/create/destroy/import/export) 529 * ========================================================================== 530 */ 531 532 static int 533 spa_error_entry_compare(const void *a, const void *b) 534 { 535 spa_error_entry_t *sa = (spa_error_entry_t *)a; 536 spa_error_entry_t *sb = (spa_error_entry_t *)b; 537 int ret; 538 539 ret = bcmp(&sa->se_bookmark, &sb->se_bookmark, 540 sizeof (zbookmark_t)); 541 542 if (ret < 0) 543 return (-1); 544 else if (ret > 0) 545 return (1); 546 else 547 return (0); 548 } 549 550 /* 551 * Utility function which retrieves copies of the current logs and 552 * re-initializes them in the process. 553 */ 554 void 555 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub) 556 { 557 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock)); 558 559 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t)); 560 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t)); 561 562 avl_create(&spa->spa_errlist_scrub, 563 spa_error_entry_compare, sizeof (spa_error_entry_t), 564 offsetof(spa_error_entry_t, se_avl)); 565 avl_create(&spa->spa_errlist_last, 566 spa_error_entry_compare, sizeof (spa_error_entry_t), 567 offsetof(spa_error_entry_t, se_avl)); 568 } 569 570 /* 571 * Activate an uninitialized pool. 572 */ 573 static void 574 spa_activate(spa_t *spa, int mode) 575 { 576 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED); 577 578 spa->spa_state = POOL_STATE_ACTIVE; 579 spa->spa_mode = mode; 580 581 spa->spa_normal_class = metaslab_class_create(zfs_metaslab_ops); 582 spa->spa_log_class = metaslab_class_create(zfs_metaslab_ops); 583 584 for (int t = 0; t < ZIO_TYPES; t++) { 585 const zio_taskq_info_t *ztip = &zio_taskqs[t]; 586 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 587 enum zti_modes mode = ztip->zti_nthreads[q].zti_mode; 588 uint_t value = ztip->zti_nthreads[q].zti_value; 589 char name[32]; 590 591 (void) snprintf(name, sizeof (name), 592 "%s_%s", ztip->zti_name, zio_taskq_types[q]); 593 594 if (mode == zti_mode_tune) { 595 mode = zio_taskq_tune_mode; 596 value = zio_taskq_tune_value; 597 if (mode == zti_mode_tune) 598 mode = zti_mode_online_percent; 599 } 600 601 switch (mode) { 602 case zti_mode_fixed: 603 ASSERT3U(value, >=, 1); 604 value = MAX(value, 1); 605 606 spa->spa_zio_taskq[t][q] = taskq_create(name, 607 value, maxclsyspri, 50, INT_MAX, 608 TASKQ_PREPOPULATE); 609 break; 610 611 case zti_mode_online_percent: 612 spa->spa_zio_taskq[t][q] = taskq_create(name, 613 value, maxclsyspri, 50, INT_MAX, 614 TASKQ_PREPOPULATE | TASKQ_THREADS_CPU_PCT); 615 break; 616 617 case zti_mode_tune: 618 default: 619 panic("unrecognized mode for " 620 "zio_taskqs[%u]->zti_nthreads[%u] (%u:%u) " 621 "in spa_activate()", 622 t, q, mode, value); 623 break; 624 } 625 } 626 } 627 628 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t), 629 offsetof(vdev_t, vdev_config_dirty_node)); 630 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t), 631 offsetof(vdev_t, vdev_state_dirty_node)); 632 633 txg_list_create(&spa->spa_vdev_txg_list, 634 offsetof(struct vdev, vdev_txg_node)); 635 636 avl_create(&spa->spa_errlist_scrub, 637 spa_error_entry_compare, sizeof (spa_error_entry_t), 638 offsetof(spa_error_entry_t, se_avl)); 639 avl_create(&spa->spa_errlist_last, 640 spa_error_entry_compare, sizeof (spa_error_entry_t), 641 offsetof(spa_error_entry_t, se_avl)); 642 } 643 644 /* 645 * Opposite of spa_activate(). 646 */ 647 static void 648 spa_deactivate(spa_t *spa) 649 { 650 ASSERT(spa->spa_sync_on == B_FALSE); 651 ASSERT(spa->spa_dsl_pool == NULL); 652 ASSERT(spa->spa_root_vdev == NULL); 653 ASSERT(spa->spa_async_zio_root == NULL); 654 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED); 655 656 txg_list_destroy(&spa->spa_vdev_txg_list); 657 658 list_destroy(&spa->spa_config_dirty_list); 659 list_destroy(&spa->spa_state_dirty_list); 660 661 for (int t = 0; t < ZIO_TYPES; t++) { 662 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 663 taskq_destroy(spa->spa_zio_taskq[t][q]); 664 spa->spa_zio_taskq[t][q] = NULL; 665 } 666 } 667 668 metaslab_class_destroy(spa->spa_normal_class); 669 spa->spa_normal_class = NULL; 670 671 metaslab_class_destroy(spa->spa_log_class); 672 spa->spa_log_class = NULL; 673 674 /* 675 * If this was part of an import or the open otherwise failed, we may 676 * still have errors left in the queues. Empty them just in case. 677 */ 678 spa_errlog_drain(spa); 679 680 avl_destroy(&spa->spa_errlist_scrub); 681 avl_destroy(&spa->spa_errlist_last); 682 683 spa->spa_state = POOL_STATE_UNINITIALIZED; 684 } 685 686 /* 687 * Verify a pool configuration, and construct the vdev tree appropriately. This 688 * will create all the necessary vdevs in the appropriate layout, with each vdev 689 * in the CLOSED state. This will prep the pool before open/creation/import. 690 * All vdev validation is done by the vdev_alloc() routine. 691 */ 692 static int 693 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, 694 uint_t id, int atype) 695 { 696 nvlist_t **child; 697 uint_t children; 698 int error; 699 700 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0) 701 return (error); 702 703 if ((*vdp)->vdev_ops->vdev_op_leaf) 704 return (0); 705 706 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 707 &child, &children); 708 709 if (error == ENOENT) 710 return (0); 711 712 if (error) { 713 vdev_free(*vdp); 714 *vdp = NULL; 715 return (EINVAL); 716 } 717 718 for (int c = 0; c < children; c++) { 719 vdev_t *vd; 720 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c, 721 atype)) != 0) { 722 vdev_free(*vdp); 723 *vdp = NULL; 724 return (error); 725 } 726 } 727 728 ASSERT(*vdp != NULL); 729 730 return (0); 731 } 732 733 /* 734 * Opposite of spa_load(). 735 */ 736 static void 737 spa_unload(spa_t *spa) 738 { 739 int i; 740 741 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 742 743 /* 744 * Stop async tasks. 745 */ 746 spa_async_suspend(spa); 747 748 /* 749 * Stop syncing. 750 */ 751 if (spa->spa_sync_on) { 752 txg_sync_stop(spa->spa_dsl_pool); 753 spa->spa_sync_on = B_FALSE; 754 } 755 756 /* 757 * Wait for any outstanding async I/O to complete. 758 */ 759 if (spa->spa_async_zio_root != NULL) { 760 (void) zio_wait(spa->spa_async_zio_root); 761 spa->spa_async_zio_root = NULL; 762 } 763 764 /* 765 * Close the dsl pool. 766 */ 767 if (spa->spa_dsl_pool) { 768 dsl_pool_close(spa->spa_dsl_pool); 769 spa->spa_dsl_pool = NULL; 770 } 771 772 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 773 774 /* 775 * Drop and purge level 2 cache 776 */ 777 spa_l2cache_drop(spa); 778 779 /* 780 * Close all vdevs. 781 */ 782 if (spa->spa_root_vdev) 783 vdev_free(spa->spa_root_vdev); 784 ASSERT(spa->spa_root_vdev == NULL); 785 786 for (i = 0; i < spa->spa_spares.sav_count; i++) 787 vdev_free(spa->spa_spares.sav_vdevs[i]); 788 if (spa->spa_spares.sav_vdevs) { 789 kmem_free(spa->spa_spares.sav_vdevs, 790 spa->spa_spares.sav_count * sizeof (void *)); 791 spa->spa_spares.sav_vdevs = NULL; 792 } 793 if (spa->spa_spares.sav_config) { 794 nvlist_free(spa->spa_spares.sav_config); 795 spa->spa_spares.sav_config = NULL; 796 } 797 spa->spa_spares.sav_count = 0; 798 799 for (i = 0; i < spa->spa_l2cache.sav_count; i++) 800 vdev_free(spa->spa_l2cache.sav_vdevs[i]); 801 if (spa->spa_l2cache.sav_vdevs) { 802 kmem_free(spa->spa_l2cache.sav_vdevs, 803 spa->spa_l2cache.sav_count * sizeof (void *)); 804 spa->spa_l2cache.sav_vdevs = NULL; 805 } 806 if (spa->spa_l2cache.sav_config) { 807 nvlist_free(spa->spa_l2cache.sav_config); 808 spa->spa_l2cache.sav_config = NULL; 809 } 810 spa->spa_l2cache.sav_count = 0; 811 812 spa->spa_async_suspended = 0; 813 814 spa_config_exit(spa, SCL_ALL, FTAG); 815 } 816 817 /* 818 * Load (or re-load) the current list of vdevs describing the active spares for 819 * this pool. When this is called, we have some form of basic information in 820 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and 821 * then re-generate a more complete list including status information. 822 */ 823 static void 824 spa_load_spares(spa_t *spa) 825 { 826 nvlist_t **spares; 827 uint_t nspares; 828 int i; 829 vdev_t *vd, *tvd; 830 831 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 832 833 /* 834 * First, close and free any existing spare vdevs. 835 */ 836 for (i = 0; i < spa->spa_spares.sav_count; i++) { 837 vd = spa->spa_spares.sav_vdevs[i]; 838 839 /* Undo the call to spa_activate() below */ 840 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 841 B_FALSE)) != NULL && tvd->vdev_isspare) 842 spa_spare_remove(tvd); 843 vdev_close(vd); 844 vdev_free(vd); 845 } 846 847 if (spa->spa_spares.sav_vdevs) 848 kmem_free(spa->spa_spares.sav_vdevs, 849 spa->spa_spares.sav_count * sizeof (void *)); 850 851 if (spa->spa_spares.sav_config == NULL) 852 nspares = 0; 853 else 854 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 855 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 856 857 spa->spa_spares.sav_count = (int)nspares; 858 spa->spa_spares.sav_vdevs = NULL; 859 860 if (nspares == 0) 861 return; 862 863 /* 864 * Construct the array of vdevs, opening them to get status in the 865 * process. For each spare, there is potentially two different vdev_t 866 * structures associated with it: one in the list of spares (used only 867 * for basic validation purposes) and one in the active vdev 868 * configuration (if it's spared in). During this phase we open and 869 * validate each vdev on the spare list. If the vdev also exists in the 870 * active configuration, then we also mark this vdev as an active spare. 871 */ 872 spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *), 873 KM_SLEEP); 874 for (i = 0; i < spa->spa_spares.sav_count; i++) { 875 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0, 876 VDEV_ALLOC_SPARE) == 0); 877 ASSERT(vd != NULL); 878 879 spa->spa_spares.sav_vdevs[i] = vd; 880 881 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 882 B_FALSE)) != NULL) { 883 if (!tvd->vdev_isspare) 884 spa_spare_add(tvd); 885 886 /* 887 * We only mark the spare active if we were successfully 888 * able to load the vdev. Otherwise, importing a pool 889 * with a bad active spare would result in strange 890 * behavior, because multiple pool would think the spare 891 * is actively in use. 892 * 893 * There is a vulnerability here to an equally bizarre 894 * circumstance, where a dead active spare is later 895 * brought back to life (onlined or otherwise). Given 896 * the rarity of this scenario, and the extra complexity 897 * it adds, we ignore the possibility. 898 */ 899 if (!vdev_is_dead(tvd)) 900 spa_spare_activate(tvd); 901 } 902 903 vd->vdev_top = vd; 904 vd->vdev_aux = &spa->spa_spares; 905 906 if (vdev_open(vd) != 0) 907 continue; 908 909 if (vdev_validate_aux(vd) == 0) 910 spa_spare_add(vd); 911 } 912 913 /* 914 * Recompute the stashed list of spares, with status information 915 * this time. 916 */ 917 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, 918 DATA_TYPE_NVLIST_ARRAY) == 0); 919 920 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *), 921 KM_SLEEP); 922 for (i = 0; i < spa->spa_spares.sav_count; i++) 923 spares[i] = vdev_config_generate(spa, 924 spa->spa_spares.sav_vdevs[i], B_TRUE, B_TRUE, B_FALSE); 925 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 926 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0); 927 for (i = 0; i < spa->spa_spares.sav_count; i++) 928 nvlist_free(spares[i]); 929 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *)); 930 } 931 932 /* 933 * Load (or re-load) the current list of vdevs describing the active l2cache for 934 * this pool. When this is called, we have some form of basic information in 935 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and 936 * then re-generate a more complete list including status information. 937 * Devices which are already active have their details maintained, and are 938 * not re-opened. 939 */ 940 static void 941 spa_load_l2cache(spa_t *spa) 942 { 943 nvlist_t **l2cache; 944 uint_t nl2cache; 945 int i, j, oldnvdevs; 946 uint64_t guid; 947 vdev_t *vd, **oldvdevs, **newvdevs; 948 spa_aux_vdev_t *sav = &spa->spa_l2cache; 949 950 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 951 952 if (sav->sav_config != NULL) { 953 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 954 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 955 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP); 956 } else { 957 nl2cache = 0; 958 } 959 960 oldvdevs = sav->sav_vdevs; 961 oldnvdevs = sav->sav_count; 962 sav->sav_vdevs = NULL; 963 sav->sav_count = 0; 964 965 /* 966 * Process new nvlist of vdevs. 967 */ 968 for (i = 0; i < nl2cache; i++) { 969 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID, 970 &guid) == 0); 971 972 newvdevs[i] = NULL; 973 for (j = 0; j < oldnvdevs; j++) { 974 vd = oldvdevs[j]; 975 if (vd != NULL && guid == vd->vdev_guid) { 976 /* 977 * Retain previous vdev for add/remove ops. 978 */ 979 newvdevs[i] = vd; 980 oldvdevs[j] = NULL; 981 break; 982 } 983 } 984 985 if (newvdevs[i] == NULL) { 986 /* 987 * Create new vdev 988 */ 989 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0, 990 VDEV_ALLOC_L2CACHE) == 0); 991 ASSERT(vd != NULL); 992 newvdevs[i] = vd; 993 994 /* 995 * Commit this vdev as an l2cache device, 996 * even if it fails to open. 997 */ 998 spa_l2cache_add(vd); 999 1000 vd->vdev_top = vd; 1001 vd->vdev_aux = sav; 1002 1003 spa_l2cache_activate(vd); 1004 1005 if (vdev_open(vd) != 0) 1006 continue; 1007 1008 (void) vdev_validate_aux(vd); 1009 1010 if (!vdev_is_dead(vd)) 1011 l2arc_add_vdev(spa, vd); 1012 } 1013 } 1014 1015 /* 1016 * Purge vdevs that were dropped 1017 */ 1018 for (i = 0; i < oldnvdevs; i++) { 1019 uint64_t pool; 1020 1021 vd = oldvdevs[i]; 1022 if (vd != NULL) { 1023 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 1024 pool != 0ULL && l2arc_vdev_present(vd)) 1025 l2arc_remove_vdev(vd); 1026 (void) vdev_close(vd); 1027 spa_l2cache_remove(vd); 1028 } 1029 } 1030 1031 if (oldvdevs) 1032 kmem_free(oldvdevs, oldnvdevs * sizeof (void *)); 1033 1034 if (sav->sav_config == NULL) 1035 goto out; 1036 1037 sav->sav_vdevs = newvdevs; 1038 sav->sav_count = (int)nl2cache; 1039 1040 /* 1041 * Recompute the stashed list of l2cache devices, with status 1042 * information this time. 1043 */ 1044 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE, 1045 DATA_TYPE_NVLIST_ARRAY) == 0); 1046 1047 l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 1048 for (i = 0; i < sav->sav_count; i++) 1049 l2cache[i] = vdev_config_generate(spa, 1050 sav->sav_vdevs[i], B_TRUE, B_FALSE, B_TRUE); 1051 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 1052 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0); 1053 out: 1054 for (i = 0; i < sav->sav_count; i++) 1055 nvlist_free(l2cache[i]); 1056 if (sav->sav_count) 1057 kmem_free(l2cache, sav->sav_count * sizeof (void *)); 1058 } 1059 1060 static int 1061 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value) 1062 { 1063 dmu_buf_t *db; 1064 char *packed = NULL; 1065 size_t nvsize = 0; 1066 int error; 1067 *value = NULL; 1068 1069 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 1070 nvsize = *(uint64_t *)db->db_data; 1071 dmu_buf_rele(db, FTAG); 1072 1073 packed = kmem_alloc(nvsize, KM_SLEEP); 1074 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed, 1075 DMU_READ_PREFETCH); 1076 if (error == 0) 1077 error = nvlist_unpack(packed, nvsize, value, 0); 1078 kmem_free(packed, nvsize); 1079 1080 return (error); 1081 } 1082 1083 /* 1084 * Checks to see if the given vdev could not be opened, in which case we post a 1085 * sysevent to notify the autoreplace code that the device has been removed. 1086 */ 1087 static void 1088 spa_check_removed(vdev_t *vd) 1089 { 1090 for (int c = 0; c < vd->vdev_children; c++) 1091 spa_check_removed(vd->vdev_child[c]); 1092 1093 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd)) { 1094 zfs_post_autoreplace(vd->vdev_spa, vd); 1095 spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK); 1096 } 1097 } 1098 1099 /* 1100 * Load the slog device state from the config object since it's possible 1101 * that the label does not contain the most up-to-date information. 1102 */ 1103 void 1104 spa_load_log_state(spa_t *spa) 1105 { 1106 nvlist_t *nv, *nvroot, **child; 1107 uint64_t is_log; 1108 uint_t children; 1109 vdev_t *rvd = spa->spa_root_vdev; 1110 1111 VERIFY(load_nvlist(spa, spa->spa_config_object, &nv) == 0); 1112 VERIFY(nvlist_lookup_nvlist(nv, ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 1113 VERIFY(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 1114 &child, &children) == 0); 1115 1116 for (int c = 0; c < children; c++) { 1117 vdev_t *tvd = rvd->vdev_child[c]; 1118 1119 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_LOG, 1120 &is_log) == 0 && is_log) 1121 vdev_load_log_state(tvd, child[c]); 1122 } 1123 nvlist_free(nv); 1124 } 1125 1126 /* 1127 * Check for missing log devices 1128 */ 1129 int 1130 spa_check_logs(spa_t *spa) 1131 { 1132 switch (spa->spa_log_state) { 1133 case SPA_LOG_MISSING: 1134 /* need to recheck in case slog has been restored */ 1135 case SPA_LOG_UNKNOWN: 1136 if (dmu_objset_find(spa->spa_name, zil_check_log_chain, NULL, 1137 DS_FIND_CHILDREN)) { 1138 spa->spa_log_state = SPA_LOG_MISSING; 1139 return (1); 1140 } 1141 break; 1142 } 1143 return (0); 1144 } 1145 1146 /* 1147 * Load an existing storage pool, using the pool's builtin spa_config as a 1148 * source of configuration information. 1149 */ 1150 static int 1151 spa_load(spa_t *spa, nvlist_t *config, spa_load_state_t state, int mosconfig) 1152 { 1153 int error = 0; 1154 nvlist_t *nvroot = NULL; 1155 vdev_t *rvd; 1156 uberblock_t *ub = &spa->spa_uberblock; 1157 uint64_t config_cache_txg = spa->spa_config_txg; 1158 uint64_t pool_guid; 1159 uint64_t version; 1160 uint64_t autoreplace = 0; 1161 int orig_mode = spa->spa_mode; 1162 char *ereport = FM_EREPORT_ZFS_POOL; 1163 1164 /* 1165 * If this is an untrusted config, access the pool in read-only mode. 1166 * This prevents things like resilvering recently removed devices. 1167 */ 1168 if (!mosconfig) 1169 spa->spa_mode = FREAD; 1170 1171 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1172 1173 spa->spa_load_state = state; 1174 1175 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) || 1176 nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) { 1177 error = EINVAL; 1178 goto out; 1179 } 1180 1181 /* 1182 * Versioning wasn't explicitly added to the label until later, so if 1183 * it's not present treat it as the initial version. 1184 */ 1185 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, &version) != 0) 1186 version = SPA_VERSION_INITIAL; 1187 1188 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, 1189 &spa->spa_config_txg); 1190 1191 if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) && 1192 spa_guid_exists(pool_guid, 0)) { 1193 error = EEXIST; 1194 goto out; 1195 } 1196 1197 spa->spa_load_guid = pool_guid; 1198 1199 /* 1200 * Create "The Godfather" zio to hold all async IOs 1201 */ 1202 spa->spa_async_zio_root = zio_root(spa, NULL, NULL, 1203 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER); 1204 1205 /* 1206 * Parse the configuration into a vdev tree. We explicitly set the 1207 * value that will be returned by spa_version() since parsing the 1208 * configuration requires knowing the version number. 1209 */ 1210 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1211 spa->spa_ubsync.ub_version = version; 1212 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_LOAD); 1213 spa_config_exit(spa, SCL_ALL, FTAG); 1214 1215 if (error != 0) 1216 goto out; 1217 1218 ASSERT(spa->spa_root_vdev == rvd); 1219 ASSERT(spa_guid(spa) == pool_guid); 1220 1221 /* 1222 * Try to open all vdevs, loading each label in the process. 1223 */ 1224 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1225 error = vdev_open(rvd); 1226 spa_config_exit(spa, SCL_ALL, FTAG); 1227 if (error != 0) 1228 goto out; 1229 1230 /* 1231 * We need to validate the vdev labels against the configuration that 1232 * we have in hand, which is dependent on the setting of mosconfig. If 1233 * mosconfig is true then we're validating the vdev labels based on 1234 * that config. Otherwise, we're validating against the cached config 1235 * (zpool.cache) that was read when we loaded the zfs module, and then 1236 * later we will recursively call spa_load() and validate against 1237 * the vdev config. 1238 */ 1239 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1240 error = vdev_validate(rvd); 1241 spa_config_exit(spa, SCL_ALL, FTAG); 1242 if (error != 0) 1243 goto out; 1244 1245 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) { 1246 error = ENXIO; 1247 goto out; 1248 } 1249 1250 /* 1251 * Find the best uberblock. 1252 */ 1253 vdev_uberblock_load(NULL, rvd, ub); 1254 1255 /* 1256 * If we weren't able to find a single valid uberblock, return failure. 1257 */ 1258 if (ub->ub_txg == 0) { 1259 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1260 VDEV_AUX_CORRUPT_DATA); 1261 error = ENXIO; 1262 goto out; 1263 } 1264 1265 /* 1266 * If the pool is newer than the code, we can't open it. 1267 */ 1268 if (ub->ub_version > SPA_VERSION) { 1269 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1270 VDEV_AUX_VERSION_NEWER); 1271 error = ENOTSUP; 1272 goto out; 1273 } 1274 1275 /* 1276 * If the vdev guid sum doesn't match the uberblock, we have an 1277 * incomplete configuration. 1278 */ 1279 if (rvd->vdev_guid_sum != ub->ub_guid_sum && mosconfig) { 1280 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1281 VDEV_AUX_BAD_GUID_SUM); 1282 error = ENXIO; 1283 goto out; 1284 } 1285 1286 /* 1287 * Initialize internal SPA structures. 1288 */ 1289 spa->spa_state = POOL_STATE_ACTIVE; 1290 spa->spa_ubsync = spa->spa_uberblock; 1291 spa->spa_first_txg = spa_last_synced_txg(spa) + 1; 1292 error = dsl_pool_open(spa, spa->spa_first_txg, &spa->spa_dsl_pool); 1293 if (error) { 1294 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1295 VDEV_AUX_CORRUPT_DATA); 1296 goto out; 1297 } 1298 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset; 1299 1300 if (zap_lookup(spa->spa_meta_objset, 1301 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG, 1302 sizeof (uint64_t), 1, &spa->spa_config_object) != 0) { 1303 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1304 VDEV_AUX_CORRUPT_DATA); 1305 error = EIO; 1306 goto out; 1307 } 1308 1309 if (!mosconfig) { 1310 nvlist_t *newconfig; 1311 uint64_t hostid; 1312 1313 if (load_nvlist(spa, spa->spa_config_object, &newconfig) != 0) { 1314 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1315 VDEV_AUX_CORRUPT_DATA); 1316 error = EIO; 1317 goto out; 1318 } 1319 1320 if (!spa_is_root(spa) && nvlist_lookup_uint64(newconfig, 1321 ZPOOL_CONFIG_HOSTID, &hostid) == 0) { 1322 char *hostname; 1323 unsigned long myhostid = 0; 1324 1325 VERIFY(nvlist_lookup_string(newconfig, 1326 ZPOOL_CONFIG_HOSTNAME, &hostname) == 0); 1327 1328 #ifdef _KERNEL 1329 myhostid = zone_get_hostid(NULL); 1330 #else /* _KERNEL */ 1331 /* 1332 * We're emulating the system's hostid in userland, so 1333 * we can't use zone_get_hostid(). 1334 */ 1335 (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid); 1336 #endif /* _KERNEL */ 1337 if (hostid != 0 && myhostid != 0 && 1338 hostid != myhostid) { 1339 cmn_err(CE_WARN, "pool '%s' could not be " 1340 "loaded as it was last accessed by " 1341 "another system (host: %s hostid: 0x%lx). " 1342 "See: http://www.sun.com/msg/ZFS-8000-EY", 1343 spa_name(spa), hostname, 1344 (unsigned long)hostid); 1345 error = EBADF; 1346 goto out; 1347 } 1348 } 1349 1350 spa_config_set(spa, newconfig); 1351 spa_unload(spa); 1352 spa_deactivate(spa); 1353 spa_activate(spa, orig_mode); 1354 1355 return (spa_load(spa, newconfig, state, B_TRUE)); 1356 } 1357 1358 if (zap_lookup(spa->spa_meta_objset, 1359 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST, 1360 sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj) != 0) { 1361 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1362 VDEV_AUX_CORRUPT_DATA); 1363 error = EIO; 1364 goto out; 1365 } 1366 1367 /* 1368 * Load the bit that tells us to use the new accounting function 1369 * (raid-z deflation). If we have an older pool, this will not 1370 * be present. 1371 */ 1372 error = zap_lookup(spa->spa_meta_objset, 1373 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 1374 sizeof (uint64_t), 1, &spa->spa_deflate); 1375 if (error != 0 && error != ENOENT) { 1376 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1377 VDEV_AUX_CORRUPT_DATA); 1378 error = EIO; 1379 goto out; 1380 } 1381 1382 /* 1383 * Load the persistent error log. If we have an older pool, this will 1384 * not be present. 1385 */ 1386 error = zap_lookup(spa->spa_meta_objset, 1387 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_LAST, 1388 sizeof (uint64_t), 1, &spa->spa_errlog_last); 1389 if (error != 0 && error != ENOENT) { 1390 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1391 VDEV_AUX_CORRUPT_DATA); 1392 error = EIO; 1393 goto out; 1394 } 1395 1396 error = zap_lookup(spa->spa_meta_objset, 1397 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_SCRUB, 1398 sizeof (uint64_t), 1, &spa->spa_errlog_scrub); 1399 if (error != 0 && error != ENOENT) { 1400 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1401 VDEV_AUX_CORRUPT_DATA); 1402 error = EIO; 1403 goto out; 1404 } 1405 1406 /* 1407 * Load the history object. If we have an older pool, this 1408 * will not be present. 1409 */ 1410 error = zap_lookup(spa->spa_meta_objset, 1411 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_HISTORY, 1412 sizeof (uint64_t), 1, &spa->spa_history); 1413 if (error != 0 && error != ENOENT) { 1414 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1415 VDEV_AUX_CORRUPT_DATA); 1416 error = EIO; 1417 goto out; 1418 } 1419 1420 /* 1421 * Load any hot spares for this pool. 1422 */ 1423 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 1424 DMU_POOL_SPARES, sizeof (uint64_t), 1, &spa->spa_spares.sav_object); 1425 if (error != 0 && error != ENOENT) { 1426 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1427 VDEV_AUX_CORRUPT_DATA); 1428 error = EIO; 1429 goto out; 1430 } 1431 if (error == 0) { 1432 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES); 1433 if (load_nvlist(spa, spa->spa_spares.sav_object, 1434 &spa->spa_spares.sav_config) != 0) { 1435 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1436 VDEV_AUX_CORRUPT_DATA); 1437 error = EIO; 1438 goto out; 1439 } 1440 1441 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1442 spa_load_spares(spa); 1443 spa_config_exit(spa, SCL_ALL, FTAG); 1444 } 1445 1446 /* 1447 * Load any level 2 ARC devices for this pool. 1448 */ 1449 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 1450 DMU_POOL_L2CACHE, sizeof (uint64_t), 1, 1451 &spa->spa_l2cache.sav_object); 1452 if (error != 0 && error != ENOENT) { 1453 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1454 VDEV_AUX_CORRUPT_DATA); 1455 error = EIO; 1456 goto out; 1457 } 1458 if (error == 0) { 1459 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE); 1460 if (load_nvlist(spa, spa->spa_l2cache.sav_object, 1461 &spa->spa_l2cache.sav_config) != 0) { 1462 vdev_set_state(rvd, B_TRUE, 1463 VDEV_STATE_CANT_OPEN, 1464 VDEV_AUX_CORRUPT_DATA); 1465 error = EIO; 1466 goto out; 1467 } 1468 1469 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1470 spa_load_l2cache(spa); 1471 spa_config_exit(spa, SCL_ALL, FTAG); 1472 } 1473 1474 spa_load_log_state(spa); 1475 1476 if (spa_check_logs(spa)) { 1477 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1478 VDEV_AUX_BAD_LOG); 1479 error = ENXIO; 1480 ereport = FM_EREPORT_ZFS_LOG_REPLAY; 1481 goto out; 1482 } 1483 1484 1485 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 1486 1487 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 1488 DMU_POOL_PROPS, sizeof (uint64_t), 1, &spa->spa_pool_props_object); 1489 1490 if (error && error != ENOENT) { 1491 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1492 VDEV_AUX_CORRUPT_DATA); 1493 error = EIO; 1494 goto out; 1495 } 1496 1497 if (error == 0) { 1498 (void) zap_lookup(spa->spa_meta_objset, 1499 spa->spa_pool_props_object, 1500 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), 1501 sizeof (uint64_t), 1, &spa->spa_bootfs); 1502 (void) zap_lookup(spa->spa_meta_objset, 1503 spa->spa_pool_props_object, 1504 zpool_prop_to_name(ZPOOL_PROP_AUTOREPLACE), 1505 sizeof (uint64_t), 1, &autoreplace); 1506 (void) zap_lookup(spa->spa_meta_objset, 1507 spa->spa_pool_props_object, 1508 zpool_prop_to_name(ZPOOL_PROP_DELEGATION), 1509 sizeof (uint64_t), 1, &spa->spa_delegation); 1510 (void) zap_lookup(spa->spa_meta_objset, 1511 spa->spa_pool_props_object, 1512 zpool_prop_to_name(ZPOOL_PROP_FAILUREMODE), 1513 sizeof (uint64_t), 1, &spa->spa_failmode); 1514 (void) zap_lookup(spa->spa_meta_objset, 1515 spa->spa_pool_props_object, 1516 zpool_prop_to_name(ZPOOL_PROP_AUTOEXPAND), 1517 sizeof (uint64_t), 1, &spa->spa_autoexpand); 1518 } 1519 1520 /* 1521 * If the 'autoreplace' property is set, then post a resource notifying 1522 * the ZFS DE that it should not issue any faults for unopenable 1523 * devices. We also iterate over the vdevs, and post a sysevent for any 1524 * unopenable vdevs so that the normal autoreplace handler can take 1525 * over. 1526 */ 1527 if (autoreplace && state != SPA_LOAD_TRYIMPORT) 1528 spa_check_removed(spa->spa_root_vdev); 1529 1530 /* 1531 * Load the vdev state for all toplevel vdevs. 1532 */ 1533 vdev_load(rvd); 1534 1535 /* 1536 * Propagate the leaf DTLs we just loaded all the way up the tree. 1537 */ 1538 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1539 vdev_dtl_reassess(rvd, 0, 0, B_FALSE); 1540 spa_config_exit(spa, SCL_ALL, FTAG); 1541 1542 /* 1543 * Check the state of the root vdev. If it can't be opened, it 1544 * indicates one or more toplevel vdevs are faulted. 1545 */ 1546 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) { 1547 error = ENXIO; 1548 goto out; 1549 } 1550 1551 if (spa_writeable(spa)) { 1552 dmu_tx_t *tx; 1553 int need_update = B_FALSE; 1554 1555 ASSERT(state != SPA_LOAD_TRYIMPORT); 1556 1557 /* 1558 * Claim log blocks that haven't been committed yet. 1559 * This must all happen in a single txg. 1560 */ 1561 tx = dmu_tx_create_assigned(spa_get_dsl(spa), 1562 spa_first_txg(spa)); 1563 (void) dmu_objset_find(spa_name(spa), 1564 zil_claim, tx, DS_FIND_CHILDREN); 1565 dmu_tx_commit(tx); 1566 1567 spa->spa_log_state = SPA_LOG_GOOD; 1568 spa->spa_sync_on = B_TRUE; 1569 txg_sync_start(spa->spa_dsl_pool); 1570 1571 /* 1572 * Wait for all claims to sync. 1573 */ 1574 txg_wait_synced(spa->spa_dsl_pool, 0); 1575 1576 /* 1577 * If the config cache is stale, or we have uninitialized 1578 * metaslabs (see spa_vdev_add()), then update the config. 1579 * 1580 * If spa_load_verbatim is true, trust the current 1581 * in-core spa_config and update the disk labels. 1582 */ 1583 if (config_cache_txg != spa->spa_config_txg || 1584 state == SPA_LOAD_IMPORT || spa->spa_load_verbatim) 1585 need_update = B_TRUE; 1586 1587 for (int c = 0; c < rvd->vdev_children; c++) 1588 if (rvd->vdev_child[c]->vdev_ms_array == 0) 1589 need_update = B_TRUE; 1590 1591 /* 1592 * Update the config cache asychronously in case we're the 1593 * root pool, in which case the config cache isn't writable yet. 1594 */ 1595 if (need_update) 1596 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 1597 1598 /* 1599 * Check all DTLs to see if anything needs resilvering. 1600 */ 1601 if (vdev_resilver_needed(rvd, NULL, NULL)) 1602 spa_async_request(spa, SPA_ASYNC_RESILVER); 1603 1604 /* 1605 * Delete any inconsistent datasets. 1606 */ 1607 (void) dmu_objset_find(spa_name(spa), 1608 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN); 1609 1610 /* 1611 * Clean up any stale temporary dataset userrefs. 1612 */ 1613 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool); 1614 } 1615 1616 error = 0; 1617 out: 1618 spa->spa_minref = refcount_count(&spa->spa_refcount); 1619 if (error && error != EBADF) 1620 zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0); 1621 spa->spa_load_state = SPA_LOAD_NONE; 1622 spa->spa_ena = 0; 1623 1624 return (error); 1625 } 1626 1627 /* 1628 * Pool Open/Import 1629 * 1630 * The import case is identical to an open except that the configuration is sent 1631 * down from userland, instead of grabbed from the configuration cache. For the 1632 * case of an open, the pool configuration will exist in the 1633 * POOL_STATE_UNINITIALIZED state. 1634 * 1635 * The stats information (gen/count/ustats) is used to gather vdev statistics at 1636 * the same time open the pool, without having to keep around the spa_t in some 1637 * ambiguous state. 1638 */ 1639 static int 1640 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t **config) 1641 { 1642 spa_t *spa; 1643 int error; 1644 int locked = B_FALSE; 1645 1646 *spapp = NULL; 1647 1648 /* 1649 * As disgusting as this is, we need to support recursive calls to this 1650 * function because dsl_dir_open() is called during spa_load(), and ends 1651 * up calling spa_open() again. The real fix is to figure out how to 1652 * avoid dsl_dir_open() calling this in the first place. 1653 */ 1654 if (mutex_owner(&spa_namespace_lock) != curthread) { 1655 mutex_enter(&spa_namespace_lock); 1656 locked = B_TRUE; 1657 } 1658 1659 if ((spa = spa_lookup(pool)) == NULL) { 1660 if (locked) 1661 mutex_exit(&spa_namespace_lock); 1662 return (ENOENT); 1663 } 1664 if (spa->spa_state == POOL_STATE_UNINITIALIZED) { 1665 1666 spa_activate(spa, spa_mode_global); 1667 1668 error = spa_load(spa, spa->spa_config, SPA_LOAD_OPEN, B_FALSE); 1669 1670 if (error == EBADF) { 1671 /* 1672 * If vdev_validate() returns failure (indicated by 1673 * EBADF), it indicates that one of the vdevs indicates 1674 * that the pool has been exported or destroyed. If 1675 * this is the case, the config cache is out of sync and 1676 * we should remove the pool from the namespace. 1677 */ 1678 spa_unload(spa); 1679 spa_deactivate(spa); 1680 spa_config_sync(spa, B_TRUE, B_TRUE); 1681 spa_remove(spa); 1682 if (locked) 1683 mutex_exit(&spa_namespace_lock); 1684 return (ENOENT); 1685 } 1686 1687 if (error) { 1688 /* 1689 * We can't open the pool, but we still have useful 1690 * information: the state of each vdev after the 1691 * attempted vdev_open(). Return this to the user. 1692 */ 1693 if (config != NULL && spa->spa_root_vdev != NULL) 1694 *config = spa_config_generate(spa, NULL, -1ULL, 1695 B_TRUE); 1696 spa_unload(spa); 1697 spa_deactivate(spa); 1698 spa->spa_last_open_failed = B_TRUE; 1699 if (locked) 1700 mutex_exit(&spa_namespace_lock); 1701 *spapp = NULL; 1702 return (error); 1703 } else { 1704 spa->spa_last_open_failed = B_FALSE; 1705 } 1706 } 1707 1708 spa_open_ref(spa, tag); 1709 1710 if (locked) 1711 mutex_exit(&spa_namespace_lock); 1712 1713 *spapp = spa; 1714 1715 if (config != NULL) 1716 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 1717 1718 return (0); 1719 } 1720 1721 int 1722 spa_open(const char *name, spa_t **spapp, void *tag) 1723 { 1724 return (spa_open_common(name, spapp, tag, NULL)); 1725 } 1726 1727 /* 1728 * Lookup the given spa_t, incrementing the inject count in the process, 1729 * preventing it from being exported or destroyed. 1730 */ 1731 spa_t * 1732 spa_inject_addref(char *name) 1733 { 1734 spa_t *spa; 1735 1736 mutex_enter(&spa_namespace_lock); 1737 if ((spa = spa_lookup(name)) == NULL) { 1738 mutex_exit(&spa_namespace_lock); 1739 return (NULL); 1740 } 1741 spa->spa_inject_ref++; 1742 mutex_exit(&spa_namespace_lock); 1743 1744 return (spa); 1745 } 1746 1747 void 1748 spa_inject_delref(spa_t *spa) 1749 { 1750 mutex_enter(&spa_namespace_lock); 1751 spa->spa_inject_ref--; 1752 mutex_exit(&spa_namespace_lock); 1753 } 1754 1755 /* 1756 * Add spares device information to the nvlist. 1757 */ 1758 static void 1759 spa_add_spares(spa_t *spa, nvlist_t *config) 1760 { 1761 nvlist_t **spares; 1762 uint_t i, nspares; 1763 nvlist_t *nvroot; 1764 uint64_t guid; 1765 vdev_stat_t *vs; 1766 uint_t vsc; 1767 uint64_t pool; 1768 1769 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 1770 1771 if (spa->spa_spares.sav_count == 0) 1772 return; 1773 1774 VERIFY(nvlist_lookup_nvlist(config, 1775 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 1776 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 1777 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 1778 if (nspares != 0) { 1779 VERIFY(nvlist_add_nvlist_array(nvroot, 1780 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 1781 VERIFY(nvlist_lookup_nvlist_array(nvroot, 1782 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 1783 1784 /* 1785 * Go through and find any spares which have since been 1786 * repurposed as an active spare. If this is the case, update 1787 * their status appropriately. 1788 */ 1789 for (i = 0; i < nspares; i++) { 1790 VERIFY(nvlist_lookup_uint64(spares[i], 1791 ZPOOL_CONFIG_GUID, &guid) == 0); 1792 if (spa_spare_exists(guid, &pool, NULL) && 1793 pool != 0ULL) { 1794 VERIFY(nvlist_lookup_uint64_array( 1795 spares[i], ZPOOL_CONFIG_STATS, 1796 (uint64_t **)&vs, &vsc) == 0); 1797 vs->vs_state = VDEV_STATE_CANT_OPEN; 1798 vs->vs_aux = VDEV_AUX_SPARED; 1799 } 1800 } 1801 } 1802 } 1803 1804 /* 1805 * Add l2cache device information to the nvlist, including vdev stats. 1806 */ 1807 static void 1808 spa_add_l2cache(spa_t *spa, nvlist_t *config) 1809 { 1810 nvlist_t **l2cache; 1811 uint_t i, j, nl2cache; 1812 nvlist_t *nvroot; 1813 uint64_t guid; 1814 vdev_t *vd; 1815 vdev_stat_t *vs; 1816 uint_t vsc; 1817 1818 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 1819 1820 if (spa->spa_l2cache.sav_count == 0) 1821 return; 1822 1823 VERIFY(nvlist_lookup_nvlist(config, 1824 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 1825 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 1826 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 1827 if (nl2cache != 0) { 1828 VERIFY(nvlist_add_nvlist_array(nvroot, 1829 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 1830 VERIFY(nvlist_lookup_nvlist_array(nvroot, 1831 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 1832 1833 /* 1834 * Update level 2 cache device stats. 1835 */ 1836 1837 for (i = 0; i < nl2cache; i++) { 1838 VERIFY(nvlist_lookup_uint64(l2cache[i], 1839 ZPOOL_CONFIG_GUID, &guid) == 0); 1840 1841 vd = NULL; 1842 for (j = 0; j < spa->spa_l2cache.sav_count; j++) { 1843 if (guid == 1844 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) { 1845 vd = spa->spa_l2cache.sav_vdevs[j]; 1846 break; 1847 } 1848 } 1849 ASSERT(vd != NULL); 1850 1851 VERIFY(nvlist_lookup_uint64_array(l2cache[i], 1852 ZPOOL_CONFIG_STATS, (uint64_t **)&vs, &vsc) == 0); 1853 vdev_get_stats(vd, vs); 1854 } 1855 } 1856 } 1857 1858 int 1859 spa_get_stats(const char *name, nvlist_t **config, char *altroot, size_t buflen) 1860 { 1861 int error; 1862 spa_t *spa; 1863 1864 *config = NULL; 1865 error = spa_open_common(name, &spa, FTAG, config); 1866 1867 if (spa != NULL) { 1868 /* 1869 * This still leaves a window of inconsistency where the spares 1870 * or l2cache devices could change and the config would be 1871 * self-inconsistent. 1872 */ 1873 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 1874 1875 if (*config != NULL) { 1876 VERIFY(nvlist_add_uint64(*config, 1877 ZPOOL_CONFIG_ERRCOUNT, 1878 spa_get_errlog_size(spa)) == 0); 1879 1880 if (spa_suspended(spa)) 1881 VERIFY(nvlist_add_uint64(*config, 1882 ZPOOL_CONFIG_SUSPENDED, 1883 spa->spa_failmode) == 0); 1884 1885 spa_add_spares(spa, *config); 1886 spa_add_l2cache(spa, *config); 1887 } 1888 } 1889 1890 /* 1891 * We want to get the alternate root even for faulted pools, so we cheat 1892 * and call spa_lookup() directly. 1893 */ 1894 if (altroot) { 1895 if (spa == NULL) { 1896 mutex_enter(&spa_namespace_lock); 1897 spa = spa_lookup(name); 1898 if (spa) 1899 spa_altroot(spa, altroot, buflen); 1900 else 1901 altroot[0] = '\0'; 1902 spa = NULL; 1903 mutex_exit(&spa_namespace_lock); 1904 } else { 1905 spa_altroot(spa, altroot, buflen); 1906 } 1907 } 1908 1909 if (spa != NULL) { 1910 spa_config_exit(spa, SCL_CONFIG, FTAG); 1911 spa_close(spa, FTAG); 1912 } 1913 1914 return (error); 1915 } 1916 1917 /* 1918 * Validate that the auxiliary device array is well formed. We must have an 1919 * array of nvlists, each which describes a valid leaf vdev. If this is an 1920 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be 1921 * specified, as long as they are well-formed. 1922 */ 1923 static int 1924 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode, 1925 spa_aux_vdev_t *sav, const char *config, uint64_t version, 1926 vdev_labeltype_t label) 1927 { 1928 nvlist_t **dev; 1929 uint_t i, ndev; 1930 vdev_t *vd; 1931 int error; 1932 1933 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1934 1935 /* 1936 * It's acceptable to have no devs specified. 1937 */ 1938 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0) 1939 return (0); 1940 1941 if (ndev == 0) 1942 return (EINVAL); 1943 1944 /* 1945 * Make sure the pool is formatted with a version that supports this 1946 * device type. 1947 */ 1948 if (spa_version(spa) < version) 1949 return (ENOTSUP); 1950 1951 /* 1952 * Set the pending device list so we correctly handle device in-use 1953 * checking. 1954 */ 1955 sav->sav_pending = dev; 1956 sav->sav_npending = ndev; 1957 1958 for (i = 0; i < ndev; i++) { 1959 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0, 1960 mode)) != 0) 1961 goto out; 1962 1963 if (!vd->vdev_ops->vdev_op_leaf) { 1964 vdev_free(vd); 1965 error = EINVAL; 1966 goto out; 1967 } 1968 1969 /* 1970 * The L2ARC currently only supports disk devices in 1971 * kernel context. For user-level testing, we allow it. 1972 */ 1973 #ifdef _KERNEL 1974 if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) && 1975 strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) { 1976 error = ENOTBLK; 1977 goto out; 1978 } 1979 #endif 1980 vd->vdev_top = vd; 1981 1982 if ((error = vdev_open(vd)) == 0 && 1983 (error = vdev_label_init(vd, crtxg, label)) == 0) { 1984 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID, 1985 vd->vdev_guid) == 0); 1986 } 1987 1988 vdev_free(vd); 1989 1990 if (error && 1991 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE)) 1992 goto out; 1993 else 1994 error = 0; 1995 } 1996 1997 out: 1998 sav->sav_pending = NULL; 1999 sav->sav_npending = 0; 2000 return (error); 2001 } 2002 2003 static int 2004 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode) 2005 { 2006 int error; 2007 2008 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 2009 2010 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode, 2011 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES, 2012 VDEV_LABEL_SPARE)) != 0) { 2013 return (error); 2014 } 2015 2016 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode, 2017 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE, 2018 VDEV_LABEL_L2CACHE)); 2019 } 2020 2021 static void 2022 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs, 2023 const char *config) 2024 { 2025 int i; 2026 2027 if (sav->sav_config != NULL) { 2028 nvlist_t **olddevs; 2029 uint_t oldndevs; 2030 nvlist_t **newdevs; 2031 2032 /* 2033 * Generate new dev list by concatentating with the 2034 * current dev list. 2035 */ 2036 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config, 2037 &olddevs, &oldndevs) == 0); 2038 2039 newdevs = kmem_alloc(sizeof (void *) * 2040 (ndevs + oldndevs), KM_SLEEP); 2041 for (i = 0; i < oldndevs; i++) 2042 VERIFY(nvlist_dup(olddevs[i], &newdevs[i], 2043 KM_SLEEP) == 0); 2044 for (i = 0; i < ndevs; i++) 2045 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs], 2046 KM_SLEEP) == 0); 2047 2048 VERIFY(nvlist_remove(sav->sav_config, config, 2049 DATA_TYPE_NVLIST_ARRAY) == 0); 2050 2051 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 2052 config, newdevs, ndevs + oldndevs) == 0); 2053 for (i = 0; i < oldndevs + ndevs; i++) 2054 nvlist_free(newdevs[i]); 2055 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *)); 2056 } else { 2057 /* 2058 * Generate a new dev list. 2059 */ 2060 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME, 2061 KM_SLEEP) == 0); 2062 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config, 2063 devs, ndevs) == 0); 2064 } 2065 } 2066 2067 /* 2068 * Stop and drop level 2 ARC devices 2069 */ 2070 void 2071 spa_l2cache_drop(spa_t *spa) 2072 { 2073 vdev_t *vd; 2074 int i; 2075 spa_aux_vdev_t *sav = &spa->spa_l2cache; 2076 2077 for (i = 0; i < sav->sav_count; i++) { 2078 uint64_t pool; 2079 2080 vd = sav->sav_vdevs[i]; 2081 ASSERT(vd != NULL); 2082 2083 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 2084 pool != 0ULL && l2arc_vdev_present(vd)) 2085 l2arc_remove_vdev(vd); 2086 if (vd->vdev_isl2cache) 2087 spa_l2cache_remove(vd); 2088 vdev_clear_stats(vd); 2089 (void) vdev_close(vd); 2090 } 2091 } 2092 2093 /* 2094 * Pool Creation 2095 */ 2096 int 2097 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props, 2098 const char *history_str, nvlist_t *zplprops) 2099 { 2100 spa_t *spa; 2101 char *altroot = NULL; 2102 vdev_t *rvd; 2103 dsl_pool_t *dp; 2104 dmu_tx_t *tx; 2105 int error = 0; 2106 uint64_t txg = TXG_INITIAL; 2107 nvlist_t **spares, **l2cache; 2108 uint_t nspares, nl2cache; 2109 uint64_t version; 2110 2111 /* 2112 * If this pool already exists, return failure. 2113 */ 2114 mutex_enter(&spa_namespace_lock); 2115 if (spa_lookup(pool) != NULL) { 2116 mutex_exit(&spa_namespace_lock); 2117 return (EEXIST); 2118 } 2119 2120 /* 2121 * Allocate a new spa_t structure. 2122 */ 2123 (void) nvlist_lookup_string(props, 2124 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 2125 spa = spa_add(pool, altroot); 2126 spa_activate(spa, spa_mode_global); 2127 2128 spa->spa_uberblock.ub_txg = txg - 1; 2129 2130 if (props && (error = spa_prop_validate(spa, props))) { 2131 spa_deactivate(spa); 2132 spa_remove(spa); 2133 mutex_exit(&spa_namespace_lock); 2134 return (error); 2135 } 2136 2137 if (nvlist_lookup_uint64(props, zpool_prop_to_name(ZPOOL_PROP_VERSION), 2138 &version) != 0) 2139 version = SPA_VERSION; 2140 ASSERT(version <= SPA_VERSION); 2141 spa->spa_uberblock.ub_version = version; 2142 spa->spa_ubsync = spa->spa_uberblock; 2143 2144 /* 2145 * Create "The Godfather" zio to hold all async IOs 2146 */ 2147 spa->spa_async_zio_root = zio_root(spa, NULL, NULL, 2148 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER); 2149 2150 /* 2151 * Create the root vdev. 2152 */ 2153 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2154 2155 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD); 2156 2157 ASSERT(error != 0 || rvd != NULL); 2158 ASSERT(error != 0 || spa->spa_root_vdev == rvd); 2159 2160 if (error == 0 && !zfs_allocatable_devs(nvroot)) 2161 error = EINVAL; 2162 2163 if (error == 0 && 2164 (error = vdev_create(rvd, txg, B_FALSE)) == 0 && 2165 (error = spa_validate_aux(spa, nvroot, txg, 2166 VDEV_ALLOC_ADD)) == 0) { 2167 for (int c = 0; c < rvd->vdev_children; c++) { 2168 vdev_metaslab_set_size(rvd->vdev_child[c]); 2169 vdev_expand(rvd->vdev_child[c], txg); 2170 } 2171 } 2172 2173 spa_config_exit(spa, SCL_ALL, FTAG); 2174 2175 if (error != 0) { 2176 spa_unload(spa); 2177 spa_deactivate(spa); 2178 spa_remove(spa); 2179 mutex_exit(&spa_namespace_lock); 2180 return (error); 2181 } 2182 2183 /* 2184 * Get the list of spares, if specified. 2185 */ 2186 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 2187 &spares, &nspares) == 0) { 2188 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME, 2189 KM_SLEEP) == 0); 2190 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 2191 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 2192 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2193 spa_load_spares(spa); 2194 spa_config_exit(spa, SCL_ALL, FTAG); 2195 spa->spa_spares.sav_sync = B_TRUE; 2196 } 2197 2198 /* 2199 * Get the list of level 2 cache devices, if specified. 2200 */ 2201 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 2202 &l2cache, &nl2cache) == 0) { 2203 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 2204 NV_UNIQUE_NAME, KM_SLEEP) == 0); 2205 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 2206 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 2207 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2208 spa_load_l2cache(spa); 2209 spa_config_exit(spa, SCL_ALL, FTAG); 2210 spa->spa_l2cache.sav_sync = B_TRUE; 2211 } 2212 2213 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg); 2214 spa->spa_meta_objset = dp->dp_meta_objset; 2215 2216 tx = dmu_tx_create_assigned(dp, txg); 2217 2218 /* 2219 * Create the pool config object. 2220 */ 2221 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset, 2222 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE, 2223 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx); 2224 2225 if (zap_add(spa->spa_meta_objset, 2226 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG, 2227 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) { 2228 cmn_err(CE_PANIC, "failed to add pool config"); 2229 } 2230 2231 /* Newly created pools with the right version are always deflated. */ 2232 if (version >= SPA_VERSION_RAIDZ_DEFLATE) { 2233 spa->spa_deflate = TRUE; 2234 if (zap_add(spa->spa_meta_objset, 2235 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 2236 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) { 2237 cmn_err(CE_PANIC, "failed to add deflate"); 2238 } 2239 } 2240 2241 /* 2242 * Create the deferred-free bplist object. Turn off compression 2243 * because sync-to-convergence takes longer if the blocksize 2244 * keeps changing. 2245 */ 2246 spa->spa_sync_bplist_obj = bplist_create(spa->spa_meta_objset, 2247 1 << 14, tx); 2248 dmu_object_set_compress(spa->spa_meta_objset, spa->spa_sync_bplist_obj, 2249 ZIO_COMPRESS_OFF, tx); 2250 2251 if (zap_add(spa->spa_meta_objset, 2252 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST, 2253 sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj, tx) != 0) { 2254 cmn_err(CE_PANIC, "failed to add bplist"); 2255 } 2256 2257 /* 2258 * Create the pool's history object. 2259 */ 2260 if (version >= SPA_VERSION_ZPOOL_HISTORY) 2261 spa_history_create_obj(spa, tx); 2262 2263 /* 2264 * Set pool properties. 2265 */ 2266 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS); 2267 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 2268 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE); 2269 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND); 2270 if (props != NULL) { 2271 spa_configfile_set(spa, props, B_FALSE); 2272 spa_sync_props(spa, props, CRED(), tx); 2273 } 2274 2275 dmu_tx_commit(tx); 2276 2277 spa->spa_sync_on = B_TRUE; 2278 txg_sync_start(spa->spa_dsl_pool); 2279 2280 /* 2281 * We explicitly wait for the first transaction to complete so that our 2282 * bean counters are appropriately updated. 2283 */ 2284 txg_wait_synced(spa->spa_dsl_pool, txg); 2285 2286 spa_config_sync(spa, B_FALSE, B_TRUE); 2287 2288 if (version >= SPA_VERSION_ZPOOL_HISTORY && history_str != NULL) 2289 (void) spa_history_log(spa, history_str, LOG_CMD_POOL_CREATE); 2290 spa_history_log_version(spa, LOG_POOL_CREATE); 2291 2292 spa->spa_minref = refcount_count(&spa->spa_refcount); 2293 2294 mutex_exit(&spa_namespace_lock); 2295 2296 return (0); 2297 } 2298 2299 #ifdef _KERNEL 2300 /* 2301 * Get the root pool information from the root disk, then import the root pool 2302 * during the system boot up time. 2303 */ 2304 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **); 2305 2306 static nvlist_t * 2307 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid) 2308 { 2309 nvlist_t *config; 2310 nvlist_t *nvtop, *nvroot; 2311 uint64_t pgid; 2312 2313 if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0) 2314 return (NULL); 2315 2316 /* 2317 * Add this top-level vdev to the child array. 2318 */ 2319 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 2320 &nvtop) == 0); 2321 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 2322 &pgid) == 0); 2323 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0); 2324 2325 /* 2326 * Put this pool's top-level vdevs into a root vdev. 2327 */ 2328 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 2329 VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, 2330 VDEV_TYPE_ROOT) == 0); 2331 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0); 2332 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0); 2333 VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 2334 &nvtop, 1) == 0); 2335 2336 /* 2337 * Replace the existing vdev_tree with the new root vdev in 2338 * this pool's configuration (remove the old, add the new). 2339 */ 2340 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0); 2341 nvlist_free(nvroot); 2342 return (config); 2343 } 2344 2345 /* 2346 * Walk the vdev tree and see if we can find a device with "better" 2347 * configuration. A configuration is "better" if the label on that 2348 * device has a more recent txg. 2349 */ 2350 static void 2351 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg) 2352 { 2353 for (int c = 0; c < vd->vdev_children; c++) 2354 spa_alt_rootvdev(vd->vdev_child[c], avd, txg); 2355 2356 if (vd->vdev_ops->vdev_op_leaf) { 2357 nvlist_t *label; 2358 uint64_t label_txg; 2359 2360 if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid, 2361 &label) != 0) 2362 return; 2363 2364 VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG, 2365 &label_txg) == 0); 2366 2367 /* 2368 * Do we have a better boot device? 2369 */ 2370 if (label_txg > *txg) { 2371 *txg = label_txg; 2372 *avd = vd; 2373 } 2374 nvlist_free(label); 2375 } 2376 } 2377 2378 /* 2379 * Import a root pool. 2380 * 2381 * For x86. devpath_list will consist of devid and/or physpath name of 2382 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a"). 2383 * The GRUB "findroot" command will return the vdev we should boot. 2384 * 2385 * For Sparc, devpath_list consists the physpath name of the booting device 2386 * no matter the rootpool is a single device pool or a mirrored pool. 2387 * e.g. 2388 * "/pci@1f,0/ide@d/disk@0,0:a" 2389 */ 2390 int 2391 spa_import_rootpool(char *devpath, char *devid) 2392 { 2393 spa_t *spa; 2394 vdev_t *rvd, *bvd, *avd = NULL; 2395 nvlist_t *config, *nvtop; 2396 uint64_t guid, txg; 2397 char *pname; 2398 int error; 2399 2400 /* 2401 * Read the label from the boot device and generate a configuration. 2402 */ 2403 if ((config = spa_generate_rootconf(devpath, devid, &guid)) == NULL) { 2404 cmn_err(CE_NOTE, "Can not read the pool label from '%s'", 2405 devpath); 2406 return (EIO); 2407 } 2408 2409 VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 2410 &pname) == 0); 2411 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0); 2412 2413 mutex_enter(&spa_namespace_lock); 2414 if ((spa = spa_lookup(pname)) != NULL) { 2415 /* 2416 * Remove the existing root pool from the namespace so that we 2417 * can replace it with the correct config we just read in. 2418 */ 2419 spa_remove(spa); 2420 } 2421 2422 spa = spa_add(pname, NULL); 2423 spa->spa_is_root = B_TRUE; 2424 spa->spa_load_verbatim = B_TRUE; 2425 2426 /* 2427 * Build up a vdev tree based on the boot device's label config. 2428 */ 2429 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 2430 &nvtop) == 0); 2431 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2432 error = spa_config_parse(spa, &rvd, nvtop, NULL, 0, 2433 VDEV_ALLOC_ROOTPOOL); 2434 spa_config_exit(spa, SCL_ALL, FTAG); 2435 if (error) { 2436 mutex_exit(&spa_namespace_lock); 2437 nvlist_free(config); 2438 cmn_err(CE_NOTE, "Can not parse the config for pool '%s'", 2439 pname); 2440 return (error); 2441 } 2442 2443 /* 2444 * Get the boot vdev. 2445 */ 2446 if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) { 2447 cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu", 2448 (u_longlong_t)guid); 2449 error = ENOENT; 2450 goto out; 2451 } 2452 2453 /* 2454 * Determine if there is a better boot device. 2455 */ 2456 avd = bvd; 2457 spa_alt_rootvdev(rvd, &avd, &txg); 2458 if (avd != bvd) { 2459 cmn_err(CE_NOTE, "The boot device is 'degraded'. Please " 2460 "try booting from '%s'", avd->vdev_path); 2461 error = EINVAL; 2462 goto out; 2463 } 2464 2465 /* 2466 * If the boot device is part of a spare vdev then ensure that 2467 * we're booting off the active spare. 2468 */ 2469 if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops && 2470 !bvd->vdev_isspare) { 2471 cmn_err(CE_NOTE, "The boot device is currently spared. Please " 2472 "try booting from '%s'", 2473 bvd->vdev_parent->vdev_child[1]->vdev_path); 2474 error = EINVAL; 2475 goto out; 2476 } 2477 2478 VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0); 2479 error = 0; 2480 spa_history_log_version(spa, LOG_POOL_IMPORT); 2481 out: 2482 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2483 vdev_free(rvd); 2484 spa_config_exit(spa, SCL_ALL, FTAG); 2485 mutex_exit(&spa_namespace_lock); 2486 2487 nvlist_free(config); 2488 return (error); 2489 } 2490 2491 #endif 2492 2493 /* 2494 * Take a pool and insert it into the namespace as if it had been loaded at 2495 * boot. 2496 */ 2497 int 2498 spa_import_verbatim(const char *pool, nvlist_t *config, nvlist_t *props) 2499 { 2500 spa_t *spa; 2501 char *altroot = NULL; 2502 2503 mutex_enter(&spa_namespace_lock); 2504 if (spa_lookup(pool) != NULL) { 2505 mutex_exit(&spa_namespace_lock); 2506 return (EEXIST); 2507 } 2508 2509 (void) nvlist_lookup_string(props, 2510 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 2511 spa = spa_add(pool, altroot); 2512 2513 spa->spa_load_verbatim = B_TRUE; 2514 2515 VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0); 2516 2517 if (props != NULL) 2518 spa_configfile_set(spa, props, B_FALSE); 2519 2520 spa_config_sync(spa, B_FALSE, B_TRUE); 2521 2522 mutex_exit(&spa_namespace_lock); 2523 spa_history_log_version(spa, LOG_POOL_IMPORT); 2524 2525 return (0); 2526 } 2527 2528 /* 2529 * Import a non-root pool into the system. 2530 */ 2531 int 2532 spa_import(const char *pool, nvlist_t *config, nvlist_t *props) 2533 { 2534 spa_t *spa; 2535 char *altroot = NULL; 2536 int error; 2537 nvlist_t *nvroot; 2538 nvlist_t **spares, **l2cache; 2539 uint_t nspares, nl2cache; 2540 2541 /* 2542 * If a pool with this name exists, return failure. 2543 */ 2544 mutex_enter(&spa_namespace_lock); 2545 if ((spa = spa_lookup(pool)) != NULL) { 2546 mutex_exit(&spa_namespace_lock); 2547 return (EEXIST); 2548 } 2549 2550 /* 2551 * Create and initialize the spa structure. 2552 */ 2553 (void) nvlist_lookup_string(props, 2554 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 2555 spa = spa_add(pool, altroot); 2556 spa_activate(spa, spa_mode_global); 2557 2558 /* 2559 * Don't start async tasks until we know everything is healthy. 2560 */ 2561 spa_async_suspend(spa); 2562 2563 /* 2564 * Pass off the heavy lifting to spa_load(). Pass TRUE for mosconfig 2565 * because the user-supplied config is actually the one to trust when 2566 * doing an import. 2567 */ 2568 error = spa_load(spa, config, SPA_LOAD_IMPORT, B_TRUE); 2569 2570 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2571 /* 2572 * Toss any existing sparelist, as it doesn't have any validity 2573 * anymore, and conflicts with spa_has_spare(). 2574 */ 2575 if (spa->spa_spares.sav_config) { 2576 nvlist_free(spa->spa_spares.sav_config); 2577 spa->spa_spares.sav_config = NULL; 2578 spa_load_spares(spa); 2579 } 2580 if (spa->spa_l2cache.sav_config) { 2581 nvlist_free(spa->spa_l2cache.sav_config); 2582 spa->spa_l2cache.sav_config = NULL; 2583 spa_load_l2cache(spa); 2584 } 2585 2586 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 2587 &nvroot) == 0); 2588 if (error == 0) 2589 error = spa_validate_aux(spa, nvroot, -1ULL, 2590 VDEV_ALLOC_SPARE); 2591 if (error == 0) 2592 error = spa_validate_aux(spa, nvroot, -1ULL, 2593 VDEV_ALLOC_L2CACHE); 2594 spa_config_exit(spa, SCL_ALL, FTAG); 2595 2596 if (props != NULL) 2597 spa_configfile_set(spa, props, B_FALSE); 2598 2599 if (error != 0 || (props && spa_writeable(spa) && 2600 (error = spa_prop_set(spa, props)))) { 2601 spa_unload(spa); 2602 spa_deactivate(spa); 2603 spa_remove(spa); 2604 mutex_exit(&spa_namespace_lock); 2605 return (error); 2606 } 2607 2608 spa_async_resume(spa); 2609 2610 /* 2611 * Override any spares and level 2 cache devices as specified by 2612 * the user, as these may have correct device names/devids, etc. 2613 */ 2614 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 2615 &spares, &nspares) == 0) { 2616 if (spa->spa_spares.sav_config) 2617 VERIFY(nvlist_remove(spa->spa_spares.sav_config, 2618 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0); 2619 else 2620 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, 2621 NV_UNIQUE_NAME, KM_SLEEP) == 0); 2622 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 2623 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 2624 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2625 spa_load_spares(spa); 2626 spa_config_exit(spa, SCL_ALL, FTAG); 2627 spa->spa_spares.sav_sync = B_TRUE; 2628 } 2629 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 2630 &l2cache, &nl2cache) == 0) { 2631 if (spa->spa_l2cache.sav_config) 2632 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config, 2633 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0); 2634 else 2635 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 2636 NV_UNIQUE_NAME, KM_SLEEP) == 0); 2637 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 2638 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 2639 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2640 spa_load_l2cache(spa); 2641 spa_config_exit(spa, SCL_ALL, FTAG); 2642 spa->spa_l2cache.sav_sync = B_TRUE; 2643 } 2644 2645 if (spa_writeable(spa)) { 2646 /* 2647 * Update the config cache to include the newly-imported pool. 2648 */ 2649 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 2650 } 2651 2652 /* 2653 * It's possible that the pool was expanded while it was exported. 2654 * We kick off an async task to handle this for us. 2655 */ 2656 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND); 2657 2658 mutex_exit(&spa_namespace_lock); 2659 spa_history_log_version(spa, LOG_POOL_IMPORT); 2660 2661 return (0); 2662 } 2663 2664 2665 /* 2666 * This (illegal) pool name is used when temporarily importing a spa_t in order 2667 * to get the vdev stats associated with the imported devices. 2668 */ 2669 #define TRYIMPORT_NAME "$import" 2670 2671 nvlist_t * 2672 spa_tryimport(nvlist_t *tryconfig) 2673 { 2674 nvlist_t *config = NULL; 2675 char *poolname; 2676 spa_t *spa; 2677 uint64_t state; 2678 int error; 2679 2680 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname)) 2681 return (NULL); 2682 2683 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state)) 2684 return (NULL); 2685 2686 /* 2687 * Create and initialize the spa structure. 2688 */ 2689 mutex_enter(&spa_namespace_lock); 2690 spa = spa_add(TRYIMPORT_NAME, NULL); 2691 spa_activate(spa, FREAD); 2692 2693 /* 2694 * Pass off the heavy lifting to spa_load(). 2695 * Pass TRUE for mosconfig because the user-supplied config 2696 * is actually the one to trust when doing an import. 2697 */ 2698 error = spa_load(spa, tryconfig, SPA_LOAD_TRYIMPORT, B_TRUE); 2699 2700 /* 2701 * If 'tryconfig' was at least parsable, return the current config. 2702 */ 2703 if (spa->spa_root_vdev != NULL) { 2704 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 2705 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, 2706 poolname) == 0); 2707 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 2708 state) == 0); 2709 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP, 2710 spa->spa_uberblock.ub_timestamp) == 0); 2711 2712 /* 2713 * If the bootfs property exists on this pool then we 2714 * copy it out so that external consumers can tell which 2715 * pools are bootable. 2716 */ 2717 if ((!error || error == EEXIST) && spa->spa_bootfs) { 2718 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 2719 2720 /* 2721 * We have to play games with the name since the 2722 * pool was opened as TRYIMPORT_NAME. 2723 */ 2724 if (dsl_dsobj_to_dsname(spa_name(spa), 2725 spa->spa_bootfs, tmpname) == 0) { 2726 char *cp; 2727 char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 2728 2729 cp = strchr(tmpname, '/'); 2730 if (cp == NULL) { 2731 (void) strlcpy(dsname, tmpname, 2732 MAXPATHLEN); 2733 } else { 2734 (void) snprintf(dsname, MAXPATHLEN, 2735 "%s/%s", poolname, ++cp); 2736 } 2737 VERIFY(nvlist_add_string(config, 2738 ZPOOL_CONFIG_BOOTFS, dsname) == 0); 2739 kmem_free(dsname, MAXPATHLEN); 2740 } 2741 kmem_free(tmpname, MAXPATHLEN); 2742 } 2743 2744 /* 2745 * Add the list of hot spares and level 2 cache devices. 2746 */ 2747 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 2748 spa_add_spares(spa, config); 2749 spa_add_l2cache(spa, config); 2750 spa_config_exit(spa, SCL_CONFIG, FTAG); 2751 } 2752 2753 spa_unload(spa); 2754 spa_deactivate(spa); 2755 spa_remove(spa); 2756 mutex_exit(&spa_namespace_lock); 2757 2758 return (config); 2759 } 2760 2761 /* 2762 * Pool export/destroy 2763 * 2764 * The act of destroying or exporting a pool is very simple. We make sure there 2765 * is no more pending I/O and any references to the pool are gone. Then, we 2766 * update the pool state and sync all the labels to disk, removing the 2767 * configuration from the cache afterwards. If the 'hardforce' flag is set, then 2768 * we don't sync the labels or remove the configuration cache. 2769 */ 2770 static int 2771 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig, 2772 boolean_t force, boolean_t hardforce) 2773 { 2774 spa_t *spa; 2775 2776 if (oldconfig) 2777 *oldconfig = NULL; 2778 2779 if (!(spa_mode_global & FWRITE)) 2780 return (EROFS); 2781 2782 mutex_enter(&spa_namespace_lock); 2783 if ((spa = spa_lookup(pool)) == NULL) { 2784 mutex_exit(&spa_namespace_lock); 2785 return (ENOENT); 2786 } 2787 2788 /* 2789 * Put a hold on the pool, drop the namespace lock, stop async tasks, 2790 * reacquire the namespace lock, and see if we can export. 2791 */ 2792 spa_open_ref(spa, FTAG); 2793 mutex_exit(&spa_namespace_lock); 2794 spa_async_suspend(spa); 2795 mutex_enter(&spa_namespace_lock); 2796 spa_close(spa, FTAG); 2797 2798 /* 2799 * The pool will be in core if it's openable, 2800 * in which case we can modify its state. 2801 */ 2802 if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) { 2803 /* 2804 * Objsets may be open only because they're dirty, so we 2805 * have to force it to sync before checking spa_refcnt. 2806 */ 2807 txg_wait_synced(spa->spa_dsl_pool, 0); 2808 2809 /* 2810 * A pool cannot be exported or destroyed if there are active 2811 * references. If we are resetting a pool, allow references by 2812 * fault injection handlers. 2813 */ 2814 if (!spa_refcount_zero(spa) || 2815 (spa->spa_inject_ref != 0 && 2816 new_state != POOL_STATE_UNINITIALIZED)) { 2817 spa_async_resume(spa); 2818 mutex_exit(&spa_namespace_lock); 2819 return (EBUSY); 2820 } 2821 2822 /* 2823 * A pool cannot be exported if it has an active shared spare. 2824 * This is to prevent other pools stealing the active spare 2825 * from an exported pool. At user's own will, such pool can 2826 * be forcedly exported. 2827 */ 2828 if (!force && new_state == POOL_STATE_EXPORTED && 2829 spa_has_active_shared_spare(spa)) { 2830 spa_async_resume(spa); 2831 mutex_exit(&spa_namespace_lock); 2832 return (EXDEV); 2833 } 2834 2835 /* 2836 * We want this to be reflected on every label, 2837 * so mark them all dirty. spa_unload() will do the 2838 * final sync that pushes these changes out. 2839 */ 2840 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) { 2841 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2842 spa->spa_state = new_state; 2843 spa->spa_final_txg = spa_last_synced_txg(spa) + 1; 2844 vdev_config_dirty(spa->spa_root_vdev); 2845 spa_config_exit(spa, SCL_ALL, FTAG); 2846 } 2847 } 2848 2849 spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY); 2850 2851 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 2852 spa_unload(spa); 2853 spa_deactivate(spa); 2854 } 2855 2856 if (oldconfig && spa->spa_config) 2857 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0); 2858 2859 if (new_state != POOL_STATE_UNINITIALIZED) { 2860 if (!hardforce) 2861 spa_config_sync(spa, B_TRUE, B_TRUE); 2862 spa_remove(spa); 2863 } 2864 mutex_exit(&spa_namespace_lock); 2865 2866 return (0); 2867 } 2868 2869 /* 2870 * Destroy a storage pool. 2871 */ 2872 int 2873 spa_destroy(char *pool) 2874 { 2875 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL, 2876 B_FALSE, B_FALSE)); 2877 } 2878 2879 /* 2880 * Export a storage pool. 2881 */ 2882 int 2883 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force, 2884 boolean_t hardforce) 2885 { 2886 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig, 2887 force, hardforce)); 2888 } 2889 2890 /* 2891 * Similar to spa_export(), this unloads the spa_t without actually removing it 2892 * from the namespace in any way. 2893 */ 2894 int 2895 spa_reset(char *pool) 2896 { 2897 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL, 2898 B_FALSE, B_FALSE)); 2899 } 2900 2901 /* 2902 * ========================================================================== 2903 * Device manipulation 2904 * ========================================================================== 2905 */ 2906 2907 /* 2908 * Add a device to a storage pool. 2909 */ 2910 int 2911 spa_vdev_add(spa_t *spa, nvlist_t *nvroot) 2912 { 2913 uint64_t txg; 2914 int error; 2915 vdev_t *rvd = spa->spa_root_vdev; 2916 vdev_t *vd, *tvd; 2917 nvlist_t **spares, **l2cache; 2918 uint_t nspares, nl2cache; 2919 2920 txg = spa_vdev_enter(spa); 2921 2922 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0, 2923 VDEV_ALLOC_ADD)) != 0) 2924 return (spa_vdev_exit(spa, NULL, txg, error)); 2925 2926 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */ 2927 2928 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, 2929 &nspares) != 0) 2930 nspares = 0; 2931 2932 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache, 2933 &nl2cache) != 0) 2934 nl2cache = 0; 2935 2936 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0) 2937 return (spa_vdev_exit(spa, vd, txg, EINVAL)); 2938 2939 if (vd->vdev_children != 0 && 2940 (error = vdev_create(vd, txg, B_FALSE)) != 0) 2941 return (spa_vdev_exit(spa, vd, txg, error)); 2942 2943 /* 2944 * We must validate the spares and l2cache devices after checking the 2945 * children. Otherwise, vdev_inuse() will blindly overwrite the spare. 2946 */ 2947 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0) 2948 return (spa_vdev_exit(spa, vd, txg, error)); 2949 2950 /* 2951 * Transfer each new top-level vdev from vd to rvd. 2952 */ 2953 for (int c = 0; c < vd->vdev_children; c++) { 2954 tvd = vd->vdev_child[c]; 2955 vdev_remove_child(vd, tvd); 2956 tvd->vdev_id = rvd->vdev_children; 2957 vdev_add_child(rvd, tvd); 2958 vdev_config_dirty(tvd); 2959 } 2960 2961 if (nspares != 0) { 2962 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares, 2963 ZPOOL_CONFIG_SPARES); 2964 spa_load_spares(spa); 2965 spa->spa_spares.sav_sync = B_TRUE; 2966 } 2967 2968 if (nl2cache != 0) { 2969 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache, 2970 ZPOOL_CONFIG_L2CACHE); 2971 spa_load_l2cache(spa); 2972 spa->spa_l2cache.sav_sync = B_TRUE; 2973 } 2974 2975 /* 2976 * We have to be careful when adding new vdevs to an existing pool. 2977 * If other threads start allocating from these vdevs before we 2978 * sync the config cache, and we lose power, then upon reboot we may 2979 * fail to open the pool because there are DVAs that the config cache 2980 * can't translate. Therefore, we first add the vdevs without 2981 * initializing metaslabs; sync the config cache (via spa_vdev_exit()); 2982 * and then let spa_config_update() initialize the new metaslabs. 2983 * 2984 * spa_load() checks for added-but-not-initialized vdevs, so that 2985 * if we lose power at any point in this sequence, the remaining 2986 * steps will be completed the next time we load the pool. 2987 */ 2988 (void) spa_vdev_exit(spa, vd, txg, 0); 2989 2990 mutex_enter(&spa_namespace_lock); 2991 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 2992 mutex_exit(&spa_namespace_lock); 2993 2994 return (0); 2995 } 2996 2997 /* 2998 * Attach a device to a mirror. The arguments are the path to any device 2999 * in the mirror, and the nvroot for the new device. If the path specifies 3000 * a device that is not mirrored, we automatically insert the mirror vdev. 3001 * 3002 * If 'replacing' is specified, the new device is intended to replace the 3003 * existing device; in this case the two devices are made into their own 3004 * mirror using the 'replacing' vdev, which is functionally identical to 3005 * the mirror vdev (it actually reuses all the same ops) but has a few 3006 * extra rules: you can't attach to it after it's been created, and upon 3007 * completion of resilvering, the first disk (the one being replaced) 3008 * is automatically detached. 3009 */ 3010 int 3011 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing) 3012 { 3013 uint64_t txg, open_txg; 3014 vdev_t *rvd = spa->spa_root_vdev; 3015 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd; 3016 vdev_ops_t *pvops; 3017 char *oldvdpath, *newvdpath; 3018 int newvd_isspare; 3019 int error; 3020 3021 txg = spa_vdev_enter(spa); 3022 3023 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE); 3024 3025 if (oldvd == NULL) 3026 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 3027 3028 if (!oldvd->vdev_ops->vdev_op_leaf) 3029 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 3030 3031 pvd = oldvd->vdev_parent; 3032 3033 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0, 3034 VDEV_ALLOC_ADD)) != 0) 3035 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 3036 3037 if (newrootvd->vdev_children != 1) 3038 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 3039 3040 newvd = newrootvd->vdev_child[0]; 3041 3042 if (!newvd->vdev_ops->vdev_op_leaf) 3043 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 3044 3045 if ((error = vdev_create(newrootvd, txg, replacing)) != 0) 3046 return (spa_vdev_exit(spa, newrootvd, txg, error)); 3047 3048 /* 3049 * Spares can't replace logs 3050 */ 3051 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare) 3052 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 3053 3054 if (!replacing) { 3055 /* 3056 * For attach, the only allowable parent is a mirror or the root 3057 * vdev. 3058 */ 3059 if (pvd->vdev_ops != &vdev_mirror_ops && 3060 pvd->vdev_ops != &vdev_root_ops) 3061 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 3062 3063 pvops = &vdev_mirror_ops; 3064 } else { 3065 /* 3066 * Active hot spares can only be replaced by inactive hot 3067 * spares. 3068 */ 3069 if (pvd->vdev_ops == &vdev_spare_ops && 3070 pvd->vdev_child[1] == oldvd && 3071 !spa_has_spare(spa, newvd->vdev_guid)) 3072 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 3073 3074 /* 3075 * If the source is a hot spare, and the parent isn't already a 3076 * spare, then we want to create a new hot spare. Otherwise, we 3077 * want to create a replacing vdev. The user is not allowed to 3078 * attach to a spared vdev child unless the 'isspare' state is 3079 * the same (spare replaces spare, non-spare replaces 3080 * non-spare). 3081 */ 3082 if (pvd->vdev_ops == &vdev_replacing_ops) 3083 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 3084 else if (pvd->vdev_ops == &vdev_spare_ops && 3085 newvd->vdev_isspare != oldvd->vdev_isspare) 3086 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 3087 else if (pvd->vdev_ops != &vdev_spare_ops && 3088 newvd->vdev_isspare) 3089 pvops = &vdev_spare_ops; 3090 else 3091 pvops = &vdev_replacing_ops; 3092 } 3093 3094 /* 3095 * Make sure the new device is big enough. 3096 */ 3097 if (newvd->vdev_asize < vdev_get_min_asize(oldvd)) 3098 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW)); 3099 3100 /* 3101 * The new device cannot have a higher alignment requirement 3102 * than the top-level vdev. 3103 */ 3104 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift) 3105 return (spa_vdev_exit(spa, newrootvd, txg, EDOM)); 3106 3107 /* 3108 * If this is an in-place replacement, update oldvd's path and devid 3109 * to make it distinguishable from newvd, and unopenable from now on. 3110 */ 3111 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) { 3112 spa_strfree(oldvd->vdev_path); 3113 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5, 3114 KM_SLEEP); 3115 (void) sprintf(oldvd->vdev_path, "%s/%s", 3116 newvd->vdev_path, "old"); 3117 if (oldvd->vdev_devid != NULL) { 3118 spa_strfree(oldvd->vdev_devid); 3119 oldvd->vdev_devid = NULL; 3120 } 3121 } 3122 3123 /* 3124 * If the parent is not a mirror, or if we're replacing, insert the new 3125 * mirror/replacing/spare vdev above oldvd. 3126 */ 3127 if (pvd->vdev_ops != pvops) 3128 pvd = vdev_add_parent(oldvd, pvops); 3129 3130 ASSERT(pvd->vdev_top->vdev_parent == rvd); 3131 ASSERT(pvd->vdev_ops == pvops); 3132 ASSERT(oldvd->vdev_parent == pvd); 3133 3134 /* 3135 * Extract the new device from its root and add it to pvd. 3136 */ 3137 vdev_remove_child(newrootvd, newvd); 3138 newvd->vdev_id = pvd->vdev_children; 3139 vdev_add_child(pvd, newvd); 3140 3141 tvd = newvd->vdev_top; 3142 ASSERT(pvd->vdev_top == tvd); 3143 ASSERT(tvd->vdev_parent == rvd); 3144 3145 vdev_config_dirty(tvd); 3146 3147 /* 3148 * Set newvd's DTL to [TXG_INITIAL, open_txg]. It will propagate 3149 * upward when spa_vdev_exit() calls vdev_dtl_reassess(). 3150 */ 3151 open_txg = txg + TXG_CONCURRENT_STATES - 1; 3152 3153 vdev_dtl_dirty(newvd, DTL_MISSING, 3154 TXG_INITIAL, open_txg - TXG_INITIAL + 1); 3155 3156 if (newvd->vdev_isspare) { 3157 spa_spare_activate(newvd); 3158 spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE); 3159 } 3160 3161 oldvdpath = spa_strdup(oldvd->vdev_path); 3162 newvdpath = spa_strdup(newvd->vdev_path); 3163 newvd_isspare = newvd->vdev_isspare; 3164 3165 /* 3166 * Mark newvd's DTL dirty in this txg. 3167 */ 3168 vdev_dirty(tvd, VDD_DTL, newvd, txg); 3169 3170 (void) spa_vdev_exit(spa, newrootvd, open_txg, 0); 3171 3172 spa_history_internal_log(LOG_POOL_VDEV_ATTACH, spa, NULL, 3173 CRED(), "%s vdev=%s %s vdev=%s", 3174 replacing && newvd_isspare ? "spare in" : 3175 replacing ? "replace" : "attach", newvdpath, 3176 replacing ? "for" : "to", oldvdpath); 3177 3178 spa_strfree(oldvdpath); 3179 spa_strfree(newvdpath); 3180 3181 /* 3182 * Kick off a resilver to update newvd. 3183 */ 3184 VERIFY3U(spa_scrub(spa, POOL_SCRUB_RESILVER), ==, 0); 3185 3186 return (0); 3187 } 3188 3189 /* 3190 * Detach a device from a mirror or replacing vdev. 3191 * If 'replace_done' is specified, only detach if the parent 3192 * is a replacing vdev. 3193 */ 3194 int 3195 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done) 3196 { 3197 uint64_t txg; 3198 int error; 3199 vdev_t *rvd = spa->spa_root_vdev; 3200 vdev_t *vd, *pvd, *cvd, *tvd; 3201 boolean_t unspare = B_FALSE; 3202 uint64_t unspare_guid; 3203 size_t len; 3204 3205 txg = spa_vdev_enter(spa); 3206 3207 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 3208 3209 if (vd == NULL) 3210 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 3211 3212 if (!vd->vdev_ops->vdev_op_leaf) 3213 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 3214 3215 pvd = vd->vdev_parent; 3216 3217 /* 3218 * If the parent/child relationship is not as expected, don't do it. 3219 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing 3220 * vdev that's replacing B with C. The user's intent in replacing 3221 * is to go from M(A,B) to M(A,C). If the user decides to cancel 3222 * the replace by detaching C, the expected behavior is to end up 3223 * M(A,B). But suppose that right after deciding to detach C, 3224 * the replacement of B completes. We would have M(A,C), and then 3225 * ask to detach C, which would leave us with just A -- not what 3226 * the user wanted. To prevent this, we make sure that the 3227 * parent/child relationship hasn't changed -- in this example, 3228 * that C's parent is still the replacing vdev R. 3229 */ 3230 if (pvd->vdev_guid != pguid && pguid != 0) 3231 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 3232 3233 /* 3234 * If replace_done is specified, only remove this device if it's 3235 * the first child of a replacing vdev. For the 'spare' vdev, either 3236 * disk can be removed. 3237 */ 3238 if (replace_done) { 3239 if (pvd->vdev_ops == &vdev_replacing_ops) { 3240 if (vd->vdev_id != 0) 3241 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 3242 } else if (pvd->vdev_ops != &vdev_spare_ops) { 3243 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 3244 } 3245 } 3246 3247 ASSERT(pvd->vdev_ops != &vdev_spare_ops || 3248 spa_version(spa) >= SPA_VERSION_SPARES); 3249 3250 /* 3251 * Only mirror, replacing, and spare vdevs support detach. 3252 */ 3253 if (pvd->vdev_ops != &vdev_replacing_ops && 3254 pvd->vdev_ops != &vdev_mirror_ops && 3255 pvd->vdev_ops != &vdev_spare_ops) 3256 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 3257 3258 /* 3259 * If this device has the only valid copy of some data, 3260 * we cannot safely detach it. 3261 */ 3262 if (vdev_dtl_required(vd)) 3263 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 3264 3265 ASSERT(pvd->vdev_children >= 2); 3266 3267 /* 3268 * If we are detaching the second disk from a replacing vdev, then 3269 * check to see if we changed the original vdev's path to have "/old" 3270 * at the end in spa_vdev_attach(). If so, undo that change now. 3271 */ 3272 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id == 1 && 3273 pvd->vdev_child[0]->vdev_path != NULL && 3274 pvd->vdev_child[1]->vdev_path != NULL) { 3275 ASSERT(pvd->vdev_child[1] == vd); 3276 cvd = pvd->vdev_child[0]; 3277 len = strlen(vd->vdev_path); 3278 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 && 3279 strcmp(cvd->vdev_path + len, "/old") == 0) { 3280 spa_strfree(cvd->vdev_path); 3281 cvd->vdev_path = spa_strdup(vd->vdev_path); 3282 } 3283 } 3284 3285 /* 3286 * If we are detaching the original disk from a spare, then it implies 3287 * that the spare should become a real disk, and be removed from the 3288 * active spare list for the pool. 3289 */ 3290 if (pvd->vdev_ops == &vdev_spare_ops && 3291 vd->vdev_id == 0 && pvd->vdev_child[1]->vdev_isspare) 3292 unspare = B_TRUE; 3293 3294 /* 3295 * Erase the disk labels so the disk can be used for other things. 3296 * This must be done after all other error cases are handled, 3297 * but before we disembowel vd (so we can still do I/O to it). 3298 * But if we can't do it, don't treat the error as fatal -- 3299 * it may be that the unwritability of the disk is the reason 3300 * it's being detached! 3301 */ 3302 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 3303 3304 /* 3305 * Remove vd from its parent and compact the parent's children. 3306 */ 3307 vdev_remove_child(pvd, vd); 3308 vdev_compact_children(pvd); 3309 3310 /* 3311 * Remember one of the remaining children so we can get tvd below. 3312 */ 3313 cvd = pvd->vdev_child[0]; 3314 3315 /* 3316 * If we need to remove the remaining child from the list of hot spares, 3317 * do it now, marking the vdev as no longer a spare in the process. 3318 * We must do this before vdev_remove_parent(), because that can 3319 * change the GUID if it creates a new toplevel GUID. For a similar 3320 * reason, we must remove the spare now, in the same txg as the detach; 3321 * otherwise someone could attach a new sibling, change the GUID, and 3322 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail. 3323 */ 3324 if (unspare) { 3325 ASSERT(cvd->vdev_isspare); 3326 spa_spare_remove(cvd); 3327 unspare_guid = cvd->vdev_guid; 3328 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE); 3329 } 3330 3331 /* 3332 * If the parent mirror/replacing vdev only has one child, 3333 * the parent is no longer needed. Remove it from the tree. 3334 */ 3335 if (pvd->vdev_children == 1) 3336 vdev_remove_parent(cvd); 3337 3338 /* 3339 * We don't set tvd until now because the parent we just removed 3340 * may have been the previous top-level vdev. 3341 */ 3342 tvd = cvd->vdev_top; 3343 ASSERT(tvd->vdev_parent == rvd); 3344 3345 /* 3346 * Reevaluate the parent vdev state. 3347 */ 3348 vdev_propagate_state(cvd); 3349 3350 /* 3351 * If the 'autoexpand' property is set on the pool then automatically 3352 * try to expand the size of the pool. For example if the device we 3353 * just detached was smaller than the others, it may be possible to 3354 * add metaslabs (i.e. grow the pool). We need to reopen the vdev 3355 * first so that we can obtain the updated sizes of the leaf vdevs. 3356 */ 3357 if (spa->spa_autoexpand) { 3358 vdev_reopen(tvd); 3359 vdev_expand(tvd, txg); 3360 } 3361 3362 vdev_config_dirty(tvd); 3363 3364 /* 3365 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that 3366 * vd->vdev_detached is set and free vd's DTL object in syncing context. 3367 * But first make sure we're not on any *other* txg's DTL list, to 3368 * prevent vd from being accessed after it's freed. 3369 */ 3370 for (int t = 0; t < TXG_SIZE; t++) 3371 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t); 3372 vd->vdev_detached = B_TRUE; 3373 vdev_dirty(tvd, VDD_DTL, vd, txg); 3374 3375 spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE); 3376 3377 error = spa_vdev_exit(spa, vd, txg, 0); 3378 3379 /* 3380 * If this was the removal of the original device in a hot spare vdev, 3381 * then we want to go through and remove the device from the hot spare 3382 * list of every other pool. 3383 */ 3384 if (unspare) { 3385 spa_t *myspa = spa; 3386 spa = NULL; 3387 mutex_enter(&spa_namespace_lock); 3388 while ((spa = spa_next(spa)) != NULL) { 3389 if (spa->spa_state != POOL_STATE_ACTIVE) 3390 continue; 3391 if (spa == myspa) 3392 continue; 3393 spa_open_ref(spa, FTAG); 3394 mutex_exit(&spa_namespace_lock); 3395 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE); 3396 mutex_enter(&spa_namespace_lock); 3397 spa_close(spa, FTAG); 3398 } 3399 mutex_exit(&spa_namespace_lock); 3400 } 3401 3402 return (error); 3403 } 3404 3405 static nvlist_t * 3406 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid) 3407 { 3408 for (int i = 0; i < count; i++) { 3409 uint64_t guid; 3410 3411 VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID, 3412 &guid) == 0); 3413 3414 if (guid == target_guid) 3415 return (nvpp[i]); 3416 } 3417 3418 return (NULL); 3419 } 3420 3421 static void 3422 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count, 3423 nvlist_t *dev_to_remove) 3424 { 3425 nvlist_t **newdev = NULL; 3426 3427 if (count > 1) 3428 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP); 3429 3430 for (int i = 0, j = 0; i < count; i++) { 3431 if (dev[i] == dev_to_remove) 3432 continue; 3433 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0); 3434 } 3435 3436 VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0); 3437 VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0); 3438 3439 for (int i = 0; i < count - 1; i++) 3440 nvlist_free(newdev[i]); 3441 3442 if (count > 1) 3443 kmem_free(newdev, (count - 1) * sizeof (void *)); 3444 } 3445 3446 /* 3447 * Remove a device from the pool. Currently, this supports removing only hot 3448 * spares and level 2 ARC devices. 3449 */ 3450 int 3451 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare) 3452 { 3453 vdev_t *vd; 3454 nvlist_t **spares, **l2cache, *nv; 3455 uint_t nspares, nl2cache; 3456 uint64_t txg = 0; 3457 int error = 0; 3458 boolean_t locked = MUTEX_HELD(&spa_namespace_lock); 3459 3460 if (!locked) 3461 txg = spa_vdev_enter(spa); 3462 3463 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 3464 3465 if (spa->spa_spares.sav_vdevs != NULL && 3466 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 3467 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 && 3468 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) { 3469 /* 3470 * Only remove the hot spare if it's not currently in use 3471 * in this pool. 3472 */ 3473 if (vd == NULL || unspare) { 3474 spa_vdev_remove_aux(spa->spa_spares.sav_config, 3475 ZPOOL_CONFIG_SPARES, spares, nspares, nv); 3476 spa_load_spares(spa); 3477 spa->spa_spares.sav_sync = B_TRUE; 3478 } else { 3479 error = EBUSY; 3480 } 3481 } else if (spa->spa_l2cache.sav_vdevs != NULL && 3482 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 3483 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 && 3484 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) { 3485 /* 3486 * Cache devices can always be removed. 3487 */ 3488 spa_vdev_remove_aux(spa->spa_l2cache.sav_config, 3489 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv); 3490 spa_load_l2cache(spa); 3491 spa->spa_l2cache.sav_sync = B_TRUE; 3492 } else if (vd != NULL) { 3493 /* 3494 * Normal vdevs cannot be removed (yet). 3495 */ 3496 error = ENOTSUP; 3497 } else { 3498 /* 3499 * There is no vdev of any kind with the specified guid. 3500 */ 3501 error = ENOENT; 3502 } 3503 3504 if (!locked) 3505 return (spa_vdev_exit(spa, NULL, txg, error)); 3506 3507 return (error); 3508 } 3509 3510 /* 3511 * Find any device that's done replacing, or a vdev marked 'unspare' that's 3512 * current spared, so we can detach it. 3513 */ 3514 static vdev_t * 3515 spa_vdev_resilver_done_hunt(vdev_t *vd) 3516 { 3517 vdev_t *newvd, *oldvd; 3518 3519 for (int c = 0; c < vd->vdev_children; c++) { 3520 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]); 3521 if (oldvd != NULL) 3522 return (oldvd); 3523 } 3524 3525 /* 3526 * Check for a completed replacement. 3527 */ 3528 if (vd->vdev_ops == &vdev_replacing_ops && vd->vdev_children == 2) { 3529 oldvd = vd->vdev_child[0]; 3530 newvd = vd->vdev_child[1]; 3531 3532 if (vdev_dtl_empty(newvd, DTL_MISSING) && 3533 !vdev_dtl_required(oldvd)) 3534 return (oldvd); 3535 } 3536 3537 /* 3538 * Check for a completed resilver with the 'unspare' flag set. 3539 */ 3540 if (vd->vdev_ops == &vdev_spare_ops && vd->vdev_children == 2) { 3541 newvd = vd->vdev_child[0]; 3542 oldvd = vd->vdev_child[1]; 3543 3544 if (newvd->vdev_unspare && 3545 vdev_dtl_empty(newvd, DTL_MISSING) && 3546 !vdev_dtl_required(oldvd)) { 3547 newvd->vdev_unspare = 0; 3548 return (oldvd); 3549 } 3550 } 3551 3552 return (NULL); 3553 } 3554 3555 static void 3556 spa_vdev_resilver_done(spa_t *spa) 3557 { 3558 vdev_t *vd, *pvd, *ppvd; 3559 uint64_t guid, sguid, pguid, ppguid; 3560 3561 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3562 3563 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) { 3564 pvd = vd->vdev_parent; 3565 ppvd = pvd->vdev_parent; 3566 guid = vd->vdev_guid; 3567 pguid = pvd->vdev_guid; 3568 ppguid = ppvd->vdev_guid; 3569 sguid = 0; 3570 /* 3571 * If we have just finished replacing a hot spared device, then 3572 * we need to detach the parent's first child (the original hot 3573 * spare) as well. 3574 */ 3575 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0) { 3576 ASSERT(pvd->vdev_ops == &vdev_replacing_ops); 3577 ASSERT(ppvd->vdev_children == 2); 3578 sguid = ppvd->vdev_child[1]->vdev_guid; 3579 } 3580 spa_config_exit(spa, SCL_ALL, FTAG); 3581 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0) 3582 return; 3583 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0) 3584 return; 3585 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3586 } 3587 3588 spa_config_exit(spa, SCL_ALL, FTAG); 3589 } 3590 3591 /* 3592 * Update the stored path or FRU for this vdev. Dirty the vdev configuration, 3593 * relying on spa_vdev_enter/exit() to synchronize the labels and cache. 3594 */ 3595 int 3596 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value, 3597 boolean_t ispath) 3598 { 3599 vdev_t *vd; 3600 uint64_t txg; 3601 3602 txg = spa_vdev_enter(spa); 3603 3604 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 3605 return (spa_vdev_exit(spa, NULL, txg, ENOENT)); 3606 3607 if (!vd->vdev_ops->vdev_op_leaf) 3608 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 3609 3610 if (ispath) { 3611 spa_strfree(vd->vdev_path); 3612 vd->vdev_path = spa_strdup(value); 3613 } else { 3614 if (vd->vdev_fru != NULL) 3615 spa_strfree(vd->vdev_fru); 3616 vd->vdev_fru = spa_strdup(value); 3617 } 3618 3619 vdev_config_dirty(vd->vdev_top); 3620 3621 return (spa_vdev_exit(spa, NULL, txg, 0)); 3622 } 3623 3624 int 3625 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath) 3626 { 3627 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE)); 3628 } 3629 3630 int 3631 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru) 3632 { 3633 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE)); 3634 } 3635 3636 /* 3637 * ========================================================================== 3638 * SPA Scrubbing 3639 * ========================================================================== 3640 */ 3641 3642 int 3643 spa_scrub(spa_t *spa, pool_scrub_type_t type) 3644 { 3645 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 3646 3647 if ((uint_t)type >= POOL_SCRUB_TYPES) 3648 return (ENOTSUP); 3649 3650 /* 3651 * If a resilver was requested, but there is no DTL on a 3652 * writeable leaf device, we have nothing to do. 3653 */ 3654 if (type == POOL_SCRUB_RESILVER && 3655 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) { 3656 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 3657 return (0); 3658 } 3659 3660 if (type == POOL_SCRUB_EVERYTHING && 3661 spa->spa_dsl_pool->dp_scrub_func != SCRUB_FUNC_NONE && 3662 spa->spa_dsl_pool->dp_scrub_isresilver) 3663 return (EBUSY); 3664 3665 if (type == POOL_SCRUB_EVERYTHING || type == POOL_SCRUB_RESILVER) { 3666 return (dsl_pool_scrub_clean(spa->spa_dsl_pool)); 3667 } else if (type == POOL_SCRUB_NONE) { 3668 return (dsl_pool_scrub_cancel(spa->spa_dsl_pool)); 3669 } else { 3670 return (EINVAL); 3671 } 3672 } 3673 3674 /* 3675 * ========================================================================== 3676 * SPA async task processing 3677 * ========================================================================== 3678 */ 3679 3680 static void 3681 spa_async_remove(spa_t *spa, vdev_t *vd) 3682 { 3683 if (vd->vdev_remove_wanted) { 3684 vd->vdev_remove_wanted = 0; 3685 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE); 3686 3687 /* 3688 * We want to clear the stats, but we don't want to do a full 3689 * vdev_clear() as that will cause us to throw away 3690 * degraded/faulted state as well as attempt to reopen the 3691 * device, all of which is a waste. 3692 */ 3693 vd->vdev_stat.vs_read_errors = 0; 3694 vd->vdev_stat.vs_write_errors = 0; 3695 vd->vdev_stat.vs_checksum_errors = 0; 3696 3697 vdev_state_dirty(vd->vdev_top); 3698 } 3699 3700 for (int c = 0; c < vd->vdev_children; c++) 3701 spa_async_remove(spa, vd->vdev_child[c]); 3702 } 3703 3704 static void 3705 spa_async_probe(spa_t *spa, vdev_t *vd) 3706 { 3707 if (vd->vdev_probe_wanted) { 3708 vd->vdev_probe_wanted = 0; 3709 vdev_reopen(vd); /* vdev_open() does the actual probe */ 3710 } 3711 3712 for (int c = 0; c < vd->vdev_children; c++) 3713 spa_async_probe(spa, vd->vdev_child[c]); 3714 } 3715 3716 static void 3717 spa_async_autoexpand(spa_t *spa, vdev_t *vd) 3718 { 3719 sysevent_id_t eid; 3720 nvlist_t *attr; 3721 char *physpath; 3722 3723 if (!spa->spa_autoexpand) 3724 return; 3725 3726 for (int c = 0; c < vd->vdev_children; c++) { 3727 vdev_t *cvd = vd->vdev_child[c]; 3728 spa_async_autoexpand(spa, cvd); 3729 } 3730 3731 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL) 3732 return; 3733 3734 physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP); 3735 (void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath); 3736 3737 VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0); 3738 VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0); 3739 3740 (void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS, 3741 ESC_DEV_DLE, attr, &eid, DDI_SLEEP); 3742 3743 nvlist_free(attr); 3744 kmem_free(physpath, MAXPATHLEN); 3745 } 3746 3747 static void 3748 spa_async_thread(spa_t *spa) 3749 { 3750 int tasks; 3751 3752 ASSERT(spa->spa_sync_on); 3753 3754 mutex_enter(&spa->spa_async_lock); 3755 tasks = spa->spa_async_tasks; 3756 spa->spa_async_tasks = 0; 3757 mutex_exit(&spa->spa_async_lock); 3758 3759 /* 3760 * See if the config needs to be updated. 3761 */ 3762 if (tasks & SPA_ASYNC_CONFIG_UPDATE) { 3763 uint64_t oldsz, space_update; 3764 3765 mutex_enter(&spa_namespace_lock); 3766 oldsz = spa_get_space(spa); 3767 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 3768 space_update = spa_get_space(spa) - oldsz; 3769 mutex_exit(&spa_namespace_lock); 3770 3771 /* 3772 * If the pool grew as a result of the config update, 3773 * then log an internal history event. 3774 */ 3775 if (space_update) { 3776 spa_history_internal_log(LOG_POOL_VDEV_ONLINE, 3777 spa, NULL, CRED(), 3778 "pool '%s' size: %llu(+%llu)", 3779 spa_name(spa), spa_get_space(spa), 3780 space_update); 3781 } 3782 } 3783 3784 /* 3785 * See if any devices need to be marked REMOVED. 3786 */ 3787 if (tasks & SPA_ASYNC_REMOVE) { 3788 spa_vdev_state_enter(spa); 3789 spa_async_remove(spa, spa->spa_root_vdev); 3790 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) 3791 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]); 3792 for (int i = 0; i < spa->spa_spares.sav_count; i++) 3793 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]); 3794 (void) spa_vdev_state_exit(spa, NULL, 0); 3795 } 3796 3797 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) { 3798 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 3799 spa_async_autoexpand(spa, spa->spa_root_vdev); 3800 spa_config_exit(spa, SCL_CONFIG, FTAG); 3801 } 3802 3803 /* 3804 * See if any devices need to be probed. 3805 */ 3806 if (tasks & SPA_ASYNC_PROBE) { 3807 spa_vdev_state_enter(spa); 3808 spa_async_probe(spa, spa->spa_root_vdev); 3809 (void) spa_vdev_state_exit(spa, NULL, 0); 3810 } 3811 3812 /* 3813 * If any devices are done replacing, detach them. 3814 */ 3815 if (tasks & SPA_ASYNC_RESILVER_DONE) 3816 spa_vdev_resilver_done(spa); 3817 3818 /* 3819 * Kick off a resilver. 3820 */ 3821 if (tasks & SPA_ASYNC_RESILVER) 3822 VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER) == 0); 3823 3824 /* 3825 * Let the world know that we're done. 3826 */ 3827 mutex_enter(&spa->spa_async_lock); 3828 spa->spa_async_thread = NULL; 3829 cv_broadcast(&spa->spa_async_cv); 3830 mutex_exit(&spa->spa_async_lock); 3831 thread_exit(); 3832 } 3833 3834 void 3835 spa_async_suspend(spa_t *spa) 3836 { 3837 mutex_enter(&spa->spa_async_lock); 3838 spa->spa_async_suspended++; 3839 while (spa->spa_async_thread != NULL) 3840 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock); 3841 mutex_exit(&spa->spa_async_lock); 3842 } 3843 3844 void 3845 spa_async_resume(spa_t *spa) 3846 { 3847 mutex_enter(&spa->spa_async_lock); 3848 ASSERT(spa->spa_async_suspended != 0); 3849 spa->spa_async_suspended--; 3850 mutex_exit(&spa->spa_async_lock); 3851 } 3852 3853 static void 3854 spa_async_dispatch(spa_t *spa) 3855 { 3856 mutex_enter(&spa->spa_async_lock); 3857 if (spa->spa_async_tasks && !spa->spa_async_suspended && 3858 spa->spa_async_thread == NULL && 3859 rootdir != NULL && !vn_is_readonly(rootdir)) 3860 spa->spa_async_thread = thread_create(NULL, 0, 3861 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri); 3862 mutex_exit(&spa->spa_async_lock); 3863 } 3864 3865 void 3866 spa_async_request(spa_t *spa, int task) 3867 { 3868 mutex_enter(&spa->spa_async_lock); 3869 spa->spa_async_tasks |= task; 3870 mutex_exit(&spa->spa_async_lock); 3871 } 3872 3873 /* 3874 * ========================================================================== 3875 * SPA syncing routines 3876 * ========================================================================== 3877 */ 3878 3879 static void 3880 spa_sync_deferred_frees(spa_t *spa, uint64_t txg) 3881 { 3882 bplist_t *bpl = &spa->spa_sync_bplist; 3883 dmu_tx_t *tx; 3884 blkptr_t blk; 3885 uint64_t itor = 0; 3886 zio_t *zio; 3887 int error; 3888 uint8_t c = 1; 3889 3890 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL); 3891 3892 while (bplist_iterate(bpl, &itor, &blk) == 0) { 3893 ASSERT(blk.blk_birth < txg); 3894 zio_nowait(zio_free(zio, spa, txg, &blk, NULL, NULL, 3895 ZIO_FLAG_MUSTSUCCEED)); 3896 } 3897 3898 error = zio_wait(zio); 3899 ASSERT3U(error, ==, 0); 3900 3901 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 3902 bplist_vacate(bpl, tx); 3903 3904 /* 3905 * Pre-dirty the first block so we sync to convergence faster. 3906 * (Usually only the first block is needed.) 3907 */ 3908 dmu_write(spa->spa_meta_objset, spa->spa_sync_bplist_obj, 0, 1, &c, tx); 3909 dmu_tx_commit(tx); 3910 } 3911 3912 static void 3913 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx) 3914 { 3915 char *packed = NULL; 3916 size_t bufsize; 3917 size_t nvsize = 0; 3918 dmu_buf_t *db; 3919 3920 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0); 3921 3922 /* 3923 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration 3924 * information. This avoids the dbuf_will_dirty() path and 3925 * saves us a pre-read to get data we don't actually care about. 3926 */ 3927 bufsize = P2ROUNDUP(nvsize, SPA_CONFIG_BLOCKSIZE); 3928 packed = kmem_alloc(bufsize, KM_SLEEP); 3929 3930 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR, 3931 KM_SLEEP) == 0); 3932 bzero(packed + nvsize, bufsize - nvsize); 3933 3934 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx); 3935 3936 kmem_free(packed, bufsize); 3937 3938 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 3939 dmu_buf_will_dirty(db, tx); 3940 *(uint64_t *)db->db_data = nvsize; 3941 dmu_buf_rele(db, FTAG); 3942 } 3943 3944 static void 3945 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx, 3946 const char *config, const char *entry) 3947 { 3948 nvlist_t *nvroot; 3949 nvlist_t **list; 3950 int i; 3951 3952 if (!sav->sav_sync) 3953 return; 3954 3955 /* 3956 * Update the MOS nvlist describing the list of available devices. 3957 * spa_validate_aux() will have already made sure this nvlist is 3958 * valid and the vdevs are labeled appropriately. 3959 */ 3960 if (sav->sav_object == 0) { 3961 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset, 3962 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE, 3963 sizeof (uint64_t), tx); 3964 VERIFY(zap_update(spa->spa_meta_objset, 3965 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1, 3966 &sav->sav_object, tx) == 0); 3967 } 3968 3969 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 3970 if (sav->sav_count == 0) { 3971 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0); 3972 } else { 3973 list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 3974 for (i = 0; i < sav->sav_count; i++) 3975 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i], 3976 B_FALSE, B_FALSE, B_TRUE); 3977 VERIFY(nvlist_add_nvlist_array(nvroot, config, list, 3978 sav->sav_count) == 0); 3979 for (i = 0; i < sav->sav_count; i++) 3980 nvlist_free(list[i]); 3981 kmem_free(list, sav->sav_count * sizeof (void *)); 3982 } 3983 3984 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx); 3985 nvlist_free(nvroot); 3986 3987 sav->sav_sync = B_FALSE; 3988 } 3989 3990 static void 3991 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx) 3992 { 3993 nvlist_t *config; 3994 3995 if (list_is_empty(&spa->spa_config_dirty_list)) 3996 return; 3997 3998 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 3999 4000 config = spa_config_generate(spa, spa->spa_root_vdev, 4001 dmu_tx_get_txg(tx), B_FALSE); 4002 4003 spa_config_exit(spa, SCL_STATE, FTAG); 4004 4005 if (spa->spa_config_syncing) 4006 nvlist_free(spa->spa_config_syncing); 4007 spa->spa_config_syncing = config; 4008 4009 spa_sync_nvlist(spa, spa->spa_config_object, config, tx); 4010 } 4011 4012 /* 4013 * Set zpool properties. 4014 */ 4015 static void 4016 spa_sync_props(void *arg1, void *arg2, cred_t *cr, dmu_tx_t *tx) 4017 { 4018 spa_t *spa = arg1; 4019 objset_t *mos = spa->spa_meta_objset; 4020 nvlist_t *nvp = arg2; 4021 nvpair_t *elem; 4022 uint64_t intval; 4023 char *strval; 4024 zpool_prop_t prop; 4025 const char *propname; 4026 zprop_type_t proptype; 4027 4028 mutex_enter(&spa->spa_props_lock); 4029 4030 elem = NULL; 4031 while ((elem = nvlist_next_nvpair(nvp, elem))) { 4032 switch (prop = zpool_name_to_prop(nvpair_name(elem))) { 4033 case ZPOOL_PROP_VERSION: 4034 /* 4035 * Only set version for non-zpool-creation cases 4036 * (set/import). spa_create() needs special care 4037 * for version setting. 4038 */ 4039 if (tx->tx_txg != TXG_INITIAL) { 4040 VERIFY(nvpair_value_uint64(elem, 4041 &intval) == 0); 4042 ASSERT(intval <= SPA_VERSION); 4043 ASSERT(intval >= spa_version(spa)); 4044 spa->spa_uberblock.ub_version = intval; 4045 vdev_config_dirty(spa->spa_root_vdev); 4046 } 4047 break; 4048 4049 case ZPOOL_PROP_ALTROOT: 4050 /* 4051 * 'altroot' is a non-persistent property. It should 4052 * have been set temporarily at creation or import time. 4053 */ 4054 ASSERT(spa->spa_root != NULL); 4055 break; 4056 4057 case ZPOOL_PROP_CACHEFILE: 4058 /* 4059 * 'cachefile' is also a non-persisitent property. 4060 */ 4061 break; 4062 default: 4063 /* 4064 * Set pool property values in the poolprops mos object. 4065 */ 4066 if (spa->spa_pool_props_object == 0) { 4067 objset_t *mos = spa->spa_meta_objset; 4068 4069 VERIFY((spa->spa_pool_props_object = 4070 zap_create(mos, DMU_OT_POOL_PROPS, 4071 DMU_OT_NONE, 0, tx)) > 0); 4072 4073 VERIFY(zap_update(mos, 4074 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS, 4075 8, 1, &spa->spa_pool_props_object, tx) 4076 == 0); 4077 } 4078 4079 /* normalize the property name */ 4080 propname = zpool_prop_to_name(prop); 4081 proptype = zpool_prop_get_type(prop); 4082 4083 if (nvpair_type(elem) == DATA_TYPE_STRING) { 4084 ASSERT(proptype == PROP_TYPE_STRING); 4085 VERIFY(nvpair_value_string(elem, &strval) == 0); 4086 VERIFY(zap_update(mos, 4087 spa->spa_pool_props_object, propname, 4088 1, strlen(strval) + 1, strval, tx) == 0); 4089 4090 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) { 4091 VERIFY(nvpair_value_uint64(elem, &intval) == 0); 4092 4093 if (proptype == PROP_TYPE_INDEX) { 4094 const char *unused; 4095 VERIFY(zpool_prop_index_to_string( 4096 prop, intval, &unused) == 0); 4097 } 4098 VERIFY(zap_update(mos, 4099 spa->spa_pool_props_object, propname, 4100 8, 1, &intval, tx) == 0); 4101 } else { 4102 ASSERT(0); /* not allowed */ 4103 } 4104 4105 switch (prop) { 4106 case ZPOOL_PROP_DELEGATION: 4107 spa->spa_delegation = intval; 4108 break; 4109 case ZPOOL_PROP_BOOTFS: 4110 spa->spa_bootfs = intval; 4111 break; 4112 case ZPOOL_PROP_FAILUREMODE: 4113 spa->spa_failmode = intval; 4114 break; 4115 case ZPOOL_PROP_AUTOEXPAND: 4116 spa->spa_autoexpand = intval; 4117 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND); 4118 break; 4119 default: 4120 break; 4121 } 4122 } 4123 4124 /* log internal history if this is not a zpool create */ 4125 if (spa_version(spa) >= SPA_VERSION_ZPOOL_HISTORY && 4126 tx->tx_txg != TXG_INITIAL) { 4127 spa_history_internal_log(LOG_POOL_PROPSET, 4128 spa, tx, cr, "%s %lld %s", 4129 nvpair_name(elem), intval, spa_name(spa)); 4130 } 4131 } 4132 4133 mutex_exit(&spa->spa_props_lock); 4134 } 4135 4136 /* 4137 * Sync the specified transaction group. New blocks may be dirtied as 4138 * part of the process, so we iterate until it converges. 4139 */ 4140 void 4141 spa_sync(spa_t *spa, uint64_t txg) 4142 { 4143 dsl_pool_t *dp = spa->spa_dsl_pool; 4144 objset_t *mos = spa->spa_meta_objset; 4145 bplist_t *bpl = &spa->spa_sync_bplist; 4146 vdev_t *rvd = spa->spa_root_vdev; 4147 vdev_t *vd; 4148 dmu_tx_t *tx; 4149 int dirty_vdevs; 4150 int error; 4151 4152 /* 4153 * Lock out configuration changes. 4154 */ 4155 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 4156 4157 spa->spa_syncing_txg = txg; 4158 spa->spa_sync_pass = 0; 4159 4160 /* 4161 * If there are any pending vdev state changes, convert them 4162 * into config changes that go out with this transaction group. 4163 */ 4164 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 4165 while (list_head(&spa->spa_state_dirty_list) != NULL) { 4166 /* 4167 * We need the write lock here because, for aux vdevs, 4168 * calling vdev_config_dirty() modifies sav_config. 4169 * This is ugly and will become unnecessary when we 4170 * eliminate the aux vdev wart by integrating all vdevs 4171 * into the root vdev tree. 4172 */ 4173 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 4174 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER); 4175 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) { 4176 vdev_state_clean(vd); 4177 vdev_config_dirty(vd); 4178 } 4179 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 4180 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 4181 } 4182 spa_config_exit(spa, SCL_STATE, FTAG); 4183 4184 VERIFY(0 == bplist_open(bpl, mos, spa->spa_sync_bplist_obj)); 4185 4186 tx = dmu_tx_create_assigned(dp, txg); 4187 4188 /* 4189 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg, 4190 * set spa_deflate if we have no raid-z vdevs. 4191 */ 4192 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE && 4193 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) { 4194 int i; 4195 4196 for (i = 0; i < rvd->vdev_children; i++) { 4197 vd = rvd->vdev_child[i]; 4198 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE) 4199 break; 4200 } 4201 if (i == rvd->vdev_children) { 4202 spa->spa_deflate = TRUE; 4203 VERIFY(0 == zap_add(spa->spa_meta_objset, 4204 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 4205 sizeof (uint64_t), 1, &spa->spa_deflate, tx)); 4206 } 4207 } 4208 4209 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN && 4210 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) { 4211 dsl_pool_create_origin(dp, tx); 4212 4213 /* Keeping the origin open increases spa_minref */ 4214 spa->spa_minref += 3; 4215 } 4216 4217 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES && 4218 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) { 4219 dsl_pool_upgrade_clones(dp, tx); 4220 } 4221 4222 /* 4223 * If anything has changed in this txg, push the deferred frees 4224 * from the previous txg. If not, leave them alone so that we 4225 * don't generate work on an otherwise idle system. 4226 */ 4227 if (!txg_list_empty(&dp->dp_dirty_datasets, txg) || 4228 !txg_list_empty(&dp->dp_dirty_dirs, txg) || 4229 !txg_list_empty(&dp->dp_sync_tasks, txg)) 4230 spa_sync_deferred_frees(spa, txg); 4231 4232 /* 4233 * Iterate to convergence. 4234 */ 4235 do { 4236 spa->spa_sync_pass++; 4237 4238 spa_sync_config_object(spa, tx); 4239 spa_sync_aux_dev(spa, &spa->spa_spares, tx, 4240 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES); 4241 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx, 4242 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE); 4243 spa_errlog_sync(spa, txg); 4244 dsl_pool_sync(dp, txg); 4245 4246 dirty_vdevs = 0; 4247 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) { 4248 vdev_sync(vd, txg); 4249 dirty_vdevs++; 4250 } 4251 4252 bplist_sync(bpl, tx); 4253 } while (dirty_vdevs); 4254 4255 bplist_close(bpl); 4256 4257 dprintf("txg %llu passes %d\n", txg, spa->spa_sync_pass); 4258 4259 /* 4260 * Rewrite the vdev configuration (which includes the uberblock) 4261 * to commit the transaction group. 4262 * 4263 * If there are no dirty vdevs, we sync the uberblock to a few 4264 * random top-level vdevs that are known to be visible in the 4265 * config cache (see spa_vdev_add() for a complete description). 4266 * If there *are* dirty vdevs, sync the uberblock to all vdevs. 4267 */ 4268 for (;;) { 4269 /* 4270 * We hold SCL_STATE to prevent vdev open/close/etc. 4271 * while we're attempting to write the vdev labels. 4272 */ 4273 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 4274 4275 if (list_is_empty(&spa->spa_config_dirty_list)) { 4276 vdev_t *svd[SPA_DVAS_PER_BP]; 4277 int svdcount = 0; 4278 int children = rvd->vdev_children; 4279 int c0 = spa_get_random(children); 4280 4281 for (int c = 0; c < children; c++) { 4282 vd = rvd->vdev_child[(c0 + c) % children]; 4283 if (vd->vdev_ms_array == 0 || vd->vdev_islog) 4284 continue; 4285 svd[svdcount++] = vd; 4286 if (svdcount == SPA_DVAS_PER_BP) 4287 break; 4288 } 4289 error = vdev_config_sync(svd, svdcount, txg, B_FALSE); 4290 if (error != 0) 4291 error = vdev_config_sync(svd, svdcount, txg, 4292 B_TRUE); 4293 } else { 4294 error = vdev_config_sync(rvd->vdev_child, 4295 rvd->vdev_children, txg, B_FALSE); 4296 if (error != 0) 4297 error = vdev_config_sync(rvd->vdev_child, 4298 rvd->vdev_children, txg, B_TRUE); 4299 } 4300 4301 spa_config_exit(spa, SCL_STATE, FTAG); 4302 4303 if (error == 0) 4304 break; 4305 zio_suspend(spa, NULL); 4306 zio_resume_wait(spa); 4307 } 4308 dmu_tx_commit(tx); 4309 4310 /* 4311 * Clear the dirty config list. 4312 */ 4313 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL) 4314 vdev_config_clean(vd); 4315 4316 /* 4317 * Now that the new config has synced transactionally, 4318 * let it become visible to the config cache. 4319 */ 4320 if (spa->spa_config_syncing != NULL) { 4321 spa_config_set(spa, spa->spa_config_syncing); 4322 spa->spa_config_txg = txg; 4323 spa->spa_config_syncing = NULL; 4324 } 4325 4326 spa->spa_ubsync = spa->spa_uberblock; 4327 4328 /* 4329 * Clean up the ZIL records for the synced txg. 4330 */ 4331 dsl_pool_zil_clean(dp); 4332 4333 /* 4334 * Update usable space statistics. 4335 */ 4336 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg))) 4337 vdev_sync_done(vd, txg); 4338 4339 /* 4340 * It had better be the case that we didn't dirty anything 4341 * since vdev_config_sync(). 4342 */ 4343 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg)); 4344 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); 4345 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg)); 4346 ASSERT(bpl->bpl_queue == NULL); 4347 4348 spa_config_exit(spa, SCL_CONFIG, FTAG); 4349 4350 /* 4351 * If any async tasks have been requested, kick them off. 4352 */ 4353 spa_async_dispatch(spa); 4354 } 4355 4356 /* 4357 * Sync all pools. We don't want to hold the namespace lock across these 4358 * operations, so we take a reference on the spa_t and drop the lock during the 4359 * sync. 4360 */ 4361 void 4362 spa_sync_allpools(void) 4363 { 4364 spa_t *spa = NULL; 4365 mutex_enter(&spa_namespace_lock); 4366 while ((spa = spa_next(spa)) != NULL) { 4367 if (spa_state(spa) != POOL_STATE_ACTIVE || spa_suspended(spa)) 4368 continue; 4369 spa_open_ref(spa, FTAG); 4370 mutex_exit(&spa_namespace_lock); 4371 txg_wait_synced(spa_get_dsl(spa), 0); 4372 mutex_enter(&spa_namespace_lock); 4373 spa_close(spa, FTAG); 4374 } 4375 mutex_exit(&spa_namespace_lock); 4376 } 4377 4378 /* 4379 * ========================================================================== 4380 * Miscellaneous routines 4381 * ========================================================================== 4382 */ 4383 4384 /* 4385 * Remove all pools in the system. 4386 */ 4387 void 4388 spa_evict_all(void) 4389 { 4390 spa_t *spa; 4391 4392 /* 4393 * Remove all cached state. All pools should be closed now, 4394 * so every spa in the AVL tree should be unreferenced. 4395 */ 4396 mutex_enter(&spa_namespace_lock); 4397 while ((spa = spa_next(NULL)) != NULL) { 4398 /* 4399 * Stop async tasks. The async thread may need to detach 4400 * a device that's been replaced, which requires grabbing 4401 * spa_namespace_lock, so we must drop it here. 4402 */ 4403 spa_open_ref(spa, FTAG); 4404 mutex_exit(&spa_namespace_lock); 4405 spa_async_suspend(spa); 4406 mutex_enter(&spa_namespace_lock); 4407 spa_close(spa, FTAG); 4408 4409 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 4410 spa_unload(spa); 4411 spa_deactivate(spa); 4412 } 4413 spa_remove(spa); 4414 } 4415 mutex_exit(&spa_namespace_lock); 4416 } 4417 4418 vdev_t * 4419 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux) 4420 { 4421 vdev_t *vd; 4422 int i; 4423 4424 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL) 4425 return (vd); 4426 4427 if (aux) { 4428 for (i = 0; i < spa->spa_l2cache.sav_count; i++) { 4429 vd = spa->spa_l2cache.sav_vdevs[i]; 4430 if (vd->vdev_guid == guid) 4431 return (vd); 4432 } 4433 4434 for (i = 0; i < spa->spa_spares.sav_count; i++) { 4435 vd = spa->spa_spares.sav_vdevs[i]; 4436 if (vd->vdev_guid == guid) 4437 return (vd); 4438 } 4439 } 4440 4441 return (NULL); 4442 } 4443 4444 void 4445 spa_upgrade(spa_t *spa, uint64_t version) 4446 { 4447 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4448 4449 /* 4450 * This should only be called for a non-faulted pool, and since a 4451 * future version would result in an unopenable pool, this shouldn't be 4452 * possible. 4453 */ 4454 ASSERT(spa->spa_uberblock.ub_version <= SPA_VERSION); 4455 ASSERT(version >= spa->spa_uberblock.ub_version); 4456 4457 spa->spa_uberblock.ub_version = version; 4458 vdev_config_dirty(spa->spa_root_vdev); 4459 4460 spa_config_exit(spa, SCL_ALL, FTAG); 4461 4462 txg_wait_synced(spa_get_dsl(spa), 0); 4463 } 4464 4465 boolean_t 4466 spa_has_spare(spa_t *spa, uint64_t guid) 4467 { 4468 int i; 4469 uint64_t spareguid; 4470 spa_aux_vdev_t *sav = &spa->spa_spares; 4471 4472 for (i = 0; i < sav->sav_count; i++) 4473 if (sav->sav_vdevs[i]->vdev_guid == guid) 4474 return (B_TRUE); 4475 4476 for (i = 0; i < sav->sav_npending; i++) { 4477 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID, 4478 &spareguid) == 0 && spareguid == guid) 4479 return (B_TRUE); 4480 } 4481 4482 return (B_FALSE); 4483 } 4484 4485 /* 4486 * Check if a pool has an active shared spare device. 4487 * Note: reference count of an active spare is 2, as a spare and as a replace 4488 */ 4489 static boolean_t 4490 spa_has_active_shared_spare(spa_t *spa) 4491 { 4492 int i, refcnt; 4493 uint64_t pool; 4494 spa_aux_vdev_t *sav = &spa->spa_spares; 4495 4496 for (i = 0; i < sav->sav_count; i++) { 4497 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool, 4498 &refcnt) && pool != 0ULL && pool == spa_guid(spa) && 4499 refcnt > 2) 4500 return (B_TRUE); 4501 } 4502 4503 return (B_FALSE); 4504 } 4505 4506 /* 4507 * Post a sysevent corresponding to the given event. The 'name' must be one of 4508 * the event definitions in sys/sysevent/eventdefs.h. The payload will be 4509 * filled in from the spa and (optionally) the vdev. This doesn't do anything 4510 * in the userland libzpool, as we don't want consumers to misinterpret ztest 4511 * or zdb as real changes. 4512 */ 4513 void 4514 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name) 4515 { 4516 #ifdef _KERNEL 4517 sysevent_t *ev; 4518 sysevent_attr_list_t *attr = NULL; 4519 sysevent_value_t value; 4520 sysevent_id_t eid; 4521 4522 ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs", 4523 SE_SLEEP); 4524 4525 value.value_type = SE_DATA_TYPE_STRING; 4526 value.value.sv_string = spa_name(spa); 4527 if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0) 4528 goto done; 4529 4530 value.value_type = SE_DATA_TYPE_UINT64; 4531 value.value.sv_uint64 = spa_guid(spa); 4532 if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0) 4533 goto done; 4534 4535 if (vd) { 4536 value.value_type = SE_DATA_TYPE_UINT64; 4537 value.value.sv_uint64 = vd->vdev_guid; 4538 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value, 4539 SE_SLEEP) != 0) 4540 goto done; 4541 4542 if (vd->vdev_path) { 4543 value.value_type = SE_DATA_TYPE_STRING; 4544 value.value.sv_string = vd->vdev_path; 4545 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH, 4546 &value, SE_SLEEP) != 0) 4547 goto done; 4548 } 4549 } 4550 4551 if (sysevent_attach_attributes(ev, attr) != 0) 4552 goto done; 4553 attr = NULL; 4554 4555 (void) log_sysevent(ev, SE_SLEEP, &eid); 4556 4557 done: 4558 if (attr) 4559 sysevent_free_attr(attr); 4560 sysevent_free(ev); 4561 #endif 4562 } 4563