xref: /titanic_51/usr/src/uts/common/fs/zfs/spa.c (revision 31e37bb439502e3f7c4c0a9a77d655ea5d56887a)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * This file contains all the routines used when modifying on-disk SPA state.
30  * This includes opening, importing, destroying, exporting a pool, and syncing a
31  * pool.
32  */
33 
34 #include <sys/zfs_context.h>
35 #include <sys/fm/fs/zfs.h>
36 #include <sys/spa_impl.h>
37 #include <sys/zio.h>
38 #include <sys/zio_checksum.h>
39 #include <sys/zio_compress.h>
40 #include <sys/dmu.h>
41 #include <sys/dmu_tx.h>
42 #include <sys/zap.h>
43 #include <sys/zil.h>
44 #include <sys/vdev_impl.h>
45 #include <sys/metaslab.h>
46 #include <sys/uberblock_impl.h>
47 #include <sys/txg.h>
48 #include <sys/avl.h>
49 #include <sys/dmu_traverse.h>
50 #include <sys/unique.h>
51 #include <sys/dsl_pool.h>
52 #include <sys/dsl_dir.h>
53 #include <sys/dsl_prop.h>
54 #include <sys/fs/zfs.h>
55 #include <sys/callb.h>
56 
57 /*
58  * ==========================================================================
59  * SPA state manipulation (open/create/destroy/import/export)
60  * ==========================================================================
61  */
62 
63 static int
64 spa_error_entry_compare(const void *a, const void *b)
65 {
66 	spa_error_entry_t *sa = (spa_error_entry_t *)a;
67 	spa_error_entry_t *sb = (spa_error_entry_t *)b;
68 	int ret;
69 
70 	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
71 	    sizeof (zbookmark_t));
72 
73 	if (ret < 0)
74 		return (-1);
75 	else if (ret > 0)
76 		return (1);
77 	else
78 		return (0);
79 }
80 
81 /*
82  * Utility function which retrieves copies of the current logs and
83  * re-initializes them in the process.
84  */
85 void
86 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
87 {
88 	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
89 
90 	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
91 	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
92 
93 	avl_create(&spa->spa_errlist_scrub,
94 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
95 	    offsetof(spa_error_entry_t, se_avl));
96 	avl_create(&spa->spa_errlist_last,
97 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
98 	    offsetof(spa_error_entry_t, se_avl));
99 }
100 
101 /*
102  * Activate an uninitialized pool.
103  */
104 static void
105 spa_activate(spa_t *spa)
106 {
107 	int t;
108 
109 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
110 
111 	spa->spa_state = POOL_STATE_ACTIVE;
112 
113 	spa->spa_normal_class = metaslab_class_create();
114 
115 	for (t = 0; t < ZIO_TYPES; t++) {
116 		spa->spa_zio_issue_taskq[t] = taskq_create("spa_zio_issue",
117 		    8, maxclsyspri, 50, INT_MAX,
118 		    TASKQ_PREPOPULATE);
119 		spa->spa_zio_intr_taskq[t] = taskq_create("spa_zio_intr",
120 		    8, maxclsyspri, 50, INT_MAX,
121 		    TASKQ_PREPOPULATE);
122 	}
123 
124 	rw_init(&spa->spa_traverse_lock, NULL, RW_DEFAULT, NULL);
125 
126 	list_create(&spa->spa_dirty_list, sizeof (vdev_t),
127 	    offsetof(vdev_t, vdev_dirty_node));
128 
129 	txg_list_create(&spa->spa_vdev_txg_list,
130 	    offsetof(struct vdev, vdev_txg_node));
131 
132 	avl_create(&spa->spa_errlist_scrub,
133 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
134 	    offsetof(spa_error_entry_t, se_avl));
135 	avl_create(&spa->spa_errlist_last,
136 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
137 	    offsetof(spa_error_entry_t, se_avl));
138 }
139 
140 /*
141  * Opposite of spa_activate().
142  */
143 static void
144 spa_deactivate(spa_t *spa)
145 {
146 	int t;
147 
148 	ASSERT(spa->spa_sync_on == B_FALSE);
149 	ASSERT(spa->spa_dsl_pool == NULL);
150 	ASSERT(spa->spa_root_vdev == NULL);
151 
152 	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
153 
154 	txg_list_destroy(&spa->spa_vdev_txg_list);
155 
156 	list_destroy(&spa->spa_dirty_list);
157 
158 	rw_destroy(&spa->spa_traverse_lock);
159 
160 	for (t = 0; t < ZIO_TYPES; t++) {
161 		taskq_destroy(spa->spa_zio_issue_taskq[t]);
162 		taskq_destroy(spa->spa_zio_intr_taskq[t]);
163 		spa->spa_zio_issue_taskq[t] = NULL;
164 		spa->spa_zio_intr_taskq[t] = NULL;
165 	}
166 
167 	metaslab_class_destroy(spa->spa_normal_class);
168 	spa->spa_normal_class = NULL;
169 
170 	/*
171 	 * If this was part of an import or the open otherwise failed, we may
172 	 * still have errors left in the queues.  Empty them just in case.
173 	 */
174 	spa_errlog_drain(spa);
175 
176 	avl_destroy(&spa->spa_errlist_scrub);
177 	avl_destroy(&spa->spa_errlist_last);
178 
179 	spa->spa_state = POOL_STATE_UNINITIALIZED;
180 }
181 
182 /*
183  * Verify a pool configuration, and construct the vdev tree appropriately.  This
184  * will create all the necessary vdevs in the appropriate layout, with each vdev
185  * in the CLOSED state.  This will prep the pool before open/creation/import.
186  * All vdev validation is done by the vdev_alloc() routine.
187  */
188 static vdev_t *
189 spa_config_parse(spa_t *spa, nvlist_t *nv, vdev_t *parent, uint_t id, int atype)
190 {
191 	nvlist_t **child;
192 	uint_t c, children;
193 	vdev_t *vd;
194 
195 	if ((vd = vdev_alloc(spa, nv, parent, id, atype)) == NULL)
196 		return (NULL);
197 
198 	if (vd->vdev_ops->vdev_op_leaf)
199 		return (vd);
200 
201 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
202 	    &child, &children) != 0) {
203 		vdev_free(vd);
204 		return (NULL);
205 	}
206 
207 	for (c = 0; c < children; c++) {
208 		if (spa_config_parse(spa, child[c], vd, c, atype) == NULL) {
209 			vdev_free(vd);
210 			return (NULL);
211 		}
212 	}
213 
214 	return (vd);
215 }
216 
217 /*
218  * Opposite of spa_load().
219  */
220 static void
221 spa_unload(spa_t *spa)
222 {
223 	/*
224 	 * Stop async tasks.
225 	 */
226 	spa_async_suspend(spa);
227 
228 	/*
229 	 * Stop syncing.
230 	 */
231 	if (spa->spa_sync_on) {
232 		txg_sync_stop(spa->spa_dsl_pool);
233 		spa->spa_sync_on = B_FALSE;
234 	}
235 
236 	/*
237 	 * Wait for any outstanding prefetch I/O to complete.
238 	 */
239 	spa_config_enter(spa, RW_WRITER, FTAG);
240 	spa_config_exit(spa, FTAG);
241 
242 	/*
243 	 * Close the dsl pool.
244 	 */
245 	if (spa->spa_dsl_pool) {
246 		dsl_pool_close(spa->spa_dsl_pool);
247 		spa->spa_dsl_pool = NULL;
248 	}
249 
250 	/*
251 	 * Close all vdevs.
252 	 */
253 	if (spa->spa_root_vdev)
254 		vdev_free(spa->spa_root_vdev);
255 	ASSERT(spa->spa_root_vdev == NULL);
256 
257 	spa->spa_async_suspended = 0;
258 }
259 
260 /*
261  * Load an existing storage pool, using the pool's builtin spa_config as a
262  * source of configuration information.
263  */
264 static int
265 spa_load(spa_t *spa, nvlist_t *config, spa_load_state_t state, int mosconfig)
266 {
267 	int error = 0;
268 	nvlist_t *nvroot = NULL;
269 	vdev_t *rvd;
270 	uberblock_t *ub = &spa->spa_uberblock;
271 	uint64_t config_cache_txg = spa->spa_config_txg;
272 	uint64_t pool_guid;
273 	zio_t *zio;
274 
275 	spa->spa_load_state = state;
276 
277 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) ||
278 	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
279 		error = EINVAL;
280 		goto out;
281 	}
282 
283 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
284 	    &spa->spa_config_txg);
285 
286 	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
287 	    spa_guid_exists(pool_guid, 0)) {
288 		error = EEXIST;
289 		goto out;
290 	}
291 
292 	/*
293 	 * Parse the configuration into a vdev tree.
294 	 */
295 	spa_config_enter(spa, RW_WRITER, FTAG);
296 	rvd = spa_config_parse(spa, nvroot, NULL, 0, VDEV_ALLOC_LOAD);
297 	spa_config_exit(spa, FTAG);
298 
299 	if (rvd == NULL) {
300 		error = EINVAL;
301 		goto out;
302 	}
303 
304 	ASSERT(spa->spa_root_vdev == rvd);
305 	ASSERT(spa_guid(spa) == pool_guid);
306 
307 	/*
308 	 * Try to open all vdevs, loading each label in the process.
309 	 */
310 	if (vdev_open(rvd) != 0) {
311 		error = ENXIO;
312 		goto out;
313 	}
314 
315 	/*
316 	 * Validate the labels for all leaf vdevs.  We need to grab the config
317 	 * lock because all label I/O is done with the ZIO_FLAG_CONFIG_HELD
318 	 * flag.
319 	 */
320 	spa_config_enter(spa, RW_READER, FTAG);
321 	error = vdev_validate(rvd);
322 	spa_config_exit(spa, FTAG);
323 
324 	if (error != 0) {
325 		error = EBADF;
326 		goto out;
327 	}
328 
329 	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
330 		error = ENXIO;
331 		goto out;
332 	}
333 
334 	/*
335 	 * Find the best uberblock.
336 	 */
337 	bzero(ub, sizeof (uberblock_t));
338 
339 	zio = zio_root(spa, NULL, NULL,
340 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
341 	vdev_uberblock_load(zio, rvd, ub);
342 	error = zio_wait(zio);
343 
344 	/*
345 	 * If we weren't able to find a single valid uberblock, return failure.
346 	 */
347 	if (ub->ub_txg == 0) {
348 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
349 		    VDEV_AUX_CORRUPT_DATA);
350 		error = ENXIO;
351 		goto out;
352 	}
353 
354 	/*
355 	 * If the pool is newer than the code, we can't open it.
356 	 */
357 	if (ub->ub_version > ZFS_VERSION) {
358 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
359 		    VDEV_AUX_VERSION_NEWER);
360 		error = ENOTSUP;
361 		goto out;
362 	}
363 
364 	/*
365 	 * If the vdev guid sum doesn't match the uberblock, we have an
366 	 * incomplete configuration.
367 	 */
368 	if (rvd->vdev_guid_sum != ub->ub_guid_sum && mosconfig) {
369 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
370 		    VDEV_AUX_BAD_GUID_SUM);
371 		error = ENXIO;
372 		goto out;
373 	}
374 
375 	/*
376 	 * Initialize internal SPA structures.
377 	 */
378 	spa->spa_state = POOL_STATE_ACTIVE;
379 	spa->spa_ubsync = spa->spa_uberblock;
380 	spa->spa_first_txg = spa_last_synced_txg(spa) + 1;
381 	error = dsl_pool_open(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
382 	if (error) {
383 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
384 		    VDEV_AUX_CORRUPT_DATA);
385 		goto out;
386 	}
387 	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
388 
389 	if (zap_lookup(spa->spa_meta_objset,
390 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
391 	    sizeof (uint64_t), 1, &spa->spa_config_object) != 0) {
392 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
393 		    VDEV_AUX_CORRUPT_DATA);
394 		error = EIO;
395 		goto out;
396 	}
397 
398 	if (!mosconfig) {
399 		dmu_buf_t *db;
400 		char *packed = NULL;
401 		size_t nvsize = 0;
402 		nvlist_t *newconfig = NULL;
403 
404 		VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset,
405 		    spa->spa_config_object, FTAG, &db));
406 		nvsize = *(uint64_t *)db->db_data;
407 		dmu_buf_rele(db, FTAG);
408 
409 		packed = kmem_alloc(nvsize, KM_SLEEP);
410 		error = dmu_read(spa->spa_meta_objset,
411 		    spa->spa_config_object, 0, nvsize, packed);
412 		if (error == 0)
413 			error = nvlist_unpack(packed, nvsize, &newconfig, 0);
414 		kmem_free(packed, nvsize);
415 
416 		if (error) {
417 			vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
418 			    VDEV_AUX_CORRUPT_DATA);
419 			error = EIO;
420 			goto out;
421 		}
422 
423 		spa_config_set(spa, newconfig);
424 
425 		spa_unload(spa);
426 		spa_deactivate(spa);
427 		spa_activate(spa);
428 
429 		return (spa_load(spa, newconfig, state, B_TRUE));
430 	}
431 
432 	if (zap_lookup(spa->spa_meta_objset,
433 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST,
434 	    sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj) != 0) {
435 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
436 		    VDEV_AUX_CORRUPT_DATA);
437 		error = EIO;
438 		goto out;
439 	}
440 
441 	/*
442 	 * Load the persistent error log.  If we have an older pool, this will
443 	 * not be present.
444 	 */
445 	error = zap_lookup(spa->spa_meta_objset,
446 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_LAST,
447 	    sizeof (uint64_t), 1, &spa->spa_errlog_last);
448 	if (error != 0 && error != ENOENT) {
449 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
450 		    VDEV_AUX_CORRUPT_DATA);
451 		error = EIO;
452 		goto out;
453 	}
454 
455 	error = zap_lookup(spa->spa_meta_objset,
456 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_SCRUB,
457 	    sizeof (uint64_t), 1, &spa->spa_errlog_scrub);
458 	if (error != 0 && error != ENOENT) {
459 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
460 		    VDEV_AUX_CORRUPT_DATA);
461 		error = EIO;
462 		goto out;
463 	}
464 
465 	/*
466 	 * Load the vdev state for all toplevel vdevs.
467 	 */
468 	vdev_load(rvd);
469 
470 	/*
471 	 * Propagate the leaf DTLs we just loaded all the way up the tree.
472 	 */
473 	spa_config_enter(spa, RW_WRITER, FTAG);
474 	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
475 	spa_config_exit(spa, FTAG);
476 
477 	/*
478 	 * Check the state of the root vdev.  If it can't be opened, it
479 	 * indicates one or more toplevel vdevs are faulted.
480 	 */
481 	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
482 		error = ENXIO;
483 		goto out;
484 	}
485 
486 	if ((spa_mode & FWRITE) && state != SPA_LOAD_TRYIMPORT) {
487 		dmu_tx_t *tx;
488 		int need_update = B_FALSE;
489 		int c;
490 
491 		/*
492 		 * Claim log blocks that haven't been committed yet.
493 		 * This must all happen in a single txg.
494 		 */
495 		tx = dmu_tx_create_assigned(spa_get_dsl(spa),
496 		    spa_first_txg(spa));
497 		dmu_objset_find(spa->spa_name, zil_claim, tx, 0);
498 		dmu_tx_commit(tx);
499 
500 		spa->spa_sync_on = B_TRUE;
501 		txg_sync_start(spa->spa_dsl_pool);
502 
503 		/*
504 		 * Wait for all claims to sync.
505 		 */
506 		txg_wait_synced(spa->spa_dsl_pool, 0);
507 
508 		/*
509 		 * If the config cache is stale, or we have uninitialized
510 		 * metaslabs (see spa_vdev_add()), then update the config.
511 		 */
512 		if (config_cache_txg != spa->spa_config_txg ||
513 		    state == SPA_LOAD_IMPORT)
514 			need_update = B_TRUE;
515 
516 		for (c = 0; c < rvd->vdev_children; c++)
517 			if (rvd->vdev_child[c]->vdev_ms_array == 0)
518 				need_update = B_TRUE;
519 
520 		/*
521 		 * Update the config cache asychronously in case we're the
522 		 * root pool, in which case the config cache isn't writable yet.
523 		 */
524 		if (need_update)
525 			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
526 	}
527 
528 	error = 0;
529 out:
530 	if (error)
531 		zfs_ereport_post(FM_EREPORT_ZFS_POOL, spa, NULL, NULL, 0, 0);
532 	spa->spa_load_state = SPA_LOAD_NONE;
533 	spa->spa_ena = 0;
534 
535 	return (error);
536 }
537 
538 /*
539  * Pool Open/Import
540  *
541  * The import case is identical to an open except that the configuration is sent
542  * down from userland, instead of grabbed from the configuration cache.  For the
543  * case of an open, the pool configuration will exist in the
544  * POOL_STATE_UNITIALIZED state.
545  *
546  * The stats information (gen/count/ustats) is used to gather vdev statistics at
547  * the same time open the pool, without having to keep around the spa_t in some
548  * ambiguous state.
549  */
550 static int
551 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t **config)
552 {
553 	spa_t *spa;
554 	int error;
555 	int loaded = B_FALSE;
556 	int locked = B_FALSE;
557 
558 	*spapp = NULL;
559 
560 	/*
561 	 * As disgusting as this is, we need to support recursive calls to this
562 	 * function because dsl_dir_open() is called during spa_load(), and ends
563 	 * up calling spa_open() again.  The real fix is to figure out how to
564 	 * avoid dsl_dir_open() calling this in the first place.
565 	 */
566 	if (mutex_owner(&spa_namespace_lock) != curthread) {
567 		mutex_enter(&spa_namespace_lock);
568 		locked = B_TRUE;
569 	}
570 
571 	if ((spa = spa_lookup(pool)) == NULL) {
572 		if (locked)
573 			mutex_exit(&spa_namespace_lock);
574 		return (ENOENT);
575 	}
576 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
577 
578 		spa_activate(spa);
579 
580 		error = spa_load(spa, spa->spa_config, SPA_LOAD_OPEN, B_FALSE);
581 
582 		if (error == EBADF) {
583 			/*
584 			 * If vdev_validate() returns failure (indicated by
585 			 * EBADF), it indicates that one of the vdevs indicates
586 			 * that the pool has been exported or destroyed.  If
587 			 * this is the case, the config cache is out of sync and
588 			 * we should remove the pool from the namespace.
589 			 */
590 			spa_unload(spa);
591 			spa_deactivate(spa);
592 			spa_remove(spa);
593 			spa_config_sync();
594 			if (locked)
595 				mutex_exit(&spa_namespace_lock);
596 			return (ENOENT);
597 		}
598 
599 		if (error) {
600 			/*
601 			 * We can't open the pool, but we still have useful
602 			 * information: the state of each vdev after the
603 			 * attempted vdev_open().  Return this to the user.
604 			 */
605 			if (config != NULL && spa->spa_root_vdev != NULL) {
606 				spa_config_enter(spa, RW_READER, FTAG);
607 				*config = spa_config_generate(spa, NULL, -1ULL,
608 				    B_TRUE);
609 				spa_config_exit(spa, FTAG);
610 			}
611 			spa_unload(spa);
612 			spa_deactivate(spa);
613 			spa->spa_last_open_failed = B_TRUE;
614 			if (locked)
615 				mutex_exit(&spa_namespace_lock);
616 			*spapp = NULL;
617 			return (error);
618 		} else {
619 			zfs_post_ok(spa, NULL);
620 			spa->spa_last_open_failed = B_FALSE;
621 		}
622 
623 		loaded = B_TRUE;
624 	}
625 
626 	spa_open_ref(spa, tag);
627 	if (locked)
628 		mutex_exit(&spa_namespace_lock);
629 
630 	*spapp = spa;
631 
632 	if (config != NULL) {
633 		spa_config_enter(spa, RW_READER, FTAG);
634 		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
635 		spa_config_exit(spa, FTAG);
636 	}
637 
638 	/*
639 	 * If we just loaded the pool, resilver anything that's out of date.
640 	 */
641 	if (loaded && (spa_mode & FWRITE))
642 		VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
643 
644 	return (0);
645 }
646 
647 int
648 spa_open(const char *name, spa_t **spapp, void *tag)
649 {
650 	return (spa_open_common(name, spapp, tag, NULL));
651 }
652 
653 /*
654  * Lookup the given spa_t, incrementing the inject count in the process,
655  * preventing it from being exported or destroyed.
656  */
657 spa_t *
658 spa_inject_addref(char *name)
659 {
660 	spa_t *spa;
661 
662 	mutex_enter(&spa_namespace_lock);
663 	if ((spa = spa_lookup(name)) == NULL) {
664 		mutex_exit(&spa_namespace_lock);
665 		return (NULL);
666 	}
667 	spa->spa_inject_ref++;
668 	mutex_exit(&spa_namespace_lock);
669 
670 	return (spa);
671 }
672 
673 void
674 spa_inject_delref(spa_t *spa)
675 {
676 	mutex_enter(&spa_namespace_lock);
677 	spa->spa_inject_ref--;
678 	mutex_exit(&spa_namespace_lock);
679 }
680 
681 int
682 spa_get_stats(const char *name, nvlist_t **config, char *altroot, size_t buflen)
683 {
684 	int error;
685 	spa_t *spa;
686 
687 	*config = NULL;
688 	error = spa_open_common(name, &spa, FTAG, config);
689 
690 	if (spa && *config != NULL)
691 		VERIFY(nvlist_add_uint64(*config, ZPOOL_CONFIG_ERRCOUNT,
692 		    spa_get_errlog_size(spa)) == 0);
693 
694 	/*
695 	 * We want to get the alternate root even for faulted pools, so we cheat
696 	 * and call spa_lookup() directly.
697 	 */
698 	if (altroot) {
699 		if (spa == NULL) {
700 			mutex_enter(&spa_namespace_lock);
701 			spa = spa_lookup(name);
702 			if (spa)
703 				spa_altroot(spa, altroot, buflen);
704 			else
705 				altroot[0] = '\0';
706 			spa = NULL;
707 			mutex_exit(&spa_namespace_lock);
708 		} else {
709 			spa_altroot(spa, altroot, buflen);
710 		}
711 	}
712 
713 	if (spa != NULL)
714 		spa_close(spa, FTAG);
715 
716 	return (error);
717 }
718 
719 /*
720  * Pool Creation
721  */
722 int
723 spa_create(const char *pool, nvlist_t *nvroot, const char *altroot)
724 {
725 	spa_t *spa;
726 	vdev_t *rvd;
727 	dsl_pool_t *dp;
728 	dmu_tx_t *tx;
729 	int c, error;
730 	uint64_t txg = TXG_INITIAL;
731 
732 	/*
733 	 * If this pool already exists, return failure.
734 	 */
735 	mutex_enter(&spa_namespace_lock);
736 	if (spa_lookup(pool) != NULL) {
737 		mutex_exit(&spa_namespace_lock);
738 		return (EEXIST);
739 	}
740 
741 	/*
742 	 * Allocate a new spa_t structure.
743 	 */
744 	spa = spa_add(pool, altroot);
745 	spa_activate(spa);
746 
747 	spa->spa_uberblock.ub_txg = txg - 1;
748 	spa->spa_uberblock.ub_version = ZFS_VERSION;
749 	spa->spa_ubsync = spa->spa_uberblock;
750 
751 	/*
752 	 * Create the root vdev.
753 	 */
754 	spa_config_enter(spa, RW_WRITER, FTAG);
755 
756 	rvd = spa_config_parse(spa, nvroot, NULL, 0, VDEV_ALLOC_ADD);
757 
758 	ASSERT(spa->spa_root_vdev == rvd);
759 
760 	if (rvd == NULL) {
761 		error = EINVAL;
762 	} else {
763 		if ((error = vdev_create(rvd, txg)) == 0) {
764 			for (c = 0; c < rvd->vdev_children; c++)
765 				vdev_init(rvd->vdev_child[c], txg);
766 			vdev_config_dirty(rvd);
767 		}
768 	}
769 
770 	spa_config_exit(spa, FTAG);
771 
772 	if (error) {
773 		spa_unload(spa);
774 		spa_deactivate(spa);
775 		spa_remove(spa);
776 		mutex_exit(&spa_namespace_lock);
777 		return (error);
778 	}
779 
780 	spa->spa_dsl_pool = dp = dsl_pool_create(spa, txg);
781 	spa->spa_meta_objset = dp->dp_meta_objset;
782 
783 	tx = dmu_tx_create_assigned(dp, txg);
784 
785 	/*
786 	 * Create the pool config object.
787 	 */
788 	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
789 	    DMU_OT_PACKED_NVLIST, 1 << 14,
790 	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
791 
792 	if (zap_add(spa->spa_meta_objset,
793 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
794 	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
795 		cmn_err(CE_PANIC, "failed to add pool config");
796 	}
797 
798 	/*
799 	 * Create the deferred-free bplist object.  Turn off compression
800 	 * because sync-to-convergence takes longer if the blocksize
801 	 * keeps changing.
802 	 */
803 	spa->spa_sync_bplist_obj = bplist_create(spa->spa_meta_objset,
804 	    1 << 14, tx);
805 	dmu_object_set_compress(spa->spa_meta_objset, spa->spa_sync_bplist_obj,
806 	    ZIO_COMPRESS_OFF, tx);
807 
808 	if (zap_add(spa->spa_meta_objset,
809 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST,
810 	    sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj, tx) != 0) {
811 		cmn_err(CE_PANIC, "failed to add bplist");
812 	}
813 
814 	dmu_tx_commit(tx);
815 
816 	spa->spa_sync_on = B_TRUE;
817 	txg_sync_start(spa->spa_dsl_pool);
818 
819 	/*
820 	 * We explicitly wait for the first transaction to complete so that our
821 	 * bean counters are appropriately updated.
822 	 */
823 	txg_wait_synced(spa->spa_dsl_pool, txg);
824 
825 	spa_config_sync();
826 
827 	mutex_exit(&spa_namespace_lock);
828 
829 	return (0);
830 }
831 
832 /*
833  * Import the given pool into the system.  We set up the necessary spa_t and
834  * then call spa_load() to do the dirty work.
835  */
836 int
837 spa_import(const char *pool, nvlist_t *config, const char *altroot)
838 {
839 	spa_t *spa;
840 	int error;
841 
842 	if (!(spa_mode & FWRITE))
843 		return (EROFS);
844 
845 	/*
846 	 * If a pool with this name exists, return failure.
847 	 */
848 	mutex_enter(&spa_namespace_lock);
849 	if (spa_lookup(pool) != NULL) {
850 		mutex_exit(&spa_namespace_lock);
851 		return (EEXIST);
852 	}
853 
854 	/*
855 	 * Create and initialize the spa structure.
856 	 */
857 	spa = spa_add(pool, altroot);
858 	spa_activate(spa);
859 
860 	/*
861 	 * Pass off the heavy lifting to spa_load().
862 	 * Pass TRUE for mosconfig because the user-supplied config
863 	 * is actually the one to trust when doing an import.
864 	 */
865 	error = spa_load(spa, config, SPA_LOAD_IMPORT, B_TRUE);
866 
867 	if (error) {
868 		spa_unload(spa);
869 		spa_deactivate(spa);
870 		spa_remove(spa);
871 		mutex_exit(&spa_namespace_lock);
872 		return (error);
873 	}
874 
875 	/*
876 	 * Update the config cache to include the newly-imported pool.
877 	 */
878 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
879 
880 	mutex_exit(&spa_namespace_lock);
881 
882 	/*
883 	 * Resilver anything that's out of date.
884 	 */
885 	if (spa_mode & FWRITE)
886 		VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
887 
888 	return (0);
889 }
890 
891 /*
892  * This (illegal) pool name is used when temporarily importing a spa_t in order
893  * to get the vdev stats associated with the imported devices.
894  */
895 #define	TRYIMPORT_NAME	"$import"
896 
897 nvlist_t *
898 spa_tryimport(nvlist_t *tryconfig)
899 {
900 	nvlist_t *config = NULL;
901 	char *poolname;
902 	spa_t *spa;
903 	uint64_t state;
904 
905 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
906 		return (NULL);
907 
908 	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
909 		return (NULL);
910 
911 	/*
912 	 * Create and initialize the spa structure.
913 	 */
914 	mutex_enter(&spa_namespace_lock);
915 	spa = spa_add(TRYIMPORT_NAME, NULL);
916 	spa_activate(spa);
917 
918 	/*
919 	 * Pass off the heavy lifting to spa_load().
920 	 * Pass TRUE for mosconfig because the user-supplied config
921 	 * is actually the one to trust when doing an import.
922 	 */
923 	(void) spa_load(spa, tryconfig, SPA_LOAD_TRYIMPORT, B_TRUE);
924 
925 	/*
926 	 * If 'tryconfig' was at least parsable, return the current config.
927 	 */
928 	if (spa->spa_root_vdev != NULL) {
929 		spa_config_enter(spa, RW_READER, FTAG);
930 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
931 		spa_config_exit(spa, FTAG);
932 		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
933 		    poolname) == 0);
934 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
935 		    state) == 0);
936 	}
937 
938 	spa_unload(spa);
939 	spa_deactivate(spa);
940 	spa_remove(spa);
941 	mutex_exit(&spa_namespace_lock);
942 
943 	return (config);
944 }
945 
946 /*
947  * Pool export/destroy
948  *
949  * The act of destroying or exporting a pool is very simple.  We make sure there
950  * is no more pending I/O and any references to the pool are gone.  Then, we
951  * update the pool state and sync all the labels to disk, removing the
952  * configuration from the cache afterwards.
953  */
954 static int
955 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig)
956 {
957 	spa_t *spa;
958 
959 	if (oldconfig)
960 		*oldconfig = NULL;
961 
962 	if (!(spa_mode & FWRITE))
963 		return (EROFS);
964 
965 	mutex_enter(&spa_namespace_lock);
966 	if ((spa = spa_lookup(pool)) == NULL) {
967 		mutex_exit(&spa_namespace_lock);
968 		return (ENOENT);
969 	}
970 
971 	/*
972 	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
973 	 * reacquire the namespace lock, and see if we can export.
974 	 */
975 	spa_open_ref(spa, FTAG);
976 	mutex_exit(&spa_namespace_lock);
977 	spa_async_suspend(spa);
978 	mutex_enter(&spa_namespace_lock);
979 	spa_close(spa, FTAG);
980 
981 	/*
982 	 * The pool will be in core if it's openable,
983 	 * in which case we can modify its state.
984 	 */
985 	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
986 		/*
987 		 * Objsets may be open only because they're dirty, so we
988 		 * have to force it to sync before checking spa_refcnt.
989 		 */
990 		spa_scrub_suspend(spa);
991 		txg_wait_synced(spa->spa_dsl_pool, 0);
992 
993 		/*
994 		 * A pool cannot be exported or destroyed if there are active
995 		 * references.  If we are resetting a pool, allow references by
996 		 * fault injection handlers.
997 		 */
998 		if (!spa_refcount_zero(spa) ||
999 		    (spa->spa_inject_ref != 0 &&
1000 		    new_state != POOL_STATE_UNINITIALIZED)) {
1001 			spa_scrub_resume(spa);
1002 			spa_async_resume(spa);
1003 			mutex_exit(&spa_namespace_lock);
1004 			return (EBUSY);
1005 		}
1006 
1007 		spa_scrub_resume(spa);
1008 		VERIFY(spa_scrub(spa, POOL_SCRUB_NONE, B_TRUE) == 0);
1009 
1010 		/*
1011 		 * We want this to be reflected on every label,
1012 		 * so mark them all dirty.  spa_unload() will do the
1013 		 * final sync that pushes these changes out.
1014 		 */
1015 		if (new_state != POOL_STATE_UNINITIALIZED) {
1016 			spa_config_enter(spa, RW_WRITER, FTAG);
1017 			spa->spa_state = new_state;
1018 			spa->spa_final_txg = spa_last_synced_txg(spa) + 1;
1019 			vdev_config_dirty(spa->spa_root_vdev);
1020 			spa_config_exit(spa, FTAG);
1021 		}
1022 	}
1023 
1024 	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
1025 		spa_unload(spa);
1026 		spa_deactivate(spa);
1027 	}
1028 
1029 	if (oldconfig && spa->spa_config)
1030 		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
1031 
1032 	if (new_state != POOL_STATE_UNINITIALIZED) {
1033 		spa_remove(spa);
1034 		spa_config_sync();
1035 	}
1036 	mutex_exit(&spa_namespace_lock);
1037 
1038 	return (0);
1039 }
1040 
1041 /*
1042  * Destroy a storage pool.
1043  */
1044 int
1045 spa_destroy(char *pool)
1046 {
1047 	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL));
1048 }
1049 
1050 /*
1051  * Export a storage pool.
1052  */
1053 int
1054 spa_export(char *pool, nvlist_t **oldconfig)
1055 {
1056 	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig));
1057 }
1058 
1059 /*
1060  * Similar to spa_export(), this unloads the spa_t without actually removing it
1061  * from the namespace in any way.
1062  */
1063 int
1064 spa_reset(char *pool)
1065 {
1066 	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL));
1067 }
1068 
1069 
1070 /*
1071  * ==========================================================================
1072  * Device manipulation
1073  * ==========================================================================
1074  */
1075 
1076 /*
1077  * Add capacity to a storage pool.
1078  */
1079 int
1080 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
1081 {
1082 	uint64_t txg;
1083 	int c, error;
1084 	vdev_t *rvd = spa->spa_root_vdev;
1085 	vdev_t *vd, *tvd;
1086 
1087 	txg = spa_vdev_enter(spa);
1088 
1089 	vd = spa_config_parse(spa, nvroot, NULL, 0, VDEV_ALLOC_ADD);
1090 
1091 	if (vd == NULL)
1092 		return (spa_vdev_exit(spa, vd, txg, EINVAL));
1093 
1094 	if ((error = vdev_create(vd, txg)) != 0)
1095 		return (spa_vdev_exit(spa, vd, txg, error));
1096 
1097 	/*
1098 	 * Transfer each new top-level vdev from vd to rvd.
1099 	 */
1100 	for (c = 0; c < vd->vdev_children; c++) {
1101 		tvd = vd->vdev_child[c];
1102 		vdev_remove_child(vd, tvd);
1103 		tvd->vdev_id = rvd->vdev_children;
1104 		vdev_add_child(rvd, tvd);
1105 		vdev_config_dirty(tvd);
1106 	}
1107 
1108 	/*
1109 	 * We have to be careful when adding new vdevs to an existing pool.
1110 	 * If other threads start allocating from these vdevs before we
1111 	 * sync the config cache, and we lose power, then upon reboot we may
1112 	 * fail to open the pool because there are DVAs that the config cache
1113 	 * can't translate.  Therefore, we first add the vdevs without
1114 	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
1115 	 * and then let spa_config_update() initialize the new metaslabs.
1116 	 *
1117 	 * spa_load() checks for added-but-not-initialized vdevs, so that
1118 	 * if we lose power at any point in this sequence, the remaining
1119 	 * steps will be completed the next time we load the pool.
1120 	 */
1121 	(void) spa_vdev_exit(spa, vd, txg, 0);
1122 
1123 	mutex_enter(&spa_namespace_lock);
1124 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
1125 	mutex_exit(&spa_namespace_lock);
1126 
1127 	return (0);
1128 }
1129 
1130 /*
1131  * Attach a device to a mirror.  The arguments are the path to any device
1132  * in the mirror, and the nvroot for the new device.  If the path specifies
1133  * a device that is not mirrored, we automatically insert the mirror vdev.
1134  *
1135  * If 'replacing' is specified, the new device is intended to replace the
1136  * existing device; in this case the two devices are made into their own
1137  * mirror using the 'replacing' vdev, which is functionally idendical to
1138  * the mirror vdev (it actually reuses all the same ops) but has a few
1139  * extra rules: you can't attach to it after it's been created, and upon
1140  * completion of resilvering, the first disk (the one being replaced)
1141  * is automatically detached.
1142  */
1143 int
1144 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
1145 {
1146 	uint64_t txg, open_txg;
1147 	int error;
1148 	vdev_t *rvd = spa->spa_root_vdev;
1149 	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
1150 	vdev_ops_t *pvops = replacing ? &vdev_replacing_ops : &vdev_mirror_ops;
1151 
1152 	txg = spa_vdev_enter(spa);
1153 
1154 	oldvd = vdev_lookup_by_guid(rvd, guid);
1155 
1156 	if (oldvd == NULL)
1157 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
1158 
1159 	if (!oldvd->vdev_ops->vdev_op_leaf)
1160 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1161 
1162 	pvd = oldvd->vdev_parent;
1163 
1164 	/*
1165 	 * The parent must be a mirror or the root, unless we're replacing;
1166 	 * in that case, the parent can be anything but another replacing vdev.
1167 	 */
1168 	if (pvd->vdev_ops != &vdev_mirror_ops &&
1169 	    pvd->vdev_ops != &vdev_root_ops &&
1170 	    (!replacing || pvd->vdev_ops == &vdev_replacing_ops))
1171 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1172 
1173 	newrootvd = spa_config_parse(spa, nvroot, NULL, 0, VDEV_ALLOC_ADD);
1174 
1175 	if (newrootvd == NULL || newrootvd->vdev_children != 1)
1176 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
1177 
1178 	newvd = newrootvd->vdev_child[0];
1179 
1180 	if (!newvd->vdev_ops->vdev_op_leaf)
1181 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
1182 
1183 	if ((error = vdev_create(newrootvd, txg)) != 0)
1184 		return (spa_vdev_exit(spa, newrootvd, txg, error));
1185 
1186 	/*
1187 	 * Compare the new device size with the replaceable/attachable
1188 	 * device size.
1189 	 */
1190 	if (newvd->vdev_psize < vdev_get_rsize(oldvd))
1191 		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
1192 
1193 	/*
1194 	 * The new device cannot have a higher alignment requirement
1195 	 * than the top-level vdev.
1196 	 */
1197 	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
1198 		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
1199 
1200 	/*
1201 	 * If this is an in-place replacement, update oldvd's path and devid
1202 	 * to make it distinguishable from newvd, and unopenable from now on.
1203 	 */
1204 	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
1205 		spa_strfree(oldvd->vdev_path);
1206 		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
1207 		    KM_SLEEP);
1208 		(void) sprintf(oldvd->vdev_path, "%s/%s",
1209 		    newvd->vdev_path, "old");
1210 		if (oldvd->vdev_devid != NULL) {
1211 			spa_strfree(oldvd->vdev_devid);
1212 			oldvd->vdev_devid = NULL;
1213 		}
1214 	}
1215 
1216 	/*
1217 	 * If the parent is not a mirror, or if we're replacing,
1218 	 * insert the new mirror/replacing vdev above oldvd.
1219 	 */
1220 	if (pvd->vdev_ops != pvops)
1221 		pvd = vdev_add_parent(oldvd, pvops);
1222 
1223 	ASSERT(pvd->vdev_top->vdev_parent == rvd);
1224 	ASSERT(pvd->vdev_ops == pvops);
1225 	ASSERT(oldvd->vdev_parent == pvd);
1226 
1227 	/*
1228 	 * Extract the new device from its root and add it to pvd.
1229 	 */
1230 	vdev_remove_child(newrootvd, newvd);
1231 	newvd->vdev_id = pvd->vdev_children;
1232 	vdev_add_child(pvd, newvd);
1233 
1234 	/*
1235 	 * If newvd is smaller than oldvd, but larger than its rsize,
1236 	 * the addition of newvd may have decreased our parent's asize.
1237 	 */
1238 	pvd->vdev_asize = MIN(pvd->vdev_asize, newvd->vdev_asize);
1239 
1240 	tvd = newvd->vdev_top;
1241 	ASSERT(pvd->vdev_top == tvd);
1242 	ASSERT(tvd->vdev_parent == rvd);
1243 
1244 	vdev_config_dirty(tvd);
1245 
1246 	/*
1247 	 * Set newvd's DTL to [TXG_INITIAL, open_txg].  It will propagate
1248 	 * upward when spa_vdev_exit() calls vdev_dtl_reassess().
1249 	 */
1250 	open_txg = txg + TXG_CONCURRENT_STATES - 1;
1251 
1252 	mutex_enter(&newvd->vdev_dtl_lock);
1253 	space_map_add(&newvd->vdev_dtl_map, TXG_INITIAL,
1254 	    open_txg - TXG_INITIAL + 1);
1255 	mutex_exit(&newvd->vdev_dtl_lock);
1256 
1257 	dprintf("attached %s in txg %llu\n", newvd->vdev_path, txg);
1258 
1259 	/*
1260 	 * Mark newvd's DTL dirty in this txg.
1261 	 */
1262 	vdev_dirty(tvd, VDD_DTL, newvd, txg);
1263 
1264 	(void) spa_vdev_exit(spa, newrootvd, open_txg, 0);
1265 
1266 	/*
1267 	 * Kick off a resilver to update newvd.
1268 	 */
1269 	VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
1270 
1271 	return (0);
1272 }
1273 
1274 /*
1275  * Detach a device from a mirror or replacing vdev.
1276  * If 'replace_done' is specified, only detach if the parent
1277  * is a replacing vdev.
1278  */
1279 int
1280 spa_vdev_detach(spa_t *spa, uint64_t guid, int replace_done)
1281 {
1282 	uint64_t txg;
1283 	int c, t, error;
1284 	vdev_t *rvd = spa->spa_root_vdev;
1285 	vdev_t *vd, *pvd, *cvd, *tvd;
1286 
1287 	txg = spa_vdev_enter(spa);
1288 
1289 	vd = vdev_lookup_by_guid(rvd, guid);
1290 
1291 	if (vd == NULL)
1292 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
1293 
1294 	if (!vd->vdev_ops->vdev_op_leaf)
1295 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1296 
1297 	pvd = vd->vdev_parent;
1298 
1299 	/*
1300 	 * If replace_done is specified, only remove this device if it's
1301 	 * the first child of a replacing vdev.
1302 	 */
1303 	if (replace_done &&
1304 	    (vd->vdev_id != 0 || pvd->vdev_ops != &vdev_replacing_ops))
1305 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1306 
1307 	/*
1308 	 * Only mirror and replacing vdevs support detach.
1309 	 */
1310 	if (pvd->vdev_ops != &vdev_replacing_ops &&
1311 	    pvd->vdev_ops != &vdev_mirror_ops)
1312 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1313 
1314 	/*
1315 	 * If there's only one replica, you can't detach it.
1316 	 */
1317 	if (pvd->vdev_children <= 1)
1318 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
1319 
1320 	/*
1321 	 * If all siblings have non-empty DTLs, this device may have the only
1322 	 * valid copy of the data, which means we cannot safely detach it.
1323 	 *
1324 	 * XXX -- as in the vdev_offline() case, we really want a more
1325 	 * precise DTL check.
1326 	 */
1327 	for (c = 0; c < pvd->vdev_children; c++) {
1328 		uint64_t dirty;
1329 
1330 		cvd = pvd->vdev_child[c];
1331 		if (cvd == vd)
1332 			continue;
1333 		if (vdev_is_dead(cvd))
1334 			continue;
1335 		mutex_enter(&cvd->vdev_dtl_lock);
1336 		dirty = cvd->vdev_dtl_map.sm_space |
1337 		    cvd->vdev_dtl_scrub.sm_space;
1338 		mutex_exit(&cvd->vdev_dtl_lock);
1339 		if (!dirty)
1340 			break;
1341 	}
1342 	if (c == pvd->vdev_children)
1343 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
1344 
1345 	/*
1346 	 * Erase the disk labels so the disk can be used for other things.
1347 	 * This must be done after all other error cases are handled,
1348 	 * but before we disembowel vd (so we can still do I/O to it).
1349 	 * But if we can't do it, don't treat the error as fatal --
1350 	 * it may be that the unwritability of the disk is the reason
1351 	 * it's being detached!
1352 	 */
1353 	error = vdev_label_init(vd, 0);
1354 	if (error)
1355 		dprintf("unable to erase labels on %s\n", vdev_description(vd));
1356 
1357 	/*
1358 	 * Remove vd from its parent and compact the parent's children.
1359 	 */
1360 	vdev_remove_child(pvd, vd);
1361 	vdev_compact_children(pvd);
1362 
1363 	/*
1364 	 * Remember one of the remaining children so we can get tvd below.
1365 	 */
1366 	cvd = pvd->vdev_child[0];
1367 
1368 	/*
1369 	 * If the parent mirror/replacing vdev only has one child,
1370 	 * the parent is no longer needed.  Remove it from the tree.
1371 	 */
1372 	if (pvd->vdev_children == 1)
1373 		vdev_remove_parent(cvd);
1374 
1375 	/*
1376 	 * We don't set tvd until now because the parent we just removed
1377 	 * may have been the previous top-level vdev.
1378 	 */
1379 	tvd = cvd->vdev_top;
1380 	ASSERT(tvd->vdev_parent == rvd);
1381 
1382 	/*
1383 	 * Reopen this top-level vdev to reassess health after detach.
1384 	 */
1385 	vdev_reopen(tvd);
1386 
1387 	/*
1388 	 * If the device we just detached was smaller than the others,
1389 	 * it may be possible to add metaslabs (i.e. grow the pool).
1390 	 * vdev_metaslab_init() can't fail because the existing metaslabs
1391 	 * are already in core, so there's nothing to read from disk.
1392 	 */
1393 	VERIFY(vdev_metaslab_init(tvd, txg) == 0);
1394 
1395 	vdev_config_dirty(tvd);
1396 
1397 	/*
1398 	 * Mark vd's DTL as dirty in this txg.
1399 	 * vdev_dtl_sync() will see that vd->vdev_detached is set
1400 	 * and free vd's DTL object in syncing context.
1401 	 * But first make sure we're not on any *other* txg's DTL list,
1402 	 * to prevent vd from being accessed after it's freed.
1403 	 */
1404 	for (t = 0; t < TXG_SIZE; t++)
1405 		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
1406 	vd->vdev_detached = B_TRUE;
1407 	vdev_dirty(tvd, VDD_DTL, vd, txg);
1408 
1409 	dprintf("detached %s in txg %llu\n", vd->vdev_path, txg);
1410 
1411 	return (spa_vdev_exit(spa, vd, txg, 0));
1412 }
1413 
1414 /*
1415  * Find any device that's done replacing, so we can detach it.
1416  */
1417 static vdev_t *
1418 spa_vdev_replace_done_hunt(vdev_t *vd)
1419 {
1420 	vdev_t *newvd, *oldvd;
1421 	int c;
1422 
1423 	for (c = 0; c < vd->vdev_children; c++) {
1424 		oldvd = spa_vdev_replace_done_hunt(vd->vdev_child[c]);
1425 		if (oldvd != NULL)
1426 			return (oldvd);
1427 	}
1428 
1429 	if (vd->vdev_ops == &vdev_replacing_ops && vd->vdev_children == 2) {
1430 		oldvd = vd->vdev_child[0];
1431 		newvd = vd->vdev_child[1];
1432 
1433 		mutex_enter(&newvd->vdev_dtl_lock);
1434 		if (newvd->vdev_dtl_map.sm_space == 0 &&
1435 		    newvd->vdev_dtl_scrub.sm_space == 0) {
1436 			mutex_exit(&newvd->vdev_dtl_lock);
1437 			return (oldvd);
1438 		}
1439 		mutex_exit(&newvd->vdev_dtl_lock);
1440 	}
1441 
1442 	return (NULL);
1443 }
1444 
1445 static void
1446 spa_vdev_replace_done(spa_t *spa)
1447 {
1448 	vdev_t *vd;
1449 	uint64_t guid;
1450 
1451 	spa_config_enter(spa, RW_READER, FTAG);
1452 
1453 	while ((vd = spa_vdev_replace_done_hunt(spa->spa_root_vdev)) != NULL) {
1454 		guid = vd->vdev_guid;
1455 		spa_config_exit(spa, FTAG);
1456 		if (spa_vdev_detach(spa, guid, B_TRUE) != 0)
1457 			return;
1458 		spa_config_enter(spa, RW_READER, FTAG);
1459 	}
1460 
1461 	spa_config_exit(spa, FTAG);
1462 }
1463 
1464 /*
1465  * Update the stored path for this vdev.  Dirty the vdev configuration, relying
1466  * on spa_vdev_enter/exit() to synchronize the labels and cache.
1467  */
1468 int
1469 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
1470 {
1471 	vdev_t *rvd, *vd;
1472 	uint64_t txg;
1473 
1474 	rvd = spa->spa_root_vdev;
1475 
1476 	txg = spa_vdev_enter(spa);
1477 
1478 	if ((vd = vdev_lookup_by_guid(rvd, guid)) == NULL)
1479 		return (spa_vdev_exit(spa, NULL, txg, ENOENT));
1480 
1481 	if (!vd->vdev_ops->vdev_op_leaf)
1482 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1483 
1484 	spa_strfree(vd->vdev_path);
1485 	vd->vdev_path = spa_strdup(newpath);
1486 
1487 	vdev_config_dirty(vd->vdev_top);
1488 
1489 	return (spa_vdev_exit(spa, NULL, txg, 0));
1490 }
1491 
1492 /*
1493  * ==========================================================================
1494  * SPA Scrubbing
1495  * ==========================================================================
1496  */
1497 
1498 void
1499 spa_scrub_throttle(spa_t *spa, int direction)
1500 {
1501 	mutex_enter(&spa->spa_scrub_lock);
1502 	spa->spa_scrub_throttled += direction;
1503 	ASSERT(spa->spa_scrub_throttled >= 0);
1504 	if (spa->spa_scrub_throttled == 0)
1505 		cv_broadcast(&spa->spa_scrub_io_cv);
1506 	mutex_exit(&spa->spa_scrub_lock);
1507 }
1508 
1509 static void
1510 spa_scrub_io_done(zio_t *zio)
1511 {
1512 	spa_t *spa = zio->io_spa;
1513 
1514 	zio_buf_free(zio->io_data, zio->io_size);
1515 
1516 	mutex_enter(&spa->spa_scrub_lock);
1517 	if (zio->io_error && !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
1518 		vdev_t *vd = zio->io_vd ? zio->io_vd : spa->spa_root_vdev;
1519 		spa->spa_scrub_errors++;
1520 		mutex_enter(&vd->vdev_stat_lock);
1521 		vd->vdev_stat.vs_scrub_errors++;
1522 		mutex_exit(&vd->vdev_stat_lock);
1523 	}
1524 	if (--spa->spa_scrub_inflight == 0) {
1525 		cv_broadcast(&spa->spa_scrub_io_cv);
1526 		ASSERT(spa->spa_scrub_throttled == 0);
1527 	}
1528 	mutex_exit(&spa->spa_scrub_lock);
1529 }
1530 
1531 static void
1532 spa_scrub_io_start(spa_t *spa, blkptr_t *bp, int priority, int flags,
1533     zbookmark_t *zb)
1534 {
1535 	size_t size = BP_GET_LSIZE(bp);
1536 	void *data = zio_buf_alloc(size);
1537 
1538 	mutex_enter(&spa->spa_scrub_lock);
1539 	spa->spa_scrub_inflight++;
1540 	mutex_exit(&spa->spa_scrub_lock);
1541 
1542 	if (zb->zb_level == -1 && BP_GET_TYPE(bp) != DMU_OT_OBJSET)
1543 		flags |= ZIO_FLAG_SPECULATIVE;	/* intent log block */
1544 
1545 	flags |= ZIO_FLAG_SCRUB_THREAD | ZIO_FLAG_CANFAIL;
1546 
1547 	zio_nowait(zio_read(NULL, spa, bp, data, size,
1548 	    spa_scrub_io_done, NULL, priority, flags, zb));
1549 }
1550 
1551 /* ARGSUSED */
1552 static int
1553 spa_scrub_cb(traverse_blk_cache_t *bc, spa_t *spa, void *a)
1554 {
1555 	blkptr_t *bp = &bc->bc_blkptr;
1556 	vdev_t *vd = spa->spa_root_vdev;
1557 	dva_t *dva = bp->blk_dva;
1558 	int needs_resilver = B_FALSE;
1559 	int d;
1560 
1561 	if (bc->bc_errno) {
1562 		/*
1563 		 * We can't scrub this block, but we can continue to scrub
1564 		 * the rest of the pool.  Note the error and move along.
1565 		 */
1566 		mutex_enter(&spa->spa_scrub_lock);
1567 		spa->spa_scrub_errors++;
1568 		mutex_exit(&spa->spa_scrub_lock);
1569 
1570 		mutex_enter(&vd->vdev_stat_lock);
1571 		vd->vdev_stat.vs_scrub_errors++;
1572 		mutex_exit(&vd->vdev_stat_lock);
1573 
1574 		return (ERESTART);
1575 	}
1576 
1577 	ASSERT(bp->blk_birth < spa->spa_scrub_maxtxg);
1578 
1579 	for (d = 0; d < BP_GET_NDVAS(bp); d++) {
1580 		vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]));
1581 
1582 		ASSERT(vd != NULL);
1583 
1584 		/*
1585 		 * Keep track of how much data we've examined so that
1586 		 * zpool(1M) status can make useful progress reports.
1587 		 */
1588 		mutex_enter(&vd->vdev_stat_lock);
1589 		vd->vdev_stat.vs_scrub_examined += DVA_GET_ASIZE(&dva[d]);
1590 		mutex_exit(&vd->vdev_stat_lock);
1591 
1592 		if (spa->spa_scrub_type == POOL_SCRUB_RESILVER) {
1593 			if (DVA_GET_GANG(&dva[d])) {
1594 				/*
1595 				 * Gang members may be spread across multiple
1596 				 * vdevs, so the best we can do is look at the
1597 				 * pool-wide DTL.
1598 				 * XXX -- it would be better to change our
1599 				 * allocation policy to ensure that this can't
1600 				 * happen.
1601 				 */
1602 				vd = spa->spa_root_vdev;
1603 			}
1604 			if (vdev_dtl_contains(&vd->vdev_dtl_map,
1605 			    bp->blk_birth, 1))
1606 				needs_resilver = B_TRUE;
1607 		}
1608 	}
1609 
1610 	if (spa->spa_scrub_type == POOL_SCRUB_EVERYTHING)
1611 		spa_scrub_io_start(spa, bp, ZIO_PRIORITY_SCRUB,
1612 		    ZIO_FLAG_SCRUB, &bc->bc_bookmark);
1613 	else if (needs_resilver)
1614 		spa_scrub_io_start(spa, bp, ZIO_PRIORITY_RESILVER,
1615 		    ZIO_FLAG_RESILVER, &bc->bc_bookmark);
1616 
1617 	return (0);
1618 }
1619 
1620 static void
1621 spa_scrub_thread(spa_t *spa)
1622 {
1623 	callb_cpr_t cprinfo;
1624 	traverse_handle_t *th = spa->spa_scrub_th;
1625 	vdev_t *rvd = spa->spa_root_vdev;
1626 	pool_scrub_type_t scrub_type = spa->spa_scrub_type;
1627 	int error = 0;
1628 	boolean_t complete;
1629 
1630 	CALLB_CPR_INIT(&cprinfo, &spa->spa_scrub_lock, callb_generic_cpr, FTAG);
1631 
1632 	/*
1633 	 * If we're restarting due to a snapshot create/delete,
1634 	 * wait for that to complete.
1635 	 */
1636 	txg_wait_synced(spa_get_dsl(spa), 0);
1637 
1638 	dprintf("start %s mintxg=%llu maxtxg=%llu\n",
1639 	    scrub_type == POOL_SCRUB_RESILVER ? "resilver" : "scrub",
1640 	    spa->spa_scrub_mintxg, spa->spa_scrub_maxtxg);
1641 
1642 	spa_config_enter(spa, RW_WRITER, FTAG);
1643 	vdev_reopen(rvd);		/* purge all vdev caches */
1644 	vdev_config_dirty(rvd);		/* rewrite all disk labels */
1645 	vdev_scrub_stat_update(rvd, scrub_type, B_FALSE);
1646 	spa_config_exit(spa, FTAG);
1647 
1648 	mutex_enter(&spa->spa_scrub_lock);
1649 	spa->spa_scrub_errors = 0;
1650 	spa->spa_scrub_active = 1;
1651 	ASSERT(spa->spa_scrub_inflight == 0);
1652 	ASSERT(spa->spa_scrub_throttled == 0);
1653 
1654 	while (!spa->spa_scrub_stop) {
1655 		CALLB_CPR_SAFE_BEGIN(&cprinfo);
1656 		while (spa->spa_scrub_suspended) {
1657 			spa->spa_scrub_active = 0;
1658 			cv_broadcast(&spa->spa_scrub_cv);
1659 			cv_wait(&spa->spa_scrub_cv, &spa->spa_scrub_lock);
1660 			spa->spa_scrub_active = 1;
1661 		}
1662 		CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_scrub_lock);
1663 
1664 		if (spa->spa_scrub_restart_txg != 0)
1665 			break;
1666 
1667 		mutex_exit(&spa->spa_scrub_lock);
1668 		error = traverse_more(th);
1669 		mutex_enter(&spa->spa_scrub_lock);
1670 		if (error != EAGAIN)
1671 			break;
1672 
1673 		while (spa->spa_scrub_throttled > 0)
1674 			cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
1675 	}
1676 
1677 	while (spa->spa_scrub_inflight)
1678 		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
1679 
1680 	spa->spa_scrub_active = 0;
1681 	cv_broadcast(&spa->spa_scrub_cv);
1682 
1683 	mutex_exit(&spa->spa_scrub_lock);
1684 
1685 	spa_config_enter(spa, RW_WRITER, FTAG);
1686 
1687 	mutex_enter(&spa->spa_scrub_lock);
1688 
1689 	/*
1690 	 * Note: we check spa_scrub_restart_txg under both spa_scrub_lock
1691 	 * AND the spa config lock to synchronize with any config changes
1692 	 * that revise the DTLs under spa_vdev_enter() / spa_vdev_exit().
1693 	 */
1694 	if (spa->spa_scrub_restart_txg != 0)
1695 		error = ERESTART;
1696 
1697 	if (spa->spa_scrub_stop)
1698 		error = EINTR;
1699 
1700 	/*
1701 	 * Even if there were uncorrectable errors, we consider the scrub
1702 	 * completed.  The downside is that if there is a transient error during
1703 	 * a resilver, we won't resilver the data properly to the target.  But
1704 	 * if the damage is permanent (more likely) we will resilver forever,
1705 	 * which isn't really acceptable.  Since there is enough information for
1706 	 * the user to know what has failed and why, this seems like a more
1707 	 * tractable approach.
1708 	 */
1709 	complete = (error == 0);
1710 
1711 	dprintf("end %s to maxtxg=%llu %s, traverse=%d, %llu errors, stop=%u\n",
1712 	    scrub_type == POOL_SCRUB_RESILVER ? "resilver" : "scrub",
1713 	    spa->spa_scrub_maxtxg, complete ? "done" : "FAILED",
1714 	    error, spa->spa_scrub_errors, spa->spa_scrub_stop);
1715 
1716 	mutex_exit(&spa->spa_scrub_lock);
1717 
1718 	/*
1719 	 * If the scrub/resilver completed, update all DTLs to reflect this.
1720 	 * Whether it succeeded or not, vacate all temporary scrub DTLs.
1721 	 */
1722 	vdev_dtl_reassess(rvd, spa_last_synced_txg(spa) + 1,
1723 	    complete ? spa->spa_scrub_maxtxg : 0, B_TRUE);
1724 	vdev_scrub_stat_update(rvd, POOL_SCRUB_NONE, complete);
1725 	spa_errlog_rotate(spa);
1726 
1727 	spa_config_exit(spa, FTAG);
1728 
1729 	mutex_enter(&spa->spa_scrub_lock);
1730 
1731 	/*
1732 	 * We may have finished replacing a device.
1733 	 * Let the async thread assess this and handle the detach.
1734 	 */
1735 	spa_async_request(spa, SPA_ASYNC_REPLACE_DONE);
1736 
1737 	/*
1738 	 * If we were told to restart, our final act is to start a new scrub.
1739 	 */
1740 	if (error == ERESTART)
1741 		spa_async_request(spa, scrub_type == POOL_SCRUB_RESILVER ?
1742 		    SPA_ASYNC_RESILVER : SPA_ASYNC_SCRUB);
1743 
1744 	spa->spa_scrub_type = POOL_SCRUB_NONE;
1745 	spa->spa_scrub_active = 0;
1746 	spa->spa_scrub_thread = NULL;
1747 	cv_broadcast(&spa->spa_scrub_cv);
1748 	CALLB_CPR_EXIT(&cprinfo);	/* drops &spa->spa_scrub_lock */
1749 	thread_exit();
1750 }
1751 
1752 void
1753 spa_scrub_suspend(spa_t *spa)
1754 {
1755 	mutex_enter(&spa->spa_scrub_lock);
1756 	spa->spa_scrub_suspended++;
1757 	while (spa->spa_scrub_active) {
1758 		cv_broadcast(&spa->spa_scrub_cv);
1759 		cv_wait(&spa->spa_scrub_cv, &spa->spa_scrub_lock);
1760 	}
1761 	while (spa->spa_scrub_inflight)
1762 		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
1763 	mutex_exit(&spa->spa_scrub_lock);
1764 }
1765 
1766 void
1767 spa_scrub_resume(spa_t *spa)
1768 {
1769 	mutex_enter(&spa->spa_scrub_lock);
1770 	ASSERT(spa->spa_scrub_suspended != 0);
1771 	if (--spa->spa_scrub_suspended == 0)
1772 		cv_broadcast(&spa->spa_scrub_cv);
1773 	mutex_exit(&spa->spa_scrub_lock);
1774 }
1775 
1776 void
1777 spa_scrub_restart(spa_t *spa, uint64_t txg)
1778 {
1779 	/*
1780 	 * Something happened (e.g. snapshot create/delete) that means
1781 	 * we must restart any in-progress scrubs.  The itinerary will
1782 	 * fix this properly.
1783 	 */
1784 	mutex_enter(&spa->spa_scrub_lock);
1785 	spa->spa_scrub_restart_txg = txg;
1786 	mutex_exit(&spa->spa_scrub_lock);
1787 }
1788 
1789 int
1790 spa_scrub(spa_t *spa, pool_scrub_type_t type, boolean_t force)
1791 {
1792 	space_seg_t *ss;
1793 	uint64_t mintxg, maxtxg;
1794 	vdev_t *rvd = spa->spa_root_vdev;
1795 
1796 	if ((uint_t)type >= POOL_SCRUB_TYPES)
1797 		return (ENOTSUP);
1798 
1799 	mutex_enter(&spa->spa_scrub_lock);
1800 
1801 	/*
1802 	 * If there's a scrub or resilver already in progress, stop it.
1803 	 */
1804 	while (spa->spa_scrub_thread != NULL) {
1805 		/*
1806 		 * Don't stop a resilver unless forced.
1807 		 */
1808 		if (spa->spa_scrub_type == POOL_SCRUB_RESILVER && !force) {
1809 			mutex_exit(&spa->spa_scrub_lock);
1810 			return (EBUSY);
1811 		}
1812 		spa->spa_scrub_stop = 1;
1813 		cv_broadcast(&spa->spa_scrub_cv);
1814 		cv_wait(&spa->spa_scrub_cv, &spa->spa_scrub_lock);
1815 	}
1816 
1817 	/*
1818 	 * Terminate the previous traverse.
1819 	 */
1820 	if (spa->spa_scrub_th != NULL) {
1821 		traverse_fini(spa->spa_scrub_th);
1822 		spa->spa_scrub_th = NULL;
1823 	}
1824 
1825 	if (rvd == NULL) {
1826 		ASSERT(spa->spa_scrub_stop == 0);
1827 		ASSERT(spa->spa_scrub_type == type);
1828 		ASSERT(spa->spa_scrub_restart_txg == 0);
1829 		mutex_exit(&spa->spa_scrub_lock);
1830 		return (0);
1831 	}
1832 
1833 	mintxg = TXG_INITIAL - 1;
1834 	maxtxg = spa_last_synced_txg(spa) + 1;
1835 
1836 	mutex_enter(&rvd->vdev_dtl_lock);
1837 
1838 	if (rvd->vdev_dtl_map.sm_space == 0) {
1839 		/*
1840 		 * The pool-wide DTL is empty.
1841 		 * If this is a resilver, there's nothing to do except
1842 		 * check whether any in-progress replacements have completed.
1843 		 */
1844 		if (type == POOL_SCRUB_RESILVER) {
1845 			type = POOL_SCRUB_NONE;
1846 			spa_async_request(spa, SPA_ASYNC_REPLACE_DONE);
1847 		}
1848 	} else {
1849 		/*
1850 		 * The pool-wide DTL is non-empty.
1851 		 * If this is a normal scrub, upgrade to a resilver instead.
1852 		 */
1853 		if (type == POOL_SCRUB_EVERYTHING)
1854 			type = POOL_SCRUB_RESILVER;
1855 	}
1856 
1857 	if (type == POOL_SCRUB_RESILVER) {
1858 		/*
1859 		 * Determine the resilvering boundaries.
1860 		 *
1861 		 * Note: (mintxg, maxtxg) is an open interval,
1862 		 * i.e. mintxg and maxtxg themselves are not included.
1863 		 *
1864 		 * Note: for maxtxg, we MIN with spa_last_synced_txg(spa) + 1
1865 		 * so we don't claim to resilver a txg that's still changing.
1866 		 */
1867 		ss = avl_first(&rvd->vdev_dtl_map.sm_root);
1868 		mintxg = ss->ss_start - 1;
1869 		ss = avl_last(&rvd->vdev_dtl_map.sm_root);
1870 		maxtxg = MIN(ss->ss_end, maxtxg);
1871 	}
1872 
1873 	mutex_exit(&rvd->vdev_dtl_lock);
1874 
1875 	spa->spa_scrub_stop = 0;
1876 	spa->spa_scrub_type = type;
1877 	spa->spa_scrub_restart_txg = 0;
1878 
1879 	if (type != POOL_SCRUB_NONE) {
1880 		spa->spa_scrub_mintxg = mintxg;
1881 		spa->spa_scrub_maxtxg = maxtxg;
1882 		spa->spa_scrub_th = traverse_init(spa, spa_scrub_cb, NULL,
1883 		    ADVANCE_PRE | ADVANCE_PRUNE | ADVANCE_ZIL,
1884 		    ZIO_FLAG_CANFAIL);
1885 		traverse_add_pool(spa->spa_scrub_th, mintxg, maxtxg);
1886 		spa->spa_scrub_thread = thread_create(NULL, 0,
1887 		    spa_scrub_thread, spa, 0, &p0, TS_RUN, minclsyspri);
1888 	}
1889 
1890 	mutex_exit(&spa->spa_scrub_lock);
1891 
1892 	return (0);
1893 }
1894 
1895 /*
1896  * ==========================================================================
1897  * SPA async task processing
1898  * ==========================================================================
1899  */
1900 
1901 static void
1902 spa_async_reopen(spa_t *spa)
1903 {
1904 	vdev_t *rvd = spa->spa_root_vdev;
1905 	vdev_t *tvd;
1906 	int c;
1907 
1908 	spa_config_enter(spa, RW_WRITER, FTAG);
1909 
1910 	for (c = 0; c < rvd->vdev_children; c++) {
1911 		tvd = rvd->vdev_child[c];
1912 		if (tvd->vdev_reopen_wanted) {
1913 			tvd->vdev_reopen_wanted = 0;
1914 			vdev_reopen(tvd);
1915 		}
1916 	}
1917 
1918 	spa_config_exit(spa, FTAG);
1919 }
1920 
1921 static void
1922 spa_async_thread(spa_t *spa)
1923 {
1924 	int tasks;
1925 
1926 	ASSERT(spa->spa_sync_on);
1927 
1928 	mutex_enter(&spa->spa_async_lock);
1929 	tasks = spa->spa_async_tasks;
1930 	spa->spa_async_tasks = 0;
1931 	mutex_exit(&spa->spa_async_lock);
1932 
1933 	/*
1934 	 * See if the config needs to be updated.
1935 	 */
1936 	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
1937 		mutex_enter(&spa_namespace_lock);
1938 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
1939 		mutex_exit(&spa_namespace_lock);
1940 	}
1941 
1942 	/*
1943 	 * See if any devices need to be reopened.
1944 	 */
1945 	if (tasks & SPA_ASYNC_REOPEN)
1946 		spa_async_reopen(spa);
1947 
1948 	/*
1949 	 * If any devices are done replacing, detach them.
1950 	 */
1951 	if (tasks & SPA_ASYNC_REPLACE_DONE)
1952 		spa_vdev_replace_done(spa);
1953 
1954 	/*
1955 	 * Kick off a scrub.
1956 	 */
1957 	if (tasks & SPA_ASYNC_SCRUB)
1958 		VERIFY(spa_scrub(spa, POOL_SCRUB_EVERYTHING, B_TRUE) == 0);
1959 
1960 	/*
1961 	 * Kick off a resilver.
1962 	 */
1963 	if (tasks & SPA_ASYNC_RESILVER)
1964 		VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
1965 
1966 	/*
1967 	 * Let the world know that we're done.
1968 	 */
1969 	mutex_enter(&spa->spa_async_lock);
1970 	spa->spa_async_thread = NULL;
1971 	cv_broadcast(&spa->spa_async_cv);
1972 	mutex_exit(&spa->spa_async_lock);
1973 	thread_exit();
1974 }
1975 
1976 void
1977 spa_async_suspend(spa_t *spa)
1978 {
1979 	mutex_enter(&spa->spa_async_lock);
1980 	spa->spa_async_suspended++;
1981 	while (spa->spa_async_thread != NULL)
1982 		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
1983 	mutex_exit(&spa->spa_async_lock);
1984 }
1985 
1986 void
1987 spa_async_resume(spa_t *spa)
1988 {
1989 	mutex_enter(&spa->spa_async_lock);
1990 	ASSERT(spa->spa_async_suspended != 0);
1991 	spa->spa_async_suspended--;
1992 	mutex_exit(&spa->spa_async_lock);
1993 }
1994 
1995 static void
1996 spa_async_dispatch(spa_t *spa)
1997 {
1998 	mutex_enter(&spa->spa_async_lock);
1999 	if (spa->spa_async_tasks && !spa->spa_async_suspended &&
2000 	    spa->spa_async_thread == NULL &&
2001 	    rootdir != NULL && !vn_is_readonly(rootdir))
2002 		spa->spa_async_thread = thread_create(NULL, 0,
2003 		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
2004 	mutex_exit(&spa->spa_async_lock);
2005 }
2006 
2007 void
2008 spa_async_request(spa_t *spa, int task)
2009 {
2010 	mutex_enter(&spa->spa_async_lock);
2011 	spa->spa_async_tasks |= task;
2012 	mutex_exit(&spa->spa_async_lock);
2013 }
2014 
2015 /*
2016  * ==========================================================================
2017  * SPA syncing routines
2018  * ==========================================================================
2019  */
2020 
2021 static void
2022 spa_sync_deferred_frees(spa_t *spa, uint64_t txg)
2023 {
2024 	bplist_t *bpl = &spa->spa_sync_bplist;
2025 	dmu_tx_t *tx;
2026 	blkptr_t blk;
2027 	uint64_t itor = 0;
2028 	zio_t *zio;
2029 	int error;
2030 	uint8_t c = 1;
2031 
2032 	zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CONFIG_HELD);
2033 
2034 	while (bplist_iterate(bpl, &itor, &blk) == 0)
2035 		zio_nowait(zio_free(zio, spa, txg, &blk, NULL, NULL));
2036 
2037 	error = zio_wait(zio);
2038 	ASSERT3U(error, ==, 0);
2039 
2040 	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2041 	bplist_vacate(bpl, tx);
2042 
2043 	/*
2044 	 * Pre-dirty the first block so we sync to convergence faster.
2045 	 * (Usually only the first block is needed.)
2046 	 */
2047 	dmu_write(spa->spa_meta_objset, spa->spa_sync_bplist_obj, 0, 1, &c, tx);
2048 	dmu_tx_commit(tx);
2049 }
2050 
2051 static void
2052 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
2053 {
2054 	nvlist_t *config;
2055 	char *packed = NULL;
2056 	size_t nvsize = 0;
2057 	dmu_buf_t *db;
2058 
2059 	if (list_is_empty(&spa->spa_dirty_list))
2060 		return;
2061 
2062 	config = spa_config_generate(spa, NULL, dmu_tx_get_txg(tx), B_FALSE);
2063 
2064 	if (spa->spa_config_syncing)
2065 		nvlist_free(spa->spa_config_syncing);
2066 	spa->spa_config_syncing = config;
2067 
2068 	VERIFY(nvlist_size(config, &nvsize, NV_ENCODE_XDR) == 0);
2069 
2070 	packed = kmem_alloc(nvsize, KM_SLEEP);
2071 
2072 	VERIFY(nvlist_pack(config, &packed, &nvsize, NV_ENCODE_XDR,
2073 	    KM_SLEEP) == 0);
2074 
2075 	dmu_write(spa->spa_meta_objset, spa->spa_config_object, 0, nvsize,
2076 	    packed, tx);
2077 
2078 	kmem_free(packed, nvsize);
2079 
2080 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset,
2081 	    spa->spa_config_object, FTAG, &db));
2082 	dmu_buf_will_dirty(db, tx);
2083 	*(uint64_t *)db->db_data = nvsize;
2084 	dmu_buf_rele(db, FTAG);
2085 }
2086 
2087 /*
2088  * Sync the specified transaction group.  New blocks may be dirtied as
2089  * part of the process, so we iterate until it converges.
2090  */
2091 void
2092 spa_sync(spa_t *spa, uint64_t txg)
2093 {
2094 	dsl_pool_t *dp = spa->spa_dsl_pool;
2095 	objset_t *mos = spa->spa_meta_objset;
2096 	bplist_t *bpl = &spa->spa_sync_bplist;
2097 	vdev_t *rvd = spa->spa_root_vdev;
2098 	vdev_t *vd;
2099 	dmu_tx_t *tx;
2100 	int dirty_vdevs;
2101 
2102 	/*
2103 	 * Lock out configuration changes.
2104 	 */
2105 	spa_config_enter(spa, RW_READER, FTAG);
2106 
2107 	spa->spa_syncing_txg = txg;
2108 	spa->spa_sync_pass = 0;
2109 
2110 	VERIFY(0 == bplist_open(bpl, mos, spa->spa_sync_bplist_obj));
2111 
2112 	/*
2113 	 * If anything has changed in this txg, push the deferred frees
2114 	 * from the previous txg.  If not, leave them alone so that we
2115 	 * don't generate work on an otherwise idle system.
2116 	 */
2117 	if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
2118 	    !txg_list_empty(&dp->dp_dirty_dirs, txg))
2119 		spa_sync_deferred_frees(spa, txg);
2120 
2121 	/*
2122 	 * Iterate to convergence.
2123 	 */
2124 	do {
2125 		spa->spa_sync_pass++;
2126 
2127 		tx = dmu_tx_create_assigned(dp, txg);
2128 		spa_sync_config_object(spa, tx);
2129 		dmu_tx_commit(tx);
2130 
2131 		spa_errlog_sync(spa, txg);
2132 
2133 		dsl_pool_sync(dp, txg);
2134 
2135 		dirty_vdevs = 0;
2136 		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) {
2137 			vdev_sync(vd, txg);
2138 			dirty_vdevs++;
2139 		}
2140 
2141 		tx = dmu_tx_create_assigned(dp, txg);
2142 		bplist_sync(bpl, tx);
2143 		dmu_tx_commit(tx);
2144 
2145 	} while (dirty_vdevs);
2146 
2147 	bplist_close(bpl);
2148 
2149 	dprintf("txg %llu passes %d\n", txg, spa->spa_sync_pass);
2150 
2151 	/*
2152 	 * Rewrite the vdev configuration (which includes the uberblock)
2153 	 * to commit the transaction group.
2154 	 *
2155 	 * If there are any dirty vdevs, sync the uberblock to all vdevs.
2156 	 * Otherwise, pick a random top-level vdev that's known to be
2157 	 * visible in the config cache (see spa_vdev_add() for details).
2158 	 * If the write fails, try the next vdev until we're tried them all.
2159 	 */
2160 	if (!list_is_empty(&spa->spa_dirty_list)) {
2161 		VERIFY(vdev_config_sync(rvd, txg) == 0);
2162 	} else {
2163 		int children = rvd->vdev_children;
2164 		int c0 = spa_get_random(children);
2165 		int c;
2166 
2167 		for (c = 0; c < children; c++) {
2168 			vd = rvd->vdev_child[(c0 + c) % children];
2169 			if (vd->vdev_ms_array == 0)
2170 				continue;
2171 			if (vdev_config_sync(vd, txg) == 0)
2172 				break;
2173 		}
2174 		if (c == children)
2175 			VERIFY(vdev_config_sync(rvd, txg) == 0);
2176 	}
2177 
2178 	/*
2179 	 * Clear the dirty config list.
2180 	 */
2181 	while ((vd = list_head(&spa->spa_dirty_list)) != NULL)
2182 		vdev_config_clean(vd);
2183 
2184 	/*
2185 	 * Now that the new config has synced transactionally,
2186 	 * let it become visible to the config cache.
2187 	 */
2188 	if (spa->spa_config_syncing != NULL) {
2189 		spa_config_set(spa, spa->spa_config_syncing);
2190 		spa->spa_config_txg = txg;
2191 		spa->spa_config_syncing = NULL;
2192 	}
2193 
2194 	/*
2195 	 * Make a stable copy of the fully synced uberblock.
2196 	 * We use this as the root for pool traversals.
2197 	 */
2198 	spa->spa_traverse_wanted = 1;	/* tells traverse_more() to stop */
2199 
2200 	spa_scrub_suspend(spa);		/* stop scrubbing and finish I/Os */
2201 
2202 	rw_enter(&spa->spa_traverse_lock, RW_WRITER);
2203 	spa->spa_traverse_wanted = 0;
2204 	spa->spa_ubsync = spa->spa_uberblock;
2205 	rw_exit(&spa->spa_traverse_lock);
2206 
2207 	spa_scrub_resume(spa);		/* resume scrub with new ubsync */
2208 
2209 	/*
2210 	 * Clean up the ZIL records for the synced txg.
2211 	 */
2212 	dsl_pool_zil_clean(dp);
2213 
2214 	/*
2215 	 * Update usable space statistics.
2216 	 */
2217 	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
2218 		vdev_sync_done(vd, txg);
2219 
2220 	/*
2221 	 * It had better be the case that we didn't dirty anything
2222 	 * since spa_sync_labels().
2223 	 */
2224 	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
2225 	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
2226 	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
2227 	ASSERT(bpl->bpl_queue == NULL);
2228 
2229 	spa_config_exit(spa, FTAG);
2230 
2231 	/*
2232 	 * If any async tasks have been requested, kick them off.
2233 	 */
2234 	spa_async_dispatch(spa);
2235 }
2236 
2237 /*
2238  * Sync all pools.  We don't want to hold the namespace lock across these
2239  * operations, so we take a reference on the spa_t and drop the lock during the
2240  * sync.
2241  */
2242 void
2243 spa_sync_allpools(void)
2244 {
2245 	spa_t *spa = NULL;
2246 	mutex_enter(&spa_namespace_lock);
2247 	while ((spa = spa_next(spa)) != NULL) {
2248 		if (spa_state(spa) != POOL_STATE_ACTIVE)
2249 			continue;
2250 		spa_open_ref(spa, FTAG);
2251 		mutex_exit(&spa_namespace_lock);
2252 		txg_wait_synced(spa_get_dsl(spa), 0);
2253 		mutex_enter(&spa_namespace_lock);
2254 		spa_close(spa, FTAG);
2255 	}
2256 	mutex_exit(&spa_namespace_lock);
2257 }
2258 
2259 /*
2260  * ==========================================================================
2261  * Miscellaneous routines
2262  * ==========================================================================
2263  */
2264 
2265 /*
2266  * Remove all pools in the system.
2267  */
2268 void
2269 spa_evict_all(void)
2270 {
2271 	spa_t *spa;
2272 
2273 	/*
2274 	 * Remove all cached state.  All pools should be closed now,
2275 	 * so every spa in the AVL tree should be unreferenced.
2276 	 */
2277 	mutex_enter(&spa_namespace_lock);
2278 	while ((spa = spa_next(NULL)) != NULL) {
2279 		/*
2280 		 * Stop async tasks.  The async thread may need to detach
2281 		 * a device that's been replaced, which requires grabbing
2282 		 * spa_namespace_lock, so we must drop it here.
2283 		 */
2284 		spa_open_ref(spa, FTAG);
2285 		mutex_exit(&spa_namespace_lock);
2286 		spa_async_suspend(spa);
2287 		VERIFY(spa_scrub(spa, POOL_SCRUB_NONE, B_TRUE) == 0);
2288 		mutex_enter(&spa_namespace_lock);
2289 		spa_close(spa, FTAG);
2290 
2291 		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
2292 			spa_unload(spa);
2293 			spa_deactivate(spa);
2294 		}
2295 		spa_remove(spa);
2296 	}
2297 	mutex_exit(&spa_namespace_lock);
2298 }
2299 
2300 vdev_t *
2301 spa_lookup_by_guid(spa_t *spa, uint64_t guid)
2302 {
2303 	return (vdev_lookup_by_guid(spa->spa_root_vdev, guid));
2304 }
2305 
2306 void
2307 spa_upgrade(spa_t *spa)
2308 {
2309 	spa_config_enter(spa, RW_WRITER, FTAG);
2310 
2311 	/*
2312 	 * This should only be called for a non-faulted pool, and since a
2313 	 * future version would result in an unopenable pool, this shouldn't be
2314 	 * possible.
2315 	 */
2316 	ASSERT(spa->spa_uberblock.ub_version <= ZFS_VERSION);
2317 
2318 	spa->spa_uberblock.ub_version = ZFS_VERSION;
2319 	vdev_config_dirty(spa->spa_root_vdev);
2320 
2321 	spa_config_exit(spa, FTAG);
2322 }
2323