1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2014 by Delphix. All rights reserved. 25 * Copyright (c) 2013, 2014, Nexenta Systems, Inc. All rights reserved. 26 */ 27 28 /* 29 * SPA: Storage Pool Allocator 30 * 31 * This file contains all the routines used when modifying on-disk SPA state. 32 * This includes opening, importing, destroying, exporting a pool, and syncing a 33 * pool. 34 */ 35 36 #include <sys/zfs_context.h> 37 #include <sys/fm/fs/zfs.h> 38 #include <sys/spa_impl.h> 39 #include <sys/zio.h> 40 #include <sys/zio_checksum.h> 41 #include <sys/dmu.h> 42 #include <sys/dmu_tx.h> 43 #include <sys/zap.h> 44 #include <sys/zil.h> 45 #include <sys/ddt.h> 46 #include <sys/vdev_impl.h> 47 #include <sys/metaslab.h> 48 #include <sys/metaslab_impl.h> 49 #include <sys/uberblock_impl.h> 50 #include <sys/txg.h> 51 #include <sys/avl.h> 52 #include <sys/dmu_traverse.h> 53 #include <sys/dmu_objset.h> 54 #include <sys/unique.h> 55 #include <sys/dsl_pool.h> 56 #include <sys/dsl_dataset.h> 57 #include <sys/dsl_dir.h> 58 #include <sys/dsl_prop.h> 59 #include <sys/dsl_synctask.h> 60 #include <sys/fs/zfs.h> 61 #include <sys/arc.h> 62 #include <sys/callb.h> 63 #include <sys/systeminfo.h> 64 #include <sys/spa_boot.h> 65 #include <sys/zfs_ioctl.h> 66 #include <sys/dsl_scan.h> 67 #include <sys/zfeature.h> 68 #include <sys/dsl_destroy.h> 69 70 #ifdef _KERNEL 71 #include <sys/bootprops.h> 72 #include <sys/callb.h> 73 #include <sys/cpupart.h> 74 #include <sys/pool.h> 75 #include <sys/sysdc.h> 76 #include <sys/zone.h> 77 #endif /* _KERNEL */ 78 79 #include "zfs_prop.h" 80 #include "zfs_comutil.h" 81 82 /* 83 * The interval, in seconds, at which failed configuration cache file writes 84 * should be retried. 85 */ 86 static int zfs_ccw_retry_interval = 300; 87 88 typedef enum zti_modes { 89 ZTI_MODE_FIXED, /* value is # of threads (min 1) */ 90 ZTI_MODE_BATCH, /* cpu-intensive; value is ignored */ 91 ZTI_MODE_NULL, /* don't create a taskq */ 92 ZTI_NMODES 93 } zti_modes_t; 94 95 #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) } 96 #define ZTI_BATCH { ZTI_MODE_BATCH, 0, 1 } 97 #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 } 98 99 #define ZTI_N(n) ZTI_P(n, 1) 100 #define ZTI_ONE ZTI_N(1) 101 102 typedef struct zio_taskq_info { 103 zti_modes_t zti_mode; 104 uint_t zti_value; 105 uint_t zti_count; 106 } zio_taskq_info_t; 107 108 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = { 109 "issue", "issue_high", "intr", "intr_high" 110 }; 111 112 /* 113 * This table defines the taskq settings for each ZFS I/O type. When 114 * initializing a pool, we use this table to create an appropriately sized 115 * taskq. Some operations are low volume and therefore have a small, static 116 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE 117 * macros. Other operations process a large amount of data; the ZTI_BATCH 118 * macro causes us to create a taskq oriented for throughput. Some operations 119 * are so high frequency and short-lived that the taskq itself can become a a 120 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an 121 * additional degree of parallelism specified by the number of threads per- 122 * taskq and the number of taskqs; when dispatching an event in this case, the 123 * particular taskq is chosen at random. 124 * 125 * The different taskq priorities are to handle the different contexts (issue 126 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that 127 * need to be handled with minimum delay. 128 */ 129 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = { 130 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */ 131 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */ 132 { ZTI_N(8), ZTI_NULL, ZTI_P(12, 8), ZTI_NULL }, /* READ */ 133 { ZTI_BATCH, ZTI_N(5), ZTI_N(8), ZTI_N(5) }, /* WRITE */ 134 { ZTI_P(12, 8), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */ 135 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */ 136 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* IOCTL */ 137 }; 138 139 static void spa_sync_version(void *arg, dmu_tx_t *tx); 140 static void spa_sync_props(void *arg, dmu_tx_t *tx); 141 static boolean_t spa_has_active_shared_spare(spa_t *spa); 142 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config, 143 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig, 144 char **ereport); 145 static void spa_vdev_resilver_done(spa_t *spa); 146 147 uint_t zio_taskq_batch_pct = 75; /* 1 thread per cpu in pset */ 148 id_t zio_taskq_psrset_bind = PS_NONE; 149 boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */ 150 uint_t zio_taskq_basedc = 80; /* base duty cycle */ 151 152 boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */ 153 extern int zfs_sync_pass_deferred_free; 154 155 /* 156 * This (illegal) pool name is used when temporarily importing a spa_t in order 157 * to get the vdev stats associated with the imported devices. 158 */ 159 #define TRYIMPORT_NAME "$import" 160 161 /* 162 * ========================================================================== 163 * SPA properties routines 164 * ========================================================================== 165 */ 166 167 /* 168 * Add a (source=src, propname=propval) list to an nvlist. 169 */ 170 static void 171 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval, 172 uint64_t intval, zprop_source_t src) 173 { 174 const char *propname = zpool_prop_to_name(prop); 175 nvlist_t *propval; 176 177 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0); 178 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0); 179 180 if (strval != NULL) 181 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0); 182 else 183 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0); 184 185 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0); 186 nvlist_free(propval); 187 } 188 189 /* 190 * Get property values from the spa configuration. 191 */ 192 static void 193 spa_prop_get_config(spa_t *spa, nvlist_t **nvp) 194 { 195 vdev_t *rvd = spa->spa_root_vdev; 196 dsl_pool_t *pool = spa->spa_dsl_pool; 197 uint64_t size, alloc, cap, version; 198 zprop_source_t src = ZPROP_SRC_NONE; 199 spa_config_dirent_t *dp; 200 metaslab_class_t *mc = spa_normal_class(spa); 201 202 ASSERT(MUTEX_HELD(&spa->spa_props_lock)); 203 204 if (rvd != NULL) { 205 alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 206 size = metaslab_class_get_space(spa_normal_class(spa)); 207 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src); 208 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src); 209 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src); 210 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL, 211 size - alloc, src); 212 213 spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL, 214 metaslab_class_fragmentation(mc), src); 215 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL, 216 metaslab_class_expandable_space(mc), src); 217 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL, 218 (spa_mode(spa) == FREAD), src); 219 220 cap = (size == 0) ? 0 : (alloc * 100 / size); 221 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src); 222 223 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL, 224 ddt_get_pool_dedup_ratio(spa), src); 225 226 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL, 227 rvd->vdev_state, src); 228 229 version = spa_version(spa); 230 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) 231 src = ZPROP_SRC_DEFAULT; 232 else 233 src = ZPROP_SRC_LOCAL; 234 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src); 235 } 236 237 if (pool != NULL) { 238 /* 239 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS, 240 * when opening pools before this version freedir will be NULL. 241 */ 242 if (pool->dp_free_dir != NULL) { 243 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL, 244 pool->dp_free_dir->dd_phys->dd_used_bytes, src); 245 } else { 246 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, 247 NULL, 0, src); 248 } 249 250 if (pool->dp_leak_dir != NULL) { 251 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL, 252 pool->dp_leak_dir->dd_phys->dd_used_bytes, src); 253 } else { 254 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, 255 NULL, 0, src); 256 } 257 } 258 259 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src); 260 261 if (spa->spa_comment != NULL) { 262 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment, 263 0, ZPROP_SRC_LOCAL); 264 } 265 266 if (spa->spa_root != NULL) 267 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root, 268 0, ZPROP_SRC_LOCAL); 269 270 if ((dp = list_head(&spa->spa_config_list)) != NULL) { 271 if (dp->scd_path == NULL) { 272 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 273 "none", 0, ZPROP_SRC_LOCAL); 274 } else if (strcmp(dp->scd_path, spa_config_path) != 0) { 275 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 276 dp->scd_path, 0, ZPROP_SRC_LOCAL); 277 } 278 } 279 } 280 281 /* 282 * Get zpool property values. 283 */ 284 int 285 spa_prop_get(spa_t *spa, nvlist_t **nvp) 286 { 287 objset_t *mos = spa->spa_meta_objset; 288 zap_cursor_t zc; 289 zap_attribute_t za; 290 int err; 291 292 VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0); 293 294 mutex_enter(&spa->spa_props_lock); 295 296 /* 297 * Get properties from the spa config. 298 */ 299 spa_prop_get_config(spa, nvp); 300 301 /* If no pool property object, no more prop to get. */ 302 if (mos == NULL || spa->spa_pool_props_object == 0) { 303 mutex_exit(&spa->spa_props_lock); 304 return (0); 305 } 306 307 /* 308 * Get properties from the MOS pool property object. 309 */ 310 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object); 311 (err = zap_cursor_retrieve(&zc, &za)) == 0; 312 zap_cursor_advance(&zc)) { 313 uint64_t intval = 0; 314 char *strval = NULL; 315 zprop_source_t src = ZPROP_SRC_DEFAULT; 316 zpool_prop_t prop; 317 318 if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL) 319 continue; 320 321 switch (za.za_integer_length) { 322 case 8: 323 /* integer property */ 324 if (za.za_first_integer != 325 zpool_prop_default_numeric(prop)) 326 src = ZPROP_SRC_LOCAL; 327 328 if (prop == ZPOOL_PROP_BOOTFS) { 329 dsl_pool_t *dp; 330 dsl_dataset_t *ds = NULL; 331 332 dp = spa_get_dsl(spa); 333 dsl_pool_config_enter(dp, FTAG); 334 if (err = dsl_dataset_hold_obj(dp, 335 za.za_first_integer, FTAG, &ds)) { 336 dsl_pool_config_exit(dp, FTAG); 337 break; 338 } 339 340 strval = kmem_alloc( 341 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1, 342 KM_SLEEP); 343 dsl_dataset_name(ds, strval); 344 dsl_dataset_rele(ds, FTAG); 345 dsl_pool_config_exit(dp, FTAG); 346 } else { 347 strval = NULL; 348 intval = za.za_first_integer; 349 } 350 351 spa_prop_add_list(*nvp, prop, strval, intval, src); 352 353 if (strval != NULL) 354 kmem_free(strval, 355 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1); 356 357 break; 358 359 case 1: 360 /* string property */ 361 strval = kmem_alloc(za.za_num_integers, KM_SLEEP); 362 err = zap_lookup(mos, spa->spa_pool_props_object, 363 za.za_name, 1, za.za_num_integers, strval); 364 if (err) { 365 kmem_free(strval, za.za_num_integers); 366 break; 367 } 368 spa_prop_add_list(*nvp, prop, strval, 0, src); 369 kmem_free(strval, za.za_num_integers); 370 break; 371 372 default: 373 break; 374 } 375 } 376 zap_cursor_fini(&zc); 377 mutex_exit(&spa->spa_props_lock); 378 out: 379 if (err && err != ENOENT) { 380 nvlist_free(*nvp); 381 *nvp = NULL; 382 return (err); 383 } 384 385 return (0); 386 } 387 388 /* 389 * Validate the given pool properties nvlist and modify the list 390 * for the property values to be set. 391 */ 392 static int 393 spa_prop_validate(spa_t *spa, nvlist_t *props) 394 { 395 nvpair_t *elem; 396 int error = 0, reset_bootfs = 0; 397 uint64_t objnum = 0; 398 boolean_t has_feature = B_FALSE; 399 400 elem = NULL; 401 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) { 402 uint64_t intval; 403 char *strval, *slash, *check, *fname; 404 const char *propname = nvpair_name(elem); 405 zpool_prop_t prop = zpool_name_to_prop(propname); 406 407 switch (prop) { 408 case ZPROP_INVAL: 409 if (!zpool_prop_feature(propname)) { 410 error = SET_ERROR(EINVAL); 411 break; 412 } 413 414 /* 415 * Sanitize the input. 416 */ 417 if (nvpair_type(elem) != DATA_TYPE_UINT64) { 418 error = SET_ERROR(EINVAL); 419 break; 420 } 421 422 if (nvpair_value_uint64(elem, &intval) != 0) { 423 error = SET_ERROR(EINVAL); 424 break; 425 } 426 427 if (intval != 0) { 428 error = SET_ERROR(EINVAL); 429 break; 430 } 431 432 fname = strchr(propname, '@') + 1; 433 if (zfeature_lookup_name(fname, NULL) != 0) { 434 error = SET_ERROR(EINVAL); 435 break; 436 } 437 438 has_feature = B_TRUE; 439 break; 440 441 case ZPOOL_PROP_VERSION: 442 error = nvpair_value_uint64(elem, &intval); 443 if (!error && 444 (intval < spa_version(spa) || 445 intval > SPA_VERSION_BEFORE_FEATURES || 446 has_feature)) 447 error = SET_ERROR(EINVAL); 448 break; 449 450 case ZPOOL_PROP_DELEGATION: 451 case ZPOOL_PROP_AUTOREPLACE: 452 case ZPOOL_PROP_LISTSNAPS: 453 case ZPOOL_PROP_AUTOEXPAND: 454 error = nvpair_value_uint64(elem, &intval); 455 if (!error && intval > 1) 456 error = SET_ERROR(EINVAL); 457 break; 458 459 case ZPOOL_PROP_BOOTFS: 460 /* 461 * If the pool version is less than SPA_VERSION_BOOTFS, 462 * or the pool is still being created (version == 0), 463 * the bootfs property cannot be set. 464 */ 465 if (spa_version(spa) < SPA_VERSION_BOOTFS) { 466 error = SET_ERROR(ENOTSUP); 467 break; 468 } 469 470 /* 471 * Make sure the vdev config is bootable 472 */ 473 if (!vdev_is_bootable(spa->spa_root_vdev)) { 474 error = SET_ERROR(ENOTSUP); 475 break; 476 } 477 478 reset_bootfs = 1; 479 480 error = nvpair_value_string(elem, &strval); 481 482 if (!error) { 483 objset_t *os; 484 uint64_t compress; 485 486 if (strval == NULL || strval[0] == '\0') { 487 objnum = zpool_prop_default_numeric( 488 ZPOOL_PROP_BOOTFS); 489 break; 490 } 491 492 if (error = dmu_objset_hold(strval, FTAG, &os)) 493 break; 494 495 /* Must be ZPL and not gzip compressed. */ 496 497 if (dmu_objset_type(os) != DMU_OST_ZFS) { 498 error = SET_ERROR(ENOTSUP); 499 } else if ((error = 500 dsl_prop_get_int_ds(dmu_objset_ds(os), 501 zfs_prop_to_name(ZFS_PROP_COMPRESSION), 502 &compress)) == 0 && 503 !BOOTFS_COMPRESS_VALID(compress)) { 504 error = SET_ERROR(ENOTSUP); 505 } else { 506 objnum = dmu_objset_id(os); 507 } 508 dmu_objset_rele(os, FTAG); 509 } 510 break; 511 512 case ZPOOL_PROP_FAILUREMODE: 513 error = nvpair_value_uint64(elem, &intval); 514 if (!error && (intval < ZIO_FAILURE_MODE_WAIT || 515 intval > ZIO_FAILURE_MODE_PANIC)) 516 error = SET_ERROR(EINVAL); 517 518 /* 519 * This is a special case which only occurs when 520 * the pool has completely failed. This allows 521 * the user to change the in-core failmode property 522 * without syncing it out to disk (I/Os might 523 * currently be blocked). We do this by returning 524 * EIO to the caller (spa_prop_set) to trick it 525 * into thinking we encountered a property validation 526 * error. 527 */ 528 if (!error && spa_suspended(spa)) { 529 spa->spa_failmode = intval; 530 error = SET_ERROR(EIO); 531 } 532 break; 533 534 case ZPOOL_PROP_CACHEFILE: 535 if ((error = nvpair_value_string(elem, &strval)) != 0) 536 break; 537 538 if (strval[0] == '\0') 539 break; 540 541 if (strcmp(strval, "none") == 0) 542 break; 543 544 if (strval[0] != '/') { 545 error = SET_ERROR(EINVAL); 546 break; 547 } 548 549 slash = strrchr(strval, '/'); 550 ASSERT(slash != NULL); 551 552 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 || 553 strcmp(slash, "/..") == 0) 554 error = SET_ERROR(EINVAL); 555 break; 556 557 case ZPOOL_PROP_COMMENT: 558 if ((error = nvpair_value_string(elem, &strval)) != 0) 559 break; 560 for (check = strval; *check != '\0'; check++) { 561 /* 562 * The kernel doesn't have an easy isprint() 563 * check. For this kernel check, we merely 564 * check ASCII apart from DEL. Fix this if 565 * there is an easy-to-use kernel isprint(). 566 */ 567 if (*check >= 0x7f) { 568 error = SET_ERROR(EINVAL); 569 break; 570 } 571 check++; 572 } 573 if (strlen(strval) > ZPROP_MAX_COMMENT) 574 error = E2BIG; 575 break; 576 577 case ZPOOL_PROP_DEDUPDITTO: 578 if (spa_version(spa) < SPA_VERSION_DEDUP) 579 error = SET_ERROR(ENOTSUP); 580 else 581 error = nvpair_value_uint64(elem, &intval); 582 if (error == 0 && 583 intval != 0 && intval < ZIO_DEDUPDITTO_MIN) 584 error = SET_ERROR(EINVAL); 585 break; 586 } 587 588 if (error) 589 break; 590 } 591 592 if (!error && reset_bootfs) { 593 error = nvlist_remove(props, 594 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING); 595 596 if (!error) { 597 error = nvlist_add_uint64(props, 598 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum); 599 } 600 } 601 602 return (error); 603 } 604 605 void 606 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync) 607 { 608 char *cachefile; 609 spa_config_dirent_t *dp; 610 611 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE), 612 &cachefile) != 0) 613 return; 614 615 dp = kmem_alloc(sizeof (spa_config_dirent_t), 616 KM_SLEEP); 617 618 if (cachefile[0] == '\0') 619 dp->scd_path = spa_strdup(spa_config_path); 620 else if (strcmp(cachefile, "none") == 0) 621 dp->scd_path = NULL; 622 else 623 dp->scd_path = spa_strdup(cachefile); 624 625 list_insert_head(&spa->spa_config_list, dp); 626 if (need_sync) 627 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 628 } 629 630 int 631 spa_prop_set(spa_t *spa, nvlist_t *nvp) 632 { 633 int error; 634 nvpair_t *elem = NULL; 635 boolean_t need_sync = B_FALSE; 636 637 if ((error = spa_prop_validate(spa, nvp)) != 0) 638 return (error); 639 640 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) { 641 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem)); 642 643 if (prop == ZPOOL_PROP_CACHEFILE || 644 prop == ZPOOL_PROP_ALTROOT || 645 prop == ZPOOL_PROP_READONLY) 646 continue; 647 648 if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) { 649 uint64_t ver; 650 651 if (prop == ZPOOL_PROP_VERSION) { 652 VERIFY(nvpair_value_uint64(elem, &ver) == 0); 653 } else { 654 ASSERT(zpool_prop_feature(nvpair_name(elem))); 655 ver = SPA_VERSION_FEATURES; 656 need_sync = B_TRUE; 657 } 658 659 /* Save time if the version is already set. */ 660 if (ver == spa_version(spa)) 661 continue; 662 663 /* 664 * In addition to the pool directory object, we might 665 * create the pool properties object, the features for 666 * read object, the features for write object, or the 667 * feature descriptions object. 668 */ 669 error = dsl_sync_task(spa->spa_name, NULL, 670 spa_sync_version, &ver, 671 6, ZFS_SPACE_CHECK_RESERVED); 672 if (error) 673 return (error); 674 continue; 675 } 676 677 need_sync = B_TRUE; 678 break; 679 } 680 681 if (need_sync) { 682 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props, 683 nvp, 6, ZFS_SPACE_CHECK_RESERVED)); 684 } 685 686 return (0); 687 } 688 689 /* 690 * If the bootfs property value is dsobj, clear it. 691 */ 692 void 693 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx) 694 { 695 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) { 696 VERIFY(zap_remove(spa->spa_meta_objset, 697 spa->spa_pool_props_object, 698 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0); 699 spa->spa_bootfs = 0; 700 } 701 } 702 703 /*ARGSUSED*/ 704 static int 705 spa_change_guid_check(void *arg, dmu_tx_t *tx) 706 { 707 uint64_t *newguid = arg; 708 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 709 vdev_t *rvd = spa->spa_root_vdev; 710 uint64_t vdev_state; 711 712 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 713 vdev_state = rvd->vdev_state; 714 spa_config_exit(spa, SCL_STATE, FTAG); 715 716 if (vdev_state != VDEV_STATE_HEALTHY) 717 return (SET_ERROR(ENXIO)); 718 719 ASSERT3U(spa_guid(spa), !=, *newguid); 720 721 return (0); 722 } 723 724 static void 725 spa_change_guid_sync(void *arg, dmu_tx_t *tx) 726 { 727 uint64_t *newguid = arg; 728 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 729 uint64_t oldguid; 730 vdev_t *rvd = spa->spa_root_vdev; 731 732 oldguid = spa_guid(spa); 733 734 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 735 rvd->vdev_guid = *newguid; 736 rvd->vdev_guid_sum += (*newguid - oldguid); 737 vdev_config_dirty(rvd); 738 spa_config_exit(spa, SCL_STATE, FTAG); 739 740 spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu", 741 oldguid, *newguid); 742 } 743 744 /* 745 * Change the GUID for the pool. This is done so that we can later 746 * re-import a pool built from a clone of our own vdevs. We will modify 747 * the root vdev's guid, our own pool guid, and then mark all of our 748 * vdevs dirty. Note that we must make sure that all our vdevs are 749 * online when we do this, or else any vdevs that weren't present 750 * would be orphaned from our pool. We are also going to issue a 751 * sysevent to update any watchers. 752 */ 753 int 754 spa_change_guid(spa_t *spa) 755 { 756 int error; 757 uint64_t guid; 758 759 mutex_enter(&spa->spa_vdev_top_lock); 760 mutex_enter(&spa_namespace_lock); 761 guid = spa_generate_guid(NULL); 762 763 error = dsl_sync_task(spa->spa_name, spa_change_guid_check, 764 spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED); 765 766 if (error == 0) { 767 spa_config_sync(spa, B_FALSE, B_TRUE); 768 spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID); 769 } 770 771 mutex_exit(&spa_namespace_lock); 772 mutex_exit(&spa->spa_vdev_top_lock); 773 774 return (error); 775 } 776 777 /* 778 * ========================================================================== 779 * SPA state manipulation (open/create/destroy/import/export) 780 * ========================================================================== 781 */ 782 783 static int 784 spa_error_entry_compare(const void *a, const void *b) 785 { 786 spa_error_entry_t *sa = (spa_error_entry_t *)a; 787 spa_error_entry_t *sb = (spa_error_entry_t *)b; 788 int ret; 789 790 ret = bcmp(&sa->se_bookmark, &sb->se_bookmark, 791 sizeof (zbookmark_phys_t)); 792 793 if (ret < 0) 794 return (-1); 795 else if (ret > 0) 796 return (1); 797 else 798 return (0); 799 } 800 801 /* 802 * Utility function which retrieves copies of the current logs and 803 * re-initializes them in the process. 804 */ 805 void 806 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub) 807 { 808 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock)); 809 810 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t)); 811 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t)); 812 813 avl_create(&spa->spa_errlist_scrub, 814 spa_error_entry_compare, sizeof (spa_error_entry_t), 815 offsetof(spa_error_entry_t, se_avl)); 816 avl_create(&spa->spa_errlist_last, 817 spa_error_entry_compare, sizeof (spa_error_entry_t), 818 offsetof(spa_error_entry_t, se_avl)); 819 } 820 821 static void 822 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q) 823 { 824 const zio_taskq_info_t *ztip = &zio_taskqs[t][q]; 825 enum zti_modes mode = ztip->zti_mode; 826 uint_t value = ztip->zti_value; 827 uint_t count = ztip->zti_count; 828 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 829 char name[32]; 830 uint_t flags = 0; 831 boolean_t batch = B_FALSE; 832 833 if (mode == ZTI_MODE_NULL) { 834 tqs->stqs_count = 0; 835 tqs->stqs_taskq = NULL; 836 return; 837 } 838 839 ASSERT3U(count, >, 0); 840 841 tqs->stqs_count = count; 842 tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP); 843 844 switch (mode) { 845 case ZTI_MODE_FIXED: 846 ASSERT3U(value, >=, 1); 847 value = MAX(value, 1); 848 break; 849 850 case ZTI_MODE_BATCH: 851 batch = B_TRUE; 852 flags |= TASKQ_THREADS_CPU_PCT; 853 value = zio_taskq_batch_pct; 854 break; 855 856 default: 857 panic("unrecognized mode for %s_%s taskq (%u:%u) in " 858 "spa_activate()", 859 zio_type_name[t], zio_taskq_types[q], mode, value); 860 break; 861 } 862 863 for (uint_t i = 0; i < count; i++) { 864 taskq_t *tq; 865 866 if (count > 1) { 867 (void) snprintf(name, sizeof (name), "%s_%s_%u", 868 zio_type_name[t], zio_taskq_types[q], i); 869 } else { 870 (void) snprintf(name, sizeof (name), "%s_%s", 871 zio_type_name[t], zio_taskq_types[q]); 872 } 873 874 if (zio_taskq_sysdc && spa->spa_proc != &p0) { 875 if (batch) 876 flags |= TASKQ_DC_BATCH; 877 878 tq = taskq_create_sysdc(name, value, 50, INT_MAX, 879 spa->spa_proc, zio_taskq_basedc, flags); 880 } else { 881 pri_t pri = maxclsyspri; 882 /* 883 * The write issue taskq can be extremely CPU 884 * intensive. Run it at slightly lower priority 885 * than the other taskqs. 886 */ 887 if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE) 888 pri--; 889 890 tq = taskq_create_proc(name, value, pri, 50, 891 INT_MAX, spa->spa_proc, flags); 892 } 893 894 tqs->stqs_taskq[i] = tq; 895 } 896 } 897 898 static void 899 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q) 900 { 901 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 902 903 if (tqs->stqs_taskq == NULL) { 904 ASSERT0(tqs->stqs_count); 905 return; 906 } 907 908 for (uint_t i = 0; i < tqs->stqs_count; i++) { 909 ASSERT3P(tqs->stqs_taskq[i], !=, NULL); 910 taskq_destroy(tqs->stqs_taskq[i]); 911 } 912 913 kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *)); 914 tqs->stqs_taskq = NULL; 915 } 916 917 /* 918 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority. 919 * Note that a type may have multiple discrete taskqs to avoid lock contention 920 * on the taskq itself. In that case we choose which taskq at random by using 921 * the low bits of gethrtime(). 922 */ 923 void 924 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q, 925 task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent) 926 { 927 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 928 taskq_t *tq; 929 930 ASSERT3P(tqs->stqs_taskq, !=, NULL); 931 ASSERT3U(tqs->stqs_count, !=, 0); 932 933 if (tqs->stqs_count == 1) { 934 tq = tqs->stqs_taskq[0]; 935 } else { 936 tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count]; 937 } 938 939 taskq_dispatch_ent(tq, func, arg, flags, ent); 940 } 941 942 static void 943 spa_create_zio_taskqs(spa_t *spa) 944 { 945 for (int t = 0; t < ZIO_TYPES; t++) { 946 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 947 spa_taskqs_init(spa, t, q); 948 } 949 } 950 } 951 952 #ifdef _KERNEL 953 static void 954 spa_thread(void *arg) 955 { 956 callb_cpr_t cprinfo; 957 958 spa_t *spa = arg; 959 user_t *pu = PTOU(curproc); 960 961 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr, 962 spa->spa_name); 963 964 ASSERT(curproc != &p0); 965 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs), 966 "zpool-%s", spa->spa_name); 967 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm)); 968 969 /* bind this thread to the requested psrset */ 970 if (zio_taskq_psrset_bind != PS_NONE) { 971 pool_lock(); 972 mutex_enter(&cpu_lock); 973 mutex_enter(&pidlock); 974 mutex_enter(&curproc->p_lock); 975 976 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind, 977 0, NULL, NULL) == 0) { 978 curthread->t_bind_pset = zio_taskq_psrset_bind; 979 } else { 980 cmn_err(CE_WARN, 981 "Couldn't bind process for zfs pool \"%s\" to " 982 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind); 983 } 984 985 mutex_exit(&curproc->p_lock); 986 mutex_exit(&pidlock); 987 mutex_exit(&cpu_lock); 988 pool_unlock(); 989 } 990 991 if (zio_taskq_sysdc) { 992 sysdc_thread_enter(curthread, 100, 0); 993 } 994 995 spa->spa_proc = curproc; 996 spa->spa_did = curthread->t_did; 997 998 spa_create_zio_taskqs(spa); 999 1000 mutex_enter(&spa->spa_proc_lock); 1001 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED); 1002 1003 spa->spa_proc_state = SPA_PROC_ACTIVE; 1004 cv_broadcast(&spa->spa_proc_cv); 1005 1006 CALLB_CPR_SAFE_BEGIN(&cprinfo); 1007 while (spa->spa_proc_state == SPA_PROC_ACTIVE) 1008 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 1009 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock); 1010 1011 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE); 1012 spa->spa_proc_state = SPA_PROC_GONE; 1013 spa->spa_proc = &p0; 1014 cv_broadcast(&spa->spa_proc_cv); 1015 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */ 1016 1017 mutex_enter(&curproc->p_lock); 1018 lwp_exit(); 1019 } 1020 #endif 1021 1022 /* 1023 * Activate an uninitialized pool. 1024 */ 1025 static void 1026 spa_activate(spa_t *spa, int mode) 1027 { 1028 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED); 1029 1030 spa->spa_state = POOL_STATE_ACTIVE; 1031 spa->spa_mode = mode; 1032 1033 spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops); 1034 spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops); 1035 1036 /* Try to create a covering process */ 1037 mutex_enter(&spa->spa_proc_lock); 1038 ASSERT(spa->spa_proc_state == SPA_PROC_NONE); 1039 ASSERT(spa->spa_proc == &p0); 1040 spa->spa_did = 0; 1041 1042 /* Only create a process if we're going to be around a while. */ 1043 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) { 1044 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri, 1045 NULL, 0) == 0) { 1046 spa->spa_proc_state = SPA_PROC_CREATED; 1047 while (spa->spa_proc_state == SPA_PROC_CREATED) { 1048 cv_wait(&spa->spa_proc_cv, 1049 &spa->spa_proc_lock); 1050 } 1051 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 1052 ASSERT(spa->spa_proc != &p0); 1053 ASSERT(spa->spa_did != 0); 1054 } else { 1055 #ifdef _KERNEL 1056 cmn_err(CE_WARN, 1057 "Couldn't create process for zfs pool \"%s\"\n", 1058 spa->spa_name); 1059 #endif 1060 } 1061 } 1062 mutex_exit(&spa->spa_proc_lock); 1063 1064 /* If we didn't create a process, we need to create our taskqs. */ 1065 if (spa->spa_proc == &p0) { 1066 spa_create_zio_taskqs(spa); 1067 } 1068 1069 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t), 1070 offsetof(vdev_t, vdev_config_dirty_node)); 1071 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t), 1072 offsetof(vdev_t, vdev_state_dirty_node)); 1073 1074 txg_list_create(&spa->spa_vdev_txg_list, 1075 offsetof(struct vdev, vdev_txg_node)); 1076 1077 avl_create(&spa->spa_errlist_scrub, 1078 spa_error_entry_compare, sizeof (spa_error_entry_t), 1079 offsetof(spa_error_entry_t, se_avl)); 1080 avl_create(&spa->spa_errlist_last, 1081 spa_error_entry_compare, sizeof (spa_error_entry_t), 1082 offsetof(spa_error_entry_t, se_avl)); 1083 } 1084 1085 /* 1086 * Opposite of spa_activate(). 1087 */ 1088 static void 1089 spa_deactivate(spa_t *spa) 1090 { 1091 ASSERT(spa->spa_sync_on == B_FALSE); 1092 ASSERT(spa->spa_dsl_pool == NULL); 1093 ASSERT(spa->spa_root_vdev == NULL); 1094 ASSERT(spa->spa_async_zio_root == NULL); 1095 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED); 1096 1097 txg_list_destroy(&spa->spa_vdev_txg_list); 1098 1099 list_destroy(&spa->spa_config_dirty_list); 1100 list_destroy(&spa->spa_state_dirty_list); 1101 1102 for (int t = 0; t < ZIO_TYPES; t++) { 1103 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 1104 spa_taskqs_fini(spa, t, q); 1105 } 1106 } 1107 1108 metaslab_class_destroy(spa->spa_normal_class); 1109 spa->spa_normal_class = NULL; 1110 1111 metaslab_class_destroy(spa->spa_log_class); 1112 spa->spa_log_class = NULL; 1113 1114 /* 1115 * If this was part of an import or the open otherwise failed, we may 1116 * still have errors left in the queues. Empty them just in case. 1117 */ 1118 spa_errlog_drain(spa); 1119 1120 avl_destroy(&spa->spa_errlist_scrub); 1121 avl_destroy(&spa->spa_errlist_last); 1122 1123 spa->spa_state = POOL_STATE_UNINITIALIZED; 1124 1125 mutex_enter(&spa->spa_proc_lock); 1126 if (spa->spa_proc_state != SPA_PROC_NONE) { 1127 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 1128 spa->spa_proc_state = SPA_PROC_DEACTIVATE; 1129 cv_broadcast(&spa->spa_proc_cv); 1130 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) { 1131 ASSERT(spa->spa_proc != &p0); 1132 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 1133 } 1134 ASSERT(spa->spa_proc_state == SPA_PROC_GONE); 1135 spa->spa_proc_state = SPA_PROC_NONE; 1136 } 1137 ASSERT(spa->spa_proc == &p0); 1138 mutex_exit(&spa->spa_proc_lock); 1139 1140 /* 1141 * We want to make sure spa_thread() has actually exited the ZFS 1142 * module, so that the module can't be unloaded out from underneath 1143 * it. 1144 */ 1145 if (spa->spa_did != 0) { 1146 thread_join(spa->spa_did); 1147 spa->spa_did = 0; 1148 } 1149 } 1150 1151 /* 1152 * Verify a pool configuration, and construct the vdev tree appropriately. This 1153 * will create all the necessary vdevs in the appropriate layout, with each vdev 1154 * in the CLOSED state. This will prep the pool before open/creation/import. 1155 * All vdev validation is done by the vdev_alloc() routine. 1156 */ 1157 static int 1158 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, 1159 uint_t id, int atype) 1160 { 1161 nvlist_t **child; 1162 uint_t children; 1163 int error; 1164 1165 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0) 1166 return (error); 1167 1168 if ((*vdp)->vdev_ops->vdev_op_leaf) 1169 return (0); 1170 1171 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 1172 &child, &children); 1173 1174 if (error == ENOENT) 1175 return (0); 1176 1177 if (error) { 1178 vdev_free(*vdp); 1179 *vdp = NULL; 1180 return (SET_ERROR(EINVAL)); 1181 } 1182 1183 for (int c = 0; c < children; c++) { 1184 vdev_t *vd; 1185 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c, 1186 atype)) != 0) { 1187 vdev_free(*vdp); 1188 *vdp = NULL; 1189 return (error); 1190 } 1191 } 1192 1193 ASSERT(*vdp != NULL); 1194 1195 return (0); 1196 } 1197 1198 /* 1199 * Opposite of spa_load(). 1200 */ 1201 static void 1202 spa_unload(spa_t *spa) 1203 { 1204 int i; 1205 1206 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1207 1208 /* 1209 * Stop async tasks. 1210 */ 1211 spa_async_suspend(spa); 1212 1213 /* 1214 * Stop syncing. 1215 */ 1216 if (spa->spa_sync_on) { 1217 txg_sync_stop(spa->spa_dsl_pool); 1218 spa->spa_sync_on = B_FALSE; 1219 } 1220 1221 /* 1222 * Wait for any outstanding async I/O to complete. 1223 */ 1224 if (spa->spa_async_zio_root != NULL) { 1225 for (int i = 0; i < max_ncpus; i++) 1226 (void) zio_wait(spa->spa_async_zio_root[i]); 1227 kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *)); 1228 spa->spa_async_zio_root = NULL; 1229 } 1230 1231 bpobj_close(&spa->spa_deferred_bpobj); 1232 1233 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1234 1235 /* 1236 * Close all vdevs. 1237 */ 1238 if (spa->spa_root_vdev) 1239 vdev_free(spa->spa_root_vdev); 1240 ASSERT(spa->spa_root_vdev == NULL); 1241 1242 /* 1243 * Close the dsl pool. 1244 */ 1245 if (spa->spa_dsl_pool) { 1246 dsl_pool_close(spa->spa_dsl_pool); 1247 spa->spa_dsl_pool = NULL; 1248 spa->spa_meta_objset = NULL; 1249 } 1250 1251 ddt_unload(spa); 1252 1253 1254 /* 1255 * Drop and purge level 2 cache 1256 */ 1257 spa_l2cache_drop(spa); 1258 1259 for (i = 0; i < spa->spa_spares.sav_count; i++) 1260 vdev_free(spa->spa_spares.sav_vdevs[i]); 1261 if (spa->spa_spares.sav_vdevs) { 1262 kmem_free(spa->spa_spares.sav_vdevs, 1263 spa->spa_spares.sav_count * sizeof (void *)); 1264 spa->spa_spares.sav_vdevs = NULL; 1265 } 1266 if (spa->spa_spares.sav_config) { 1267 nvlist_free(spa->spa_spares.sav_config); 1268 spa->spa_spares.sav_config = NULL; 1269 } 1270 spa->spa_spares.sav_count = 0; 1271 1272 for (i = 0; i < spa->spa_l2cache.sav_count; i++) { 1273 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]); 1274 vdev_free(spa->spa_l2cache.sav_vdevs[i]); 1275 } 1276 if (spa->spa_l2cache.sav_vdevs) { 1277 kmem_free(spa->spa_l2cache.sav_vdevs, 1278 spa->spa_l2cache.sav_count * sizeof (void *)); 1279 spa->spa_l2cache.sav_vdevs = NULL; 1280 } 1281 if (spa->spa_l2cache.sav_config) { 1282 nvlist_free(spa->spa_l2cache.sav_config); 1283 spa->spa_l2cache.sav_config = NULL; 1284 } 1285 spa->spa_l2cache.sav_count = 0; 1286 1287 spa->spa_async_suspended = 0; 1288 1289 if (spa->spa_comment != NULL) { 1290 spa_strfree(spa->spa_comment); 1291 spa->spa_comment = NULL; 1292 } 1293 1294 spa_config_exit(spa, SCL_ALL, FTAG); 1295 } 1296 1297 /* 1298 * Load (or re-load) the current list of vdevs describing the active spares for 1299 * this pool. When this is called, we have some form of basic information in 1300 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and 1301 * then re-generate a more complete list including status information. 1302 */ 1303 static void 1304 spa_load_spares(spa_t *spa) 1305 { 1306 nvlist_t **spares; 1307 uint_t nspares; 1308 int i; 1309 vdev_t *vd, *tvd; 1310 1311 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1312 1313 /* 1314 * First, close and free any existing spare vdevs. 1315 */ 1316 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1317 vd = spa->spa_spares.sav_vdevs[i]; 1318 1319 /* Undo the call to spa_activate() below */ 1320 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1321 B_FALSE)) != NULL && tvd->vdev_isspare) 1322 spa_spare_remove(tvd); 1323 vdev_close(vd); 1324 vdev_free(vd); 1325 } 1326 1327 if (spa->spa_spares.sav_vdevs) 1328 kmem_free(spa->spa_spares.sav_vdevs, 1329 spa->spa_spares.sav_count * sizeof (void *)); 1330 1331 if (spa->spa_spares.sav_config == NULL) 1332 nspares = 0; 1333 else 1334 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 1335 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 1336 1337 spa->spa_spares.sav_count = (int)nspares; 1338 spa->spa_spares.sav_vdevs = NULL; 1339 1340 if (nspares == 0) 1341 return; 1342 1343 /* 1344 * Construct the array of vdevs, opening them to get status in the 1345 * process. For each spare, there is potentially two different vdev_t 1346 * structures associated with it: one in the list of spares (used only 1347 * for basic validation purposes) and one in the active vdev 1348 * configuration (if it's spared in). During this phase we open and 1349 * validate each vdev on the spare list. If the vdev also exists in the 1350 * active configuration, then we also mark this vdev as an active spare. 1351 */ 1352 spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *), 1353 KM_SLEEP); 1354 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1355 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0, 1356 VDEV_ALLOC_SPARE) == 0); 1357 ASSERT(vd != NULL); 1358 1359 spa->spa_spares.sav_vdevs[i] = vd; 1360 1361 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1362 B_FALSE)) != NULL) { 1363 if (!tvd->vdev_isspare) 1364 spa_spare_add(tvd); 1365 1366 /* 1367 * We only mark the spare active if we were successfully 1368 * able to load the vdev. Otherwise, importing a pool 1369 * with a bad active spare would result in strange 1370 * behavior, because multiple pool would think the spare 1371 * is actively in use. 1372 * 1373 * There is a vulnerability here to an equally bizarre 1374 * circumstance, where a dead active spare is later 1375 * brought back to life (onlined or otherwise). Given 1376 * the rarity of this scenario, and the extra complexity 1377 * it adds, we ignore the possibility. 1378 */ 1379 if (!vdev_is_dead(tvd)) 1380 spa_spare_activate(tvd); 1381 } 1382 1383 vd->vdev_top = vd; 1384 vd->vdev_aux = &spa->spa_spares; 1385 1386 if (vdev_open(vd) != 0) 1387 continue; 1388 1389 if (vdev_validate_aux(vd) == 0) 1390 spa_spare_add(vd); 1391 } 1392 1393 /* 1394 * Recompute the stashed list of spares, with status information 1395 * this time. 1396 */ 1397 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, 1398 DATA_TYPE_NVLIST_ARRAY) == 0); 1399 1400 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *), 1401 KM_SLEEP); 1402 for (i = 0; i < spa->spa_spares.sav_count; i++) 1403 spares[i] = vdev_config_generate(spa, 1404 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE); 1405 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 1406 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0); 1407 for (i = 0; i < spa->spa_spares.sav_count; i++) 1408 nvlist_free(spares[i]); 1409 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *)); 1410 } 1411 1412 /* 1413 * Load (or re-load) the current list of vdevs describing the active l2cache for 1414 * this pool. When this is called, we have some form of basic information in 1415 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and 1416 * then re-generate a more complete list including status information. 1417 * Devices which are already active have their details maintained, and are 1418 * not re-opened. 1419 */ 1420 static void 1421 spa_load_l2cache(spa_t *spa) 1422 { 1423 nvlist_t **l2cache; 1424 uint_t nl2cache; 1425 int i, j, oldnvdevs; 1426 uint64_t guid; 1427 vdev_t *vd, **oldvdevs, **newvdevs; 1428 spa_aux_vdev_t *sav = &spa->spa_l2cache; 1429 1430 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1431 1432 if (sav->sav_config != NULL) { 1433 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 1434 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 1435 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP); 1436 } else { 1437 nl2cache = 0; 1438 newvdevs = NULL; 1439 } 1440 1441 oldvdevs = sav->sav_vdevs; 1442 oldnvdevs = sav->sav_count; 1443 sav->sav_vdevs = NULL; 1444 sav->sav_count = 0; 1445 1446 /* 1447 * Process new nvlist of vdevs. 1448 */ 1449 for (i = 0; i < nl2cache; i++) { 1450 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID, 1451 &guid) == 0); 1452 1453 newvdevs[i] = NULL; 1454 for (j = 0; j < oldnvdevs; j++) { 1455 vd = oldvdevs[j]; 1456 if (vd != NULL && guid == vd->vdev_guid) { 1457 /* 1458 * Retain previous vdev for add/remove ops. 1459 */ 1460 newvdevs[i] = vd; 1461 oldvdevs[j] = NULL; 1462 break; 1463 } 1464 } 1465 1466 if (newvdevs[i] == NULL) { 1467 /* 1468 * Create new vdev 1469 */ 1470 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0, 1471 VDEV_ALLOC_L2CACHE) == 0); 1472 ASSERT(vd != NULL); 1473 newvdevs[i] = vd; 1474 1475 /* 1476 * Commit this vdev as an l2cache device, 1477 * even if it fails to open. 1478 */ 1479 spa_l2cache_add(vd); 1480 1481 vd->vdev_top = vd; 1482 vd->vdev_aux = sav; 1483 1484 spa_l2cache_activate(vd); 1485 1486 if (vdev_open(vd) != 0) 1487 continue; 1488 1489 (void) vdev_validate_aux(vd); 1490 1491 if (!vdev_is_dead(vd)) 1492 l2arc_add_vdev(spa, vd); 1493 } 1494 } 1495 1496 /* 1497 * Purge vdevs that were dropped 1498 */ 1499 for (i = 0; i < oldnvdevs; i++) { 1500 uint64_t pool; 1501 1502 vd = oldvdevs[i]; 1503 if (vd != NULL) { 1504 ASSERT(vd->vdev_isl2cache); 1505 1506 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 1507 pool != 0ULL && l2arc_vdev_present(vd)) 1508 l2arc_remove_vdev(vd); 1509 vdev_clear_stats(vd); 1510 vdev_free(vd); 1511 } 1512 } 1513 1514 if (oldvdevs) 1515 kmem_free(oldvdevs, oldnvdevs * sizeof (void *)); 1516 1517 if (sav->sav_config == NULL) 1518 goto out; 1519 1520 sav->sav_vdevs = newvdevs; 1521 sav->sav_count = (int)nl2cache; 1522 1523 /* 1524 * Recompute the stashed list of l2cache devices, with status 1525 * information this time. 1526 */ 1527 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE, 1528 DATA_TYPE_NVLIST_ARRAY) == 0); 1529 1530 l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 1531 for (i = 0; i < sav->sav_count; i++) 1532 l2cache[i] = vdev_config_generate(spa, 1533 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE); 1534 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 1535 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0); 1536 out: 1537 for (i = 0; i < sav->sav_count; i++) 1538 nvlist_free(l2cache[i]); 1539 if (sav->sav_count) 1540 kmem_free(l2cache, sav->sav_count * sizeof (void *)); 1541 } 1542 1543 static int 1544 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value) 1545 { 1546 dmu_buf_t *db; 1547 char *packed = NULL; 1548 size_t nvsize = 0; 1549 int error; 1550 *value = NULL; 1551 1552 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 1553 nvsize = *(uint64_t *)db->db_data; 1554 dmu_buf_rele(db, FTAG); 1555 1556 packed = kmem_alloc(nvsize, KM_SLEEP); 1557 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed, 1558 DMU_READ_PREFETCH); 1559 if (error == 0) 1560 error = nvlist_unpack(packed, nvsize, value, 0); 1561 kmem_free(packed, nvsize); 1562 1563 return (error); 1564 } 1565 1566 /* 1567 * Checks to see if the given vdev could not be opened, in which case we post a 1568 * sysevent to notify the autoreplace code that the device has been removed. 1569 */ 1570 static void 1571 spa_check_removed(vdev_t *vd) 1572 { 1573 for (int c = 0; c < vd->vdev_children; c++) 1574 spa_check_removed(vd->vdev_child[c]); 1575 1576 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) && 1577 !vd->vdev_ishole) { 1578 zfs_post_autoreplace(vd->vdev_spa, vd); 1579 spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK); 1580 } 1581 } 1582 1583 /* 1584 * Validate the current config against the MOS config 1585 */ 1586 static boolean_t 1587 spa_config_valid(spa_t *spa, nvlist_t *config) 1588 { 1589 vdev_t *mrvd, *rvd = spa->spa_root_vdev; 1590 nvlist_t *nv; 1591 1592 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0); 1593 1594 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1595 VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0); 1596 1597 ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children); 1598 1599 /* 1600 * If we're doing a normal import, then build up any additional 1601 * diagnostic information about missing devices in this config. 1602 * We'll pass this up to the user for further processing. 1603 */ 1604 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) { 1605 nvlist_t **child, *nv; 1606 uint64_t idx = 0; 1607 1608 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **), 1609 KM_SLEEP); 1610 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0); 1611 1612 for (int c = 0; c < rvd->vdev_children; c++) { 1613 vdev_t *tvd = rvd->vdev_child[c]; 1614 vdev_t *mtvd = mrvd->vdev_child[c]; 1615 1616 if (tvd->vdev_ops == &vdev_missing_ops && 1617 mtvd->vdev_ops != &vdev_missing_ops && 1618 mtvd->vdev_islog) 1619 child[idx++] = vdev_config_generate(spa, mtvd, 1620 B_FALSE, 0); 1621 } 1622 1623 if (idx) { 1624 VERIFY(nvlist_add_nvlist_array(nv, 1625 ZPOOL_CONFIG_CHILDREN, child, idx) == 0); 1626 VERIFY(nvlist_add_nvlist(spa->spa_load_info, 1627 ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0); 1628 1629 for (int i = 0; i < idx; i++) 1630 nvlist_free(child[i]); 1631 } 1632 nvlist_free(nv); 1633 kmem_free(child, rvd->vdev_children * sizeof (char **)); 1634 } 1635 1636 /* 1637 * Compare the root vdev tree with the information we have 1638 * from the MOS config (mrvd). Check each top-level vdev 1639 * with the corresponding MOS config top-level (mtvd). 1640 */ 1641 for (int c = 0; c < rvd->vdev_children; c++) { 1642 vdev_t *tvd = rvd->vdev_child[c]; 1643 vdev_t *mtvd = mrvd->vdev_child[c]; 1644 1645 /* 1646 * Resolve any "missing" vdevs in the current configuration. 1647 * If we find that the MOS config has more accurate information 1648 * about the top-level vdev then use that vdev instead. 1649 */ 1650 if (tvd->vdev_ops == &vdev_missing_ops && 1651 mtvd->vdev_ops != &vdev_missing_ops) { 1652 1653 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) 1654 continue; 1655 1656 /* 1657 * Device specific actions. 1658 */ 1659 if (mtvd->vdev_islog) { 1660 spa_set_log_state(spa, SPA_LOG_CLEAR); 1661 } else { 1662 /* 1663 * XXX - once we have 'readonly' pool 1664 * support we should be able to handle 1665 * missing data devices by transitioning 1666 * the pool to readonly. 1667 */ 1668 continue; 1669 } 1670 1671 /* 1672 * Swap the missing vdev with the data we were 1673 * able to obtain from the MOS config. 1674 */ 1675 vdev_remove_child(rvd, tvd); 1676 vdev_remove_child(mrvd, mtvd); 1677 1678 vdev_add_child(rvd, mtvd); 1679 vdev_add_child(mrvd, tvd); 1680 1681 spa_config_exit(spa, SCL_ALL, FTAG); 1682 vdev_load(mtvd); 1683 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1684 1685 vdev_reopen(rvd); 1686 } else if (mtvd->vdev_islog) { 1687 /* 1688 * Load the slog device's state from the MOS config 1689 * since it's possible that the label does not 1690 * contain the most up-to-date information. 1691 */ 1692 vdev_load_log_state(tvd, mtvd); 1693 vdev_reopen(tvd); 1694 } 1695 } 1696 vdev_free(mrvd); 1697 spa_config_exit(spa, SCL_ALL, FTAG); 1698 1699 /* 1700 * Ensure we were able to validate the config. 1701 */ 1702 return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum); 1703 } 1704 1705 /* 1706 * Check for missing log devices 1707 */ 1708 static boolean_t 1709 spa_check_logs(spa_t *spa) 1710 { 1711 boolean_t rv = B_FALSE; 1712 1713 switch (spa->spa_log_state) { 1714 case SPA_LOG_MISSING: 1715 /* need to recheck in case slog has been restored */ 1716 case SPA_LOG_UNKNOWN: 1717 rv = (dmu_objset_find(spa->spa_name, zil_check_log_chain, 1718 NULL, DS_FIND_CHILDREN) != 0); 1719 if (rv) 1720 spa_set_log_state(spa, SPA_LOG_MISSING); 1721 break; 1722 } 1723 return (rv); 1724 } 1725 1726 static boolean_t 1727 spa_passivate_log(spa_t *spa) 1728 { 1729 vdev_t *rvd = spa->spa_root_vdev; 1730 boolean_t slog_found = B_FALSE; 1731 1732 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1733 1734 if (!spa_has_slogs(spa)) 1735 return (B_FALSE); 1736 1737 for (int c = 0; c < rvd->vdev_children; c++) { 1738 vdev_t *tvd = rvd->vdev_child[c]; 1739 metaslab_group_t *mg = tvd->vdev_mg; 1740 1741 if (tvd->vdev_islog) { 1742 metaslab_group_passivate(mg); 1743 slog_found = B_TRUE; 1744 } 1745 } 1746 1747 return (slog_found); 1748 } 1749 1750 static void 1751 spa_activate_log(spa_t *spa) 1752 { 1753 vdev_t *rvd = spa->spa_root_vdev; 1754 1755 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1756 1757 for (int c = 0; c < rvd->vdev_children; c++) { 1758 vdev_t *tvd = rvd->vdev_child[c]; 1759 metaslab_group_t *mg = tvd->vdev_mg; 1760 1761 if (tvd->vdev_islog) 1762 metaslab_group_activate(mg); 1763 } 1764 } 1765 1766 int 1767 spa_offline_log(spa_t *spa) 1768 { 1769 int error; 1770 1771 error = dmu_objset_find(spa_name(spa), zil_vdev_offline, 1772 NULL, DS_FIND_CHILDREN); 1773 if (error == 0) { 1774 /* 1775 * We successfully offlined the log device, sync out the 1776 * current txg so that the "stubby" block can be removed 1777 * by zil_sync(). 1778 */ 1779 txg_wait_synced(spa->spa_dsl_pool, 0); 1780 } 1781 return (error); 1782 } 1783 1784 static void 1785 spa_aux_check_removed(spa_aux_vdev_t *sav) 1786 { 1787 for (int i = 0; i < sav->sav_count; i++) 1788 spa_check_removed(sav->sav_vdevs[i]); 1789 } 1790 1791 void 1792 spa_claim_notify(zio_t *zio) 1793 { 1794 spa_t *spa = zio->io_spa; 1795 1796 if (zio->io_error) 1797 return; 1798 1799 mutex_enter(&spa->spa_props_lock); /* any mutex will do */ 1800 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth) 1801 spa->spa_claim_max_txg = zio->io_bp->blk_birth; 1802 mutex_exit(&spa->spa_props_lock); 1803 } 1804 1805 typedef struct spa_load_error { 1806 uint64_t sle_meta_count; 1807 uint64_t sle_data_count; 1808 } spa_load_error_t; 1809 1810 static void 1811 spa_load_verify_done(zio_t *zio) 1812 { 1813 blkptr_t *bp = zio->io_bp; 1814 spa_load_error_t *sle = zio->io_private; 1815 dmu_object_type_t type = BP_GET_TYPE(bp); 1816 int error = zio->io_error; 1817 spa_t *spa = zio->io_spa; 1818 1819 if (error) { 1820 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) && 1821 type != DMU_OT_INTENT_LOG) 1822 atomic_inc_64(&sle->sle_meta_count); 1823 else 1824 atomic_inc_64(&sle->sle_data_count); 1825 } 1826 zio_data_buf_free(zio->io_data, zio->io_size); 1827 1828 mutex_enter(&spa->spa_scrub_lock); 1829 spa->spa_scrub_inflight--; 1830 cv_broadcast(&spa->spa_scrub_io_cv); 1831 mutex_exit(&spa->spa_scrub_lock); 1832 } 1833 1834 /* 1835 * Maximum number of concurrent scrub i/os to create while verifying 1836 * a pool while importing it. 1837 */ 1838 int spa_load_verify_maxinflight = 10000; 1839 boolean_t spa_load_verify_metadata = B_TRUE; 1840 boolean_t spa_load_verify_data = B_TRUE; 1841 1842 /*ARGSUSED*/ 1843 static int 1844 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 1845 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg) 1846 { 1847 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) 1848 return (0); 1849 /* 1850 * Note: normally this routine will not be called if 1851 * spa_load_verify_metadata is not set. However, it may be useful 1852 * to manually set the flag after the traversal has begun. 1853 */ 1854 if (!spa_load_verify_metadata) 1855 return (0); 1856 if (BP_GET_BUFC_TYPE(bp) == ARC_BUFC_DATA && !spa_load_verify_data) 1857 return (0); 1858 1859 zio_t *rio = arg; 1860 size_t size = BP_GET_PSIZE(bp); 1861 void *data = zio_data_buf_alloc(size); 1862 1863 mutex_enter(&spa->spa_scrub_lock); 1864 while (spa->spa_scrub_inflight >= spa_load_verify_maxinflight) 1865 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); 1866 spa->spa_scrub_inflight++; 1867 mutex_exit(&spa->spa_scrub_lock); 1868 1869 zio_nowait(zio_read(rio, spa, bp, data, size, 1870 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB, 1871 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL | 1872 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb)); 1873 return (0); 1874 } 1875 1876 static int 1877 spa_load_verify(spa_t *spa) 1878 { 1879 zio_t *rio; 1880 spa_load_error_t sle = { 0 }; 1881 zpool_rewind_policy_t policy; 1882 boolean_t verify_ok = B_FALSE; 1883 int error = 0; 1884 1885 zpool_get_rewind_policy(spa->spa_config, &policy); 1886 1887 if (policy.zrp_request & ZPOOL_NEVER_REWIND) 1888 return (0); 1889 1890 rio = zio_root(spa, NULL, &sle, 1891 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE); 1892 1893 if (spa_load_verify_metadata) { 1894 error = traverse_pool(spa, spa->spa_verify_min_txg, 1895 TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA, 1896 spa_load_verify_cb, rio); 1897 } 1898 1899 (void) zio_wait(rio); 1900 1901 spa->spa_load_meta_errors = sle.sle_meta_count; 1902 spa->spa_load_data_errors = sle.sle_data_count; 1903 1904 if (!error && sle.sle_meta_count <= policy.zrp_maxmeta && 1905 sle.sle_data_count <= policy.zrp_maxdata) { 1906 int64_t loss = 0; 1907 1908 verify_ok = B_TRUE; 1909 spa->spa_load_txg = spa->spa_uberblock.ub_txg; 1910 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp; 1911 1912 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts; 1913 VERIFY(nvlist_add_uint64(spa->spa_load_info, 1914 ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0); 1915 VERIFY(nvlist_add_int64(spa->spa_load_info, 1916 ZPOOL_CONFIG_REWIND_TIME, loss) == 0); 1917 VERIFY(nvlist_add_uint64(spa->spa_load_info, 1918 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0); 1919 } else { 1920 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg; 1921 } 1922 1923 if (error) { 1924 if (error != ENXIO && error != EIO) 1925 error = SET_ERROR(EIO); 1926 return (error); 1927 } 1928 1929 return (verify_ok ? 0 : EIO); 1930 } 1931 1932 /* 1933 * Find a value in the pool props object. 1934 */ 1935 static void 1936 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val) 1937 { 1938 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object, 1939 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val); 1940 } 1941 1942 /* 1943 * Find a value in the pool directory object. 1944 */ 1945 static int 1946 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val) 1947 { 1948 return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 1949 name, sizeof (uint64_t), 1, val)); 1950 } 1951 1952 static int 1953 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err) 1954 { 1955 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux); 1956 return (err); 1957 } 1958 1959 /* 1960 * Fix up config after a partly-completed split. This is done with the 1961 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off 1962 * pool have that entry in their config, but only the splitting one contains 1963 * a list of all the guids of the vdevs that are being split off. 1964 * 1965 * This function determines what to do with that list: either rejoin 1966 * all the disks to the pool, or complete the splitting process. To attempt 1967 * the rejoin, each disk that is offlined is marked online again, and 1968 * we do a reopen() call. If the vdev label for every disk that was 1969 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL) 1970 * then we call vdev_split() on each disk, and complete the split. 1971 * 1972 * Otherwise we leave the config alone, with all the vdevs in place in 1973 * the original pool. 1974 */ 1975 static void 1976 spa_try_repair(spa_t *spa, nvlist_t *config) 1977 { 1978 uint_t extracted; 1979 uint64_t *glist; 1980 uint_t i, gcount; 1981 nvlist_t *nvl; 1982 vdev_t **vd; 1983 boolean_t attempt_reopen; 1984 1985 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0) 1986 return; 1987 1988 /* check that the config is complete */ 1989 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 1990 &glist, &gcount) != 0) 1991 return; 1992 1993 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP); 1994 1995 /* attempt to online all the vdevs & validate */ 1996 attempt_reopen = B_TRUE; 1997 for (i = 0; i < gcount; i++) { 1998 if (glist[i] == 0) /* vdev is hole */ 1999 continue; 2000 2001 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE); 2002 if (vd[i] == NULL) { 2003 /* 2004 * Don't bother attempting to reopen the disks; 2005 * just do the split. 2006 */ 2007 attempt_reopen = B_FALSE; 2008 } else { 2009 /* attempt to re-online it */ 2010 vd[i]->vdev_offline = B_FALSE; 2011 } 2012 } 2013 2014 if (attempt_reopen) { 2015 vdev_reopen(spa->spa_root_vdev); 2016 2017 /* check each device to see what state it's in */ 2018 for (extracted = 0, i = 0; i < gcount; i++) { 2019 if (vd[i] != NULL && 2020 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL) 2021 break; 2022 ++extracted; 2023 } 2024 } 2025 2026 /* 2027 * If every disk has been moved to the new pool, or if we never 2028 * even attempted to look at them, then we split them off for 2029 * good. 2030 */ 2031 if (!attempt_reopen || gcount == extracted) { 2032 for (i = 0; i < gcount; i++) 2033 if (vd[i] != NULL) 2034 vdev_split(vd[i]); 2035 vdev_reopen(spa->spa_root_vdev); 2036 } 2037 2038 kmem_free(vd, gcount * sizeof (vdev_t *)); 2039 } 2040 2041 static int 2042 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type, 2043 boolean_t mosconfig) 2044 { 2045 nvlist_t *config = spa->spa_config; 2046 char *ereport = FM_EREPORT_ZFS_POOL; 2047 char *comment; 2048 int error; 2049 uint64_t pool_guid; 2050 nvlist_t *nvl; 2051 2052 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) 2053 return (SET_ERROR(EINVAL)); 2054 2055 ASSERT(spa->spa_comment == NULL); 2056 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0) 2057 spa->spa_comment = spa_strdup(comment); 2058 2059 /* 2060 * Versioning wasn't explicitly added to the label until later, so if 2061 * it's not present treat it as the initial version. 2062 */ 2063 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, 2064 &spa->spa_ubsync.ub_version) != 0) 2065 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL; 2066 2067 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, 2068 &spa->spa_config_txg); 2069 2070 if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) && 2071 spa_guid_exists(pool_guid, 0)) { 2072 error = SET_ERROR(EEXIST); 2073 } else { 2074 spa->spa_config_guid = pool_guid; 2075 2076 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, 2077 &nvl) == 0) { 2078 VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting, 2079 KM_SLEEP) == 0); 2080 } 2081 2082 nvlist_free(spa->spa_load_info); 2083 spa->spa_load_info = fnvlist_alloc(); 2084 2085 gethrestime(&spa->spa_loaded_ts); 2086 error = spa_load_impl(spa, pool_guid, config, state, type, 2087 mosconfig, &ereport); 2088 } 2089 2090 spa->spa_minref = refcount_count(&spa->spa_refcount); 2091 if (error) { 2092 if (error != EEXIST) { 2093 spa->spa_loaded_ts.tv_sec = 0; 2094 spa->spa_loaded_ts.tv_nsec = 0; 2095 } 2096 if (error != EBADF) { 2097 zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0); 2098 } 2099 } 2100 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE; 2101 spa->spa_ena = 0; 2102 2103 return (error); 2104 } 2105 2106 /* 2107 * Load an existing storage pool, using the pool's builtin spa_config as a 2108 * source of configuration information. 2109 */ 2110 static int 2111 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config, 2112 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig, 2113 char **ereport) 2114 { 2115 int error = 0; 2116 nvlist_t *nvroot = NULL; 2117 nvlist_t *label; 2118 vdev_t *rvd; 2119 uberblock_t *ub = &spa->spa_uberblock; 2120 uint64_t children, config_cache_txg = spa->spa_config_txg; 2121 int orig_mode = spa->spa_mode; 2122 int parse; 2123 uint64_t obj; 2124 boolean_t missing_feat_write = B_FALSE; 2125 2126 /* 2127 * If this is an untrusted config, access the pool in read-only mode. 2128 * This prevents things like resilvering recently removed devices. 2129 */ 2130 if (!mosconfig) 2131 spa->spa_mode = FREAD; 2132 2133 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 2134 2135 spa->spa_load_state = state; 2136 2137 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot)) 2138 return (SET_ERROR(EINVAL)); 2139 2140 parse = (type == SPA_IMPORT_EXISTING ? 2141 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT); 2142 2143 /* 2144 * Create "The Godfather" zio to hold all async IOs 2145 */ 2146 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *), 2147 KM_SLEEP); 2148 for (int i = 0; i < max_ncpus; i++) { 2149 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL, 2150 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 2151 ZIO_FLAG_GODFATHER); 2152 } 2153 2154 /* 2155 * Parse the configuration into a vdev tree. We explicitly set the 2156 * value that will be returned by spa_version() since parsing the 2157 * configuration requires knowing the version number. 2158 */ 2159 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2160 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse); 2161 spa_config_exit(spa, SCL_ALL, FTAG); 2162 2163 if (error != 0) 2164 return (error); 2165 2166 ASSERT(spa->spa_root_vdev == rvd); 2167 2168 if (type != SPA_IMPORT_ASSEMBLE) { 2169 ASSERT(spa_guid(spa) == pool_guid); 2170 } 2171 2172 /* 2173 * Try to open all vdevs, loading each label in the process. 2174 */ 2175 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2176 error = vdev_open(rvd); 2177 spa_config_exit(spa, SCL_ALL, FTAG); 2178 if (error != 0) 2179 return (error); 2180 2181 /* 2182 * We need to validate the vdev labels against the configuration that 2183 * we have in hand, which is dependent on the setting of mosconfig. If 2184 * mosconfig is true then we're validating the vdev labels based on 2185 * that config. Otherwise, we're validating against the cached config 2186 * (zpool.cache) that was read when we loaded the zfs module, and then 2187 * later we will recursively call spa_load() and validate against 2188 * the vdev config. 2189 * 2190 * If we're assembling a new pool that's been split off from an 2191 * existing pool, the labels haven't yet been updated so we skip 2192 * validation for now. 2193 */ 2194 if (type != SPA_IMPORT_ASSEMBLE) { 2195 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2196 error = vdev_validate(rvd, mosconfig); 2197 spa_config_exit(spa, SCL_ALL, FTAG); 2198 2199 if (error != 0) 2200 return (error); 2201 2202 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) 2203 return (SET_ERROR(ENXIO)); 2204 } 2205 2206 /* 2207 * Find the best uberblock. 2208 */ 2209 vdev_uberblock_load(rvd, ub, &label); 2210 2211 /* 2212 * If we weren't able to find a single valid uberblock, return failure. 2213 */ 2214 if (ub->ub_txg == 0) { 2215 nvlist_free(label); 2216 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO)); 2217 } 2218 2219 /* 2220 * If the pool has an unsupported version we can't open it. 2221 */ 2222 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) { 2223 nvlist_free(label); 2224 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP)); 2225 } 2226 2227 if (ub->ub_version >= SPA_VERSION_FEATURES) { 2228 nvlist_t *features; 2229 2230 /* 2231 * If we weren't able to find what's necessary for reading the 2232 * MOS in the label, return failure. 2233 */ 2234 if (label == NULL || nvlist_lookup_nvlist(label, 2235 ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) { 2236 nvlist_free(label); 2237 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 2238 ENXIO)); 2239 } 2240 2241 /* 2242 * Update our in-core representation with the definitive values 2243 * from the label. 2244 */ 2245 nvlist_free(spa->spa_label_features); 2246 VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0); 2247 } 2248 2249 nvlist_free(label); 2250 2251 /* 2252 * Look through entries in the label nvlist's features_for_read. If 2253 * there is a feature listed there which we don't understand then we 2254 * cannot open a pool. 2255 */ 2256 if (ub->ub_version >= SPA_VERSION_FEATURES) { 2257 nvlist_t *unsup_feat; 2258 2259 VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) == 2260 0); 2261 2262 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features, 2263 NULL); nvp != NULL; 2264 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) { 2265 if (!zfeature_is_supported(nvpair_name(nvp))) { 2266 VERIFY(nvlist_add_string(unsup_feat, 2267 nvpair_name(nvp), "") == 0); 2268 } 2269 } 2270 2271 if (!nvlist_empty(unsup_feat)) { 2272 VERIFY(nvlist_add_nvlist(spa->spa_load_info, 2273 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0); 2274 nvlist_free(unsup_feat); 2275 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, 2276 ENOTSUP)); 2277 } 2278 2279 nvlist_free(unsup_feat); 2280 } 2281 2282 /* 2283 * If the vdev guid sum doesn't match the uberblock, we have an 2284 * incomplete configuration. We first check to see if the pool 2285 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN). 2286 * If it is, defer the vdev_guid_sum check till later so we 2287 * can handle missing vdevs. 2288 */ 2289 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN, 2290 &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE && 2291 rvd->vdev_guid_sum != ub->ub_guid_sum) 2292 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO)); 2293 2294 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) { 2295 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2296 spa_try_repair(spa, config); 2297 spa_config_exit(spa, SCL_ALL, FTAG); 2298 nvlist_free(spa->spa_config_splitting); 2299 spa->spa_config_splitting = NULL; 2300 } 2301 2302 /* 2303 * Initialize internal SPA structures. 2304 */ 2305 spa->spa_state = POOL_STATE_ACTIVE; 2306 spa->spa_ubsync = spa->spa_uberblock; 2307 spa->spa_verify_min_txg = spa->spa_extreme_rewind ? 2308 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1; 2309 spa->spa_first_txg = spa->spa_last_ubsync_txg ? 2310 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1; 2311 spa->spa_claim_max_txg = spa->spa_first_txg; 2312 spa->spa_prev_software_version = ub->ub_software_version; 2313 2314 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool); 2315 if (error) 2316 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2317 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset; 2318 2319 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0) 2320 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2321 2322 if (spa_version(spa) >= SPA_VERSION_FEATURES) { 2323 boolean_t missing_feat_read = B_FALSE; 2324 nvlist_t *unsup_feat, *enabled_feat; 2325 2326 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ, 2327 &spa->spa_feat_for_read_obj) != 0) { 2328 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2329 } 2330 2331 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE, 2332 &spa->spa_feat_for_write_obj) != 0) { 2333 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2334 } 2335 2336 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS, 2337 &spa->spa_feat_desc_obj) != 0) { 2338 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2339 } 2340 2341 enabled_feat = fnvlist_alloc(); 2342 unsup_feat = fnvlist_alloc(); 2343 2344 if (!spa_features_check(spa, B_FALSE, 2345 unsup_feat, enabled_feat)) 2346 missing_feat_read = B_TRUE; 2347 2348 if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) { 2349 if (!spa_features_check(spa, B_TRUE, 2350 unsup_feat, enabled_feat)) { 2351 missing_feat_write = B_TRUE; 2352 } 2353 } 2354 2355 fnvlist_add_nvlist(spa->spa_load_info, 2356 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat); 2357 2358 if (!nvlist_empty(unsup_feat)) { 2359 fnvlist_add_nvlist(spa->spa_load_info, 2360 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat); 2361 } 2362 2363 fnvlist_free(enabled_feat); 2364 fnvlist_free(unsup_feat); 2365 2366 if (!missing_feat_read) { 2367 fnvlist_add_boolean(spa->spa_load_info, 2368 ZPOOL_CONFIG_CAN_RDONLY); 2369 } 2370 2371 /* 2372 * If the state is SPA_LOAD_TRYIMPORT, our objective is 2373 * twofold: to determine whether the pool is available for 2374 * import in read-write mode and (if it is not) whether the 2375 * pool is available for import in read-only mode. If the pool 2376 * is available for import in read-write mode, it is displayed 2377 * as available in userland; if it is not available for import 2378 * in read-only mode, it is displayed as unavailable in 2379 * userland. If the pool is available for import in read-only 2380 * mode but not read-write mode, it is displayed as unavailable 2381 * in userland with a special note that the pool is actually 2382 * available for open in read-only mode. 2383 * 2384 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are 2385 * missing a feature for write, we must first determine whether 2386 * the pool can be opened read-only before returning to 2387 * userland in order to know whether to display the 2388 * abovementioned note. 2389 */ 2390 if (missing_feat_read || (missing_feat_write && 2391 spa_writeable(spa))) { 2392 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, 2393 ENOTSUP)); 2394 } 2395 2396 /* 2397 * Load refcounts for ZFS features from disk into an in-memory 2398 * cache during SPA initialization. 2399 */ 2400 for (spa_feature_t i = 0; i < SPA_FEATURES; i++) { 2401 uint64_t refcount; 2402 2403 error = feature_get_refcount_from_disk(spa, 2404 &spa_feature_table[i], &refcount); 2405 if (error == 0) { 2406 spa->spa_feat_refcount_cache[i] = refcount; 2407 } else if (error == ENOTSUP) { 2408 spa->spa_feat_refcount_cache[i] = 2409 SPA_FEATURE_DISABLED; 2410 } else { 2411 return (spa_vdev_err(rvd, 2412 VDEV_AUX_CORRUPT_DATA, EIO)); 2413 } 2414 } 2415 } 2416 2417 if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) { 2418 if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG, 2419 &spa->spa_feat_enabled_txg_obj) != 0) 2420 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2421 } 2422 2423 spa->spa_is_initializing = B_TRUE; 2424 error = dsl_pool_open(spa->spa_dsl_pool); 2425 spa->spa_is_initializing = B_FALSE; 2426 if (error != 0) 2427 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2428 2429 if (!mosconfig) { 2430 uint64_t hostid; 2431 nvlist_t *policy = NULL, *nvconfig; 2432 2433 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0) 2434 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2435 2436 if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig, 2437 ZPOOL_CONFIG_HOSTID, &hostid) == 0) { 2438 char *hostname; 2439 unsigned long myhostid = 0; 2440 2441 VERIFY(nvlist_lookup_string(nvconfig, 2442 ZPOOL_CONFIG_HOSTNAME, &hostname) == 0); 2443 2444 #ifdef _KERNEL 2445 myhostid = zone_get_hostid(NULL); 2446 #else /* _KERNEL */ 2447 /* 2448 * We're emulating the system's hostid in userland, so 2449 * we can't use zone_get_hostid(). 2450 */ 2451 (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid); 2452 #endif /* _KERNEL */ 2453 if (hostid != 0 && myhostid != 0 && 2454 hostid != myhostid) { 2455 nvlist_free(nvconfig); 2456 cmn_err(CE_WARN, "pool '%s' could not be " 2457 "loaded as it was last accessed by " 2458 "another system (host: %s hostid: 0x%lx). " 2459 "See: http://illumos.org/msg/ZFS-8000-EY", 2460 spa_name(spa), hostname, 2461 (unsigned long)hostid); 2462 return (SET_ERROR(EBADF)); 2463 } 2464 } 2465 if (nvlist_lookup_nvlist(spa->spa_config, 2466 ZPOOL_REWIND_POLICY, &policy) == 0) 2467 VERIFY(nvlist_add_nvlist(nvconfig, 2468 ZPOOL_REWIND_POLICY, policy) == 0); 2469 2470 spa_config_set(spa, nvconfig); 2471 spa_unload(spa); 2472 spa_deactivate(spa); 2473 spa_activate(spa, orig_mode); 2474 2475 return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE)); 2476 } 2477 2478 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0) 2479 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2480 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj); 2481 if (error != 0) 2482 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2483 2484 /* 2485 * Load the bit that tells us to use the new accounting function 2486 * (raid-z deflation). If we have an older pool, this will not 2487 * be present. 2488 */ 2489 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate); 2490 if (error != 0 && error != ENOENT) 2491 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2492 2493 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION, 2494 &spa->spa_creation_version); 2495 if (error != 0 && error != ENOENT) 2496 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2497 2498 /* 2499 * Load the persistent error log. If we have an older pool, this will 2500 * not be present. 2501 */ 2502 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last); 2503 if (error != 0 && error != ENOENT) 2504 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2505 2506 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB, 2507 &spa->spa_errlog_scrub); 2508 if (error != 0 && error != ENOENT) 2509 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2510 2511 /* 2512 * Load the history object. If we have an older pool, this 2513 * will not be present. 2514 */ 2515 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history); 2516 if (error != 0 && error != ENOENT) 2517 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2518 2519 /* 2520 * If we're assembling the pool from the split-off vdevs of 2521 * an existing pool, we don't want to attach the spares & cache 2522 * devices. 2523 */ 2524 2525 /* 2526 * Load any hot spares for this pool. 2527 */ 2528 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object); 2529 if (error != 0 && error != ENOENT) 2530 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2531 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 2532 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES); 2533 if (load_nvlist(spa, spa->spa_spares.sav_object, 2534 &spa->spa_spares.sav_config) != 0) 2535 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2536 2537 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2538 spa_load_spares(spa); 2539 spa_config_exit(spa, SCL_ALL, FTAG); 2540 } else if (error == 0) { 2541 spa->spa_spares.sav_sync = B_TRUE; 2542 } 2543 2544 /* 2545 * Load any level 2 ARC devices for this pool. 2546 */ 2547 error = spa_dir_prop(spa, DMU_POOL_L2CACHE, 2548 &spa->spa_l2cache.sav_object); 2549 if (error != 0 && error != ENOENT) 2550 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2551 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 2552 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE); 2553 if (load_nvlist(spa, spa->spa_l2cache.sav_object, 2554 &spa->spa_l2cache.sav_config) != 0) 2555 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2556 2557 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2558 spa_load_l2cache(spa); 2559 spa_config_exit(spa, SCL_ALL, FTAG); 2560 } else if (error == 0) { 2561 spa->spa_l2cache.sav_sync = B_TRUE; 2562 } 2563 2564 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 2565 2566 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object); 2567 if (error && error != ENOENT) 2568 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2569 2570 if (error == 0) { 2571 uint64_t autoreplace; 2572 2573 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs); 2574 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace); 2575 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation); 2576 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode); 2577 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand); 2578 spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO, 2579 &spa->spa_dedup_ditto); 2580 2581 spa->spa_autoreplace = (autoreplace != 0); 2582 } 2583 2584 /* 2585 * If the 'autoreplace' property is set, then post a resource notifying 2586 * the ZFS DE that it should not issue any faults for unopenable 2587 * devices. We also iterate over the vdevs, and post a sysevent for any 2588 * unopenable vdevs so that the normal autoreplace handler can take 2589 * over. 2590 */ 2591 if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) { 2592 spa_check_removed(spa->spa_root_vdev); 2593 /* 2594 * For the import case, this is done in spa_import(), because 2595 * at this point we're using the spare definitions from 2596 * the MOS config, not necessarily from the userland config. 2597 */ 2598 if (state != SPA_LOAD_IMPORT) { 2599 spa_aux_check_removed(&spa->spa_spares); 2600 spa_aux_check_removed(&spa->spa_l2cache); 2601 } 2602 } 2603 2604 /* 2605 * Load the vdev state for all toplevel vdevs. 2606 */ 2607 vdev_load(rvd); 2608 2609 /* 2610 * Propagate the leaf DTLs we just loaded all the way up the tree. 2611 */ 2612 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2613 vdev_dtl_reassess(rvd, 0, 0, B_FALSE); 2614 spa_config_exit(spa, SCL_ALL, FTAG); 2615 2616 /* 2617 * Load the DDTs (dedup tables). 2618 */ 2619 error = ddt_load(spa); 2620 if (error != 0) 2621 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2622 2623 spa_update_dspace(spa); 2624 2625 /* 2626 * Validate the config, using the MOS config to fill in any 2627 * information which might be missing. If we fail to validate 2628 * the config then declare the pool unfit for use. If we're 2629 * assembling a pool from a split, the log is not transferred 2630 * over. 2631 */ 2632 if (type != SPA_IMPORT_ASSEMBLE) { 2633 nvlist_t *nvconfig; 2634 2635 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0) 2636 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2637 2638 if (!spa_config_valid(spa, nvconfig)) { 2639 nvlist_free(nvconfig); 2640 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, 2641 ENXIO)); 2642 } 2643 nvlist_free(nvconfig); 2644 2645 /* 2646 * Now that we've validated the config, check the state of the 2647 * root vdev. If it can't be opened, it indicates one or 2648 * more toplevel vdevs are faulted. 2649 */ 2650 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) 2651 return (SET_ERROR(ENXIO)); 2652 2653 if (spa_check_logs(spa)) { 2654 *ereport = FM_EREPORT_ZFS_LOG_REPLAY; 2655 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO)); 2656 } 2657 } 2658 2659 if (missing_feat_write) { 2660 ASSERT(state == SPA_LOAD_TRYIMPORT); 2661 2662 /* 2663 * At this point, we know that we can open the pool in 2664 * read-only mode but not read-write mode. We now have enough 2665 * information and can return to userland. 2666 */ 2667 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP)); 2668 } 2669 2670 /* 2671 * We've successfully opened the pool, verify that we're ready 2672 * to start pushing transactions. 2673 */ 2674 if (state != SPA_LOAD_TRYIMPORT) { 2675 if (error = spa_load_verify(spa)) 2676 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 2677 error)); 2678 } 2679 2680 if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER || 2681 spa->spa_load_max_txg == UINT64_MAX)) { 2682 dmu_tx_t *tx; 2683 int need_update = B_FALSE; 2684 2685 ASSERT(state != SPA_LOAD_TRYIMPORT); 2686 2687 /* 2688 * Claim log blocks that haven't been committed yet. 2689 * This must all happen in a single txg. 2690 * Note: spa_claim_max_txg is updated by spa_claim_notify(), 2691 * invoked from zil_claim_log_block()'s i/o done callback. 2692 * Price of rollback is that we abandon the log. 2693 */ 2694 spa->spa_claiming = B_TRUE; 2695 2696 tx = dmu_tx_create_assigned(spa_get_dsl(spa), 2697 spa_first_txg(spa)); 2698 (void) dmu_objset_find(spa_name(spa), 2699 zil_claim, tx, DS_FIND_CHILDREN); 2700 dmu_tx_commit(tx); 2701 2702 spa->spa_claiming = B_FALSE; 2703 2704 spa_set_log_state(spa, SPA_LOG_GOOD); 2705 spa->spa_sync_on = B_TRUE; 2706 txg_sync_start(spa->spa_dsl_pool); 2707 2708 /* 2709 * Wait for all claims to sync. We sync up to the highest 2710 * claimed log block birth time so that claimed log blocks 2711 * don't appear to be from the future. spa_claim_max_txg 2712 * will have been set for us by either zil_check_log_chain() 2713 * (invoked from spa_check_logs()) or zil_claim() above. 2714 */ 2715 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg); 2716 2717 /* 2718 * If the config cache is stale, or we have uninitialized 2719 * metaslabs (see spa_vdev_add()), then update the config. 2720 * 2721 * If this is a verbatim import, trust the current 2722 * in-core spa_config and update the disk labels. 2723 */ 2724 if (config_cache_txg != spa->spa_config_txg || 2725 state == SPA_LOAD_IMPORT || 2726 state == SPA_LOAD_RECOVER || 2727 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM)) 2728 need_update = B_TRUE; 2729 2730 for (int c = 0; c < rvd->vdev_children; c++) 2731 if (rvd->vdev_child[c]->vdev_ms_array == 0) 2732 need_update = B_TRUE; 2733 2734 /* 2735 * Update the config cache asychronously in case we're the 2736 * root pool, in which case the config cache isn't writable yet. 2737 */ 2738 if (need_update) 2739 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 2740 2741 /* 2742 * Check all DTLs to see if anything needs resilvering. 2743 */ 2744 if (!dsl_scan_resilvering(spa->spa_dsl_pool) && 2745 vdev_resilver_needed(rvd, NULL, NULL)) 2746 spa_async_request(spa, SPA_ASYNC_RESILVER); 2747 2748 /* 2749 * Log the fact that we booted up (so that we can detect if 2750 * we rebooted in the middle of an operation). 2751 */ 2752 spa_history_log_version(spa, "open"); 2753 2754 /* 2755 * Delete any inconsistent datasets. 2756 */ 2757 (void) dmu_objset_find(spa_name(spa), 2758 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN); 2759 2760 /* 2761 * Clean up any stale temporary dataset userrefs. 2762 */ 2763 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool); 2764 } 2765 2766 return (0); 2767 } 2768 2769 static int 2770 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig) 2771 { 2772 int mode = spa->spa_mode; 2773 2774 spa_unload(spa); 2775 spa_deactivate(spa); 2776 2777 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1; 2778 2779 spa_activate(spa, mode); 2780 spa_async_suspend(spa); 2781 2782 return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig)); 2783 } 2784 2785 /* 2786 * If spa_load() fails this function will try loading prior txg's. If 2787 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool 2788 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this 2789 * function will not rewind the pool and will return the same error as 2790 * spa_load(). 2791 */ 2792 static int 2793 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig, 2794 uint64_t max_request, int rewind_flags) 2795 { 2796 nvlist_t *loadinfo = NULL; 2797 nvlist_t *config = NULL; 2798 int load_error, rewind_error; 2799 uint64_t safe_rewind_txg; 2800 uint64_t min_txg; 2801 2802 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) { 2803 spa->spa_load_max_txg = spa->spa_load_txg; 2804 spa_set_log_state(spa, SPA_LOG_CLEAR); 2805 } else { 2806 spa->spa_load_max_txg = max_request; 2807 if (max_request != UINT64_MAX) 2808 spa->spa_extreme_rewind = B_TRUE; 2809 } 2810 2811 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING, 2812 mosconfig); 2813 if (load_error == 0) 2814 return (0); 2815 2816 if (spa->spa_root_vdev != NULL) 2817 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 2818 2819 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg; 2820 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp; 2821 2822 if (rewind_flags & ZPOOL_NEVER_REWIND) { 2823 nvlist_free(config); 2824 return (load_error); 2825 } 2826 2827 if (state == SPA_LOAD_RECOVER) { 2828 /* Price of rolling back is discarding txgs, including log */ 2829 spa_set_log_state(spa, SPA_LOG_CLEAR); 2830 } else { 2831 /* 2832 * If we aren't rolling back save the load info from our first 2833 * import attempt so that we can restore it after attempting 2834 * to rewind. 2835 */ 2836 loadinfo = spa->spa_load_info; 2837 spa->spa_load_info = fnvlist_alloc(); 2838 } 2839 2840 spa->spa_load_max_txg = spa->spa_last_ubsync_txg; 2841 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE; 2842 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ? 2843 TXG_INITIAL : safe_rewind_txg; 2844 2845 /* 2846 * Continue as long as we're finding errors, we're still within 2847 * the acceptable rewind range, and we're still finding uberblocks 2848 */ 2849 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg && 2850 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) { 2851 if (spa->spa_load_max_txg < safe_rewind_txg) 2852 spa->spa_extreme_rewind = B_TRUE; 2853 rewind_error = spa_load_retry(spa, state, mosconfig); 2854 } 2855 2856 spa->spa_extreme_rewind = B_FALSE; 2857 spa->spa_load_max_txg = UINT64_MAX; 2858 2859 if (config && (rewind_error || state != SPA_LOAD_RECOVER)) 2860 spa_config_set(spa, config); 2861 2862 if (state == SPA_LOAD_RECOVER) { 2863 ASSERT3P(loadinfo, ==, NULL); 2864 return (rewind_error); 2865 } else { 2866 /* Store the rewind info as part of the initial load info */ 2867 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO, 2868 spa->spa_load_info); 2869 2870 /* Restore the initial load info */ 2871 fnvlist_free(spa->spa_load_info); 2872 spa->spa_load_info = loadinfo; 2873 2874 return (load_error); 2875 } 2876 } 2877 2878 /* 2879 * Pool Open/Import 2880 * 2881 * The import case is identical to an open except that the configuration is sent 2882 * down from userland, instead of grabbed from the configuration cache. For the 2883 * case of an open, the pool configuration will exist in the 2884 * POOL_STATE_UNINITIALIZED state. 2885 * 2886 * The stats information (gen/count/ustats) is used to gather vdev statistics at 2887 * the same time open the pool, without having to keep around the spa_t in some 2888 * ambiguous state. 2889 */ 2890 static int 2891 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy, 2892 nvlist_t **config) 2893 { 2894 spa_t *spa; 2895 spa_load_state_t state = SPA_LOAD_OPEN; 2896 int error; 2897 int locked = B_FALSE; 2898 2899 *spapp = NULL; 2900 2901 /* 2902 * As disgusting as this is, we need to support recursive calls to this 2903 * function because dsl_dir_open() is called during spa_load(), and ends 2904 * up calling spa_open() again. The real fix is to figure out how to 2905 * avoid dsl_dir_open() calling this in the first place. 2906 */ 2907 if (mutex_owner(&spa_namespace_lock) != curthread) { 2908 mutex_enter(&spa_namespace_lock); 2909 locked = B_TRUE; 2910 } 2911 2912 if ((spa = spa_lookup(pool)) == NULL) { 2913 if (locked) 2914 mutex_exit(&spa_namespace_lock); 2915 return (SET_ERROR(ENOENT)); 2916 } 2917 2918 if (spa->spa_state == POOL_STATE_UNINITIALIZED) { 2919 zpool_rewind_policy_t policy; 2920 2921 zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config, 2922 &policy); 2923 if (policy.zrp_request & ZPOOL_DO_REWIND) 2924 state = SPA_LOAD_RECOVER; 2925 2926 spa_activate(spa, spa_mode_global); 2927 2928 if (state != SPA_LOAD_RECOVER) 2929 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 2930 2931 error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg, 2932 policy.zrp_request); 2933 2934 if (error == EBADF) { 2935 /* 2936 * If vdev_validate() returns failure (indicated by 2937 * EBADF), it indicates that one of the vdevs indicates 2938 * that the pool has been exported or destroyed. If 2939 * this is the case, the config cache is out of sync and 2940 * we should remove the pool from the namespace. 2941 */ 2942 spa_unload(spa); 2943 spa_deactivate(spa); 2944 spa_config_sync(spa, B_TRUE, B_TRUE); 2945 spa_remove(spa); 2946 if (locked) 2947 mutex_exit(&spa_namespace_lock); 2948 return (SET_ERROR(ENOENT)); 2949 } 2950 2951 if (error) { 2952 /* 2953 * We can't open the pool, but we still have useful 2954 * information: the state of each vdev after the 2955 * attempted vdev_open(). Return this to the user. 2956 */ 2957 if (config != NULL && spa->spa_config) { 2958 VERIFY(nvlist_dup(spa->spa_config, config, 2959 KM_SLEEP) == 0); 2960 VERIFY(nvlist_add_nvlist(*config, 2961 ZPOOL_CONFIG_LOAD_INFO, 2962 spa->spa_load_info) == 0); 2963 } 2964 spa_unload(spa); 2965 spa_deactivate(spa); 2966 spa->spa_last_open_failed = error; 2967 if (locked) 2968 mutex_exit(&spa_namespace_lock); 2969 *spapp = NULL; 2970 return (error); 2971 } 2972 } 2973 2974 spa_open_ref(spa, tag); 2975 2976 if (config != NULL) 2977 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 2978 2979 /* 2980 * If we've recovered the pool, pass back any information we 2981 * gathered while doing the load. 2982 */ 2983 if (state == SPA_LOAD_RECOVER) { 2984 VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO, 2985 spa->spa_load_info) == 0); 2986 } 2987 2988 if (locked) { 2989 spa->spa_last_open_failed = 0; 2990 spa->spa_last_ubsync_txg = 0; 2991 spa->spa_load_txg = 0; 2992 mutex_exit(&spa_namespace_lock); 2993 } 2994 2995 *spapp = spa; 2996 2997 return (0); 2998 } 2999 3000 int 3001 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy, 3002 nvlist_t **config) 3003 { 3004 return (spa_open_common(name, spapp, tag, policy, config)); 3005 } 3006 3007 int 3008 spa_open(const char *name, spa_t **spapp, void *tag) 3009 { 3010 return (spa_open_common(name, spapp, tag, NULL, NULL)); 3011 } 3012 3013 /* 3014 * Lookup the given spa_t, incrementing the inject count in the process, 3015 * preventing it from being exported or destroyed. 3016 */ 3017 spa_t * 3018 spa_inject_addref(char *name) 3019 { 3020 spa_t *spa; 3021 3022 mutex_enter(&spa_namespace_lock); 3023 if ((spa = spa_lookup(name)) == NULL) { 3024 mutex_exit(&spa_namespace_lock); 3025 return (NULL); 3026 } 3027 spa->spa_inject_ref++; 3028 mutex_exit(&spa_namespace_lock); 3029 3030 return (spa); 3031 } 3032 3033 void 3034 spa_inject_delref(spa_t *spa) 3035 { 3036 mutex_enter(&spa_namespace_lock); 3037 spa->spa_inject_ref--; 3038 mutex_exit(&spa_namespace_lock); 3039 } 3040 3041 /* 3042 * Add spares device information to the nvlist. 3043 */ 3044 static void 3045 spa_add_spares(spa_t *spa, nvlist_t *config) 3046 { 3047 nvlist_t **spares; 3048 uint_t i, nspares; 3049 nvlist_t *nvroot; 3050 uint64_t guid; 3051 vdev_stat_t *vs; 3052 uint_t vsc; 3053 uint64_t pool; 3054 3055 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 3056 3057 if (spa->spa_spares.sav_count == 0) 3058 return; 3059 3060 VERIFY(nvlist_lookup_nvlist(config, 3061 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 3062 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 3063 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 3064 if (nspares != 0) { 3065 VERIFY(nvlist_add_nvlist_array(nvroot, 3066 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 3067 VERIFY(nvlist_lookup_nvlist_array(nvroot, 3068 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 3069 3070 /* 3071 * Go through and find any spares which have since been 3072 * repurposed as an active spare. If this is the case, update 3073 * their status appropriately. 3074 */ 3075 for (i = 0; i < nspares; i++) { 3076 VERIFY(nvlist_lookup_uint64(spares[i], 3077 ZPOOL_CONFIG_GUID, &guid) == 0); 3078 if (spa_spare_exists(guid, &pool, NULL) && 3079 pool != 0ULL) { 3080 VERIFY(nvlist_lookup_uint64_array( 3081 spares[i], ZPOOL_CONFIG_VDEV_STATS, 3082 (uint64_t **)&vs, &vsc) == 0); 3083 vs->vs_state = VDEV_STATE_CANT_OPEN; 3084 vs->vs_aux = VDEV_AUX_SPARED; 3085 } 3086 } 3087 } 3088 } 3089 3090 /* 3091 * Add l2cache device information to the nvlist, including vdev stats. 3092 */ 3093 static void 3094 spa_add_l2cache(spa_t *spa, nvlist_t *config) 3095 { 3096 nvlist_t **l2cache; 3097 uint_t i, j, nl2cache; 3098 nvlist_t *nvroot; 3099 uint64_t guid; 3100 vdev_t *vd; 3101 vdev_stat_t *vs; 3102 uint_t vsc; 3103 3104 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 3105 3106 if (spa->spa_l2cache.sav_count == 0) 3107 return; 3108 3109 VERIFY(nvlist_lookup_nvlist(config, 3110 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 3111 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 3112 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 3113 if (nl2cache != 0) { 3114 VERIFY(nvlist_add_nvlist_array(nvroot, 3115 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 3116 VERIFY(nvlist_lookup_nvlist_array(nvroot, 3117 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 3118 3119 /* 3120 * Update level 2 cache device stats. 3121 */ 3122 3123 for (i = 0; i < nl2cache; i++) { 3124 VERIFY(nvlist_lookup_uint64(l2cache[i], 3125 ZPOOL_CONFIG_GUID, &guid) == 0); 3126 3127 vd = NULL; 3128 for (j = 0; j < spa->spa_l2cache.sav_count; j++) { 3129 if (guid == 3130 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) { 3131 vd = spa->spa_l2cache.sav_vdevs[j]; 3132 break; 3133 } 3134 } 3135 ASSERT(vd != NULL); 3136 3137 VERIFY(nvlist_lookup_uint64_array(l2cache[i], 3138 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc) 3139 == 0); 3140 vdev_get_stats(vd, vs); 3141 } 3142 } 3143 } 3144 3145 static void 3146 spa_add_feature_stats(spa_t *spa, nvlist_t *config) 3147 { 3148 nvlist_t *features; 3149 zap_cursor_t zc; 3150 zap_attribute_t za; 3151 3152 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 3153 VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0); 3154 3155 if (spa->spa_feat_for_read_obj != 0) { 3156 for (zap_cursor_init(&zc, spa->spa_meta_objset, 3157 spa->spa_feat_for_read_obj); 3158 zap_cursor_retrieve(&zc, &za) == 0; 3159 zap_cursor_advance(&zc)) { 3160 ASSERT(za.za_integer_length == sizeof (uint64_t) && 3161 za.za_num_integers == 1); 3162 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name, 3163 za.za_first_integer)); 3164 } 3165 zap_cursor_fini(&zc); 3166 } 3167 3168 if (spa->spa_feat_for_write_obj != 0) { 3169 for (zap_cursor_init(&zc, spa->spa_meta_objset, 3170 spa->spa_feat_for_write_obj); 3171 zap_cursor_retrieve(&zc, &za) == 0; 3172 zap_cursor_advance(&zc)) { 3173 ASSERT(za.za_integer_length == sizeof (uint64_t) && 3174 za.za_num_integers == 1); 3175 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name, 3176 za.za_first_integer)); 3177 } 3178 zap_cursor_fini(&zc); 3179 } 3180 3181 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS, 3182 features) == 0); 3183 nvlist_free(features); 3184 } 3185 3186 int 3187 spa_get_stats(const char *name, nvlist_t **config, 3188 char *altroot, size_t buflen) 3189 { 3190 int error; 3191 spa_t *spa; 3192 3193 *config = NULL; 3194 error = spa_open_common(name, &spa, FTAG, NULL, config); 3195 3196 if (spa != NULL) { 3197 /* 3198 * This still leaves a window of inconsistency where the spares 3199 * or l2cache devices could change and the config would be 3200 * self-inconsistent. 3201 */ 3202 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 3203 3204 if (*config != NULL) { 3205 uint64_t loadtimes[2]; 3206 3207 loadtimes[0] = spa->spa_loaded_ts.tv_sec; 3208 loadtimes[1] = spa->spa_loaded_ts.tv_nsec; 3209 VERIFY(nvlist_add_uint64_array(*config, 3210 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0); 3211 3212 VERIFY(nvlist_add_uint64(*config, 3213 ZPOOL_CONFIG_ERRCOUNT, 3214 spa_get_errlog_size(spa)) == 0); 3215 3216 if (spa_suspended(spa)) 3217 VERIFY(nvlist_add_uint64(*config, 3218 ZPOOL_CONFIG_SUSPENDED, 3219 spa->spa_failmode) == 0); 3220 3221 spa_add_spares(spa, *config); 3222 spa_add_l2cache(spa, *config); 3223 spa_add_feature_stats(spa, *config); 3224 } 3225 } 3226 3227 /* 3228 * We want to get the alternate root even for faulted pools, so we cheat 3229 * and call spa_lookup() directly. 3230 */ 3231 if (altroot) { 3232 if (spa == NULL) { 3233 mutex_enter(&spa_namespace_lock); 3234 spa = spa_lookup(name); 3235 if (spa) 3236 spa_altroot(spa, altroot, buflen); 3237 else 3238 altroot[0] = '\0'; 3239 spa = NULL; 3240 mutex_exit(&spa_namespace_lock); 3241 } else { 3242 spa_altroot(spa, altroot, buflen); 3243 } 3244 } 3245 3246 if (spa != NULL) { 3247 spa_config_exit(spa, SCL_CONFIG, FTAG); 3248 spa_close(spa, FTAG); 3249 } 3250 3251 return (error); 3252 } 3253 3254 /* 3255 * Validate that the auxiliary device array is well formed. We must have an 3256 * array of nvlists, each which describes a valid leaf vdev. If this is an 3257 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be 3258 * specified, as long as they are well-formed. 3259 */ 3260 static int 3261 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode, 3262 spa_aux_vdev_t *sav, const char *config, uint64_t version, 3263 vdev_labeltype_t label) 3264 { 3265 nvlist_t **dev; 3266 uint_t i, ndev; 3267 vdev_t *vd; 3268 int error; 3269 3270 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 3271 3272 /* 3273 * It's acceptable to have no devs specified. 3274 */ 3275 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0) 3276 return (0); 3277 3278 if (ndev == 0) 3279 return (SET_ERROR(EINVAL)); 3280 3281 /* 3282 * Make sure the pool is formatted with a version that supports this 3283 * device type. 3284 */ 3285 if (spa_version(spa) < version) 3286 return (SET_ERROR(ENOTSUP)); 3287 3288 /* 3289 * Set the pending device list so we correctly handle device in-use 3290 * checking. 3291 */ 3292 sav->sav_pending = dev; 3293 sav->sav_npending = ndev; 3294 3295 for (i = 0; i < ndev; i++) { 3296 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0, 3297 mode)) != 0) 3298 goto out; 3299 3300 if (!vd->vdev_ops->vdev_op_leaf) { 3301 vdev_free(vd); 3302 error = SET_ERROR(EINVAL); 3303 goto out; 3304 } 3305 3306 /* 3307 * The L2ARC currently only supports disk devices in 3308 * kernel context. For user-level testing, we allow it. 3309 */ 3310 #ifdef _KERNEL 3311 if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) && 3312 strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) { 3313 error = SET_ERROR(ENOTBLK); 3314 vdev_free(vd); 3315 goto out; 3316 } 3317 #endif 3318 vd->vdev_top = vd; 3319 3320 if ((error = vdev_open(vd)) == 0 && 3321 (error = vdev_label_init(vd, crtxg, label)) == 0) { 3322 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID, 3323 vd->vdev_guid) == 0); 3324 } 3325 3326 vdev_free(vd); 3327 3328 if (error && 3329 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE)) 3330 goto out; 3331 else 3332 error = 0; 3333 } 3334 3335 out: 3336 sav->sav_pending = NULL; 3337 sav->sav_npending = 0; 3338 return (error); 3339 } 3340 3341 static int 3342 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode) 3343 { 3344 int error; 3345 3346 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 3347 3348 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode, 3349 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES, 3350 VDEV_LABEL_SPARE)) != 0) { 3351 return (error); 3352 } 3353 3354 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode, 3355 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE, 3356 VDEV_LABEL_L2CACHE)); 3357 } 3358 3359 static void 3360 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs, 3361 const char *config) 3362 { 3363 int i; 3364 3365 if (sav->sav_config != NULL) { 3366 nvlist_t **olddevs; 3367 uint_t oldndevs; 3368 nvlist_t **newdevs; 3369 3370 /* 3371 * Generate new dev list by concatentating with the 3372 * current dev list. 3373 */ 3374 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config, 3375 &olddevs, &oldndevs) == 0); 3376 3377 newdevs = kmem_alloc(sizeof (void *) * 3378 (ndevs + oldndevs), KM_SLEEP); 3379 for (i = 0; i < oldndevs; i++) 3380 VERIFY(nvlist_dup(olddevs[i], &newdevs[i], 3381 KM_SLEEP) == 0); 3382 for (i = 0; i < ndevs; i++) 3383 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs], 3384 KM_SLEEP) == 0); 3385 3386 VERIFY(nvlist_remove(sav->sav_config, config, 3387 DATA_TYPE_NVLIST_ARRAY) == 0); 3388 3389 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 3390 config, newdevs, ndevs + oldndevs) == 0); 3391 for (i = 0; i < oldndevs + ndevs; i++) 3392 nvlist_free(newdevs[i]); 3393 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *)); 3394 } else { 3395 /* 3396 * Generate a new dev list. 3397 */ 3398 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME, 3399 KM_SLEEP) == 0); 3400 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config, 3401 devs, ndevs) == 0); 3402 } 3403 } 3404 3405 /* 3406 * Stop and drop level 2 ARC devices 3407 */ 3408 void 3409 spa_l2cache_drop(spa_t *spa) 3410 { 3411 vdev_t *vd; 3412 int i; 3413 spa_aux_vdev_t *sav = &spa->spa_l2cache; 3414 3415 for (i = 0; i < sav->sav_count; i++) { 3416 uint64_t pool; 3417 3418 vd = sav->sav_vdevs[i]; 3419 ASSERT(vd != NULL); 3420 3421 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 3422 pool != 0ULL && l2arc_vdev_present(vd)) 3423 l2arc_remove_vdev(vd); 3424 } 3425 } 3426 3427 /* 3428 * Pool Creation 3429 */ 3430 int 3431 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props, 3432 nvlist_t *zplprops) 3433 { 3434 spa_t *spa; 3435 char *altroot = NULL; 3436 vdev_t *rvd; 3437 dsl_pool_t *dp; 3438 dmu_tx_t *tx; 3439 int error = 0; 3440 uint64_t txg = TXG_INITIAL; 3441 nvlist_t **spares, **l2cache; 3442 uint_t nspares, nl2cache; 3443 uint64_t version, obj; 3444 boolean_t has_features; 3445 3446 /* 3447 * If this pool already exists, return failure. 3448 */ 3449 mutex_enter(&spa_namespace_lock); 3450 if (spa_lookup(pool) != NULL) { 3451 mutex_exit(&spa_namespace_lock); 3452 return (SET_ERROR(EEXIST)); 3453 } 3454 3455 /* 3456 * Allocate a new spa_t structure. 3457 */ 3458 (void) nvlist_lookup_string(props, 3459 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 3460 spa = spa_add(pool, NULL, altroot); 3461 spa_activate(spa, spa_mode_global); 3462 3463 if (props && (error = spa_prop_validate(spa, props))) { 3464 spa_deactivate(spa); 3465 spa_remove(spa); 3466 mutex_exit(&spa_namespace_lock); 3467 return (error); 3468 } 3469 3470 has_features = B_FALSE; 3471 for (nvpair_t *elem = nvlist_next_nvpair(props, NULL); 3472 elem != NULL; elem = nvlist_next_nvpair(props, elem)) { 3473 if (zpool_prop_feature(nvpair_name(elem))) 3474 has_features = B_TRUE; 3475 } 3476 3477 if (has_features || nvlist_lookup_uint64(props, 3478 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) { 3479 version = SPA_VERSION; 3480 } 3481 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 3482 3483 spa->spa_first_txg = txg; 3484 spa->spa_uberblock.ub_txg = txg - 1; 3485 spa->spa_uberblock.ub_version = version; 3486 spa->spa_ubsync = spa->spa_uberblock; 3487 3488 /* 3489 * Create "The Godfather" zio to hold all async IOs 3490 */ 3491 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *), 3492 KM_SLEEP); 3493 for (int i = 0; i < max_ncpus; i++) { 3494 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL, 3495 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 3496 ZIO_FLAG_GODFATHER); 3497 } 3498 3499 /* 3500 * Create the root vdev. 3501 */ 3502 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3503 3504 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD); 3505 3506 ASSERT(error != 0 || rvd != NULL); 3507 ASSERT(error != 0 || spa->spa_root_vdev == rvd); 3508 3509 if (error == 0 && !zfs_allocatable_devs(nvroot)) 3510 error = SET_ERROR(EINVAL); 3511 3512 if (error == 0 && 3513 (error = vdev_create(rvd, txg, B_FALSE)) == 0 && 3514 (error = spa_validate_aux(spa, nvroot, txg, 3515 VDEV_ALLOC_ADD)) == 0) { 3516 for (int c = 0; c < rvd->vdev_children; c++) { 3517 vdev_metaslab_set_size(rvd->vdev_child[c]); 3518 vdev_expand(rvd->vdev_child[c], txg); 3519 } 3520 } 3521 3522 spa_config_exit(spa, SCL_ALL, FTAG); 3523 3524 if (error != 0) { 3525 spa_unload(spa); 3526 spa_deactivate(spa); 3527 spa_remove(spa); 3528 mutex_exit(&spa_namespace_lock); 3529 return (error); 3530 } 3531 3532 /* 3533 * Get the list of spares, if specified. 3534 */ 3535 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 3536 &spares, &nspares) == 0) { 3537 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME, 3538 KM_SLEEP) == 0); 3539 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 3540 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 3541 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3542 spa_load_spares(spa); 3543 spa_config_exit(spa, SCL_ALL, FTAG); 3544 spa->spa_spares.sav_sync = B_TRUE; 3545 } 3546 3547 /* 3548 * Get the list of level 2 cache devices, if specified. 3549 */ 3550 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 3551 &l2cache, &nl2cache) == 0) { 3552 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 3553 NV_UNIQUE_NAME, KM_SLEEP) == 0); 3554 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 3555 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 3556 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3557 spa_load_l2cache(spa); 3558 spa_config_exit(spa, SCL_ALL, FTAG); 3559 spa->spa_l2cache.sav_sync = B_TRUE; 3560 } 3561 3562 spa->spa_is_initializing = B_TRUE; 3563 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg); 3564 spa->spa_meta_objset = dp->dp_meta_objset; 3565 spa->spa_is_initializing = B_FALSE; 3566 3567 /* 3568 * Create DDTs (dedup tables). 3569 */ 3570 ddt_create(spa); 3571 3572 spa_update_dspace(spa); 3573 3574 tx = dmu_tx_create_assigned(dp, txg); 3575 3576 /* 3577 * Create the pool config object. 3578 */ 3579 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset, 3580 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE, 3581 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx); 3582 3583 if (zap_add(spa->spa_meta_objset, 3584 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG, 3585 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) { 3586 cmn_err(CE_PANIC, "failed to add pool config"); 3587 } 3588 3589 if (spa_version(spa) >= SPA_VERSION_FEATURES) 3590 spa_feature_create_zap_objects(spa, tx); 3591 3592 if (zap_add(spa->spa_meta_objset, 3593 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION, 3594 sizeof (uint64_t), 1, &version, tx) != 0) { 3595 cmn_err(CE_PANIC, "failed to add pool version"); 3596 } 3597 3598 /* Newly created pools with the right version are always deflated. */ 3599 if (version >= SPA_VERSION_RAIDZ_DEFLATE) { 3600 spa->spa_deflate = TRUE; 3601 if (zap_add(spa->spa_meta_objset, 3602 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 3603 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) { 3604 cmn_err(CE_PANIC, "failed to add deflate"); 3605 } 3606 } 3607 3608 /* 3609 * Create the deferred-free bpobj. Turn off compression 3610 * because sync-to-convergence takes longer if the blocksize 3611 * keeps changing. 3612 */ 3613 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx); 3614 dmu_object_set_compress(spa->spa_meta_objset, obj, 3615 ZIO_COMPRESS_OFF, tx); 3616 if (zap_add(spa->spa_meta_objset, 3617 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ, 3618 sizeof (uint64_t), 1, &obj, tx) != 0) { 3619 cmn_err(CE_PANIC, "failed to add bpobj"); 3620 } 3621 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj, 3622 spa->spa_meta_objset, obj)); 3623 3624 /* 3625 * Create the pool's history object. 3626 */ 3627 if (version >= SPA_VERSION_ZPOOL_HISTORY) 3628 spa_history_create_obj(spa, tx); 3629 3630 /* 3631 * Set pool properties. 3632 */ 3633 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS); 3634 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 3635 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE); 3636 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND); 3637 3638 if (props != NULL) { 3639 spa_configfile_set(spa, props, B_FALSE); 3640 spa_sync_props(props, tx); 3641 } 3642 3643 dmu_tx_commit(tx); 3644 3645 spa->spa_sync_on = B_TRUE; 3646 txg_sync_start(spa->spa_dsl_pool); 3647 3648 /* 3649 * We explicitly wait for the first transaction to complete so that our 3650 * bean counters are appropriately updated. 3651 */ 3652 txg_wait_synced(spa->spa_dsl_pool, txg); 3653 3654 spa_config_sync(spa, B_FALSE, B_TRUE); 3655 3656 spa_history_log_version(spa, "create"); 3657 3658 spa->spa_minref = refcount_count(&spa->spa_refcount); 3659 3660 mutex_exit(&spa_namespace_lock); 3661 3662 return (0); 3663 } 3664 3665 #ifdef _KERNEL 3666 /* 3667 * Get the root pool information from the root disk, then import the root pool 3668 * during the system boot up time. 3669 */ 3670 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **); 3671 3672 static nvlist_t * 3673 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid) 3674 { 3675 nvlist_t *config; 3676 nvlist_t *nvtop, *nvroot; 3677 uint64_t pgid; 3678 3679 if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0) 3680 return (NULL); 3681 3682 /* 3683 * Add this top-level vdev to the child array. 3684 */ 3685 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3686 &nvtop) == 0); 3687 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 3688 &pgid) == 0); 3689 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0); 3690 3691 /* 3692 * Put this pool's top-level vdevs into a root vdev. 3693 */ 3694 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 3695 VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, 3696 VDEV_TYPE_ROOT) == 0); 3697 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0); 3698 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0); 3699 VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 3700 &nvtop, 1) == 0); 3701 3702 /* 3703 * Replace the existing vdev_tree with the new root vdev in 3704 * this pool's configuration (remove the old, add the new). 3705 */ 3706 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0); 3707 nvlist_free(nvroot); 3708 return (config); 3709 } 3710 3711 /* 3712 * Walk the vdev tree and see if we can find a device with "better" 3713 * configuration. A configuration is "better" if the label on that 3714 * device has a more recent txg. 3715 */ 3716 static void 3717 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg) 3718 { 3719 for (int c = 0; c < vd->vdev_children; c++) 3720 spa_alt_rootvdev(vd->vdev_child[c], avd, txg); 3721 3722 if (vd->vdev_ops->vdev_op_leaf) { 3723 nvlist_t *label; 3724 uint64_t label_txg; 3725 3726 if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid, 3727 &label) != 0) 3728 return; 3729 3730 VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG, 3731 &label_txg) == 0); 3732 3733 /* 3734 * Do we have a better boot device? 3735 */ 3736 if (label_txg > *txg) { 3737 *txg = label_txg; 3738 *avd = vd; 3739 } 3740 nvlist_free(label); 3741 } 3742 } 3743 3744 /* 3745 * Import a root pool. 3746 * 3747 * For x86. devpath_list will consist of devid and/or physpath name of 3748 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a"). 3749 * The GRUB "findroot" command will return the vdev we should boot. 3750 * 3751 * For Sparc, devpath_list consists the physpath name of the booting device 3752 * no matter the rootpool is a single device pool or a mirrored pool. 3753 * e.g. 3754 * "/pci@1f,0/ide@d/disk@0,0:a" 3755 */ 3756 int 3757 spa_import_rootpool(char *devpath, char *devid) 3758 { 3759 spa_t *spa; 3760 vdev_t *rvd, *bvd, *avd = NULL; 3761 nvlist_t *config, *nvtop; 3762 uint64_t guid, txg; 3763 char *pname; 3764 int error; 3765 3766 /* 3767 * Read the label from the boot device and generate a configuration. 3768 */ 3769 config = spa_generate_rootconf(devpath, devid, &guid); 3770 #if defined(_OBP) && defined(_KERNEL) 3771 if (config == NULL) { 3772 if (strstr(devpath, "/iscsi/ssd") != NULL) { 3773 /* iscsi boot */ 3774 get_iscsi_bootpath_phy(devpath); 3775 config = spa_generate_rootconf(devpath, devid, &guid); 3776 } 3777 } 3778 #endif 3779 if (config == NULL) { 3780 cmn_err(CE_NOTE, "Cannot read the pool label from '%s'", 3781 devpath); 3782 return (SET_ERROR(EIO)); 3783 } 3784 3785 VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 3786 &pname) == 0); 3787 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0); 3788 3789 mutex_enter(&spa_namespace_lock); 3790 if ((spa = spa_lookup(pname)) != NULL) { 3791 /* 3792 * Remove the existing root pool from the namespace so that we 3793 * can replace it with the correct config we just read in. 3794 */ 3795 spa_remove(spa); 3796 } 3797 3798 spa = spa_add(pname, config, NULL); 3799 spa->spa_is_root = B_TRUE; 3800 spa->spa_import_flags = ZFS_IMPORT_VERBATIM; 3801 3802 /* 3803 * Build up a vdev tree based on the boot device's label config. 3804 */ 3805 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3806 &nvtop) == 0); 3807 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3808 error = spa_config_parse(spa, &rvd, nvtop, NULL, 0, 3809 VDEV_ALLOC_ROOTPOOL); 3810 spa_config_exit(spa, SCL_ALL, FTAG); 3811 if (error) { 3812 mutex_exit(&spa_namespace_lock); 3813 nvlist_free(config); 3814 cmn_err(CE_NOTE, "Can not parse the config for pool '%s'", 3815 pname); 3816 return (error); 3817 } 3818 3819 /* 3820 * Get the boot vdev. 3821 */ 3822 if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) { 3823 cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu", 3824 (u_longlong_t)guid); 3825 error = SET_ERROR(ENOENT); 3826 goto out; 3827 } 3828 3829 /* 3830 * Determine if there is a better boot device. 3831 */ 3832 avd = bvd; 3833 spa_alt_rootvdev(rvd, &avd, &txg); 3834 if (avd != bvd) { 3835 cmn_err(CE_NOTE, "The boot device is 'degraded'. Please " 3836 "try booting from '%s'", avd->vdev_path); 3837 error = SET_ERROR(EINVAL); 3838 goto out; 3839 } 3840 3841 /* 3842 * If the boot device is part of a spare vdev then ensure that 3843 * we're booting off the active spare. 3844 */ 3845 if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops && 3846 !bvd->vdev_isspare) { 3847 cmn_err(CE_NOTE, "The boot device is currently spared. Please " 3848 "try booting from '%s'", 3849 bvd->vdev_parent-> 3850 vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path); 3851 error = SET_ERROR(EINVAL); 3852 goto out; 3853 } 3854 3855 error = 0; 3856 out: 3857 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3858 vdev_free(rvd); 3859 spa_config_exit(spa, SCL_ALL, FTAG); 3860 mutex_exit(&spa_namespace_lock); 3861 3862 nvlist_free(config); 3863 return (error); 3864 } 3865 3866 #endif 3867 3868 /* 3869 * Import a non-root pool into the system. 3870 */ 3871 int 3872 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags) 3873 { 3874 spa_t *spa; 3875 char *altroot = NULL; 3876 spa_load_state_t state = SPA_LOAD_IMPORT; 3877 zpool_rewind_policy_t policy; 3878 uint64_t mode = spa_mode_global; 3879 uint64_t readonly = B_FALSE; 3880 int error; 3881 nvlist_t *nvroot; 3882 nvlist_t **spares, **l2cache; 3883 uint_t nspares, nl2cache; 3884 3885 /* 3886 * If a pool with this name exists, return failure. 3887 */ 3888 mutex_enter(&spa_namespace_lock); 3889 if (spa_lookup(pool) != NULL) { 3890 mutex_exit(&spa_namespace_lock); 3891 return (SET_ERROR(EEXIST)); 3892 } 3893 3894 /* 3895 * Create and initialize the spa structure. 3896 */ 3897 (void) nvlist_lookup_string(props, 3898 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 3899 (void) nvlist_lookup_uint64(props, 3900 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly); 3901 if (readonly) 3902 mode = FREAD; 3903 spa = spa_add(pool, config, altroot); 3904 spa->spa_import_flags = flags; 3905 3906 /* 3907 * Verbatim import - Take a pool and insert it into the namespace 3908 * as if it had been loaded at boot. 3909 */ 3910 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) { 3911 if (props != NULL) 3912 spa_configfile_set(spa, props, B_FALSE); 3913 3914 spa_config_sync(spa, B_FALSE, B_TRUE); 3915 3916 mutex_exit(&spa_namespace_lock); 3917 return (0); 3918 } 3919 3920 spa_activate(spa, mode); 3921 3922 /* 3923 * Don't start async tasks until we know everything is healthy. 3924 */ 3925 spa_async_suspend(spa); 3926 3927 zpool_get_rewind_policy(config, &policy); 3928 if (policy.zrp_request & ZPOOL_DO_REWIND) 3929 state = SPA_LOAD_RECOVER; 3930 3931 /* 3932 * Pass off the heavy lifting to spa_load(). Pass TRUE for mosconfig 3933 * because the user-supplied config is actually the one to trust when 3934 * doing an import. 3935 */ 3936 if (state != SPA_LOAD_RECOVER) 3937 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 3938 3939 error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg, 3940 policy.zrp_request); 3941 3942 /* 3943 * Propagate anything learned while loading the pool and pass it 3944 * back to caller (i.e. rewind info, missing devices, etc). 3945 */ 3946 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, 3947 spa->spa_load_info) == 0); 3948 3949 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3950 /* 3951 * Toss any existing sparelist, as it doesn't have any validity 3952 * anymore, and conflicts with spa_has_spare(). 3953 */ 3954 if (spa->spa_spares.sav_config) { 3955 nvlist_free(spa->spa_spares.sav_config); 3956 spa->spa_spares.sav_config = NULL; 3957 spa_load_spares(spa); 3958 } 3959 if (spa->spa_l2cache.sav_config) { 3960 nvlist_free(spa->spa_l2cache.sav_config); 3961 spa->spa_l2cache.sav_config = NULL; 3962 spa_load_l2cache(spa); 3963 } 3964 3965 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3966 &nvroot) == 0); 3967 if (error == 0) 3968 error = spa_validate_aux(spa, nvroot, -1ULL, 3969 VDEV_ALLOC_SPARE); 3970 if (error == 0) 3971 error = spa_validate_aux(spa, nvroot, -1ULL, 3972 VDEV_ALLOC_L2CACHE); 3973 spa_config_exit(spa, SCL_ALL, FTAG); 3974 3975 if (props != NULL) 3976 spa_configfile_set(spa, props, B_FALSE); 3977 3978 if (error != 0 || (props && spa_writeable(spa) && 3979 (error = spa_prop_set(spa, props)))) { 3980 spa_unload(spa); 3981 spa_deactivate(spa); 3982 spa_remove(spa); 3983 mutex_exit(&spa_namespace_lock); 3984 return (error); 3985 } 3986 3987 spa_async_resume(spa); 3988 3989 /* 3990 * Override any spares and level 2 cache devices as specified by 3991 * the user, as these may have correct device names/devids, etc. 3992 */ 3993 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 3994 &spares, &nspares) == 0) { 3995 if (spa->spa_spares.sav_config) 3996 VERIFY(nvlist_remove(spa->spa_spares.sav_config, 3997 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0); 3998 else 3999 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, 4000 NV_UNIQUE_NAME, KM_SLEEP) == 0); 4001 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 4002 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 4003 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4004 spa_load_spares(spa); 4005 spa_config_exit(spa, SCL_ALL, FTAG); 4006 spa->spa_spares.sav_sync = B_TRUE; 4007 } 4008 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 4009 &l2cache, &nl2cache) == 0) { 4010 if (spa->spa_l2cache.sav_config) 4011 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config, 4012 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0); 4013 else 4014 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 4015 NV_UNIQUE_NAME, KM_SLEEP) == 0); 4016 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 4017 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 4018 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4019 spa_load_l2cache(spa); 4020 spa_config_exit(spa, SCL_ALL, FTAG); 4021 spa->spa_l2cache.sav_sync = B_TRUE; 4022 } 4023 4024 /* 4025 * Check for any removed devices. 4026 */ 4027 if (spa->spa_autoreplace) { 4028 spa_aux_check_removed(&spa->spa_spares); 4029 spa_aux_check_removed(&spa->spa_l2cache); 4030 } 4031 4032 if (spa_writeable(spa)) { 4033 /* 4034 * Update the config cache to include the newly-imported pool. 4035 */ 4036 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 4037 } 4038 4039 /* 4040 * It's possible that the pool was expanded while it was exported. 4041 * We kick off an async task to handle this for us. 4042 */ 4043 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND); 4044 4045 mutex_exit(&spa_namespace_lock); 4046 spa_history_log_version(spa, "import"); 4047 4048 return (0); 4049 } 4050 4051 nvlist_t * 4052 spa_tryimport(nvlist_t *tryconfig) 4053 { 4054 nvlist_t *config = NULL; 4055 char *poolname; 4056 spa_t *spa; 4057 uint64_t state; 4058 int error; 4059 4060 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname)) 4061 return (NULL); 4062 4063 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state)) 4064 return (NULL); 4065 4066 /* 4067 * Create and initialize the spa structure. 4068 */ 4069 mutex_enter(&spa_namespace_lock); 4070 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL); 4071 spa_activate(spa, FREAD); 4072 4073 /* 4074 * Pass off the heavy lifting to spa_load(). 4075 * Pass TRUE for mosconfig because the user-supplied config 4076 * is actually the one to trust when doing an import. 4077 */ 4078 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE); 4079 4080 /* 4081 * If 'tryconfig' was at least parsable, return the current config. 4082 */ 4083 if (spa->spa_root_vdev != NULL) { 4084 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 4085 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, 4086 poolname) == 0); 4087 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 4088 state) == 0); 4089 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP, 4090 spa->spa_uberblock.ub_timestamp) == 0); 4091 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, 4092 spa->spa_load_info) == 0); 4093 4094 /* 4095 * If the bootfs property exists on this pool then we 4096 * copy it out so that external consumers can tell which 4097 * pools are bootable. 4098 */ 4099 if ((!error || error == EEXIST) && spa->spa_bootfs) { 4100 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 4101 4102 /* 4103 * We have to play games with the name since the 4104 * pool was opened as TRYIMPORT_NAME. 4105 */ 4106 if (dsl_dsobj_to_dsname(spa_name(spa), 4107 spa->spa_bootfs, tmpname) == 0) { 4108 char *cp; 4109 char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 4110 4111 cp = strchr(tmpname, '/'); 4112 if (cp == NULL) { 4113 (void) strlcpy(dsname, tmpname, 4114 MAXPATHLEN); 4115 } else { 4116 (void) snprintf(dsname, MAXPATHLEN, 4117 "%s/%s", poolname, ++cp); 4118 } 4119 VERIFY(nvlist_add_string(config, 4120 ZPOOL_CONFIG_BOOTFS, dsname) == 0); 4121 kmem_free(dsname, MAXPATHLEN); 4122 } 4123 kmem_free(tmpname, MAXPATHLEN); 4124 } 4125 4126 /* 4127 * Add the list of hot spares and level 2 cache devices. 4128 */ 4129 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 4130 spa_add_spares(spa, config); 4131 spa_add_l2cache(spa, config); 4132 spa_config_exit(spa, SCL_CONFIG, FTAG); 4133 } 4134 4135 spa_unload(spa); 4136 spa_deactivate(spa); 4137 spa_remove(spa); 4138 mutex_exit(&spa_namespace_lock); 4139 4140 return (config); 4141 } 4142 4143 /* 4144 * Pool export/destroy 4145 * 4146 * The act of destroying or exporting a pool is very simple. We make sure there 4147 * is no more pending I/O and any references to the pool are gone. Then, we 4148 * update the pool state and sync all the labels to disk, removing the 4149 * configuration from the cache afterwards. If the 'hardforce' flag is set, then 4150 * we don't sync the labels or remove the configuration cache. 4151 */ 4152 static int 4153 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig, 4154 boolean_t force, boolean_t hardforce) 4155 { 4156 spa_t *spa; 4157 4158 if (oldconfig) 4159 *oldconfig = NULL; 4160 4161 if (!(spa_mode_global & FWRITE)) 4162 return (SET_ERROR(EROFS)); 4163 4164 mutex_enter(&spa_namespace_lock); 4165 if ((spa = spa_lookup(pool)) == NULL) { 4166 mutex_exit(&spa_namespace_lock); 4167 return (SET_ERROR(ENOENT)); 4168 } 4169 4170 /* 4171 * Put a hold on the pool, drop the namespace lock, stop async tasks, 4172 * reacquire the namespace lock, and see if we can export. 4173 */ 4174 spa_open_ref(spa, FTAG); 4175 mutex_exit(&spa_namespace_lock); 4176 spa_async_suspend(spa); 4177 mutex_enter(&spa_namespace_lock); 4178 spa_close(spa, FTAG); 4179 4180 /* 4181 * The pool will be in core if it's openable, 4182 * in which case we can modify its state. 4183 */ 4184 if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) { 4185 /* 4186 * Objsets may be open only because they're dirty, so we 4187 * have to force it to sync before checking spa_refcnt. 4188 */ 4189 txg_wait_synced(spa->spa_dsl_pool, 0); 4190 4191 /* 4192 * A pool cannot be exported or destroyed if there are active 4193 * references. If we are resetting a pool, allow references by 4194 * fault injection handlers. 4195 */ 4196 if (!spa_refcount_zero(spa) || 4197 (spa->spa_inject_ref != 0 && 4198 new_state != POOL_STATE_UNINITIALIZED)) { 4199 spa_async_resume(spa); 4200 mutex_exit(&spa_namespace_lock); 4201 return (SET_ERROR(EBUSY)); 4202 } 4203 4204 /* 4205 * A pool cannot be exported if it has an active shared spare. 4206 * This is to prevent other pools stealing the active spare 4207 * from an exported pool. At user's own will, such pool can 4208 * be forcedly exported. 4209 */ 4210 if (!force && new_state == POOL_STATE_EXPORTED && 4211 spa_has_active_shared_spare(spa)) { 4212 spa_async_resume(spa); 4213 mutex_exit(&spa_namespace_lock); 4214 return (SET_ERROR(EXDEV)); 4215 } 4216 4217 /* 4218 * We want this to be reflected on every label, 4219 * so mark them all dirty. spa_unload() will do the 4220 * final sync that pushes these changes out. 4221 */ 4222 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) { 4223 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4224 spa->spa_state = new_state; 4225 spa->spa_final_txg = spa_last_synced_txg(spa) + 4226 TXG_DEFER_SIZE + 1; 4227 vdev_config_dirty(spa->spa_root_vdev); 4228 spa_config_exit(spa, SCL_ALL, FTAG); 4229 } 4230 } 4231 4232 spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY); 4233 4234 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 4235 spa_unload(spa); 4236 spa_deactivate(spa); 4237 } 4238 4239 if (oldconfig && spa->spa_config) 4240 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0); 4241 4242 if (new_state != POOL_STATE_UNINITIALIZED) { 4243 if (!hardforce) 4244 spa_config_sync(spa, B_TRUE, B_TRUE); 4245 spa_remove(spa); 4246 } 4247 mutex_exit(&spa_namespace_lock); 4248 4249 return (0); 4250 } 4251 4252 /* 4253 * Destroy a storage pool. 4254 */ 4255 int 4256 spa_destroy(char *pool) 4257 { 4258 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL, 4259 B_FALSE, B_FALSE)); 4260 } 4261 4262 /* 4263 * Export a storage pool. 4264 */ 4265 int 4266 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force, 4267 boolean_t hardforce) 4268 { 4269 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig, 4270 force, hardforce)); 4271 } 4272 4273 /* 4274 * Similar to spa_export(), this unloads the spa_t without actually removing it 4275 * from the namespace in any way. 4276 */ 4277 int 4278 spa_reset(char *pool) 4279 { 4280 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL, 4281 B_FALSE, B_FALSE)); 4282 } 4283 4284 /* 4285 * ========================================================================== 4286 * Device manipulation 4287 * ========================================================================== 4288 */ 4289 4290 /* 4291 * Add a device to a storage pool. 4292 */ 4293 int 4294 spa_vdev_add(spa_t *spa, nvlist_t *nvroot) 4295 { 4296 uint64_t txg, id; 4297 int error; 4298 vdev_t *rvd = spa->spa_root_vdev; 4299 vdev_t *vd, *tvd; 4300 nvlist_t **spares, **l2cache; 4301 uint_t nspares, nl2cache; 4302 4303 ASSERT(spa_writeable(spa)); 4304 4305 txg = spa_vdev_enter(spa); 4306 4307 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0, 4308 VDEV_ALLOC_ADD)) != 0) 4309 return (spa_vdev_exit(spa, NULL, txg, error)); 4310 4311 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */ 4312 4313 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, 4314 &nspares) != 0) 4315 nspares = 0; 4316 4317 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache, 4318 &nl2cache) != 0) 4319 nl2cache = 0; 4320 4321 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0) 4322 return (spa_vdev_exit(spa, vd, txg, EINVAL)); 4323 4324 if (vd->vdev_children != 0 && 4325 (error = vdev_create(vd, txg, B_FALSE)) != 0) 4326 return (spa_vdev_exit(spa, vd, txg, error)); 4327 4328 /* 4329 * We must validate the spares and l2cache devices after checking the 4330 * children. Otherwise, vdev_inuse() will blindly overwrite the spare. 4331 */ 4332 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0) 4333 return (spa_vdev_exit(spa, vd, txg, error)); 4334 4335 /* 4336 * Transfer each new top-level vdev from vd to rvd. 4337 */ 4338 for (int c = 0; c < vd->vdev_children; c++) { 4339 4340 /* 4341 * Set the vdev id to the first hole, if one exists. 4342 */ 4343 for (id = 0; id < rvd->vdev_children; id++) { 4344 if (rvd->vdev_child[id]->vdev_ishole) { 4345 vdev_free(rvd->vdev_child[id]); 4346 break; 4347 } 4348 } 4349 tvd = vd->vdev_child[c]; 4350 vdev_remove_child(vd, tvd); 4351 tvd->vdev_id = id; 4352 vdev_add_child(rvd, tvd); 4353 vdev_config_dirty(tvd); 4354 } 4355 4356 if (nspares != 0) { 4357 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares, 4358 ZPOOL_CONFIG_SPARES); 4359 spa_load_spares(spa); 4360 spa->spa_spares.sav_sync = B_TRUE; 4361 } 4362 4363 if (nl2cache != 0) { 4364 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache, 4365 ZPOOL_CONFIG_L2CACHE); 4366 spa_load_l2cache(spa); 4367 spa->spa_l2cache.sav_sync = B_TRUE; 4368 } 4369 4370 /* 4371 * We have to be careful when adding new vdevs to an existing pool. 4372 * If other threads start allocating from these vdevs before we 4373 * sync the config cache, and we lose power, then upon reboot we may 4374 * fail to open the pool because there are DVAs that the config cache 4375 * can't translate. Therefore, we first add the vdevs without 4376 * initializing metaslabs; sync the config cache (via spa_vdev_exit()); 4377 * and then let spa_config_update() initialize the new metaslabs. 4378 * 4379 * spa_load() checks for added-but-not-initialized vdevs, so that 4380 * if we lose power at any point in this sequence, the remaining 4381 * steps will be completed the next time we load the pool. 4382 */ 4383 (void) spa_vdev_exit(spa, vd, txg, 0); 4384 4385 mutex_enter(&spa_namespace_lock); 4386 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 4387 mutex_exit(&spa_namespace_lock); 4388 4389 return (0); 4390 } 4391 4392 /* 4393 * Attach a device to a mirror. The arguments are the path to any device 4394 * in the mirror, and the nvroot for the new device. If the path specifies 4395 * a device that is not mirrored, we automatically insert the mirror vdev. 4396 * 4397 * If 'replacing' is specified, the new device is intended to replace the 4398 * existing device; in this case the two devices are made into their own 4399 * mirror using the 'replacing' vdev, which is functionally identical to 4400 * the mirror vdev (it actually reuses all the same ops) but has a few 4401 * extra rules: you can't attach to it after it's been created, and upon 4402 * completion of resilvering, the first disk (the one being replaced) 4403 * is automatically detached. 4404 */ 4405 int 4406 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing) 4407 { 4408 uint64_t txg, dtl_max_txg; 4409 vdev_t *rvd = spa->spa_root_vdev; 4410 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd; 4411 vdev_ops_t *pvops; 4412 char *oldvdpath, *newvdpath; 4413 int newvd_isspare; 4414 int error; 4415 4416 ASSERT(spa_writeable(spa)); 4417 4418 txg = spa_vdev_enter(spa); 4419 4420 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE); 4421 4422 if (oldvd == NULL) 4423 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 4424 4425 if (!oldvd->vdev_ops->vdev_op_leaf) 4426 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4427 4428 pvd = oldvd->vdev_parent; 4429 4430 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0, 4431 VDEV_ALLOC_ATTACH)) != 0) 4432 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4433 4434 if (newrootvd->vdev_children != 1) 4435 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 4436 4437 newvd = newrootvd->vdev_child[0]; 4438 4439 if (!newvd->vdev_ops->vdev_op_leaf) 4440 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 4441 4442 if ((error = vdev_create(newrootvd, txg, replacing)) != 0) 4443 return (spa_vdev_exit(spa, newrootvd, txg, error)); 4444 4445 /* 4446 * Spares can't replace logs 4447 */ 4448 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare) 4449 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4450 4451 if (!replacing) { 4452 /* 4453 * For attach, the only allowable parent is a mirror or the root 4454 * vdev. 4455 */ 4456 if (pvd->vdev_ops != &vdev_mirror_ops && 4457 pvd->vdev_ops != &vdev_root_ops) 4458 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4459 4460 pvops = &vdev_mirror_ops; 4461 } else { 4462 /* 4463 * Active hot spares can only be replaced by inactive hot 4464 * spares. 4465 */ 4466 if (pvd->vdev_ops == &vdev_spare_ops && 4467 oldvd->vdev_isspare && 4468 !spa_has_spare(spa, newvd->vdev_guid)) 4469 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4470 4471 /* 4472 * If the source is a hot spare, and the parent isn't already a 4473 * spare, then we want to create a new hot spare. Otherwise, we 4474 * want to create a replacing vdev. The user is not allowed to 4475 * attach to a spared vdev child unless the 'isspare' state is 4476 * the same (spare replaces spare, non-spare replaces 4477 * non-spare). 4478 */ 4479 if (pvd->vdev_ops == &vdev_replacing_ops && 4480 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) { 4481 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4482 } else if (pvd->vdev_ops == &vdev_spare_ops && 4483 newvd->vdev_isspare != oldvd->vdev_isspare) { 4484 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4485 } 4486 4487 if (newvd->vdev_isspare) 4488 pvops = &vdev_spare_ops; 4489 else 4490 pvops = &vdev_replacing_ops; 4491 } 4492 4493 /* 4494 * Make sure the new device is big enough. 4495 */ 4496 if (newvd->vdev_asize < vdev_get_min_asize(oldvd)) 4497 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW)); 4498 4499 /* 4500 * The new device cannot have a higher alignment requirement 4501 * than the top-level vdev. 4502 */ 4503 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift) 4504 return (spa_vdev_exit(spa, newrootvd, txg, EDOM)); 4505 4506 /* 4507 * If this is an in-place replacement, update oldvd's path and devid 4508 * to make it distinguishable from newvd, and unopenable from now on. 4509 */ 4510 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) { 4511 spa_strfree(oldvd->vdev_path); 4512 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5, 4513 KM_SLEEP); 4514 (void) sprintf(oldvd->vdev_path, "%s/%s", 4515 newvd->vdev_path, "old"); 4516 if (oldvd->vdev_devid != NULL) { 4517 spa_strfree(oldvd->vdev_devid); 4518 oldvd->vdev_devid = NULL; 4519 } 4520 } 4521 4522 /* mark the device being resilvered */ 4523 newvd->vdev_resilver_txg = txg; 4524 4525 /* 4526 * If the parent is not a mirror, or if we're replacing, insert the new 4527 * mirror/replacing/spare vdev above oldvd. 4528 */ 4529 if (pvd->vdev_ops != pvops) 4530 pvd = vdev_add_parent(oldvd, pvops); 4531 4532 ASSERT(pvd->vdev_top->vdev_parent == rvd); 4533 ASSERT(pvd->vdev_ops == pvops); 4534 ASSERT(oldvd->vdev_parent == pvd); 4535 4536 /* 4537 * Extract the new device from its root and add it to pvd. 4538 */ 4539 vdev_remove_child(newrootvd, newvd); 4540 newvd->vdev_id = pvd->vdev_children; 4541 newvd->vdev_crtxg = oldvd->vdev_crtxg; 4542 vdev_add_child(pvd, newvd); 4543 4544 tvd = newvd->vdev_top; 4545 ASSERT(pvd->vdev_top == tvd); 4546 ASSERT(tvd->vdev_parent == rvd); 4547 4548 vdev_config_dirty(tvd); 4549 4550 /* 4551 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account 4552 * for any dmu_sync-ed blocks. It will propagate upward when 4553 * spa_vdev_exit() calls vdev_dtl_reassess(). 4554 */ 4555 dtl_max_txg = txg + TXG_CONCURRENT_STATES; 4556 4557 vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL, 4558 dtl_max_txg - TXG_INITIAL); 4559 4560 if (newvd->vdev_isspare) { 4561 spa_spare_activate(newvd); 4562 spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE); 4563 } 4564 4565 oldvdpath = spa_strdup(oldvd->vdev_path); 4566 newvdpath = spa_strdup(newvd->vdev_path); 4567 newvd_isspare = newvd->vdev_isspare; 4568 4569 /* 4570 * Mark newvd's DTL dirty in this txg. 4571 */ 4572 vdev_dirty(tvd, VDD_DTL, newvd, txg); 4573 4574 /* 4575 * Schedule the resilver to restart in the future. We do this to 4576 * ensure that dmu_sync-ed blocks have been stitched into the 4577 * respective datasets. 4578 */ 4579 dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg); 4580 4581 /* 4582 * Commit the config 4583 */ 4584 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0); 4585 4586 spa_history_log_internal(spa, "vdev attach", NULL, 4587 "%s vdev=%s %s vdev=%s", 4588 replacing && newvd_isspare ? "spare in" : 4589 replacing ? "replace" : "attach", newvdpath, 4590 replacing ? "for" : "to", oldvdpath); 4591 4592 spa_strfree(oldvdpath); 4593 spa_strfree(newvdpath); 4594 4595 if (spa->spa_bootfs) 4596 spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH); 4597 4598 return (0); 4599 } 4600 4601 /* 4602 * Detach a device from a mirror or replacing vdev. 4603 * 4604 * If 'replace_done' is specified, only detach if the parent 4605 * is a replacing vdev. 4606 */ 4607 int 4608 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done) 4609 { 4610 uint64_t txg; 4611 int error; 4612 vdev_t *rvd = spa->spa_root_vdev; 4613 vdev_t *vd, *pvd, *cvd, *tvd; 4614 boolean_t unspare = B_FALSE; 4615 uint64_t unspare_guid = 0; 4616 char *vdpath; 4617 4618 ASSERT(spa_writeable(spa)); 4619 4620 txg = spa_vdev_enter(spa); 4621 4622 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 4623 4624 if (vd == NULL) 4625 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 4626 4627 if (!vd->vdev_ops->vdev_op_leaf) 4628 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4629 4630 pvd = vd->vdev_parent; 4631 4632 /* 4633 * If the parent/child relationship is not as expected, don't do it. 4634 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing 4635 * vdev that's replacing B with C. The user's intent in replacing 4636 * is to go from M(A,B) to M(A,C). If the user decides to cancel 4637 * the replace by detaching C, the expected behavior is to end up 4638 * M(A,B). But suppose that right after deciding to detach C, 4639 * the replacement of B completes. We would have M(A,C), and then 4640 * ask to detach C, which would leave us with just A -- not what 4641 * the user wanted. To prevent this, we make sure that the 4642 * parent/child relationship hasn't changed -- in this example, 4643 * that C's parent is still the replacing vdev R. 4644 */ 4645 if (pvd->vdev_guid != pguid && pguid != 0) 4646 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 4647 4648 /* 4649 * Only 'replacing' or 'spare' vdevs can be replaced. 4650 */ 4651 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops && 4652 pvd->vdev_ops != &vdev_spare_ops) 4653 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4654 4655 ASSERT(pvd->vdev_ops != &vdev_spare_ops || 4656 spa_version(spa) >= SPA_VERSION_SPARES); 4657 4658 /* 4659 * Only mirror, replacing, and spare vdevs support detach. 4660 */ 4661 if (pvd->vdev_ops != &vdev_replacing_ops && 4662 pvd->vdev_ops != &vdev_mirror_ops && 4663 pvd->vdev_ops != &vdev_spare_ops) 4664 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4665 4666 /* 4667 * If this device has the only valid copy of some data, 4668 * we cannot safely detach it. 4669 */ 4670 if (vdev_dtl_required(vd)) 4671 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 4672 4673 ASSERT(pvd->vdev_children >= 2); 4674 4675 /* 4676 * If we are detaching the second disk from a replacing vdev, then 4677 * check to see if we changed the original vdev's path to have "/old" 4678 * at the end in spa_vdev_attach(). If so, undo that change now. 4679 */ 4680 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 && 4681 vd->vdev_path != NULL) { 4682 size_t len = strlen(vd->vdev_path); 4683 4684 for (int c = 0; c < pvd->vdev_children; c++) { 4685 cvd = pvd->vdev_child[c]; 4686 4687 if (cvd == vd || cvd->vdev_path == NULL) 4688 continue; 4689 4690 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 && 4691 strcmp(cvd->vdev_path + len, "/old") == 0) { 4692 spa_strfree(cvd->vdev_path); 4693 cvd->vdev_path = spa_strdup(vd->vdev_path); 4694 break; 4695 } 4696 } 4697 } 4698 4699 /* 4700 * If we are detaching the original disk from a spare, then it implies 4701 * that the spare should become a real disk, and be removed from the 4702 * active spare list for the pool. 4703 */ 4704 if (pvd->vdev_ops == &vdev_spare_ops && 4705 vd->vdev_id == 0 && 4706 pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare) 4707 unspare = B_TRUE; 4708 4709 /* 4710 * Erase the disk labels so the disk can be used for other things. 4711 * This must be done after all other error cases are handled, 4712 * but before we disembowel vd (so we can still do I/O to it). 4713 * But if we can't do it, don't treat the error as fatal -- 4714 * it may be that the unwritability of the disk is the reason 4715 * it's being detached! 4716 */ 4717 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 4718 4719 /* 4720 * Remove vd from its parent and compact the parent's children. 4721 */ 4722 vdev_remove_child(pvd, vd); 4723 vdev_compact_children(pvd); 4724 4725 /* 4726 * Remember one of the remaining children so we can get tvd below. 4727 */ 4728 cvd = pvd->vdev_child[pvd->vdev_children - 1]; 4729 4730 /* 4731 * If we need to remove the remaining child from the list of hot spares, 4732 * do it now, marking the vdev as no longer a spare in the process. 4733 * We must do this before vdev_remove_parent(), because that can 4734 * change the GUID if it creates a new toplevel GUID. For a similar 4735 * reason, we must remove the spare now, in the same txg as the detach; 4736 * otherwise someone could attach a new sibling, change the GUID, and 4737 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail. 4738 */ 4739 if (unspare) { 4740 ASSERT(cvd->vdev_isspare); 4741 spa_spare_remove(cvd); 4742 unspare_guid = cvd->vdev_guid; 4743 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE); 4744 cvd->vdev_unspare = B_TRUE; 4745 } 4746 4747 /* 4748 * If the parent mirror/replacing vdev only has one child, 4749 * the parent is no longer needed. Remove it from the tree. 4750 */ 4751 if (pvd->vdev_children == 1) { 4752 if (pvd->vdev_ops == &vdev_spare_ops) 4753 cvd->vdev_unspare = B_FALSE; 4754 vdev_remove_parent(cvd); 4755 } 4756 4757 4758 /* 4759 * We don't set tvd until now because the parent we just removed 4760 * may have been the previous top-level vdev. 4761 */ 4762 tvd = cvd->vdev_top; 4763 ASSERT(tvd->vdev_parent == rvd); 4764 4765 /* 4766 * Reevaluate the parent vdev state. 4767 */ 4768 vdev_propagate_state(cvd); 4769 4770 /* 4771 * If the 'autoexpand' property is set on the pool then automatically 4772 * try to expand the size of the pool. For example if the device we 4773 * just detached was smaller than the others, it may be possible to 4774 * add metaslabs (i.e. grow the pool). We need to reopen the vdev 4775 * first so that we can obtain the updated sizes of the leaf vdevs. 4776 */ 4777 if (spa->spa_autoexpand) { 4778 vdev_reopen(tvd); 4779 vdev_expand(tvd, txg); 4780 } 4781 4782 vdev_config_dirty(tvd); 4783 4784 /* 4785 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that 4786 * vd->vdev_detached is set and free vd's DTL object in syncing context. 4787 * But first make sure we're not on any *other* txg's DTL list, to 4788 * prevent vd from being accessed after it's freed. 4789 */ 4790 vdpath = spa_strdup(vd->vdev_path); 4791 for (int t = 0; t < TXG_SIZE; t++) 4792 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t); 4793 vd->vdev_detached = B_TRUE; 4794 vdev_dirty(tvd, VDD_DTL, vd, txg); 4795 4796 spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE); 4797 4798 /* hang on to the spa before we release the lock */ 4799 spa_open_ref(spa, FTAG); 4800 4801 error = spa_vdev_exit(spa, vd, txg, 0); 4802 4803 spa_history_log_internal(spa, "detach", NULL, 4804 "vdev=%s", vdpath); 4805 spa_strfree(vdpath); 4806 4807 /* 4808 * If this was the removal of the original device in a hot spare vdev, 4809 * then we want to go through and remove the device from the hot spare 4810 * list of every other pool. 4811 */ 4812 if (unspare) { 4813 spa_t *altspa = NULL; 4814 4815 mutex_enter(&spa_namespace_lock); 4816 while ((altspa = spa_next(altspa)) != NULL) { 4817 if (altspa->spa_state != POOL_STATE_ACTIVE || 4818 altspa == spa) 4819 continue; 4820 4821 spa_open_ref(altspa, FTAG); 4822 mutex_exit(&spa_namespace_lock); 4823 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE); 4824 mutex_enter(&spa_namespace_lock); 4825 spa_close(altspa, FTAG); 4826 } 4827 mutex_exit(&spa_namespace_lock); 4828 4829 /* search the rest of the vdevs for spares to remove */ 4830 spa_vdev_resilver_done(spa); 4831 } 4832 4833 /* all done with the spa; OK to release */ 4834 mutex_enter(&spa_namespace_lock); 4835 spa_close(spa, FTAG); 4836 mutex_exit(&spa_namespace_lock); 4837 4838 return (error); 4839 } 4840 4841 /* 4842 * Split a set of devices from their mirrors, and create a new pool from them. 4843 */ 4844 int 4845 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config, 4846 nvlist_t *props, boolean_t exp) 4847 { 4848 int error = 0; 4849 uint64_t txg, *glist; 4850 spa_t *newspa; 4851 uint_t c, children, lastlog; 4852 nvlist_t **child, *nvl, *tmp; 4853 dmu_tx_t *tx; 4854 char *altroot = NULL; 4855 vdev_t *rvd, **vml = NULL; /* vdev modify list */ 4856 boolean_t activate_slog; 4857 4858 ASSERT(spa_writeable(spa)); 4859 4860 txg = spa_vdev_enter(spa); 4861 4862 /* clear the log and flush everything up to now */ 4863 activate_slog = spa_passivate_log(spa); 4864 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 4865 error = spa_offline_log(spa); 4866 txg = spa_vdev_config_enter(spa); 4867 4868 if (activate_slog) 4869 spa_activate_log(spa); 4870 4871 if (error != 0) 4872 return (spa_vdev_exit(spa, NULL, txg, error)); 4873 4874 /* check new spa name before going any further */ 4875 if (spa_lookup(newname) != NULL) 4876 return (spa_vdev_exit(spa, NULL, txg, EEXIST)); 4877 4878 /* 4879 * scan through all the children to ensure they're all mirrors 4880 */ 4881 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 || 4882 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child, 4883 &children) != 0) 4884 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4885 4886 /* first, check to ensure we've got the right child count */ 4887 rvd = spa->spa_root_vdev; 4888 lastlog = 0; 4889 for (c = 0; c < rvd->vdev_children; c++) { 4890 vdev_t *vd = rvd->vdev_child[c]; 4891 4892 /* don't count the holes & logs as children */ 4893 if (vd->vdev_islog || vd->vdev_ishole) { 4894 if (lastlog == 0) 4895 lastlog = c; 4896 continue; 4897 } 4898 4899 lastlog = 0; 4900 } 4901 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children)) 4902 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4903 4904 /* next, ensure no spare or cache devices are part of the split */ 4905 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 || 4906 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0) 4907 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4908 4909 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP); 4910 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP); 4911 4912 /* then, loop over each vdev and validate it */ 4913 for (c = 0; c < children; c++) { 4914 uint64_t is_hole = 0; 4915 4916 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE, 4917 &is_hole); 4918 4919 if (is_hole != 0) { 4920 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole || 4921 spa->spa_root_vdev->vdev_child[c]->vdev_islog) { 4922 continue; 4923 } else { 4924 error = SET_ERROR(EINVAL); 4925 break; 4926 } 4927 } 4928 4929 /* which disk is going to be split? */ 4930 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID, 4931 &glist[c]) != 0) { 4932 error = SET_ERROR(EINVAL); 4933 break; 4934 } 4935 4936 /* look it up in the spa */ 4937 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE); 4938 if (vml[c] == NULL) { 4939 error = SET_ERROR(ENODEV); 4940 break; 4941 } 4942 4943 /* make sure there's nothing stopping the split */ 4944 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops || 4945 vml[c]->vdev_islog || 4946 vml[c]->vdev_ishole || 4947 vml[c]->vdev_isspare || 4948 vml[c]->vdev_isl2cache || 4949 !vdev_writeable(vml[c]) || 4950 vml[c]->vdev_children != 0 || 4951 vml[c]->vdev_state != VDEV_STATE_HEALTHY || 4952 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) { 4953 error = SET_ERROR(EINVAL); 4954 break; 4955 } 4956 4957 if (vdev_dtl_required(vml[c])) { 4958 error = SET_ERROR(EBUSY); 4959 break; 4960 } 4961 4962 /* we need certain info from the top level */ 4963 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY, 4964 vml[c]->vdev_top->vdev_ms_array) == 0); 4965 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT, 4966 vml[c]->vdev_top->vdev_ms_shift) == 0); 4967 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE, 4968 vml[c]->vdev_top->vdev_asize) == 0); 4969 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT, 4970 vml[c]->vdev_top->vdev_ashift) == 0); 4971 } 4972 4973 if (error != 0) { 4974 kmem_free(vml, children * sizeof (vdev_t *)); 4975 kmem_free(glist, children * sizeof (uint64_t)); 4976 return (spa_vdev_exit(spa, NULL, txg, error)); 4977 } 4978 4979 /* stop writers from using the disks */ 4980 for (c = 0; c < children; c++) { 4981 if (vml[c] != NULL) 4982 vml[c]->vdev_offline = B_TRUE; 4983 } 4984 vdev_reopen(spa->spa_root_vdev); 4985 4986 /* 4987 * Temporarily record the splitting vdevs in the spa config. This 4988 * will disappear once the config is regenerated. 4989 */ 4990 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0); 4991 VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 4992 glist, children) == 0); 4993 kmem_free(glist, children * sizeof (uint64_t)); 4994 4995 mutex_enter(&spa->spa_props_lock); 4996 VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT, 4997 nvl) == 0); 4998 mutex_exit(&spa->spa_props_lock); 4999 spa->spa_config_splitting = nvl; 5000 vdev_config_dirty(spa->spa_root_vdev); 5001 5002 /* configure and create the new pool */ 5003 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0); 5004 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 5005 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0); 5006 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, 5007 spa_version(spa)) == 0); 5008 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, 5009 spa->spa_config_txg) == 0); 5010 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID, 5011 spa_generate_guid(NULL)) == 0); 5012 (void) nvlist_lookup_string(props, 5013 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 5014 5015 /* add the new pool to the namespace */ 5016 newspa = spa_add(newname, config, altroot); 5017 newspa->spa_config_txg = spa->spa_config_txg; 5018 spa_set_log_state(newspa, SPA_LOG_CLEAR); 5019 5020 /* release the spa config lock, retaining the namespace lock */ 5021 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 5022 5023 if (zio_injection_enabled) 5024 zio_handle_panic_injection(spa, FTAG, 1); 5025 5026 spa_activate(newspa, spa_mode_global); 5027 spa_async_suspend(newspa); 5028 5029 /* create the new pool from the disks of the original pool */ 5030 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE); 5031 if (error) 5032 goto out; 5033 5034 /* if that worked, generate a real config for the new pool */ 5035 if (newspa->spa_root_vdev != NULL) { 5036 VERIFY(nvlist_alloc(&newspa->spa_config_splitting, 5037 NV_UNIQUE_NAME, KM_SLEEP) == 0); 5038 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting, 5039 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0); 5040 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL, 5041 B_TRUE)); 5042 } 5043 5044 /* set the props */ 5045 if (props != NULL) { 5046 spa_configfile_set(newspa, props, B_FALSE); 5047 error = spa_prop_set(newspa, props); 5048 if (error) 5049 goto out; 5050 } 5051 5052 /* flush everything */ 5053 txg = spa_vdev_config_enter(newspa); 5054 vdev_config_dirty(newspa->spa_root_vdev); 5055 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG); 5056 5057 if (zio_injection_enabled) 5058 zio_handle_panic_injection(spa, FTAG, 2); 5059 5060 spa_async_resume(newspa); 5061 5062 /* finally, update the original pool's config */ 5063 txg = spa_vdev_config_enter(spa); 5064 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 5065 error = dmu_tx_assign(tx, TXG_WAIT); 5066 if (error != 0) 5067 dmu_tx_abort(tx); 5068 for (c = 0; c < children; c++) { 5069 if (vml[c] != NULL) { 5070 vdev_split(vml[c]); 5071 if (error == 0) 5072 spa_history_log_internal(spa, "detach", tx, 5073 "vdev=%s", vml[c]->vdev_path); 5074 vdev_free(vml[c]); 5075 } 5076 } 5077 vdev_config_dirty(spa->spa_root_vdev); 5078 spa->spa_config_splitting = NULL; 5079 nvlist_free(nvl); 5080 if (error == 0) 5081 dmu_tx_commit(tx); 5082 (void) spa_vdev_exit(spa, NULL, txg, 0); 5083 5084 if (zio_injection_enabled) 5085 zio_handle_panic_injection(spa, FTAG, 3); 5086 5087 /* split is complete; log a history record */ 5088 spa_history_log_internal(newspa, "split", NULL, 5089 "from pool %s", spa_name(spa)); 5090 5091 kmem_free(vml, children * sizeof (vdev_t *)); 5092 5093 /* if we're not going to mount the filesystems in userland, export */ 5094 if (exp) 5095 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL, 5096 B_FALSE, B_FALSE); 5097 5098 return (error); 5099 5100 out: 5101 spa_unload(newspa); 5102 spa_deactivate(newspa); 5103 spa_remove(newspa); 5104 5105 txg = spa_vdev_config_enter(spa); 5106 5107 /* re-online all offlined disks */ 5108 for (c = 0; c < children; c++) { 5109 if (vml[c] != NULL) 5110 vml[c]->vdev_offline = B_FALSE; 5111 } 5112 vdev_reopen(spa->spa_root_vdev); 5113 5114 nvlist_free(spa->spa_config_splitting); 5115 spa->spa_config_splitting = NULL; 5116 (void) spa_vdev_exit(spa, NULL, txg, error); 5117 5118 kmem_free(vml, children * sizeof (vdev_t *)); 5119 return (error); 5120 } 5121 5122 static nvlist_t * 5123 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid) 5124 { 5125 for (int i = 0; i < count; i++) { 5126 uint64_t guid; 5127 5128 VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID, 5129 &guid) == 0); 5130 5131 if (guid == target_guid) 5132 return (nvpp[i]); 5133 } 5134 5135 return (NULL); 5136 } 5137 5138 static void 5139 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count, 5140 nvlist_t *dev_to_remove) 5141 { 5142 nvlist_t **newdev = NULL; 5143 5144 if (count > 1) 5145 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP); 5146 5147 for (int i = 0, j = 0; i < count; i++) { 5148 if (dev[i] == dev_to_remove) 5149 continue; 5150 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0); 5151 } 5152 5153 VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0); 5154 VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0); 5155 5156 for (int i = 0; i < count - 1; i++) 5157 nvlist_free(newdev[i]); 5158 5159 if (count > 1) 5160 kmem_free(newdev, (count - 1) * sizeof (void *)); 5161 } 5162 5163 /* 5164 * Evacuate the device. 5165 */ 5166 static int 5167 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd) 5168 { 5169 uint64_t txg; 5170 int error = 0; 5171 5172 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 5173 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 5174 ASSERT(vd == vd->vdev_top); 5175 5176 /* 5177 * Evacuate the device. We don't hold the config lock as writer 5178 * since we need to do I/O but we do keep the 5179 * spa_namespace_lock held. Once this completes the device 5180 * should no longer have any blocks allocated on it. 5181 */ 5182 if (vd->vdev_islog) { 5183 if (vd->vdev_stat.vs_alloc != 0) 5184 error = spa_offline_log(spa); 5185 } else { 5186 error = SET_ERROR(ENOTSUP); 5187 } 5188 5189 if (error) 5190 return (error); 5191 5192 /* 5193 * The evacuation succeeded. Remove any remaining MOS metadata 5194 * associated with this vdev, and wait for these changes to sync. 5195 */ 5196 ASSERT0(vd->vdev_stat.vs_alloc); 5197 txg = spa_vdev_config_enter(spa); 5198 vd->vdev_removing = B_TRUE; 5199 vdev_dirty_leaves(vd, VDD_DTL, txg); 5200 vdev_config_dirty(vd); 5201 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 5202 5203 return (0); 5204 } 5205 5206 /* 5207 * Complete the removal by cleaning up the namespace. 5208 */ 5209 static void 5210 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd) 5211 { 5212 vdev_t *rvd = spa->spa_root_vdev; 5213 uint64_t id = vd->vdev_id; 5214 boolean_t last_vdev = (id == (rvd->vdev_children - 1)); 5215 5216 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 5217 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 5218 ASSERT(vd == vd->vdev_top); 5219 5220 /* 5221 * Only remove any devices which are empty. 5222 */ 5223 if (vd->vdev_stat.vs_alloc != 0) 5224 return; 5225 5226 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 5227 5228 if (list_link_active(&vd->vdev_state_dirty_node)) 5229 vdev_state_clean(vd); 5230 if (list_link_active(&vd->vdev_config_dirty_node)) 5231 vdev_config_clean(vd); 5232 5233 vdev_free(vd); 5234 5235 if (last_vdev) { 5236 vdev_compact_children(rvd); 5237 } else { 5238 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops); 5239 vdev_add_child(rvd, vd); 5240 } 5241 vdev_config_dirty(rvd); 5242 5243 /* 5244 * Reassess the health of our root vdev. 5245 */ 5246 vdev_reopen(rvd); 5247 } 5248 5249 /* 5250 * Remove a device from the pool - 5251 * 5252 * Removing a device from the vdev namespace requires several steps 5253 * and can take a significant amount of time. As a result we use 5254 * the spa_vdev_config_[enter/exit] functions which allow us to 5255 * grab and release the spa_config_lock while still holding the namespace 5256 * lock. During each step the configuration is synced out. 5257 * 5258 * Currently, this supports removing only hot spares, slogs, and level 2 ARC 5259 * devices. 5260 */ 5261 int 5262 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare) 5263 { 5264 vdev_t *vd; 5265 metaslab_group_t *mg; 5266 nvlist_t **spares, **l2cache, *nv; 5267 uint64_t txg = 0; 5268 uint_t nspares, nl2cache; 5269 int error = 0; 5270 boolean_t locked = MUTEX_HELD(&spa_namespace_lock); 5271 5272 ASSERT(spa_writeable(spa)); 5273 5274 if (!locked) 5275 txg = spa_vdev_enter(spa); 5276 5277 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 5278 5279 if (spa->spa_spares.sav_vdevs != NULL && 5280 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 5281 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 && 5282 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) { 5283 /* 5284 * Only remove the hot spare if it's not currently in use 5285 * in this pool. 5286 */ 5287 if (vd == NULL || unspare) { 5288 spa_vdev_remove_aux(spa->spa_spares.sav_config, 5289 ZPOOL_CONFIG_SPARES, spares, nspares, nv); 5290 spa_load_spares(spa); 5291 spa->spa_spares.sav_sync = B_TRUE; 5292 } else { 5293 error = SET_ERROR(EBUSY); 5294 } 5295 } else if (spa->spa_l2cache.sav_vdevs != NULL && 5296 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 5297 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 && 5298 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) { 5299 /* 5300 * Cache devices can always be removed. 5301 */ 5302 spa_vdev_remove_aux(spa->spa_l2cache.sav_config, 5303 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv); 5304 spa_load_l2cache(spa); 5305 spa->spa_l2cache.sav_sync = B_TRUE; 5306 } else if (vd != NULL && vd->vdev_islog) { 5307 ASSERT(!locked); 5308 ASSERT(vd == vd->vdev_top); 5309 5310 mg = vd->vdev_mg; 5311 5312 /* 5313 * Stop allocating from this vdev. 5314 */ 5315 metaslab_group_passivate(mg); 5316 5317 /* 5318 * Wait for the youngest allocations and frees to sync, 5319 * and then wait for the deferral of those frees to finish. 5320 */ 5321 spa_vdev_config_exit(spa, NULL, 5322 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG); 5323 5324 /* 5325 * Attempt to evacuate the vdev. 5326 */ 5327 error = spa_vdev_remove_evacuate(spa, vd); 5328 5329 txg = spa_vdev_config_enter(spa); 5330 5331 /* 5332 * If we couldn't evacuate the vdev, unwind. 5333 */ 5334 if (error) { 5335 metaslab_group_activate(mg); 5336 return (spa_vdev_exit(spa, NULL, txg, error)); 5337 } 5338 5339 /* 5340 * Clean up the vdev namespace. 5341 */ 5342 spa_vdev_remove_from_namespace(spa, vd); 5343 5344 } else if (vd != NULL) { 5345 /* 5346 * Normal vdevs cannot be removed (yet). 5347 */ 5348 error = SET_ERROR(ENOTSUP); 5349 } else { 5350 /* 5351 * There is no vdev of any kind with the specified guid. 5352 */ 5353 error = SET_ERROR(ENOENT); 5354 } 5355 5356 if (!locked) 5357 return (spa_vdev_exit(spa, NULL, txg, error)); 5358 5359 return (error); 5360 } 5361 5362 /* 5363 * Find any device that's done replacing, or a vdev marked 'unspare' that's 5364 * currently spared, so we can detach it. 5365 */ 5366 static vdev_t * 5367 spa_vdev_resilver_done_hunt(vdev_t *vd) 5368 { 5369 vdev_t *newvd, *oldvd; 5370 5371 for (int c = 0; c < vd->vdev_children; c++) { 5372 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]); 5373 if (oldvd != NULL) 5374 return (oldvd); 5375 } 5376 5377 /* 5378 * Check for a completed replacement. We always consider the first 5379 * vdev in the list to be the oldest vdev, and the last one to be 5380 * the newest (see spa_vdev_attach() for how that works). In 5381 * the case where the newest vdev is faulted, we will not automatically 5382 * remove it after a resilver completes. This is OK as it will require 5383 * user intervention to determine which disk the admin wishes to keep. 5384 */ 5385 if (vd->vdev_ops == &vdev_replacing_ops) { 5386 ASSERT(vd->vdev_children > 1); 5387 5388 newvd = vd->vdev_child[vd->vdev_children - 1]; 5389 oldvd = vd->vdev_child[0]; 5390 5391 if (vdev_dtl_empty(newvd, DTL_MISSING) && 5392 vdev_dtl_empty(newvd, DTL_OUTAGE) && 5393 !vdev_dtl_required(oldvd)) 5394 return (oldvd); 5395 } 5396 5397 /* 5398 * Check for a completed resilver with the 'unspare' flag set. 5399 */ 5400 if (vd->vdev_ops == &vdev_spare_ops) { 5401 vdev_t *first = vd->vdev_child[0]; 5402 vdev_t *last = vd->vdev_child[vd->vdev_children - 1]; 5403 5404 if (last->vdev_unspare) { 5405 oldvd = first; 5406 newvd = last; 5407 } else if (first->vdev_unspare) { 5408 oldvd = last; 5409 newvd = first; 5410 } else { 5411 oldvd = NULL; 5412 } 5413 5414 if (oldvd != NULL && 5415 vdev_dtl_empty(newvd, DTL_MISSING) && 5416 vdev_dtl_empty(newvd, DTL_OUTAGE) && 5417 !vdev_dtl_required(oldvd)) 5418 return (oldvd); 5419 5420 /* 5421 * If there are more than two spares attached to a disk, 5422 * and those spares are not required, then we want to 5423 * attempt to free them up now so that they can be used 5424 * by other pools. Once we're back down to a single 5425 * disk+spare, we stop removing them. 5426 */ 5427 if (vd->vdev_children > 2) { 5428 newvd = vd->vdev_child[1]; 5429 5430 if (newvd->vdev_isspare && last->vdev_isspare && 5431 vdev_dtl_empty(last, DTL_MISSING) && 5432 vdev_dtl_empty(last, DTL_OUTAGE) && 5433 !vdev_dtl_required(newvd)) 5434 return (newvd); 5435 } 5436 } 5437 5438 return (NULL); 5439 } 5440 5441 static void 5442 spa_vdev_resilver_done(spa_t *spa) 5443 { 5444 vdev_t *vd, *pvd, *ppvd; 5445 uint64_t guid, sguid, pguid, ppguid; 5446 5447 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5448 5449 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) { 5450 pvd = vd->vdev_parent; 5451 ppvd = pvd->vdev_parent; 5452 guid = vd->vdev_guid; 5453 pguid = pvd->vdev_guid; 5454 ppguid = ppvd->vdev_guid; 5455 sguid = 0; 5456 /* 5457 * If we have just finished replacing a hot spared device, then 5458 * we need to detach the parent's first child (the original hot 5459 * spare) as well. 5460 */ 5461 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 && 5462 ppvd->vdev_children == 2) { 5463 ASSERT(pvd->vdev_ops == &vdev_replacing_ops); 5464 sguid = ppvd->vdev_child[1]->vdev_guid; 5465 } 5466 ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd)); 5467 5468 spa_config_exit(spa, SCL_ALL, FTAG); 5469 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0) 5470 return; 5471 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0) 5472 return; 5473 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5474 } 5475 5476 spa_config_exit(spa, SCL_ALL, FTAG); 5477 } 5478 5479 /* 5480 * Update the stored path or FRU for this vdev. 5481 */ 5482 int 5483 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value, 5484 boolean_t ispath) 5485 { 5486 vdev_t *vd; 5487 boolean_t sync = B_FALSE; 5488 5489 ASSERT(spa_writeable(spa)); 5490 5491 spa_vdev_state_enter(spa, SCL_ALL); 5492 5493 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 5494 return (spa_vdev_state_exit(spa, NULL, ENOENT)); 5495 5496 if (!vd->vdev_ops->vdev_op_leaf) 5497 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 5498 5499 if (ispath) { 5500 if (strcmp(value, vd->vdev_path) != 0) { 5501 spa_strfree(vd->vdev_path); 5502 vd->vdev_path = spa_strdup(value); 5503 sync = B_TRUE; 5504 } 5505 } else { 5506 if (vd->vdev_fru == NULL) { 5507 vd->vdev_fru = spa_strdup(value); 5508 sync = B_TRUE; 5509 } else if (strcmp(value, vd->vdev_fru) != 0) { 5510 spa_strfree(vd->vdev_fru); 5511 vd->vdev_fru = spa_strdup(value); 5512 sync = B_TRUE; 5513 } 5514 } 5515 5516 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0)); 5517 } 5518 5519 int 5520 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath) 5521 { 5522 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE)); 5523 } 5524 5525 int 5526 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru) 5527 { 5528 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE)); 5529 } 5530 5531 /* 5532 * ========================================================================== 5533 * SPA Scanning 5534 * ========================================================================== 5535 */ 5536 5537 int 5538 spa_scan_stop(spa_t *spa) 5539 { 5540 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 5541 if (dsl_scan_resilvering(spa->spa_dsl_pool)) 5542 return (SET_ERROR(EBUSY)); 5543 return (dsl_scan_cancel(spa->spa_dsl_pool)); 5544 } 5545 5546 int 5547 spa_scan(spa_t *spa, pool_scan_func_t func) 5548 { 5549 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 5550 5551 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE) 5552 return (SET_ERROR(ENOTSUP)); 5553 5554 /* 5555 * If a resilver was requested, but there is no DTL on a 5556 * writeable leaf device, we have nothing to do. 5557 */ 5558 if (func == POOL_SCAN_RESILVER && 5559 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) { 5560 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 5561 return (0); 5562 } 5563 5564 return (dsl_scan(spa->spa_dsl_pool, func)); 5565 } 5566 5567 /* 5568 * ========================================================================== 5569 * SPA async task processing 5570 * ========================================================================== 5571 */ 5572 5573 static void 5574 spa_async_remove(spa_t *spa, vdev_t *vd) 5575 { 5576 if (vd->vdev_remove_wanted) { 5577 vd->vdev_remove_wanted = B_FALSE; 5578 vd->vdev_delayed_close = B_FALSE; 5579 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE); 5580 5581 /* 5582 * We want to clear the stats, but we don't want to do a full 5583 * vdev_clear() as that will cause us to throw away 5584 * degraded/faulted state as well as attempt to reopen the 5585 * device, all of which is a waste. 5586 */ 5587 vd->vdev_stat.vs_read_errors = 0; 5588 vd->vdev_stat.vs_write_errors = 0; 5589 vd->vdev_stat.vs_checksum_errors = 0; 5590 5591 vdev_state_dirty(vd->vdev_top); 5592 } 5593 5594 for (int c = 0; c < vd->vdev_children; c++) 5595 spa_async_remove(spa, vd->vdev_child[c]); 5596 } 5597 5598 static void 5599 spa_async_probe(spa_t *spa, vdev_t *vd) 5600 { 5601 if (vd->vdev_probe_wanted) { 5602 vd->vdev_probe_wanted = B_FALSE; 5603 vdev_reopen(vd); /* vdev_open() does the actual probe */ 5604 } 5605 5606 for (int c = 0; c < vd->vdev_children; c++) 5607 spa_async_probe(spa, vd->vdev_child[c]); 5608 } 5609 5610 static void 5611 spa_async_autoexpand(spa_t *spa, vdev_t *vd) 5612 { 5613 sysevent_id_t eid; 5614 nvlist_t *attr; 5615 char *physpath; 5616 5617 if (!spa->spa_autoexpand) 5618 return; 5619 5620 for (int c = 0; c < vd->vdev_children; c++) { 5621 vdev_t *cvd = vd->vdev_child[c]; 5622 spa_async_autoexpand(spa, cvd); 5623 } 5624 5625 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL) 5626 return; 5627 5628 physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP); 5629 (void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath); 5630 5631 VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0); 5632 VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0); 5633 5634 (void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS, 5635 ESC_DEV_DLE, attr, &eid, DDI_SLEEP); 5636 5637 nvlist_free(attr); 5638 kmem_free(physpath, MAXPATHLEN); 5639 } 5640 5641 static void 5642 spa_async_thread(spa_t *spa) 5643 { 5644 int tasks; 5645 5646 ASSERT(spa->spa_sync_on); 5647 5648 mutex_enter(&spa->spa_async_lock); 5649 tasks = spa->spa_async_tasks; 5650 spa->spa_async_tasks = 0; 5651 mutex_exit(&spa->spa_async_lock); 5652 5653 /* 5654 * See if the config needs to be updated. 5655 */ 5656 if (tasks & SPA_ASYNC_CONFIG_UPDATE) { 5657 uint64_t old_space, new_space; 5658 5659 mutex_enter(&spa_namespace_lock); 5660 old_space = metaslab_class_get_space(spa_normal_class(spa)); 5661 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 5662 new_space = metaslab_class_get_space(spa_normal_class(spa)); 5663 mutex_exit(&spa_namespace_lock); 5664 5665 /* 5666 * If the pool grew as a result of the config update, 5667 * then log an internal history event. 5668 */ 5669 if (new_space != old_space) { 5670 spa_history_log_internal(spa, "vdev online", NULL, 5671 "pool '%s' size: %llu(+%llu)", 5672 spa_name(spa), new_space, new_space - old_space); 5673 } 5674 } 5675 5676 /* 5677 * See if any devices need to be marked REMOVED. 5678 */ 5679 if (tasks & SPA_ASYNC_REMOVE) { 5680 spa_vdev_state_enter(spa, SCL_NONE); 5681 spa_async_remove(spa, spa->spa_root_vdev); 5682 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) 5683 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]); 5684 for (int i = 0; i < spa->spa_spares.sav_count; i++) 5685 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]); 5686 (void) spa_vdev_state_exit(spa, NULL, 0); 5687 } 5688 5689 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) { 5690 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 5691 spa_async_autoexpand(spa, spa->spa_root_vdev); 5692 spa_config_exit(spa, SCL_CONFIG, FTAG); 5693 } 5694 5695 /* 5696 * See if any devices need to be probed. 5697 */ 5698 if (tasks & SPA_ASYNC_PROBE) { 5699 spa_vdev_state_enter(spa, SCL_NONE); 5700 spa_async_probe(spa, spa->spa_root_vdev); 5701 (void) spa_vdev_state_exit(spa, NULL, 0); 5702 } 5703 5704 /* 5705 * If any devices are done replacing, detach them. 5706 */ 5707 if (tasks & SPA_ASYNC_RESILVER_DONE) 5708 spa_vdev_resilver_done(spa); 5709 5710 /* 5711 * Kick off a resilver. 5712 */ 5713 if (tasks & SPA_ASYNC_RESILVER) 5714 dsl_resilver_restart(spa->spa_dsl_pool, 0); 5715 5716 /* 5717 * Let the world know that we're done. 5718 */ 5719 mutex_enter(&spa->spa_async_lock); 5720 spa->spa_async_thread = NULL; 5721 cv_broadcast(&spa->spa_async_cv); 5722 mutex_exit(&spa->spa_async_lock); 5723 thread_exit(); 5724 } 5725 5726 void 5727 spa_async_suspend(spa_t *spa) 5728 { 5729 mutex_enter(&spa->spa_async_lock); 5730 spa->spa_async_suspended++; 5731 while (spa->spa_async_thread != NULL) 5732 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock); 5733 mutex_exit(&spa->spa_async_lock); 5734 } 5735 5736 void 5737 spa_async_resume(spa_t *spa) 5738 { 5739 mutex_enter(&spa->spa_async_lock); 5740 ASSERT(spa->spa_async_suspended != 0); 5741 spa->spa_async_suspended--; 5742 mutex_exit(&spa->spa_async_lock); 5743 } 5744 5745 static boolean_t 5746 spa_async_tasks_pending(spa_t *spa) 5747 { 5748 uint_t non_config_tasks; 5749 uint_t config_task; 5750 boolean_t config_task_suspended; 5751 5752 non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE; 5753 config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE; 5754 if (spa->spa_ccw_fail_time == 0) { 5755 config_task_suspended = B_FALSE; 5756 } else { 5757 config_task_suspended = 5758 (gethrtime() - spa->spa_ccw_fail_time) < 5759 (zfs_ccw_retry_interval * NANOSEC); 5760 } 5761 5762 return (non_config_tasks || (config_task && !config_task_suspended)); 5763 } 5764 5765 static void 5766 spa_async_dispatch(spa_t *spa) 5767 { 5768 mutex_enter(&spa->spa_async_lock); 5769 if (spa_async_tasks_pending(spa) && 5770 !spa->spa_async_suspended && 5771 spa->spa_async_thread == NULL && 5772 rootdir != NULL) 5773 spa->spa_async_thread = thread_create(NULL, 0, 5774 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri); 5775 mutex_exit(&spa->spa_async_lock); 5776 } 5777 5778 void 5779 spa_async_request(spa_t *spa, int task) 5780 { 5781 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task); 5782 mutex_enter(&spa->spa_async_lock); 5783 spa->spa_async_tasks |= task; 5784 mutex_exit(&spa->spa_async_lock); 5785 } 5786 5787 /* 5788 * ========================================================================== 5789 * SPA syncing routines 5790 * ========================================================================== 5791 */ 5792 5793 static int 5794 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 5795 { 5796 bpobj_t *bpo = arg; 5797 bpobj_enqueue(bpo, bp, tx); 5798 return (0); 5799 } 5800 5801 static int 5802 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 5803 { 5804 zio_t *zio = arg; 5805 5806 zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp, 5807 zio->io_flags)); 5808 return (0); 5809 } 5810 5811 /* 5812 * Note: this simple function is not inlined to make it easier to dtrace the 5813 * amount of time spent syncing frees. 5814 */ 5815 static void 5816 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx) 5817 { 5818 zio_t *zio = zio_root(spa, NULL, NULL, 0); 5819 bplist_iterate(bpl, spa_free_sync_cb, zio, tx); 5820 VERIFY(zio_wait(zio) == 0); 5821 } 5822 5823 /* 5824 * Note: this simple function is not inlined to make it easier to dtrace the 5825 * amount of time spent syncing deferred frees. 5826 */ 5827 static void 5828 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx) 5829 { 5830 zio_t *zio = zio_root(spa, NULL, NULL, 0); 5831 VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj, 5832 spa_free_sync_cb, zio, tx), ==, 0); 5833 VERIFY0(zio_wait(zio)); 5834 } 5835 5836 5837 static void 5838 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx) 5839 { 5840 char *packed = NULL; 5841 size_t bufsize; 5842 size_t nvsize = 0; 5843 dmu_buf_t *db; 5844 5845 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0); 5846 5847 /* 5848 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration 5849 * information. This avoids the dmu_buf_will_dirty() path and 5850 * saves us a pre-read to get data we don't actually care about. 5851 */ 5852 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE); 5853 packed = kmem_alloc(bufsize, KM_SLEEP); 5854 5855 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR, 5856 KM_SLEEP) == 0); 5857 bzero(packed + nvsize, bufsize - nvsize); 5858 5859 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx); 5860 5861 kmem_free(packed, bufsize); 5862 5863 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 5864 dmu_buf_will_dirty(db, tx); 5865 *(uint64_t *)db->db_data = nvsize; 5866 dmu_buf_rele(db, FTAG); 5867 } 5868 5869 static void 5870 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx, 5871 const char *config, const char *entry) 5872 { 5873 nvlist_t *nvroot; 5874 nvlist_t **list; 5875 int i; 5876 5877 if (!sav->sav_sync) 5878 return; 5879 5880 /* 5881 * Update the MOS nvlist describing the list of available devices. 5882 * spa_validate_aux() will have already made sure this nvlist is 5883 * valid and the vdevs are labeled appropriately. 5884 */ 5885 if (sav->sav_object == 0) { 5886 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset, 5887 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE, 5888 sizeof (uint64_t), tx); 5889 VERIFY(zap_update(spa->spa_meta_objset, 5890 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1, 5891 &sav->sav_object, tx) == 0); 5892 } 5893 5894 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 5895 if (sav->sav_count == 0) { 5896 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0); 5897 } else { 5898 list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 5899 for (i = 0; i < sav->sav_count; i++) 5900 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i], 5901 B_FALSE, VDEV_CONFIG_L2CACHE); 5902 VERIFY(nvlist_add_nvlist_array(nvroot, config, list, 5903 sav->sav_count) == 0); 5904 for (i = 0; i < sav->sav_count; i++) 5905 nvlist_free(list[i]); 5906 kmem_free(list, sav->sav_count * sizeof (void *)); 5907 } 5908 5909 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx); 5910 nvlist_free(nvroot); 5911 5912 sav->sav_sync = B_FALSE; 5913 } 5914 5915 static void 5916 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx) 5917 { 5918 nvlist_t *config; 5919 5920 if (list_is_empty(&spa->spa_config_dirty_list)) 5921 return; 5922 5923 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 5924 5925 config = spa_config_generate(spa, spa->spa_root_vdev, 5926 dmu_tx_get_txg(tx), B_FALSE); 5927 5928 /* 5929 * If we're upgrading the spa version then make sure that 5930 * the config object gets updated with the correct version. 5931 */ 5932 if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version) 5933 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, 5934 spa->spa_uberblock.ub_version); 5935 5936 spa_config_exit(spa, SCL_STATE, FTAG); 5937 5938 if (spa->spa_config_syncing) 5939 nvlist_free(spa->spa_config_syncing); 5940 spa->spa_config_syncing = config; 5941 5942 spa_sync_nvlist(spa, spa->spa_config_object, config, tx); 5943 } 5944 5945 static void 5946 spa_sync_version(void *arg, dmu_tx_t *tx) 5947 { 5948 uint64_t *versionp = arg; 5949 uint64_t version = *versionp; 5950 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 5951 5952 /* 5953 * Setting the version is special cased when first creating the pool. 5954 */ 5955 ASSERT(tx->tx_txg != TXG_INITIAL); 5956 5957 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 5958 ASSERT(version >= spa_version(spa)); 5959 5960 spa->spa_uberblock.ub_version = version; 5961 vdev_config_dirty(spa->spa_root_vdev); 5962 spa_history_log_internal(spa, "set", tx, "version=%lld", version); 5963 } 5964 5965 /* 5966 * Set zpool properties. 5967 */ 5968 static void 5969 spa_sync_props(void *arg, dmu_tx_t *tx) 5970 { 5971 nvlist_t *nvp = arg; 5972 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 5973 objset_t *mos = spa->spa_meta_objset; 5974 nvpair_t *elem = NULL; 5975 5976 mutex_enter(&spa->spa_props_lock); 5977 5978 while ((elem = nvlist_next_nvpair(nvp, elem))) { 5979 uint64_t intval; 5980 char *strval, *fname; 5981 zpool_prop_t prop; 5982 const char *propname; 5983 zprop_type_t proptype; 5984 spa_feature_t fid; 5985 5986 switch (prop = zpool_name_to_prop(nvpair_name(elem))) { 5987 case ZPROP_INVAL: 5988 /* 5989 * We checked this earlier in spa_prop_validate(). 5990 */ 5991 ASSERT(zpool_prop_feature(nvpair_name(elem))); 5992 5993 fname = strchr(nvpair_name(elem), '@') + 1; 5994 VERIFY0(zfeature_lookup_name(fname, &fid)); 5995 5996 spa_feature_enable(spa, fid, tx); 5997 spa_history_log_internal(spa, "set", tx, 5998 "%s=enabled", nvpair_name(elem)); 5999 break; 6000 6001 case ZPOOL_PROP_VERSION: 6002 intval = fnvpair_value_uint64(elem); 6003 /* 6004 * The version is synced seperatly before other 6005 * properties and should be correct by now. 6006 */ 6007 ASSERT3U(spa_version(spa), >=, intval); 6008 break; 6009 6010 case ZPOOL_PROP_ALTROOT: 6011 /* 6012 * 'altroot' is a non-persistent property. It should 6013 * have been set temporarily at creation or import time. 6014 */ 6015 ASSERT(spa->spa_root != NULL); 6016 break; 6017 6018 case ZPOOL_PROP_READONLY: 6019 case ZPOOL_PROP_CACHEFILE: 6020 /* 6021 * 'readonly' and 'cachefile' are also non-persisitent 6022 * properties. 6023 */ 6024 break; 6025 case ZPOOL_PROP_COMMENT: 6026 strval = fnvpair_value_string(elem); 6027 if (spa->spa_comment != NULL) 6028 spa_strfree(spa->spa_comment); 6029 spa->spa_comment = spa_strdup(strval); 6030 /* 6031 * We need to dirty the configuration on all the vdevs 6032 * so that their labels get updated. It's unnecessary 6033 * to do this for pool creation since the vdev's 6034 * configuratoin has already been dirtied. 6035 */ 6036 if (tx->tx_txg != TXG_INITIAL) 6037 vdev_config_dirty(spa->spa_root_vdev); 6038 spa_history_log_internal(spa, "set", tx, 6039 "%s=%s", nvpair_name(elem), strval); 6040 break; 6041 default: 6042 /* 6043 * Set pool property values in the poolprops mos object. 6044 */ 6045 if (spa->spa_pool_props_object == 0) { 6046 spa->spa_pool_props_object = 6047 zap_create_link(mos, DMU_OT_POOL_PROPS, 6048 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS, 6049 tx); 6050 } 6051 6052 /* normalize the property name */ 6053 propname = zpool_prop_to_name(prop); 6054 proptype = zpool_prop_get_type(prop); 6055 6056 if (nvpair_type(elem) == DATA_TYPE_STRING) { 6057 ASSERT(proptype == PROP_TYPE_STRING); 6058 strval = fnvpair_value_string(elem); 6059 VERIFY0(zap_update(mos, 6060 spa->spa_pool_props_object, propname, 6061 1, strlen(strval) + 1, strval, tx)); 6062 spa_history_log_internal(spa, "set", tx, 6063 "%s=%s", nvpair_name(elem), strval); 6064 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) { 6065 intval = fnvpair_value_uint64(elem); 6066 6067 if (proptype == PROP_TYPE_INDEX) { 6068 const char *unused; 6069 VERIFY0(zpool_prop_index_to_string( 6070 prop, intval, &unused)); 6071 } 6072 VERIFY0(zap_update(mos, 6073 spa->spa_pool_props_object, propname, 6074 8, 1, &intval, tx)); 6075 spa_history_log_internal(spa, "set", tx, 6076 "%s=%lld", nvpair_name(elem), intval); 6077 } else { 6078 ASSERT(0); /* not allowed */ 6079 } 6080 6081 switch (prop) { 6082 case ZPOOL_PROP_DELEGATION: 6083 spa->spa_delegation = intval; 6084 break; 6085 case ZPOOL_PROP_BOOTFS: 6086 spa->spa_bootfs = intval; 6087 break; 6088 case ZPOOL_PROP_FAILUREMODE: 6089 spa->spa_failmode = intval; 6090 break; 6091 case ZPOOL_PROP_AUTOEXPAND: 6092 spa->spa_autoexpand = intval; 6093 if (tx->tx_txg != TXG_INITIAL) 6094 spa_async_request(spa, 6095 SPA_ASYNC_AUTOEXPAND); 6096 break; 6097 case ZPOOL_PROP_DEDUPDITTO: 6098 spa->spa_dedup_ditto = intval; 6099 break; 6100 default: 6101 break; 6102 } 6103 } 6104 6105 } 6106 6107 mutex_exit(&spa->spa_props_lock); 6108 } 6109 6110 /* 6111 * Perform one-time upgrade on-disk changes. spa_version() does not 6112 * reflect the new version this txg, so there must be no changes this 6113 * txg to anything that the upgrade code depends on after it executes. 6114 * Therefore this must be called after dsl_pool_sync() does the sync 6115 * tasks. 6116 */ 6117 static void 6118 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx) 6119 { 6120 dsl_pool_t *dp = spa->spa_dsl_pool; 6121 6122 ASSERT(spa->spa_sync_pass == 1); 6123 6124 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); 6125 6126 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN && 6127 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) { 6128 dsl_pool_create_origin(dp, tx); 6129 6130 /* Keeping the origin open increases spa_minref */ 6131 spa->spa_minref += 3; 6132 } 6133 6134 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES && 6135 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) { 6136 dsl_pool_upgrade_clones(dp, tx); 6137 } 6138 6139 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES && 6140 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) { 6141 dsl_pool_upgrade_dir_clones(dp, tx); 6142 6143 /* Keeping the freedir open increases spa_minref */ 6144 spa->spa_minref += 3; 6145 } 6146 6147 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES && 6148 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) { 6149 spa_feature_create_zap_objects(spa, tx); 6150 } 6151 6152 /* 6153 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable 6154 * when possibility to use lz4 compression for metadata was added 6155 * Old pools that have this feature enabled must be upgraded to have 6156 * this feature active 6157 */ 6158 if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) { 6159 boolean_t lz4_en = spa_feature_is_enabled(spa, 6160 SPA_FEATURE_LZ4_COMPRESS); 6161 boolean_t lz4_ac = spa_feature_is_active(spa, 6162 SPA_FEATURE_LZ4_COMPRESS); 6163 6164 if (lz4_en && !lz4_ac) 6165 spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx); 6166 } 6167 rrw_exit(&dp->dp_config_rwlock, FTAG); 6168 } 6169 6170 /* 6171 * Sync the specified transaction group. New blocks may be dirtied as 6172 * part of the process, so we iterate until it converges. 6173 */ 6174 void 6175 spa_sync(spa_t *spa, uint64_t txg) 6176 { 6177 dsl_pool_t *dp = spa->spa_dsl_pool; 6178 objset_t *mos = spa->spa_meta_objset; 6179 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK]; 6180 vdev_t *rvd = spa->spa_root_vdev; 6181 vdev_t *vd; 6182 dmu_tx_t *tx; 6183 int error; 6184 6185 VERIFY(spa_writeable(spa)); 6186 6187 /* 6188 * Lock out configuration changes. 6189 */ 6190 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 6191 6192 spa->spa_syncing_txg = txg; 6193 spa->spa_sync_pass = 0; 6194 6195 /* 6196 * If there are any pending vdev state changes, convert them 6197 * into config changes that go out with this transaction group. 6198 */ 6199 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 6200 while (list_head(&spa->spa_state_dirty_list) != NULL) { 6201 /* 6202 * We need the write lock here because, for aux vdevs, 6203 * calling vdev_config_dirty() modifies sav_config. 6204 * This is ugly and will become unnecessary when we 6205 * eliminate the aux vdev wart by integrating all vdevs 6206 * into the root vdev tree. 6207 */ 6208 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 6209 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER); 6210 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) { 6211 vdev_state_clean(vd); 6212 vdev_config_dirty(vd); 6213 } 6214 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 6215 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 6216 } 6217 spa_config_exit(spa, SCL_STATE, FTAG); 6218 6219 tx = dmu_tx_create_assigned(dp, txg); 6220 6221 spa->spa_sync_starttime = gethrtime(); 6222 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, 6223 spa->spa_sync_starttime + spa->spa_deadman_synctime)); 6224 6225 /* 6226 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg, 6227 * set spa_deflate if we have no raid-z vdevs. 6228 */ 6229 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE && 6230 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) { 6231 int i; 6232 6233 for (i = 0; i < rvd->vdev_children; i++) { 6234 vd = rvd->vdev_child[i]; 6235 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE) 6236 break; 6237 } 6238 if (i == rvd->vdev_children) { 6239 spa->spa_deflate = TRUE; 6240 VERIFY(0 == zap_add(spa->spa_meta_objset, 6241 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 6242 sizeof (uint64_t), 1, &spa->spa_deflate, tx)); 6243 } 6244 } 6245 6246 /* 6247 * If anything has changed in this txg, or if someone is waiting 6248 * for this txg to sync (eg, spa_vdev_remove()), push the 6249 * deferred frees from the previous txg. If not, leave them 6250 * alone so that we don't generate work on an otherwise idle 6251 * system. 6252 */ 6253 if (!txg_list_empty(&dp->dp_dirty_datasets, txg) || 6254 !txg_list_empty(&dp->dp_dirty_dirs, txg) || 6255 !txg_list_empty(&dp->dp_sync_tasks, txg) || 6256 ((dsl_scan_active(dp->dp_scan) || 6257 txg_sync_waiting(dp)) && !spa_shutting_down(spa))) { 6258 spa_sync_deferred_frees(spa, tx); 6259 } 6260 6261 /* 6262 * Iterate to convergence. 6263 */ 6264 do { 6265 int pass = ++spa->spa_sync_pass; 6266 6267 spa_sync_config_object(spa, tx); 6268 spa_sync_aux_dev(spa, &spa->spa_spares, tx, 6269 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES); 6270 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx, 6271 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE); 6272 spa_errlog_sync(spa, txg); 6273 dsl_pool_sync(dp, txg); 6274 6275 if (pass < zfs_sync_pass_deferred_free) { 6276 spa_sync_frees(spa, free_bpl, tx); 6277 } else { 6278 bplist_iterate(free_bpl, bpobj_enqueue_cb, 6279 &spa->spa_deferred_bpobj, tx); 6280 } 6281 6282 ddt_sync(spa, txg); 6283 dsl_scan_sync(dp, tx); 6284 6285 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) 6286 vdev_sync(vd, txg); 6287 6288 if (pass == 1) 6289 spa_sync_upgrades(spa, tx); 6290 6291 } while (dmu_objset_is_dirty(mos, txg)); 6292 6293 /* 6294 * Rewrite the vdev configuration (which includes the uberblock) 6295 * to commit the transaction group. 6296 * 6297 * If there are no dirty vdevs, we sync the uberblock to a few 6298 * random top-level vdevs that are known to be visible in the 6299 * config cache (see spa_vdev_add() for a complete description). 6300 * If there *are* dirty vdevs, sync the uberblock to all vdevs. 6301 */ 6302 for (;;) { 6303 /* 6304 * We hold SCL_STATE to prevent vdev open/close/etc. 6305 * while we're attempting to write the vdev labels. 6306 */ 6307 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 6308 6309 if (list_is_empty(&spa->spa_config_dirty_list)) { 6310 vdev_t *svd[SPA_DVAS_PER_BP]; 6311 int svdcount = 0; 6312 int children = rvd->vdev_children; 6313 int c0 = spa_get_random(children); 6314 6315 for (int c = 0; c < children; c++) { 6316 vd = rvd->vdev_child[(c0 + c) % children]; 6317 if (vd->vdev_ms_array == 0 || vd->vdev_islog) 6318 continue; 6319 svd[svdcount++] = vd; 6320 if (svdcount == SPA_DVAS_PER_BP) 6321 break; 6322 } 6323 error = vdev_config_sync(svd, svdcount, txg, B_FALSE); 6324 if (error != 0) 6325 error = vdev_config_sync(svd, svdcount, txg, 6326 B_TRUE); 6327 } else { 6328 error = vdev_config_sync(rvd->vdev_child, 6329 rvd->vdev_children, txg, B_FALSE); 6330 if (error != 0) 6331 error = vdev_config_sync(rvd->vdev_child, 6332 rvd->vdev_children, txg, B_TRUE); 6333 } 6334 6335 if (error == 0) 6336 spa->spa_last_synced_guid = rvd->vdev_guid; 6337 6338 spa_config_exit(spa, SCL_STATE, FTAG); 6339 6340 if (error == 0) 6341 break; 6342 zio_suspend(spa, NULL); 6343 zio_resume_wait(spa); 6344 } 6345 dmu_tx_commit(tx); 6346 6347 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY)); 6348 6349 /* 6350 * Clear the dirty config list. 6351 */ 6352 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL) 6353 vdev_config_clean(vd); 6354 6355 /* 6356 * Now that the new config has synced transactionally, 6357 * let it become visible to the config cache. 6358 */ 6359 if (spa->spa_config_syncing != NULL) { 6360 spa_config_set(spa, spa->spa_config_syncing); 6361 spa->spa_config_txg = txg; 6362 spa->spa_config_syncing = NULL; 6363 } 6364 6365 spa->spa_ubsync = spa->spa_uberblock; 6366 6367 dsl_pool_sync_done(dp, txg); 6368 6369 /* 6370 * Update usable space statistics. 6371 */ 6372 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg))) 6373 vdev_sync_done(vd, txg); 6374 6375 spa_update_dspace(spa); 6376 6377 /* 6378 * It had better be the case that we didn't dirty anything 6379 * since vdev_config_sync(). 6380 */ 6381 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg)); 6382 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); 6383 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg)); 6384 6385 spa->spa_sync_pass = 0; 6386 6387 spa_config_exit(spa, SCL_CONFIG, FTAG); 6388 6389 spa_handle_ignored_writes(spa); 6390 6391 /* 6392 * If any async tasks have been requested, kick them off. 6393 */ 6394 spa_async_dispatch(spa); 6395 } 6396 6397 /* 6398 * Sync all pools. We don't want to hold the namespace lock across these 6399 * operations, so we take a reference on the spa_t and drop the lock during the 6400 * sync. 6401 */ 6402 void 6403 spa_sync_allpools(void) 6404 { 6405 spa_t *spa = NULL; 6406 mutex_enter(&spa_namespace_lock); 6407 while ((spa = spa_next(spa)) != NULL) { 6408 if (spa_state(spa) != POOL_STATE_ACTIVE || 6409 !spa_writeable(spa) || spa_suspended(spa)) 6410 continue; 6411 spa_open_ref(spa, FTAG); 6412 mutex_exit(&spa_namespace_lock); 6413 txg_wait_synced(spa_get_dsl(spa), 0); 6414 mutex_enter(&spa_namespace_lock); 6415 spa_close(spa, FTAG); 6416 } 6417 mutex_exit(&spa_namespace_lock); 6418 } 6419 6420 /* 6421 * ========================================================================== 6422 * Miscellaneous routines 6423 * ========================================================================== 6424 */ 6425 6426 /* 6427 * Remove all pools in the system. 6428 */ 6429 void 6430 spa_evict_all(void) 6431 { 6432 spa_t *spa; 6433 6434 /* 6435 * Remove all cached state. All pools should be closed now, 6436 * so every spa in the AVL tree should be unreferenced. 6437 */ 6438 mutex_enter(&spa_namespace_lock); 6439 while ((spa = spa_next(NULL)) != NULL) { 6440 /* 6441 * Stop async tasks. The async thread may need to detach 6442 * a device that's been replaced, which requires grabbing 6443 * spa_namespace_lock, so we must drop it here. 6444 */ 6445 spa_open_ref(spa, FTAG); 6446 mutex_exit(&spa_namespace_lock); 6447 spa_async_suspend(spa); 6448 mutex_enter(&spa_namespace_lock); 6449 spa_close(spa, FTAG); 6450 6451 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 6452 spa_unload(spa); 6453 spa_deactivate(spa); 6454 } 6455 spa_remove(spa); 6456 } 6457 mutex_exit(&spa_namespace_lock); 6458 } 6459 6460 vdev_t * 6461 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux) 6462 { 6463 vdev_t *vd; 6464 int i; 6465 6466 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL) 6467 return (vd); 6468 6469 if (aux) { 6470 for (i = 0; i < spa->spa_l2cache.sav_count; i++) { 6471 vd = spa->spa_l2cache.sav_vdevs[i]; 6472 if (vd->vdev_guid == guid) 6473 return (vd); 6474 } 6475 6476 for (i = 0; i < spa->spa_spares.sav_count; i++) { 6477 vd = spa->spa_spares.sav_vdevs[i]; 6478 if (vd->vdev_guid == guid) 6479 return (vd); 6480 } 6481 } 6482 6483 return (NULL); 6484 } 6485 6486 void 6487 spa_upgrade(spa_t *spa, uint64_t version) 6488 { 6489 ASSERT(spa_writeable(spa)); 6490 6491 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 6492 6493 /* 6494 * This should only be called for a non-faulted pool, and since a 6495 * future version would result in an unopenable pool, this shouldn't be 6496 * possible. 6497 */ 6498 ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version)); 6499 ASSERT3U(version, >=, spa->spa_uberblock.ub_version); 6500 6501 spa->spa_uberblock.ub_version = version; 6502 vdev_config_dirty(spa->spa_root_vdev); 6503 6504 spa_config_exit(spa, SCL_ALL, FTAG); 6505 6506 txg_wait_synced(spa_get_dsl(spa), 0); 6507 } 6508 6509 boolean_t 6510 spa_has_spare(spa_t *spa, uint64_t guid) 6511 { 6512 int i; 6513 uint64_t spareguid; 6514 spa_aux_vdev_t *sav = &spa->spa_spares; 6515 6516 for (i = 0; i < sav->sav_count; i++) 6517 if (sav->sav_vdevs[i]->vdev_guid == guid) 6518 return (B_TRUE); 6519 6520 for (i = 0; i < sav->sav_npending; i++) { 6521 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID, 6522 &spareguid) == 0 && spareguid == guid) 6523 return (B_TRUE); 6524 } 6525 6526 return (B_FALSE); 6527 } 6528 6529 /* 6530 * Check if a pool has an active shared spare device. 6531 * Note: reference count of an active spare is 2, as a spare and as a replace 6532 */ 6533 static boolean_t 6534 spa_has_active_shared_spare(spa_t *spa) 6535 { 6536 int i, refcnt; 6537 uint64_t pool; 6538 spa_aux_vdev_t *sav = &spa->spa_spares; 6539 6540 for (i = 0; i < sav->sav_count; i++) { 6541 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool, 6542 &refcnt) && pool != 0ULL && pool == spa_guid(spa) && 6543 refcnt > 2) 6544 return (B_TRUE); 6545 } 6546 6547 return (B_FALSE); 6548 } 6549 6550 /* 6551 * Post a sysevent corresponding to the given event. The 'name' must be one of 6552 * the event definitions in sys/sysevent/eventdefs.h. The payload will be 6553 * filled in from the spa and (optionally) the vdev. This doesn't do anything 6554 * in the userland libzpool, as we don't want consumers to misinterpret ztest 6555 * or zdb as real changes. 6556 */ 6557 void 6558 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name) 6559 { 6560 #ifdef _KERNEL 6561 sysevent_t *ev; 6562 sysevent_attr_list_t *attr = NULL; 6563 sysevent_value_t value; 6564 sysevent_id_t eid; 6565 6566 ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs", 6567 SE_SLEEP); 6568 6569 value.value_type = SE_DATA_TYPE_STRING; 6570 value.value.sv_string = spa_name(spa); 6571 if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0) 6572 goto done; 6573 6574 value.value_type = SE_DATA_TYPE_UINT64; 6575 value.value.sv_uint64 = spa_guid(spa); 6576 if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0) 6577 goto done; 6578 6579 if (vd) { 6580 value.value_type = SE_DATA_TYPE_UINT64; 6581 value.value.sv_uint64 = vd->vdev_guid; 6582 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value, 6583 SE_SLEEP) != 0) 6584 goto done; 6585 6586 if (vd->vdev_path) { 6587 value.value_type = SE_DATA_TYPE_STRING; 6588 value.value.sv_string = vd->vdev_path; 6589 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH, 6590 &value, SE_SLEEP) != 0) 6591 goto done; 6592 } 6593 } 6594 6595 if (sysevent_attach_attributes(ev, attr) != 0) 6596 goto done; 6597 attr = NULL; 6598 6599 (void) log_sysevent(ev, SE_SLEEP, &eid); 6600 6601 done: 6602 if (attr) 6603 sysevent_free_attr(attr); 6604 sysevent_free(ev); 6605 #endif 6606 } 6607