1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2014 by Delphix. All rights reserved. 25 * Copyright (c) 2013, 2014, Nexenta Systems, Inc. All rights reserved. 26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 27 */ 28 29 /* 30 * SPA: Storage Pool Allocator 31 * 32 * This file contains all the routines used when modifying on-disk SPA state. 33 * This includes opening, importing, destroying, exporting a pool, and syncing a 34 * pool. 35 */ 36 37 #include <sys/zfs_context.h> 38 #include <sys/fm/fs/zfs.h> 39 #include <sys/spa_impl.h> 40 #include <sys/zio.h> 41 #include <sys/zio_checksum.h> 42 #include <sys/dmu.h> 43 #include <sys/dmu_tx.h> 44 #include <sys/zap.h> 45 #include <sys/zil.h> 46 #include <sys/ddt.h> 47 #include <sys/vdev_impl.h> 48 #include <sys/metaslab.h> 49 #include <sys/metaslab_impl.h> 50 #include <sys/uberblock_impl.h> 51 #include <sys/txg.h> 52 #include <sys/avl.h> 53 #include <sys/dmu_traverse.h> 54 #include <sys/dmu_objset.h> 55 #include <sys/unique.h> 56 #include <sys/dsl_pool.h> 57 #include <sys/dsl_dataset.h> 58 #include <sys/dsl_dir.h> 59 #include <sys/dsl_prop.h> 60 #include <sys/dsl_synctask.h> 61 #include <sys/fs/zfs.h> 62 #include <sys/arc.h> 63 #include <sys/callb.h> 64 #include <sys/systeminfo.h> 65 #include <sys/spa_boot.h> 66 #include <sys/zfs_ioctl.h> 67 #include <sys/dsl_scan.h> 68 #include <sys/zfeature.h> 69 #include <sys/dsl_destroy.h> 70 71 #ifdef _KERNEL 72 #include <sys/bootprops.h> 73 #include <sys/callb.h> 74 #include <sys/cpupart.h> 75 #include <sys/pool.h> 76 #include <sys/sysdc.h> 77 #include <sys/zone.h> 78 #endif /* _KERNEL */ 79 80 #include "zfs_prop.h" 81 #include "zfs_comutil.h" 82 83 /* 84 * The interval, in seconds, at which failed configuration cache file writes 85 * should be retried. 86 */ 87 static int zfs_ccw_retry_interval = 300; 88 89 typedef enum zti_modes { 90 ZTI_MODE_FIXED, /* value is # of threads (min 1) */ 91 ZTI_MODE_BATCH, /* cpu-intensive; value is ignored */ 92 ZTI_MODE_NULL, /* don't create a taskq */ 93 ZTI_NMODES 94 } zti_modes_t; 95 96 #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) } 97 #define ZTI_BATCH { ZTI_MODE_BATCH, 0, 1 } 98 #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 } 99 100 #define ZTI_N(n) ZTI_P(n, 1) 101 #define ZTI_ONE ZTI_N(1) 102 103 typedef struct zio_taskq_info { 104 zti_modes_t zti_mode; 105 uint_t zti_value; 106 uint_t zti_count; 107 } zio_taskq_info_t; 108 109 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = { 110 "issue", "issue_high", "intr", "intr_high" 111 }; 112 113 /* 114 * This table defines the taskq settings for each ZFS I/O type. When 115 * initializing a pool, we use this table to create an appropriately sized 116 * taskq. Some operations are low volume and therefore have a small, static 117 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE 118 * macros. Other operations process a large amount of data; the ZTI_BATCH 119 * macro causes us to create a taskq oriented for throughput. Some operations 120 * are so high frequency and short-lived that the taskq itself can become a a 121 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an 122 * additional degree of parallelism specified by the number of threads per- 123 * taskq and the number of taskqs; when dispatching an event in this case, the 124 * particular taskq is chosen at random. 125 * 126 * The different taskq priorities are to handle the different contexts (issue 127 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that 128 * need to be handled with minimum delay. 129 */ 130 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = { 131 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */ 132 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */ 133 { ZTI_N(8), ZTI_NULL, ZTI_P(12, 8), ZTI_NULL }, /* READ */ 134 { ZTI_BATCH, ZTI_N(5), ZTI_N(8), ZTI_N(5) }, /* WRITE */ 135 { ZTI_P(12, 8), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */ 136 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */ 137 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* IOCTL */ 138 }; 139 140 static void spa_sync_version(void *arg, dmu_tx_t *tx); 141 static void spa_sync_props(void *arg, dmu_tx_t *tx); 142 static boolean_t spa_has_active_shared_spare(spa_t *spa); 143 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config, 144 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig, 145 char **ereport); 146 static void spa_vdev_resilver_done(spa_t *spa); 147 148 uint_t zio_taskq_batch_pct = 75; /* 1 thread per cpu in pset */ 149 id_t zio_taskq_psrset_bind = PS_NONE; 150 boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */ 151 uint_t zio_taskq_basedc = 80; /* base duty cycle */ 152 153 boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */ 154 extern int zfs_sync_pass_deferred_free; 155 156 /* 157 * This (illegal) pool name is used when temporarily importing a spa_t in order 158 * to get the vdev stats associated with the imported devices. 159 */ 160 #define TRYIMPORT_NAME "$import" 161 162 /* 163 * ========================================================================== 164 * SPA properties routines 165 * ========================================================================== 166 */ 167 168 /* 169 * Add a (source=src, propname=propval) list to an nvlist. 170 */ 171 static void 172 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval, 173 uint64_t intval, zprop_source_t src) 174 { 175 const char *propname = zpool_prop_to_name(prop); 176 nvlist_t *propval; 177 178 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0); 179 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0); 180 181 if (strval != NULL) 182 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0); 183 else 184 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0); 185 186 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0); 187 nvlist_free(propval); 188 } 189 190 /* 191 * Get property values from the spa configuration. 192 */ 193 static void 194 spa_prop_get_config(spa_t *spa, nvlist_t **nvp) 195 { 196 vdev_t *rvd = spa->spa_root_vdev; 197 dsl_pool_t *pool = spa->spa_dsl_pool; 198 uint64_t size, alloc, cap, version; 199 zprop_source_t src = ZPROP_SRC_NONE; 200 spa_config_dirent_t *dp; 201 metaslab_class_t *mc = spa_normal_class(spa); 202 203 ASSERT(MUTEX_HELD(&spa->spa_props_lock)); 204 205 if (rvd != NULL) { 206 alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 207 size = metaslab_class_get_space(spa_normal_class(spa)); 208 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src); 209 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src); 210 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src); 211 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL, 212 size - alloc, src); 213 214 spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL, 215 metaslab_class_fragmentation(mc), src); 216 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL, 217 metaslab_class_expandable_space(mc), src); 218 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL, 219 (spa_mode(spa) == FREAD), src); 220 221 cap = (size == 0) ? 0 : (alloc * 100 / size); 222 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src); 223 224 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL, 225 ddt_get_pool_dedup_ratio(spa), src); 226 227 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL, 228 rvd->vdev_state, src); 229 230 version = spa_version(spa); 231 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) 232 src = ZPROP_SRC_DEFAULT; 233 else 234 src = ZPROP_SRC_LOCAL; 235 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src); 236 } 237 238 if (pool != NULL) { 239 /* 240 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS, 241 * when opening pools before this version freedir will be NULL. 242 */ 243 if (pool->dp_free_dir != NULL) { 244 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL, 245 dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes, 246 src); 247 } else { 248 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, 249 NULL, 0, src); 250 } 251 252 if (pool->dp_leak_dir != NULL) { 253 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL, 254 dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes, 255 src); 256 } else { 257 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, 258 NULL, 0, src); 259 } 260 } 261 262 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src); 263 264 if (spa->spa_comment != NULL) { 265 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment, 266 0, ZPROP_SRC_LOCAL); 267 } 268 269 if (spa->spa_root != NULL) 270 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root, 271 0, ZPROP_SRC_LOCAL); 272 273 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) { 274 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL, 275 MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE); 276 } else { 277 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL, 278 SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE); 279 } 280 281 if ((dp = list_head(&spa->spa_config_list)) != NULL) { 282 if (dp->scd_path == NULL) { 283 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 284 "none", 0, ZPROP_SRC_LOCAL); 285 } else if (strcmp(dp->scd_path, spa_config_path) != 0) { 286 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 287 dp->scd_path, 0, ZPROP_SRC_LOCAL); 288 } 289 } 290 } 291 292 /* 293 * Get zpool property values. 294 */ 295 int 296 spa_prop_get(spa_t *spa, nvlist_t **nvp) 297 { 298 objset_t *mos = spa->spa_meta_objset; 299 zap_cursor_t zc; 300 zap_attribute_t za; 301 int err; 302 303 VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0); 304 305 mutex_enter(&spa->spa_props_lock); 306 307 /* 308 * Get properties from the spa config. 309 */ 310 spa_prop_get_config(spa, nvp); 311 312 /* If no pool property object, no more prop to get. */ 313 if (mos == NULL || spa->spa_pool_props_object == 0) { 314 mutex_exit(&spa->spa_props_lock); 315 return (0); 316 } 317 318 /* 319 * Get properties from the MOS pool property object. 320 */ 321 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object); 322 (err = zap_cursor_retrieve(&zc, &za)) == 0; 323 zap_cursor_advance(&zc)) { 324 uint64_t intval = 0; 325 char *strval = NULL; 326 zprop_source_t src = ZPROP_SRC_DEFAULT; 327 zpool_prop_t prop; 328 329 if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL) 330 continue; 331 332 switch (za.za_integer_length) { 333 case 8: 334 /* integer property */ 335 if (za.za_first_integer != 336 zpool_prop_default_numeric(prop)) 337 src = ZPROP_SRC_LOCAL; 338 339 if (prop == ZPOOL_PROP_BOOTFS) { 340 dsl_pool_t *dp; 341 dsl_dataset_t *ds = NULL; 342 343 dp = spa_get_dsl(spa); 344 dsl_pool_config_enter(dp, FTAG); 345 if (err = dsl_dataset_hold_obj(dp, 346 za.za_first_integer, FTAG, &ds)) { 347 dsl_pool_config_exit(dp, FTAG); 348 break; 349 } 350 351 strval = kmem_alloc( 352 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1, 353 KM_SLEEP); 354 dsl_dataset_name(ds, strval); 355 dsl_dataset_rele(ds, FTAG); 356 dsl_pool_config_exit(dp, FTAG); 357 } else { 358 strval = NULL; 359 intval = za.za_first_integer; 360 } 361 362 spa_prop_add_list(*nvp, prop, strval, intval, src); 363 364 if (strval != NULL) 365 kmem_free(strval, 366 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1); 367 368 break; 369 370 case 1: 371 /* string property */ 372 strval = kmem_alloc(za.za_num_integers, KM_SLEEP); 373 err = zap_lookup(mos, spa->spa_pool_props_object, 374 za.za_name, 1, za.za_num_integers, strval); 375 if (err) { 376 kmem_free(strval, za.za_num_integers); 377 break; 378 } 379 spa_prop_add_list(*nvp, prop, strval, 0, src); 380 kmem_free(strval, za.za_num_integers); 381 break; 382 383 default: 384 break; 385 } 386 } 387 zap_cursor_fini(&zc); 388 mutex_exit(&spa->spa_props_lock); 389 out: 390 if (err && err != ENOENT) { 391 nvlist_free(*nvp); 392 *nvp = NULL; 393 return (err); 394 } 395 396 return (0); 397 } 398 399 /* 400 * Validate the given pool properties nvlist and modify the list 401 * for the property values to be set. 402 */ 403 static int 404 spa_prop_validate(spa_t *spa, nvlist_t *props) 405 { 406 nvpair_t *elem; 407 int error = 0, reset_bootfs = 0; 408 uint64_t objnum = 0; 409 boolean_t has_feature = B_FALSE; 410 411 elem = NULL; 412 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) { 413 uint64_t intval; 414 char *strval, *slash, *check, *fname; 415 const char *propname = nvpair_name(elem); 416 zpool_prop_t prop = zpool_name_to_prop(propname); 417 418 switch (prop) { 419 case ZPROP_INVAL: 420 if (!zpool_prop_feature(propname)) { 421 error = SET_ERROR(EINVAL); 422 break; 423 } 424 425 /* 426 * Sanitize the input. 427 */ 428 if (nvpair_type(elem) != DATA_TYPE_UINT64) { 429 error = SET_ERROR(EINVAL); 430 break; 431 } 432 433 if (nvpair_value_uint64(elem, &intval) != 0) { 434 error = SET_ERROR(EINVAL); 435 break; 436 } 437 438 if (intval != 0) { 439 error = SET_ERROR(EINVAL); 440 break; 441 } 442 443 fname = strchr(propname, '@') + 1; 444 if (zfeature_lookup_name(fname, NULL) != 0) { 445 error = SET_ERROR(EINVAL); 446 break; 447 } 448 449 has_feature = B_TRUE; 450 break; 451 452 case ZPOOL_PROP_VERSION: 453 error = nvpair_value_uint64(elem, &intval); 454 if (!error && 455 (intval < spa_version(spa) || 456 intval > SPA_VERSION_BEFORE_FEATURES || 457 has_feature)) 458 error = SET_ERROR(EINVAL); 459 break; 460 461 case ZPOOL_PROP_DELEGATION: 462 case ZPOOL_PROP_AUTOREPLACE: 463 case ZPOOL_PROP_LISTSNAPS: 464 case ZPOOL_PROP_AUTOEXPAND: 465 error = nvpair_value_uint64(elem, &intval); 466 if (!error && intval > 1) 467 error = SET_ERROR(EINVAL); 468 break; 469 470 case ZPOOL_PROP_BOOTFS: 471 /* 472 * If the pool version is less than SPA_VERSION_BOOTFS, 473 * or the pool is still being created (version == 0), 474 * the bootfs property cannot be set. 475 */ 476 if (spa_version(spa) < SPA_VERSION_BOOTFS) { 477 error = SET_ERROR(ENOTSUP); 478 break; 479 } 480 481 /* 482 * Make sure the vdev config is bootable 483 */ 484 if (!vdev_is_bootable(spa->spa_root_vdev)) { 485 error = SET_ERROR(ENOTSUP); 486 break; 487 } 488 489 reset_bootfs = 1; 490 491 error = nvpair_value_string(elem, &strval); 492 493 if (!error) { 494 objset_t *os; 495 uint64_t propval; 496 497 if (strval == NULL || strval[0] == '\0') { 498 objnum = zpool_prop_default_numeric( 499 ZPOOL_PROP_BOOTFS); 500 break; 501 } 502 503 if (error = dmu_objset_hold(strval, FTAG, &os)) 504 break; 505 506 /* 507 * Must be ZPL, and its property settings 508 * must be supported by GRUB (compression 509 * is not gzip, and large blocks are not used). 510 */ 511 512 if (dmu_objset_type(os) != DMU_OST_ZFS) { 513 error = SET_ERROR(ENOTSUP); 514 } else if ((error = 515 dsl_prop_get_int_ds(dmu_objset_ds(os), 516 zfs_prop_to_name(ZFS_PROP_COMPRESSION), 517 &propval)) == 0 && 518 !BOOTFS_COMPRESS_VALID(propval)) { 519 error = SET_ERROR(ENOTSUP); 520 } else if ((error = 521 dsl_prop_get_int_ds(dmu_objset_ds(os), 522 zfs_prop_to_name(ZFS_PROP_RECORDSIZE), 523 &propval)) == 0 && 524 propval > SPA_OLD_MAXBLOCKSIZE) { 525 error = SET_ERROR(ENOTSUP); 526 } else { 527 objnum = dmu_objset_id(os); 528 } 529 dmu_objset_rele(os, FTAG); 530 } 531 break; 532 533 case ZPOOL_PROP_FAILUREMODE: 534 error = nvpair_value_uint64(elem, &intval); 535 if (!error && (intval < ZIO_FAILURE_MODE_WAIT || 536 intval > ZIO_FAILURE_MODE_PANIC)) 537 error = SET_ERROR(EINVAL); 538 539 /* 540 * This is a special case which only occurs when 541 * the pool has completely failed. This allows 542 * the user to change the in-core failmode property 543 * without syncing it out to disk (I/Os might 544 * currently be blocked). We do this by returning 545 * EIO to the caller (spa_prop_set) to trick it 546 * into thinking we encountered a property validation 547 * error. 548 */ 549 if (!error && spa_suspended(spa)) { 550 spa->spa_failmode = intval; 551 error = SET_ERROR(EIO); 552 } 553 break; 554 555 case ZPOOL_PROP_CACHEFILE: 556 if ((error = nvpair_value_string(elem, &strval)) != 0) 557 break; 558 559 if (strval[0] == '\0') 560 break; 561 562 if (strcmp(strval, "none") == 0) 563 break; 564 565 if (strval[0] != '/') { 566 error = SET_ERROR(EINVAL); 567 break; 568 } 569 570 slash = strrchr(strval, '/'); 571 ASSERT(slash != NULL); 572 573 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 || 574 strcmp(slash, "/..") == 0) 575 error = SET_ERROR(EINVAL); 576 break; 577 578 case ZPOOL_PROP_COMMENT: 579 if ((error = nvpair_value_string(elem, &strval)) != 0) 580 break; 581 for (check = strval; *check != '\0'; check++) { 582 /* 583 * The kernel doesn't have an easy isprint() 584 * check. For this kernel check, we merely 585 * check ASCII apart from DEL. Fix this if 586 * there is an easy-to-use kernel isprint(). 587 */ 588 if (*check >= 0x7f) { 589 error = SET_ERROR(EINVAL); 590 break; 591 } 592 check++; 593 } 594 if (strlen(strval) > ZPROP_MAX_COMMENT) 595 error = E2BIG; 596 break; 597 598 case ZPOOL_PROP_DEDUPDITTO: 599 if (spa_version(spa) < SPA_VERSION_DEDUP) 600 error = SET_ERROR(ENOTSUP); 601 else 602 error = nvpair_value_uint64(elem, &intval); 603 if (error == 0 && 604 intval != 0 && intval < ZIO_DEDUPDITTO_MIN) 605 error = SET_ERROR(EINVAL); 606 break; 607 } 608 609 if (error) 610 break; 611 } 612 613 if (!error && reset_bootfs) { 614 error = nvlist_remove(props, 615 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING); 616 617 if (!error) { 618 error = nvlist_add_uint64(props, 619 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum); 620 } 621 } 622 623 return (error); 624 } 625 626 void 627 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync) 628 { 629 char *cachefile; 630 spa_config_dirent_t *dp; 631 632 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE), 633 &cachefile) != 0) 634 return; 635 636 dp = kmem_alloc(sizeof (spa_config_dirent_t), 637 KM_SLEEP); 638 639 if (cachefile[0] == '\0') 640 dp->scd_path = spa_strdup(spa_config_path); 641 else if (strcmp(cachefile, "none") == 0) 642 dp->scd_path = NULL; 643 else 644 dp->scd_path = spa_strdup(cachefile); 645 646 list_insert_head(&spa->spa_config_list, dp); 647 if (need_sync) 648 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 649 } 650 651 int 652 spa_prop_set(spa_t *spa, nvlist_t *nvp) 653 { 654 int error; 655 nvpair_t *elem = NULL; 656 boolean_t need_sync = B_FALSE; 657 658 if ((error = spa_prop_validate(spa, nvp)) != 0) 659 return (error); 660 661 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) { 662 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem)); 663 664 if (prop == ZPOOL_PROP_CACHEFILE || 665 prop == ZPOOL_PROP_ALTROOT || 666 prop == ZPOOL_PROP_READONLY) 667 continue; 668 669 if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) { 670 uint64_t ver; 671 672 if (prop == ZPOOL_PROP_VERSION) { 673 VERIFY(nvpair_value_uint64(elem, &ver) == 0); 674 } else { 675 ASSERT(zpool_prop_feature(nvpair_name(elem))); 676 ver = SPA_VERSION_FEATURES; 677 need_sync = B_TRUE; 678 } 679 680 /* Save time if the version is already set. */ 681 if (ver == spa_version(spa)) 682 continue; 683 684 /* 685 * In addition to the pool directory object, we might 686 * create the pool properties object, the features for 687 * read object, the features for write object, or the 688 * feature descriptions object. 689 */ 690 error = dsl_sync_task(spa->spa_name, NULL, 691 spa_sync_version, &ver, 692 6, ZFS_SPACE_CHECK_RESERVED); 693 if (error) 694 return (error); 695 continue; 696 } 697 698 need_sync = B_TRUE; 699 break; 700 } 701 702 if (need_sync) { 703 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props, 704 nvp, 6, ZFS_SPACE_CHECK_RESERVED)); 705 } 706 707 return (0); 708 } 709 710 /* 711 * If the bootfs property value is dsobj, clear it. 712 */ 713 void 714 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx) 715 { 716 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) { 717 VERIFY(zap_remove(spa->spa_meta_objset, 718 spa->spa_pool_props_object, 719 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0); 720 spa->spa_bootfs = 0; 721 } 722 } 723 724 /*ARGSUSED*/ 725 static int 726 spa_change_guid_check(void *arg, dmu_tx_t *tx) 727 { 728 uint64_t *newguid = arg; 729 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 730 vdev_t *rvd = spa->spa_root_vdev; 731 uint64_t vdev_state; 732 733 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 734 vdev_state = rvd->vdev_state; 735 spa_config_exit(spa, SCL_STATE, FTAG); 736 737 if (vdev_state != VDEV_STATE_HEALTHY) 738 return (SET_ERROR(ENXIO)); 739 740 ASSERT3U(spa_guid(spa), !=, *newguid); 741 742 return (0); 743 } 744 745 static void 746 spa_change_guid_sync(void *arg, dmu_tx_t *tx) 747 { 748 uint64_t *newguid = arg; 749 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 750 uint64_t oldguid; 751 vdev_t *rvd = spa->spa_root_vdev; 752 753 oldguid = spa_guid(spa); 754 755 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 756 rvd->vdev_guid = *newguid; 757 rvd->vdev_guid_sum += (*newguid - oldguid); 758 vdev_config_dirty(rvd); 759 spa_config_exit(spa, SCL_STATE, FTAG); 760 761 spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu", 762 oldguid, *newguid); 763 } 764 765 /* 766 * Change the GUID for the pool. This is done so that we can later 767 * re-import a pool built from a clone of our own vdevs. We will modify 768 * the root vdev's guid, our own pool guid, and then mark all of our 769 * vdevs dirty. Note that we must make sure that all our vdevs are 770 * online when we do this, or else any vdevs that weren't present 771 * would be orphaned from our pool. We are also going to issue a 772 * sysevent to update any watchers. 773 */ 774 int 775 spa_change_guid(spa_t *spa) 776 { 777 int error; 778 uint64_t guid; 779 780 mutex_enter(&spa->spa_vdev_top_lock); 781 mutex_enter(&spa_namespace_lock); 782 guid = spa_generate_guid(NULL); 783 784 error = dsl_sync_task(spa->spa_name, spa_change_guid_check, 785 spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED); 786 787 if (error == 0) { 788 spa_config_sync(spa, B_FALSE, B_TRUE); 789 spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID); 790 } 791 792 mutex_exit(&spa_namespace_lock); 793 mutex_exit(&spa->spa_vdev_top_lock); 794 795 return (error); 796 } 797 798 /* 799 * ========================================================================== 800 * SPA state manipulation (open/create/destroy/import/export) 801 * ========================================================================== 802 */ 803 804 static int 805 spa_error_entry_compare(const void *a, const void *b) 806 { 807 spa_error_entry_t *sa = (spa_error_entry_t *)a; 808 spa_error_entry_t *sb = (spa_error_entry_t *)b; 809 int ret; 810 811 ret = bcmp(&sa->se_bookmark, &sb->se_bookmark, 812 sizeof (zbookmark_phys_t)); 813 814 if (ret < 0) 815 return (-1); 816 else if (ret > 0) 817 return (1); 818 else 819 return (0); 820 } 821 822 /* 823 * Utility function which retrieves copies of the current logs and 824 * re-initializes them in the process. 825 */ 826 void 827 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub) 828 { 829 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock)); 830 831 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t)); 832 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t)); 833 834 avl_create(&spa->spa_errlist_scrub, 835 spa_error_entry_compare, sizeof (spa_error_entry_t), 836 offsetof(spa_error_entry_t, se_avl)); 837 avl_create(&spa->spa_errlist_last, 838 spa_error_entry_compare, sizeof (spa_error_entry_t), 839 offsetof(spa_error_entry_t, se_avl)); 840 } 841 842 static void 843 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q) 844 { 845 const zio_taskq_info_t *ztip = &zio_taskqs[t][q]; 846 enum zti_modes mode = ztip->zti_mode; 847 uint_t value = ztip->zti_value; 848 uint_t count = ztip->zti_count; 849 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 850 char name[32]; 851 uint_t flags = 0; 852 boolean_t batch = B_FALSE; 853 854 if (mode == ZTI_MODE_NULL) { 855 tqs->stqs_count = 0; 856 tqs->stqs_taskq = NULL; 857 return; 858 } 859 860 ASSERT3U(count, >, 0); 861 862 tqs->stqs_count = count; 863 tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP); 864 865 switch (mode) { 866 case ZTI_MODE_FIXED: 867 ASSERT3U(value, >=, 1); 868 value = MAX(value, 1); 869 break; 870 871 case ZTI_MODE_BATCH: 872 batch = B_TRUE; 873 flags |= TASKQ_THREADS_CPU_PCT; 874 value = zio_taskq_batch_pct; 875 break; 876 877 default: 878 panic("unrecognized mode for %s_%s taskq (%u:%u) in " 879 "spa_activate()", 880 zio_type_name[t], zio_taskq_types[q], mode, value); 881 break; 882 } 883 884 for (uint_t i = 0; i < count; i++) { 885 taskq_t *tq; 886 887 if (count > 1) { 888 (void) snprintf(name, sizeof (name), "%s_%s_%u", 889 zio_type_name[t], zio_taskq_types[q], i); 890 } else { 891 (void) snprintf(name, sizeof (name), "%s_%s", 892 zio_type_name[t], zio_taskq_types[q]); 893 } 894 895 if (zio_taskq_sysdc && spa->spa_proc != &p0) { 896 if (batch) 897 flags |= TASKQ_DC_BATCH; 898 899 tq = taskq_create_sysdc(name, value, 50, INT_MAX, 900 spa->spa_proc, zio_taskq_basedc, flags); 901 } else { 902 pri_t pri = maxclsyspri; 903 /* 904 * The write issue taskq can be extremely CPU 905 * intensive. Run it at slightly lower priority 906 * than the other taskqs. 907 */ 908 if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE) 909 pri--; 910 911 tq = taskq_create_proc(name, value, pri, 50, 912 INT_MAX, spa->spa_proc, flags); 913 } 914 915 tqs->stqs_taskq[i] = tq; 916 } 917 } 918 919 static void 920 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q) 921 { 922 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 923 924 if (tqs->stqs_taskq == NULL) { 925 ASSERT0(tqs->stqs_count); 926 return; 927 } 928 929 for (uint_t i = 0; i < tqs->stqs_count; i++) { 930 ASSERT3P(tqs->stqs_taskq[i], !=, NULL); 931 taskq_destroy(tqs->stqs_taskq[i]); 932 } 933 934 kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *)); 935 tqs->stqs_taskq = NULL; 936 } 937 938 /* 939 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority. 940 * Note that a type may have multiple discrete taskqs to avoid lock contention 941 * on the taskq itself. In that case we choose which taskq at random by using 942 * the low bits of gethrtime(). 943 */ 944 void 945 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q, 946 task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent) 947 { 948 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 949 taskq_t *tq; 950 951 ASSERT3P(tqs->stqs_taskq, !=, NULL); 952 ASSERT3U(tqs->stqs_count, !=, 0); 953 954 if (tqs->stqs_count == 1) { 955 tq = tqs->stqs_taskq[0]; 956 } else { 957 tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count]; 958 } 959 960 taskq_dispatch_ent(tq, func, arg, flags, ent); 961 } 962 963 static void 964 spa_create_zio_taskqs(spa_t *spa) 965 { 966 for (int t = 0; t < ZIO_TYPES; t++) { 967 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 968 spa_taskqs_init(spa, t, q); 969 } 970 } 971 } 972 973 #ifdef _KERNEL 974 static void 975 spa_thread(void *arg) 976 { 977 callb_cpr_t cprinfo; 978 979 spa_t *spa = arg; 980 user_t *pu = PTOU(curproc); 981 982 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr, 983 spa->spa_name); 984 985 ASSERT(curproc != &p0); 986 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs), 987 "zpool-%s", spa->spa_name); 988 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm)); 989 990 /* bind this thread to the requested psrset */ 991 if (zio_taskq_psrset_bind != PS_NONE) { 992 pool_lock(); 993 mutex_enter(&cpu_lock); 994 mutex_enter(&pidlock); 995 mutex_enter(&curproc->p_lock); 996 997 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind, 998 0, NULL, NULL) == 0) { 999 curthread->t_bind_pset = zio_taskq_psrset_bind; 1000 } else { 1001 cmn_err(CE_WARN, 1002 "Couldn't bind process for zfs pool \"%s\" to " 1003 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind); 1004 } 1005 1006 mutex_exit(&curproc->p_lock); 1007 mutex_exit(&pidlock); 1008 mutex_exit(&cpu_lock); 1009 pool_unlock(); 1010 } 1011 1012 if (zio_taskq_sysdc) { 1013 sysdc_thread_enter(curthread, 100, 0); 1014 } 1015 1016 spa->spa_proc = curproc; 1017 spa->spa_did = curthread->t_did; 1018 1019 spa_create_zio_taskqs(spa); 1020 1021 mutex_enter(&spa->spa_proc_lock); 1022 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED); 1023 1024 spa->spa_proc_state = SPA_PROC_ACTIVE; 1025 cv_broadcast(&spa->spa_proc_cv); 1026 1027 CALLB_CPR_SAFE_BEGIN(&cprinfo); 1028 while (spa->spa_proc_state == SPA_PROC_ACTIVE) 1029 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 1030 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock); 1031 1032 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE); 1033 spa->spa_proc_state = SPA_PROC_GONE; 1034 spa->spa_proc = &p0; 1035 cv_broadcast(&spa->spa_proc_cv); 1036 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */ 1037 1038 mutex_enter(&curproc->p_lock); 1039 lwp_exit(); 1040 } 1041 #endif 1042 1043 /* 1044 * Activate an uninitialized pool. 1045 */ 1046 static void 1047 spa_activate(spa_t *spa, int mode) 1048 { 1049 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED); 1050 1051 spa->spa_state = POOL_STATE_ACTIVE; 1052 spa->spa_mode = mode; 1053 1054 spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops); 1055 spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops); 1056 1057 /* Try to create a covering process */ 1058 mutex_enter(&spa->spa_proc_lock); 1059 ASSERT(spa->spa_proc_state == SPA_PROC_NONE); 1060 ASSERT(spa->spa_proc == &p0); 1061 spa->spa_did = 0; 1062 1063 /* Only create a process if we're going to be around a while. */ 1064 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) { 1065 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri, 1066 NULL, 0) == 0) { 1067 spa->spa_proc_state = SPA_PROC_CREATED; 1068 while (spa->spa_proc_state == SPA_PROC_CREATED) { 1069 cv_wait(&spa->spa_proc_cv, 1070 &spa->spa_proc_lock); 1071 } 1072 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 1073 ASSERT(spa->spa_proc != &p0); 1074 ASSERT(spa->spa_did != 0); 1075 } else { 1076 #ifdef _KERNEL 1077 cmn_err(CE_WARN, 1078 "Couldn't create process for zfs pool \"%s\"\n", 1079 spa->spa_name); 1080 #endif 1081 } 1082 } 1083 mutex_exit(&spa->spa_proc_lock); 1084 1085 /* If we didn't create a process, we need to create our taskqs. */ 1086 if (spa->spa_proc == &p0) { 1087 spa_create_zio_taskqs(spa); 1088 } 1089 1090 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t), 1091 offsetof(vdev_t, vdev_config_dirty_node)); 1092 list_create(&spa->spa_evicting_os_list, sizeof (objset_t), 1093 offsetof(objset_t, os_evicting_node)); 1094 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t), 1095 offsetof(vdev_t, vdev_state_dirty_node)); 1096 1097 txg_list_create(&spa->spa_vdev_txg_list, 1098 offsetof(struct vdev, vdev_txg_node)); 1099 1100 avl_create(&spa->spa_errlist_scrub, 1101 spa_error_entry_compare, sizeof (spa_error_entry_t), 1102 offsetof(spa_error_entry_t, se_avl)); 1103 avl_create(&spa->spa_errlist_last, 1104 spa_error_entry_compare, sizeof (spa_error_entry_t), 1105 offsetof(spa_error_entry_t, se_avl)); 1106 } 1107 1108 /* 1109 * Opposite of spa_activate(). 1110 */ 1111 static void 1112 spa_deactivate(spa_t *spa) 1113 { 1114 ASSERT(spa->spa_sync_on == B_FALSE); 1115 ASSERT(spa->spa_dsl_pool == NULL); 1116 ASSERT(spa->spa_root_vdev == NULL); 1117 ASSERT(spa->spa_async_zio_root == NULL); 1118 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED); 1119 1120 spa_evicting_os_wait(spa); 1121 1122 txg_list_destroy(&spa->spa_vdev_txg_list); 1123 1124 list_destroy(&spa->spa_config_dirty_list); 1125 list_destroy(&spa->spa_evicting_os_list); 1126 list_destroy(&spa->spa_state_dirty_list); 1127 1128 for (int t = 0; t < ZIO_TYPES; t++) { 1129 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 1130 spa_taskqs_fini(spa, t, q); 1131 } 1132 } 1133 1134 metaslab_class_destroy(spa->spa_normal_class); 1135 spa->spa_normal_class = NULL; 1136 1137 metaslab_class_destroy(spa->spa_log_class); 1138 spa->spa_log_class = NULL; 1139 1140 /* 1141 * If this was part of an import or the open otherwise failed, we may 1142 * still have errors left in the queues. Empty them just in case. 1143 */ 1144 spa_errlog_drain(spa); 1145 1146 avl_destroy(&spa->spa_errlist_scrub); 1147 avl_destroy(&spa->spa_errlist_last); 1148 1149 spa->spa_state = POOL_STATE_UNINITIALIZED; 1150 1151 mutex_enter(&spa->spa_proc_lock); 1152 if (spa->spa_proc_state != SPA_PROC_NONE) { 1153 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 1154 spa->spa_proc_state = SPA_PROC_DEACTIVATE; 1155 cv_broadcast(&spa->spa_proc_cv); 1156 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) { 1157 ASSERT(spa->spa_proc != &p0); 1158 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 1159 } 1160 ASSERT(spa->spa_proc_state == SPA_PROC_GONE); 1161 spa->spa_proc_state = SPA_PROC_NONE; 1162 } 1163 ASSERT(spa->spa_proc == &p0); 1164 mutex_exit(&spa->spa_proc_lock); 1165 1166 /* 1167 * We want to make sure spa_thread() has actually exited the ZFS 1168 * module, so that the module can't be unloaded out from underneath 1169 * it. 1170 */ 1171 if (spa->spa_did != 0) { 1172 thread_join(spa->spa_did); 1173 spa->spa_did = 0; 1174 } 1175 } 1176 1177 /* 1178 * Verify a pool configuration, and construct the vdev tree appropriately. This 1179 * will create all the necessary vdevs in the appropriate layout, with each vdev 1180 * in the CLOSED state. This will prep the pool before open/creation/import. 1181 * All vdev validation is done by the vdev_alloc() routine. 1182 */ 1183 static int 1184 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, 1185 uint_t id, int atype) 1186 { 1187 nvlist_t **child; 1188 uint_t children; 1189 int error; 1190 1191 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0) 1192 return (error); 1193 1194 if ((*vdp)->vdev_ops->vdev_op_leaf) 1195 return (0); 1196 1197 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 1198 &child, &children); 1199 1200 if (error == ENOENT) 1201 return (0); 1202 1203 if (error) { 1204 vdev_free(*vdp); 1205 *vdp = NULL; 1206 return (SET_ERROR(EINVAL)); 1207 } 1208 1209 for (int c = 0; c < children; c++) { 1210 vdev_t *vd; 1211 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c, 1212 atype)) != 0) { 1213 vdev_free(*vdp); 1214 *vdp = NULL; 1215 return (error); 1216 } 1217 } 1218 1219 ASSERT(*vdp != NULL); 1220 1221 return (0); 1222 } 1223 1224 /* 1225 * Opposite of spa_load(). 1226 */ 1227 static void 1228 spa_unload(spa_t *spa) 1229 { 1230 int i; 1231 1232 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1233 1234 /* 1235 * Stop async tasks. 1236 */ 1237 spa_async_suspend(spa); 1238 1239 /* 1240 * Stop syncing. 1241 */ 1242 if (spa->spa_sync_on) { 1243 txg_sync_stop(spa->spa_dsl_pool); 1244 spa->spa_sync_on = B_FALSE; 1245 } 1246 1247 /* 1248 * Wait for any outstanding async I/O to complete. 1249 */ 1250 if (spa->spa_async_zio_root != NULL) { 1251 for (int i = 0; i < max_ncpus; i++) 1252 (void) zio_wait(spa->spa_async_zio_root[i]); 1253 kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *)); 1254 spa->spa_async_zio_root = NULL; 1255 } 1256 1257 bpobj_close(&spa->spa_deferred_bpobj); 1258 1259 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1260 1261 /* 1262 * Close all vdevs. 1263 */ 1264 if (spa->spa_root_vdev) 1265 vdev_free(spa->spa_root_vdev); 1266 ASSERT(spa->spa_root_vdev == NULL); 1267 1268 /* 1269 * Close the dsl pool. 1270 */ 1271 if (spa->spa_dsl_pool) { 1272 dsl_pool_close(spa->spa_dsl_pool); 1273 spa->spa_dsl_pool = NULL; 1274 spa->spa_meta_objset = NULL; 1275 } 1276 1277 ddt_unload(spa); 1278 1279 1280 /* 1281 * Drop and purge level 2 cache 1282 */ 1283 spa_l2cache_drop(spa); 1284 1285 for (i = 0; i < spa->spa_spares.sav_count; i++) 1286 vdev_free(spa->spa_spares.sav_vdevs[i]); 1287 if (spa->spa_spares.sav_vdevs) { 1288 kmem_free(spa->spa_spares.sav_vdevs, 1289 spa->spa_spares.sav_count * sizeof (void *)); 1290 spa->spa_spares.sav_vdevs = NULL; 1291 } 1292 if (spa->spa_spares.sav_config) { 1293 nvlist_free(spa->spa_spares.sav_config); 1294 spa->spa_spares.sav_config = NULL; 1295 } 1296 spa->spa_spares.sav_count = 0; 1297 1298 for (i = 0; i < spa->spa_l2cache.sav_count; i++) { 1299 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]); 1300 vdev_free(spa->spa_l2cache.sav_vdevs[i]); 1301 } 1302 if (spa->spa_l2cache.sav_vdevs) { 1303 kmem_free(spa->spa_l2cache.sav_vdevs, 1304 spa->spa_l2cache.sav_count * sizeof (void *)); 1305 spa->spa_l2cache.sav_vdevs = NULL; 1306 } 1307 if (spa->spa_l2cache.sav_config) { 1308 nvlist_free(spa->spa_l2cache.sav_config); 1309 spa->spa_l2cache.sav_config = NULL; 1310 } 1311 spa->spa_l2cache.sav_count = 0; 1312 1313 spa->spa_async_suspended = 0; 1314 1315 if (spa->spa_comment != NULL) { 1316 spa_strfree(spa->spa_comment); 1317 spa->spa_comment = NULL; 1318 } 1319 1320 spa_config_exit(spa, SCL_ALL, FTAG); 1321 } 1322 1323 /* 1324 * Load (or re-load) the current list of vdevs describing the active spares for 1325 * this pool. When this is called, we have some form of basic information in 1326 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and 1327 * then re-generate a more complete list including status information. 1328 */ 1329 static void 1330 spa_load_spares(spa_t *spa) 1331 { 1332 nvlist_t **spares; 1333 uint_t nspares; 1334 int i; 1335 vdev_t *vd, *tvd; 1336 1337 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1338 1339 /* 1340 * First, close and free any existing spare vdevs. 1341 */ 1342 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1343 vd = spa->spa_spares.sav_vdevs[i]; 1344 1345 /* Undo the call to spa_activate() below */ 1346 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1347 B_FALSE)) != NULL && tvd->vdev_isspare) 1348 spa_spare_remove(tvd); 1349 vdev_close(vd); 1350 vdev_free(vd); 1351 } 1352 1353 if (spa->spa_spares.sav_vdevs) 1354 kmem_free(spa->spa_spares.sav_vdevs, 1355 spa->spa_spares.sav_count * sizeof (void *)); 1356 1357 if (spa->spa_spares.sav_config == NULL) 1358 nspares = 0; 1359 else 1360 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 1361 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 1362 1363 spa->spa_spares.sav_count = (int)nspares; 1364 spa->spa_spares.sav_vdevs = NULL; 1365 1366 if (nspares == 0) 1367 return; 1368 1369 /* 1370 * Construct the array of vdevs, opening them to get status in the 1371 * process. For each spare, there is potentially two different vdev_t 1372 * structures associated with it: one in the list of spares (used only 1373 * for basic validation purposes) and one in the active vdev 1374 * configuration (if it's spared in). During this phase we open and 1375 * validate each vdev on the spare list. If the vdev also exists in the 1376 * active configuration, then we also mark this vdev as an active spare. 1377 */ 1378 spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *), 1379 KM_SLEEP); 1380 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1381 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0, 1382 VDEV_ALLOC_SPARE) == 0); 1383 ASSERT(vd != NULL); 1384 1385 spa->spa_spares.sav_vdevs[i] = vd; 1386 1387 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1388 B_FALSE)) != NULL) { 1389 if (!tvd->vdev_isspare) 1390 spa_spare_add(tvd); 1391 1392 /* 1393 * We only mark the spare active if we were successfully 1394 * able to load the vdev. Otherwise, importing a pool 1395 * with a bad active spare would result in strange 1396 * behavior, because multiple pool would think the spare 1397 * is actively in use. 1398 * 1399 * There is a vulnerability here to an equally bizarre 1400 * circumstance, where a dead active spare is later 1401 * brought back to life (onlined or otherwise). Given 1402 * the rarity of this scenario, and the extra complexity 1403 * it adds, we ignore the possibility. 1404 */ 1405 if (!vdev_is_dead(tvd)) 1406 spa_spare_activate(tvd); 1407 } 1408 1409 vd->vdev_top = vd; 1410 vd->vdev_aux = &spa->spa_spares; 1411 1412 if (vdev_open(vd) != 0) 1413 continue; 1414 1415 if (vdev_validate_aux(vd) == 0) 1416 spa_spare_add(vd); 1417 } 1418 1419 /* 1420 * Recompute the stashed list of spares, with status information 1421 * this time. 1422 */ 1423 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, 1424 DATA_TYPE_NVLIST_ARRAY) == 0); 1425 1426 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *), 1427 KM_SLEEP); 1428 for (i = 0; i < spa->spa_spares.sav_count; i++) 1429 spares[i] = vdev_config_generate(spa, 1430 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE); 1431 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 1432 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0); 1433 for (i = 0; i < spa->spa_spares.sav_count; i++) 1434 nvlist_free(spares[i]); 1435 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *)); 1436 } 1437 1438 /* 1439 * Load (or re-load) the current list of vdevs describing the active l2cache for 1440 * this pool. When this is called, we have some form of basic information in 1441 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and 1442 * then re-generate a more complete list including status information. 1443 * Devices which are already active have their details maintained, and are 1444 * not re-opened. 1445 */ 1446 static void 1447 spa_load_l2cache(spa_t *spa) 1448 { 1449 nvlist_t **l2cache; 1450 uint_t nl2cache; 1451 int i, j, oldnvdevs; 1452 uint64_t guid; 1453 vdev_t *vd, **oldvdevs, **newvdevs; 1454 spa_aux_vdev_t *sav = &spa->spa_l2cache; 1455 1456 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1457 1458 if (sav->sav_config != NULL) { 1459 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 1460 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 1461 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP); 1462 } else { 1463 nl2cache = 0; 1464 newvdevs = NULL; 1465 } 1466 1467 oldvdevs = sav->sav_vdevs; 1468 oldnvdevs = sav->sav_count; 1469 sav->sav_vdevs = NULL; 1470 sav->sav_count = 0; 1471 1472 /* 1473 * Process new nvlist of vdevs. 1474 */ 1475 for (i = 0; i < nl2cache; i++) { 1476 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID, 1477 &guid) == 0); 1478 1479 newvdevs[i] = NULL; 1480 for (j = 0; j < oldnvdevs; j++) { 1481 vd = oldvdevs[j]; 1482 if (vd != NULL && guid == vd->vdev_guid) { 1483 /* 1484 * Retain previous vdev for add/remove ops. 1485 */ 1486 newvdevs[i] = vd; 1487 oldvdevs[j] = NULL; 1488 break; 1489 } 1490 } 1491 1492 if (newvdevs[i] == NULL) { 1493 /* 1494 * Create new vdev 1495 */ 1496 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0, 1497 VDEV_ALLOC_L2CACHE) == 0); 1498 ASSERT(vd != NULL); 1499 newvdevs[i] = vd; 1500 1501 /* 1502 * Commit this vdev as an l2cache device, 1503 * even if it fails to open. 1504 */ 1505 spa_l2cache_add(vd); 1506 1507 vd->vdev_top = vd; 1508 vd->vdev_aux = sav; 1509 1510 spa_l2cache_activate(vd); 1511 1512 if (vdev_open(vd) != 0) 1513 continue; 1514 1515 (void) vdev_validate_aux(vd); 1516 1517 if (!vdev_is_dead(vd)) 1518 l2arc_add_vdev(spa, vd); 1519 } 1520 } 1521 1522 /* 1523 * Purge vdevs that were dropped 1524 */ 1525 for (i = 0; i < oldnvdevs; i++) { 1526 uint64_t pool; 1527 1528 vd = oldvdevs[i]; 1529 if (vd != NULL) { 1530 ASSERT(vd->vdev_isl2cache); 1531 1532 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 1533 pool != 0ULL && l2arc_vdev_present(vd)) 1534 l2arc_remove_vdev(vd); 1535 vdev_clear_stats(vd); 1536 vdev_free(vd); 1537 } 1538 } 1539 1540 if (oldvdevs) 1541 kmem_free(oldvdevs, oldnvdevs * sizeof (void *)); 1542 1543 if (sav->sav_config == NULL) 1544 goto out; 1545 1546 sav->sav_vdevs = newvdevs; 1547 sav->sav_count = (int)nl2cache; 1548 1549 /* 1550 * Recompute the stashed list of l2cache devices, with status 1551 * information this time. 1552 */ 1553 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE, 1554 DATA_TYPE_NVLIST_ARRAY) == 0); 1555 1556 l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 1557 for (i = 0; i < sav->sav_count; i++) 1558 l2cache[i] = vdev_config_generate(spa, 1559 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE); 1560 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 1561 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0); 1562 out: 1563 for (i = 0; i < sav->sav_count; i++) 1564 nvlist_free(l2cache[i]); 1565 if (sav->sav_count) 1566 kmem_free(l2cache, sav->sav_count * sizeof (void *)); 1567 } 1568 1569 static int 1570 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value) 1571 { 1572 dmu_buf_t *db; 1573 char *packed = NULL; 1574 size_t nvsize = 0; 1575 int error; 1576 *value = NULL; 1577 1578 error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db); 1579 if (error != 0) 1580 return (error); 1581 1582 nvsize = *(uint64_t *)db->db_data; 1583 dmu_buf_rele(db, FTAG); 1584 1585 packed = kmem_alloc(nvsize, KM_SLEEP); 1586 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed, 1587 DMU_READ_PREFETCH); 1588 if (error == 0) 1589 error = nvlist_unpack(packed, nvsize, value, 0); 1590 kmem_free(packed, nvsize); 1591 1592 return (error); 1593 } 1594 1595 /* 1596 * Checks to see if the given vdev could not be opened, in which case we post a 1597 * sysevent to notify the autoreplace code that the device has been removed. 1598 */ 1599 static void 1600 spa_check_removed(vdev_t *vd) 1601 { 1602 for (int c = 0; c < vd->vdev_children; c++) 1603 spa_check_removed(vd->vdev_child[c]); 1604 1605 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) && 1606 !vd->vdev_ishole) { 1607 zfs_post_autoreplace(vd->vdev_spa, vd); 1608 spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK); 1609 } 1610 } 1611 1612 /* 1613 * Validate the current config against the MOS config 1614 */ 1615 static boolean_t 1616 spa_config_valid(spa_t *spa, nvlist_t *config) 1617 { 1618 vdev_t *mrvd, *rvd = spa->spa_root_vdev; 1619 nvlist_t *nv; 1620 1621 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0); 1622 1623 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1624 VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0); 1625 1626 ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children); 1627 1628 /* 1629 * If we're doing a normal import, then build up any additional 1630 * diagnostic information about missing devices in this config. 1631 * We'll pass this up to the user for further processing. 1632 */ 1633 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) { 1634 nvlist_t **child, *nv; 1635 uint64_t idx = 0; 1636 1637 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **), 1638 KM_SLEEP); 1639 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0); 1640 1641 for (int c = 0; c < rvd->vdev_children; c++) { 1642 vdev_t *tvd = rvd->vdev_child[c]; 1643 vdev_t *mtvd = mrvd->vdev_child[c]; 1644 1645 if (tvd->vdev_ops == &vdev_missing_ops && 1646 mtvd->vdev_ops != &vdev_missing_ops && 1647 mtvd->vdev_islog) 1648 child[idx++] = vdev_config_generate(spa, mtvd, 1649 B_FALSE, 0); 1650 } 1651 1652 if (idx) { 1653 VERIFY(nvlist_add_nvlist_array(nv, 1654 ZPOOL_CONFIG_CHILDREN, child, idx) == 0); 1655 VERIFY(nvlist_add_nvlist(spa->spa_load_info, 1656 ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0); 1657 1658 for (int i = 0; i < idx; i++) 1659 nvlist_free(child[i]); 1660 } 1661 nvlist_free(nv); 1662 kmem_free(child, rvd->vdev_children * sizeof (char **)); 1663 } 1664 1665 /* 1666 * Compare the root vdev tree with the information we have 1667 * from the MOS config (mrvd). Check each top-level vdev 1668 * with the corresponding MOS config top-level (mtvd). 1669 */ 1670 for (int c = 0; c < rvd->vdev_children; c++) { 1671 vdev_t *tvd = rvd->vdev_child[c]; 1672 vdev_t *mtvd = mrvd->vdev_child[c]; 1673 1674 /* 1675 * Resolve any "missing" vdevs in the current configuration. 1676 * If we find that the MOS config has more accurate information 1677 * about the top-level vdev then use that vdev instead. 1678 */ 1679 if (tvd->vdev_ops == &vdev_missing_ops && 1680 mtvd->vdev_ops != &vdev_missing_ops) { 1681 1682 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) 1683 continue; 1684 1685 /* 1686 * Device specific actions. 1687 */ 1688 if (mtvd->vdev_islog) { 1689 spa_set_log_state(spa, SPA_LOG_CLEAR); 1690 } else { 1691 /* 1692 * XXX - once we have 'readonly' pool 1693 * support we should be able to handle 1694 * missing data devices by transitioning 1695 * the pool to readonly. 1696 */ 1697 continue; 1698 } 1699 1700 /* 1701 * Swap the missing vdev with the data we were 1702 * able to obtain from the MOS config. 1703 */ 1704 vdev_remove_child(rvd, tvd); 1705 vdev_remove_child(mrvd, mtvd); 1706 1707 vdev_add_child(rvd, mtvd); 1708 vdev_add_child(mrvd, tvd); 1709 1710 spa_config_exit(spa, SCL_ALL, FTAG); 1711 vdev_load(mtvd); 1712 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1713 1714 vdev_reopen(rvd); 1715 } else if (mtvd->vdev_islog) { 1716 /* 1717 * Load the slog device's state from the MOS config 1718 * since it's possible that the label does not 1719 * contain the most up-to-date information. 1720 */ 1721 vdev_load_log_state(tvd, mtvd); 1722 vdev_reopen(tvd); 1723 } 1724 } 1725 vdev_free(mrvd); 1726 spa_config_exit(spa, SCL_ALL, FTAG); 1727 1728 /* 1729 * Ensure we were able to validate the config. 1730 */ 1731 return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum); 1732 } 1733 1734 /* 1735 * Check for missing log devices 1736 */ 1737 static boolean_t 1738 spa_check_logs(spa_t *spa) 1739 { 1740 boolean_t rv = B_FALSE; 1741 dsl_pool_t *dp = spa_get_dsl(spa); 1742 1743 switch (spa->spa_log_state) { 1744 case SPA_LOG_MISSING: 1745 /* need to recheck in case slog has been restored */ 1746 case SPA_LOG_UNKNOWN: 1747 rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 1748 zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0); 1749 if (rv) 1750 spa_set_log_state(spa, SPA_LOG_MISSING); 1751 break; 1752 } 1753 return (rv); 1754 } 1755 1756 static boolean_t 1757 spa_passivate_log(spa_t *spa) 1758 { 1759 vdev_t *rvd = spa->spa_root_vdev; 1760 boolean_t slog_found = B_FALSE; 1761 1762 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1763 1764 if (!spa_has_slogs(spa)) 1765 return (B_FALSE); 1766 1767 for (int c = 0; c < rvd->vdev_children; c++) { 1768 vdev_t *tvd = rvd->vdev_child[c]; 1769 metaslab_group_t *mg = tvd->vdev_mg; 1770 1771 if (tvd->vdev_islog) { 1772 metaslab_group_passivate(mg); 1773 slog_found = B_TRUE; 1774 } 1775 } 1776 1777 return (slog_found); 1778 } 1779 1780 static void 1781 spa_activate_log(spa_t *spa) 1782 { 1783 vdev_t *rvd = spa->spa_root_vdev; 1784 1785 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1786 1787 for (int c = 0; c < rvd->vdev_children; c++) { 1788 vdev_t *tvd = rvd->vdev_child[c]; 1789 metaslab_group_t *mg = tvd->vdev_mg; 1790 1791 if (tvd->vdev_islog) 1792 metaslab_group_activate(mg); 1793 } 1794 } 1795 1796 int 1797 spa_offline_log(spa_t *spa) 1798 { 1799 int error; 1800 1801 error = dmu_objset_find(spa_name(spa), zil_vdev_offline, 1802 NULL, DS_FIND_CHILDREN); 1803 if (error == 0) { 1804 /* 1805 * We successfully offlined the log device, sync out the 1806 * current txg so that the "stubby" block can be removed 1807 * by zil_sync(). 1808 */ 1809 txg_wait_synced(spa->spa_dsl_pool, 0); 1810 } 1811 return (error); 1812 } 1813 1814 static void 1815 spa_aux_check_removed(spa_aux_vdev_t *sav) 1816 { 1817 for (int i = 0; i < sav->sav_count; i++) 1818 spa_check_removed(sav->sav_vdevs[i]); 1819 } 1820 1821 void 1822 spa_claim_notify(zio_t *zio) 1823 { 1824 spa_t *spa = zio->io_spa; 1825 1826 if (zio->io_error) 1827 return; 1828 1829 mutex_enter(&spa->spa_props_lock); /* any mutex will do */ 1830 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth) 1831 spa->spa_claim_max_txg = zio->io_bp->blk_birth; 1832 mutex_exit(&spa->spa_props_lock); 1833 } 1834 1835 typedef struct spa_load_error { 1836 uint64_t sle_meta_count; 1837 uint64_t sle_data_count; 1838 } spa_load_error_t; 1839 1840 static void 1841 spa_load_verify_done(zio_t *zio) 1842 { 1843 blkptr_t *bp = zio->io_bp; 1844 spa_load_error_t *sle = zio->io_private; 1845 dmu_object_type_t type = BP_GET_TYPE(bp); 1846 int error = zio->io_error; 1847 spa_t *spa = zio->io_spa; 1848 1849 if (error) { 1850 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) && 1851 type != DMU_OT_INTENT_LOG) 1852 atomic_inc_64(&sle->sle_meta_count); 1853 else 1854 atomic_inc_64(&sle->sle_data_count); 1855 } 1856 zio_data_buf_free(zio->io_data, zio->io_size); 1857 1858 mutex_enter(&spa->spa_scrub_lock); 1859 spa->spa_scrub_inflight--; 1860 cv_broadcast(&spa->spa_scrub_io_cv); 1861 mutex_exit(&spa->spa_scrub_lock); 1862 } 1863 1864 /* 1865 * Maximum number of concurrent scrub i/os to create while verifying 1866 * a pool while importing it. 1867 */ 1868 int spa_load_verify_maxinflight = 10000; 1869 boolean_t spa_load_verify_metadata = B_TRUE; 1870 boolean_t spa_load_verify_data = B_TRUE; 1871 1872 /*ARGSUSED*/ 1873 static int 1874 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 1875 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg) 1876 { 1877 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) 1878 return (0); 1879 /* 1880 * Note: normally this routine will not be called if 1881 * spa_load_verify_metadata is not set. However, it may be useful 1882 * to manually set the flag after the traversal has begun. 1883 */ 1884 if (!spa_load_verify_metadata) 1885 return (0); 1886 if (BP_GET_BUFC_TYPE(bp) == ARC_BUFC_DATA && !spa_load_verify_data) 1887 return (0); 1888 1889 zio_t *rio = arg; 1890 size_t size = BP_GET_PSIZE(bp); 1891 void *data = zio_data_buf_alloc(size); 1892 1893 mutex_enter(&spa->spa_scrub_lock); 1894 while (spa->spa_scrub_inflight >= spa_load_verify_maxinflight) 1895 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); 1896 spa->spa_scrub_inflight++; 1897 mutex_exit(&spa->spa_scrub_lock); 1898 1899 zio_nowait(zio_read(rio, spa, bp, data, size, 1900 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB, 1901 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL | 1902 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb)); 1903 return (0); 1904 } 1905 1906 static int 1907 spa_load_verify(spa_t *spa) 1908 { 1909 zio_t *rio; 1910 spa_load_error_t sle = { 0 }; 1911 zpool_rewind_policy_t policy; 1912 boolean_t verify_ok = B_FALSE; 1913 int error = 0; 1914 1915 zpool_get_rewind_policy(spa->spa_config, &policy); 1916 1917 if (policy.zrp_request & ZPOOL_NEVER_REWIND) 1918 return (0); 1919 1920 rio = zio_root(spa, NULL, &sle, 1921 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE); 1922 1923 if (spa_load_verify_metadata) { 1924 error = traverse_pool(spa, spa->spa_verify_min_txg, 1925 TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA, 1926 spa_load_verify_cb, rio); 1927 } 1928 1929 (void) zio_wait(rio); 1930 1931 spa->spa_load_meta_errors = sle.sle_meta_count; 1932 spa->spa_load_data_errors = sle.sle_data_count; 1933 1934 if (!error && sle.sle_meta_count <= policy.zrp_maxmeta && 1935 sle.sle_data_count <= policy.zrp_maxdata) { 1936 int64_t loss = 0; 1937 1938 verify_ok = B_TRUE; 1939 spa->spa_load_txg = spa->spa_uberblock.ub_txg; 1940 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp; 1941 1942 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts; 1943 VERIFY(nvlist_add_uint64(spa->spa_load_info, 1944 ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0); 1945 VERIFY(nvlist_add_int64(spa->spa_load_info, 1946 ZPOOL_CONFIG_REWIND_TIME, loss) == 0); 1947 VERIFY(nvlist_add_uint64(spa->spa_load_info, 1948 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0); 1949 } else { 1950 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg; 1951 } 1952 1953 if (error) { 1954 if (error != ENXIO && error != EIO) 1955 error = SET_ERROR(EIO); 1956 return (error); 1957 } 1958 1959 return (verify_ok ? 0 : EIO); 1960 } 1961 1962 /* 1963 * Find a value in the pool props object. 1964 */ 1965 static void 1966 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val) 1967 { 1968 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object, 1969 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val); 1970 } 1971 1972 /* 1973 * Find a value in the pool directory object. 1974 */ 1975 static int 1976 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val) 1977 { 1978 return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 1979 name, sizeof (uint64_t), 1, val)); 1980 } 1981 1982 static int 1983 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err) 1984 { 1985 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux); 1986 return (err); 1987 } 1988 1989 /* 1990 * Fix up config after a partly-completed split. This is done with the 1991 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off 1992 * pool have that entry in their config, but only the splitting one contains 1993 * a list of all the guids of the vdevs that are being split off. 1994 * 1995 * This function determines what to do with that list: either rejoin 1996 * all the disks to the pool, or complete the splitting process. To attempt 1997 * the rejoin, each disk that is offlined is marked online again, and 1998 * we do a reopen() call. If the vdev label for every disk that was 1999 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL) 2000 * then we call vdev_split() on each disk, and complete the split. 2001 * 2002 * Otherwise we leave the config alone, with all the vdevs in place in 2003 * the original pool. 2004 */ 2005 static void 2006 spa_try_repair(spa_t *spa, nvlist_t *config) 2007 { 2008 uint_t extracted; 2009 uint64_t *glist; 2010 uint_t i, gcount; 2011 nvlist_t *nvl; 2012 vdev_t **vd; 2013 boolean_t attempt_reopen; 2014 2015 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0) 2016 return; 2017 2018 /* check that the config is complete */ 2019 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 2020 &glist, &gcount) != 0) 2021 return; 2022 2023 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP); 2024 2025 /* attempt to online all the vdevs & validate */ 2026 attempt_reopen = B_TRUE; 2027 for (i = 0; i < gcount; i++) { 2028 if (glist[i] == 0) /* vdev is hole */ 2029 continue; 2030 2031 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE); 2032 if (vd[i] == NULL) { 2033 /* 2034 * Don't bother attempting to reopen the disks; 2035 * just do the split. 2036 */ 2037 attempt_reopen = B_FALSE; 2038 } else { 2039 /* attempt to re-online it */ 2040 vd[i]->vdev_offline = B_FALSE; 2041 } 2042 } 2043 2044 if (attempt_reopen) { 2045 vdev_reopen(spa->spa_root_vdev); 2046 2047 /* check each device to see what state it's in */ 2048 for (extracted = 0, i = 0; i < gcount; i++) { 2049 if (vd[i] != NULL && 2050 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL) 2051 break; 2052 ++extracted; 2053 } 2054 } 2055 2056 /* 2057 * If every disk has been moved to the new pool, or if we never 2058 * even attempted to look at them, then we split them off for 2059 * good. 2060 */ 2061 if (!attempt_reopen || gcount == extracted) { 2062 for (i = 0; i < gcount; i++) 2063 if (vd[i] != NULL) 2064 vdev_split(vd[i]); 2065 vdev_reopen(spa->spa_root_vdev); 2066 } 2067 2068 kmem_free(vd, gcount * sizeof (vdev_t *)); 2069 } 2070 2071 static int 2072 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type, 2073 boolean_t mosconfig) 2074 { 2075 nvlist_t *config = spa->spa_config; 2076 char *ereport = FM_EREPORT_ZFS_POOL; 2077 char *comment; 2078 int error; 2079 uint64_t pool_guid; 2080 nvlist_t *nvl; 2081 2082 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) 2083 return (SET_ERROR(EINVAL)); 2084 2085 ASSERT(spa->spa_comment == NULL); 2086 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0) 2087 spa->spa_comment = spa_strdup(comment); 2088 2089 /* 2090 * Versioning wasn't explicitly added to the label until later, so if 2091 * it's not present treat it as the initial version. 2092 */ 2093 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, 2094 &spa->spa_ubsync.ub_version) != 0) 2095 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL; 2096 2097 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, 2098 &spa->spa_config_txg); 2099 2100 if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) && 2101 spa_guid_exists(pool_guid, 0)) { 2102 error = SET_ERROR(EEXIST); 2103 } else { 2104 spa->spa_config_guid = pool_guid; 2105 2106 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, 2107 &nvl) == 0) { 2108 VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting, 2109 KM_SLEEP) == 0); 2110 } 2111 2112 nvlist_free(spa->spa_load_info); 2113 spa->spa_load_info = fnvlist_alloc(); 2114 2115 gethrestime(&spa->spa_loaded_ts); 2116 error = spa_load_impl(spa, pool_guid, config, state, type, 2117 mosconfig, &ereport); 2118 } 2119 2120 /* 2121 * Don't count references from objsets that are already closed 2122 * and are making their way through the eviction process. 2123 */ 2124 spa_evicting_os_wait(spa); 2125 spa->spa_minref = refcount_count(&spa->spa_refcount); 2126 if (error) { 2127 if (error != EEXIST) { 2128 spa->spa_loaded_ts.tv_sec = 0; 2129 spa->spa_loaded_ts.tv_nsec = 0; 2130 } 2131 if (error != EBADF) { 2132 zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0); 2133 } 2134 } 2135 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE; 2136 spa->spa_ena = 0; 2137 2138 return (error); 2139 } 2140 2141 /* 2142 * Load an existing storage pool, using the pool's builtin spa_config as a 2143 * source of configuration information. 2144 */ 2145 static int 2146 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config, 2147 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig, 2148 char **ereport) 2149 { 2150 int error = 0; 2151 nvlist_t *nvroot = NULL; 2152 nvlist_t *label; 2153 vdev_t *rvd; 2154 uberblock_t *ub = &spa->spa_uberblock; 2155 uint64_t children, config_cache_txg = spa->spa_config_txg; 2156 int orig_mode = spa->spa_mode; 2157 int parse; 2158 uint64_t obj; 2159 boolean_t missing_feat_write = B_FALSE; 2160 2161 /* 2162 * If this is an untrusted config, access the pool in read-only mode. 2163 * This prevents things like resilvering recently removed devices. 2164 */ 2165 if (!mosconfig) 2166 spa->spa_mode = FREAD; 2167 2168 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 2169 2170 spa->spa_load_state = state; 2171 2172 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot)) 2173 return (SET_ERROR(EINVAL)); 2174 2175 parse = (type == SPA_IMPORT_EXISTING ? 2176 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT); 2177 2178 /* 2179 * Create "The Godfather" zio to hold all async IOs 2180 */ 2181 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *), 2182 KM_SLEEP); 2183 for (int i = 0; i < max_ncpus; i++) { 2184 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL, 2185 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 2186 ZIO_FLAG_GODFATHER); 2187 } 2188 2189 /* 2190 * Parse the configuration into a vdev tree. We explicitly set the 2191 * value that will be returned by spa_version() since parsing the 2192 * configuration requires knowing the version number. 2193 */ 2194 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2195 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse); 2196 spa_config_exit(spa, SCL_ALL, FTAG); 2197 2198 if (error != 0) 2199 return (error); 2200 2201 ASSERT(spa->spa_root_vdev == rvd); 2202 2203 if (type != SPA_IMPORT_ASSEMBLE) { 2204 ASSERT(spa_guid(spa) == pool_guid); 2205 } 2206 2207 /* 2208 * Try to open all vdevs, loading each label in the process. 2209 */ 2210 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2211 error = vdev_open(rvd); 2212 spa_config_exit(spa, SCL_ALL, FTAG); 2213 if (error != 0) 2214 return (error); 2215 2216 /* 2217 * We need to validate the vdev labels against the configuration that 2218 * we have in hand, which is dependent on the setting of mosconfig. If 2219 * mosconfig is true then we're validating the vdev labels based on 2220 * that config. Otherwise, we're validating against the cached config 2221 * (zpool.cache) that was read when we loaded the zfs module, and then 2222 * later we will recursively call spa_load() and validate against 2223 * the vdev config. 2224 * 2225 * If we're assembling a new pool that's been split off from an 2226 * existing pool, the labels haven't yet been updated so we skip 2227 * validation for now. 2228 */ 2229 if (type != SPA_IMPORT_ASSEMBLE) { 2230 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2231 error = vdev_validate(rvd, mosconfig); 2232 spa_config_exit(spa, SCL_ALL, FTAG); 2233 2234 if (error != 0) 2235 return (error); 2236 2237 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) 2238 return (SET_ERROR(ENXIO)); 2239 } 2240 2241 /* 2242 * Find the best uberblock. 2243 */ 2244 vdev_uberblock_load(rvd, ub, &label); 2245 2246 /* 2247 * If we weren't able to find a single valid uberblock, return failure. 2248 */ 2249 if (ub->ub_txg == 0) { 2250 nvlist_free(label); 2251 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO)); 2252 } 2253 2254 /* 2255 * If the pool has an unsupported version we can't open it. 2256 */ 2257 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) { 2258 nvlist_free(label); 2259 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP)); 2260 } 2261 2262 if (ub->ub_version >= SPA_VERSION_FEATURES) { 2263 nvlist_t *features; 2264 2265 /* 2266 * If we weren't able to find what's necessary for reading the 2267 * MOS in the label, return failure. 2268 */ 2269 if (label == NULL || nvlist_lookup_nvlist(label, 2270 ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) { 2271 nvlist_free(label); 2272 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 2273 ENXIO)); 2274 } 2275 2276 /* 2277 * Update our in-core representation with the definitive values 2278 * from the label. 2279 */ 2280 nvlist_free(spa->spa_label_features); 2281 VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0); 2282 } 2283 2284 nvlist_free(label); 2285 2286 /* 2287 * Look through entries in the label nvlist's features_for_read. If 2288 * there is a feature listed there which we don't understand then we 2289 * cannot open a pool. 2290 */ 2291 if (ub->ub_version >= SPA_VERSION_FEATURES) { 2292 nvlist_t *unsup_feat; 2293 2294 VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) == 2295 0); 2296 2297 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features, 2298 NULL); nvp != NULL; 2299 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) { 2300 if (!zfeature_is_supported(nvpair_name(nvp))) { 2301 VERIFY(nvlist_add_string(unsup_feat, 2302 nvpair_name(nvp), "") == 0); 2303 } 2304 } 2305 2306 if (!nvlist_empty(unsup_feat)) { 2307 VERIFY(nvlist_add_nvlist(spa->spa_load_info, 2308 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0); 2309 nvlist_free(unsup_feat); 2310 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, 2311 ENOTSUP)); 2312 } 2313 2314 nvlist_free(unsup_feat); 2315 } 2316 2317 /* 2318 * If the vdev guid sum doesn't match the uberblock, we have an 2319 * incomplete configuration. We first check to see if the pool 2320 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN). 2321 * If it is, defer the vdev_guid_sum check till later so we 2322 * can handle missing vdevs. 2323 */ 2324 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN, 2325 &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE && 2326 rvd->vdev_guid_sum != ub->ub_guid_sum) 2327 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO)); 2328 2329 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) { 2330 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2331 spa_try_repair(spa, config); 2332 spa_config_exit(spa, SCL_ALL, FTAG); 2333 nvlist_free(spa->spa_config_splitting); 2334 spa->spa_config_splitting = NULL; 2335 } 2336 2337 /* 2338 * Initialize internal SPA structures. 2339 */ 2340 spa->spa_state = POOL_STATE_ACTIVE; 2341 spa->spa_ubsync = spa->spa_uberblock; 2342 spa->spa_verify_min_txg = spa->spa_extreme_rewind ? 2343 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1; 2344 spa->spa_first_txg = spa->spa_last_ubsync_txg ? 2345 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1; 2346 spa->spa_claim_max_txg = spa->spa_first_txg; 2347 spa->spa_prev_software_version = ub->ub_software_version; 2348 2349 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool); 2350 if (error) 2351 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2352 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset; 2353 2354 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0) 2355 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2356 2357 if (spa_version(spa) >= SPA_VERSION_FEATURES) { 2358 boolean_t missing_feat_read = B_FALSE; 2359 nvlist_t *unsup_feat, *enabled_feat; 2360 2361 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ, 2362 &spa->spa_feat_for_read_obj) != 0) { 2363 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2364 } 2365 2366 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE, 2367 &spa->spa_feat_for_write_obj) != 0) { 2368 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2369 } 2370 2371 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS, 2372 &spa->spa_feat_desc_obj) != 0) { 2373 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2374 } 2375 2376 enabled_feat = fnvlist_alloc(); 2377 unsup_feat = fnvlist_alloc(); 2378 2379 if (!spa_features_check(spa, B_FALSE, 2380 unsup_feat, enabled_feat)) 2381 missing_feat_read = B_TRUE; 2382 2383 if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) { 2384 if (!spa_features_check(spa, B_TRUE, 2385 unsup_feat, enabled_feat)) { 2386 missing_feat_write = B_TRUE; 2387 } 2388 } 2389 2390 fnvlist_add_nvlist(spa->spa_load_info, 2391 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat); 2392 2393 if (!nvlist_empty(unsup_feat)) { 2394 fnvlist_add_nvlist(spa->spa_load_info, 2395 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat); 2396 } 2397 2398 fnvlist_free(enabled_feat); 2399 fnvlist_free(unsup_feat); 2400 2401 if (!missing_feat_read) { 2402 fnvlist_add_boolean(spa->spa_load_info, 2403 ZPOOL_CONFIG_CAN_RDONLY); 2404 } 2405 2406 /* 2407 * If the state is SPA_LOAD_TRYIMPORT, our objective is 2408 * twofold: to determine whether the pool is available for 2409 * import in read-write mode and (if it is not) whether the 2410 * pool is available for import in read-only mode. If the pool 2411 * is available for import in read-write mode, it is displayed 2412 * as available in userland; if it is not available for import 2413 * in read-only mode, it is displayed as unavailable in 2414 * userland. If the pool is available for import in read-only 2415 * mode but not read-write mode, it is displayed as unavailable 2416 * in userland with a special note that the pool is actually 2417 * available for open in read-only mode. 2418 * 2419 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are 2420 * missing a feature for write, we must first determine whether 2421 * the pool can be opened read-only before returning to 2422 * userland in order to know whether to display the 2423 * abovementioned note. 2424 */ 2425 if (missing_feat_read || (missing_feat_write && 2426 spa_writeable(spa))) { 2427 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, 2428 ENOTSUP)); 2429 } 2430 2431 /* 2432 * Load refcounts for ZFS features from disk into an in-memory 2433 * cache during SPA initialization. 2434 */ 2435 for (spa_feature_t i = 0; i < SPA_FEATURES; i++) { 2436 uint64_t refcount; 2437 2438 error = feature_get_refcount_from_disk(spa, 2439 &spa_feature_table[i], &refcount); 2440 if (error == 0) { 2441 spa->spa_feat_refcount_cache[i] = refcount; 2442 } else if (error == ENOTSUP) { 2443 spa->spa_feat_refcount_cache[i] = 2444 SPA_FEATURE_DISABLED; 2445 } else { 2446 return (spa_vdev_err(rvd, 2447 VDEV_AUX_CORRUPT_DATA, EIO)); 2448 } 2449 } 2450 } 2451 2452 if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) { 2453 if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG, 2454 &spa->spa_feat_enabled_txg_obj) != 0) 2455 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2456 } 2457 2458 spa->spa_is_initializing = B_TRUE; 2459 error = dsl_pool_open(spa->spa_dsl_pool); 2460 spa->spa_is_initializing = B_FALSE; 2461 if (error != 0) 2462 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2463 2464 if (!mosconfig) { 2465 uint64_t hostid; 2466 nvlist_t *policy = NULL, *nvconfig; 2467 2468 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0) 2469 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2470 2471 if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig, 2472 ZPOOL_CONFIG_HOSTID, &hostid) == 0) { 2473 char *hostname; 2474 unsigned long myhostid = 0; 2475 2476 VERIFY(nvlist_lookup_string(nvconfig, 2477 ZPOOL_CONFIG_HOSTNAME, &hostname) == 0); 2478 2479 #ifdef _KERNEL 2480 myhostid = zone_get_hostid(NULL); 2481 #else /* _KERNEL */ 2482 /* 2483 * We're emulating the system's hostid in userland, so 2484 * we can't use zone_get_hostid(). 2485 */ 2486 (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid); 2487 #endif /* _KERNEL */ 2488 if (hostid != 0 && myhostid != 0 && 2489 hostid != myhostid) { 2490 nvlist_free(nvconfig); 2491 cmn_err(CE_WARN, "pool '%s' could not be " 2492 "loaded as it was last accessed by " 2493 "another system (host: %s hostid: 0x%lx). " 2494 "See: http://illumos.org/msg/ZFS-8000-EY", 2495 spa_name(spa), hostname, 2496 (unsigned long)hostid); 2497 return (SET_ERROR(EBADF)); 2498 } 2499 } 2500 if (nvlist_lookup_nvlist(spa->spa_config, 2501 ZPOOL_REWIND_POLICY, &policy) == 0) 2502 VERIFY(nvlist_add_nvlist(nvconfig, 2503 ZPOOL_REWIND_POLICY, policy) == 0); 2504 2505 spa_config_set(spa, nvconfig); 2506 spa_unload(spa); 2507 spa_deactivate(spa); 2508 spa_activate(spa, orig_mode); 2509 2510 return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE)); 2511 } 2512 2513 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0) 2514 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2515 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj); 2516 if (error != 0) 2517 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2518 2519 /* 2520 * Load the bit that tells us to use the new accounting function 2521 * (raid-z deflation). If we have an older pool, this will not 2522 * be present. 2523 */ 2524 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate); 2525 if (error != 0 && error != ENOENT) 2526 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2527 2528 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION, 2529 &spa->spa_creation_version); 2530 if (error != 0 && error != ENOENT) 2531 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2532 2533 /* 2534 * Load the persistent error log. If we have an older pool, this will 2535 * not be present. 2536 */ 2537 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last); 2538 if (error != 0 && error != ENOENT) 2539 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2540 2541 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB, 2542 &spa->spa_errlog_scrub); 2543 if (error != 0 && error != ENOENT) 2544 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2545 2546 /* 2547 * Load the history object. If we have an older pool, this 2548 * will not be present. 2549 */ 2550 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history); 2551 if (error != 0 && error != ENOENT) 2552 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2553 2554 /* 2555 * If we're assembling the pool from the split-off vdevs of 2556 * an existing pool, we don't want to attach the spares & cache 2557 * devices. 2558 */ 2559 2560 /* 2561 * Load any hot spares for this pool. 2562 */ 2563 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object); 2564 if (error != 0 && error != ENOENT) 2565 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2566 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 2567 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES); 2568 if (load_nvlist(spa, spa->spa_spares.sav_object, 2569 &spa->spa_spares.sav_config) != 0) 2570 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2571 2572 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2573 spa_load_spares(spa); 2574 spa_config_exit(spa, SCL_ALL, FTAG); 2575 } else if (error == 0) { 2576 spa->spa_spares.sav_sync = B_TRUE; 2577 } 2578 2579 /* 2580 * Load any level 2 ARC devices for this pool. 2581 */ 2582 error = spa_dir_prop(spa, DMU_POOL_L2CACHE, 2583 &spa->spa_l2cache.sav_object); 2584 if (error != 0 && error != ENOENT) 2585 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2586 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 2587 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE); 2588 if (load_nvlist(spa, spa->spa_l2cache.sav_object, 2589 &spa->spa_l2cache.sav_config) != 0) 2590 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2591 2592 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2593 spa_load_l2cache(spa); 2594 spa_config_exit(spa, SCL_ALL, FTAG); 2595 } else if (error == 0) { 2596 spa->spa_l2cache.sav_sync = B_TRUE; 2597 } 2598 2599 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 2600 2601 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object); 2602 if (error && error != ENOENT) 2603 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2604 2605 if (error == 0) { 2606 uint64_t autoreplace; 2607 2608 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs); 2609 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace); 2610 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation); 2611 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode); 2612 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand); 2613 spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO, 2614 &spa->spa_dedup_ditto); 2615 2616 spa->spa_autoreplace = (autoreplace != 0); 2617 } 2618 2619 /* 2620 * If the 'autoreplace' property is set, then post a resource notifying 2621 * the ZFS DE that it should not issue any faults for unopenable 2622 * devices. We also iterate over the vdevs, and post a sysevent for any 2623 * unopenable vdevs so that the normal autoreplace handler can take 2624 * over. 2625 */ 2626 if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) { 2627 spa_check_removed(spa->spa_root_vdev); 2628 /* 2629 * For the import case, this is done in spa_import(), because 2630 * at this point we're using the spare definitions from 2631 * the MOS config, not necessarily from the userland config. 2632 */ 2633 if (state != SPA_LOAD_IMPORT) { 2634 spa_aux_check_removed(&spa->spa_spares); 2635 spa_aux_check_removed(&spa->spa_l2cache); 2636 } 2637 } 2638 2639 /* 2640 * Load the vdev state for all toplevel vdevs. 2641 */ 2642 vdev_load(rvd); 2643 2644 /* 2645 * Propagate the leaf DTLs we just loaded all the way up the tree. 2646 */ 2647 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2648 vdev_dtl_reassess(rvd, 0, 0, B_FALSE); 2649 spa_config_exit(spa, SCL_ALL, FTAG); 2650 2651 /* 2652 * Load the DDTs (dedup tables). 2653 */ 2654 error = ddt_load(spa); 2655 if (error != 0) 2656 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2657 2658 spa_update_dspace(spa); 2659 2660 /* 2661 * Validate the config, using the MOS config to fill in any 2662 * information which might be missing. If we fail to validate 2663 * the config then declare the pool unfit for use. If we're 2664 * assembling a pool from a split, the log is not transferred 2665 * over. 2666 */ 2667 if (type != SPA_IMPORT_ASSEMBLE) { 2668 nvlist_t *nvconfig; 2669 2670 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0) 2671 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2672 2673 if (!spa_config_valid(spa, nvconfig)) { 2674 nvlist_free(nvconfig); 2675 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, 2676 ENXIO)); 2677 } 2678 nvlist_free(nvconfig); 2679 2680 /* 2681 * Now that we've validated the config, check the state of the 2682 * root vdev. If it can't be opened, it indicates one or 2683 * more toplevel vdevs are faulted. 2684 */ 2685 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) 2686 return (SET_ERROR(ENXIO)); 2687 2688 if (spa_writeable(spa) && spa_check_logs(spa)) { 2689 *ereport = FM_EREPORT_ZFS_LOG_REPLAY; 2690 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO)); 2691 } 2692 } 2693 2694 if (missing_feat_write) { 2695 ASSERT(state == SPA_LOAD_TRYIMPORT); 2696 2697 /* 2698 * At this point, we know that we can open the pool in 2699 * read-only mode but not read-write mode. We now have enough 2700 * information and can return to userland. 2701 */ 2702 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP)); 2703 } 2704 2705 /* 2706 * We've successfully opened the pool, verify that we're ready 2707 * to start pushing transactions. 2708 */ 2709 if (state != SPA_LOAD_TRYIMPORT) { 2710 if (error = spa_load_verify(spa)) 2711 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 2712 error)); 2713 } 2714 2715 if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER || 2716 spa->spa_load_max_txg == UINT64_MAX)) { 2717 dmu_tx_t *tx; 2718 int need_update = B_FALSE; 2719 dsl_pool_t *dp = spa_get_dsl(spa); 2720 2721 ASSERT(state != SPA_LOAD_TRYIMPORT); 2722 2723 /* 2724 * Claim log blocks that haven't been committed yet. 2725 * This must all happen in a single txg. 2726 * Note: spa_claim_max_txg is updated by spa_claim_notify(), 2727 * invoked from zil_claim_log_block()'s i/o done callback. 2728 * Price of rollback is that we abandon the log. 2729 */ 2730 spa->spa_claiming = B_TRUE; 2731 2732 tx = dmu_tx_create_assigned(dp, spa_first_txg(spa)); 2733 (void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 2734 zil_claim, tx, DS_FIND_CHILDREN); 2735 dmu_tx_commit(tx); 2736 2737 spa->spa_claiming = B_FALSE; 2738 2739 spa_set_log_state(spa, SPA_LOG_GOOD); 2740 spa->spa_sync_on = B_TRUE; 2741 txg_sync_start(spa->spa_dsl_pool); 2742 2743 /* 2744 * Wait for all claims to sync. We sync up to the highest 2745 * claimed log block birth time so that claimed log blocks 2746 * don't appear to be from the future. spa_claim_max_txg 2747 * will have been set for us by either zil_check_log_chain() 2748 * (invoked from spa_check_logs()) or zil_claim() above. 2749 */ 2750 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg); 2751 2752 /* 2753 * If the config cache is stale, or we have uninitialized 2754 * metaslabs (see spa_vdev_add()), then update the config. 2755 * 2756 * If this is a verbatim import, trust the current 2757 * in-core spa_config and update the disk labels. 2758 */ 2759 if (config_cache_txg != spa->spa_config_txg || 2760 state == SPA_LOAD_IMPORT || 2761 state == SPA_LOAD_RECOVER || 2762 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM)) 2763 need_update = B_TRUE; 2764 2765 for (int c = 0; c < rvd->vdev_children; c++) 2766 if (rvd->vdev_child[c]->vdev_ms_array == 0) 2767 need_update = B_TRUE; 2768 2769 /* 2770 * Update the config cache asychronously in case we're the 2771 * root pool, in which case the config cache isn't writable yet. 2772 */ 2773 if (need_update) 2774 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 2775 2776 /* 2777 * Check all DTLs to see if anything needs resilvering. 2778 */ 2779 if (!dsl_scan_resilvering(spa->spa_dsl_pool) && 2780 vdev_resilver_needed(rvd, NULL, NULL)) 2781 spa_async_request(spa, SPA_ASYNC_RESILVER); 2782 2783 /* 2784 * Log the fact that we booted up (so that we can detect if 2785 * we rebooted in the middle of an operation). 2786 */ 2787 spa_history_log_version(spa, "open"); 2788 2789 /* 2790 * Delete any inconsistent datasets. 2791 */ 2792 (void) dmu_objset_find(spa_name(spa), 2793 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN); 2794 2795 /* 2796 * Clean up any stale temporary dataset userrefs. 2797 */ 2798 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool); 2799 } 2800 2801 return (0); 2802 } 2803 2804 static int 2805 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig) 2806 { 2807 int mode = spa->spa_mode; 2808 2809 spa_unload(spa); 2810 spa_deactivate(spa); 2811 2812 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1; 2813 2814 spa_activate(spa, mode); 2815 spa_async_suspend(spa); 2816 2817 return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig)); 2818 } 2819 2820 /* 2821 * If spa_load() fails this function will try loading prior txg's. If 2822 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool 2823 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this 2824 * function will not rewind the pool and will return the same error as 2825 * spa_load(). 2826 */ 2827 static int 2828 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig, 2829 uint64_t max_request, int rewind_flags) 2830 { 2831 nvlist_t *loadinfo = NULL; 2832 nvlist_t *config = NULL; 2833 int load_error, rewind_error; 2834 uint64_t safe_rewind_txg; 2835 uint64_t min_txg; 2836 2837 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) { 2838 spa->spa_load_max_txg = spa->spa_load_txg; 2839 spa_set_log_state(spa, SPA_LOG_CLEAR); 2840 } else { 2841 spa->spa_load_max_txg = max_request; 2842 if (max_request != UINT64_MAX) 2843 spa->spa_extreme_rewind = B_TRUE; 2844 } 2845 2846 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING, 2847 mosconfig); 2848 if (load_error == 0) 2849 return (0); 2850 2851 if (spa->spa_root_vdev != NULL) 2852 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 2853 2854 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg; 2855 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp; 2856 2857 if (rewind_flags & ZPOOL_NEVER_REWIND) { 2858 nvlist_free(config); 2859 return (load_error); 2860 } 2861 2862 if (state == SPA_LOAD_RECOVER) { 2863 /* Price of rolling back is discarding txgs, including log */ 2864 spa_set_log_state(spa, SPA_LOG_CLEAR); 2865 } else { 2866 /* 2867 * If we aren't rolling back save the load info from our first 2868 * import attempt so that we can restore it after attempting 2869 * to rewind. 2870 */ 2871 loadinfo = spa->spa_load_info; 2872 spa->spa_load_info = fnvlist_alloc(); 2873 } 2874 2875 spa->spa_load_max_txg = spa->spa_last_ubsync_txg; 2876 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE; 2877 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ? 2878 TXG_INITIAL : safe_rewind_txg; 2879 2880 /* 2881 * Continue as long as we're finding errors, we're still within 2882 * the acceptable rewind range, and we're still finding uberblocks 2883 */ 2884 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg && 2885 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) { 2886 if (spa->spa_load_max_txg < safe_rewind_txg) 2887 spa->spa_extreme_rewind = B_TRUE; 2888 rewind_error = spa_load_retry(spa, state, mosconfig); 2889 } 2890 2891 spa->spa_extreme_rewind = B_FALSE; 2892 spa->spa_load_max_txg = UINT64_MAX; 2893 2894 if (config && (rewind_error || state != SPA_LOAD_RECOVER)) 2895 spa_config_set(spa, config); 2896 2897 if (state == SPA_LOAD_RECOVER) { 2898 ASSERT3P(loadinfo, ==, NULL); 2899 return (rewind_error); 2900 } else { 2901 /* Store the rewind info as part of the initial load info */ 2902 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO, 2903 spa->spa_load_info); 2904 2905 /* Restore the initial load info */ 2906 fnvlist_free(spa->spa_load_info); 2907 spa->spa_load_info = loadinfo; 2908 2909 return (load_error); 2910 } 2911 } 2912 2913 /* 2914 * Pool Open/Import 2915 * 2916 * The import case is identical to an open except that the configuration is sent 2917 * down from userland, instead of grabbed from the configuration cache. For the 2918 * case of an open, the pool configuration will exist in the 2919 * POOL_STATE_UNINITIALIZED state. 2920 * 2921 * The stats information (gen/count/ustats) is used to gather vdev statistics at 2922 * the same time open the pool, without having to keep around the spa_t in some 2923 * ambiguous state. 2924 */ 2925 static int 2926 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy, 2927 nvlist_t **config) 2928 { 2929 spa_t *spa; 2930 spa_load_state_t state = SPA_LOAD_OPEN; 2931 int error; 2932 int locked = B_FALSE; 2933 2934 *spapp = NULL; 2935 2936 /* 2937 * As disgusting as this is, we need to support recursive calls to this 2938 * function because dsl_dir_open() is called during spa_load(), and ends 2939 * up calling spa_open() again. The real fix is to figure out how to 2940 * avoid dsl_dir_open() calling this in the first place. 2941 */ 2942 if (mutex_owner(&spa_namespace_lock) != curthread) { 2943 mutex_enter(&spa_namespace_lock); 2944 locked = B_TRUE; 2945 } 2946 2947 if ((spa = spa_lookup(pool)) == NULL) { 2948 if (locked) 2949 mutex_exit(&spa_namespace_lock); 2950 return (SET_ERROR(ENOENT)); 2951 } 2952 2953 if (spa->spa_state == POOL_STATE_UNINITIALIZED) { 2954 zpool_rewind_policy_t policy; 2955 2956 zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config, 2957 &policy); 2958 if (policy.zrp_request & ZPOOL_DO_REWIND) 2959 state = SPA_LOAD_RECOVER; 2960 2961 spa_activate(spa, spa_mode_global); 2962 2963 if (state != SPA_LOAD_RECOVER) 2964 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 2965 2966 error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg, 2967 policy.zrp_request); 2968 2969 if (error == EBADF) { 2970 /* 2971 * If vdev_validate() returns failure (indicated by 2972 * EBADF), it indicates that one of the vdevs indicates 2973 * that the pool has been exported or destroyed. If 2974 * this is the case, the config cache is out of sync and 2975 * we should remove the pool from the namespace. 2976 */ 2977 spa_unload(spa); 2978 spa_deactivate(spa); 2979 spa_config_sync(spa, B_TRUE, B_TRUE); 2980 spa_remove(spa); 2981 if (locked) 2982 mutex_exit(&spa_namespace_lock); 2983 return (SET_ERROR(ENOENT)); 2984 } 2985 2986 if (error) { 2987 /* 2988 * We can't open the pool, but we still have useful 2989 * information: the state of each vdev after the 2990 * attempted vdev_open(). Return this to the user. 2991 */ 2992 if (config != NULL && spa->spa_config) { 2993 VERIFY(nvlist_dup(spa->spa_config, config, 2994 KM_SLEEP) == 0); 2995 VERIFY(nvlist_add_nvlist(*config, 2996 ZPOOL_CONFIG_LOAD_INFO, 2997 spa->spa_load_info) == 0); 2998 } 2999 spa_unload(spa); 3000 spa_deactivate(spa); 3001 spa->spa_last_open_failed = error; 3002 if (locked) 3003 mutex_exit(&spa_namespace_lock); 3004 *spapp = NULL; 3005 return (error); 3006 } 3007 } 3008 3009 spa_open_ref(spa, tag); 3010 3011 if (config != NULL) 3012 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 3013 3014 /* 3015 * If we've recovered the pool, pass back any information we 3016 * gathered while doing the load. 3017 */ 3018 if (state == SPA_LOAD_RECOVER) { 3019 VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO, 3020 spa->spa_load_info) == 0); 3021 } 3022 3023 if (locked) { 3024 spa->spa_last_open_failed = 0; 3025 spa->spa_last_ubsync_txg = 0; 3026 spa->spa_load_txg = 0; 3027 mutex_exit(&spa_namespace_lock); 3028 } 3029 3030 *spapp = spa; 3031 3032 return (0); 3033 } 3034 3035 int 3036 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy, 3037 nvlist_t **config) 3038 { 3039 return (spa_open_common(name, spapp, tag, policy, config)); 3040 } 3041 3042 int 3043 spa_open(const char *name, spa_t **spapp, void *tag) 3044 { 3045 return (spa_open_common(name, spapp, tag, NULL, NULL)); 3046 } 3047 3048 /* 3049 * Lookup the given spa_t, incrementing the inject count in the process, 3050 * preventing it from being exported or destroyed. 3051 */ 3052 spa_t * 3053 spa_inject_addref(char *name) 3054 { 3055 spa_t *spa; 3056 3057 mutex_enter(&spa_namespace_lock); 3058 if ((spa = spa_lookup(name)) == NULL) { 3059 mutex_exit(&spa_namespace_lock); 3060 return (NULL); 3061 } 3062 spa->spa_inject_ref++; 3063 mutex_exit(&spa_namespace_lock); 3064 3065 return (spa); 3066 } 3067 3068 void 3069 spa_inject_delref(spa_t *spa) 3070 { 3071 mutex_enter(&spa_namespace_lock); 3072 spa->spa_inject_ref--; 3073 mutex_exit(&spa_namespace_lock); 3074 } 3075 3076 /* 3077 * Add spares device information to the nvlist. 3078 */ 3079 static void 3080 spa_add_spares(spa_t *spa, nvlist_t *config) 3081 { 3082 nvlist_t **spares; 3083 uint_t i, nspares; 3084 nvlist_t *nvroot; 3085 uint64_t guid; 3086 vdev_stat_t *vs; 3087 uint_t vsc; 3088 uint64_t pool; 3089 3090 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 3091 3092 if (spa->spa_spares.sav_count == 0) 3093 return; 3094 3095 VERIFY(nvlist_lookup_nvlist(config, 3096 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 3097 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 3098 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 3099 if (nspares != 0) { 3100 VERIFY(nvlist_add_nvlist_array(nvroot, 3101 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 3102 VERIFY(nvlist_lookup_nvlist_array(nvroot, 3103 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 3104 3105 /* 3106 * Go through and find any spares which have since been 3107 * repurposed as an active spare. If this is the case, update 3108 * their status appropriately. 3109 */ 3110 for (i = 0; i < nspares; i++) { 3111 VERIFY(nvlist_lookup_uint64(spares[i], 3112 ZPOOL_CONFIG_GUID, &guid) == 0); 3113 if (spa_spare_exists(guid, &pool, NULL) && 3114 pool != 0ULL) { 3115 VERIFY(nvlist_lookup_uint64_array( 3116 spares[i], ZPOOL_CONFIG_VDEV_STATS, 3117 (uint64_t **)&vs, &vsc) == 0); 3118 vs->vs_state = VDEV_STATE_CANT_OPEN; 3119 vs->vs_aux = VDEV_AUX_SPARED; 3120 } 3121 } 3122 } 3123 } 3124 3125 /* 3126 * Add l2cache device information to the nvlist, including vdev stats. 3127 */ 3128 static void 3129 spa_add_l2cache(spa_t *spa, nvlist_t *config) 3130 { 3131 nvlist_t **l2cache; 3132 uint_t i, j, nl2cache; 3133 nvlist_t *nvroot; 3134 uint64_t guid; 3135 vdev_t *vd; 3136 vdev_stat_t *vs; 3137 uint_t vsc; 3138 3139 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 3140 3141 if (spa->spa_l2cache.sav_count == 0) 3142 return; 3143 3144 VERIFY(nvlist_lookup_nvlist(config, 3145 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 3146 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 3147 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 3148 if (nl2cache != 0) { 3149 VERIFY(nvlist_add_nvlist_array(nvroot, 3150 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 3151 VERIFY(nvlist_lookup_nvlist_array(nvroot, 3152 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 3153 3154 /* 3155 * Update level 2 cache device stats. 3156 */ 3157 3158 for (i = 0; i < nl2cache; i++) { 3159 VERIFY(nvlist_lookup_uint64(l2cache[i], 3160 ZPOOL_CONFIG_GUID, &guid) == 0); 3161 3162 vd = NULL; 3163 for (j = 0; j < spa->spa_l2cache.sav_count; j++) { 3164 if (guid == 3165 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) { 3166 vd = spa->spa_l2cache.sav_vdevs[j]; 3167 break; 3168 } 3169 } 3170 ASSERT(vd != NULL); 3171 3172 VERIFY(nvlist_lookup_uint64_array(l2cache[i], 3173 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc) 3174 == 0); 3175 vdev_get_stats(vd, vs); 3176 } 3177 } 3178 } 3179 3180 static void 3181 spa_add_feature_stats(spa_t *spa, nvlist_t *config) 3182 { 3183 nvlist_t *features; 3184 zap_cursor_t zc; 3185 zap_attribute_t za; 3186 3187 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 3188 VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0); 3189 3190 if (spa->spa_feat_for_read_obj != 0) { 3191 for (zap_cursor_init(&zc, spa->spa_meta_objset, 3192 spa->spa_feat_for_read_obj); 3193 zap_cursor_retrieve(&zc, &za) == 0; 3194 zap_cursor_advance(&zc)) { 3195 ASSERT(za.za_integer_length == sizeof (uint64_t) && 3196 za.za_num_integers == 1); 3197 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name, 3198 za.za_first_integer)); 3199 } 3200 zap_cursor_fini(&zc); 3201 } 3202 3203 if (spa->spa_feat_for_write_obj != 0) { 3204 for (zap_cursor_init(&zc, spa->spa_meta_objset, 3205 spa->spa_feat_for_write_obj); 3206 zap_cursor_retrieve(&zc, &za) == 0; 3207 zap_cursor_advance(&zc)) { 3208 ASSERT(za.za_integer_length == sizeof (uint64_t) && 3209 za.za_num_integers == 1); 3210 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name, 3211 za.za_first_integer)); 3212 } 3213 zap_cursor_fini(&zc); 3214 } 3215 3216 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS, 3217 features) == 0); 3218 nvlist_free(features); 3219 } 3220 3221 int 3222 spa_get_stats(const char *name, nvlist_t **config, 3223 char *altroot, size_t buflen) 3224 { 3225 int error; 3226 spa_t *spa; 3227 3228 *config = NULL; 3229 error = spa_open_common(name, &spa, FTAG, NULL, config); 3230 3231 if (spa != NULL) { 3232 /* 3233 * This still leaves a window of inconsistency where the spares 3234 * or l2cache devices could change and the config would be 3235 * self-inconsistent. 3236 */ 3237 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 3238 3239 if (*config != NULL) { 3240 uint64_t loadtimes[2]; 3241 3242 loadtimes[0] = spa->spa_loaded_ts.tv_sec; 3243 loadtimes[1] = spa->spa_loaded_ts.tv_nsec; 3244 VERIFY(nvlist_add_uint64_array(*config, 3245 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0); 3246 3247 VERIFY(nvlist_add_uint64(*config, 3248 ZPOOL_CONFIG_ERRCOUNT, 3249 spa_get_errlog_size(spa)) == 0); 3250 3251 if (spa_suspended(spa)) 3252 VERIFY(nvlist_add_uint64(*config, 3253 ZPOOL_CONFIG_SUSPENDED, 3254 spa->spa_failmode) == 0); 3255 3256 spa_add_spares(spa, *config); 3257 spa_add_l2cache(spa, *config); 3258 spa_add_feature_stats(spa, *config); 3259 } 3260 } 3261 3262 /* 3263 * We want to get the alternate root even for faulted pools, so we cheat 3264 * and call spa_lookup() directly. 3265 */ 3266 if (altroot) { 3267 if (spa == NULL) { 3268 mutex_enter(&spa_namespace_lock); 3269 spa = spa_lookup(name); 3270 if (spa) 3271 spa_altroot(spa, altroot, buflen); 3272 else 3273 altroot[0] = '\0'; 3274 spa = NULL; 3275 mutex_exit(&spa_namespace_lock); 3276 } else { 3277 spa_altroot(spa, altroot, buflen); 3278 } 3279 } 3280 3281 if (spa != NULL) { 3282 spa_config_exit(spa, SCL_CONFIG, FTAG); 3283 spa_close(spa, FTAG); 3284 } 3285 3286 return (error); 3287 } 3288 3289 /* 3290 * Validate that the auxiliary device array is well formed. We must have an 3291 * array of nvlists, each which describes a valid leaf vdev. If this is an 3292 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be 3293 * specified, as long as they are well-formed. 3294 */ 3295 static int 3296 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode, 3297 spa_aux_vdev_t *sav, const char *config, uint64_t version, 3298 vdev_labeltype_t label) 3299 { 3300 nvlist_t **dev; 3301 uint_t i, ndev; 3302 vdev_t *vd; 3303 int error; 3304 3305 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 3306 3307 /* 3308 * It's acceptable to have no devs specified. 3309 */ 3310 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0) 3311 return (0); 3312 3313 if (ndev == 0) 3314 return (SET_ERROR(EINVAL)); 3315 3316 /* 3317 * Make sure the pool is formatted with a version that supports this 3318 * device type. 3319 */ 3320 if (spa_version(spa) < version) 3321 return (SET_ERROR(ENOTSUP)); 3322 3323 /* 3324 * Set the pending device list so we correctly handle device in-use 3325 * checking. 3326 */ 3327 sav->sav_pending = dev; 3328 sav->sav_npending = ndev; 3329 3330 for (i = 0; i < ndev; i++) { 3331 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0, 3332 mode)) != 0) 3333 goto out; 3334 3335 if (!vd->vdev_ops->vdev_op_leaf) { 3336 vdev_free(vd); 3337 error = SET_ERROR(EINVAL); 3338 goto out; 3339 } 3340 3341 /* 3342 * The L2ARC currently only supports disk devices in 3343 * kernel context. For user-level testing, we allow it. 3344 */ 3345 #ifdef _KERNEL 3346 if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) && 3347 strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) { 3348 error = SET_ERROR(ENOTBLK); 3349 vdev_free(vd); 3350 goto out; 3351 } 3352 #endif 3353 vd->vdev_top = vd; 3354 3355 if ((error = vdev_open(vd)) == 0 && 3356 (error = vdev_label_init(vd, crtxg, label)) == 0) { 3357 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID, 3358 vd->vdev_guid) == 0); 3359 } 3360 3361 vdev_free(vd); 3362 3363 if (error && 3364 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE)) 3365 goto out; 3366 else 3367 error = 0; 3368 } 3369 3370 out: 3371 sav->sav_pending = NULL; 3372 sav->sav_npending = 0; 3373 return (error); 3374 } 3375 3376 static int 3377 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode) 3378 { 3379 int error; 3380 3381 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 3382 3383 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode, 3384 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES, 3385 VDEV_LABEL_SPARE)) != 0) { 3386 return (error); 3387 } 3388 3389 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode, 3390 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE, 3391 VDEV_LABEL_L2CACHE)); 3392 } 3393 3394 static void 3395 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs, 3396 const char *config) 3397 { 3398 int i; 3399 3400 if (sav->sav_config != NULL) { 3401 nvlist_t **olddevs; 3402 uint_t oldndevs; 3403 nvlist_t **newdevs; 3404 3405 /* 3406 * Generate new dev list by concatentating with the 3407 * current dev list. 3408 */ 3409 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config, 3410 &olddevs, &oldndevs) == 0); 3411 3412 newdevs = kmem_alloc(sizeof (void *) * 3413 (ndevs + oldndevs), KM_SLEEP); 3414 for (i = 0; i < oldndevs; i++) 3415 VERIFY(nvlist_dup(olddevs[i], &newdevs[i], 3416 KM_SLEEP) == 0); 3417 for (i = 0; i < ndevs; i++) 3418 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs], 3419 KM_SLEEP) == 0); 3420 3421 VERIFY(nvlist_remove(sav->sav_config, config, 3422 DATA_TYPE_NVLIST_ARRAY) == 0); 3423 3424 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 3425 config, newdevs, ndevs + oldndevs) == 0); 3426 for (i = 0; i < oldndevs + ndevs; i++) 3427 nvlist_free(newdevs[i]); 3428 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *)); 3429 } else { 3430 /* 3431 * Generate a new dev list. 3432 */ 3433 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME, 3434 KM_SLEEP) == 0); 3435 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config, 3436 devs, ndevs) == 0); 3437 } 3438 } 3439 3440 /* 3441 * Stop and drop level 2 ARC devices 3442 */ 3443 void 3444 spa_l2cache_drop(spa_t *spa) 3445 { 3446 vdev_t *vd; 3447 int i; 3448 spa_aux_vdev_t *sav = &spa->spa_l2cache; 3449 3450 for (i = 0; i < sav->sav_count; i++) { 3451 uint64_t pool; 3452 3453 vd = sav->sav_vdevs[i]; 3454 ASSERT(vd != NULL); 3455 3456 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 3457 pool != 0ULL && l2arc_vdev_present(vd)) 3458 l2arc_remove_vdev(vd); 3459 } 3460 } 3461 3462 /* 3463 * Pool Creation 3464 */ 3465 int 3466 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props, 3467 nvlist_t *zplprops) 3468 { 3469 spa_t *spa; 3470 char *altroot = NULL; 3471 vdev_t *rvd; 3472 dsl_pool_t *dp; 3473 dmu_tx_t *tx; 3474 int error = 0; 3475 uint64_t txg = TXG_INITIAL; 3476 nvlist_t **spares, **l2cache; 3477 uint_t nspares, nl2cache; 3478 uint64_t version, obj; 3479 boolean_t has_features; 3480 3481 /* 3482 * If this pool already exists, return failure. 3483 */ 3484 mutex_enter(&spa_namespace_lock); 3485 if (spa_lookup(pool) != NULL) { 3486 mutex_exit(&spa_namespace_lock); 3487 return (SET_ERROR(EEXIST)); 3488 } 3489 3490 /* 3491 * Allocate a new spa_t structure. 3492 */ 3493 (void) nvlist_lookup_string(props, 3494 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 3495 spa = spa_add(pool, NULL, altroot); 3496 spa_activate(spa, spa_mode_global); 3497 3498 if (props && (error = spa_prop_validate(spa, props))) { 3499 spa_deactivate(spa); 3500 spa_remove(spa); 3501 mutex_exit(&spa_namespace_lock); 3502 return (error); 3503 } 3504 3505 has_features = B_FALSE; 3506 for (nvpair_t *elem = nvlist_next_nvpair(props, NULL); 3507 elem != NULL; elem = nvlist_next_nvpair(props, elem)) { 3508 if (zpool_prop_feature(nvpair_name(elem))) 3509 has_features = B_TRUE; 3510 } 3511 3512 if (has_features || nvlist_lookup_uint64(props, 3513 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) { 3514 version = SPA_VERSION; 3515 } 3516 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 3517 3518 spa->spa_first_txg = txg; 3519 spa->spa_uberblock.ub_txg = txg - 1; 3520 spa->spa_uberblock.ub_version = version; 3521 spa->spa_ubsync = spa->spa_uberblock; 3522 3523 /* 3524 * Create "The Godfather" zio to hold all async IOs 3525 */ 3526 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *), 3527 KM_SLEEP); 3528 for (int i = 0; i < max_ncpus; i++) { 3529 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL, 3530 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 3531 ZIO_FLAG_GODFATHER); 3532 } 3533 3534 /* 3535 * Create the root vdev. 3536 */ 3537 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3538 3539 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD); 3540 3541 ASSERT(error != 0 || rvd != NULL); 3542 ASSERT(error != 0 || spa->spa_root_vdev == rvd); 3543 3544 if (error == 0 && !zfs_allocatable_devs(nvroot)) 3545 error = SET_ERROR(EINVAL); 3546 3547 if (error == 0 && 3548 (error = vdev_create(rvd, txg, B_FALSE)) == 0 && 3549 (error = spa_validate_aux(spa, nvroot, txg, 3550 VDEV_ALLOC_ADD)) == 0) { 3551 for (int c = 0; c < rvd->vdev_children; c++) { 3552 vdev_metaslab_set_size(rvd->vdev_child[c]); 3553 vdev_expand(rvd->vdev_child[c], txg); 3554 } 3555 } 3556 3557 spa_config_exit(spa, SCL_ALL, FTAG); 3558 3559 if (error != 0) { 3560 spa_unload(spa); 3561 spa_deactivate(spa); 3562 spa_remove(spa); 3563 mutex_exit(&spa_namespace_lock); 3564 return (error); 3565 } 3566 3567 /* 3568 * Get the list of spares, if specified. 3569 */ 3570 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 3571 &spares, &nspares) == 0) { 3572 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME, 3573 KM_SLEEP) == 0); 3574 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 3575 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 3576 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3577 spa_load_spares(spa); 3578 spa_config_exit(spa, SCL_ALL, FTAG); 3579 spa->spa_spares.sav_sync = B_TRUE; 3580 } 3581 3582 /* 3583 * Get the list of level 2 cache devices, if specified. 3584 */ 3585 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 3586 &l2cache, &nl2cache) == 0) { 3587 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 3588 NV_UNIQUE_NAME, KM_SLEEP) == 0); 3589 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 3590 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 3591 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3592 spa_load_l2cache(spa); 3593 spa_config_exit(spa, SCL_ALL, FTAG); 3594 spa->spa_l2cache.sav_sync = B_TRUE; 3595 } 3596 3597 spa->spa_is_initializing = B_TRUE; 3598 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg); 3599 spa->spa_meta_objset = dp->dp_meta_objset; 3600 spa->spa_is_initializing = B_FALSE; 3601 3602 /* 3603 * Create DDTs (dedup tables). 3604 */ 3605 ddt_create(spa); 3606 3607 spa_update_dspace(spa); 3608 3609 tx = dmu_tx_create_assigned(dp, txg); 3610 3611 /* 3612 * Create the pool config object. 3613 */ 3614 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset, 3615 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE, 3616 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx); 3617 3618 if (zap_add(spa->spa_meta_objset, 3619 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG, 3620 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) { 3621 cmn_err(CE_PANIC, "failed to add pool config"); 3622 } 3623 3624 if (spa_version(spa) >= SPA_VERSION_FEATURES) 3625 spa_feature_create_zap_objects(spa, tx); 3626 3627 if (zap_add(spa->spa_meta_objset, 3628 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION, 3629 sizeof (uint64_t), 1, &version, tx) != 0) { 3630 cmn_err(CE_PANIC, "failed to add pool version"); 3631 } 3632 3633 /* Newly created pools with the right version are always deflated. */ 3634 if (version >= SPA_VERSION_RAIDZ_DEFLATE) { 3635 spa->spa_deflate = TRUE; 3636 if (zap_add(spa->spa_meta_objset, 3637 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 3638 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) { 3639 cmn_err(CE_PANIC, "failed to add deflate"); 3640 } 3641 } 3642 3643 /* 3644 * Create the deferred-free bpobj. Turn off compression 3645 * because sync-to-convergence takes longer if the blocksize 3646 * keeps changing. 3647 */ 3648 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx); 3649 dmu_object_set_compress(spa->spa_meta_objset, obj, 3650 ZIO_COMPRESS_OFF, tx); 3651 if (zap_add(spa->spa_meta_objset, 3652 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ, 3653 sizeof (uint64_t), 1, &obj, tx) != 0) { 3654 cmn_err(CE_PANIC, "failed to add bpobj"); 3655 } 3656 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj, 3657 spa->spa_meta_objset, obj)); 3658 3659 /* 3660 * Create the pool's history object. 3661 */ 3662 if (version >= SPA_VERSION_ZPOOL_HISTORY) 3663 spa_history_create_obj(spa, tx); 3664 3665 /* 3666 * Set pool properties. 3667 */ 3668 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS); 3669 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 3670 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE); 3671 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND); 3672 3673 if (props != NULL) { 3674 spa_configfile_set(spa, props, B_FALSE); 3675 spa_sync_props(props, tx); 3676 } 3677 3678 dmu_tx_commit(tx); 3679 3680 spa->spa_sync_on = B_TRUE; 3681 txg_sync_start(spa->spa_dsl_pool); 3682 3683 /* 3684 * We explicitly wait for the first transaction to complete so that our 3685 * bean counters are appropriately updated. 3686 */ 3687 txg_wait_synced(spa->spa_dsl_pool, txg); 3688 3689 spa_config_sync(spa, B_FALSE, B_TRUE); 3690 3691 spa_history_log_version(spa, "create"); 3692 3693 /* 3694 * Don't count references from objsets that are already closed 3695 * and are making their way through the eviction process. 3696 */ 3697 spa_evicting_os_wait(spa); 3698 spa->spa_minref = refcount_count(&spa->spa_refcount); 3699 3700 mutex_exit(&spa_namespace_lock); 3701 3702 return (0); 3703 } 3704 3705 #ifdef _KERNEL 3706 /* 3707 * Get the root pool information from the root disk, then import the root pool 3708 * during the system boot up time. 3709 */ 3710 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **); 3711 3712 static nvlist_t * 3713 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid) 3714 { 3715 nvlist_t *config; 3716 nvlist_t *nvtop, *nvroot; 3717 uint64_t pgid; 3718 3719 if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0) 3720 return (NULL); 3721 3722 /* 3723 * Add this top-level vdev to the child array. 3724 */ 3725 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3726 &nvtop) == 0); 3727 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 3728 &pgid) == 0); 3729 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0); 3730 3731 /* 3732 * Put this pool's top-level vdevs into a root vdev. 3733 */ 3734 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 3735 VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, 3736 VDEV_TYPE_ROOT) == 0); 3737 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0); 3738 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0); 3739 VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 3740 &nvtop, 1) == 0); 3741 3742 /* 3743 * Replace the existing vdev_tree with the new root vdev in 3744 * this pool's configuration (remove the old, add the new). 3745 */ 3746 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0); 3747 nvlist_free(nvroot); 3748 return (config); 3749 } 3750 3751 /* 3752 * Walk the vdev tree and see if we can find a device with "better" 3753 * configuration. A configuration is "better" if the label on that 3754 * device has a more recent txg. 3755 */ 3756 static void 3757 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg) 3758 { 3759 for (int c = 0; c < vd->vdev_children; c++) 3760 spa_alt_rootvdev(vd->vdev_child[c], avd, txg); 3761 3762 if (vd->vdev_ops->vdev_op_leaf) { 3763 nvlist_t *label; 3764 uint64_t label_txg; 3765 3766 if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid, 3767 &label) != 0) 3768 return; 3769 3770 VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG, 3771 &label_txg) == 0); 3772 3773 /* 3774 * Do we have a better boot device? 3775 */ 3776 if (label_txg > *txg) { 3777 *txg = label_txg; 3778 *avd = vd; 3779 } 3780 nvlist_free(label); 3781 } 3782 } 3783 3784 /* 3785 * Import a root pool. 3786 * 3787 * For x86. devpath_list will consist of devid and/or physpath name of 3788 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a"). 3789 * The GRUB "findroot" command will return the vdev we should boot. 3790 * 3791 * For Sparc, devpath_list consists the physpath name of the booting device 3792 * no matter the rootpool is a single device pool or a mirrored pool. 3793 * e.g. 3794 * "/pci@1f,0/ide@d/disk@0,0:a" 3795 */ 3796 int 3797 spa_import_rootpool(char *devpath, char *devid) 3798 { 3799 spa_t *spa; 3800 vdev_t *rvd, *bvd, *avd = NULL; 3801 nvlist_t *config, *nvtop; 3802 uint64_t guid, txg; 3803 char *pname; 3804 int error; 3805 3806 /* 3807 * Read the label from the boot device and generate a configuration. 3808 */ 3809 config = spa_generate_rootconf(devpath, devid, &guid); 3810 #if defined(_OBP) && defined(_KERNEL) 3811 if (config == NULL) { 3812 if (strstr(devpath, "/iscsi/ssd") != NULL) { 3813 /* iscsi boot */ 3814 get_iscsi_bootpath_phy(devpath); 3815 config = spa_generate_rootconf(devpath, devid, &guid); 3816 } 3817 } 3818 #endif 3819 if (config == NULL) { 3820 cmn_err(CE_NOTE, "Cannot read the pool label from '%s'", 3821 devpath); 3822 return (SET_ERROR(EIO)); 3823 } 3824 3825 VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 3826 &pname) == 0); 3827 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0); 3828 3829 mutex_enter(&spa_namespace_lock); 3830 if ((spa = spa_lookup(pname)) != NULL) { 3831 /* 3832 * Remove the existing root pool from the namespace so that we 3833 * can replace it with the correct config we just read in. 3834 */ 3835 spa_remove(spa); 3836 } 3837 3838 spa = spa_add(pname, config, NULL); 3839 spa->spa_is_root = B_TRUE; 3840 spa->spa_import_flags = ZFS_IMPORT_VERBATIM; 3841 3842 /* 3843 * Build up a vdev tree based on the boot device's label config. 3844 */ 3845 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3846 &nvtop) == 0); 3847 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3848 error = spa_config_parse(spa, &rvd, nvtop, NULL, 0, 3849 VDEV_ALLOC_ROOTPOOL); 3850 spa_config_exit(spa, SCL_ALL, FTAG); 3851 if (error) { 3852 mutex_exit(&spa_namespace_lock); 3853 nvlist_free(config); 3854 cmn_err(CE_NOTE, "Can not parse the config for pool '%s'", 3855 pname); 3856 return (error); 3857 } 3858 3859 /* 3860 * Get the boot vdev. 3861 */ 3862 if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) { 3863 cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu", 3864 (u_longlong_t)guid); 3865 error = SET_ERROR(ENOENT); 3866 goto out; 3867 } 3868 3869 /* 3870 * Determine if there is a better boot device. 3871 */ 3872 avd = bvd; 3873 spa_alt_rootvdev(rvd, &avd, &txg); 3874 if (avd != bvd) { 3875 cmn_err(CE_NOTE, "The boot device is 'degraded'. Please " 3876 "try booting from '%s'", avd->vdev_path); 3877 error = SET_ERROR(EINVAL); 3878 goto out; 3879 } 3880 3881 /* 3882 * If the boot device is part of a spare vdev then ensure that 3883 * we're booting off the active spare. 3884 */ 3885 if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops && 3886 !bvd->vdev_isspare) { 3887 cmn_err(CE_NOTE, "The boot device is currently spared. Please " 3888 "try booting from '%s'", 3889 bvd->vdev_parent-> 3890 vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path); 3891 error = SET_ERROR(EINVAL); 3892 goto out; 3893 } 3894 3895 error = 0; 3896 out: 3897 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3898 vdev_free(rvd); 3899 spa_config_exit(spa, SCL_ALL, FTAG); 3900 mutex_exit(&spa_namespace_lock); 3901 3902 nvlist_free(config); 3903 return (error); 3904 } 3905 3906 #endif 3907 3908 /* 3909 * Import a non-root pool into the system. 3910 */ 3911 int 3912 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags) 3913 { 3914 spa_t *spa; 3915 char *altroot = NULL; 3916 spa_load_state_t state = SPA_LOAD_IMPORT; 3917 zpool_rewind_policy_t policy; 3918 uint64_t mode = spa_mode_global; 3919 uint64_t readonly = B_FALSE; 3920 int error; 3921 nvlist_t *nvroot; 3922 nvlist_t **spares, **l2cache; 3923 uint_t nspares, nl2cache; 3924 3925 /* 3926 * If a pool with this name exists, return failure. 3927 */ 3928 mutex_enter(&spa_namespace_lock); 3929 if (spa_lookup(pool) != NULL) { 3930 mutex_exit(&spa_namespace_lock); 3931 return (SET_ERROR(EEXIST)); 3932 } 3933 3934 /* 3935 * Create and initialize the spa structure. 3936 */ 3937 (void) nvlist_lookup_string(props, 3938 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 3939 (void) nvlist_lookup_uint64(props, 3940 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly); 3941 if (readonly) 3942 mode = FREAD; 3943 spa = spa_add(pool, config, altroot); 3944 spa->spa_import_flags = flags; 3945 3946 /* 3947 * Verbatim import - Take a pool and insert it into the namespace 3948 * as if it had been loaded at boot. 3949 */ 3950 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) { 3951 if (props != NULL) 3952 spa_configfile_set(spa, props, B_FALSE); 3953 3954 spa_config_sync(spa, B_FALSE, B_TRUE); 3955 3956 mutex_exit(&spa_namespace_lock); 3957 return (0); 3958 } 3959 3960 spa_activate(spa, mode); 3961 3962 /* 3963 * Don't start async tasks until we know everything is healthy. 3964 */ 3965 spa_async_suspend(spa); 3966 3967 zpool_get_rewind_policy(config, &policy); 3968 if (policy.zrp_request & ZPOOL_DO_REWIND) 3969 state = SPA_LOAD_RECOVER; 3970 3971 /* 3972 * Pass off the heavy lifting to spa_load(). Pass TRUE for mosconfig 3973 * because the user-supplied config is actually the one to trust when 3974 * doing an import. 3975 */ 3976 if (state != SPA_LOAD_RECOVER) 3977 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 3978 3979 error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg, 3980 policy.zrp_request); 3981 3982 /* 3983 * Propagate anything learned while loading the pool and pass it 3984 * back to caller (i.e. rewind info, missing devices, etc). 3985 */ 3986 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, 3987 spa->spa_load_info) == 0); 3988 3989 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3990 /* 3991 * Toss any existing sparelist, as it doesn't have any validity 3992 * anymore, and conflicts with spa_has_spare(). 3993 */ 3994 if (spa->spa_spares.sav_config) { 3995 nvlist_free(spa->spa_spares.sav_config); 3996 spa->spa_spares.sav_config = NULL; 3997 spa_load_spares(spa); 3998 } 3999 if (spa->spa_l2cache.sav_config) { 4000 nvlist_free(spa->spa_l2cache.sav_config); 4001 spa->spa_l2cache.sav_config = NULL; 4002 spa_load_l2cache(spa); 4003 } 4004 4005 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 4006 &nvroot) == 0); 4007 if (error == 0) 4008 error = spa_validate_aux(spa, nvroot, -1ULL, 4009 VDEV_ALLOC_SPARE); 4010 if (error == 0) 4011 error = spa_validate_aux(spa, nvroot, -1ULL, 4012 VDEV_ALLOC_L2CACHE); 4013 spa_config_exit(spa, SCL_ALL, FTAG); 4014 4015 if (props != NULL) 4016 spa_configfile_set(spa, props, B_FALSE); 4017 4018 if (error != 0 || (props && spa_writeable(spa) && 4019 (error = spa_prop_set(spa, props)))) { 4020 spa_unload(spa); 4021 spa_deactivate(spa); 4022 spa_remove(spa); 4023 mutex_exit(&spa_namespace_lock); 4024 return (error); 4025 } 4026 4027 spa_async_resume(spa); 4028 4029 /* 4030 * Override any spares and level 2 cache devices as specified by 4031 * the user, as these may have correct device names/devids, etc. 4032 */ 4033 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 4034 &spares, &nspares) == 0) { 4035 if (spa->spa_spares.sav_config) 4036 VERIFY(nvlist_remove(spa->spa_spares.sav_config, 4037 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0); 4038 else 4039 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, 4040 NV_UNIQUE_NAME, KM_SLEEP) == 0); 4041 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 4042 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 4043 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4044 spa_load_spares(spa); 4045 spa_config_exit(spa, SCL_ALL, FTAG); 4046 spa->spa_spares.sav_sync = B_TRUE; 4047 } 4048 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 4049 &l2cache, &nl2cache) == 0) { 4050 if (spa->spa_l2cache.sav_config) 4051 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config, 4052 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0); 4053 else 4054 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 4055 NV_UNIQUE_NAME, KM_SLEEP) == 0); 4056 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 4057 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 4058 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4059 spa_load_l2cache(spa); 4060 spa_config_exit(spa, SCL_ALL, FTAG); 4061 spa->spa_l2cache.sav_sync = B_TRUE; 4062 } 4063 4064 /* 4065 * Check for any removed devices. 4066 */ 4067 if (spa->spa_autoreplace) { 4068 spa_aux_check_removed(&spa->spa_spares); 4069 spa_aux_check_removed(&spa->spa_l2cache); 4070 } 4071 4072 if (spa_writeable(spa)) { 4073 /* 4074 * Update the config cache to include the newly-imported pool. 4075 */ 4076 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 4077 } 4078 4079 /* 4080 * It's possible that the pool was expanded while it was exported. 4081 * We kick off an async task to handle this for us. 4082 */ 4083 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND); 4084 4085 mutex_exit(&spa_namespace_lock); 4086 spa_history_log_version(spa, "import"); 4087 4088 return (0); 4089 } 4090 4091 nvlist_t * 4092 spa_tryimport(nvlist_t *tryconfig) 4093 { 4094 nvlist_t *config = NULL; 4095 char *poolname; 4096 spa_t *spa; 4097 uint64_t state; 4098 int error; 4099 4100 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname)) 4101 return (NULL); 4102 4103 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state)) 4104 return (NULL); 4105 4106 /* 4107 * Create and initialize the spa structure. 4108 */ 4109 mutex_enter(&spa_namespace_lock); 4110 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL); 4111 spa_activate(spa, FREAD); 4112 4113 /* 4114 * Pass off the heavy lifting to spa_load(). 4115 * Pass TRUE for mosconfig because the user-supplied config 4116 * is actually the one to trust when doing an import. 4117 */ 4118 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE); 4119 4120 /* 4121 * If 'tryconfig' was at least parsable, return the current config. 4122 */ 4123 if (spa->spa_root_vdev != NULL) { 4124 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 4125 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, 4126 poolname) == 0); 4127 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 4128 state) == 0); 4129 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP, 4130 spa->spa_uberblock.ub_timestamp) == 0); 4131 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, 4132 spa->spa_load_info) == 0); 4133 4134 /* 4135 * If the bootfs property exists on this pool then we 4136 * copy it out so that external consumers can tell which 4137 * pools are bootable. 4138 */ 4139 if ((!error || error == EEXIST) && spa->spa_bootfs) { 4140 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 4141 4142 /* 4143 * We have to play games with the name since the 4144 * pool was opened as TRYIMPORT_NAME. 4145 */ 4146 if (dsl_dsobj_to_dsname(spa_name(spa), 4147 spa->spa_bootfs, tmpname) == 0) { 4148 char *cp; 4149 char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 4150 4151 cp = strchr(tmpname, '/'); 4152 if (cp == NULL) { 4153 (void) strlcpy(dsname, tmpname, 4154 MAXPATHLEN); 4155 } else { 4156 (void) snprintf(dsname, MAXPATHLEN, 4157 "%s/%s", poolname, ++cp); 4158 } 4159 VERIFY(nvlist_add_string(config, 4160 ZPOOL_CONFIG_BOOTFS, dsname) == 0); 4161 kmem_free(dsname, MAXPATHLEN); 4162 } 4163 kmem_free(tmpname, MAXPATHLEN); 4164 } 4165 4166 /* 4167 * Add the list of hot spares and level 2 cache devices. 4168 */ 4169 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 4170 spa_add_spares(spa, config); 4171 spa_add_l2cache(spa, config); 4172 spa_config_exit(spa, SCL_CONFIG, FTAG); 4173 } 4174 4175 spa_unload(spa); 4176 spa_deactivate(spa); 4177 spa_remove(spa); 4178 mutex_exit(&spa_namespace_lock); 4179 4180 return (config); 4181 } 4182 4183 /* 4184 * Pool export/destroy 4185 * 4186 * The act of destroying or exporting a pool is very simple. We make sure there 4187 * is no more pending I/O and any references to the pool are gone. Then, we 4188 * update the pool state and sync all the labels to disk, removing the 4189 * configuration from the cache afterwards. If the 'hardforce' flag is set, then 4190 * we don't sync the labels or remove the configuration cache. 4191 */ 4192 static int 4193 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig, 4194 boolean_t force, boolean_t hardforce) 4195 { 4196 spa_t *spa; 4197 4198 if (oldconfig) 4199 *oldconfig = NULL; 4200 4201 if (!(spa_mode_global & FWRITE)) 4202 return (SET_ERROR(EROFS)); 4203 4204 mutex_enter(&spa_namespace_lock); 4205 if ((spa = spa_lookup(pool)) == NULL) { 4206 mutex_exit(&spa_namespace_lock); 4207 return (SET_ERROR(ENOENT)); 4208 } 4209 4210 /* 4211 * Put a hold on the pool, drop the namespace lock, stop async tasks, 4212 * reacquire the namespace lock, and see if we can export. 4213 */ 4214 spa_open_ref(spa, FTAG); 4215 mutex_exit(&spa_namespace_lock); 4216 spa_async_suspend(spa); 4217 mutex_enter(&spa_namespace_lock); 4218 spa_close(spa, FTAG); 4219 4220 /* 4221 * The pool will be in core if it's openable, 4222 * in which case we can modify its state. 4223 */ 4224 if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) { 4225 /* 4226 * Objsets may be open only because they're dirty, so we 4227 * have to force it to sync before checking spa_refcnt. 4228 */ 4229 txg_wait_synced(spa->spa_dsl_pool, 0); 4230 spa_evicting_os_wait(spa); 4231 4232 /* 4233 * A pool cannot be exported or destroyed if there are active 4234 * references. If we are resetting a pool, allow references by 4235 * fault injection handlers. 4236 */ 4237 if (!spa_refcount_zero(spa) || 4238 (spa->spa_inject_ref != 0 && 4239 new_state != POOL_STATE_UNINITIALIZED)) { 4240 spa_async_resume(spa); 4241 mutex_exit(&spa_namespace_lock); 4242 return (SET_ERROR(EBUSY)); 4243 } 4244 4245 /* 4246 * A pool cannot be exported if it has an active shared spare. 4247 * This is to prevent other pools stealing the active spare 4248 * from an exported pool. At user's own will, such pool can 4249 * be forcedly exported. 4250 */ 4251 if (!force && new_state == POOL_STATE_EXPORTED && 4252 spa_has_active_shared_spare(spa)) { 4253 spa_async_resume(spa); 4254 mutex_exit(&spa_namespace_lock); 4255 return (SET_ERROR(EXDEV)); 4256 } 4257 4258 /* 4259 * We want this to be reflected on every label, 4260 * so mark them all dirty. spa_unload() will do the 4261 * final sync that pushes these changes out. 4262 */ 4263 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) { 4264 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4265 spa->spa_state = new_state; 4266 spa->spa_final_txg = spa_last_synced_txg(spa) + 4267 TXG_DEFER_SIZE + 1; 4268 vdev_config_dirty(spa->spa_root_vdev); 4269 spa_config_exit(spa, SCL_ALL, FTAG); 4270 } 4271 } 4272 4273 spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY); 4274 4275 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 4276 spa_unload(spa); 4277 spa_deactivate(spa); 4278 } 4279 4280 if (oldconfig && spa->spa_config) 4281 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0); 4282 4283 if (new_state != POOL_STATE_UNINITIALIZED) { 4284 if (!hardforce) 4285 spa_config_sync(spa, B_TRUE, B_TRUE); 4286 spa_remove(spa); 4287 } 4288 mutex_exit(&spa_namespace_lock); 4289 4290 return (0); 4291 } 4292 4293 /* 4294 * Destroy a storage pool. 4295 */ 4296 int 4297 spa_destroy(char *pool) 4298 { 4299 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL, 4300 B_FALSE, B_FALSE)); 4301 } 4302 4303 /* 4304 * Export a storage pool. 4305 */ 4306 int 4307 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force, 4308 boolean_t hardforce) 4309 { 4310 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig, 4311 force, hardforce)); 4312 } 4313 4314 /* 4315 * Similar to spa_export(), this unloads the spa_t without actually removing it 4316 * from the namespace in any way. 4317 */ 4318 int 4319 spa_reset(char *pool) 4320 { 4321 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL, 4322 B_FALSE, B_FALSE)); 4323 } 4324 4325 /* 4326 * ========================================================================== 4327 * Device manipulation 4328 * ========================================================================== 4329 */ 4330 4331 /* 4332 * Add a device to a storage pool. 4333 */ 4334 int 4335 spa_vdev_add(spa_t *spa, nvlist_t *nvroot) 4336 { 4337 uint64_t txg, id; 4338 int error; 4339 vdev_t *rvd = spa->spa_root_vdev; 4340 vdev_t *vd, *tvd; 4341 nvlist_t **spares, **l2cache; 4342 uint_t nspares, nl2cache; 4343 4344 ASSERT(spa_writeable(spa)); 4345 4346 txg = spa_vdev_enter(spa); 4347 4348 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0, 4349 VDEV_ALLOC_ADD)) != 0) 4350 return (spa_vdev_exit(spa, NULL, txg, error)); 4351 4352 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */ 4353 4354 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, 4355 &nspares) != 0) 4356 nspares = 0; 4357 4358 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache, 4359 &nl2cache) != 0) 4360 nl2cache = 0; 4361 4362 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0) 4363 return (spa_vdev_exit(spa, vd, txg, EINVAL)); 4364 4365 if (vd->vdev_children != 0 && 4366 (error = vdev_create(vd, txg, B_FALSE)) != 0) 4367 return (spa_vdev_exit(spa, vd, txg, error)); 4368 4369 /* 4370 * We must validate the spares and l2cache devices after checking the 4371 * children. Otherwise, vdev_inuse() will blindly overwrite the spare. 4372 */ 4373 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0) 4374 return (spa_vdev_exit(spa, vd, txg, error)); 4375 4376 /* 4377 * Transfer each new top-level vdev from vd to rvd. 4378 */ 4379 for (int c = 0; c < vd->vdev_children; c++) { 4380 4381 /* 4382 * Set the vdev id to the first hole, if one exists. 4383 */ 4384 for (id = 0; id < rvd->vdev_children; id++) { 4385 if (rvd->vdev_child[id]->vdev_ishole) { 4386 vdev_free(rvd->vdev_child[id]); 4387 break; 4388 } 4389 } 4390 tvd = vd->vdev_child[c]; 4391 vdev_remove_child(vd, tvd); 4392 tvd->vdev_id = id; 4393 vdev_add_child(rvd, tvd); 4394 vdev_config_dirty(tvd); 4395 } 4396 4397 if (nspares != 0) { 4398 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares, 4399 ZPOOL_CONFIG_SPARES); 4400 spa_load_spares(spa); 4401 spa->spa_spares.sav_sync = B_TRUE; 4402 } 4403 4404 if (nl2cache != 0) { 4405 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache, 4406 ZPOOL_CONFIG_L2CACHE); 4407 spa_load_l2cache(spa); 4408 spa->spa_l2cache.sav_sync = B_TRUE; 4409 } 4410 4411 /* 4412 * We have to be careful when adding new vdevs to an existing pool. 4413 * If other threads start allocating from these vdevs before we 4414 * sync the config cache, and we lose power, then upon reboot we may 4415 * fail to open the pool because there are DVAs that the config cache 4416 * can't translate. Therefore, we first add the vdevs without 4417 * initializing metaslabs; sync the config cache (via spa_vdev_exit()); 4418 * and then let spa_config_update() initialize the new metaslabs. 4419 * 4420 * spa_load() checks for added-but-not-initialized vdevs, so that 4421 * if we lose power at any point in this sequence, the remaining 4422 * steps will be completed the next time we load the pool. 4423 */ 4424 (void) spa_vdev_exit(spa, vd, txg, 0); 4425 4426 mutex_enter(&spa_namespace_lock); 4427 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 4428 mutex_exit(&spa_namespace_lock); 4429 4430 return (0); 4431 } 4432 4433 /* 4434 * Attach a device to a mirror. The arguments are the path to any device 4435 * in the mirror, and the nvroot for the new device. If the path specifies 4436 * a device that is not mirrored, we automatically insert the mirror vdev. 4437 * 4438 * If 'replacing' is specified, the new device is intended to replace the 4439 * existing device; in this case the two devices are made into their own 4440 * mirror using the 'replacing' vdev, which is functionally identical to 4441 * the mirror vdev (it actually reuses all the same ops) but has a few 4442 * extra rules: you can't attach to it after it's been created, and upon 4443 * completion of resilvering, the first disk (the one being replaced) 4444 * is automatically detached. 4445 */ 4446 int 4447 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing) 4448 { 4449 uint64_t txg, dtl_max_txg; 4450 vdev_t *rvd = spa->spa_root_vdev; 4451 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd; 4452 vdev_ops_t *pvops; 4453 char *oldvdpath, *newvdpath; 4454 int newvd_isspare; 4455 int error; 4456 4457 ASSERT(spa_writeable(spa)); 4458 4459 txg = spa_vdev_enter(spa); 4460 4461 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE); 4462 4463 if (oldvd == NULL) 4464 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 4465 4466 if (!oldvd->vdev_ops->vdev_op_leaf) 4467 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4468 4469 pvd = oldvd->vdev_parent; 4470 4471 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0, 4472 VDEV_ALLOC_ATTACH)) != 0) 4473 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4474 4475 if (newrootvd->vdev_children != 1) 4476 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 4477 4478 newvd = newrootvd->vdev_child[0]; 4479 4480 if (!newvd->vdev_ops->vdev_op_leaf) 4481 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 4482 4483 if ((error = vdev_create(newrootvd, txg, replacing)) != 0) 4484 return (spa_vdev_exit(spa, newrootvd, txg, error)); 4485 4486 /* 4487 * Spares can't replace logs 4488 */ 4489 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare) 4490 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4491 4492 if (!replacing) { 4493 /* 4494 * For attach, the only allowable parent is a mirror or the root 4495 * vdev. 4496 */ 4497 if (pvd->vdev_ops != &vdev_mirror_ops && 4498 pvd->vdev_ops != &vdev_root_ops) 4499 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4500 4501 pvops = &vdev_mirror_ops; 4502 } else { 4503 /* 4504 * Active hot spares can only be replaced by inactive hot 4505 * spares. 4506 */ 4507 if (pvd->vdev_ops == &vdev_spare_ops && 4508 oldvd->vdev_isspare && 4509 !spa_has_spare(spa, newvd->vdev_guid)) 4510 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4511 4512 /* 4513 * If the source is a hot spare, and the parent isn't already a 4514 * spare, then we want to create a new hot spare. Otherwise, we 4515 * want to create a replacing vdev. The user is not allowed to 4516 * attach to a spared vdev child unless the 'isspare' state is 4517 * the same (spare replaces spare, non-spare replaces 4518 * non-spare). 4519 */ 4520 if (pvd->vdev_ops == &vdev_replacing_ops && 4521 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) { 4522 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4523 } else if (pvd->vdev_ops == &vdev_spare_ops && 4524 newvd->vdev_isspare != oldvd->vdev_isspare) { 4525 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4526 } 4527 4528 if (newvd->vdev_isspare) 4529 pvops = &vdev_spare_ops; 4530 else 4531 pvops = &vdev_replacing_ops; 4532 } 4533 4534 /* 4535 * Make sure the new device is big enough. 4536 */ 4537 if (newvd->vdev_asize < vdev_get_min_asize(oldvd)) 4538 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW)); 4539 4540 /* 4541 * The new device cannot have a higher alignment requirement 4542 * than the top-level vdev. 4543 */ 4544 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift) 4545 return (spa_vdev_exit(spa, newrootvd, txg, EDOM)); 4546 4547 /* 4548 * If this is an in-place replacement, update oldvd's path and devid 4549 * to make it distinguishable from newvd, and unopenable from now on. 4550 */ 4551 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) { 4552 spa_strfree(oldvd->vdev_path); 4553 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5, 4554 KM_SLEEP); 4555 (void) sprintf(oldvd->vdev_path, "%s/%s", 4556 newvd->vdev_path, "old"); 4557 if (oldvd->vdev_devid != NULL) { 4558 spa_strfree(oldvd->vdev_devid); 4559 oldvd->vdev_devid = NULL; 4560 } 4561 } 4562 4563 /* mark the device being resilvered */ 4564 newvd->vdev_resilver_txg = txg; 4565 4566 /* 4567 * If the parent is not a mirror, or if we're replacing, insert the new 4568 * mirror/replacing/spare vdev above oldvd. 4569 */ 4570 if (pvd->vdev_ops != pvops) 4571 pvd = vdev_add_parent(oldvd, pvops); 4572 4573 ASSERT(pvd->vdev_top->vdev_parent == rvd); 4574 ASSERT(pvd->vdev_ops == pvops); 4575 ASSERT(oldvd->vdev_parent == pvd); 4576 4577 /* 4578 * Extract the new device from its root and add it to pvd. 4579 */ 4580 vdev_remove_child(newrootvd, newvd); 4581 newvd->vdev_id = pvd->vdev_children; 4582 newvd->vdev_crtxg = oldvd->vdev_crtxg; 4583 vdev_add_child(pvd, newvd); 4584 4585 tvd = newvd->vdev_top; 4586 ASSERT(pvd->vdev_top == tvd); 4587 ASSERT(tvd->vdev_parent == rvd); 4588 4589 vdev_config_dirty(tvd); 4590 4591 /* 4592 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account 4593 * for any dmu_sync-ed blocks. It will propagate upward when 4594 * spa_vdev_exit() calls vdev_dtl_reassess(). 4595 */ 4596 dtl_max_txg = txg + TXG_CONCURRENT_STATES; 4597 4598 vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL, 4599 dtl_max_txg - TXG_INITIAL); 4600 4601 if (newvd->vdev_isspare) { 4602 spa_spare_activate(newvd); 4603 spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE); 4604 } 4605 4606 oldvdpath = spa_strdup(oldvd->vdev_path); 4607 newvdpath = spa_strdup(newvd->vdev_path); 4608 newvd_isspare = newvd->vdev_isspare; 4609 4610 /* 4611 * Mark newvd's DTL dirty in this txg. 4612 */ 4613 vdev_dirty(tvd, VDD_DTL, newvd, txg); 4614 4615 /* 4616 * Schedule the resilver to restart in the future. We do this to 4617 * ensure that dmu_sync-ed blocks have been stitched into the 4618 * respective datasets. 4619 */ 4620 dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg); 4621 4622 /* 4623 * Commit the config 4624 */ 4625 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0); 4626 4627 spa_history_log_internal(spa, "vdev attach", NULL, 4628 "%s vdev=%s %s vdev=%s", 4629 replacing && newvd_isspare ? "spare in" : 4630 replacing ? "replace" : "attach", newvdpath, 4631 replacing ? "for" : "to", oldvdpath); 4632 4633 spa_strfree(oldvdpath); 4634 spa_strfree(newvdpath); 4635 4636 if (spa->spa_bootfs) 4637 spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH); 4638 4639 return (0); 4640 } 4641 4642 /* 4643 * Detach a device from a mirror or replacing vdev. 4644 * 4645 * If 'replace_done' is specified, only detach if the parent 4646 * is a replacing vdev. 4647 */ 4648 int 4649 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done) 4650 { 4651 uint64_t txg; 4652 int error; 4653 vdev_t *rvd = spa->spa_root_vdev; 4654 vdev_t *vd, *pvd, *cvd, *tvd; 4655 boolean_t unspare = B_FALSE; 4656 uint64_t unspare_guid = 0; 4657 char *vdpath; 4658 4659 ASSERT(spa_writeable(spa)); 4660 4661 txg = spa_vdev_enter(spa); 4662 4663 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 4664 4665 if (vd == NULL) 4666 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 4667 4668 if (!vd->vdev_ops->vdev_op_leaf) 4669 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4670 4671 pvd = vd->vdev_parent; 4672 4673 /* 4674 * If the parent/child relationship is not as expected, don't do it. 4675 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing 4676 * vdev that's replacing B with C. The user's intent in replacing 4677 * is to go from M(A,B) to M(A,C). If the user decides to cancel 4678 * the replace by detaching C, the expected behavior is to end up 4679 * M(A,B). But suppose that right after deciding to detach C, 4680 * the replacement of B completes. We would have M(A,C), and then 4681 * ask to detach C, which would leave us with just A -- not what 4682 * the user wanted. To prevent this, we make sure that the 4683 * parent/child relationship hasn't changed -- in this example, 4684 * that C's parent is still the replacing vdev R. 4685 */ 4686 if (pvd->vdev_guid != pguid && pguid != 0) 4687 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 4688 4689 /* 4690 * Only 'replacing' or 'spare' vdevs can be replaced. 4691 */ 4692 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops && 4693 pvd->vdev_ops != &vdev_spare_ops) 4694 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4695 4696 ASSERT(pvd->vdev_ops != &vdev_spare_ops || 4697 spa_version(spa) >= SPA_VERSION_SPARES); 4698 4699 /* 4700 * Only mirror, replacing, and spare vdevs support detach. 4701 */ 4702 if (pvd->vdev_ops != &vdev_replacing_ops && 4703 pvd->vdev_ops != &vdev_mirror_ops && 4704 pvd->vdev_ops != &vdev_spare_ops) 4705 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4706 4707 /* 4708 * If this device has the only valid copy of some data, 4709 * we cannot safely detach it. 4710 */ 4711 if (vdev_dtl_required(vd)) 4712 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 4713 4714 ASSERT(pvd->vdev_children >= 2); 4715 4716 /* 4717 * If we are detaching the second disk from a replacing vdev, then 4718 * check to see if we changed the original vdev's path to have "/old" 4719 * at the end in spa_vdev_attach(). If so, undo that change now. 4720 */ 4721 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 && 4722 vd->vdev_path != NULL) { 4723 size_t len = strlen(vd->vdev_path); 4724 4725 for (int c = 0; c < pvd->vdev_children; c++) { 4726 cvd = pvd->vdev_child[c]; 4727 4728 if (cvd == vd || cvd->vdev_path == NULL) 4729 continue; 4730 4731 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 && 4732 strcmp(cvd->vdev_path + len, "/old") == 0) { 4733 spa_strfree(cvd->vdev_path); 4734 cvd->vdev_path = spa_strdup(vd->vdev_path); 4735 break; 4736 } 4737 } 4738 } 4739 4740 /* 4741 * If we are detaching the original disk from a spare, then it implies 4742 * that the spare should become a real disk, and be removed from the 4743 * active spare list for the pool. 4744 */ 4745 if (pvd->vdev_ops == &vdev_spare_ops && 4746 vd->vdev_id == 0 && 4747 pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare) 4748 unspare = B_TRUE; 4749 4750 /* 4751 * Erase the disk labels so the disk can be used for other things. 4752 * This must be done after all other error cases are handled, 4753 * but before we disembowel vd (so we can still do I/O to it). 4754 * But if we can't do it, don't treat the error as fatal -- 4755 * it may be that the unwritability of the disk is the reason 4756 * it's being detached! 4757 */ 4758 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 4759 4760 /* 4761 * Remove vd from its parent and compact the parent's children. 4762 */ 4763 vdev_remove_child(pvd, vd); 4764 vdev_compact_children(pvd); 4765 4766 /* 4767 * Remember one of the remaining children so we can get tvd below. 4768 */ 4769 cvd = pvd->vdev_child[pvd->vdev_children - 1]; 4770 4771 /* 4772 * If we need to remove the remaining child from the list of hot spares, 4773 * do it now, marking the vdev as no longer a spare in the process. 4774 * We must do this before vdev_remove_parent(), because that can 4775 * change the GUID if it creates a new toplevel GUID. For a similar 4776 * reason, we must remove the spare now, in the same txg as the detach; 4777 * otherwise someone could attach a new sibling, change the GUID, and 4778 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail. 4779 */ 4780 if (unspare) { 4781 ASSERT(cvd->vdev_isspare); 4782 spa_spare_remove(cvd); 4783 unspare_guid = cvd->vdev_guid; 4784 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE); 4785 cvd->vdev_unspare = B_TRUE; 4786 } 4787 4788 /* 4789 * If the parent mirror/replacing vdev only has one child, 4790 * the parent is no longer needed. Remove it from the tree. 4791 */ 4792 if (pvd->vdev_children == 1) { 4793 if (pvd->vdev_ops == &vdev_spare_ops) 4794 cvd->vdev_unspare = B_FALSE; 4795 vdev_remove_parent(cvd); 4796 } 4797 4798 4799 /* 4800 * We don't set tvd until now because the parent we just removed 4801 * may have been the previous top-level vdev. 4802 */ 4803 tvd = cvd->vdev_top; 4804 ASSERT(tvd->vdev_parent == rvd); 4805 4806 /* 4807 * Reevaluate the parent vdev state. 4808 */ 4809 vdev_propagate_state(cvd); 4810 4811 /* 4812 * If the 'autoexpand' property is set on the pool then automatically 4813 * try to expand the size of the pool. For example if the device we 4814 * just detached was smaller than the others, it may be possible to 4815 * add metaslabs (i.e. grow the pool). We need to reopen the vdev 4816 * first so that we can obtain the updated sizes of the leaf vdevs. 4817 */ 4818 if (spa->spa_autoexpand) { 4819 vdev_reopen(tvd); 4820 vdev_expand(tvd, txg); 4821 } 4822 4823 vdev_config_dirty(tvd); 4824 4825 /* 4826 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that 4827 * vd->vdev_detached is set and free vd's DTL object in syncing context. 4828 * But first make sure we're not on any *other* txg's DTL list, to 4829 * prevent vd from being accessed after it's freed. 4830 */ 4831 vdpath = spa_strdup(vd->vdev_path); 4832 for (int t = 0; t < TXG_SIZE; t++) 4833 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t); 4834 vd->vdev_detached = B_TRUE; 4835 vdev_dirty(tvd, VDD_DTL, vd, txg); 4836 4837 spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE); 4838 4839 /* hang on to the spa before we release the lock */ 4840 spa_open_ref(spa, FTAG); 4841 4842 error = spa_vdev_exit(spa, vd, txg, 0); 4843 4844 spa_history_log_internal(spa, "detach", NULL, 4845 "vdev=%s", vdpath); 4846 spa_strfree(vdpath); 4847 4848 /* 4849 * If this was the removal of the original device in a hot spare vdev, 4850 * then we want to go through and remove the device from the hot spare 4851 * list of every other pool. 4852 */ 4853 if (unspare) { 4854 spa_t *altspa = NULL; 4855 4856 mutex_enter(&spa_namespace_lock); 4857 while ((altspa = spa_next(altspa)) != NULL) { 4858 if (altspa->spa_state != POOL_STATE_ACTIVE || 4859 altspa == spa) 4860 continue; 4861 4862 spa_open_ref(altspa, FTAG); 4863 mutex_exit(&spa_namespace_lock); 4864 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE); 4865 mutex_enter(&spa_namespace_lock); 4866 spa_close(altspa, FTAG); 4867 } 4868 mutex_exit(&spa_namespace_lock); 4869 4870 /* search the rest of the vdevs for spares to remove */ 4871 spa_vdev_resilver_done(spa); 4872 } 4873 4874 /* all done with the spa; OK to release */ 4875 mutex_enter(&spa_namespace_lock); 4876 spa_close(spa, FTAG); 4877 mutex_exit(&spa_namespace_lock); 4878 4879 return (error); 4880 } 4881 4882 /* 4883 * Split a set of devices from their mirrors, and create a new pool from them. 4884 */ 4885 int 4886 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config, 4887 nvlist_t *props, boolean_t exp) 4888 { 4889 int error = 0; 4890 uint64_t txg, *glist; 4891 spa_t *newspa; 4892 uint_t c, children, lastlog; 4893 nvlist_t **child, *nvl, *tmp; 4894 dmu_tx_t *tx; 4895 char *altroot = NULL; 4896 vdev_t *rvd, **vml = NULL; /* vdev modify list */ 4897 boolean_t activate_slog; 4898 4899 ASSERT(spa_writeable(spa)); 4900 4901 txg = spa_vdev_enter(spa); 4902 4903 /* clear the log and flush everything up to now */ 4904 activate_slog = spa_passivate_log(spa); 4905 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 4906 error = spa_offline_log(spa); 4907 txg = spa_vdev_config_enter(spa); 4908 4909 if (activate_slog) 4910 spa_activate_log(spa); 4911 4912 if (error != 0) 4913 return (spa_vdev_exit(spa, NULL, txg, error)); 4914 4915 /* check new spa name before going any further */ 4916 if (spa_lookup(newname) != NULL) 4917 return (spa_vdev_exit(spa, NULL, txg, EEXIST)); 4918 4919 /* 4920 * scan through all the children to ensure they're all mirrors 4921 */ 4922 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 || 4923 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child, 4924 &children) != 0) 4925 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4926 4927 /* first, check to ensure we've got the right child count */ 4928 rvd = spa->spa_root_vdev; 4929 lastlog = 0; 4930 for (c = 0; c < rvd->vdev_children; c++) { 4931 vdev_t *vd = rvd->vdev_child[c]; 4932 4933 /* don't count the holes & logs as children */ 4934 if (vd->vdev_islog || vd->vdev_ishole) { 4935 if (lastlog == 0) 4936 lastlog = c; 4937 continue; 4938 } 4939 4940 lastlog = 0; 4941 } 4942 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children)) 4943 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4944 4945 /* next, ensure no spare or cache devices are part of the split */ 4946 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 || 4947 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0) 4948 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4949 4950 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP); 4951 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP); 4952 4953 /* then, loop over each vdev and validate it */ 4954 for (c = 0; c < children; c++) { 4955 uint64_t is_hole = 0; 4956 4957 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE, 4958 &is_hole); 4959 4960 if (is_hole != 0) { 4961 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole || 4962 spa->spa_root_vdev->vdev_child[c]->vdev_islog) { 4963 continue; 4964 } else { 4965 error = SET_ERROR(EINVAL); 4966 break; 4967 } 4968 } 4969 4970 /* which disk is going to be split? */ 4971 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID, 4972 &glist[c]) != 0) { 4973 error = SET_ERROR(EINVAL); 4974 break; 4975 } 4976 4977 /* look it up in the spa */ 4978 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE); 4979 if (vml[c] == NULL) { 4980 error = SET_ERROR(ENODEV); 4981 break; 4982 } 4983 4984 /* make sure there's nothing stopping the split */ 4985 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops || 4986 vml[c]->vdev_islog || 4987 vml[c]->vdev_ishole || 4988 vml[c]->vdev_isspare || 4989 vml[c]->vdev_isl2cache || 4990 !vdev_writeable(vml[c]) || 4991 vml[c]->vdev_children != 0 || 4992 vml[c]->vdev_state != VDEV_STATE_HEALTHY || 4993 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) { 4994 error = SET_ERROR(EINVAL); 4995 break; 4996 } 4997 4998 if (vdev_dtl_required(vml[c])) { 4999 error = SET_ERROR(EBUSY); 5000 break; 5001 } 5002 5003 /* we need certain info from the top level */ 5004 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY, 5005 vml[c]->vdev_top->vdev_ms_array) == 0); 5006 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT, 5007 vml[c]->vdev_top->vdev_ms_shift) == 0); 5008 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE, 5009 vml[c]->vdev_top->vdev_asize) == 0); 5010 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT, 5011 vml[c]->vdev_top->vdev_ashift) == 0); 5012 } 5013 5014 if (error != 0) { 5015 kmem_free(vml, children * sizeof (vdev_t *)); 5016 kmem_free(glist, children * sizeof (uint64_t)); 5017 return (spa_vdev_exit(spa, NULL, txg, error)); 5018 } 5019 5020 /* stop writers from using the disks */ 5021 for (c = 0; c < children; c++) { 5022 if (vml[c] != NULL) 5023 vml[c]->vdev_offline = B_TRUE; 5024 } 5025 vdev_reopen(spa->spa_root_vdev); 5026 5027 /* 5028 * Temporarily record the splitting vdevs in the spa config. This 5029 * will disappear once the config is regenerated. 5030 */ 5031 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0); 5032 VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 5033 glist, children) == 0); 5034 kmem_free(glist, children * sizeof (uint64_t)); 5035 5036 mutex_enter(&spa->spa_props_lock); 5037 VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT, 5038 nvl) == 0); 5039 mutex_exit(&spa->spa_props_lock); 5040 spa->spa_config_splitting = nvl; 5041 vdev_config_dirty(spa->spa_root_vdev); 5042 5043 /* configure and create the new pool */ 5044 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0); 5045 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 5046 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0); 5047 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, 5048 spa_version(spa)) == 0); 5049 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, 5050 spa->spa_config_txg) == 0); 5051 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID, 5052 spa_generate_guid(NULL)) == 0); 5053 (void) nvlist_lookup_string(props, 5054 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 5055 5056 /* add the new pool to the namespace */ 5057 newspa = spa_add(newname, config, altroot); 5058 newspa->spa_config_txg = spa->spa_config_txg; 5059 spa_set_log_state(newspa, SPA_LOG_CLEAR); 5060 5061 /* release the spa config lock, retaining the namespace lock */ 5062 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 5063 5064 if (zio_injection_enabled) 5065 zio_handle_panic_injection(spa, FTAG, 1); 5066 5067 spa_activate(newspa, spa_mode_global); 5068 spa_async_suspend(newspa); 5069 5070 /* create the new pool from the disks of the original pool */ 5071 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE); 5072 if (error) 5073 goto out; 5074 5075 /* if that worked, generate a real config for the new pool */ 5076 if (newspa->spa_root_vdev != NULL) { 5077 VERIFY(nvlist_alloc(&newspa->spa_config_splitting, 5078 NV_UNIQUE_NAME, KM_SLEEP) == 0); 5079 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting, 5080 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0); 5081 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL, 5082 B_TRUE)); 5083 } 5084 5085 /* set the props */ 5086 if (props != NULL) { 5087 spa_configfile_set(newspa, props, B_FALSE); 5088 error = spa_prop_set(newspa, props); 5089 if (error) 5090 goto out; 5091 } 5092 5093 /* flush everything */ 5094 txg = spa_vdev_config_enter(newspa); 5095 vdev_config_dirty(newspa->spa_root_vdev); 5096 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG); 5097 5098 if (zio_injection_enabled) 5099 zio_handle_panic_injection(spa, FTAG, 2); 5100 5101 spa_async_resume(newspa); 5102 5103 /* finally, update the original pool's config */ 5104 txg = spa_vdev_config_enter(spa); 5105 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 5106 error = dmu_tx_assign(tx, TXG_WAIT); 5107 if (error != 0) 5108 dmu_tx_abort(tx); 5109 for (c = 0; c < children; c++) { 5110 if (vml[c] != NULL) { 5111 vdev_split(vml[c]); 5112 if (error == 0) 5113 spa_history_log_internal(spa, "detach", tx, 5114 "vdev=%s", vml[c]->vdev_path); 5115 vdev_free(vml[c]); 5116 } 5117 } 5118 vdev_config_dirty(spa->spa_root_vdev); 5119 spa->spa_config_splitting = NULL; 5120 nvlist_free(nvl); 5121 if (error == 0) 5122 dmu_tx_commit(tx); 5123 (void) spa_vdev_exit(spa, NULL, txg, 0); 5124 5125 if (zio_injection_enabled) 5126 zio_handle_panic_injection(spa, FTAG, 3); 5127 5128 /* split is complete; log a history record */ 5129 spa_history_log_internal(newspa, "split", NULL, 5130 "from pool %s", spa_name(spa)); 5131 5132 kmem_free(vml, children * sizeof (vdev_t *)); 5133 5134 /* if we're not going to mount the filesystems in userland, export */ 5135 if (exp) 5136 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL, 5137 B_FALSE, B_FALSE); 5138 5139 return (error); 5140 5141 out: 5142 spa_unload(newspa); 5143 spa_deactivate(newspa); 5144 spa_remove(newspa); 5145 5146 txg = spa_vdev_config_enter(spa); 5147 5148 /* re-online all offlined disks */ 5149 for (c = 0; c < children; c++) { 5150 if (vml[c] != NULL) 5151 vml[c]->vdev_offline = B_FALSE; 5152 } 5153 vdev_reopen(spa->spa_root_vdev); 5154 5155 nvlist_free(spa->spa_config_splitting); 5156 spa->spa_config_splitting = NULL; 5157 (void) spa_vdev_exit(spa, NULL, txg, error); 5158 5159 kmem_free(vml, children * sizeof (vdev_t *)); 5160 return (error); 5161 } 5162 5163 static nvlist_t * 5164 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid) 5165 { 5166 for (int i = 0; i < count; i++) { 5167 uint64_t guid; 5168 5169 VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID, 5170 &guid) == 0); 5171 5172 if (guid == target_guid) 5173 return (nvpp[i]); 5174 } 5175 5176 return (NULL); 5177 } 5178 5179 static void 5180 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count, 5181 nvlist_t *dev_to_remove) 5182 { 5183 nvlist_t **newdev = NULL; 5184 5185 if (count > 1) 5186 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP); 5187 5188 for (int i = 0, j = 0; i < count; i++) { 5189 if (dev[i] == dev_to_remove) 5190 continue; 5191 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0); 5192 } 5193 5194 VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0); 5195 VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0); 5196 5197 for (int i = 0; i < count - 1; i++) 5198 nvlist_free(newdev[i]); 5199 5200 if (count > 1) 5201 kmem_free(newdev, (count - 1) * sizeof (void *)); 5202 } 5203 5204 /* 5205 * Evacuate the device. 5206 */ 5207 static int 5208 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd) 5209 { 5210 uint64_t txg; 5211 int error = 0; 5212 5213 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 5214 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 5215 ASSERT(vd == vd->vdev_top); 5216 5217 /* 5218 * Evacuate the device. We don't hold the config lock as writer 5219 * since we need to do I/O but we do keep the 5220 * spa_namespace_lock held. Once this completes the device 5221 * should no longer have any blocks allocated on it. 5222 */ 5223 if (vd->vdev_islog) { 5224 if (vd->vdev_stat.vs_alloc != 0) 5225 error = spa_offline_log(spa); 5226 } else { 5227 error = SET_ERROR(ENOTSUP); 5228 } 5229 5230 if (error) 5231 return (error); 5232 5233 /* 5234 * The evacuation succeeded. Remove any remaining MOS metadata 5235 * associated with this vdev, and wait for these changes to sync. 5236 */ 5237 ASSERT0(vd->vdev_stat.vs_alloc); 5238 txg = spa_vdev_config_enter(spa); 5239 vd->vdev_removing = B_TRUE; 5240 vdev_dirty_leaves(vd, VDD_DTL, txg); 5241 vdev_config_dirty(vd); 5242 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 5243 5244 return (0); 5245 } 5246 5247 /* 5248 * Complete the removal by cleaning up the namespace. 5249 */ 5250 static void 5251 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd) 5252 { 5253 vdev_t *rvd = spa->spa_root_vdev; 5254 uint64_t id = vd->vdev_id; 5255 boolean_t last_vdev = (id == (rvd->vdev_children - 1)); 5256 5257 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 5258 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 5259 ASSERT(vd == vd->vdev_top); 5260 5261 /* 5262 * Only remove any devices which are empty. 5263 */ 5264 if (vd->vdev_stat.vs_alloc != 0) 5265 return; 5266 5267 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 5268 5269 if (list_link_active(&vd->vdev_state_dirty_node)) 5270 vdev_state_clean(vd); 5271 if (list_link_active(&vd->vdev_config_dirty_node)) 5272 vdev_config_clean(vd); 5273 5274 vdev_free(vd); 5275 5276 if (last_vdev) { 5277 vdev_compact_children(rvd); 5278 } else { 5279 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops); 5280 vdev_add_child(rvd, vd); 5281 } 5282 vdev_config_dirty(rvd); 5283 5284 /* 5285 * Reassess the health of our root vdev. 5286 */ 5287 vdev_reopen(rvd); 5288 } 5289 5290 /* 5291 * Remove a device from the pool - 5292 * 5293 * Removing a device from the vdev namespace requires several steps 5294 * and can take a significant amount of time. As a result we use 5295 * the spa_vdev_config_[enter/exit] functions which allow us to 5296 * grab and release the spa_config_lock while still holding the namespace 5297 * lock. During each step the configuration is synced out. 5298 * 5299 * Currently, this supports removing only hot spares, slogs, and level 2 ARC 5300 * devices. 5301 */ 5302 int 5303 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare) 5304 { 5305 vdev_t *vd; 5306 metaslab_group_t *mg; 5307 nvlist_t **spares, **l2cache, *nv; 5308 uint64_t txg = 0; 5309 uint_t nspares, nl2cache; 5310 int error = 0; 5311 boolean_t locked = MUTEX_HELD(&spa_namespace_lock); 5312 5313 ASSERT(spa_writeable(spa)); 5314 5315 if (!locked) 5316 txg = spa_vdev_enter(spa); 5317 5318 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 5319 5320 if (spa->spa_spares.sav_vdevs != NULL && 5321 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 5322 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 && 5323 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) { 5324 /* 5325 * Only remove the hot spare if it's not currently in use 5326 * in this pool. 5327 */ 5328 if (vd == NULL || unspare) { 5329 spa_vdev_remove_aux(spa->spa_spares.sav_config, 5330 ZPOOL_CONFIG_SPARES, spares, nspares, nv); 5331 spa_load_spares(spa); 5332 spa->spa_spares.sav_sync = B_TRUE; 5333 } else { 5334 error = SET_ERROR(EBUSY); 5335 } 5336 } else if (spa->spa_l2cache.sav_vdevs != NULL && 5337 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 5338 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 && 5339 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) { 5340 /* 5341 * Cache devices can always be removed. 5342 */ 5343 spa_vdev_remove_aux(spa->spa_l2cache.sav_config, 5344 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv); 5345 spa_load_l2cache(spa); 5346 spa->spa_l2cache.sav_sync = B_TRUE; 5347 } else if (vd != NULL && vd->vdev_islog) { 5348 ASSERT(!locked); 5349 ASSERT(vd == vd->vdev_top); 5350 5351 mg = vd->vdev_mg; 5352 5353 /* 5354 * Stop allocating from this vdev. 5355 */ 5356 metaslab_group_passivate(mg); 5357 5358 /* 5359 * Wait for the youngest allocations and frees to sync, 5360 * and then wait for the deferral of those frees to finish. 5361 */ 5362 spa_vdev_config_exit(spa, NULL, 5363 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG); 5364 5365 /* 5366 * Attempt to evacuate the vdev. 5367 */ 5368 error = spa_vdev_remove_evacuate(spa, vd); 5369 5370 txg = spa_vdev_config_enter(spa); 5371 5372 /* 5373 * If we couldn't evacuate the vdev, unwind. 5374 */ 5375 if (error) { 5376 metaslab_group_activate(mg); 5377 return (spa_vdev_exit(spa, NULL, txg, error)); 5378 } 5379 5380 /* 5381 * Clean up the vdev namespace. 5382 */ 5383 spa_vdev_remove_from_namespace(spa, vd); 5384 5385 } else if (vd != NULL) { 5386 /* 5387 * Normal vdevs cannot be removed (yet). 5388 */ 5389 error = SET_ERROR(ENOTSUP); 5390 } else { 5391 /* 5392 * There is no vdev of any kind with the specified guid. 5393 */ 5394 error = SET_ERROR(ENOENT); 5395 } 5396 5397 if (!locked) 5398 return (spa_vdev_exit(spa, NULL, txg, error)); 5399 5400 return (error); 5401 } 5402 5403 /* 5404 * Find any device that's done replacing, or a vdev marked 'unspare' that's 5405 * currently spared, so we can detach it. 5406 */ 5407 static vdev_t * 5408 spa_vdev_resilver_done_hunt(vdev_t *vd) 5409 { 5410 vdev_t *newvd, *oldvd; 5411 5412 for (int c = 0; c < vd->vdev_children; c++) { 5413 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]); 5414 if (oldvd != NULL) 5415 return (oldvd); 5416 } 5417 5418 /* 5419 * Check for a completed replacement. We always consider the first 5420 * vdev in the list to be the oldest vdev, and the last one to be 5421 * the newest (see spa_vdev_attach() for how that works). In 5422 * the case where the newest vdev is faulted, we will not automatically 5423 * remove it after a resilver completes. This is OK as it will require 5424 * user intervention to determine which disk the admin wishes to keep. 5425 */ 5426 if (vd->vdev_ops == &vdev_replacing_ops) { 5427 ASSERT(vd->vdev_children > 1); 5428 5429 newvd = vd->vdev_child[vd->vdev_children - 1]; 5430 oldvd = vd->vdev_child[0]; 5431 5432 if (vdev_dtl_empty(newvd, DTL_MISSING) && 5433 vdev_dtl_empty(newvd, DTL_OUTAGE) && 5434 !vdev_dtl_required(oldvd)) 5435 return (oldvd); 5436 } 5437 5438 /* 5439 * Check for a completed resilver with the 'unspare' flag set. 5440 */ 5441 if (vd->vdev_ops == &vdev_spare_ops) { 5442 vdev_t *first = vd->vdev_child[0]; 5443 vdev_t *last = vd->vdev_child[vd->vdev_children - 1]; 5444 5445 if (last->vdev_unspare) { 5446 oldvd = first; 5447 newvd = last; 5448 } else if (first->vdev_unspare) { 5449 oldvd = last; 5450 newvd = first; 5451 } else { 5452 oldvd = NULL; 5453 } 5454 5455 if (oldvd != NULL && 5456 vdev_dtl_empty(newvd, DTL_MISSING) && 5457 vdev_dtl_empty(newvd, DTL_OUTAGE) && 5458 !vdev_dtl_required(oldvd)) 5459 return (oldvd); 5460 5461 /* 5462 * If there are more than two spares attached to a disk, 5463 * and those spares are not required, then we want to 5464 * attempt to free them up now so that they can be used 5465 * by other pools. Once we're back down to a single 5466 * disk+spare, we stop removing them. 5467 */ 5468 if (vd->vdev_children > 2) { 5469 newvd = vd->vdev_child[1]; 5470 5471 if (newvd->vdev_isspare && last->vdev_isspare && 5472 vdev_dtl_empty(last, DTL_MISSING) && 5473 vdev_dtl_empty(last, DTL_OUTAGE) && 5474 !vdev_dtl_required(newvd)) 5475 return (newvd); 5476 } 5477 } 5478 5479 return (NULL); 5480 } 5481 5482 static void 5483 spa_vdev_resilver_done(spa_t *spa) 5484 { 5485 vdev_t *vd, *pvd, *ppvd; 5486 uint64_t guid, sguid, pguid, ppguid; 5487 5488 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5489 5490 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) { 5491 pvd = vd->vdev_parent; 5492 ppvd = pvd->vdev_parent; 5493 guid = vd->vdev_guid; 5494 pguid = pvd->vdev_guid; 5495 ppguid = ppvd->vdev_guid; 5496 sguid = 0; 5497 /* 5498 * If we have just finished replacing a hot spared device, then 5499 * we need to detach the parent's first child (the original hot 5500 * spare) as well. 5501 */ 5502 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 && 5503 ppvd->vdev_children == 2) { 5504 ASSERT(pvd->vdev_ops == &vdev_replacing_ops); 5505 sguid = ppvd->vdev_child[1]->vdev_guid; 5506 } 5507 ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd)); 5508 5509 spa_config_exit(spa, SCL_ALL, FTAG); 5510 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0) 5511 return; 5512 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0) 5513 return; 5514 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5515 } 5516 5517 spa_config_exit(spa, SCL_ALL, FTAG); 5518 } 5519 5520 /* 5521 * Update the stored path or FRU for this vdev. 5522 */ 5523 int 5524 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value, 5525 boolean_t ispath) 5526 { 5527 vdev_t *vd; 5528 boolean_t sync = B_FALSE; 5529 5530 ASSERT(spa_writeable(spa)); 5531 5532 spa_vdev_state_enter(spa, SCL_ALL); 5533 5534 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 5535 return (spa_vdev_state_exit(spa, NULL, ENOENT)); 5536 5537 if (!vd->vdev_ops->vdev_op_leaf) 5538 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 5539 5540 if (ispath) { 5541 if (strcmp(value, vd->vdev_path) != 0) { 5542 spa_strfree(vd->vdev_path); 5543 vd->vdev_path = spa_strdup(value); 5544 sync = B_TRUE; 5545 } 5546 } else { 5547 if (vd->vdev_fru == NULL) { 5548 vd->vdev_fru = spa_strdup(value); 5549 sync = B_TRUE; 5550 } else if (strcmp(value, vd->vdev_fru) != 0) { 5551 spa_strfree(vd->vdev_fru); 5552 vd->vdev_fru = spa_strdup(value); 5553 sync = B_TRUE; 5554 } 5555 } 5556 5557 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0)); 5558 } 5559 5560 int 5561 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath) 5562 { 5563 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE)); 5564 } 5565 5566 int 5567 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru) 5568 { 5569 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE)); 5570 } 5571 5572 /* 5573 * ========================================================================== 5574 * SPA Scanning 5575 * ========================================================================== 5576 */ 5577 5578 int 5579 spa_scan_stop(spa_t *spa) 5580 { 5581 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 5582 if (dsl_scan_resilvering(spa->spa_dsl_pool)) 5583 return (SET_ERROR(EBUSY)); 5584 return (dsl_scan_cancel(spa->spa_dsl_pool)); 5585 } 5586 5587 int 5588 spa_scan(spa_t *spa, pool_scan_func_t func) 5589 { 5590 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 5591 5592 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE) 5593 return (SET_ERROR(ENOTSUP)); 5594 5595 /* 5596 * If a resilver was requested, but there is no DTL on a 5597 * writeable leaf device, we have nothing to do. 5598 */ 5599 if (func == POOL_SCAN_RESILVER && 5600 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) { 5601 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 5602 return (0); 5603 } 5604 5605 return (dsl_scan(spa->spa_dsl_pool, func)); 5606 } 5607 5608 /* 5609 * ========================================================================== 5610 * SPA async task processing 5611 * ========================================================================== 5612 */ 5613 5614 static void 5615 spa_async_remove(spa_t *spa, vdev_t *vd) 5616 { 5617 if (vd->vdev_remove_wanted) { 5618 vd->vdev_remove_wanted = B_FALSE; 5619 vd->vdev_delayed_close = B_FALSE; 5620 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE); 5621 5622 /* 5623 * We want to clear the stats, but we don't want to do a full 5624 * vdev_clear() as that will cause us to throw away 5625 * degraded/faulted state as well as attempt to reopen the 5626 * device, all of which is a waste. 5627 */ 5628 vd->vdev_stat.vs_read_errors = 0; 5629 vd->vdev_stat.vs_write_errors = 0; 5630 vd->vdev_stat.vs_checksum_errors = 0; 5631 5632 vdev_state_dirty(vd->vdev_top); 5633 } 5634 5635 for (int c = 0; c < vd->vdev_children; c++) 5636 spa_async_remove(spa, vd->vdev_child[c]); 5637 } 5638 5639 static void 5640 spa_async_probe(spa_t *spa, vdev_t *vd) 5641 { 5642 if (vd->vdev_probe_wanted) { 5643 vd->vdev_probe_wanted = B_FALSE; 5644 vdev_reopen(vd); /* vdev_open() does the actual probe */ 5645 } 5646 5647 for (int c = 0; c < vd->vdev_children; c++) 5648 spa_async_probe(spa, vd->vdev_child[c]); 5649 } 5650 5651 static void 5652 spa_async_autoexpand(spa_t *spa, vdev_t *vd) 5653 { 5654 sysevent_id_t eid; 5655 nvlist_t *attr; 5656 char *physpath; 5657 5658 if (!spa->spa_autoexpand) 5659 return; 5660 5661 for (int c = 0; c < vd->vdev_children; c++) { 5662 vdev_t *cvd = vd->vdev_child[c]; 5663 spa_async_autoexpand(spa, cvd); 5664 } 5665 5666 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL) 5667 return; 5668 5669 physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP); 5670 (void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath); 5671 5672 VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0); 5673 VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0); 5674 5675 (void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS, 5676 ESC_DEV_DLE, attr, &eid, DDI_SLEEP); 5677 5678 nvlist_free(attr); 5679 kmem_free(physpath, MAXPATHLEN); 5680 } 5681 5682 static void 5683 spa_async_thread(spa_t *spa) 5684 { 5685 int tasks; 5686 5687 ASSERT(spa->spa_sync_on); 5688 5689 mutex_enter(&spa->spa_async_lock); 5690 tasks = spa->spa_async_tasks; 5691 spa->spa_async_tasks = 0; 5692 mutex_exit(&spa->spa_async_lock); 5693 5694 /* 5695 * See if the config needs to be updated. 5696 */ 5697 if (tasks & SPA_ASYNC_CONFIG_UPDATE) { 5698 uint64_t old_space, new_space; 5699 5700 mutex_enter(&spa_namespace_lock); 5701 old_space = metaslab_class_get_space(spa_normal_class(spa)); 5702 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 5703 new_space = metaslab_class_get_space(spa_normal_class(spa)); 5704 mutex_exit(&spa_namespace_lock); 5705 5706 /* 5707 * If the pool grew as a result of the config update, 5708 * then log an internal history event. 5709 */ 5710 if (new_space != old_space) { 5711 spa_history_log_internal(spa, "vdev online", NULL, 5712 "pool '%s' size: %llu(+%llu)", 5713 spa_name(spa), new_space, new_space - old_space); 5714 } 5715 } 5716 5717 /* 5718 * See if any devices need to be marked REMOVED. 5719 */ 5720 if (tasks & SPA_ASYNC_REMOVE) { 5721 spa_vdev_state_enter(spa, SCL_NONE); 5722 spa_async_remove(spa, spa->spa_root_vdev); 5723 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) 5724 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]); 5725 for (int i = 0; i < spa->spa_spares.sav_count; i++) 5726 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]); 5727 (void) spa_vdev_state_exit(spa, NULL, 0); 5728 } 5729 5730 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) { 5731 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 5732 spa_async_autoexpand(spa, spa->spa_root_vdev); 5733 spa_config_exit(spa, SCL_CONFIG, FTAG); 5734 } 5735 5736 /* 5737 * See if any devices need to be probed. 5738 */ 5739 if (tasks & SPA_ASYNC_PROBE) { 5740 spa_vdev_state_enter(spa, SCL_NONE); 5741 spa_async_probe(spa, spa->spa_root_vdev); 5742 (void) spa_vdev_state_exit(spa, NULL, 0); 5743 } 5744 5745 /* 5746 * If any devices are done replacing, detach them. 5747 */ 5748 if (tasks & SPA_ASYNC_RESILVER_DONE) 5749 spa_vdev_resilver_done(spa); 5750 5751 /* 5752 * Kick off a resilver. 5753 */ 5754 if (tasks & SPA_ASYNC_RESILVER) 5755 dsl_resilver_restart(spa->spa_dsl_pool, 0); 5756 5757 /* 5758 * Let the world know that we're done. 5759 */ 5760 mutex_enter(&spa->spa_async_lock); 5761 spa->spa_async_thread = NULL; 5762 cv_broadcast(&spa->spa_async_cv); 5763 mutex_exit(&spa->spa_async_lock); 5764 thread_exit(); 5765 } 5766 5767 void 5768 spa_async_suspend(spa_t *spa) 5769 { 5770 mutex_enter(&spa->spa_async_lock); 5771 spa->spa_async_suspended++; 5772 while (spa->spa_async_thread != NULL) 5773 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock); 5774 mutex_exit(&spa->spa_async_lock); 5775 } 5776 5777 void 5778 spa_async_resume(spa_t *spa) 5779 { 5780 mutex_enter(&spa->spa_async_lock); 5781 ASSERT(spa->spa_async_suspended != 0); 5782 spa->spa_async_suspended--; 5783 mutex_exit(&spa->spa_async_lock); 5784 } 5785 5786 static boolean_t 5787 spa_async_tasks_pending(spa_t *spa) 5788 { 5789 uint_t non_config_tasks; 5790 uint_t config_task; 5791 boolean_t config_task_suspended; 5792 5793 non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE; 5794 config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE; 5795 if (spa->spa_ccw_fail_time == 0) { 5796 config_task_suspended = B_FALSE; 5797 } else { 5798 config_task_suspended = 5799 (gethrtime() - spa->spa_ccw_fail_time) < 5800 (zfs_ccw_retry_interval * NANOSEC); 5801 } 5802 5803 return (non_config_tasks || (config_task && !config_task_suspended)); 5804 } 5805 5806 static void 5807 spa_async_dispatch(spa_t *spa) 5808 { 5809 mutex_enter(&spa->spa_async_lock); 5810 if (spa_async_tasks_pending(spa) && 5811 !spa->spa_async_suspended && 5812 spa->spa_async_thread == NULL && 5813 rootdir != NULL) 5814 spa->spa_async_thread = thread_create(NULL, 0, 5815 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri); 5816 mutex_exit(&spa->spa_async_lock); 5817 } 5818 5819 void 5820 spa_async_request(spa_t *spa, int task) 5821 { 5822 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task); 5823 mutex_enter(&spa->spa_async_lock); 5824 spa->spa_async_tasks |= task; 5825 mutex_exit(&spa->spa_async_lock); 5826 } 5827 5828 /* 5829 * ========================================================================== 5830 * SPA syncing routines 5831 * ========================================================================== 5832 */ 5833 5834 static int 5835 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 5836 { 5837 bpobj_t *bpo = arg; 5838 bpobj_enqueue(bpo, bp, tx); 5839 return (0); 5840 } 5841 5842 static int 5843 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 5844 { 5845 zio_t *zio = arg; 5846 5847 zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp, 5848 zio->io_flags)); 5849 return (0); 5850 } 5851 5852 /* 5853 * Note: this simple function is not inlined to make it easier to dtrace the 5854 * amount of time spent syncing frees. 5855 */ 5856 static void 5857 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx) 5858 { 5859 zio_t *zio = zio_root(spa, NULL, NULL, 0); 5860 bplist_iterate(bpl, spa_free_sync_cb, zio, tx); 5861 VERIFY(zio_wait(zio) == 0); 5862 } 5863 5864 /* 5865 * Note: this simple function is not inlined to make it easier to dtrace the 5866 * amount of time spent syncing deferred frees. 5867 */ 5868 static void 5869 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx) 5870 { 5871 zio_t *zio = zio_root(spa, NULL, NULL, 0); 5872 VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj, 5873 spa_free_sync_cb, zio, tx), ==, 0); 5874 VERIFY0(zio_wait(zio)); 5875 } 5876 5877 5878 static void 5879 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx) 5880 { 5881 char *packed = NULL; 5882 size_t bufsize; 5883 size_t nvsize = 0; 5884 dmu_buf_t *db; 5885 5886 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0); 5887 5888 /* 5889 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration 5890 * information. This avoids the dmu_buf_will_dirty() path and 5891 * saves us a pre-read to get data we don't actually care about. 5892 */ 5893 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE); 5894 packed = kmem_alloc(bufsize, KM_SLEEP); 5895 5896 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR, 5897 KM_SLEEP) == 0); 5898 bzero(packed + nvsize, bufsize - nvsize); 5899 5900 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx); 5901 5902 kmem_free(packed, bufsize); 5903 5904 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 5905 dmu_buf_will_dirty(db, tx); 5906 *(uint64_t *)db->db_data = nvsize; 5907 dmu_buf_rele(db, FTAG); 5908 } 5909 5910 static void 5911 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx, 5912 const char *config, const char *entry) 5913 { 5914 nvlist_t *nvroot; 5915 nvlist_t **list; 5916 int i; 5917 5918 if (!sav->sav_sync) 5919 return; 5920 5921 /* 5922 * Update the MOS nvlist describing the list of available devices. 5923 * spa_validate_aux() will have already made sure this nvlist is 5924 * valid and the vdevs are labeled appropriately. 5925 */ 5926 if (sav->sav_object == 0) { 5927 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset, 5928 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE, 5929 sizeof (uint64_t), tx); 5930 VERIFY(zap_update(spa->spa_meta_objset, 5931 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1, 5932 &sav->sav_object, tx) == 0); 5933 } 5934 5935 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 5936 if (sav->sav_count == 0) { 5937 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0); 5938 } else { 5939 list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 5940 for (i = 0; i < sav->sav_count; i++) 5941 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i], 5942 B_FALSE, VDEV_CONFIG_L2CACHE); 5943 VERIFY(nvlist_add_nvlist_array(nvroot, config, list, 5944 sav->sav_count) == 0); 5945 for (i = 0; i < sav->sav_count; i++) 5946 nvlist_free(list[i]); 5947 kmem_free(list, sav->sav_count * sizeof (void *)); 5948 } 5949 5950 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx); 5951 nvlist_free(nvroot); 5952 5953 sav->sav_sync = B_FALSE; 5954 } 5955 5956 static void 5957 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx) 5958 { 5959 nvlist_t *config; 5960 5961 if (list_is_empty(&spa->spa_config_dirty_list)) 5962 return; 5963 5964 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 5965 5966 config = spa_config_generate(spa, spa->spa_root_vdev, 5967 dmu_tx_get_txg(tx), B_FALSE); 5968 5969 /* 5970 * If we're upgrading the spa version then make sure that 5971 * the config object gets updated with the correct version. 5972 */ 5973 if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version) 5974 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, 5975 spa->spa_uberblock.ub_version); 5976 5977 spa_config_exit(spa, SCL_STATE, FTAG); 5978 5979 if (spa->spa_config_syncing) 5980 nvlist_free(spa->spa_config_syncing); 5981 spa->spa_config_syncing = config; 5982 5983 spa_sync_nvlist(spa, spa->spa_config_object, config, tx); 5984 } 5985 5986 static void 5987 spa_sync_version(void *arg, dmu_tx_t *tx) 5988 { 5989 uint64_t *versionp = arg; 5990 uint64_t version = *versionp; 5991 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 5992 5993 /* 5994 * Setting the version is special cased when first creating the pool. 5995 */ 5996 ASSERT(tx->tx_txg != TXG_INITIAL); 5997 5998 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 5999 ASSERT(version >= spa_version(spa)); 6000 6001 spa->spa_uberblock.ub_version = version; 6002 vdev_config_dirty(spa->spa_root_vdev); 6003 spa_history_log_internal(spa, "set", tx, "version=%lld", version); 6004 } 6005 6006 /* 6007 * Set zpool properties. 6008 */ 6009 static void 6010 spa_sync_props(void *arg, dmu_tx_t *tx) 6011 { 6012 nvlist_t *nvp = arg; 6013 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 6014 objset_t *mos = spa->spa_meta_objset; 6015 nvpair_t *elem = NULL; 6016 6017 mutex_enter(&spa->spa_props_lock); 6018 6019 while ((elem = nvlist_next_nvpair(nvp, elem))) { 6020 uint64_t intval; 6021 char *strval, *fname; 6022 zpool_prop_t prop; 6023 const char *propname; 6024 zprop_type_t proptype; 6025 spa_feature_t fid; 6026 6027 switch (prop = zpool_name_to_prop(nvpair_name(elem))) { 6028 case ZPROP_INVAL: 6029 /* 6030 * We checked this earlier in spa_prop_validate(). 6031 */ 6032 ASSERT(zpool_prop_feature(nvpair_name(elem))); 6033 6034 fname = strchr(nvpair_name(elem), '@') + 1; 6035 VERIFY0(zfeature_lookup_name(fname, &fid)); 6036 6037 spa_feature_enable(spa, fid, tx); 6038 spa_history_log_internal(spa, "set", tx, 6039 "%s=enabled", nvpair_name(elem)); 6040 break; 6041 6042 case ZPOOL_PROP_VERSION: 6043 intval = fnvpair_value_uint64(elem); 6044 /* 6045 * The version is synced seperatly before other 6046 * properties and should be correct by now. 6047 */ 6048 ASSERT3U(spa_version(spa), >=, intval); 6049 break; 6050 6051 case ZPOOL_PROP_ALTROOT: 6052 /* 6053 * 'altroot' is a non-persistent property. It should 6054 * have been set temporarily at creation or import time. 6055 */ 6056 ASSERT(spa->spa_root != NULL); 6057 break; 6058 6059 case ZPOOL_PROP_READONLY: 6060 case ZPOOL_PROP_CACHEFILE: 6061 /* 6062 * 'readonly' and 'cachefile' are also non-persisitent 6063 * properties. 6064 */ 6065 break; 6066 case ZPOOL_PROP_COMMENT: 6067 strval = fnvpair_value_string(elem); 6068 if (spa->spa_comment != NULL) 6069 spa_strfree(spa->spa_comment); 6070 spa->spa_comment = spa_strdup(strval); 6071 /* 6072 * We need to dirty the configuration on all the vdevs 6073 * so that their labels get updated. It's unnecessary 6074 * to do this for pool creation since the vdev's 6075 * configuratoin has already been dirtied. 6076 */ 6077 if (tx->tx_txg != TXG_INITIAL) 6078 vdev_config_dirty(spa->spa_root_vdev); 6079 spa_history_log_internal(spa, "set", tx, 6080 "%s=%s", nvpair_name(elem), strval); 6081 break; 6082 default: 6083 /* 6084 * Set pool property values in the poolprops mos object. 6085 */ 6086 if (spa->spa_pool_props_object == 0) { 6087 spa->spa_pool_props_object = 6088 zap_create_link(mos, DMU_OT_POOL_PROPS, 6089 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS, 6090 tx); 6091 } 6092 6093 /* normalize the property name */ 6094 propname = zpool_prop_to_name(prop); 6095 proptype = zpool_prop_get_type(prop); 6096 6097 if (nvpair_type(elem) == DATA_TYPE_STRING) { 6098 ASSERT(proptype == PROP_TYPE_STRING); 6099 strval = fnvpair_value_string(elem); 6100 VERIFY0(zap_update(mos, 6101 spa->spa_pool_props_object, propname, 6102 1, strlen(strval) + 1, strval, tx)); 6103 spa_history_log_internal(spa, "set", tx, 6104 "%s=%s", nvpair_name(elem), strval); 6105 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) { 6106 intval = fnvpair_value_uint64(elem); 6107 6108 if (proptype == PROP_TYPE_INDEX) { 6109 const char *unused; 6110 VERIFY0(zpool_prop_index_to_string( 6111 prop, intval, &unused)); 6112 } 6113 VERIFY0(zap_update(mos, 6114 spa->spa_pool_props_object, propname, 6115 8, 1, &intval, tx)); 6116 spa_history_log_internal(spa, "set", tx, 6117 "%s=%lld", nvpair_name(elem), intval); 6118 } else { 6119 ASSERT(0); /* not allowed */ 6120 } 6121 6122 switch (prop) { 6123 case ZPOOL_PROP_DELEGATION: 6124 spa->spa_delegation = intval; 6125 break; 6126 case ZPOOL_PROP_BOOTFS: 6127 spa->spa_bootfs = intval; 6128 break; 6129 case ZPOOL_PROP_FAILUREMODE: 6130 spa->spa_failmode = intval; 6131 break; 6132 case ZPOOL_PROP_AUTOEXPAND: 6133 spa->spa_autoexpand = intval; 6134 if (tx->tx_txg != TXG_INITIAL) 6135 spa_async_request(spa, 6136 SPA_ASYNC_AUTOEXPAND); 6137 break; 6138 case ZPOOL_PROP_DEDUPDITTO: 6139 spa->spa_dedup_ditto = intval; 6140 break; 6141 default: 6142 break; 6143 } 6144 } 6145 6146 } 6147 6148 mutex_exit(&spa->spa_props_lock); 6149 } 6150 6151 /* 6152 * Perform one-time upgrade on-disk changes. spa_version() does not 6153 * reflect the new version this txg, so there must be no changes this 6154 * txg to anything that the upgrade code depends on after it executes. 6155 * Therefore this must be called after dsl_pool_sync() does the sync 6156 * tasks. 6157 */ 6158 static void 6159 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx) 6160 { 6161 dsl_pool_t *dp = spa->spa_dsl_pool; 6162 6163 ASSERT(spa->spa_sync_pass == 1); 6164 6165 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); 6166 6167 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN && 6168 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) { 6169 dsl_pool_create_origin(dp, tx); 6170 6171 /* Keeping the origin open increases spa_minref */ 6172 spa->spa_minref += 3; 6173 } 6174 6175 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES && 6176 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) { 6177 dsl_pool_upgrade_clones(dp, tx); 6178 } 6179 6180 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES && 6181 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) { 6182 dsl_pool_upgrade_dir_clones(dp, tx); 6183 6184 /* Keeping the freedir open increases spa_minref */ 6185 spa->spa_minref += 3; 6186 } 6187 6188 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES && 6189 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) { 6190 spa_feature_create_zap_objects(spa, tx); 6191 } 6192 6193 /* 6194 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable 6195 * when possibility to use lz4 compression for metadata was added 6196 * Old pools that have this feature enabled must be upgraded to have 6197 * this feature active 6198 */ 6199 if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) { 6200 boolean_t lz4_en = spa_feature_is_enabled(spa, 6201 SPA_FEATURE_LZ4_COMPRESS); 6202 boolean_t lz4_ac = spa_feature_is_active(spa, 6203 SPA_FEATURE_LZ4_COMPRESS); 6204 6205 if (lz4_en && !lz4_ac) 6206 spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx); 6207 } 6208 rrw_exit(&dp->dp_config_rwlock, FTAG); 6209 } 6210 6211 /* 6212 * Sync the specified transaction group. New blocks may be dirtied as 6213 * part of the process, so we iterate until it converges. 6214 */ 6215 void 6216 spa_sync(spa_t *spa, uint64_t txg) 6217 { 6218 dsl_pool_t *dp = spa->spa_dsl_pool; 6219 objset_t *mos = spa->spa_meta_objset; 6220 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK]; 6221 vdev_t *rvd = spa->spa_root_vdev; 6222 vdev_t *vd; 6223 dmu_tx_t *tx; 6224 int error; 6225 6226 VERIFY(spa_writeable(spa)); 6227 6228 /* 6229 * Lock out configuration changes. 6230 */ 6231 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 6232 6233 spa->spa_syncing_txg = txg; 6234 spa->spa_sync_pass = 0; 6235 6236 /* 6237 * If there are any pending vdev state changes, convert them 6238 * into config changes that go out with this transaction group. 6239 */ 6240 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 6241 while (list_head(&spa->spa_state_dirty_list) != NULL) { 6242 /* 6243 * We need the write lock here because, for aux vdevs, 6244 * calling vdev_config_dirty() modifies sav_config. 6245 * This is ugly and will become unnecessary when we 6246 * eliminate the aux vdev wart by integrating all vdevs 6247 * into the root vdev tree. 6248 */ 6249 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 6250 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER); 6251 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) { 6252 vdev_state_clean(vd); 6253 vdev_config_dirty(vd); 6254 } 6255 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 6256 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 6257 } 6258 spa_config_exit(spa, SCL_STATE, FTAG); 6259 6260 tx = dmu_tx_create_assigned(dp, txg); 6261 6262 spa->spa_sync_starttime = gethrtime(); 6263 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, 6264 spa->spa_sync_starttime + spa->spa_deadman_synctime)); 6265 6266 /* 6267 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg, 6268 * set spa_deflate if we have no raid-z vdevs. 6269 */ 6270 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE && 6271 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) { 6272 int i; 6273 6274 for (i = 0; i < rvd->vdev_children; i++) { 6275 vd = rvd->vdev_child[i]; 6276 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE) 6277 break; 6278 } 6279 if (i == rvd->vdev_children) { 6280 spa->spa_deflate = TRUE; 6281 VERIFY(0 == zap_add(spa->spa_meta_objset, 6282 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 6283 sizeof (uint64_t), 1, &spa->spa_deflate, tx)); 6284 } 6285 } 6286 6287 /* 6288 * Iterate to convergence. 6289 */ 6290 do { 6291 int pass = ++spa->spa_sync_pass; 6292 6293 spa_sync_config_object(spa, tx); 6294 spa_sync_aux_dev(spa, &spa->spa_spares, tx, 6295 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES); 6296 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx, 6297 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE); 6298 spa_errlog_sync(spa, txg); 6299 dsl_pool_sync(dp, txg); 6300 6301 if (pass < zfs_sync_pass_deferred_free) { 6302 spa_sync_frees(spa, free_bpl, tx); 6303 } else { 6304 /* 6305 * We can not defer frees in pass 1, because 6306 * we sync the deferred frees later in pass 1. 6307 */ 6308 ASSERT3U(pass, >, 1); 6309 bplist_iterate(free_bpl, bpobj_enqueue_cb, 6310 &spa->spa_deferred_bpobj, tx); 6311 } 6312 6313 ddt_sync(spa, txg); 6314 dsl_scan_sync(dp, tx); 6315 6316 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) 6317 vdev_sync(vd, txg); 6318 6319 if (pass == 1) { 6320 spa_sync_upgrades(spa, tx); 6321 ASSERT3U(txg, >=, 6322 spa->spa_uberblock.ub_rootbp.blk_birth); 6323 /* 6324 * Note: We need to check if the MOS is dirty 6325 * because we could have marked the MOS dirty 6326 * without updating the uberblock (e.g. if we 6327 * have sync tasks but no dirty user data). We 6328 * need to check the uberblock's rootbp because 6329 * it is updated if we have synced out dirty 6330 * data (though in this case the MOS will most 6331 * likely also be dirty due to second order 6332 * effects, we don't want to rely on that here). 6333 */ 6334 if (spa->spa_uberblock.ub_rootbp.blk_birth < txg && 6335 !dmu_objset_is_dirty(mos, txg)) { 6336 /* 6337 * Nothing changed on the first pass, 6338 * therefore this TXG is a no-op. Avoid 6339 * syncing deferred frees, so that we 6340 * can keep this TXG as a no-op. 6341 */ 6342 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, 6343 txg)); 6344 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); 6345 ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg)); 6346 break; 6347 } 6348 spa_sync_deferred_frees(spa, tx); 6349 } 6350 6351 } while (dmu_objset_is_dirty(mos, txg)); 6352 6353 /* 6354 * Rewrite the vdev configuration (which includes the uberblock) 6355 * to commit the transaction group. 6356 * 6357 * If there are no dirty vdevs, we sync the uberblock to a few 6358 * random top-level vdevs that are known to be visible in the 6359 * config cache (see spa_vdev_add() for a complete description). 6360 * If there *are* dirty vdevs, sync the uberblock to all vdevs. 6361 */ 6362 for (;;) { 6363 /* 6364 * We hold SCL_STATE to prevent vdev open/close/etc. 6365 * while we're attempting to write the vdev labels. 6366 */ 6367 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 6368 6369 if (list_is_empty(&spa->spa_config_dirty_list)) { 6370 vdev_t *svd[SPA_DVAS_PER_BP]; 6371 int svdcount = 0; 6372 int children = rvd->vdev_children; 6373 int c0 = spa_get_random(children); 6374 6375 for (int c = 0; c < children; c++) { 6376 vd = rvd->vdev_child[(c0 + c) % children]; 6377 if (vd->vdev_ms_array == 0 || vd->vdev_islog) 6378 continue; 6379 svd[svdcount++] = vd; 6380 if (svdcount == SPA_DVAS_PER_BP) 6381 break; 6382 } 6383 error = vdev_config_sync(svd, svdcount, txg, B_FALSE); 6384 if (error != 0) 6385 error = vdev_config_sync(svd, svdcount, txg, 6386 B_TRUE); 6387 } else { 6388 error = vdev_config_sync(rvd->vdev_child, 6389 rvd->vdev_children, txg, B_FALSE); 6390 if (error != 0) 6391 error = vdev_config_sync(rvd->vdev_child, 6392 rvd->vdev_children, txg, B_TRUE); 6393 } 6394 6395 if (error == 0) 6396 spa->spa_last_synced_guid = rvd->vdev_guid; 6397 6398 spa_config_exit(spa, SCL_STATE, FTAG); 6399 6400 if (error == 0) 6401 break; 6402 zio_suspend(spa, NULL); 6403 zio_resume_wait(spa); 6404 } 6405 dmu_tx_commit(tx); 6406 6407 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY)); 6408 6409 /* 6410 * Clear the dirty config list. 6411 */ 6412 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL) 6413 vdev_config_clean(vd); 6414 6415 /* 6416 * Now that the new config has synced transactionally, 6417 * let it become visible to the config cache. 6418 */ 6419 if (spa->spa_config_syncing != NULL) { 6420 spa_config_set(spa, spa->spa_config_syncing); 6421 spa->spa_config_txg = txg; 6422 spa->spa_config_syncing = NULL; 6423 } 6424 6425 spa->spa_ubsync = spa->spa_uberblock; 6426 6427 dsl_pool_sync_done(dp, txg); 6428 6429 /* 6430 * Update usable space statistics. 6431 */ 6432 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg))) 6433 vdev_sync_done(vd, txg); 6434 6435 spa_update_dspace(spa); 6436 6437 /* 6438 * It had better be the case that we didn't dirty anything 6439 * since vdev_config_sync(). 6440 */ 6441 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg)); 6442 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); 6443 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg)); 6444 6445 spa->spa_sync_pass = 0; 6446 6447 spa_config_exit(spa, SCL_CONFIG, FTAG); 6448 6449 spa_handle_ignored_writes(spa); 6450 6451 /* 6452 * If any async tasks have been requested, kick them off. 6453 */ 6454 spa_async_dispatch(spa); 6455 } 6456 6457 /* 6458 * Sync all pools. We don't want to hold the namespace lock across these 6459 * operations, so we take a reference on the spa_t and drop the lock during the 6460 * sync. 6461 */ 6462 void 6463 spa_sync_allpools(void) 6464 { 6465 spa_t *spa = NULL; 6466 mutex_enter(&spa_namespace_lock); 6467 while ((spa = spa_next(spa)) != NULL) { 6468 if (spa_state(spa) != POOL_STATE_ACTIVE || 6469 !spa_writeable(spa) || spa_suspended(spa)) 6470 continue; 6471 spa_open_ref(spa, FTAG); 6472 mutex_exit(&spa_namespace_lock); 6473 txg_wait_synced(spa_get_dsl(spa), 0); 6474 mutex_enter(&spa_namespace_lock); 6475 spa_close(spa, FTAG); 6476 } 6477 mutex_exit(&spa_namespace_lock); 6478 } 6479 6480 /* 6481 * ========================================================================== 6482 * Miscellaneous routines 6483 * ========================================================================== 6484 */ 6485 6486 /* 6487 * Remove all pools in the system. 6488 */ 6489 void 6490 spa_evict_all(void) 6491 { 6492 spa_t *spa; 6493 6494 /* 6495 * Remove all cached state. All pools should be closed now, 6496 * so every spa in the AVL tree should be unreferenced. 6497 */ 6498 mutex_enter(&spa_namespace_lock); 6499 while ((spa = spa_next(NULL)) != NULL) { 6500 /* 6501 * Stop async tasks. The async thread may need to detach 6502 * a device that's been replaced, which requires grabbing 6503 * spa_namespace_lock, so we must drop it here. 6504 */ 6505 spa_open_ref(spa, FTAG); 6506 mutex_exit(&spa_namespace_lock); 6507 spa_async_suspend(spa); 6508 mutex_enter(&spa_namespace_lock); 6509 spa_close(spa, FTAG); 6510 6511 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 6512 spa_unload(spa); 6513 spa_deactivate(spa); 6514 } 6515 spa_remove(spa); 6516 } 6517 mutex_exit(&spa_namespace_lock); 6518 } 6519 6520 vdev_t * 6521 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux) 6522 { 6523 vdev_t *vd; 6524 int i; 6525 6526 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL) 6527 return (vd); 6528 6529 if (aux) { 6530 for (i = 0; i < spa->spa_l2cache.sav_count; i++) { 6531 vd = spa->spa_l2cache.sav_vdevs[i]; 6532 if (vd->vdev_guid == guid) 6533 return (vd); 6534 } 6535 6536 for (i = 0; i < spa->spa_spares.sav_count; i++) { 6537 vd = spa->spa_spares.sav_vdevs[i]; 6538 if (vd->vdev_guid == guid) 6539 return (vd); 6540 } 6541 } 6542 6543 return (NULL); 6544 } 6545 6546 void 6547 spa_upgrade(spa_t *spa, uint64_t version) 6548 { 6549 ASSERT(spa_writeable(spa)); 6550 6551 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 6552 6553 /* 6554 * This should only be called for a non-faulted pool, and since a 6555 * future version would result in an unopenable pool, this shouldn't be 6556 * possible. 6557 */ 6558 ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version)); 6559 ASSERT3U(version, >=, spa->spa_uberblock.ub_version); 6560 6561 spa->spa_uberblock.ub_version = version; 6562 vdev_config_dirty(spa->spa_root_vdev); 6563 6564 spa_config_exit(spa, SCL_ALL, FTAG); 6565 6566 txg_wait_synced(spa_get_dsl(spa), 0); 6567 } 6568 6569 boolean_t 6570 spa_has_spare(spa_t *spa, uint64_t guid) 6571 { 6572 int i; 6573 uint64_t spareguid; 6574 spa_aux_vdev_t *sav = &spa->spa_spares; 6575 6576 for (i = 0; i < sav->sav_count; i++) 6577 if (sav->sav_vdevs[i]->vdev_guid == guid) 6578 return (B_TRUE); 6579 6580 for (i = 0; i < sav->sav_npending; i++) { 6581 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID, 6582 &spareguid) == 0 && spareguid == guid) 6583 return (B_TRUE); 6584 } 6585 6586 return (B_FALSE); 6587 } 6588 6589 /* 6590 * Check if a pool has an active shared spare device. 6591 * Note: reference count of an active spare is 2, as a spare and as a replace 6592 */ 6593 static boolean_t 6594 spa_has_active_shared_spare(spa_t *spa) 6595 { 6596 int i, refcnt; 6597 uint64_t pool; 6598 spa_aux_vdev_t *sav = &spa->spa_spares; 6599 6600 for (i = 0; i < sav->sav_count; i++) { 6601 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool, 6602 &refcnt) && pool != 0ULL && pool == spa_guid(spa) && 6603 refcnt > 2) 6604 return (B_TRUE); 6605 } 6606 6607 return (B_FALSE); 6608 } 6609 6610 /* 6611 * Post a sysevent corresponding to the given event. The 'name' must be one of 6612 * the event definitions in sys/sysevent/eventdefs.h. The payload will be 6613 * filled in from the spa and (optionally) the vdev. This doesn't do anything 6614 * in the userland libzpool, as we don't want consumers to misinterpret ztest 6615 * or zdb as real changes. 6616 */ 6617 void 6618 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name) 6619 { 6620 #ifdef _KERNEL 6621 sysevent_t *ev; 6622 sysevent_attr_list_t *attr = NULL; 6623 sysevent_value_t value; 6624 sysevent_id_t eid; 6625 6626 ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs", 6627 SE_SLEEP); 6628 6629 value.value_type = SE_DATA_TYPE_STRING; 6630 value.value.sv_string = spa_name(spa); 6631 if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0) 6632 goto done; 6633 6634 value.value_type = SE_DATA_TYPE_UINT64; 6635 value.value.sv_uint64 = spa_guid(spa); 6636 if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0) 6637 goto done; 6638 6639 if (vd) { 6640 value.value_type = SE_DATA_TYPE_UINT64; 6641 value.value.sv_uint64 = vd->vdev_guid; 6642 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value, 6643 SE_SLEEP) != 0) 6644 goto done; 6645 6646 if (vd->vdev_path) { 6647 value.value_type = SE_DATA_TYPE_STRING; 6648 value.value.sv_string = vd->vdev_path; 6649 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH, 6650 &value, SE_SLEEP) != 0) 6651 goto done; 6652 } 6653 } 6654 6655 if (sysevent_attach_attributes(ev, attr) != 0) 6656 goto done; 6657 attr = NULL; 6658 6659 (void) log_sysevent(ev, SE_SLEEP, &eid); 6660 6661 done: 6662 if (attr) 6663 sysevent_free_attr(attr); 6664 sysevent_free(ev); 6665 #endif 6666 } 6667