xref: /titanic_51/usr/src/uts/common/fs/zfs/spa.c (revision 0373e76b3c3643df49ef3483e0f293fdea61d8c6)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * This file contains all the routines used when modifying on-disk SPA state.
30  * This includes opening, importing, destroying, exporting a pool, and syncing a
31  * pool.
32  */
33 
34 #include <sys/zfs_context.h>
35 #include <sys/fm/fs/zfs.h>
36 #include <sys/spa_impl.h>
37 #include <sys/zio.h>
38 #include <sys/zio_checksum.h>
39 #include <sys/zio_compress.h>
40 #include <sys/dmu.h>
41 #include <sys/dmu_tx.h>
42 #include <sys/zap.h>
43 #include <sys/zil.h>
44 #include <sys/vdev_impl.h>
45 #include <sys/metaslab.h>
46 #include <sys/uberblock_impl.h>
47 #include <sys/txg.h>
48 #include <sys/avl.h>
49 #include <sys/dmu_traverse.h>
50 #include <sys/unique.h>
51 #include <sys/dsl_pool.h>
52 #include <sys/dsl_dir.h>
53 #include <sys/dsl_prop.h>
54 #include <sys/fs/zfs.h>
55 #include <sys/callb.h>
56 
57 /*
58  * ==========================================================================
59  * SPA state manipulation (open/create/destroy/import/export)
60  * ==========================================================================
61  */
62 
63 static int
64 spa_error_entry_compare(const void *a, const void *b)
65 {
66 	spa_error_entry_t *sa = (spa_error_entry_t *)a;
67 	spa_error_entry_t *sb = (spa_error_entry_t *)b;
68 	int ret;
69 
70 	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
71 	    sizeof (zbookmark_t));
72 
73 	if (ret < 0)
74 		return (-1);
75 	else if (ret > 0)
76 		return (1);
77 	else
78 		return (0);
79 }
80 
81 /*
82  * Utility function which retrieves copies of the current logs and
83  * re-initializes them in the process.
84  */
85 void
86 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
87 {
88 	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
89 
90 	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
91 	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
92 
93 	avl_create(&spa->spa_errlist_scrub,
94 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
95 	    offsetof(spa_error_entry_t, se_avl));
96 	avl_create(&spa->spa_errlist_last,
97 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
98 	    offsetof(spa_error_entry_t, se_avl));
99 }
100 
101 /*
102  * Activate an uninitialized pool.
103  */
104 static void
105 spa_activate(spa_t *spa)
106 {
107 	int t;
108 
109 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
110 
111 	spa->spa_state = POOL_STATE_ACTIVE;
112 
113 	spa->spa_normal_class = metaslab_class_create();
114 
115 	for (t = 0; t < ZIO_TYPES; t++) {
116 		spa->spa_zio_issue_taskq[t] = taskq_create("spa_zio_issue",
117 		    8, maxclsyspri, 50, INT_MAX,
118 		    TASKQ_PREPOPULATE);
119 		spa->spa_zio_intr_taskq[t] = taskq_create("spa_zio_intr",
120 		    8, maxclsyspri, 50, INT_MAX,
121 		    TASKQ_PREPOPULATE);
122 	}
123 
124 	rw_init(&spa->spa_traverse_lock, NULL, RW_DEFAULT, NULL);
125 
126 	list_create(&spa->spa_dirty_list, sizeof (vdev_t),
127 	    offsetof(vdev_t, vdev_dirty_node));
128 
129 	txg_list_create(&spa->spa_vdev_txg_list,
130 	    offsetof(struct vdev, vdev_txg_node));
131 
132 	avl_create(&spa->spa_errlist_scrub,
133 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
134 	    offsetof(spa_error_entry_t, se_avl));
135 	avl_create(&spa->spa_errlist_last,
136 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
137 	    offsetof(spa_error_entry_t, se_avl));
138 }
139 
140 /*
141  * Opposite of spa_activate().
142  */
143 static void
144 spa_deactivate(spa_t *spa)
145 {
146 	int t;
147 
148 	ASSERT(spa->spa_sync_on == B_FALSE);
149 	ASSERT(spa->spa_dsl_pool == NULL);
150 	ASSERT(spa->spa_root_vdev == NULL);
151 
152 	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
153 
154 	txg_list_destroy(&spa->spa_vdev_txg_list);
155 
156 	list_destroy(&spa->spa_dirty_list);
157 
158 	rw_destroy(&spa->spa_traverse_lock);
159 
160 	for (t = 0; t < ZIO_TYPES; t++) {
161 		taskq_destroy(spa->spa_zio_issue_taskq[t]);
162 		taskq_destroy(spa->spa_zio_intr_taskq[t]);
163 		spa->spa_zio_issue_taskq[t] = NULL;
164 		spa->spa_zio_intr_taskq[t] = NULL;
165 	}
166 
167 	metaslab_class_destroy(spa->spa_normal_class);
168 	spa->spa_normal_class = NULL;
169 
170 	/*
171 	 * If this was part of an import or the open otherwise failed, we may
172 	 * still have errors left in the queues.  Empty them just in case.
173 	 */
174 	spa_errlog_drain(spa);
175 
176 	avl_destroy(&spa->spa_errlist_scrub);
177 	avl_destroy(&spa->spa_errlist_last);
178 
179 	spa->spa_state = POOL_STATE_UNINITIALIZED;
180 }
181 
182 /*
183  * Verify a pool configuration, and construct the vdev tree appropriately.  This
184  * will create all the necessary vdevs in the appropriate layout, with each vdev
185  * in the CLOSED state.  This will prep the pool before open/creation/import.
186  * All vdev validation is done by the vdev_alloc() routine.
187  */
188 static vdev_t *
189 spa_config_parse(spa_t *spa, nvlist_t *nv, vdev_t *parent, uint_t id, int atype)
190 {
191 	nvlist_t **child;
192 	uint_t c, children;
193 	vdev_t *vd;
194 
195 	if ((vd = vdev_alloc(spa, nv, parent, id, atype)) == NULL)
196 		return (NULL);
197 
198 	if (vd->vdev_ops->vdev_op_leaf)
199 		return (vd);
200 
201 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
202 	    &child, &children) != 0) {
203 		vdev_free(vd);
204 		return (NULL);
205 	}
206 
207 	for (c = 0; c < children; c++) {
208 		if (spa_config_parse(spa, child[c], vd, c, atype) == NULL) {
209 			vdev_free(vd);
210 			return (NULL);
211 		}
212 	}
213 
214 	return (vd);
215 }
216 
217 /*
218  * Opposite of spa_load().
219  */
220 static void
221 spa_unload(spa_t *spa)
222 {
223 	/*
224 	 * Stop async tasks.
225 	 */
226 	spa_async_suspend(spa);
227 
228 	/*
229 	 * Stop syncing.
230 	 */
231 	if (spa->spa_sync_on) {
232 		txg_sync_stop(spa->spa_dsl_pool);
233 		spa->spa_sync_on = B_FALSE;
234 	}
235 
236 	/*
237 	 * Wait for any outstanding prefetch I/O to complete.
238 	 */
239 	spa_config_enter(spa, RW_WRITER, FTAG);
240 	spa_config_exit(spa, FTAG);
241 
242 	/*
243 	 * Close the dsl pool.
244 	 */
245 	if (spa->spa_dsl_pool) {
246 		dsl_pool_close(spa->spa_dsl_pool);
247 		spa->spa_dsl_pool = NULL;
248 	}
249 
250 	/*
251 	 * Close all vdevs.
252 	 */
253 	if (spa->spa_root_vdev)
254 		vdev_free(spa->spa_root_vdev);
255 	ASSERT(spa->spa_root_vdev == NULL);
256 
257 	spa->spa_async_suspended = 0;
258 }
259 
260 /*
261  * Load an existing storage pool, using the pool's builtin spa_config as a
262  * source of configuration information.
263  */
264 static int
265 spa_load(spa_t *spa, nvlist_t *config, spa_load_state_t state, int mosconfig)
266 {
267 	int error = 0;
268 	nvlist_t *nvroot = NULL;
269 	vdev_t *rvd;
270 	uberblock_t *ub = &spa->spa_uberblock;
271 	uint64_t config_cache_txg = spa->spa_config_txg;
272 	uint64_t pool_guid;
273 	zio_t *zio;
274 
275 	spa->spa_load_state = state;
276 
277 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) ||
278 	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid) ||
279 	    (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
280 	    &spa->spa_config_txg) && mosconfig)) {
281 		error = EINVAL;
282 		goto out;
283 	}
284 
285 	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
286 	    spa_guid_exists(pool_guid, 0)) {
287 		error = EEXIST;
288 		goto out;
289 	}
290 
291 	/*
292 	 * Parse the configuration into a vdev tree.
293 	 */
294 	spa_config_enter(spa, RW_WRITER, FTAG);
295 	rvd = spa_config_parse(spa, nvroot, NULL, 0, VDEV_ALLOC_LOAD);
296 	spa_config_exit(spa, FTAG);
297 
298 	if (rvd == NULL) {
299 		error = EINVAL;
300 		goto out;
301 	}
302 
303 	ASSERT(spa->spa_root_vdev == rvd);
304 	ASSERT(spa_guid(spa) == pool_guid);
305 
306 	/*
307 	 * Try to open all vdevs, loading each label in the process.
308 	 */
309 	if (vdev_open(rvd) != 0) {
310 		error = ENXIO;
311 		goto out;
312 	}
313 
314 	/*
315 	 * Find the best uberblock.
316 	 */
317 	bzero(ub, sizeof (uberblock_t));
318 
319 	zio = zio_root(spa, NULL, NULL,
320 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
321 	vdev_uberblock_load(zio, rvd, ub);
322 	error = zio_wait(zio);
323 
324 	/*
325 	 * If we weren't able to find a single valid uberblock, return failure.
326 	 */
327 	if (ub->ub_txg == 0) {
328 		error = ENXIO;
329 		goto out;
330 	}
331 
332 	/*
333 	 * If the pool is newer than the code, we can't open it.
334 	 */
335 	if (ub->ub_version > UBERBLOCK_VERSION) {
336 		error = ENOTSUP;
337 		goto out;
338 	}
339 
340 	/*
341 	 * If the vdev guid sum doesn't match the uberblock, we have an
342 	 * incomplete configuration.
343 	 */
344 	if (rvd->vdev_guid_sum != ub->ub_guid_sum && (mosconfig ||
345 	    state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT)) {
346 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
347 		    VDEV_AUX_BAD_GUID_SUM);
348 		error = ENXIO;
349 		goto out;
350 	}
351 
352 	/*
353 	 * Initialize internal SPA structures.
354 	 */
355 	spa->spa_state = POOL_STATE_ACTIVE;
356 	spa->spa_ubsync = spa->spa_uberblock;
357 	spa->spa_first_txg = spa_last_synced_txg(spa) + 1;
358 	error = dsl_pool_open(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
359 	if (error) {
360 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
361 		    VDEV_AUX_CORRUPT_DATA);
362 		goto out;
363 	}
364 	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
365 
366 	if (zap_lookup(spa->spa_meta_objset,
367 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
368 	    sizeof (uint64_t), 1, &spa->spa_config_object) != 0) {
369 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
370 		    VDEV_AUX_CORRUPT_DATA);
371 		error = EIO;
372 		goto out;
373 	}
374 
375 	if (!mosconfig) {
376 		dmu_buf_t *db;
377 		char *packed = NULL;
378 		size_t nvsize = 0;
379 		nvlist_t *newconfig = NULL;
380 
381 		VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset,
382 		    spa->spa_config_object, FTAG, &db));
383 		nvsize = *(uint64_t *)db->db_data;
384 		dmu_buf_rele(db, FTAG);
385 
386 		packed = kmem_alloc(nvsize, KM_SLEEP);
387 		error = dmu_read(spa->spa_meta_objset,
388 		    spa->spa_config_object, 0, nvsize, packed);
389 		if (error == 0)
390 			error = nvlist_unpack(packed, nvsize, &newconfig, 0);
391 		kmem_free(packed, nvsize);
392 
393 		if (error) {
394 			vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
395 			    VDEV_AUX_CORRUPT_DATA);
396 			error = EIO;
397 			goto out;
398 		}
399 
400 		spa_config_set(spa, newconfig);
401 
402 		spa_unload(spa);
403 		spa_deactivate(spa);
404 		spa_activate(spa);
405 
406 		return (spa_load(spa, newconfig, state, B_TRUE));
407 	}
408 
409 	if (zap_lookup(spa->spa_meta_objset,
410 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST,
411 	    sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj) != 0) {
412 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
413 		    VDEV_AUX_CORRUPT_DATA);
414 		error = EIO;
415 		goto out;
416 	}
417 
418 	/*
419 	 * Load the persistent error log.  If we have an older pool, this will
420 	 * not be present.
421 	 */
422 	error = zap_lookup(spa->spa_meta_objset,
423 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_LAST,
424 	    sizeof (uint64_t), 1, &spa->spa_errlog_last);
425 	if (error != 0 &&error != ENOENT) {
426 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
427 		    VDEV_AUX_CORRUPT_DATA);
428 		error = EIO;
429 		goto out;
430 	}
431 
432 	error = zap_lookup(spa->spa_meta_objset,
433 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_SCRUB,
434 	    sizeof (uint64_t), 1, &spa->spa_errlog_scrub);
435 	if (error != 0 && error != ENOENT) {
436 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
437 		    VDEV_AUX_CORRUPT_DATA);
438 		error = EIO;
439 		goto out;
440 	}
441 
442 	/*
443 	 * Load the vdev state for all top level vdevs.  We need to grab the
444 	 * config lock because all label I/O is done with the
445 	 * ZIO_FLAG_CONFIG_HELD flag.
446 	 */
447 	spa_config_enter(spa, RW_READER, FTAG);
448 	error = vdev_load(rvd);
449 	spa_config_exit(spa, FTAG);
450 
451 	if (error)
452 		goto out;
453 
454 	/*
455 	 * Propagate the leaf DTLs we just loaded all the way up the tree.
456 	 */
457 	spa_config_enter(spa, RW_WRITER, FTAG);
458 	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
459 	spa_config_exit(spa, FTAG);
460 
461 	/*
462 	 * Check the state of the root vdev.  If it can't be opened, it
463 	 * indicates one or more toplevel vdevs are faulted.
464 	 */
465 	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
466 		error = ENXIO;
467 		goto out;
468 	}
469 
470 	if ((spa_mode & FWRITE) && state != SPA_LOAD_TRYIMPORT) {
471 		dmu_tx_t *tx;
472 		int need_update = B_FALSE;
473 		int c;
474 
475 		/*
476 		 * Claim log blocks that haven't been committed yet.
477 		 * This must all happen in a single txg.
478 		 */
479 		tx = dmu_tx_create_assigned(spa_get_dsl(spa),
480 		    spa_first_txg(spa));
481 		dmu_objset_find(spa->spa_name, zil_claim, tx, 0);
482 		dmu_tx_commit(tx);
483 
484 		spa->spa_sync_on = B_TRUE;
485 		txg_sync_start(spa->spa_dsl_pool);
486 
487 		/*
488 		 * Wait for all claims to sync.
489 		 */
490 		txg_wait_synced(spa->spa_dsl_pool, 0);
491 
492 		/*
493 		 * If the config cache is stale, or we have uninitialized
494 		 * metaslabs (see spa_vdev_add()), then update the config.
495 		 */
496 		if (config_cache_txg != spa->spa_config_txg ||
497 		    state == SPA_LOAD_IMPORT)
498 			need_update = B_TRUE;
499 
500 		for (c = 0; c < rvd->vdev_children; c++)
501 			if (rvd->vdev_child[c]->vdev_ms_array == 0)
502 				need_update = B_TRUE;
503 
504 		/*
505 		 * Update the config cache asychronously in case we're the
506 		 * root pool, in which case the config cache isn't writable yet.
507 		 */
508 		if (need_update)
509 			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
510 	}
511 
512 	error = 0;
513 out:
514 	if (error)
515 		zfs_ereport_post(FM_EREPORT_ZFS_POOL, spa, NULL, NULL, 0, 0);
516 	spa->spa_load_state = SPA_LOAD_NONE;
517 	spa->spa_ena = 0;
518 
519 	return (error);
520 }
521 
522 /*
523  * Pool Open/Import
524  *
525  * The import case is identical to an open except that the configuration is sent
526  * down from userland, instead of grabbed from the configuration cache.  For the
527  * case of an open, the pool configuration will exist in the
528  * POOL_STATE_UNITIALIZED state.
529  *
530  * The stats information (gen/count/ustats) is used to gather vdev statistics at
531  * the same time open the pool, without having to keep around the spa_t in some
532  * ambiguous state.
533  */
534 static int
535 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t **config)
536 {
537 	spa_t *spa;
538 	int error;
539 	int loaded = B_FALSE;
540 	int locked = B_FALSE;
541 
542 	*spapp = NULL;
543 
544 	/*
545 	 * As disgusting as this is, we need to support recursive calls to this
546 	 * function because dsl_dir_open() is called during spa_load(), and ends
547 	 * up calling spa_open() again.  The real fix is to figure out how to
548 	 * avoid dsl_dir_open() calling this in the first place.
549 	 */
550 	if (mutex_owner(&spa_namespace_lock) != curthread) {
551 		mutex_enter(&spa_namespace_lock);
552 		locked = B_TRUE;
553 	}
554 
555 	if ((spa = spa_lookup(pool)) == NULL) {
556 		if (locked)
557 			mutex_exit(&spa_namespace_lock);
558 		return (ENOENT);
559 	}
560 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
561 
562 		spa_activate(spa);
563 
564 		error = spa_load(spa, spa->spa_config, SPA_LOAD_OPEN, B_FALSE);
565 
566 		if (error == EBADF) {
567 			/*
568 			 * If vdev_load() returns EBADF, it indicates that one
569 			 * of the vdevs indicates that the pool has been
570 			 * exported or destroyed.  If this is the case, the
571 			 * config cache is out of sync and we should remove the
572 			 * pool from the namespace.
573 			 */
574 			spa_unload(spa);
575 			spa_deactivate(spa);
576 			spa_remove(spa);
577 			spa_config_sync();
578 			if (locked)
579 				mutex_exit(&spa_namespace_lock);
580 			return (ENOENT);
581 		}
582 
583 		if (error) {
584 			/*
585 			 * We can't open the pool, but we still have useful
586 			 * information: the state of each vdev after the
587 			 * attempted vdev_open().  Return this to the user.
588 			 */
589 			if (config != NULL && spa->spa_root_vdev != NULL) {
590 				spa_config_enter(spa, RW_READER, FTAG);
591 				*config = spa_config_generate(spa, NULL, -1ULL,
592 				    B_TRUE);
593 				spa_config_exit(spa, FTAG);
594 			}
595 			spa_unload(spa);
596 			spa_deactivate(spa);
597 			spa->spa_last_open_failed = B_TRUE;
598 			if (locked)
599 				mutex_exit(&spa_namespace_lock);
600 			*spapp = NULL;
601 			return (error);
602 		} else {
603 			zfs_post_ok(spa, NULL);
604 			spa->spa_last_open_failed = B_FALSE;
605 		}
606 
607 		loaded = B_TRUE;
608 	}
609 
610 	spa_open_ref(spa, tag);
611 	if (locked)
612 		mutex_exit(&spa_namespace_lock);
613 
614 	*spapp = spa;
615 
616 	if (config != NULL) {
617 		spa_config_enter(spa, RW_READER, FTAG);
618 		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
619 		spa_config_exit(spa, FTAG);
620 	}
621 
622 	/*
623 	 * If we just loaded the pool, resilver anything that's out of date.
624 	 */
625 	if (loaded && (spa_mode & FWRITE))
626 		VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
627 
628 	return (0);
629 }
630 
631 int
632 spa_open(const char *name, spa_t **spapp, void *tag)
633 {
634 	return (spa_open_common(name, spapp, tag, NULL));
635 }
636 
637 /*
638  * Lookup the given spa_t, incrementing the inject count in the process,
639  * preventing it from being exported or destroyed.
640  */
641 spa_t *
642 spa_inject_addref(char *name)
643 {
644 	spa_t *spa;
645 
646 	mutex_enter(&spa_namespace_lock);
647 	if ((spa = spa_lookup(name)) == NULL) {
648 		mutex_exit(&spa_namespace_lock);
649 		return (NULL);
650 	}
651 	spa->spa_inject_ref++;
652 	mutex_exit(&spa_namespace_lock);
653 
654 	return (spa);
655 }
656 
657 void
658 spa_inject_delref(spa_t *spa)
659 {
660 	mutex_enter(&spa_namespace_lock);
661 	spa->spa_inject_ref--;
662 	mutex_exit(&spa_namespace_lock);
663 }
664 
665 int
666 spa_get_stats(const char *name, nvlist_t **config, char *altroot, size_t buflen)
667 {
668 	int error;
669 	spa_t *spa;
670 
671 	*config = NULL;
672 	error = spa_open_common(name, &spa, FTAG, config);
673 
674 	if (spa && *config != NULL)
675 		VERIFY(nvlist_add_uint64(*config, ZPOOL_CONFIG_ERRCOUNT,
676 		    spa_get_errlog_size(spa)) == 0);
677 
678 	/*
679 	 * We want to get the alternate root even for faulted pools, so we cheat
680 	 * and call spa_lookup() directly.
681 	 */
682 	if (altroot) {
683 		if (spa == NULL) {
684 			mutex_enter(&spa_namespace_lock);
685 			spa = spa_lookup(name);
686 			if (spa)
687 				spa_altroot(spa, altroot, buflen);
688 			else
689 				altroot[0] = '\0';
690 			spa = NULL;
691 			mutex_exit(&spa_namespace_lock);
692 		} else {
693 			spa_altroot(spa, altroot, buflen);
694 		}
695 	}
696 
697 	if (spa != NULL)
698 		spa_close(spa, FTAG);
699 
700 	return (error);
701 }
702 
703 /*
704  * Pool Creation
705  */
706 int
707 spa_create(const char *pool, nvlist_t *nvroot, const char *altroot)
708 {
709 	spa_t *spa;
710 	vdev_t *rvd;
711 	dsl_pool_t *dp;
712 	dmu_tx_t *tx;
713 	int c, error;
714 	uint64_t txg = TXG_INITIAL;
715 
716 	/*
717 	 * If this pool already exists, return failure.
718 	 */
719 	mutex_enter(&spa_namespace_lock);
720 	if (spa_lookup(pool) != NULL) {
721 		mutex_exit(&spa_namespace_lock);
722 		return (EEXIST);
723 	}
724 
725 	/*
726 	 * Allocate a new spa_t structure.
727 	 */
728 	spa = spa_add(pool, altroot);
729 	spa_activate(spa);
730 
731 	spa->spa_uberblock.ub_txg = txg - 1;
732 	spa->spa_ubsync = spa->spa_uberblock;
733 
734 	/*
735 	 * Create the root vdev.
736 	 */
737 	spa_config_enter(spa, RW_WRITER, FTAG);
738 
739 	rvd = spa_config_parse(spa, nvroot, NULL, 0, VDEV_ALLOC_ADD);
740 
741 	ASSERT(spa->spa_root_vdev == rvd);
742 
743 	if (rvd == NULL) {
744 		error = EINVAL;
745 	} else {
746 		if ((error = vdev_create(rvd, txg)) == 0) {
747 			for (c = 0; c < rvd->vdev_children; c++)
748 				vdev_init(rvd->vdev_child[c], txg);
749 			vdev_config_dirty(rvd);
750 		}
751 	}
752 
753 	spa_config_exit(spa, FTAG);
754 
755 	if (error) {
756 		spa_unload(spa);
757 		spa_deactivate(spa);
758 		spa_remove(spa);
759 		mutex_exit(&spa_namespace_lock);
760 		return (error);
761 	}
762 
763 	spa->spa_dsl_pool = dp = dsl_pool_create(spa, txg);
764 	spa->spa_meta_objset = dp->dp_meta_objset;
765 
766 	tx = dmu_tx_create_assigned(dp, txg);
767 
768 	/*
769 	 * Create the pool config object.
770 	 */
771 	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
772 	    DMU_OT_PACKED_NVLIST, 1 << 14,
773 	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
774 
775 	if (zap_add(spa->spa_meta_objset,
776 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
777 	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
778 		cmn_err(CE_PANIC, "failed to add pool config");
779 	}
780 
781 	/*
782 	 * Create the deferred-free bplist object.  Turn off compression
783 	 * because sync-to-convergence takes longer if the blocksize
784 	 * keeps changing.
785 	 */
786 	spa->spa_sync_bplist_obj = bplist_create(spa->spa_meta_objset,
787 	    1 << 14, tx);
788 	dmu_object_set_compress(spa->spa_meta_objset, spa->spa_sync_bplist_obj,
789 	    ZIO_COMPRESS_OFF, tx);
790 
791 	if (zap_add(spa->spa_meta_objset,
792 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST,
793 	    sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj, tx) != 0) {
794 		cmn_err(CE_PANIC, "failed to add bplist");
795 	}
796 
797 	dmu_tx_commit(tx);
798 
799 	spa->spa_sync_on = B_TRUE;
800 	txg_sync_start(spa->spa_dsl_pool);
801 
802 	/*
803 	 * We explicitly wait for the first transaction to complete so that our
804 	 * bean counters are appropriately updated.
805 	 */
806 	txg_wait_synced(spa->spa_dsl_pool, txg);
807 
808 	spa_config_sync();
809 
810 	mutex_exit(&spa_namespace_lock);
811 
812 	return (0);
813 }
814 
815 /*
816  * Import the given pool into the system.  We set up the necessary spa_t and
817  * then call spa_load() to do the dirty work.
818  */
819 int
820 spa_import(const char *pool, nvlist_t *config, const char *altroot)
821 {
822 	spa_t *spa;
823 	int error;
824 
825 	if (!(spa_mode & FWRITE))
826 		return (EROFS);
827 
828 	/*
829 	 * If a pool with this name exists, return failure.
830 	 */
831 	mutex_enter(&spa_namespace_lock);
832 	if (spa_lookup(pool) != NULL) {
833 		mutex_exit(&spa_namespace_lock);
834 		return (EEXIST);
835 	}
836 
837 	/*
838 	 * Create and initialize the spa structure.
839 	 */
840 	spa = spa_add(pool, altroot);
841 	spa_activate(spa);
842 
843 	/*
844 	 * Pass off the heavy lifting to spa_load().
845 	 */
846 	error = spa_load(spa, config, SPA_LOAD_IMPORT, B_FALSE);
847 
848 	if (error) {
849 		spa_unload(spa);
850 		spa_deactivate(spa);
851 		spa_remove(spa);
852 		mutex_exit(&spa_namespace_lock);
853 		return (error);
854 	}
855 
856 	/*
857 	 * Update the config cache to include the newly-imported pool.
858 	 */
859 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
860 
861 	mutex_exit(&spa_namespace_lock);
862 
863 	/*
864 	 * Resilver anything that's out of date.
865 	 */
866 	if (spa_mode & FWRITE)
867 		VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
868 
869 	return (0);
870 }
871 
872 /*
873  * This (illegal) pool name is used when temporarily importing a spa_t in order
874  * to get the vdev stats associated with the imported devices.
875  */
876 #define	TRYIMPORT_NAME	"$import"
877 
878 nvlist_t *
879 spa_tryimport(nvlist_t *tryconfig)
880 {
881 	nvlist_t *config = NULL;
882 	char *poolname;
883 	spa_t *spa;
884 	uint64_t state;
885 
886 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
887 		return (NULL);
888 
889 	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
890 		return (NULL);
891 
892 	/*
893 	 * Create and initialize the spa structure.
894 	 */
895 	mutex_enter(&spa_namespace_lock);
896 	spa = spa_add(TRYIMPORT_NAME, NULL);
897 	spa_activate(spa);
898 
899 	/*
900 	 * Pass off the heavy lifting to spa_load().
901 	 */
902 	(void) spa_load(spa, tryconfig, SPA_LOAD_TRYIMPORT, B_FALSE);
903 
904 	/*
905 	 * If 'tryconfig' was at least parsable, return the current config.
906 	 */
907 	if (spa->spa_root_vdev != NULL) {
908 		spa_config_enter(spa, RW_READER, FTAG);
909 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
910 		spa_config_exit(spa, FTAG);
911 		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
912 		    poolname) == 0);
913 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
914 		    state) == 0);
915 	}
916 
917 	spa_unload(spa);
918 	spa_deactivate(spa);
919 	spa_remove(spa);
920 	mutex_exit(&spa_namespace_lock);
921 
922 	return (config);
923 }
924 
925 /*
926  * Pool export/destroy
927  *
928  * The act of destroying or exporting a pool is very simple.  We make sure there
929  * is no more pending I/O and any references to the pool are gone.  Then, we
930  * update the pool state and sync all the labels to disk, removing the
931  * configuration from the cache afterwards.
932  */
933 static int
934 spa_export_common(char *pool, int new_state)
935 {
936 	spa_t *spa;
937 
938 	if (!(spa_mode & FWRITE))
939 		return (EROFS);
940 
941 	mutex_enter(&spa_namespace_lock);
942 	if ((spa = spa_lookup(pool)) == NULL) {
943 		mutex_exit(&spa_namespace_lock);
944 		return (ENOENT);
945 	}
946 
947 	/*
948 	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
949 	 * reacquire the namespace lock, and see if we can export.
950 	 */
951 	spa_open_ref(spa, FTAG);
952 	mutex_exit(&spa_namespace_lock);
953 	spa_async_suspend(spa);
954 	mutex_enter(&spa_namespace_lock);
955 	spa_close(spa, FTAG);
956 
957 	/*
958 	 * The pool will be in core if it's openable,
959 	 * in which case we can modify its state.
960 	 */
961 	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
962 		/*
963 		 * Objsets may be open only because they're dirty, so we
964 		 * have to force it to sync before checking spa_refcnt.
965 		 */
966 		spa_scrub_suspend(spa);
967 		txg_wait_synced(spa->spa_dsl_pool, 0);
968 
969 		/*
970 		 * A pool cannot be exported or destroyed if there are active
971 		 * references.  If we are resetting a pool, allow references by
972 		 * fault injection handlers.
973 		 */
974 		if (!spa_refcount_zero(spa) ||
975 		    (spa->spa_inject_ref != 0 &&
976 		    new_state != POOL_STATE_UNINITIALIZED)) {
977 			spa_scrub_resume(spa);
978 			spa_async_resume(spa);
979 			mutex_exit(&spa_namespace_lock);
980 			return (EBUSY);
981 		}
982 
983 		spa_scrub_resume(spa);
984 		VERIFY(spa_scrub(spa, POOL_SCRUB_NONE, B_TRUE) == 0);
985 
986 		/*
987 		 * We want this to be reflected on every label,
988 		 * so mark them all dirty.  spa_unload() will do the
989 		 * final sync that pushes these changes out.
990 		 */
991 		if (new_state != POOL_STATE_UNINITIALIZED) {
992 			spa_config_enter(spa, RW_WRITER, FTAG);
993 			spa->spa_state = new_state;
994 			spa->spa_final_txg = spa_last_synced_txg(spa) + 1;
995 			vdev_config_dirty(spa->spa_root_vdev);
996 			spa_config_exit(spa, FTAG);
997 		}
998 	}
999 
1000 	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
1001 		spa_unload(spa);
1002 		spa_deactivate(spa);
1003 	}
1004 
1005 	if (new_state != POOL_STATE_UNINITIALIZED) {
1006 		spa_remove(spa);
1007 		spa_config_sync();
1008 	}
1009 	mutex_exit(&spa_namespace_lock);
1010 
1011 	return (0);
1012 }
1013 
1014 /*
1015  * Destroy a storage pool.
1016  */
1017 int
1018 spa_destroy(char *pool)
1019 {
1020 	return (spa_export_common(pool, POOL_STATE_DESTROYED));
1021 }
1022 
1023 /*
1024  * Export a storage pool.
1025  */
1026 int
1027 spa_export(char *pool)
1028 {
1029 	return (spa_export_common(pool, POOL_STATE_EXPORTED));
1030 }
1031 
1032 /*
1033  * Similar to spa_export(), this unloads the spa_t without actually removing it
1034  * from the namespace in any way.
1035  */
1036 int
1037 spa_reset(char *pool)
1038 {
1039 	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED));
1040 }
1041 
1042 
1043 /*
1044  * ==========================================================================
1045  * Device manipulation
1046  * ==========================================================================
1047  */
1048 
1049 /*
1050  * Add capacity to a storage pool.
1051  */
1052 int
1053 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
1054 {
1055 	uint64_t txg;
1056 	int c, error;
1057 	vdev_t *rvd = spa->spa_root_vdev;
1058 	vdev_t *vd, *tvd;
1059 
1060 	txg = spa_vdev_enter(spa);
1061 
1062 	vd = spa_config_parse(spa, nvroot, NULL, 0, VDEV_ALLOC_ADD);
1063 
1064 	if (vd == NULL)
1065 		return (spa_vdev_exit(spa, vd, txg, EINVAL));
1066 
1067 	if ((error = vdev_create(vd, txg)) != 0)
1068 		return (spa_vdev_exit(spa, vd, txg, error));
1069 
1070 	/*
1071 	 * Transfer each new top-level vdev from vd to rvd.
1072 	 */
1073 	for (c = 0; c < vd->vdev_children; c++) {
1074 		tvd = vd->vdev_child[c];
1075 		vdev_remove_child(vd, tvd);
1076 		tvd->vdev_id = rvd->vdev_children;
1077 		vdev_add_child(rvd, tvd);
1078 		vdev_config_dirty(tvd);
1079 	}
1080 
1081 	/*
1082 	 * We have to be careful when adding new vdevs to an existing pool.
1083 	 * If other threads start allocating from these vdevs before we
1084 	 * sync the config cache, and we lose power, then upon reboot we may
1085 	 * fail to open the pool because there are DVAs that the config cache
1086 	 * can't translate.  Therefore, we first add the vdevs without
1087 	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
1088 	 * and then let spa_config_update() initialize the new metaslabs.
1089 	 *
1090 	 * spa_load() checks for added-but-not-initialized vdevs, so that
1091 	 * if we lose power at any point in this sequence, the remaining
1092 	 * steps will be completed the next time we load the pool.
1093 	 */
1094 	(void) spa_vdev_exit(spa, vd, txg, 0);
1095 
1096 	mutex_enter(&spa_namespace_lock);
1097 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
1098 	mutex_exit(&spa_namespace_lock);
1099 
1100 	return (0);
1101 }
1102 
1103 /*
1104  * Attach a device to a mirror.  The arguments are the path to any device
1105  * in the mirror, and the nvroot for the new device.  If the path specifies
1106  * a device that is not mirrored, we automatically insert the mirror vdev.
1107  *
1108  * If 'replacing' is specified, the new device is intended to replace the
1109  * existing device; in this case the two devices are made into their own
1110  * mirror using the 'replacing' vdev, which is functionally idendical to
1111  * the mirror vdev (it actually reuses all the same ops) but has a few
1112  * extra rules: you can't attach to it after it's been created, and upon
1113  * completion of resilvering, the first disk (the one being replaced)
1114  * is automatically detached.
1115  */
1116 int
1117 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
1118 {
1119 	uint64_t txg, open_txg;
1120 	int error;
1121 	vdev_t *rvd = spa->spa_root_vdev;
1122 	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
1123 	vdev_ops_t *pvops = replacing ? &vdev_replacing_ops : &vdev_mirror_ops;
1124 
1125 	txg = spa_vdev_enter(spa);
1126 
1127 	oldvd = vdev_lookup_by_guid(rvd, guid);
1128 
1129 	if (oldvd == NULL)
1130 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
1131 
1132 	if (!oldvd->vdev_ops->vdev_op_leaf)
1133 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1134 
1135 	pvd = oldvd->vdev_parent;
1136 
1137 	/*
1138 	 * The parent must be a mirror or the root, unless we're replacing;
1139 	 * in that case, the parent can be anything but another replacing vdev.
1140 	 */
1141 	if (pvd->vdev_ops != &vdev_mirror_ops &&
1142 	    pvd->vdev_ops != &vdev_root_ops &&
1143 	    (!replacing || pvd->vdev_ops == &vdev_replacing_ops))
1144 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1145 
1146 	newrootvd = spa_config_parse(spa, nvroot, NULL, 0, VDEV_ALLOC_ADD);
1147 
1148 	if (newrootvd == NULL || newrootvd->vdev_children != 1)
1149 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
1150 
1151 	newvd = newrootvd->vdev_child[0];
1152 
1153 	if (!newvd->vdev_ops->vdev_op_leaf)
1154 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
1155 
1156 	if ((error = vdev_create(newrootvd, txg)) != 0)
1157 		return (spa_vdev_exit(spa, newrootvd, txg, error));
1158 
1159 	/*
1160 	 * Compare the new device size with the replaceable/attachable
1161 	 * device size.
1162 	 */
1163 	if (newvd->vdev_psize < vdev_get_rsize(oldvd))
1164 		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
1165 
1166 	if (newvd->vdev_ashift != oldvd->vdev_ashift && oldvd->vdev_ashift != 0)
1167 		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
1168 
1169 	/*
1170 	 * If this is an in-place replacement, update oldvd's path and devid
1171 	 * to make it distinguishable from newvd, and unopenable from now on.
1172 	 */
1173 	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
1174 		spa_strfree(oldvd->vdev_path);
1175 		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
1176 		    KM_SLEEP);
1177 		(void) sprintf(oldvd->vdev_path, "%s/%s",
1178 		    newvd->vdev_path, "old");
1179 		if (oldvd->vdev_devid != NULL) {
1180 			spa_strfree(oldvd->vdev_devid);
1181 			oldvd->vdev_devid = NULL;
1182 		}
1183 	}
1184 
1185 	/*
1186 	 * If the parent is not a mirror, or if we're replacing,
1187 	 * insert the new mirror/replacing vdev above oldvd.
1188 	 */
1189 	if (pvd->vdev_ops != pvops)
1190 		pvd = vdev_add_parent(oldvd, pvops);
1191 
1192 	ASSERT(pvd->vdev_top->vdev_parent == rvd);
1193 	ASSERT(pvd->vdev_ops == pvops);
1194 	ASSERT(oldvd->vdev_parent == pvd);
1195 
1196 	/*
1197 	 * Extract the new device from its root and add it to pvd.
1198 	 */
1199 	vdev_remove_child(newrootvd, newvd);
1200 	newvd->vdev_id = pvd->vdev_children;
1201 	vdev_add_child(pvd, newvd);
1202 
1203 	/*
1204 	 * If newvd is smaller than oldvd, but larger than its rsize,
1205 	 * the addition of newvd may have decreased our parent's asize.
1206 	 */
1207 	pvd->vdev_asize = MIN(pvd->vdev_asize, newvd->vdev_asize);
1208 
1209 	tvd = newvd->vdev_top;
1210 	ASSERT(pvd->vdev_top == tvd);
1211 	ASSERT(tvd->vdev_parent == rvd);
1212 
1213 	vdev_config_dirty(tvd);
1214 
1215 	/*
1216 	 * Set newvd's DTL to [TXG_INITIAL, open_txg].  It will propagate
1217 	 * upward when spa_vdev_exit() calls vdev_dtl_reassess().
1218 	 */
1219 	open_txg = txg + TXG_CONCURRENT_STATES - 1;
1220 
1221 	mutex_enter(&newvd->vdev_dtl_lock);
1222 	space_map_add(&newvd->vdev_dtl_map, TXG_INITIAL,
1223 	    open_txg - TXG_INITIAL + 1);
1224 	mutex_exit(&newvd->vdev_dtl_lock);
1225 
1226 	dprintf("attached %s in txg %llu\n", newvd->vdev_path, txg);
1227 
1228 	/*
1229 	 * Mark newvd's DTL dirty in this txg.
1230 	 */
1231 	vdev_dirty(tvd, VDD_DTL, txg);
1232 	(void) txg_list_add(&tvd->vdev_dtl_list, newvd, txg);
1233 
1234 	(void) spa_vdev_exit(spa, newrootvd, open_txg, 0);
1235 
1236 	/*
1237 	 * Kick off a resilver to update newvd.
1238 	 */
1239 	VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
1240 
1241 	return (0);
1242 }
1243 
1244 /*
1245  * Detach a device from a mirror or replacing vdev.
1246  * If 'replace_done' is specified, only detach if the parent
1247  * is a replacing vdev.
1248  */
1249 int
1250 spa_vdev_detach(spa_t *spa, uint64_t guid, int replace_done)
1251 {
1252 	uint64_t txg;
1253 	int c, t, error;
1254 	vdev_t *rvd = spa->spa_root_vdev;
1255 	vdev_t *vd, *pvd, *cvd, *tvd;
1256 
1257 	txg = spa_vdev_enter(spa);
1258 
1259 	vd = vdev_lookup_by_guid(rvd, guid);
1260 
1261 	if (vd == NULL)
1262 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
1263 
1264 	if (!vd->vdev_ops->vdev_op_leaf)
1265 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1266 
1267 	pvd = vd->vdev_parent;
1268 
1269 	/*
1270 	 * If replace_done is specified, only remove this device if it's
1271 	 * the first child of a replacing vdev.
1272 	 */
1273 	if (replace_done &&
1274 	    (vd->vdev_id != 0 || pvd->vdev_ops != &vdev_replacing_ops))
1275 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1276 
1277 	/*
1278 	 * Only mirror and replacing vdevs support detach.
1279 	 */
1280 	if (pvd->vdev_ops != &vdev_replacing_ops &&
1281 	    pvd->vdev_ops != &vdev_mirror_ops)
1282 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1283 
1284 	/*
1285 	 * If there's only one replica, you can't detach it.
1286 	 */
1287 	if (pvd->vdev_children <= 1)
1288 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
1289 
1290 	/*
1291 	 * If all siblings have non-empty DTLs, this device may have the only
1292 	 * valid copy of the data, which means we cannot safely detach it.
1293 	 *
1294 	 * XXX -- as in the vdev_offline() case, we really want a more
1295 	 * precise DTL check.
1296 	 */
1297 	for (c = 0; c < pvd->vdev_children; c++) {
1298 		uint64_t dirty;
1299 
1300 		cvd = pvd->vdev_child[c];
1301 		if (cvd == vd)
1302 			continue;
1303 		if (vdev_is_dead(cvd))
1304 			continue;
1305 		mutex_enter(&cvd->vdev_dtl_lock);
1306 		dirty = cvd->vdev_dtl_map.sm_space |
1307 		    cvd->vdev_dtl_scrub.sm_space;
1308 		mutex_exit(&cvd->vdev_dtl_lock);
1309 		if (!dirty)
1310 			break;
1311 	}
1312 	if (c == pvd->vdev_children)
1313 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
1314 
1315 	/*
1316 	 * Erase the disk labels so the disk can be used for other things.
1317 	 * This must be done after all other error cases are handled,
1318 	 * but before we disembowel vd (so we can still do I/O to it).
1319 	 * But if we can't do it, don't treat the error as fatal --
1320 	 * it may be that the unwritability of the disk is the reason
1321 	 * it's being detached!
1322 	 */
1323 	error = vdev_label_init(vd, 0);
1324 	if (error)
1325 		dprintf("unable to erase labels on %s\n", vdev_description(vd));
1326 
1327 	/*
1328 	 * Remove vd from its parent and compact the parent's children.
1329 	 */
1330 	vdev_remove_child(pvd, vd);
1331 	vdev_compact_children(pvd);
1332 
1333 	/*
1334 	 * Remember one of the remaining children so we can get tvd below.
1335 	 */
1336 	cvd = pvd->vdev_child[0];
1337 
1338 	/*
1339 	 * If the parent mirror/replacing vdev only has one child,
1340 	 * the parent is no longer needed.  Remove it from the tree.
1341 	 */
1342 	if (pvd->vdev_children == 1)
1343 		vdev_remove_parent(cvd);
1344 
1345 	/*
1346 	 * We don't set tvd until now because the parent we just removed
1347 	 * may have been the previous top-level vdev.
1348 	 */
1349 	tvd = cvd->vdev_top;
1350 	ASSERT(tvd->vdev_parent == rvd);
1351 
1352 	/*
1353 	 * Reopen this top-level vdev to reassess health after detach.
1354 	 */
1355 	vdev_reopen(tvd);
1356 
1357 	/*
1358 	 * If the device we just detached was smaller than the others,
1359 	 * it may be possible to add metaslabs (i.e. grow the pool).  We ignore
1360 	 * the error here because the detach still succeeded - we just weren't
1361 	 * able to reinitialize the metaslabs.  This pool is in for a world of
1362 	 * hurt, in any case.
1363 	 */
1364 	(void) vdev_metaslab_init(tvd, txg);
1365 
1366 	vdev_config_dirty(tvd);
1367 
1368 	/*
1369 	 * Mark vd's DTL as dirty in this txg.
1370 	 * vdev_dtl_sync() will see that vd->vdev_detached is set
1371 	 * and free vd's DTL object in syncing context.
1372 	 * But first make sure we're not on any *other* txg's DTL list,
1373 	 * to prevent vd from being accessed after it's freed.
1374 	 */
1375 	vdev_dirty(tvd, VDD_DTL, txg);
1376 	vd->vdev_detached = B_TRUE;
1377 	for (t = 0; t < TXG_SIZE; t++)
1378 		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
1379 	(void) txg_list_add(&tvd->vdev_dtl_list, vd, txg);
1380 
1381 	dprintf("detached %s in txg %llu\n", vd->vdev_path, txg);
1382 
1383 	return (spa_vdev_exit(spa, vd, txg, 0));
1384 }
1385 
1386 /*
1387  * Find any device that's done replacing, so we can detach it.
1388  */
1389 static vdev_t *
1390 spa_vdev_replace_done_hunt(vdev_t *vd)
1391 {
1392 	vdev_t *newvd, *oldvd;
1393 	int c;
1394 
1395 	for (c = 0; c < vd->vdev_children; c++) {
1396 		oldvd = spa_vdev_replace_done_hunt(vd->vdev_child[c]);
1397 		if (oldvd != NULL)
1398 			return (oldvd);
1399 	}
1400 
1401 	if (vd->vdev_ops == &vdev_replacing_ops && vd->vdev_children == 2) {
1402 		oldvd = vd->vdev_child[0];
1403 		newvd = vd->vdev_child[1];
1404 
1405 		mutex_enter(&newvd->vdev_dtl_lock);
1406 		if (newvd->vdev_dtl_map.sm_space == 0 &&
1407 		    newvd->vdev_dtl_scrub.sm_space == 0) {
1408 			mutex_exit(&newvd->vdev_dtl_lock);
1409 			return (oldvd);
1410 		}
1411 		mutex_exit(&newvd->vdev_dtl_lock);
1412 	}
1413 
1414 	return (NULL);
1415 }
1416 
1417 static void
1418 spa_vdev_replace_done(spa_t *spa)
1419 {
1420 	vdev_t *vd;
1421 	uint64_t guid;
1422 
1423 	spa_config_enter(spa, RW_READER, FTAG);
1424 
1425 	while ((vd = spa_vdev_replace_done_hunt(spa->spa_root_vdev)) != NULL) {
1426 		guid = vd->vdev_guid;
1427 		spa_config_exit(spa, FTAG);
1428 		if (spa_vdev_detach(spa, guid, B_TRUE) != 0)
1429 			return;
1430 		spa_config_enter(spa, RW_READER, FTAG);
1431 	}
1432 
1433 	spa_config_exit(spa, FTAG);
1434 }
1435 
1436 /*
1437  * Update the stored path for this vdev.  Dirty the vdev configuration, relying
1438  * on spa_vdev_enter/exit() to synchronize the labels and cache.
1439  */
1440 int
1441 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
1442 {
1443 	vdev_t *rvd, *vd;
1444 	uint64_t txg;
1445 
1446 	rvd = spa->spa_root_vdev;
1447 
1448 	txg = spa_vdev_enter(spa);
1449 
1450 	if ((vd = vdev_lookup_by_guid(rvd, guid)) == NULL)
1451 		return (spa_vdev_exit(spa, NULL, txg, ENOENT));
1452 
1453 	if (!vd->vdev_ops->vdev_op_leaf)
1454 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1455 
1456 	spa_strfree(vd->vdev_path);
1457 	vd->vdev_path = spa_strdup(newpath);
1458 
1459 	vdev_config_dirty(vd->vdev_top);
1460 
1461 	return (spa_vdev_exit(spa, NULL, txg, 0));
1462 }
1463 
1464 /*
1465  * ==========================================================================
1466  * SPA Scrubbing
1467  * ==========================================================================
1468  */
1469 
1470 void
1471 spa_scrub_throttle(spa_t *spa, int direction)
1472 {
1473 	mutex_enter(&spa->spa_scrub_lock);
1474 	spa->spa_scrub_throttled += direction;
1475 	ASSERT(spa->spa_scrub_throttled >= 0);
1476 	if (spa->spa_scrub_throttled == 0)
1477 		cv_broadcast(&spa->spa_scrub_io_cv);
1478 	mutex_exit(&spa->spa_scrub_lock);
1479 }
1480 
1481 static void
1482 spa_scrub_io_done(zio_t *zio)
1483 {
1484 	spa_t *spa = zio->io_spa;
1485 
1486 	zio_buf_free(zio->io_data, zio->io_size);
1487 
1488 	mutex_enter(&spa->spa_scrub_lock);
1489 	if (zio->io_error && !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
1490 		vdev_t *vd = zio->io_vd;
1491 		spa->spa_scrub_errors++;
1492 		mutex_enter(&vd->vdev_stat_lock);
1493 		vd->vdev_stat.vs_scrub_errors++;
1494 		mutex_exit(&vd->vdev_stat_lock);
1495 	}
1496 	if (--spa->spa_scrub_inflight == 0) {
1497 		cv_broadcast(&spa->spa_scrub_io_cv);
1498 		ASSERT(spa->spa_scrub_throttled == 0);
1499 	}
1500 	mutex_exit(&spa->spa_scrub_lock);
1501 }
1502 
1503 static void
1504 spa_scrub_io_start(spa_t *spa, blkptr_t *bp, int priority, int flags,
1505     zbookmark_t *zb)
1506 {
1507 	size_t size = BP_GET_LSIZE(bp);
1508 	void *data = zio_buf_alloc(size);
1509 
1510 	mutex_enter(&spa->spa_scrub_lock);
1511 	spa->spa_scrub_inflight++;
1512 	mutex_exit(&spa->spa_scrub_lock);
1513 
1514 	if (zb->zb_level == -1 && BP_GET_TYPE(bp) != DMU_OT_OBJSET)
1515 		flags |= ZIO_FLAG_SPECULATIVE;	/* intent log block */
1516 
1517 	flags |= ZIO_FLAG_CANFAIL;
1518 
1519 	zio_nowait(zio_read(NULL, spa, bp, data, size,
1520 	    spa_scrub_io_done, NULL, priority, flags, zb));
1521 }
1522 
1523 /* ARGSUSED */
1524 static int
1525 spa_scrub_cb(traverse_blk_cache_t *bc, spa_t *spa, void *a)
1526 {
1527 	blkptr_t *bp = &bc->bc_blkptr;
1528 	vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(&bp->blk_dva[0]));
1529 
1530 	if (bc->bc_errno || vd == NULL) {
1531 		/*
1532 		 * We can't scrub this block, but we can continue to scrub
1533 		 * the rest of the pool.  Note the error and move along.
1534 		 */
1535 		mutex_enter(&spa->spa_scrub_lock);
1536 		spa->spa_scrub_errors++;
1537 		mutex_exit(&spa->spa_scrub_lock);
1538 
1539 		if (vd != NULL) {
1540 			mutex_enter(&vd->vdev_stat_lock);
1541 			vd->vdev_stat.vs_scrub_errors++;
1542 			mutex_exit(&vd->vdev_stat_lock);
1543 		}
1544 
1545 		return (ERESTART);
1546 	}
1547 
1548 	ASSERT(bp->blk_birth < spa->spa_scrub_maxtxg);
1549 
1550 	/*
1551 	 * Keep track of how much data we've examined so that
1552 	 * zpool(1M) status can make useful progress reports.
1553 	 */
1554 	mutex_enter(&vd->vdev_stat_lock);
1555 	vd->vdev_stat.vs_scrub_examined += BP_GET_ASIZE(bp);
1556 	mutex_exit(&vd->vdev_stat_lock);
1557 
1558 	if (spa->spa_scrub_type == POOL_SCRUB_RESILVER) {
1559 		if (DVA_GET_GANG(&bp->blk_dva[0])) {
1560 			/*
1561 			 * Gang members may be spread across multiple vdevs,
1562 			 * so the best we can do is look at the pool-wide DTL.
1563 			 * XXX -- it would be better to change our allocation
1564 			 * policy to ensure that this can't happen.
1565 			 */
1566 			vd = spa->spa_root_vdev;
1567 		}
1568 		if (vdev_dtl_contains(&vd->vdev_dtl_map, bp->blk_birth, 1)) {
1569 			spa_scrub_io_start(spa, bp, ZIO_PRIORITY_RESILVER,
1570 			    ZIO_FLAG_RESILVER, &bc->bc_bookmark);
1571 		}
1572 	} else {
1573 		spa_scrub_io_start(spa, bp, ZIO_PRIORITY_SCRUB,
1574 		    ZIO_FLAG_SCRUB, &bc->bc_bookmark);
1575 	}
1576 
1577 	return (0);
1578 }
1579 
1580 static void
1581 spa_scrub_thread(spa_t *spa)
1582 {
1583 	callb_cpr_t cprinfo;
1584 	traverse_handle_t *th = spa->spa_scrub_th;
1585 	vdev_t *rvd = spa->spa_root_vdev;
1586 	pool_scrub_type_t scrub_type = spa->spa_scrub_type;
1587 	int error = 0;
1588 	boolean_t complete;
1589 
1590 	CALLB_CPR_INIT(&cprinfo, &spa->spa_scrub_lock, callb_generic_cpr, FTAG);
1591 
1592 	/*
1593 	 * If we're restarting due to a snapshot create/delete,
1594 	 * wait for that to complete.
1595 	 */
1596 	txg_wait_synced(spa_get_dsl(spa), 0);
1597 
1598 	dprintf("start %s mintxg=%llu maxtxg=%llu\n",
1599 	    scrub_type == POOL_SCRUB_RESILVER ? "resilver" : "scrub",
1600 	    spa->spa_scrub_mintxg, spa->spa_scrub_maxtxg);
1601 
1602 	spa_config_enter(spa, RW_WRITER, FTAG);
1603 	vdev_reopen(rvd);		/* purge all vdev caches */
1604 	vdev_config_dirty(rvd);		/* rewrite all disk labels */
1605 	vdev_scrub_stat_update(rvd, scrub_type, B_FALSE);
1606 	spa_config_exit(spa, FTAG);
1607 
1608 	mutex_enter(&spa->spa_scrub_lock);
1609 	spa->spa_scrub_errors = 0;
1610 	spa->spa_scrub_active = 1;
1611 	ASSERT(spa->spa_scrub_inflight == 0);
1612 	ASSERT(spa->spa_scrub_throttled == 0);
1613 
1614 	while (!spa->spa_scrub_stop) {
1615 		CALLB_CPR_SAFE_BEGIN(&cprinfo);
1616 		while (spa->spa_scrub_suspended) {
1617 			spa->spa_scrub_active = 0;
1618 			cv_broadcast(&spa->spa_scrub_cv);
1619 			cv_wait(&spa->spa_scrub_cv, &spa->spa_scrub_lock);
1620 			spa->spa_scrub_active = 1;
1621 		}
1622 		CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_scrub_lock);
1623 
1624 		if (spa->spa_scrub_restart_txg != 0)
1625 			break;
1626 
1627 		mutex_exit(&spa->spa_scrub_lock);
1628 		error = traverse_more(th);
1629 		mutex_enter(&spa->spa_scrub_lock);
1630 		if (error != EAGAIN)
1631 			break;
1632 
1633 		while (spa->spa_scrub_throttled > 0)
1634 			cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
1635 	}
1636 
1637 	while (spa->spa_scrub_inflight)
1638 		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
1639 
1640 	spa->spa_scrub_active = 0;
1641 	cv_broadcast(&spa->spa_scrub_cv);
1642 
1643 	mutex_exit(&spa->spa_scrub_lock);
1644 
1645 	spa_config_enter(spa, RW_WRITER, FTAG);
1646 
1647 	mutex_enter(&spa->spa_scrub_lock);
1648 
1649 	/*
1650 	 * Note: we check spa_scrub_restart_txg under both spa_scrub_lock
1651 	 * AND the spa config lock to synchronize with any config changes
1652 	 * that revise the DTLs under spa_vdev_enter() / spa_vdev_exit().
1653 	 */
1654 	if (spa->spa_scrub_restart_txg != 0)
1655 		error = ERESTART;
1656 
1657 	if (spa->spa_scrub_stop)
1658 		error = EINTR;
1659 
1660 	/*
1661 	 * Even if there were uncorrectable errors, we consider the scrub
1662 	 * completed.  The downside is that if there is a transient error during
1663 	 * a resilver, we won't resilver the data properly to the target.  But
1664 	 * if the damage is permanent (more likely) we will resilver forever,
1665 	 * which isn't really acceptable.  Since there is enough information for
1666 	 * the user to know what has failed and why, this seems like a more
1667 	 * tractable approach.
1668 	 */
1669 	complete = (error == 0);
1670 
1671 	dprintf("end %s to maxtxg=%llu %s, traverse=%d, %llu errors, stop=%u\n",
1672 	    scrub_type == POOL_SCRUB_RESILVER ? "resilver" : "scrub",
1673 	    spa->spa_scrub_maxtxg, complete ? "done" : "FAILED",
1674 	    error, spa->spa_scrub_errors, spa->spa_scrub_stop);
1675 
1676 	mutex_exit(&spa->spa_scrub_lock);
1677 
1678 	/*
1679 	 * If the scrub/resilver completed, update all DTLs to reflect this.
1680 	 * Whether it succeeded or not, vacate all temporary scrub DTLs.
1681 	 */
1682 	vdev_dtl_reassess(rvd, spa_last_synced_txg(spa) + 1,
1683 	    complete ? spa->spa_scrub_maxtxg : 0, B_TRUE);
1684 	vdev_scrub_stat_update(rvd, POOL_SCRUB_NONE, complete);
1685 	spa_errlog_rotate(spa);
1686 
1687 	spa_config_exit(spa, FTAG);
1688 
1689 	mutex_enter(&spa->spa_scrub_lock);
1690 
1691 	/*
1692 	 * We may have finished replacing a device.
1693 	 * Let the async thread assess this and handle the detach.
1694 	 */
1695 	spa_async_request(spa, SPA_ASYNC_REPLACE_DONE);
1696 
1697 	/*
1698 	 * If we were told to restart, our final act is to start a new scrub.
1699 	 */
1700 	if (error == ERESTART)
1701 		spa_async_request(spa, scrub_type == POOL_SCRUB_RESILVER ?
1702 		    SPA_ASYNC_RESILVER : SPA_ASYNC_SCRUB);
1703 
1704 	spa->spa_scrub_type = POOL_SCRUB_NONE;
1705 	spa->spa_scrub_active = 0;
1706 	spa->spa_scrub_thread = NULL;
1707 	cv_broadcast(&spa->spa_scrub_cv);
1708 	CALLB_CPR_EXIT(&cprinfo);	/* drops &spa->spa_scrub_lock */
1709 	thread_exit();
1710 }
1711 
1712 void
1713 spa_scrub_suspend(spa_t *spa)
1714 {
1715 	mutex_enter(&spa->spa_scrub_lock);
1716 	spa->spa_scrub_suspended++;
1717 	while (spa->spa_scrub_active) {
1718 		cv_broadcast(&spa->spa_scrub_cv);
1719 		cv_wait(&spa->spa_scrub_cv, &spa->spa_scrub_lock);
1720 	}
1721 	while (spa->spa_scrub_inflight)
1722 		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
1723 	mutex_exit(&spa->spa_scrub_lock);
1724 }
1725 
1726 void
1727 spa_scrub_resume(spa_t *spa)
1728 {
1729 	mutex_enter(&spa->spa_scrub_lock);
1730 	ASSERT(spa->spa_scrub_suspended != 0);
1731 	if (--spa->spa_scrub_suspended == 0)
1732 		cv_broadcast(&spa->spa_scrub_cv);
1733 	mutex_exit(&spa->spa_scrub_lock);
1734 }
1735 
1736 void
1737 spa_scrub_restart(spa_t *spa, uint64_t txg)
1738 {
1739 	/*
1740 	 * Something happened (e.g. snapshot create/delete) that means
1741 	 * we must restart any in-progress scrubs.  The itinerary will
1742 	 * fix this properly.
1743 	 */
1744 	mutex_enter(&spa->spa_scrub_lock);
1745 	spa->spa_scrub_restart_txg = txg;
1746 	mutex_exit(&spa->spa_scrub_lock);
1747 }
1748 
1749 int
1750 spa_scrub(spa_t *spa, pool_scrub_type_t type, boolean_t force)
1751 {
1752 	space_seg_t *ss;
1753 	uint64_t mintxg, maxtxg;
1754 	vdev_t *rvd = spa->spa_root_vdev;
1755 
1756 	if ((uint_t)type >= POOL_SCRUB_TYPES)
1757 		return (ENOTSUP);
1758 
1759 	mutex_enter(&spa->spa_scrub_lock);
1760 
1761 	/*
1762 	 * If there's a scrub or resilver already in progress, stop it.
1763 	 */
1764 	while (spa->spa_scrub_thread != NULL) {
1765 		/*
1766 		 * Don't stop a resilver unless forced.
1767 		 */
1768 		if (spa->spa_scrub_type == POOL_SCRUB_RESILVER && !force) {
1769 			mutex_exit(&spa->spa_scrub_lock);
1770 			return (EBUSY);
1771 		}
1772 		spa->spa_scrub_stop = 1;
1773 		cv_broadcast(&spa->spa_scrub_cv);
1774 		cv_wait(&spa->spa_scrub_cv, &spa->spa_scrub_lock);
1775 	}
1776 
1777 	/*
1778 	 * Terminate the previous traverse.
1779 	 */
1780 	if (spa->spa_scrub_th != NULL) {
1781 		traverse_fini(spa->spa_scrub_th);
1782 		spa->spa_scrub_th = NULL;
1783 	}
1784 
1785 	if (rvd == NULL) {
1786 		ASSERT(spa->spa_scrub_stop == 0);
1787 		ASSERT(spa->spa_scrub_type == type);
1788 		ASSERT(spa->spa_scrub_restart_txg == 0);
1789 		mutex_exit(&spa->spa_scrub_lock);
1790 		return (0);
1791 	}
1792 
1793 	mintxg = TXG_INITIAL - 1;
1794 	maxtxg = spa_last_synced_txg(spa) + 1;
1795 
1796 	mutex_enter(&rvd->vdev_dtl_lock);
1797 
1798 	if (rvd->vdev_dtl_map.sm_space == 0) {
1799 		/*
1800 		 * The pool-wide DTL is empty.
1801 		 * If this is a resilver, there's nothing to do.
1802 		 */
1803 		if (type == POOL_SCRUB_RESILVER)
1804 			type = POOL_SCRUB_NONE;
1805 	} else {
1806 		/*
1807 		 * The pool-wide DTL is non-empty.
1808 		 * If this is a normal scrub, upgrade to a resilver instead.
1809 		 */
1810 		if (type == POOL_SCRUB_EVERYTHING)
1811 			type = POOL_SCRUB_RESILVER;
1812 	}
1813 
1814 	if (type == POOL_SCRUB_RESILVER) {
1815 		/*
1816 		 * Determine the resilvering boundaries.
1817 		 *
1818 		 * Note: (mintxg, maxtxg) is an open interval,
1819 		 * i.e. mintxg and maxtxg themselves are not included.
1820 		 *
1821 		 * Note: for maxtxg, we MIN with spa_last_synced_txg(spa) + 1
1822 		 * so we don't claim to resilver a txg that's still changing.
1823 		 */
1824 		ss = avl_first(&rvd->vdev_dtl_map.sm_root);
1825 		mintxg = ss->ss_start - 1;
1826 		ss = avl_last(&rvd->vdev_dtl_map.sm_root);
1827 		maxtxg = MIN(ss->ss_end, maxtxg);
1828 	}
1829 
1830 	mutex_exit(&rvd->vdev_dtl_lock);
1831 
1832 	spa->spa_scrub_stop = 0;
1833 	spa->spa_scrub_type = type;
1834 	spa->spa_scrub_restart_txg = 0;
1835 
1836 	if (type != POOL_SCRUB_NONE) {
1837 		spa->spa_scrub_mintxg = mintxg;
1838 		spa->spa_scrub_maxtxg = maxtxg;
1839 		spa->spa_scrub_th = traverse_init(spa, spa_scrub_cb, NULL,
1840 		    ADVANCE_PRE | ADVANCE_PRUNE | ADVANCE_ZIL,
1841 		    ZIO_FLAG_CANFAIL);
1842 		traverse_add_pool(spa->spa_scrub_th, mintxg, maxtxg);
1843 		spa->spa_scrub_thread = thread_create(NULL, 0,
1844 		    spa_scrub_thread, spa, 0, &p0, TS_RUN, minclsyspri);
1845 	}
1846 
1847 	mutex_exit(&spa->spa_scrub_lock);
1848 
1849 	return (0);
1850 }
1851 
1852 /*
1853  * ==========================================================================
1854  * SPA async task processing
1855  * ==========================================================================
1856  */
1857 
1858 static void
1859 spa_async_reopen(spa_t *spa)
1860 {
1861 	vdev_t *rvd = spa->spa_root_vdev;
1862 	vdev_t *tvd;
1863 	int c;
1864 
1865 	spa_config_enter(spa, RW_WRITER, FTAG);
1866 
1867 	for (c = 0; c < rvd->vdev_children; c++) {
1868 		tvd = rvd->vdev_child[c];
1869 		if (tvd->vdev_reopen_wanted) {
1870 			tvd->vdev_reopen_wanted = 0;
1871 			vdev_reopen(tvd);
1872 		}
1873 	}
1874 
1875 	spa_config_exit(spa, FTAG);
1876 }
1877 
1878 static void
1879 spa_async_thread(spa_t *spa)
1880 {
1881 	int tasks;
1882 
1883 	ASSERT(spa->spa_sync_on);
1884 
1885 	mutex_enter(&spa->spa_async_lock);
1886 	tasks = spa->spa_async_tasks;
1887 	spa->spa_async_tasks = 0;
1888 	mutex_exit(&spa->spa_async_lock);
1889 
1890 	/*
1891 	 * See if the config needs to be updated.
1892 	 */
1893 	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
1894 		mutex_enter(&spa_namespace_lock);
1895 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
1896 		mutex_exit(&spa_namespace_lock);
1897 	}
1898 
1899 	/*
1900 	 * See if any devices need to be reopened.
1901 	 */
1902 	if (tasks & SPA_ASYNC_REOPEN)
1903 		spa_async_reopen(spa);
1904 
1905 	/*
1906 	 * If any devices are done replacing, detach them.
1907 	 */
1908 	if (tasks & SPA_ASYNC_REPLACE_DONE)
1909 		spa_vdev_replace_done(spa);
1910 
1911 	/*
1912 	 * Kick off a scrub.
1913 	 */
1914 	if (tasks & SPA_ASYNC_SCRUB)
1915 		VERIFY(spa_scrub(spa, POOL_SCRUB_EVERYTHING, B_TRUE) == 0);
1916 
1917 	/*
1918 	 * Kick off a resilver.
1919 	 */
1920 	if (tasks & SPA_ASYNC_RESILVER)
1921 		VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
1922 
1923 	/*
1924 	 * Let the world know that we're done.
1925 	 */
1926 	mutex_enter(&spa->spa_async_lock);
1927 	spa->spa_async_thread = NULL;
1928 	cv_broadcast(&spa->spa_async_cv);
1929 	mutex_exit(&spa->spa_async_lock);
1930 	thread_exit();
1931 }
1932 
1933 void
1934 spa_async_suspend(spa_t *spa)
1935 {
1936 	mutex_enter(&spa->spa_async_lock);
1937 	spa->spa_async_suspended++;
1938 	while (spa->spa_async_thread != NULL)
1939 		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
1940 	mutex_exit(&spa->spa_async_lock);
1941 }
1942 
1943 void
1944 spa_async_resume(spa_t *spa)
1945 {
1946 	mutex_enter(&spa->spa_async_lock);
1947 	ASSERT(spa->spa_async_suspended != 0);
1948 	spa->spa_async_suspended--;
1949 	mutex_exit(&spa->spa_async_lock);
1950 }
1951 
1952 static void
1953 spa_async_dispatch(spa_t *spa)
1954 {
1955 	mutex_enter(&spa->spa_async_lock);
1956 	if (spa->spa_async_tasks && !spa->spa_async_suspended &&
1957 	    spa->spa_async_thread == NULL &&
1958 	    rootdir != NULL && !vn_is_readonly(rootdir))
1959 		spa->spa_async_thread = thread_create(NULL, 0,
1960 		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
1961 	mutex_exit(&spa->spa_async_lock);
1962 }
1963 
1964 void
1965 spa_async_request(spa_t *spa, int task)
1966 {
1967 	mutex_enter(&spa->spa_async_lock);
1968 	spa->spa_async_tasks |= task;
1969 	mutex_exit(&spa->spa_async_lock);
1970 }
1971 
1972 /*
1973  * ==========================================================================
1974  * SPA syncing routines
1975  * ==========================================================================
1976  */
1977 
1978 static void
1979 spa_sync_deferred_frees(spa_t *spa, uint64_t txg)
1980 {
1981 	bplist_t *bpl = &spa->spa_sync_bplist;
1982 	dmu_tx_t *tx;
1983 	blkptr_t blk;
1984 	uint64_t itor = 0;
1985 	zio_t *zio;
1986 	int error;
1987 	uint8_t c = 1;
1988 
1989 	zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CONFIG_HELD);
1990 
1991 	while (bplist_iterate(bpl, &itor, &blk) == 0)
1992 		zio_nowait(zio_free(zio, spa, txg, &blk, NULL, NULL));
1993 
1994 	error = zio_wait(zio);
1995 	ASSERT3U(error, ==, 0);
1996 
1997 	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1998 	bplist_vacate(bpl, tx);
1999 
2000 	/*
2001 	 * Pre-dirty the first block so we sync to convergence faster.
2002 	 * (Usually only the first block is needed.)
2003 	 */
2004 	dmu_write(spa->spa_meta_objset, spa->spa_sync_bplist_obj, 0, 1, &c, tx);
2005 	dmu_tx_commit(tx);
2006 }
2007 
2008 static void
2009 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
2010 {
2011 	nvlist_t *config;
2012 	char *packed = NULL;
2013 	size_t nvsize = 0;
2014 	dmu_buf_t *db;
2015 
2016 	if (list_is_empty(&spa->spa_dirty_list))
2017 		return;
2018 
2019 	config = spa_config_generate(spa, NULL, dmu_tx_get_txg(tx), B_FALSE);
2020 
2021 	if (spa->spa_config_syncing)
2022 		nvlist_free(spa->spa_config_syncing);
2023 	spa->spa_config_syncing = config;
2024 
2025 	VERIFY(nvlist_size(config, &nvsize, NV_ENCODE_XDR) == 0);
2026 
2027 	packed = kmem_alloc(nvsize, KM_SLEEP);
2028 
2029 	VERIFY(nvlist_pack(config, &packed, &nvsize, NV_ENCODE_XDR,
2030 	    KM_SLEEP) == 0);
2031 
2032 	dmu_write(spa->spa_meta_objset, spa->spa_config_object, 0, nvsize,
2033 	    packed, tx);
2034 
2035 	kmem_free(packed, nvsize);
2036 
2037 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset,
2038 	    spa->spa_config_object, FTAG, &db));
2039 	dmu_buf_will_dirty(db, tx);
2040 	*(uint64_t *)db->db_data = nvsize;
2041 	dmu_buf_rele(db, FTAG);
2042 }
2043 
2044 /*
2045  * Sync the specified transaction group.  New blocks may be dirtied as
2046  * part of the process, so we iterate until it converges.
2047  */
2048 void
2049 spa_sync(spa_t *spa, uint64_t txg)
2050 {
2051 	dsl_pool_t *dp = spa->spa_dsl_pool;
2052 	objset_t *mos = spa->spa_meta_objset;
2053 	bplist_t *bpl = &spa->spa_sync_bplist;
2054 	vdev_t *rvd = spa->spa_root_vdev;
2055 	vdev_t *vd;
2056 	dmu_tx_t *tx;
2057 	int dirty_vdevs;
2058 
2059 	/*
2060 	 * Lock out configuration changes.
2061 	 */
2062 	spa_config_enter(spa, RW_READER, FTAG);
2063 
2064 	spa->spa_syncing_txg = txg;
2065 	spa->spa_sync_pass = 0;
2066 
2067 	VERIFY(0 == bplist_open(bpl, mos, spa->spa_sync_bplist_obj));
2068 
2069 	/*
2070 	 * If anything has changed in this txg, push the deferred frees
2071 	 * from the previous txg.  If not, leave them alone so that we
2072 	 * don't generate work on an otherwise idle system.
2073 	 */
2074 	if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
2075 	    !txg_list_empty(&dp->dp_dirty_dirs, txg))
2076 		spa_sync_deferred_frees(spa, txg);
2077 
2078 	/*
2079 	 * Iterate to convergence.
2080 	 */
2081 	do {
2082 		spa->spa_sync_pass++;
2083 
2084 		tx = dmu_tx_create_assigned(dp, txg);
2085 		spa_sync_config_object(spa, tx);
2086 		dmu_tx_commit(tx);
2087 
2088 		spa_errlog_sync(spa, txg);
2089 
2090 		dsl_pool_sync(dp, txg);
2091 
2092 		dirty_vdevs = 0;
2093 		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) {
2094 			vdev_sync(vd, txg);
2095 			dirty_vdevs++;
2096 		}
2097 
2098 		tx = dmu_tx_create_assigned(dp, txg);
2099 		bplist_sync(bpl, tx);
2100 		dmu_tx_commit(tx);
2101 
2102 	} while (dirty_vdevs);
2103 
2104 	bplist_close(bpl);
2105 
2106 	dprintf("txg %llu passes %d\n", txg, spa->spa_sync_pass);
2107 
2108 	/*
2109 	 * Rewrite the vdev configuration (which includes the uberblock)
2110 	 * to commit the transaction group.
2111 	 *
2112 	 * If there are any dirty vdevs, sync the uberblock to all vdevs.
2113 	 * Otherwise, pick a random top-level vdev that's known to be
2114 	 * visible in the config cache (see spa_vdev_add() for details).
2115 	 * If the write fails, try the next vdev until we're tried them all.
2116 	 */
2117 	if (!list_is_empty(&spa->spa_dirty_list)) {
2118 		VERIFY(vdev_config_sync(rvd, txg) == 0);
2119 	} else {
2120 		int children = rvd->vdev_children;
2121 		int c0 = spa_get_random(children);
2122 		int c;
2123 
2124 		for (c = 0; c < children; c++) {
2125 			vd = rvd->vdev_child[(c0 + c) % children];
2126 			if (vd->vdev_ms_array == 0)
2127 				continue;
2128 			if (vdev_config_sync(vd, txg) == 0)
2129 				break;
2130 		}
2131 		if (c == children)
2132 			VERIFY(vdev_config_sync(rvd, txg) == 0);
2133 	}
2134 
2135 	/*
2136 	 * Clear the dirty config list.
2137 	 */
2138 	while ((vd = list_head(&spa->spa_dirty_list)) != NULL)
2139 		vdev_config_clean(vd);
2140 
2141 	/*
2142 	 * Now that the new config has synced transactionally,
2143 	 * let it become visible to the config cache.
2144 	 */
2145 	if (spa->spa_config_syncing != NULL) {
2146 		spa_config_set(spa, spa->spa_config_syncing);
2147 		spa->spa_config_txg = txg;
2148 		spa->spa_config_syncing = NULL;
2149 	}
2150 
2151 	/*
2152 	 * Make a stable copy of the fully synced uberblock.
2153 	 * We use this as the root for pool traversals.
2154 	 */
2155 	spa->spa_traverse_wanted = 1;	/* tells traverse_more() to stop */
2156 
2157 	spa_scrub_suspend(spa);		/* stop scrubbing and finish I/Os */
2158 
2159 	rw_enter(&spa->spa_traverse_lock, RW_WRITER);
2160 	spa->spa_traverse_wanted = 0;
2161 	spa->spa_ubsync = spa->spa_uberblock;
2162 	rw_exit(&spa->spa_traverse_lock);
2163 
2164 	spa_scrub_resume(spa);		/* resume scrub with new ubsync */
2165 
2166 	/*
2167 	 * Clean up the ZIL records for the synced txg.
2168 	 */
2169 	dsl_pool_zil_clean(dp);
2170 
2171 	/*
2172 	 * Update usable space statistics.
2173 	 */
2174 	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
2175 		vdev_sync_done(vd, txg);
2176 
2177 	/*
2178 	 * It had better be the case that we didn't dirty anything
2179 	 * since spa_sync_labels().
2180 	 */
2181 	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
2182 	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
2183 	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
2184 	ASSERT(bpl->bpl_queue == NULL);
2185 
2186 	spa_config_exit(spa, FTAG);
2187 
2188 	/*
2189 	 * If any async tasks have been requested, kick them off.
2190 	 */
2191 	spa_async_dispatch(spa);
2192 }
2193 
2194 /*
2195  * Sync all pools.  We don't want to hold the namespace lock across these
2196  * operations, so we take a reference on the spa_t and drop the lock during the
2197  * sync.
2198  */
2199 void
2200 spa_sync_allpools(void)
2201 {
2202 	spa_t *spa = NULL;
2203 	mutex_enter(&spa_namespace_lock);
2204 	while ((spa = spa_next(spa)) != NULL) {
2205 		if (spa_state(spa) != POOL_STATE_ACTIVE)
2206 			continue;
2207 		spa_open_ref(spa, FTAG);
2208 		mutex_exit(&spa_namespace_lock);
2209 		txg_wait_synced(spa_get_dsl(spa), 0);
2210 		mutex_enter(&spa_namespace_lock);
2211 		spa_close(spa, FTAG);
2212 	}
2213 	mutex_exit(&spa_namespace_lock);
2214 }
2215 
2216 /*
2217  * ==========================================================================
2218  * Miscellaneous routines
2219  * ==========================================================================
2220  */
2221 
2222 /*
2223  * Remove all pools in the system.
2224  */
2225 void
2226 spa_evict_all(void)
2227 {
2228 	spa_t *spa;
2229 
2230 	/*
2231 	 * Remove all cached state.  All pools should be closed now,
2232 	 * so every spa in the AVL tree should be unreferenced.
2233 	 */
2234 	mutex_enter(&spa_namespace_lock);
2235 	while ((spa = spa_next(NULL)) != NULL) {
2236 		/*
2237 		 * Stop async tasks.  The async thread may need to detach
2238 		 * a device that's been replaced, which requires grabbing
2239 		 * spa_namespace_lock, so we must drop it here.
2240 		 */
2241 		spa_open_ref(spa, FTAG);
2242 		mutex_exit(&spa_namespace_lock);
2243 		spa_async_suspend(spa);
2244 		VERIFY(spa_scrub(spa, POOL_SCRUB_NONE, B_TRUE) == 0);
2245 		mutex_enter(&spa_namespace_lock);
2246 		spa_close(spa, FTAG);
2247 
2248 		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
2249 			spa_unload(spa);
2250 			spa_deactivate(spa);
2251 		}
2252 		spa_remove(spa);
2253 	}
2254 	mutex_exit(&spa_namespace_lock);
2255 }
2256 
2257 vdev_t *
2258 spa_lookup_by_guid(spa_t *spa, uint64_t guid)
2259 {
2260 	return (vdev_lookup_by_guid(spa->spa_root_vdev, guid));
2261 }
2262