xref: /titanic_51/usr/src/uts/common/fs/zfs/dsl_pool.c (revision dcf050af29bc1c6bd38ba7f173dc18bb7c5629e1)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
24  * Copyright (c) 2013 Steven Hartland. All rights reserved.
25  */
26 
27 #include <sys/dsl_pool.h>
28 #include <sys/dsl_dataset.h>
29 #include <sys/dsl_prop.h>
30 #include <sys/dsl_dir.h>
31 #include <sys/dsl_synctask.h>
32 #include <sys/dsl_scan.h>
33 #include <sys/dnode.h>
34 #include <sys/dmu_tx.h>
35 #include <sys/dmu_objset.h>
36 #include <sys/arc.h>
37 #include <sys/zap.h>
38 #include <sys/zio.h>
39 #include <sys/zfs_context.h>
40 #include <sys/fs/zfs.h>
41 #include <sys/zfs_znode.h>
42 #include <sys/spa_impl.h>
43 #include <sys/dsl_deadlist.h>
44 #include <sys/bptree.h>
45 #include <sys/zfeature.h>
46 #include <sys/zil_impl.h>
47 #include <sys/dsl_userhold.h>
48 
49 /*
50  * ZFS Write Throttle
51  * ------------------
52  *
53  * ZFS must limit the rate of incoming writes to the rate at which it is able
54  * to sync data modifications to the backend storage. Throttling by too much
55  * creates an artificial limit; throttling by too little can only be sustained
56  * for short periods and would lead to highly lumpy performance. On a per-pool
57  * basis, ZFS tracks the amount of modified (dirty) data. As operations change
58  * data, the amount of dirty data increases; as ZFS syncs out data, the amount
59  * of dirty data decreases. When the amount of dirty data exceeds a
60  * predetermined threshold further modifications are blocked until the amount
61  * of dirty data decreases (as data is synced out).
62  *
63  * The limit on dirty data is tunable, and should be adjusted according to
64  * both the IO capacity and available memory of the system. The larger the
65  * window, the more ZFS is able to aggregate and amortize metadata (and data)
66  * changes. However, memory is a limited resource, and allowing for more dirty
67  * data comes at the cost of keeping other useful data in memory (for example
68  * ZFS data cached by the ARC).
69  *
70  * Implementation
71  *
72  * As buffers are modified dsl_pool_willuse_space() increments both the per-
73  * txg (dp_dirty_pertxg[]) and poolwide (dp_dirty_total) accounting of
74  * dirty space used; dsl_pool_dirty_space() decrements those values as data
75  * is synced out from dsl_pool_sync(). While only the poolwide value is
76  * relevant, the per-txg value is useful for debugging. The tunable
77  * zfs_dirty_data_max determines the dirty space limit. Once that value is
78  * exceeded, new writes are halted until space frees up.
79  *
80  * The zfs_dirty_data_sync tunable dictates the threshold at which we
81  * ensure that there is a txg syncing (see the comment in txg.c for a full
82  * description of transaction group stages).
83  *
84  * The IO scheduler uses both the dirty space limit and current amount of
85  * dirty data as inputs. Those values affect the number of concurrent IOs ZFS
86  * issues. See the comment in vdev_queue.c for details of the IO scheduler.
87  *
88  * The delay is also calculated based on the amount of dirty data.  See the
89  * comment above dmu_tx_delay() for details.
90  */
91 
92 /*
93  * zfs_dirty_data_max will be set to zfs_dirty_data_max_percent% of all memory,
94  * capped at zfs_dirty_data_max_max.  It can also be overridden in /etc/system.
95  */
96 uint64_t zfs_dirty_data_max;
97 uint64_t zfs_dirty_data_max_max = 4ULL * 1024 * 1024 * 1024;
98 int zfs_dirty_data_max_percent = 10;
99 
100 /*
101  * If there is at least this much dirty data, push out a txg.
102  */
103 uint64_t zfs_dirty_data_sync = 64 * 1024 * 1024;
104 
105 /*
106  * Once there is this amount of dirty data, the dmu_tx_delay() will kick in
107  * and delay each transaction.
108  * This value should be >= zfs_vdev_async_write_active_max_dirty_percent.
109  */
110 int zfs_delay_min_dirty_percent = 60;
111 
112 /*
113  * This controls how quickly the delay approaches infinity.
114  * Larger values cause it to delay more for a given amount of dirty data.
115  * Therefore larger values will cause there to be less dirty data for a
116  * given throughput.
117  *
118  * For the smoothest delay, this value should be about 1 billion divided
119  * by the maximum number of operations per second.  This will smoothly
120  * handle between 10x and 1/10th this number.
121  *
122  * Note: zfs_delay_scale * zfs_dirty_data_max must be < 2^64, due to the
123  * multiply in dmu_tx_delay().
124  */
125 uint64_t zfs_delay_scale = 1000 * 1000 * 1000 / 2000;
126 
127 
128 hrtime_t zfs_throttle_delay = MSEC2NSEC(10);
129 hrtime_t zfs_throttle_resolution = MSEC2NSEC(10);
130 
131 int
132 dsl_pool_open_special_dir(dsl_pool_t *dp, const char *name, dsl_dir_t **ddp)
133 {
134 	uint64_t obj;
135 	int err;
136 
137 	err = zap_lookup(dp->dp_meta_objset,
138 	    dp->dp_root_dir->dd_phys->dd_child_dir_zapobj,
139 	    name, sizeof (obj), 1, &obj);
140 	if (err)
141 		return (err);
142 
143 	return (dsl_dir_hold_obj(dp, obj, name, dp, ddp));
144 }
145 
146 static dsl_pool_t *
147 dsl_pool_open_impl(spa_t *spa, uint64_t txg)
148 {
149 	dsl_pool_t *dp;
150 	blkptr_t *bp = spa_get_rootblkptr(spa);
151 
152 	dp = kmem_zalloc(sizeof (dsl_pool_t), KM_SLEEP);
153 	dp->dp_spa = spa;
154 	dp->dp_meta_rootbp = *bp;
155 	rrw_init(&dp->dp_config_rwlock, B_TRUE);
156 	txg_init(dp, txg);
157 
158 	txg_list_create(&dp->dp_dirty_datasets,
159 	    offsetof(dsl_dataset_t, ds_dirty_link));
160 	txg_list_create(&dp->dp_dirty_zilogs,
161 	    offsetof(zilog_t, zl_dirty_link));
162 	txg_list_create(&dp->dp_dirty_dirs,
163 	    offsetof(dsl_dir_t, dd_dirty_link));
164 	txg_list_create(&dp->dp_sync_tasks,
165 	    offsetof(dsl_sync_task_t, dst_node));
166 
167 	mutex_init(&dp->dp_lock, NULL, MUTEX_DEFAULT, NULL);
168 	cv_init(&dp->dp_spaceavail_cv, NULL, CV_DEFAULT, NULL);
169 
170 	dp->dp_vnrele_taskq = taskq_create("zfs_vn_rele_taskq", 1, minclsyspri,
171 	    1, 4, 0);
172 
173 	return (dp);
174 }
175 
176 int
177 dsl_pool_init(spa_t *spa, uint64_t txg, dsl_pool_t **dpp)
178 {
179 	int err;
180 	dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
181 
182 	err = dmu_objset_open_impl(spa, NULL, &dp->dp_meta_rootbp,
183 	    &dp->dp_meta_objset);
184 	if (err != 0)
185 		dsl_pool_close(dp);
186 	else
187 		*dpp = dp;
188 
189 	return (err);
190 }
191 
192 int
193 dsl_pool_open(dsl_pool_t *dp)
194 {
195 	int err;
196 	dsl_dir_t *dd;
197 	dsl_dataset_t *ds;
198 	uint64_t obj;
199 
200 	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
201 	err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
202 	    DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1,
203 	    &dp->dp_root_dir_obj);
204 	if (err)
205 		goto out;
206 
207 	err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
208 	    NULL, dp, &dp->dp_root_dir);
209 	if (err)
210 		goto out;
211 
212 	err = dsl_pool_open_special_dir(dp, MOS_DIR_NAME, &dp->dp_mos_dir);
213 	if (err)
214 		goto out;
215 
216 	if (spa_version(dp->dp_spa) >= SPA_VERSION_ORIGIN) {
217 		err = dsl_pool_open_special_dir(dp, ORIGIN_DIR_NAME, &dd);
218 		if (err)
219 			goto out;
220 		err = dsl_dataset_hold_obj(dp, dd->dd_phys->dd_head_dataset_obj,
221 		    FTAG, &ds);
222 		if (err == 0) {
223 			err = dsl_dataset_hold_obj(dp,
224 			    ds->ds_phys->ds_prev_snap_obj, dp,
225 			    &dp->dp_origin_snap);
226 			dsl_dataset_rele(ds, FTAG);
227 		}
228 		dsl_dir_rele(dd, dp);
229 		if (err)
230 			goto out;
231 	}
232 
233 	if (spa_version(dp->dp_spa) >= SPA_VERSION_DEADLISTS) {
234 		err = dsl_pool_open_special_dir(dp, FREE_DIR_NAME,
235 		    &dp->dp_free_dir);
236 		if (err)
237 			goto out;
238 
239 		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
240 		    DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj);
241 		if (err)
242 			goto out;
243 		VERIFY0(bpobj_open(&dp->dp_free_bpobj,
244 		    dp->dp_meta_objset, obj));
245 	}
246 
247 	/*
248 	 * Note: errors ignored, because the leak dir will not exist if we
249 	 * have not encountered a leak yet.
250 	 */
251 	(void) dsl_pool_open_special_dir(dp, LEAK_DIR_NAME,
252 	    &dp->dp_leak_dir);
253 
254 	if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_ASYNC_DESTROY)) {
255 		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
256 		    DMU_POOL_BPTREE_OBJ, sizeof (uint64_t), 1,
257 		    &dp->dp_bptree_obj);
258 		if (err != 0)
259 			goto out;
260 	}
261 
262 	if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMPTY_BPOBJ)) {
263 		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
264 		    DMU_POOL_EMPTY_BPOBJ, sizeof (uint64_t), 1,
265 		    &dp->dp_empty_bpobj);
266 		if (err != 0)
267 			goto out;
268 	}
269 
270 	err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
271 	    DMU_POOL_TMP_USERREFS, sizeof (uint64_t), 1,
272 	    &dp->dp_tmp_userrefs_obj);
273 	if (err == ENOENT)
274 		err = 0;
275 	if (err)
276 		goto out;
277 
278 	err = dsl_scan_init(dp, dp->dp_tx.tx_open_txg);
279 
280 out:
281 	rrw_exit(&dp->dp_config_rwlock, FTAG);
282 	return (err);
283 }
284 
285 void
286 dsl_pool_close(dsl_pool_t *dp)
287 {
288 	/*
289 	 * Drop our references from dsl_pool_open().
290 	 *
291 	 * Since we held the origin_snap from "syncing" context (which
292 	 * includes pool-opening context), it actually only got a "ref"
293 	 * and not a hold, so just drop that here.
294 	 */
295 	if (dp->dp_origin_snap)
296 		dsl_dataset_rele(dp->dp_origin_snap, dp);
297 	if (dp->dp_mos_dir)
298 		dsl_dir_rele(dp->dp_mos_dir, dp);
299 	if (dp->dp_free_dir)
300 		dsl_dir_rele(dp->dp_free_dir, dp);
301 	if (dp->dp_leak_dir)
302 		dsl_dir_rele(dp->dp_leak_dir, dp);
303 	if (dp->dp_root_dir)
304 		dsl_dir_rele(dp->dp_root_dir, dp);
305 
306 	bpobj_close(&dp->dp_free_bpobj);
307 
308 	/* undo the dmu_objset_open_impl(mos) from dsl_pool_open() */
309 	if (dp->dp_meta_objset)
310 		dmu_objset_evict(dp->dp_meta_objset);
311 
312 	txg_list_destroy(&dp->dp_dirty_datasets);
313 	txg_list_destroy(&dp->dp_dirty_zilogs);
314 	txg_list_destroy(&dp->dp_sync_tasks);
315 	txg_list_destroy(&dp->dp_dirty_dirs);
316 
317 	arc_flush(dp->dp_spa);
318 	txg_fini(dp);
319 	dsl_scan_fini(dp);
320 	rrw_destroy(&dp->dp_config_rwlock);
321 	mutex_destroy(&dp->dp_lock);
322 	taskq_destroy(dp->dp_vnrele_taskq);
323 	if (dp->dp_blkstats)
324 		kmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t));
325 	kmem_free(dp, sizeof (dsl_pool_t));
326 }
327 
328 dsl_pool_t *
329 dsl_pool_create(spa_t *spa, nvlist_t *zplprops, uint64_t txg)
330 {
331 	int err;
332 	dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
333 	dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
334 	objset_t *os;
335 	dsl_dataset_t *ds;
336 	uint64_t obj;
337 
338 	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
339 
340 	/* create and open the MOS (meta-objset) */
341 	dp->dp_meta_objset = dmu_objset_create_impl(spa,
342 	    NULL, &dp->dp_meta_rootbp, DMU_OST_META, tx);
343 
344 	/* create the pool directory */
345 	err = zap_create_claim(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
346 	    DMU_OT_OBJECT_DIRECTORY, DMU_OT_NONE, 0, tx);
347 	ASSERT0(err);
348 
349 	/* Initialize scan structures */
350 	VERIFY0(dsl_scan_init(dp, txg));
351 
352 	/* create and open the root dir */
353 	dp->dp_root_dir_obj = dsl_dir_create_sync(dp, NULL, NULL, tx);
354 	VERIFY0(dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
355 	    NULL, dp, &dp->dp_root_dir));
356 
357 	/* create and open the meta-objset dir */
358 	(void) dsl_dir_create_sync(dp, dp->dp_root_dir, MOS_DIR_NAME, tx);
359 	VERIFY0(dsl_pool_open_special_dir(dp,
360 	    MOS_DIR_NAME, &dp->dp_mos_dir));
361 
362 	if (spa_version(spa) >= SPA_VERSION_DEADLISTS) {
363 		/* create and open the free dir */
364 		(void) dsl_dir_create_sync(dp, dp->dp_root_dir,
365 		    FREE_DIR_NAME, tx);
366 		VERIFY0(dsl_pool_open_special_dir(dp,
367 		    FREE_DIR_NAME, &dp->dp_free_dir));
368 
369 		/* create and open the free_bplist */
370 		obj = bpobj_alloc(dp->dp_meta_objset, SPA_MAXBLOCKSIZE, tx);
371 		VERIFY(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
372 		    DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx) == 0);
373 		VERIFY0(bpobj_open(&dp->dp_free_bpobj,
374 		    dp->dp_meta_objset, obj));
375 	}
376 
377 	if (spa_version(spa) >= SPA_VERSION_DSL_SCRUB)
378 		dsl_pool_create_origin(dp, tx);
379 
380 	/* create the root dataset */
381 	obj = dsl_dataset_create_sync_dd(dp->dp_root_dir, NULL, 0, tx);
382 
383 	/* create the root objset */
384 	VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG, &ds));
385 	os = dmu_objset_create_impl(dp->dp_spa, ds,
386 	    dsl_dataset_get_blkptr(ds), DMU_OST_ZFS, tx);
387 #ifdef _KERNEL
388 	zfs_create_fs(os, kcred, zplprops, tx);
389 #endif
390 	dsl_dataset_rele(ds, FTAG);
391 
392 	dmu_tx_commit(tx);
393 
394 	rrw_exit(&dp->dp_config_rwlock, FTAG);
395 
396 	return (dp);
397 }
398 
399 /*
400  * Account for the meta-objset space in its placeholder dsl_dir.
401  */
402 void
403 dsl_pool_mos_diduse_space(dsl_pool_t *dp,
404     int64_t used, int64_t comp, int64_t uncomp)
405 {
406 	ASSERT3U(comp, ==, uncomp); /* it's all metadata */
407 	mutex_enter(&dp->dp_lock);
408 	dp->dp_mos_used_delta += used;
409 	dp->dp_mos_compressed_delta += comp;
410 	dp->dp_mos_uncompressed_delta += uncomp;
411 	mutex_exit(&dp->dp_lock);
412 }
413 
414 static int
415 deadlist_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
416 {
417 	dsl_deadlist_t *dl = arg;
418 	dsl_deadlist_insert(dl, bp, tx);
419 	return (0);
420 }
421 
422 static void
423 dsl_pool_sync_mos(dsl_pool_t *dp, dmu_tx_t *tx)
424 {
425 	zio_t *zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
426 	dmu_objset_sync(dp->dp_meta_objset, zio, tx);
427 	VERIFY0(zio_wait(zio));
428 	dprintf_bp(&dp->dp_meta_rootbp, "meta objset rootbp is %s", "");
429 	spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp);
430 }
431 
432 static void
433 dsl_pool_dirty_delta(dsl_pool_t *dp, int64_t delta)
434 {
435 	ASSERT(MUTEX_HELD(&dp->dp_lock));
436 
437 	if (delta < 0)
438 		ASSERT3U(-delta, <=, dp->dp_dirty_total);
439 
440 	dp->dp_dirty_total += delta;
441 
442 	/*
443 	 * Note: we signal even when increasing dp_dirty_total.
444 	 * This ensures forward progress -- each thread wakes the next waiter.
445 	 */
446 	if (dp->dp_dirty_total <= zfs_dirty_data_max)
447 		cv_signal(&dp->dp_spaceavail_cv);
448 }
449 
450 void
451 dsl_pool_sync(dsl_pool_t *dp, uint64_t txg)
452 {
453 	zio_t *zio;
454 	dmu_tx_t *tx;
455 	dsl_dir_t *dd;
456 	dsl_dataset_t *ds;
457 	objset_t *mos = dp->dp_meta_objset;
458 	list_t synced_datasets;
459 
460 	list_create(&synced_datasets, sizeof (dsl_dataset_t),
461 	    offsetof(dsl_dataset_t, ds_synced_link));
462 
463 	tx = dmu_tx_create_assigned(dp, txg);
464 
465 	/*
466 	 * Write out all dirty blocks of dirty datasets.
467 	 */
468 	zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
469 	while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
470 		/*
471 		 * We must not sync any non-MOS datasets twice, because
472 		 * we may have taken a snapshot of them.  However, we
473 		 * may sync newly-created datasets on pass 2.
474 		 */
475 		ASSERT(!list_link_active(&ds->ds_synced_link));
476 		list_insert_tail(&synced_datasets, ds);
477 		dsl_dataset_sync(ds, zio, tx);
478 	}
479 	VERIFY0(zio_wait(zio));
480 
481 	/*
482 	 * We have written all of the accounted dirty data, so our
483 	 * dp_space_towrite should now be zero.  However, some seldom-used
484 	 * code paths do not adhere to this (e.g. dbuf_undirty(), also
485 	 * rounding error in dbuf_write_physdone).
486 	 * Shore up the accounting of any dirtied space now.
487 	 */
488 	dsl_pool_undirty_space(dp, dp->dp_dirty_pertxg[txg & TXG_MASK], txg);
489 
490 	/*
491 	 * After the data blocks have been written (ensured by the zio_wait()
492 	 * above), update the user/group space accounting.
493 	 */
494 	for (ds = list_head(&synced_datasets); ds != NULL;
495 	    ds = list_next(&synced_datasets, ds)) {
496 		dmu_objset_do_userquota_updates(ds->ds_objset, tx);
497 	}
498 
499 	/*
500 	 * Sync the datasets again to push out the changes due to
501 	 * userspace updates.  This must be done before we process the
502 	 * sync tasks, so that any snapshots will have the correct
503 	 * user accounting information (and we won't get confused
504 	 * about which blocks are part of the snapshot).
505 	 */
506 	zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
507 	while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
508 		ASSERT(list_link_active(&ds->ds_synced_link));
509 		dmu_buf_rele(ds->ds_dbuf, ds);
510 		dsl_dataset_sync(ds, zio, tx);
511 	}
512 	VERIFY0(zio_wait(zio));
513 
514 	/*
515 	 * Now that the datasets have been completely synced, we can
516 	 * clean up our in-memory structures accumulated while syncing:
517 	 *
518 	 *  - move dead blocks from the pending deadlist to the on-disk deadlist
519 	 *  - release hold from dsl_dataset_dirty()
520 	 */
521 	while ((ds = list_remove_head(&synced_datasets)) != NULL) {
522 		objset_t *os = ds->ds_objset;
523 		bplist_iterate(&ds->ds_pending_deadlist,
524 		    deadlist_enqueue_cb, &ds->ds_deadlist, tx);
525 		ASSERT(!dmu_objset_is_dirty(os, txg));
526 		dmu_buf_rele(ds->ds_dbuf, ds);
527 	}
528 	while ((dd = txg_list_remove(&dp->dp_dirty_dirs, txg)) != NULL) {
529 		dsl_dir_sync(dd, tx);
530 	}
531 
532 	/*
533 	 * The MOS's space is accounted for in the pool/$MOS
534 	 * (dp_mos_dir).  We can't modify the mos while we're syncing
535 	 * it, so we remember the deltas and apply them here.
536 	 */
537 	if (dp->dp_mos_used_delta != 0 || dp->dp_mos_compressed_delta != 0 ||
538 	    dp->dp_mos_uncompressed_delta != 0) {
539 		dsl_dir_diduse_space(dp->dp_mos_dir, DD_USED_HEAD,
540 		    dp->dp_mos_used_delta,
541 		    dp->dp_mos_compressed_delta,
542 		    dp->dp_mos_uncompressed_delta, tx);
543 		dp->dp_mos_used_delta = 0;
544 		dp->dp_mos_compressed_delta = 0;
545 		dp->dp_mos_uncompressed_delta = 0;
546 	}
547 
548 	if (list_head(&mos->os_dirty_dnodes[txg & TXG_MASK]) != NULL ||
549 	    list_head(&mos->os_free_dnodes[txg & TXG_MASK]) != NULL) {
550 		dsl_pool_sync_mos(dp, tx);
551 	}
552 
553 	/*
554 	 * If we modify a dataset in the same txg that we want to destroy it,
555 	 * its dsl_dir's dd_dbuf will be dirty, and thus have a hold on it.
556 	 * dsl_dir_destroy_check() will fail if there are unexpected holds.
557 	 * Therefore, we want to sync the MOS (thus syncing the dd_dbuf
558 	 * and clearing the hold on it) before we process the sync_tasks.
559 	 * The MOS data dirtied by the sync_tasks will be synced on the next
560 	 * pass.
561 	 */
562 	if (!txg_list_empty(&dp->dp_sync_tasks, txg)) {
563 		dsl_sync_task_t *dst;
564 		/*
565 		 * No more sync tasks should have been added while we
566 		 * were syncing.
567 		 */
568 		ASSERT3U(spa_sync_pass(dp->dp_spa), ==, 1);
569 		while ((dst = txg_list_remove(&dp->dp_sync_tasks, txg)) != NULL)
570 			dsl_sync_task_sync(dst, tx);
571 	}
572 
573 	dmu_tx_commit(tx);
574 
575 	DTRACE_PROBE2(dsl_pool_sync__done, dsl_pool_t *dp, dp, uint64_t, txg);
576 }
577 
578 void
579 dsl_pool_sync_done(dsl_pool_t *dp, uint64_t txg)
580 {
581 	zilog_t *zilog;
582 
583 	while (zilog = txg_list_remove(&dp->dp_dirty_zilogs, txg)) {
584 		dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
585 		zil_clean(zilog, txg);
586 		ASSERT(!dmu_objset_is_dirty(zilog->zl_os, txg));
587 		dmu_buf_rele(ds->ds_dbuf, zilog);
588 	}
589 	ASSERT(!dmu_objset_is_dirty(dp->dp_meta_objset, txg));
590 }
591 
592 /*
593  * TRUE if the current thread is the tx_sync_thread or if we
594  * are being called from SPA context during pool initialization.
595  */
596 int
597 dsl_pool_sync_context(dsl_pool_t *dp)
598 {
599 	return (curthread == dp->dp_tx.tx_sync_thread ||
600 	    spa_is_initializing(dp->dp_spa));
601 }
602 
603 uint64_t
604 dsl_pool_adjustedsize(dsl_pool_t *dp, boolean_t netfree)
605 {
606 	uint64_t space, resv;
607 
608 	/*
609 	 * If we're trying to assess whether it's OK to do a free,
610 	 * cut the reservation in half to allow forward progress
611 	 * (e.g. make it possible to rm(1) files from a full pool).
612 	 */
613 	space = spa_get_dspace(dp->dp_spa);
614 	resv = spa_get_slop_space(dp->dp_spa);
615 	if (netfree)
616 		resv >>= 1;
617 
618 	return (space - resv);
619 }
620 
621 boolean_t
622 dsl_pool_need_dirty_delay(dsl_pool_t *dp)
623 {
624 	uint64_t delay_min_bytes =
625 	    zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100;
626 	boolean_t rv;
627 
628 	mutex_enter(&dp->dp_lock);
629 	if (dp->dp_dirty_total > zfs_dirty_data_sync)
630 		txg_kick(dp);
631 	rv = (dp->dp_dirty_total > delay_min_bytes);
632 	mutex_exit(&dp->dp_lock);
633 	return (rv);
634 }
635 
636 void
637 dsl_pool_dirty_space(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx)
638 {
639 	if (space > 0) {
640 		mutex_enter(&dp->dp_lock);
641 		dp->dp_dirty_pertxg[tx->tx_txg & TXG_MASK] += space;
642 		dsl_pool_dirty_delta(dp, space);
643 		mutex_exit(&dp->dp_lock);
644 	}
645 }
646 
647 void
648 dsl_pool_undirty_space(dsl_pool_t *dp, int64_t space, uint64_t txg)
649 {
650 	ASSERT3S(space, >=, 0);
651 	if (space == 0)
652 		return;
653 	mutex_enter(&dp->dp_lock);
654 	if (dp->dp_dirty_pertxg[txg & TXG_MASK] < space) {
655 		/* XXX writing something we didn't dirty? */
656 		space = dp->dp_dirty_pertxg[txg & TXG_MASK];
657 	}
658 	ASSERT3U(dp->dp_dirty_pertxg[txg & TXG_MASK], >=, space);
659 	dp->dp_dirty_pertxg[txg & TXG_MASK] -= space;
660 	ASSERT3U(dp->dp_dirty_total, >=, space);
661 	dsl_pool_dirty_delta(dp, -space);
662 	mutex_exit(&dp->dp_lock);
663 }
664 
665 /* ARGSUSED */
666 static int
667 upgrade_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
668 {
669 	dmu_tx_t *tx = arg;
670 	dsl_dataset_t *ds, *prev = NULL;
671 	int err;
672 
673 	err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
674 	if (err)
675 		return (err);
676 
677 	while (ds->ds_phys->ds_prev_snap_obj != 0) {
678 		err = dsl_dataset_hold_obj(dp, ds->ds_phys->ds_prev_snap_obj,
679 		    FTAG, &prev);
680 		if (err) {
681 			dsl_dataset_rele(ds, FTAG);
682 			return (err);
683 		}
684 
685 		if (prev->ds_phys->ds_next_snap_obj != ds->ds_object)
686 			break;
687 		dsl_dataset_rele(ds, FTAG);
688 		ds = prev;
689 		prev = NULL;
690 	}
691 
692 	if (prev == NULL) {
693 		prev = dp->dp_origin_snap;
694 
695 		/*
696 		 * The $ORIGIN can't have any data, or the accounting
697 		 * will be wrong.
698 		 */
699 		ASSERT0(prev->ds_phys->ds_bp.blk_birth);
700 
701 		/* The origin doesn't get attached to itself */
702 		if (ds->ds_object == prev->ds_object) {
703 			dsl_dataset_rele(ds, FTAG);
704 			return (0);
705 		}
706 
707 		dmu_buf_will_dirty(ds->ds_dbuf, tx);
708 		ds->ds_phys->ds_prev_snap_obj = prev->ds_object;
709 		ds->ds_phys->ds_prev_snap_txg = prev->ds_phys->ds_creation_txg;
710 
711 		dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx);
712 		ds->ds_dir->dd_phys->dd_origin_obj = prev->ds_object;
713 
714 		dmu_buf_will_dirty(prev->ds_dbuf, tx);
715 		prev->ds_phys->ds_num_children++;
716 
717 		if (ds->ds_phys->ds_next_snap_obj == 0) {
718 			ASSERT(ds->ds_prev == NULL);
719 			VERIFY0(dsl_dataset_hold_obj(dp,
720 			    ds->ds_phys->ds_prev_snap_obj, ds, &ds->ds_prev));
721 		}
722 	}
723 
724 	ASSERT3U(ds->ds_dir->dd_phys->dd_origin_obj, ==, prev->ds_object);
725 	ASSERT3U(ds->ds_phys->ds_prev_snap_obj, ==, prev->ds_object);
726 
727 	if (prev->ds_phys->ds_next_clones_obj == 0) {
728 		dmu_buf_will_dirty(prev->ds_dbuf, tx);
729 		prev->ds_phys->ds_next_clones_obj =
730 		    zap_create(dp->dp_meta_objset,
731 		    DMU_OT_NEXT_CLONES, DMU_OT_NONE, 0, tx);
732 	}
733 	VERIFY0(zap_add_int(dp->dp_meta_objset,
734 	    prev->ds_phys->ds_next_clones_obj, ds->ds_object, tx));
735 
736 	dsl_dataset_rele(ds, FTAG);
737 	if (prev != dp->dp_origin_snap)
738 		dsl_dataset_rele(prev, FTAG);
739 	return (0);
740 }
741 
742 void
743 dsl_pool_upgrade_clones(dsl_pool_t *dp, dmu_tx_t *tx)
744 {
745 	ASSERT(dmu_tx_is_syncing(tx));
746 	ASSERT(dp->dp_origin_snap != NULL);
747 
748 	VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, upgrade_clones_cb,
749 	    tx, DS_FIND_CHILDREN));
750 }
751 
752 /* ARGSUSED */
753 static int
754 upgrade_dir_clones_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
755 {
756 	dmu_tx_t *tx = arg;
757 	objset_t *mos = dp->dp_meta_objset;
758 
759 	if (ds->ds_dir->dd_phys->dd_origin_obj != 0) {
760 		dsl_dataset_t *origin;
761 
762 		VERIFY0(dsl_dataset_hold_obj(dp,
763 		    ds->ds_dir->dd_phys->dd_origin_obj, FTAG, &origin));
764 
765 		if (origin->ds_dir->dd_phys->dd_clones == 0) {
766 			dmu_buf_will_dirty(origin->ds_dir->dd_dbuf, tx);
767 			origin->ds_dir->dd_phys->dd_clones = zap_create(mos,
768 			    DMU_OT_DSL_CLONES, DMU_OT_NONE, 0, tx);
769 		}
770 
771 		VERIFY0(zap_add_int(dp->dp_meta_objset,
772 		    origin->ds_dir->dd_phys->dd_clones, ds->ds_object, tx));
773 
774 		dsl_dataset_rele(origin, FTAG);
775 	}
776 	return (0);
777 }
778 
779 void
780 dsl_pool_upgrade_dir_clones(dsl_pool_t *dp, dmu_tx_t *tx)
781 {
782 	ASSERT(dmu_tx_is_syncing(tx));
783 	uint64_t obj;
784 
785 	(void) dsl_dir_create_sync(dp, dp->dp_root_dir, FREE_DIR_NAME, tx);
786 	VERIFY0(dsl_pool_open_special_dir(dp,
787 	    FREE_DIR_NAME, &dp->dp_free_dir));
788 
789 	/*
790 	 * We can't use bpobj_alloc(), because spa_version() still
791 	 * returns the old version, and we need a new-version bpobj with
792 	 * subobj support.  So call dmu_object_alloc() directly.
793 	 */
794 	obj = dmu_object_alloc(dp->dp_meta_objset, DMU_OT_BPOBJ,
795 	    SPA_MAXBLOCKSIZE, DMU_OT_BPOBJ_HDR, sizeof (bpobj_phys_t), tx);
796 	VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
797 	    DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx));
798 	VERIFY0(bpobj_open(&dp->dp_free_bpobj, dp->dp_meta_objset, obj));
799 
800 	VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
801 	    upgrade_dir_clones_cb, tx, DS_FIND_CHILDREN));
802 }
803 
804 void
805 dsl_pool_create_origin(dsl_pool_t *dp, dmu_tx_t *tx)
806 {
807 	uint64_t dsobj;
808 	dsl_dataset_t *ds;
809 
810 	ASSERT(dmu_tx_is_syncing(tx));
811 	ASSERT(dp->dp_origin_snap == NULL);
812 	ASSERT(rrw_held(&dp->dp_config_rwlock, RW_WRITER));
813 
814 	/* create the origin dir, ds, & snap-ds */
815 	dsobj = dsl_dataset_create_sync(dp->dp_root_dir, ORIGIN_DIR_NAME,
816 	    NULL, 0, kcred, tx);
817 	VERIFY0(dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
818 	dsl_dataset_snapshot_sync_impl(ds, ORIGIN_DIR_NAME, tx);
819 	VERIFY0(dsl_dataset_hold_obj(dp, ds->ds_phys->ds_prev_snap_obj,
820 	    dp, &dp->dp_origin_snap));
821 	dsl_dataset_rele(ds, FTAG);
822 }
823 
824 taskq_t *
825 dsl_pool_vnrele_taskq(dsl_pool_t *dp)
826 {
827 	return (dp->dp_vnrele_taskq);
828 }
829 
830 /*
831  * Walk through the pool-wide zap object of temporary snapshot user holds
832  * and release them.
833  */
834 void
835 dsl_pool_clean_tmp_userrefs(dsl_pool_t *dp)
836 {
837 	zap_attribute_t za;
838 	zap_cursor_t zc;
839 	objset_t *mos = dp->dp_meta_objset;
840 	uint64_t zapobj = dp->dp_tmp_userrefs_obj;
841 	nvlist_t *holds;
842 
843 	if (zapobj == 0)
844 		return;
845 	ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
846 
847 	holds = fnvlist_alloc();
848 
849 	for (zap_cursor_init(&zc, mos, zapobj);
850 	    zap_cursor_retrieve(&zc, &za) == 0;
851 	    zap_cursor_advance(&zc)) {
852 		char *htag;
853 		nvlist_t *tags;
854 
855 		htag = strchr(za.za_name, '-');
856 		*htag = '\0';
857 		++htag;
858 		if (nvlist_lookup_nvlist(holds, za.za_name, &tags) != 0) {
859 			tags = fnvlist_alloc();
860 			fnvlist_add_boolean(tags, htag);
861 			fnvlist_add_nvlist(holds, za.za_name, tags);
862 			fnvlist_free(tags);
863 		} else {
864 			fnvlist_add_boolean(tags, htag);
865 		}
866 	}
867 	dsl_dataset_user_release_tmp(dp, holds);
868 	fnvlist_free(holds);
869 	zap_cursor_fini(&zc);
870 }
871 
872 /*
873  * Create the pool-wide zap object for storing temporary snapshot holds.
874  */
875 void
876 dsl_pool_user_hold_create_obj(dsl_pool_t *dp, dmu_tx_t *tx)
877 {
878 	objset_t *mos = dp->dp_meta_objset;
879 
880 	ASSERT(dp->dp_tmp_userrefs_obj == 0);
881 	ASSERT(dmu_tx_is_syncing(tx));
882 
883 	dp->dp_tmp_userrefs_obj = zap_create_link(mos, DMU_OT_USERREFS,
884 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_TMP_USERREFS, tx);
885 }
886 
887 static int
888 dsl_pool_user_hold_rele_impl(dsl_pool_t *dp, uint64_t dsobj,
889     const char *tag, uint64_t now, dmu_tx_t *tx, boolean_t holding)
890 {
891 	objset_t *mos = dp->dp_meta_objset;
892 	uint64_t zapobj = dp->dp_tmp_userrefs_obj;
893 	char *name;
894 	int error;
895 
896 	ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
897 	ASSERT(dmu_tx_is_syncing(tx));
898 
899 	/*
900 	 * If the pool was created prior to SPA_VERSION_USERREFS, the
901 	 * zap object for temporary holds might not exist yet.
902 	 */
903 	if (zapobj == 0) {
904 		if (holding) {
905 			dsl_pool_user_hold_create_obj(dp, tx);
906 			zapobj = dp->dp_tmp_userrefs_obj;
907 		} else {
908 			return (SET_ERROR(ENOENT));
909 		}
910 	}
911 
912 	name = kmem_asprintf("%llx-%s", (u_longlong_t)dsobj, tag);
913 	if (holding)
914 		error = zap_add(mos, zapobj, name, 8, 1, &now, tx);
915 	else
916 		error = zap_remove(mos, zapobj, name, tx);
917 	strfree(name);
918 
919 	return (error);
920 }
921 
922 /*
923  * Add a temporary hold for the given dataset object and tag.
924  */
925 int
926 dsl_pool_user_hold(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
927     uint64_t now, dmu_tx_t *tx)
928 {
929 	return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, now, tx, B_TRUE));
930 }
931 
932 /*
933  * Release a temporary hold for the given dataset object and tag.
934  */
935 int
936 dsl_pool_user_release(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
937     dmu_tx_t *tx)
938 {
939 	return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, NULL,
940 	    tx, B_FALSE));
941 }
942 
943 /*
944  * DSL Pool Configuration Lock
945  *
946  * The dp_config_rwlock protects against changes to DSL state (e.g. dataset
947  * creation / destruction / rename / property setting).  It must be held for
948  * read to hold a dataset or dsl_dir.  I.e. you must call
949  * dsl_pool_config_enter() or dsl_pool_hold() before calling
950  * dsl_{dataset,dir}_hold{_obj}.  In most circumstances, the dp_config_rwlock
951  * must be held continuously until all datasets and dsl_dirs are released.
952  *
953  * The only exception to this rule is that if a "long hold" is placed on
954  * a dataset, then the dp_config_rwlock may be dropped while the dataset
955  * is still held.  The long hold will prevent the dataset from being
956  * destroyed -- the destroy will fail with EBUSY.  A long hold can be
957  * obtained by calling dsl_dataset_long_hold(), or by "owning" a dataset
958  * (by calling dsl_{dataset,objset}_{try}own{_obj}).
959  *
960  * Legitimate long-holders (including owners) should be long-running, cancelable
961  * tasks that should cause "zfs destroy" to fail.  This includes DMU
962  * consumers (i.e. a ZPL filesystem being mounted or ZVOL being open),
963  * "zfs send", and "zfs diff".  There are several other long-holders whose
964  * uses are suboptimal (e.g. "zfs promote", and zil_suspend()).
965  *
966  * The usual formula for long-holding would be:
967  * dsl_pool_hold()
968  * dsl_dataset_hold()
969  * ... perform checks ...
970  * dsl_dataset_long_hold()
971  * dsl_pool_rele()
972  * ... perform long-running task ...
973  * dsl_dataset_long_rele()
974  * dsl_dataset_rele()
975  *
976  * Note that when the long hold is released, the dataset is still held but
977  * the pool is not held.  The dataset may change arbitrarily during this time
978  * (e.g. it could be destroyed).  Therefore you shouldn't do anything to the
979  * dataset except release it.
980  *
981  * User-initiated operations (e.g. ioctls, zfs_ioc_*()) are either read-only
982  * or modifying operations.
983  *
984  * Modifying operations should generally use dsl_sync_task().  The synctask
985  * infrastructure enforces proper locking strategy with respect to the
986  * dp_config_rwlock.  See the comment above dsl_sync_task() for details.
987  *
988  * Read-only operations will manually hold the pool, then the dataset, obtain
989  * information from the dataset, then release the pool and dataset.
990  * dmu_objset_{hold,rele}() are convenience routines that also do the pool
991  * hold/rele.
992  */
993 
994 int
995 dsl_pool_hold(const char *name, void *tag, dsl_pool_t **dp)
996 {
997 	spa_t *spa;
998 	int error;
999 
1000 	error = spa_open(name, &spa, tag);
1001 	if (error == 0) {
1002 		*dp = spa_get_dsl(spa);
1003 		dsl_pool_config_enter(*dp, tag);
1004 	}
1005 	return (error);
1006 }
1007 
1008 void
1009 dsl_pool_rele(dsl_pool_t *dp, void *tag)
1010 {
1011 	dsl_pool_config_exit(dp, tag);
1012 	spa_close(dp->dp_spa, tag);
1013 }
1014 
1015 void
1016 dsl_pool_config_enter(dsl_pool_t *dp, void *tag)
1017 {
1018 	/*
1019 	 * We use a "reentrant" reader-writer lock, but not reentrantly.
1020 	 *
1021 	 * The rrwlock can (with the track_all flag) track all reading threads,
1022 	 * which is very useful for debugging which code path failed to release
1023 	 * the lock, and for verifying that the *current* thread does hold
1024 	 * the lock.
1025 	 *
1026 	 * (Unlike a rwlock, which knows that N threads hold it for
1027 	 * read, but not *which* threads, so rw_held(RW_READER) returns TRUE
1028 	 * if any thread holds it for read, even if this thread doesn't).
1029 	 */
1030 	ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER));
1031 	rrw_enter(&dp->dp_config_rwlock, RW_READER, tag);
1032 }
1033 
1034 void
1035 dsl_pool_config_exit(dsl_pool_t *dp, void *tag)
1036 {
1037 	rrw_exit(&dp->dp_config_rwlock, tag);
1038 }
1039 
1040 boolean_t
1041 dsl_pool_config_held(dsl_pool_t *dp)
1042 {
1043 	return (RRW_LOCK_HELD(&dp->dp_config_rwlock));
1044 }
1045