xref: /titanic_51/usr/src/uts/common/fs/zfs/dsl_pool.c (revision b89e420ae1290e425c29db875ec0c0546006eec7)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2013 by Delphix. All rights reserved.
24  * Copyright (c) 2013 Steven Hartland. All rights reserved.
25  */
26 
27 #include <sys/dsl_pool.h>
28 #include <sys/dsl_dataset.h>
29 #include <sys/dsl_prop.h>
30 #include <sys/dsl_dir.h>
31 #include <sys/dsl_synctask.h>
32 #include <sys/dsl_scan.h>
33 #include <sys/dnode.h>
34 #include <sys/dmu_tx.h>
35 #include <sys/dmu_objset.h>
36 #include <sys/arc.h>
37 #include <sys/zap.h>
38 #include <sys/zio.h>
39 #include <sys/zfs_context.h>
40 #include <sys/fs/zfs.h>
41 #include <sys/zfs_znode.h>
42 #include <sys/spa_impl.h>
43 #include <sys/dsl_deadlist.h>
44 #include <sys/bptree.h>
45 #include <sys/zfeature.h>
46 #include <sys/zil_impl.h>
47 #include <sys/dsl_userhold.h>
48 
49 /*
50  * ZFS Write Throttle
51  * ------------------
52  *
53  * ZFS must limit the rate of incoming writes to the rate at which it is able
54  * to sync data modifications to the backend storage. Throttling by too much
55  * creates an artificial limit; throttling by too little can only be sustained
56  * for short periods and would lead to highly lumpy performance. On a per-pool
57  * basis, ZFS tracks the amount of modified (dirty) data. As operations change
58  * data, the amount of dirty data increases; as ZFS syncs out data, the amount
59  * of dirty data decreases. When the amount of dirty data exceeds a
60  * predetermined threshold further modifications are blocked until the amount
61  * of dirty data decreases (as data is synced out).
62  *
63  * The limit on dirty data is tunable, and should be adjusted according to
64  * both the IO capacity and available memory of the system. The larger the
65  * window, the more ZFS is able to aggregate and amortize metadata (and data)
66  * changes. However, memory is a limited resource, and allowing for more dirty
67  * data comes at the cost of keeping other useful data in memory (for example
68  * ZFS data cached by the ARC).
69  *
70  * Implementation
71  *
72  * As buffers are modified dsl_pool_willuse_space() increments both the per-
73  * txg (dp_dirty_pertxg[]) and poolwide (dp_dirty_total) accounting of
74  * dirty space used; dsl_pool_dirty_space() decrements those values as data
75  * is synced out from dsl_pool_sync(). While only the poolwide value is
76  * relevant, the per-txg value is useful for debugging. The tunable
77  * zfs_dirty_data_max determines the dirty space limit. Once that value is
78  * exceeded, new writes are halted until space frees up.
79  *
80  * The zfs_dirty_data_sync tunable dictates the threshold at which we
81  * ensure that there is a txg syncing (see the comment in txg.c for a full
82  * description of transaction group stages).
83  *
84  * The IO scheduler uses both the dirty space limit and current amount of
85  * dirty data as inputs. Those values affect the number of concurrent IOs ZFS
86  * issues. See the comment in vdev_queue.c for details of the IO scheduler.
87  *
88  * The delay is also calculated based on the amount of dirty data.  See the
89  * comment above dmu_tx_delay() for details.
90  */
91 
92 /*
93  * zfs_dirty_data_max will be set to zfs_dirty_data_max_percent% of all memory,
94  * capped at zfs_dirty_data_max_max.  It can also be overridden in /etc/system.
95  */
96 uint64_t zfs_dirty_data_max;
97 uint64_t zfs_dirty_data_max_max = 4ULL * 1024 * 1024 * 1024;
98 int zfs_dirty_data_max_percent = 10;
99 
100 /*
101  * If there is at least this much dirty data, push out a txg.
102  */
103 uint64_t zfs_dirty_data_sync = 64 * 1024 * 1024;
104 
105 /*
106  * Once there is this amount of dirty data, the dmu_tx_delay() will kick in
107  * and delay each transaction.
108  * This value should be >= zfs_vdev_async_write_active_max_dirty_percent.
109  */
110 int zfs_delay_min_dirty_percent = 60;
111 
112 /*
113  * This controls how quickly the delay approaches infinity.
114  * Larger values cause it to delay less for a given amount of dirty data.
115  * Therefore larger values will cause there to be more dirty data for a
116  * given throughput.
117  *
118  * For the smoothest delay, this value should be about 1 billion divided
119  * by the maximum number of operations per second.  This will smoothly
120  * handle between 10x and 1/10th this number.
121  *
122  * Note: zfs_delay_scale * zfs_dirty_data_max must be < 2^64, due to the
123  * multiply in dmu_tx_delay().
124  */
125 uint64_t zfs_delay_scale = 1000 * 1000 * 1000 / 2000;
126 
127 
128 /*
129  * XXX someday maybe turn these into #defines, and you have to tune it on a
130  * per-pool basis using zfs.conf.
131  */
132 
133 
134 hrtime_t zfs_throttle_delay = MSEC2NSEC(10);
135 hrtime_t zfs_throttle_resolution = MSEC2NSEC(10);
136 
137 int
138 dsl_pool_open_special_dir(dsl_pool_t *dp, const char *name, dsl_dir_t **ddp)
139 {
140 	uint64_t obj;
141 	int err;
142 
143 	err = zap_lookup(dp->dp_meta_objset,
144 	    dp->dp_root_dir->dd_phys->dd_child_dir_zapobj,
145 	    name, sizeof (obj), 1, &obj);
146 	if (err)
147 		return (err);
148 
149 	return (dsl_dir_hold_obj(dp, obj, name, dp, ddp));
150 }
151 
152 static dsl_pool_t *
153 dsl_pool_open_impl(spa_t *spa, uint64_t txg)
154 {
155 	dsl_pool_t *dp;
156 	blkptr_t *bp = spa_get_rootblkptr(spa);
157 
158 	dp = kmem_zalloc(sizeof (dsl_pool_t), KM_SLEEP);
159 	dp->dp_spa = spa;
160 	dp->dp_meta_rootbp = *bp;
161 	rrw_init(&dp->dp_config_rwlock, B_TRUE);
162 	txg_init(dp, txg);
163 
164 	txg_list_create(&dp->dp_dirty_datasets,
165 	    offsetof(dsl_dataset_t, ds_dirty_link));
166 	txg_list_create(&dp->dp_dirty_zilogs,
167 	    offsetof(zilog_t, zl_dirty_link));
168 	txg_list_create(&dp->dp_dirty_dirs,
169 	    offsetof(dsl_dir_t, dd_dirty_link));
170 	txg_list_create(&dp->dp_sync_tasks,
171 	    offsetof(dsl_sync_task_t, dst_node));
172 
173 	mutex_init(&dp->dp_lock, NULL, MUTEX_DEFAULT, NULL);
174 	cv_init(&dp->dp_spaceavail_cv, NULL, CV_DEFAULT, NULL);
175 
176 	dp->dp_vnrele_taskq = taskq_create("zfs_vn_rele_taskq", 1, minclsyspri,
177 	    1, 4, 0);
178 
179 	return (dp);
180 }
181 
182 int
183 dsl_pool_init(spa_t *spa, uint64_t txg, dsl_pool_t **dpp)
184 {
185 	int err;
186 	dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
187 
188 	err = dmu_objset_open_impl(spa, NULL, &dp->dp_meta_rootbp,
189 	    &dp->dp_meta_objset);
190 	if (err != 0)
191 		dsl_pool_close(dp);
192 	else
193 		*dpp = dp;
194 
195 	return (err);
196 }
197 
198 int
199 dsl_pool_open(dsl_pool_t *dp)
200 {
201 	int err;
202 	dsl_dir_t *dd;
203 	dsl_dataset_t *ds;
204 	uint64_t obj;
205 
206 	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
207 	err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
208 	    DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1,
209 	    &dp->dp_root_dir_obj);
210 	if (err)
211 		goto out;
212 
213 	err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
214 	    NULL, dp, &dp->dp_root_dir);
215 	if (err)
216 		goto out;
217 
218 	err = dsl_pool_open_special_dir(dp, MOS_DIR_NAME, &dp->dp_mos_dir);
219 	if (err)
220 		goto out;
221 
222 	if (spa_version(dp->dp_spa) >= SPA_VERSION_ORIGIN) {
223 		err = dsl_pool_open_special_dir(dp, ORIGIN_DIR_NAME, &dd);
224 		if (err)
225 			goto out;
226 		err = dsl_dataset_hold_obj(dp, dd->dd_phys->dd_head_dataset_obj,
227 		    FTAG, &ds);
228 		if (err == 0) {
229 			err = dsl_dataset_hold_obj(dp,
230 			    ds->ds_phys->ds_prev_snap_obj, dp,
231 			    &dp->dp_origin_snap);
232 			dsl_dataset_rele(ds, FTAG);
233 		}
234 		dsl_dir_rele(dd, dp);
235 		if (err)
236 			goto out;
237 	}
238 
239 	if (spa_version(dp->dp_spa) >= SPA_VERSION_DEADLISTS) {
240 		err = dsl_pool_open_special_dir(dp, FREE_DIR_NAME,
241 		    &dp->dp_free_dir);
242 		if (err)
243 			goto out;
244 
245 		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
246 		    DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj);
247 		if (err)
248 			goto out;
249 		VERIFY0(bpobj_open(&dp->dp_free_bpobj,
250 		    dp->dp_meta_objset, obj));
251 	}
252 
253 	/*
254 	 * Note: errors ignored, because the leak dir will not exist if we
255 	 * have not encountered a leak yet.
256 	 */
257 	(void) dsl_pool_open_special_dir(dp, LEAK_DIR_NAME,
258 	    &dp->dp_leak_dir);
259 
260 	if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_ASYNC_DESTROY)) {
261 		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
262 		    DMU_POOL_BPTREE_OBJ, sizeof (uint64_t), 1,
263 		    &dp->dp_bptree_obj);
264 		if (err != 0)
265 			goto out;
266 	}
267 
268 	if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMPTY_BPOBJ)) {
269 		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
270 		    DMU_POOL_EMPTY_BPOBJ, sizeof (uint64_t), 1,
271 		    &dp->dp_empty_bpobj);
272 		if (err != 0)
273 			goto out;
274 	}
275 
276 	err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
277 	    DMU_POOL_TMP_USERREFS, sizeof (uint64_t), 1,
278 	    &dp->dp_tmp_userrefs_obj);
279 	if (err == ENOENT)
280 		err = 0;
281 	if (err)
282 		goto out;
283 
284 	err = dsl_scan_init(dp, dp->dp_tx.tx_open_txg);
285 
286 out:
287 	rrw_exit(&dp->dp_config_rwlock, FTAG);
288 	return (err);
289 }
290 
291 void
292 dsl_pool_close(dsl_pool_t *dp)
293 {
294 	/*
295 	 * Drop our references from dsl_pool_open().
296 	 *
297 	 * Since we held the origin_snap from "syncing" context (which
298 	 * includes pool-opening context), it actually only got a "ref"
299 	 * and not a hold, so just drop that here.
300 	 */
301 	if (dp->dp_origin_snap)
302 		dsl_dataset_rele(dp->dp_origin_snap, dp);
303 	if (dp->dp_mos_dir)
304 		dsl_dir_rele(dp->dp_mos_dir, dp);
305 	if (dp->dp_free_dir)
306 		dsl_dir_rele(dp->dp_free_dir, dp);
307 	if (dp->dp_leak_dir)
308 		dsl_dir_rele(dp->dp_leak_dir, dp);
309 	if (dp->dp_root_dir)
310 		dsl_dir_rele(dp->dp_root_dir, dp);
311 
312 	bpobj_close(&dp->dp_free_bpobj);
313 
314 	/* undo the dmu_objset_open_impl(mos) from dsl_pool_open() */
315 	if (dp->dp_meta_objset)
316 		dmu_objset_evict(dp->dp_meta_objset);
317 
318 	txg_list_destroy(&dp->dp_dirty_datasets);
319 	txg_list_destroy(&dp->dp_dirty_zilogs);
320 	txg_list_destroy(&dp->dp_sync_tasks);
321 	txg_list_destroy(&dp->dp_dirty_dirs);
322 
323 	arc_flush(dp->dp_spa);
324 	txg_fini(dp);
325 	dsl_scan_fini(dp);
326 	rrw_destroy(&dp->dp_config_rwlock);
327 	mutex_destroy(&dp->dp_lock);
328 	taskq_destroy(dp->dp_vnrele_taskq);
329 	if (dp->dp_blkstats)
330 		kmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t));
331 	kmem_free(dp, sizeof (dsl_pool_t));
332 }
333 
334 dsl_pool_t *
335 dsl_pool_create(spa_t *spa, nvlist_t *zplprops, uint64_t txg)
336 {
337 	int err;
338 	dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
339 	dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
340 	objset_t *os;
341 	dsl_dataset_t *ds;
342 	uint64_t obj;
343 
344 	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
345 
346 	/* create and open the MOS (meta-objset) */
347 	dp->dp_meta_objset = dmu_objset_create_impl(spa,
348 	    NULL, &dp->dp_meta_rootbp, DMU_OST_META, tx);
349 
350 	/* create the pool directory */
351 	err = zap_create_claim(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
352 	    DMU_OT_OBJECT_DIRECTORY, DMU_OT_NONE, 0, tx);
353 	ASSERT0(err);
354 
355 	/* Initialize scan structures */
356 	VERIFY0(dsl_scan_init(dp, txg));
357 
358 	/* create and open the root dir */
359 	dp->dp_root_dir_obj = dsl_dir_create_sync(dp, NULL, NULL, tx);
360 	VERIFY0(dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
361 	    NULL, dp, &dp->dp_root_dir));
362 
363 	/* create and open the meta-objset dir */
364 	(void) dsl_dir_create_sync(dp, dp->dp_root_dir, MOS_DIR_NAME, tx);
365 	VERIFY0(dsl_pool_open_special_dir(dp,
366 	    MOS_DIR_NAME, &dp->dp_mos_dir));
367 
368 	if (spa_version(spa) >= SPA_VERSION_DEADLISTS) {
369 		/* create and open the free dir */
370 		(void) dsl_dir_create_sync(dp, dp->dp_root_dir,
371 		    FREE_DIR_NAME, tx);
372 		VERIFY0(dsl_pool_open_special_dir(dp,
373 		    FREE_DIR_NAME, &dp->dp_free_dir));
374 
375 		/* create and open the free_bplist */
376 		obj = bpobj_alloc(dp->dp_meta_objset, SPA_MAXBLOCKSIZE, tx);
377 		VERIFY(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
378 		    DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx) == 0);
379 		VERIFY0(bpobj_open(&dp->dp_free_bpobj,
380 		    dp->dp_meta_objset, obj));
381 	}
382 
383 	if (spa_version(spa) >= SPA_VERSION_DSL_SCRUB)
384 		dsl_pool_create_origin(dp, tx);
385 
386 	/* create the root dataset */
387 	obj = dsl_dataset_create_sync_dd(dp->dp_root_dir, NULL, 0, tx);
388 
389 	/* create the root objset */
390 	VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG, &ds));
391 	os = dmu_objset_create_impl(dp->dp_spa, ds,
392 	    dsl_dataset_get_blkptr(ds), DMU_OST_ZFS, tx);
393 #ifdef _KERNEL
394 	zfs_create_fs(os, kcred, zplprops, tx);
395 #endif
396 	dsl_dataset_rele(ds, FTAG);
397 
398 	dmu_tx_commit(tx);
399 
400 	rrw_exit(&dp->dp_config_rwlock, FTAG);
401 
402 	return (dp);
403 }
404 
405 /*
406  * Account for the meta-objset space in its placeholder dsl_dir.
407  */
408 void
409 dsl_pool_mos_diduse_space(dsl_pool_t *dp,
410     int64_t used, int64_t comp, int64_t uncomp)
411 {
412 	ASSERT3U(comp, ==, uncomp); /* it's all metadata */
413 	mutex_enter(&dp->dp_lock);
414 	dp->dp_mos_used_delta += used;
415 	dp->dp_mos_compressed_delta += comp;
416 	dp->dp_mos_uncompressed_delta += uncomp;
417 	mutex_exit(&dp->dp_lock);
418 }
419 
420 static int
421 deadlist_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
422 {
423 	dsl_deadlist_t *dl = arg;
424 	dsl_deadlist_insert(dl, bp, tx);
425 	return (0);
426 }
427 
428 static void
429 dsl_pool_sync_mos(dsl_pool_t *dp, dmu_tx_t *tx)
430 {
431 	zio_t *zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
432 	dmu_objset_sync(dp->dp_meta_objset, zio, tx);
433 	VERIFY0(zio_wait(zio));
434 	dprintf_bp(&dp->dp_meta_rootbp, "meta objset rootbp is %s", "");
435 	spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp);
436 }
437 
438 static void
439 dsl_pool_dirty_delta(dsl_pool_t *dp, int64_t delta)
440 {
441 	ASSERT(MUTEX_HELD(&dp->dp_lock));
442 
443 	if (delta < 0)
444 		ASSERT3U(-delta, <=, dp->dp_dirty_total);
445 
446 	dp->dp_dirty_total += delta;
447 
448 	/*
449 	 * Note: we signal even when increasing dp_dirty_total.
450 	 * This ensures forward progress -- each thread wakes the next waiter.
451 	 */
452 	if (dp->dp_dirty_total <= zfs_dirty_data_max)
453 		cv_signal(&dp->dp_spaceavail_cv);
454 }
455 
456 void
457 dsl_pool_sync(dsl_pool_t *dp, uint64_t txg)
458 {
459 	zio_t *zio;
460 	dmu_tx_t *tx;
461 	dsl_dir_t *dd;
462 	dsl_dataset_t *ds;
463 	objset_t *mos = dp->dp_meta_objset;
464 	list_t synced_datasets;
465 
466 	list_create(&synced_datasets, sizeof (dsl_dataset_t),
467 	    offsetof(dsl_dataset_t, ds_synced_link));
468 
469 	tx = dmu_tx_create_assigned(dp, txg);
470 
471 	/*
472 	 * Write out all dirty blocks of dirty datasets.
473 	 */
474 	zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
475 	while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
476 		/*
477 		 * We must not sync any non-MOS datasets twice, because
478 		 * we may have taken a snapshot of them.  However, we
479 		 * may sync newly-created datasets on pass 2.
480 		 */
481 		ASSERT(!list_link_active(&ds->ds_synced_link));
482 		list_insert_tail(&synced_datasets, ds);
483 		dsl_dataset_sync(ds, zio, tx);
484 	}
485 	VERIFY0(zio_wait(zio));
486 
487 	/*
488 	 * We have written all of the accounted dirty data, so our
489 	 * dp_space_towrite should now be zero.  However, some seldom-used
490 	 * code paths do not adhere to this (e.g. dbuf_undirty(), also
491 	 * rounding error in dbuf_write_physdone).
492 	 * Shore up the accounting of any dirtied space now.
493 	 */
494 	dsl_pool_undirty_space(dp, dp->dp_dirty_pertxg[txg & TXG_MASK], txg);
495 
496 	/*
497 	 * After the data blocks have been written (ensured by the zio_wait()
498 	 * above), update the user/group space accounting.
499 	 */
500 	for (ds = list_head(&synced_datasets); ds != NULL;
501 	    ds = list_next(&synced_datasets, ds)) {
502 		dmu_objset_do_userquota_updates(ds->ds_objset, tx);
503 	}
504 
505 	/*
506 	 * Sync the datasets again to push out the changes due to
507 	 * userspace updates.  This must be done before we process the
508 	 * sync tasks, so that any snapshots will have the correct
509 	 * user accounting information (and we won't get confused
510 	 * about which blocks are part of the snapshot).
511 	 */
512 	zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
513 	while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
514 		ASSERT(list_link_active(&ds->ds_synced_link));
515 		dmu_buf_rele(ds->ds_dbuf, ds);
516 		dsl_dataset_sync(ds, zio, tx);
517 	}
518 	VERIFY0(zio_wait(zio));
519 
520 	/*
521 	 * Now that the datasets have been completely synced, we can
522 	 * clean up our in-memory structures accumulated while syncing:
523 	 *
524 	 *  - move dead blocks from the pending deadlist to the on-disk deadlist
525 	 *  - release hold from dsl_dataset_dirty()
526 	 */
527 	while ((ds = list_remove_head(&synced_datasets)) != NULL) {
528 		objset_t *os = ds->ds_objset;
529 		bplist_iterate(&ds->ds_pending_deadlist,
530 		    deadlist_enqueue_cb, &ds->ds_deadlist, tx);
531 		ASSERT(!dmu_objset_is_dirty(os, txg));
532 		dmu_buf_rele(ds->ds_dbuf, ds);
533 	}
534 	while ((dd = txg_list_remove(&dp->dp_dirty_dirs, txg)) != NULL) {
535 		dsl_dir_sync(dd, tx);
536 	}
537 
538 	/*
539 	 * The MOS's space is accounted for in the pool/$MOS
540 	 * (dp_mos_dir).  We can't modify the mos while we're syncing
541 	 * it, so we remember the deltas and apply them here.
542 	 */
543 	if (dp->dp_mos_used_delta != 0 || dp->dp_mos_compressed_delta != 0 ||
544 	    dp->dp_mos_uncompressed_delta != 0) {
545 		dsl_dir_diduse_space(dp->dp_mos_dir, DD_USED_HEAD,
546 		    dp->dp_mos_used_delta,
547 		    dp->dp_mos_compressed_delta,
548 		    dp->dp_mos_uncompressed_delta, tx);
549 		dp->dp_mos_used_delta = 0;
550 		dp->dp_mos_compressed_delta = 0;
551 		dp->dp_mos_uncompressed_delta = 0;
552 	}
553 
554 	if (list_head(&mos->os_dirty_dnodes[txg & TXG_MASK]) != NULL ||
555 	    list_head(&mos->os_free_dnodes[txg & TXG_MASK]) != NULL) {
556 		dsl_pool_sync_mos(dp, tx);
557 	}
558 
559 	/*
560 	 * If we modify a dataset in the same txg that we want to destroy it,
561 	 * its dsl_dir's dd_dbuf will be dirty, and thus have a hold on it.
562 	 * dsl_dir_destroy_check() will fail if there are unexpected holds.
563 	 * Therefore, we want to sync the MOS (thus syncing the dd_dbuf
564 	 * and clearing the hold on it) before we process the sync_tasks.
565 	 * The MOS data dirtied by the sync_tasks will be synced on the next
566 	 * pass.
567 	 */
568 	if (!txg_list_empty(&dp->dp_sync_tasks, txg)) {
569 		dsl_sync_task_t *dst;
570 		/*
571 		 * No more sync tasks should have been added while we
572 		 * were syncing.
573 		 */
574 		ASSERT3U(spa_sync_pass(dp->dp_spa), ==, 1);
575 		while ((dst = txg_list_remove(&dp->dp_sync_tasks, txg)) != NULL)
576 			dsl_sync_task_sync(dst, tx);
577 	}
578 
579 	dmu_tx_commit(tx);
580 
581 	DTRACE_PROBE2(dsl_pool_sync__done, dsl_pool_t *dp, dp, uint64_t, txg);
582 }
583 
584 void
585 dsl_pool_sync_done(dsl_pool_t *dp, uint64_t txg)
586 {
587 	zilog_t *zilog;
588 
589 	while (zilog = txg_list_remove(&dp->dp_dirty_zilogs, txg)) {
590 		dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
591 		zil_clean(zilog, txg);
592 		ASSERT(!dmu_objset_is_dirty(zilog->zl_os, txg));
593 		dmu_buf_rele(ds->ds_dbuf, zilog);
594 	}
595 	ASSERT(!dmu_objset_is_dirty(dp->dp_meta_objset, txg));
596 }
597 
598 /*
599  * TRUE if the current thread is the tx_sync_thread or if we
600  * are being called from SPA context during pool initialization.
601  */
602 int
603 dsl_pool_sync_context(dsl_pool_t *dp)
604 {
605 	return (curthread == dp->dp_tx.tx_sync_thread ||
606 	    spa_is_initializing(dp->dp_spa));
607 }
608 
609 uint64_t
610 dsl_pool_adjustedsize(dsl_pool_t *dp, boolean_t netfree)
611 {
612 	uint64_t space, resv;
613 
614 	/*
615 	 * Reserve about 1.6% (1/64), or at least 32MB, for allocation
616 	 * efficiency.
617 	 * XXX The intent log is not accounted for, so it must fit
618 	 * within this slop.
619 	 *
620 	 * If we're trying to assess whether it's OK to do a free,
621 	 * cut the reservation in half to allow forward progress
622 	 * (e.g. make it possible to rm(1) files from a full pool).
623 	 */
624 	space = spa_get_dspace(dp->dp_spa);
625 	resv = MAX(space >> 6, SPA_MINDEVSIZE >> 1);
626 	if (netfree)
627 		resv >>= 1;
628 
629 	return (space - resv);
630 }
631 
632 boolean_t
633 dsl_pool_need_dirty_delay(dsl_pool_t *dp)
634 {
635 	uint64_t delay_min_bytes =
636 	    zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100;
637 	boolean_t rv;
638 
639 	mutex_enter(&dp->dp_lock);
640 	if (dp->dp_dirty_total > zfs_dirty_data_sync)
641 		txg_kick(dp);
642 	rv = (dp->dp_dirty_total > delay_min_bytes);
643 	mutex_exit(&dp->dp_lock);
644 	return (rv);
645 }
646 
647 void
648 dsl_pool_dirty_space(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx)
649 {
650 	if (space > 0) {
651 		mutex_enter(&dp->dp_lock);
652 		dp->dp_dirty_pertxg[tx->tx_txg & TXG_MASK] += space;
653 		dsl_pool_dirty_delta(dp, space);
654 		mutex_exit(&dp->dp_lock);
655 	}
656 }
657 
658 void
659 dsl_pool_undirty_space(dsl_pool_t *dp, int64_t space, uint64_t txg)
660 {
661 	ASSERT3S(space, >=, 0);
662 	if (space == 0)
663 		return;
664 	mutex_enter(&dp->dp_lock);
665 	if (dp->dp_dirty_pertxg[txg & TXG_MASK] < space) {
666 		/* XXX writing something we didn't dirty? */
667 		space = dp->dp_dirty_pertxg[txg & TXG_MASK];
668 	}
669 	ASSERT3U(dp->dp_dirty_pertxg[txg & TXG_MASK], >=, space);
670 	dp->dp_dirty_pertxg[txg & TXG_MASK] -= space;
671 	ASSERT3U(dp->dp_dirty_total, >=, space);
672 	dsl_pool_dirty_delta(dp, -space);
673 	mutex_exit(&dp->dp_lock);
674 }
675 
676 /* ARGSUSED */
677 static int
678 upgrade_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
679 {
680 	dmu_tx_t *tx = arg;
681 	dsl_dataset_t *ds, *prev = NULL;
682 	int err;
683 
684 	err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
685 	if (err)
686 		return (err);
687 
688 	while (ds->ds_phys->ds_prev_snap_obj != 0) {
689 		err = dsl_dataset_hold_obj(dp, ds->ds_phys->ds_prev_snap_obj,
690 		    FTAG, &prev);
691 		if (err) {
692 			dsl_dataset_rele(ds, FTAG);
693 			return (err);
694 		}
695 
696 		if (prev->ds_phys->ds_next_snap_obj != ds->ds_object)
697 			break;
698 		dsl_dataset_rele(ds, FTAG);
699 		ds = prev;
700 		prev = NULL;
701 	}
702 
703 	if (prev == NULL) {
704 		prev = dp->dp_origin_snap;
705 
706 		/*
707 		 * The $ORIGIN can't have any data, or the accounting
708 		 * will be wrong.
709 		 */
710 		ASSERT0(prev->ds_phys->ds_bp.blk_birth);
711 
712 		/* The origin doesn't get attached to itself */
713 		if (ds->ds_object == prev->ds_object) {
714 			dsl_dataset_rele(ds, FTAG);
715 			return (0);
716 		}
717 
718 		dmu_buf_will_dirty(ds->ds_dbuf, tx);
719 		ds->ds_phys->ds_prev_snap_obj = prev->ds_object;
720 		ds->ds_phys->ds_prev_snap_txg = prev->ds_phys->ds_creation_txg;
721 
722 		dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx);
723 		ds->ds_dir->dd_phys->dd_origin_obj = prev->ds_object;
724 
725 		dmu_buf_will_dirty(prev->ds_dbuf, tx);
726 		prev->ds_phys->ds_num_children++;
727 
728 		if (ds->ds_phys->ds_next_snap_obj == 0) {
729 			ASSERT(ds->ds_prev == NULL);
730 			VERIFY0(dsl_dataset_hold_obj(dp,
731 			    ds->ds_phys->ds_prev_snap_obj, ds, &ds->ds_prev));
732 		}
733 	}
734 
735 	ASSERT3U(ds->ds_dir->dd_phys->dd_origin_obj, ==, prev->ds_object);
736 	ASSERT3U(ds->ds_phys->ds_prev_snap_obj, ==, prev->ds_object);
737 
738 	if (prev->ds_phys->ds_next_clones_obj == 0) {
739 		dmu_buf_will_dirty(prev->ds_dbuf, tx);
740 		prev->ds_phys->ds_next_clones_obj =
741 		    zap_create(dp->dp_meta_objset,
742 		    DMU_OT_NEXT_CLONES, DMU_OT_NONE, 0, tx);
743 	}
744 	VERIFY0(zap_add_int(dp->dp_meta_objset,
745 	    prev->ds_phys->ds_next_clones_obj, ds->ds_object, tx));
746 
747 	dsl_dataset_rele(ds, FTAG);
748 	if (prev != dp->dp_origin_snap)
749 		dsl_dataset_rele(prev, FTAG);
750 	return (0);
751 }
752 
753 void
754 dsl_pool_upgrade_clones(dsl_pool_t *dp, dmu_tx_t *tx)
755 {
756 	ASSERT(dmu_tx_is_syncing(tx));
757 	ASSERT(dp->dp_origin_snap != NULL);
758 
759 	VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, upgrade_clones_cb,
760 	    tx, DS_FIND_CHILDREN));
761 }
762 
763 /* ARGSUSED */
764 static int
765 upgrade_dir_clones_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
766 {
767 	dmu_tx_t *tx = arg;
768 	objset_t *mos = dp->dp_meta_objset;
769 
770 	if (ds->ds_dir->dd_phys->dd_origin_obj != 0) {
771 		dsl_dataset_t *origin;
772 
773 		VERIFY0(dsl_dataset_hold_obj(dp,
774 		    ds->ds_dir->dd_phys->dd_origin_obj, FTAG, &origin));
775 
776 		if (origin->ds_dir->dd_phys->dd_clones == 0) {
777 			dmu_buf_will_dirty(origin->ds_dir->dd_dbuf, tx);
778 			origin->ds_dir->dd_phys->dd_clones = zap_create(mos,
779 			    DMU_OT_DSL_CLONES, DMU_OT_NONE, 0, tx);
780 		}
781 
782 		VERIFY0(zap_add_int(dp->dp_meta_objset,
783 		    origin->ds_dir->dd_phys->dd_clones, ds->ds_object, tx));
784 
785 		dsl_dataset_rele(origin, FTAG);
786 	}
787 	return (0);
788 }
789 
790 void
791 dsl_pool_upgrade_dir_clones(dsl_pool_t *dp, dmu_tx_t *tx)
792 {
793 	ASSERT(dmu_tx_is_syncing(tx));
794 	uint64_t obj;
795 
796 	(void) dsl_dir_create_sync(dp, dp->dp_root_dir, FREE_DIR_NAME, tx);
797 	VERIFY0(dsl_pool_open_special_dir(dp,
798 	    FREE_DIR_NAME, &dp->dp_free_dir));
799 
800 	/*
801 	 * We can't use bpobj_alloc(), because spa_version() still
802 	 * returns the old version, and we need a new-version bpobj with
803 	 * subobj support.  So call dmu_object_alloc() directly.
804 	 */
805 	obj = dmu_object_alloc(dp->dp_meta_objset, DMU_OT_BPOBJ,
806 	    SPA_MAXBLOCKSIZE, DMU_OT_BPOBJ_HDR, sizeof (bpobj_phys_t), tx);
807 	VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
808 	    DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx));
809 	VERIFY0(bpobj_open(&dp->dp_free_bpobj, dp->dp_meta_objset, obj));
810 
811 	VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
812 	    upgrade_dir_clones_cb, tx, DS_FIND_CHILDREN));
813 }
814 
815 void
816 dsl_pool_create_origin(dsl_pool_t *dp, dmu_tx_t *tx)
817 {
818 	uint64_t dsobj;
819 	dsl_dataset_t *ds;
820 
821 	ASSERT(dmu_tx_is_syncing(tx));
822 	ASSERT(dp->dp_origin_snap == NULL);
823 	ASSERT(rrw_held(&dp->dp_config_rwlock, RW_WRITER));
824 
825 	/* create the origin dir, ds, & snap-ds */
826 	dsobj = dsl_dataset_create_sync(dp->dp_root_dir, ORIGIN_DIR_NAME,
827 	    NULL, 0, kcred, tx);
828 	VERIFY0(dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
829 	dsl_dataset_snapshot_sync_impl(ds, ORIGIN_DIR_NAME, tx);
830 	VERIFY0(dsl_dataset_hold_obj(dp, ds->ds_phys->ds_prev_snap_obj,
831 	    dp, &dp->dp_origin_snap));
832 	dsl_dataset_rele(ds, FTAG);
833 }
834 
835 taskq_t *
836 dsl_pool_vnrele_taskq(dsl_pool_t *dp)
837 {
838 	return (dp->dp_vnrele_taskq);
839 }
840 
841 /*
842  * Walk through the pool-wide zap object of temporary snapshot user holds
843  * and release them.
844  */
845 void
846 dsl_pool_clean_tmp_userrefs(dsl_pool_t *dp)
847 {
848 	zap_attribute_t za;
849 	zap_cursor_t zc;
850 	objset_t *mos = dp->dp_meta_objset;
851 	uint64_t zapobj = dp->dp_tmp_userrefs_obj;
852 	nvlist_t *holds;
853 
854 	if (zapobj == 0)
855 		return;
856 	ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
857 
858 	holds = fnvlist_alloc();
859 
860 	for (zap_cursor_init(&zc, mos, zapobj);
861 	    zap_cursor_retrieve(&zc, &za) == 0;
862 	    zap_cursor_advance(&zc)) {
863 		char *htag;
864 		nvlist_t *tags;
865 
866 		htag = strchr(za.za_name, '-');
867 		*htag = '\0';
868 		++htag;
869 		if (nvlist_lookup_nvlist(holds, za.za_name, &tags) != 0) {
870 			tags = fnvlist_alloc();
871 			fnvlist_add_boolean(tags, htag);
872 			fnvlist_add_nvlist(holds, za.za_name, tags);
873 			fnvlist_free(tags);
874 		} else {
875 			fnvlist_add_boolean(tags, htag);
876 		}
877 	}
878 	dsl_dataset_user_release_tmp(dp, holds);
879 	fnvlist_free(holds);
880 	zap_cursor_fini(&zc);
881 }
882 
883 /*
884  * Create the pool-wide zap object for storing temporary snapshot holds.
885  */
886 void
887 dsl_pool_user_hold_create_obj(dsl_pool_t *dp, dmu_tx_t *tx)
888 {
889 	objset_t *mos = dp->dp_meta_objset;
890 
891 	ASSERT(dp->dp_tmp_userrefs_obj == 0);
892 	ASSERT(dmu_tx_is_syncing(tx));
893 
894 	dp->dp_tmp_userrefs_obj = zap_create_link(mos, DMU_OT_USERREFS,
895 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_TMP_USERREFS, tx);
896 }
897 
898 static int
899 dsl_pool_user_hold_rele_impl(dsl_pool_t *dp, uint64_t dsobj,
900     const char *tag, uint64_t now, dmu_tx_t *tx, boolean_t holding)
901 {
902 	objset_t *mos = dp->dp_meta_objset;
903 	uint64_t zapobj = dp->dp_tmp_userrefs_obj;
904 	char *name;
905 	int error;
906 
907 	ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
908 	ASSERT(dmu_tx_is_syncing(tx));
909 
910 	/*
911 	 * If the pool was created prior to SPA_VERSION_USERREFS, the
912 	 * zap object for temporary holds might not exist yet.
913 	 */
914 	if (zapobj == 0) {
915 		if (holding) {
916 			dsl_pool_user_hold_create_obj(dp, tx);
917 			zapobj = dp->dp_tmp_userrefs_obj;
918 		} else {
919 			return (SET_ERROR(ENOENT));
920 		}
921 	}
922 
923 	name = kmem_asprintf("%llx-%s", (u_longlong_t)dsobj, tag);
924 	if (holding)
925 		error = zap_add(mos, zapobj, name, 8, 1, &now, tx);
926 	else
927 		error = zap_remove(mos, zapobj, name, tx);
928 	strfree(name);
929 
930 	return (error);
931 }
932 
933 /*
934  * Add a temporary hold for the given dataset object and tag.
935  */
936 int
937 dsl_pool_user_hold(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
938     uint64_t now, dmu_tx_t *tx)
939 {
940 	return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, now, tx, B_TRUE));
941 }
942 
943 /*
944  * Release a temporary hold for the given dataset object and tag.
945  */
946 int
947 dsl_pool_user_release(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
948     dmu_tx_t *tx)
949 {
950 	return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, NULL,
951 	    tx, B_FALSE));
952 }
953 
954 /*
955  * DSL Pool Configuration Lock
956  *
957  * The dp_config_rwlock protects against changes to DSL state (e.g. dataset
958  * creation / destruction / rename / property setting).  It must be held for
959  * read to hold a dataset or dsl_dir.  I.e. you must call
960  * dsl_pool_config_enter() or dsl_pool_hold() before calling
961  * dsl_{dataset,dir}_hold{_obj}.  In most circumstances, the dp_config_rwlock
962  * must be held continuously until all datasets and dsl_dirs are released.
963  *
964  * The only exception to this rule is that if a "long hold" is placed on
965  * a dataset, then the dp_config_rwlock may be dropped while the dataset
966  * is still held.  The long hold will prevent the dataset from being
967  * destroyed -- the destroy will fail with EBUSY.  A long hold can be
968  * obtained by calling dsl_dataset_long_hold(), or by "owning" a dataset
969  * (by calling dsl_{dataset,objset}_{try}own{_obj}).
970  *
971  * Legitimate long-holders (including owners) should be long-running, cancelable
972  * tasks that should cause "zfs destroy" to fail.  This includes DMU
973  * consumers (i.e. a ZPL filesystem being mounted or ZVOL being open),
974  * "zfs send", and "zfs diff".  There are several other long-holders whose
975  * uses are suboptimal (e.g. "zfs promote", and zil_suspend()).
976  *
977  * The usual formula for long-holding would be:
978  * dsl_pool_hold()
979  * dsl_dataset_hold()
980  * ... perform checks ...
981  * dsl_dataset_long_hold()
982  * dsl_pool_rele()
983  * ... perform long-running task ...
984  * dsl_dataset_long_rele()
985  * dsl_dataset_rele()
986  *
987  * Note that when the long hold is released, the dataset is still held but
988  * the pool is not held.  The dataset may change arbitrarily during this time
989  * (e.g. it could be destroyed).  Therefore you shouldn't do anything to the
990  * dataset except release it.
991  *
992  * User-initiated operations (e.g. ioctls, zfs_ioc_*()) are either read-only
993  * or modifying operations.
994  *
995  * Modifying operations should generally use dsl_sync_task().  The synctask
996  * infrastructure enforces proper locking strategy with respect to the
997  * dp_config_rwlock.  See the comment above dsl_sync_task() for details.
998  *
999  * Read-only operations will manually hold the pool, then the dataset, obtain
1000  * information from the dataset, then release the pool and dataset.
1001  * dmu_objset_{hold,rele}() are convenience routines that also do the pool
1002  * hold/rele.
1003  */
1004 
1005 int
1006 dsl_pool_hold(const char *name, void *tag, dsl_pool_t **dp)
1007 {
1008 	spa_t *spa;
1009 	int error;
1010 
1011 	error = spa_open(name, &spa, tag);
1012 	if (error == 0) {
1013 		*dp = spa_get_dsl(spa);
1014 		dsl_pool_config_enter(*dp, tag);
1015 	}
1016 	return (error);
1017 }
1018 
1019 void
1020 dsl_pool_rele(dsl_pool_t *dp, void *tag)
1021 {
1022 	dsl_pool_config_exit(dp, tag);
1023 	spa_close(dp->dp_spa, tag);
1024 }
1025 
1026 void
1027 dsl_pool_config_enter(dsl_pool_t *dp, void *tag)
1028 {
1029 	/*
1030 	 * We use a "reentrant" reader-writer lock, but not reentrantly.
1031 	 *
1032 	 * The rrwlock can (with the track_all flag) track all reading threads,
1033 	 * which is very useful for debugging which code path failed to release
1034 	 * the lock, and for verifying that the *current* thread does hold
1035 	 * the lock.
1036 	 *
1037 	 * (Unlike a rwlock, which knows that N threads hold it for
1038 	 * read, but not *which* threads, so rw_held(RW_READER) returns TRUE
1039 	 * if any thread holds it for read, even if this thread doesn't).
1040 	 */
1041 	ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER));
1042 	rrw_enter(&dp->dp_config_rwlock, RW_READER, tag);
1043 }
1044 
1045 void
1046 dsl_pool_config_exit(dsl_pool_t *dp, void *tag)
1047 {
1048 	rrw_exit(&dp->dp_config_rwlock, tag);
1049 }
1050 
1051 boolean_t
1052 dsl_pool_config_held(dsl_pool_t *dp)
1053 {
1054 	return (RRW_LOCK_HELD(&dp->dp_config_rwlock));
1055 }
1056