xref: /titanic_51/usr/src/uts/common/fs/zfs/dsl_pool.c (revision 5f7a8e6d750cb070a3347f045201c6206caee6aa)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
24  * Copyright (c) 2013 Steven Hartland. All rights reserved.
25  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26  * Copyright (c) 2014 Integros [integros.com]
27  */
28 
29 #include <sys/dsl_pool.h>
30 #include <sys/dsl_dataset.h>
31 #include <sys/dsl_prop.h>
32 #include <sys/dsl_dir.h>
33 #include <sys/dsl_synctask.h>
34 #include <sys/dsl_scan.h>
35 #include <sys/dnode.h>
36 #include <sys/dmu_tx.h>
37 #include <sys/dmu_objset.h>
38 #include <sys/arc.h>
39 #include <sys/zap.h>
40 #include <sys/zio.h>
41 #include <sys/zfs_context.h>
42 #include <sys/fs/zfs.h>
43 #include <sys/zfs_znode.h>
44 #include <sys/spa_impl.h>
45 #include <sys/dsl_deadlist.h>
46 #include <sys/bptree.h>
47 #include <sys/zfeature.h>
48 #include <sys/zil_impl.h>
49 #include <sys/dsl_userhold.h>
50 
51 /*
52  * ZFS Write Throttle
53  * ------------------
54  *
55  * ZFS must limit the rate of incoming writes to the rate at which it is able
56  * to sync data modifications to the backend storage. Throttling by too much
57  * creates an artificial limit; throttling by too little can only be sustained
58  * for short periods and would lead to highly lumpy performance. On a per-pool
59  * basis, ZFS tracks the amount of modified (dirty) data. As operations change
60  * data, the amount of dirty data increases; as ZFS syncs out data, the amount
61  * of dirty data decreases. When the amount of dirty data exceeds a
62  * predetermined threshold further modifications are blocked until the amount
63  * of dirty data decreases (as data is synced out).
64  *
65  * The limit on dirty data is tunable, and should be adjusted according to
66  * both the IO capacity and available memory of the system. The larger the
67  * window, the more ZFS is able to aggregate and amortize metadata (and data)
68  * changes. However, memory is a limited resource, and allowing for more dirty
69  * data comes at the cost of keeping other useful data in memory (for example
70  * ZFS data cached by the ARC).
71  *
72  * Implementation
73  *
74  * As buffers are modified dsl_pool_willuse_space() increments both the per-
75  * txg (dp_dirty_pertxg[]) and poolwide (dp_dirty_total) accounting of
76  * dirty space used; dsl_pool_dirty_space() decrements those values as data
77  * is synced out from dsl_pool_sync(). While only the poolwide value is
78  * relevant, the per-txg value is useful for debugging. The tunable
79  * zfs_dirty_data_max determines the dirty space limit. Once that value is
80  * exceeded, new writes are halted until space frees up.
81  *
82  * The zfs_dirty_data_sync tunable dictates the threshold at which we
83  * ensure that there is a txg syncing (see the comment in txg.c for a full
84  * description of transaction group stages).
85  *
86  * The IO scheduler uses both the dirty space limit and current amount of
87  * dirty data as inputs. Those values affect the number of concurrent IOs ZFS
88  * issues. See the comment in vdev_queue.c for details of the IO scheduler.
89  *
90  * The delay is also calculated based on the amount of dirty data.  See the
91  * comment above dmu_tx_delay() for details.
92  */
93 
94 /*
95  * zfs_dirty_data_max will be set to zfs_dirty_data_max_percent% of all memory,
96  * capped at zfs_dirty_data_max_max.  It can also be overridden in /etc/system.
97  */
98 uint64_t zfs_dirty_data_max;
99 uint64_t zfs_dirty_data_max_max = 4ULL * 1024 * 1024 * 1024;
100 int zfs_dirty_data_max_percent = 10;
101 
102 /*
103  * If there is at least this much dirty data, push out a txg.
104  */
105 uint64_t zfs_dirty_data_sync = 64 * 1024 * 1024;
106 
107 /*
108  * Once there is this amount of dirty data, the dmu_tx_delay() will kick in
109  * and delay each transaction.
110  * This value should be >= zfs_vdev_async_write_active_max_dirty_percent.
111  */
112 int zfs_delay_min_dirty_percent = 60;
113 
114 /*
115  * This controls how quickly the delay approaches infinity.
116  * Larger values cause it to delay more for a given amount of dirty data.
117  * Therefore larger values will cause there to be less dirty data for a
118  * given throughput.
119  *
120  * For the smoothest delay, this value should be about 1 billion divided
121  * by the maximum number of operations per second.  This will smoothly
122  * handle between 10x and 1/10th this number.
123  *
124  * Note: zfs_delay_scale * zfs_dirty_data_max must be < 2^64, due to the
125  * multiply in dmu_tx_delay().
126  */
127 uint64_t zfs_delay_scale = 1000 * 1000 * 1000 / 2000;
128 
129 
130 hrtime_t zfs_throttle_delay = MSEC2NSEC(10);
131 hrtime_t zfs_throttle_resolution = MSEC2NSEC(10);
132 
133 int
134 dsl_pool_open_special_dir(dsl_pool_t *dp, const char *name, dsl_dir_t **ddp)
135 {
136 	uint64_t obj;
137 	int err;
138 
139 	err = zap_lookup(dp->dp_meta_objset,
140 	    dsl_dir_phys(dp->dp_root_dir)->dd_child_dir_zapobj,
141 	    name, sizeof (obj), 1, &obj);
142 	if (err)
143 		return (err);
144 
145 	return (dsl_dir_hold_obj(dp, obj, name, dp, ddp));
146 }
147 
148 static dsl_pool_t *
149 dsl_pool_open_impl(spa_t *spa, uint64_t txg)
150 {
151 	dsl_pool_t *dp;
152 	blkptr_t *bp = spa_get_rootblkptr(spa);
153 
154 	dp = kmem_zalloc(sizeof (dsl_pool_t), KM_SLEEP);
155 	dp->dp_spa = spa;
156 	dp->dp_meta_rootbp = *bp;
157 	rrw_init(&dp->dp_config_rwlock, B_TRUE);
158 	txg_init(dp, txg);
159 
160 	txg_list_create(&dp->dp_dirty_datasets,
161 	    offsetof(dsl_dataset_t, ds_dirty_link));
162 	txg_list_create(&dp->dp_dirty_zilogs,
163 	    offsetof(zilog_t, zl_dirty_link));
164 	txg_list_create(&dp->dp_dirty_dirs,
165 	    offsetof(dsl_dir_t, dd_dirty_link));
166 	txg_list_create(&dp->dp_sync_tasks,
167 	    offsetof(dsl_sync_task_t, dst_node));
168 
169 	mutex_init(&dp->dp_lock, NULL, MUTEX_DEFAULT, NULL);
170 	cv_init(&dp->dp_spaceavail_cv, NULL, CV_DEFAULT, NULL);
171 
172 	dp->dp_vnrele_taskq = taskq_create("zfs_vn_rele_taskq", 1, minclsyspri,
173 	    1, 4, 0);
174 
175 	return (dp);
176 }
177 
178 int
179 dsl_pool_init(spa_t *spa, uint64_t txg, dsl_pool_t **dpp)
180 {
181 	int err;
182 	dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
183 
184 	err = dmu_objset_open_impl(spa, NULL, &dp->dp_meta_rootbp,
185 	    &dp->dp_meta_objset);
186 	if (err != 0)
187 		dsl_pool_close(dp);
188 	else
189 		*dpp = dp;
190 
191 	return (err);
192 }
193 
194 int
195 dsl_pool_open(dsl_pool_t *dp)
196 {
197 	int err;
198 	dsl_dir_t *dd;
199 	dsl_dataset_t *ds;
200 	uint64_t obj;
201 
202 	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
203 	err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
204 	    DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1,
205 	    &dp->dp_root_dir_obj);
206 	if (err)
207 		goto out;
208 
209 	err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
210 	    NULL, dp, &dp->dp_root_dir);
211 	if (err)
212 		goto out;
213 
214 	err = dsl_pool_open_special_dir(dp, MOS_DIR_NAME, &dp->dp_mos_dir);
215 	if (err)
216 		goto out;
217 
218 	if (spa_version(dp->dp_spa) >= SPA_VERSION_ORIGIN) {
219 		err = dsl_pool_open_special_dir(dp, ORIGIN_DIR_NAME, &dd);
220 		if (err)
221 			goto out;
222 		err = dsl_dataset_hold_obj(dp,
223 		    dsl_dir_phys(dd)->dd_head_dataset_obj, FTAG, &ds);
224 		if (err == 0) {
225 			err = dsl_dataset_hold_obj(dp,
226 			    dsl_dataset_phys(ds)->ds_prev_snap_obj, dp,
227 			    &dp->dp_origin_snap);
228 			dsl_dataset_rele(ds, FTAG);
229 		}
230 		dsl_dir_rele(dd, dp);
231 		if (err)
232 			goto out;
233 	}
234 
235 	if (spa_version(dp->dp_spa) >= SPA_VERSION_DEADLISTS) {
236 		err = dsl_pool_open_special_dir(dp, FREE_DIR_NAME,
237 		    &dp->dp_free_dir);
238 		if (err)
239 			goto out;
240 
241 		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
242 		    DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj);
243 		if (err)
244 			goto out;
245 		VERIFY0(bpobj_open(&dp->dp_free_bpobj,
246 		    dp->dp_meta_objset, obj));
247 	}
248 
249 	/*
250 	 * Note: errors ignored, because the leak dir will not exist if we
251 	 * have not encountered a leak yet.
252 	 */
253 	(void) dsl_pool_open_special_dir(dp, LEAK_DIR_NAME,
254 	    &dp->dp_leak_dir);
255 
256 	if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_ASYNC_DESTROY)) {
257 		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
258 		    DMU_POOL_BPTREE_OBJ, sizeof (uint64_t), 1,
259 		    &dp->dp_bptree_obj);
260 		if (err != 0)
261 			goto out;
262 	}
263 
264 	if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMPTY_BPOBJ)) {
265 		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
266 		    DMU_POOL_EMPTY_BPOBJ, sizeof (uint64_t), 1,
267 		    &dp->dp_empty_bpobj);
268 		if (err != 0)
269 			goto out;
270 	}
271 
272 	err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
273 	    DMU_POOL_TMP_USERREFS, sizeof (uint64_t), 1,
274 	    &dp->dp_tmp_userrefs_obj);
275 	if (err == ENOENT)
276 		err = 0;
277 	if (err)
278 		goto out;
279 
280 	err = dsl_scan_init(dp, dp->dp_tx.tx_open_txg);
281 
282 out:
283 	rrw_exit(&dp->dp_config_rwlock, FTAG);
284 	return (err);
285 }
286 
287 void
288 dsl_pool_close(dsl_pool_t *dp)
289 {
290 	/*
291 	 * Drop our references from dsl_pool_open().
292 	 *
293 	 * Since we held the origin_snap from "syncing" context (which
294 	 * includes pool-opening context), it actually only got a "ref"
295 	 * and not a hold, so just drop that here.
296 	 */
297 	if (dp->dp_origin_snap)
298 		dsl_dataset_rele(dp->dp_origin_snap, dp);
299 	if (dp->dp_mos_dir)
300 		dsl_dir_rele(dp->dp_mos_dir, dp);
301 	if (dp->dp_free_dir)
302 		dsl_dir_rele(dp->dp_free_dir, dp);
303 	if (dp->dp_leak_dir)
304 		dsl_dir_rele(dp->dp_leak_dir, dp);
305 	if (dp->dp_root_dir)
306 		dsl_dir_rele(dp->dp_root_dir, dp);
307 
308 	bpobj_close(&dp->dp_free_bpobj);
309 
310 	/* undo the dmu_objset_open_impl(mos) from dsl_pool_open() */
311 	if (dp->dp_meta_objset)
312 		dmu_objset_evict(dp->dp_meta_objset);
313 
314 	txg_list_destroy(&dp->dp_dirty_datasets);
315 	txg_list_destroy(&dp->dp_dirty_zilogs);
316 	txg_list_destroy(&dp->dp_sync_tasks);
317 	txg_list_destroy(&dp->dp_dirty_dirs);
318 
319 	/*
320 	 * We can't set retry to TRUE since we're explicitly specifying
321 	 * a spa to flush. This is good enough; any missed buffers for
322 	 * this spa won't cause trouble, and they'll eventually fall
323 	 * out of the ARC just like any other unused buffer.
324 	 */
325 	arc_flush(dp->dp_spa, FALSE);
326 
327 	txg_fini(dp);
328 	dsl_scan_fini(dp);
329 	dmu_buf_user_evict_wait();
330 
331 	rrw_destroy(&dp->dp_config_rwlock);
332 	mutex_destroy(&dp->dp_lock);
333 	taskq_destroy(dp->dp_vnrele_taskq);
334 	if (dp->dp_blkstats)
335 		kmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t));
336 	kmem_free(dp, sizeof (dsl_pool_t));
337 }
338 
339 dsl_pool_t *
340 dsl_pool_create(spa_t *spa, nvlist_t *zplprops, uint64_t txg)
341 {
342 	int err;
343 	dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
344 	dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
345 	objset_t *os;
346 	dsl_dataset_t *ds;
347 	uint64_t obj;
348 
349 	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
350 
351 	/* create and open the MOS (meta-objset) */
352 	dp->dp_meta_objset = dmu_objset_create_impl(spa,
353 	    NULL, &dp->dp_meta_rootbp, DMU_OST_META, tx);
354 
355 	/* create the pool directory */
356 	err = zap_create_claim(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
357 	    DMU_OT_OBJECT_DIRECTORY, DMU_OT_NONE, 0, tx);
358 	ASSERT0(err);
359 
360 	/* Initialize scan structures */
361 	VERIFY0(dsl_scan_init(dp, txg));
362 
363 	/* create and open the root dir */
364 	dp->dp_root_dir_obj = dsl_dir_create_sync(dp, NULL, NULL, tx);
365 	VERIFY0(dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
366 	    NULL, dp, &dp->dp_root_dir));
367 
368 	/* create and open the meta-objset dir */
369 	(void) dsl_dir_create_sync(dp, dp->dp_root_dir, MOS_DIR_NAME, tx);
370 	VERIFY0(dsl_pool_open_special_dir(dp,
371 	    MOS_DIR_NAME, &dp->dp_mos_dir));
372 
373 	if (spa_version(spa) >= SPA_VERSION_DEADLISTS) {
374 		/* create and open the free dir */
375 		(void) dsl_dir_create_sync(dp, dp->dp_root_dir,
376 		    FREE_DIR_NAME, tx);
377 		VERIFY0(dsl_pool_open_special_dir(dp,
378 		    FREE_DIR_NAME, &dp->dp_free_dir));
379 
380 		/* create and open the free_bplist */
381 		obj = bpobj_alloc(dp->dp_meta_objset, SPA_OLD_MAXBLOCKSIZE, tx);
382 		VERIFY(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
383 		    DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx) == 0);
384 		VERIFY0(bpobj_open(&dp->dp_free_bpobj,
385 		    dp->dp_meta_objset, obj));
386 	}
387 
388 	if (spa_version(spa) >= SPA_VERSION_DSL_SCRUB)
389 		dsl_pool_create_origin(dp, tx);
390 
391 	/* create the root dataset */
392 	obj = dsl_dataset_create_sync_dd(dp->dp_root_dir, NULL, 0, tx);
393 
394 	/* create the root objset */
395 	VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG, &ds));
396 	os = dmu_objset_create_impl(dp->dp_spa, ds,
397 	    dsl_dataset_get_blkptr(ds), DMU_OST_ZFS, tx);
398 #ifdef _KERNEL
399 	zfs_create_fs(os, kcred, zplprops, tx);
400 #endif
401 	dsl_dataset_rele(ds, FTAG);
402 
403 	dmu_tx_commit(tx);
404 
405 	rrw_exit(&dp->dp_config_rwlock, FTAG);
406 
407 	return (dp);
408 }
409 
410 /*
411  * Account for the meta-objset space in its placeholder dsl_dir.
412  */
413 void
414 dsl_pool_mos_diduse_space(dsl_pool_t *dp,
415     int64_t used, int64_t comp, int64_t uncomp)
416 {
417 	ASSERT3U(comp, ==, uncomp); /* it's all metadata */
418 	mutex_enter(&dp->dp_lock);
419 	dp->dp_mos_used_delta += used;
420 	dp->dp_mos_compressed_delta += comp;
421 	dp->dp_mos_uncompressed_delta += uncomp;
422 	mutex_exit(&dp->dp_lock);
423 }
424 
425 static int
426 deadlist_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
427 {
428 	dsl_deadlist_t *dl = arg;
429 	dsl_deadlist_insert(dl, bp, tx);
430 	return (0);
431 }
432 
433 static void
434 dsl_pool_sync_mos(dsl_pool_t *dp, dmu_tx_t *tx)
435 {
436 	zio_t *zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
437 	dmu_objset_sync(dp->dp_meta_objset, zio, tx);
438 	VERIFY0(zio_wait(zio));
439 	dprintf_bp(&dp->dp_meta_rootbp, "meta objset rootbp is %s", "");
440 	spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp);
441 }
442 
443 static void
444 dsl_pool_dirty_delta(dsl_pool_t *dp, int64_t delta)
445 {
446 	ASSERT(MUTEX_HELD(&dp->dp_lock));
447 
448 	if (delta < 0)
449 		ASSERT3U(-delta, <=, dp->dp_dirty_total);
450 
451 	dp->dp_dirty_total += delta;
452 
453 	/*
454 	 * Note: we signal even when increasing dp_dirty_total.
455 	 * This ensures forward progress -- each thread wakes the next waiter.
456 	 */
457 	if (dp->dp_dirty_total <= zfs_dirty_data_max)
458 		cv_signal(&dp->dp_spaceavail_cv);
459 }
460 
461 void
462 dsl_pool_sync(dsl_pool_t *dp, uint64_t txg)
463 {
464 	zio_t *zio;
465 	dmu_tx_t *tx;
466 	dsl_dir_t *dd;
467 	dsl_dataset_t *ds;
468 	objset_t *mos = dp->dp_meta_objset;
469 	list_t synced_datasets;
470 
471 	list_create(&synced_datasets, sizeof (dsl_dataset_t),
472 	    offsetof(dsl_dataset_t, ds_synced_link));
473 
474 	tx = dmu_tx_create_assigned(dp, txg);
475 
476 	/*
477 	 * Write out all dirty blocks of dirty datasets.
478 	 */
479 	zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
480 	while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
481 		/*
482 		 * We must not sync any non-MOS datasets twice, because
483 		 * we may have taken a snapshot of them.  However, we
484 		 * may sync newly-created datasets on pass 2.
485 		 */
486 		ASSERT(!list_link_active(&ds->ds_synced_link));
487 		list_insert_tail(&synced_datasets, ds);
488 		dsl_dataset_sync(ds, zio, tx);
489 	}
490 	VERIFY0(zio_wait(zio));
491 
492 	/*
493 	 * We have written all of the accounted dirty data, so our
494 	 * dp_space_towrite should now be zero.  However, some seldom-used
495 	 * code paths do not adhere to this (e.g. dbuf_undirty(), also
496 	 * rounding error in dbuf_write_physdone).
497 	 * Shore up the accounting of any dirtied space now.
498 	 */
499 	dsl_pool_undirty_space(dp, dp->dp_dirty_pertxg[txg & TXG_MASK], txg);
500 
501 	/*
502 	 * After the data blocks have been written (ensured by the zio_wait()
503 	 * above), update the user/group space accounting.
504 	 */
505 	for (ds = list_head(&synced_datasets); ds != NULL;
506 	    ds = list_next(&synced_datasets, ds)) {
507 		dmu_objset_do_userquota_updates(ds->ds_objset, tx);
508 	}
509 
510 	/*
511 	 * Sync the datasets again to push out the changes due to
512 	 * userspace updates.  This must be done before we process the
513 	 * sync tasks, so that any snapshots will have the correct
514 	 * user accounting information (and we won't get confused
515 	 * about which blocks are part of the snapshot).
516 	 */
517 	zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
518 	while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
519 		ASSERT(list_link_active(&ds->ds_synced_link));
520 		dmu_buf_rele(ds->ds_dbuf, ds);
521 		dsl_dataset_sync(ds, zio, tx);
522 	}
523 	VERIFY0(zio_wait(zio));
524 
525 	/*
526 	 * Now that the datasets have been completely synced, we can
527 	 * clean up our in-memory structures accumulated while syncing:
528 	 *
529 	 *  - move dead blocks from the pending deadlist to the on-disk deadlist
530 	 *  - release hold from dsl_dataset_dirty()
531 	 */
532 	while ((ds = list_remove_head(&synced_datasets)) != NULL) {
533 		objset_t *os = ds->ds_objset;
534 		bplist_iterate(&ds->ds_pending_deadlist,
535 		    deadlist_enqueue_cb, &ds->ds_deadlist, tx);
536 		ASSERT(!dmu_objset_is_dirty(os, txg));
537 		dmu_buf_rele(ds->ds_dbuf, ds);
538 	}
539 	while ((dd = txg_list_remove(&dp->dp_dirty_dirs, txg)) != NULL) {
540 		dsl_dir_sync(dd, tx);
541 	}
542 
543 	/*
544 	 * The MOS's space is accounted for in the pool/$MOS
545 	 * (dp_mos_dir).  We can't modify the mos while we're syncing
546 	 * it, so we remember the deltas and apply them here.
547 	 */
548 	if (dp->dp_mos_used_delta != 0 || dp->dp_mos_compressed_delta != 0 ||
549 	    dp->dp_mos_uncompressed_delta != 0) {
550 		dsl_dir_diduse_space(dp->dp_mos_dir, DD_USED_HEAD,
551 		    dp->dp_mos_used_delta,
552 		    dp->dp_mos_compressed_delta,
553 		    dp->dp_mos_uncompressed_delta, tx);
554 		dp->dp_mos_used_delta = 0;
555 		dp->dp_mos_compressed_delta = 0;
556 		dp->dp_mos_uncompressed_delta = 0;
557 	}
558 
559 	if (list_head(&mos->os_dirty_dnodes[txg & TXG_MASK]) != NULL ||
560 	    list_head(&mos->os_free_dnodes[txg & TXG_MASK]) != NULL) {
561 		dsl_pool_sync_mos(dp, tx);
562 	}
563 
564 	/*
565 	 * If we modify a dataset in the same txg that we want to destroy it,
566 	 * its dsl_dir's dd_dbuf will be dirty, and thus have a hold on it.
567 	 * dsl_dir_destroy_check() will fail if there are unexpected holds.
568 	 * Therefore, we want to sync the MOS (thus syncing the dd_dbuf
569 	 * and clearing the hold on it) before we process the sync_tasks.
570 	 * The MOS data dirtied by the sync_tasks will be synced on the next
571 	 * pass.
572 	 */
573 	if (!txg_list_empty(&dp->dp_sync_tasks, txg)) {
574 		dsl_sync_task_t *dst;
575 		/*
576 		 * No more sync tasks should have been added while we
577 		 * were syncing.
578 		 */
579 		ASSERT3U(spa_sync_pass(dp->dp_spa), ==, 1);
580 		while ((dst = txg_list_remove(&dp->dp_sync_tasks, txg)) != NULL)
581 			dsl_sync_task_sync(dst, tx);
582 	}
583 
584 	dmu_tx_commit(tx);
585 
586 	DTRACE_PROBE2(dsl_pool_sync__done, dsl_pool_t *dp, dp, uint64_t, txg);
587 }
588 
589 void
590 dsl_pool_sync_done(dsl_pool_t *dp, uint64_t txg)
591 {
592 	zilog_t *zilog;
593 
594 	while (zilog = txg_list_remove(&dp->dp_dirty_zilogs, txg)) {
595 		dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
596 		zil_clean(zilog, txg);
597 		ASSERT(!dmu_objset_is_dirty(zilog->zl_os, txg));
598 		dmu_buf_rele(ds->ds_dbuf, zilog);
599 	}
600 	ASSERT(!dmu_objset_is_dirty(dp->dp_meta_objset, txg));
601 }
602 
603 /*
604  * TRUE if the current thread is the tx_sync_thread or if we
605  * are being called from SPA context during pool initialization.
606  */
607 int
608 dsl_pool_sync_context(dsl_pool_t *dp)
609 {
610 	return (curthread == dp->dp_tx.tx_sync_thread ||
611 	    spa_is_initializing(dp->dp_spa));
612 }
613 
614 uint64_t
615 dsl_pool_adjustedsize(dsl_pool_t *dp, boolean_t netfree)
616 {
617 	uint64_t space, resv;
618 
619 	/*
620 	 * If we're trying to assess whether it's OK to do a free,
621 	 * cut the reservation in half to allow forward progress
622 	 * (e.g. make it possible to rm(1) files from a full pool).
623 	 */
624 	space = spa_get_dspace(dp->dp_spa);
625 	resv = spa_get_slop_space(dp->dp_spa);
626 	if (netfree)
627 		resv >>= 1;
628 
629 	return (space - resv);
630 }
631 
632 boolean_t
633 dsl_pool_need_dirty_delay(dsl_pool_t *dp)
634 {
635 	uint64_t delay_min_bytes =
636 	    zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100;
637 	boolean_t rv;
638 
639 	mutex_enter(&dp->dp_lock);
640 	if (dp->dp_dirty_total > zfs_dirty_data_sync)
641 		txg_kick(dp);
642 	rv = (dp->dp_dirty_total > delay_min_bytes);
643 	mutex_exit(&dp->dp_lock);
644 	return (rv);
645 }
646 
647 void
648 dsl_pool_dirty_space(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx)
649 {
650 	if (space > 0) {
651 		mutex_enter(&dp->dp_lock);
652 		dp->dp_dirty_pertxg[tx->tx_txg & TXG_MASK] += space;
653 		dsl_pool_dirty_delta(dp, space);
654 		mutex_exit(&dp->dp_lock);
655 	}
656 }
657 
658 void
659 dsl_pool_undirty_space(dsl_pool_t *dp, int64_t space, uint64_t txg)
660 {
661 	ASSERT3S(space, >=, 0);
662 	if (space == 0)
663 		return;
664 	mutex_enter(&dp->dp_lock);
665 	if (dp->dp_dirty_pertxg[txg & TXG_MASK] < space) {
666 		/* XXX writing something we didn't dirty? */
667 		space = dp->dp_dirty_pertxg[txg & TXG_MASK];
668 	}
669 	ASSERT3U(dp->dp_dirty_pertxg[txg & TXG_MASK], >=, space);
670 	dp->dp_dirty_pertxg[txg & TXG_MASK] -= space;
671 	ASSERT3U(dp->dp_dirty_total, >=, space);
672 	dsl_pool_dirty_delta(dp, -space);
673 	mutex_exit(&dp->dp_lock);
674 }
675 
676 /* ARGSUSED */
677 static int
678 upgrade_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
679 {
680 	dmu_tx_t *tx = arg;
681 	dsl_dataset_t *ds, *prev = NULL;
682 	int err;
683 
684 	err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
685 	if (err)
686 		return (err);
687 
688 	while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) {
689 		err = dsl_dataset_hold_obj(dp,
690 		    dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
691 		if (err) {
692 			dsl_dataset_rele(ds, FTAG);
693 			return (err);
694 		}
695 
696 		if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object)
697 			break;
698 		dsl_dataset_rele(ds, FTAG);
699 		ds = prev;
700 		prev = NULL;
701 	}
702 
703 	if (prev == NULL) {
704 		prev = dp->dp_origin_snap;
705 
706 		/*
707 		 * The $ORIGIN can't have any data, or the accounting
708 		 * will be wrong.
709 		 */
710 		ASSERT0(dsl_dataset_phys(prev)->ds_bp.blk_birth);
711 
712 		/* The origin doesn't get attached to itself */
713 		if (ds->ds_object == prev->ds_object) {
714 			dsl_dataset_rele(ds, FTAG);
715 			return (0);
716 		}
717 
718 		dmu_buf_will_dirty(ds->ds_dbuf, tx);
719 		dsl_dataset_phys(ds)->ds_prev_snap_obj = prev->ds_object;
720 		dsl_dataset_phys(ds)->ds_prev_snap_txg =
721 		    dsl_dataset_phys(prev)->ds_creation_txg;
722 
723 		dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx);
724 		dsl_dir_phys(ds->ds_dir)->dd_origin_obj = prev->ds_object;
725 
726 		dmu_buf_will_dirty(prev->ds_dbuf, tx);
727 		dsl_dataset_phys(prev)->ds_num_children++;
728 
729 		if (dsl_dataset_phys(ds)->ds_next_snap_obj == 0) {
730 			ASSERT(ds->ds_prev == NULL);
731 			VERIFY0(dsl_dataset_hold_obj(dp,
732 			    dsl_dataset_phys(ds)->ds_prev_snap_obj,
733 			    ds, &ds->ds_prev));
734 		}
735 	}
736 
737 	ASSERT3U(dsl_dir_phys(ds->ds_dir)->dd_origin_obj, ==, prev->ds_object);
738 	ASSERT3U(dsl_dataset_phys(ds)->ds_prev_snap_obj, ==, prev->ds_object);
739 
740 	if (dsl_dataset_phys(prev)->ds_next_clones_obj == 0) {
741 		dmu_buf_will_dirty(prev->ds_dbuf, tx);
742 		dsl_dataset_phys(prev)->ds_next_clones_obj =
743 		    zap_create(dp->dp_meta_objset,
744 		    DMU_OT_NEXT_CLONES, DMU_OT_NONE, 0, tx);
745 	}
746 	VERIFY0(zap_add_int(dp->dp_meta_objset,
747 	    dsl_dataset_phys(prev)->ds_next_clones_obj, ds->ds_object, tx));
748 
749 	dsl_dataset_rele(ds, FTAG);
750 	if (prev != dp->dp_origin_snap)
751 		dsl_dataset_rele(prev, FTAG);
752 	return (0);
753 }
754 
755 void
756 dsl_pool_upgrade_clones(dsl_pool_t *dp, dmu_tx_t *tx)
757 {
758 	ASSERT(dmu_tx_is_syncing(tx));
759 	ASSERT(dp->dp_origin_snap != NULL);
760 
761 	VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, upgrade_clones_cb,
762 	    tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE));
763 }
764 
765 /* ARGSUSED */
766 static int
767 upgrade_dir_clones_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
768 {
769 	dmu_tx_t *tx = arg;
770 	objset_t *mos = dp->dp_meta_objset;
771 
772 	if (dsl_dir_phys(ds->ds_dir)->dd_origin_obj != 0) {
773 		dsl_dataset_t *origin;
774 
775 		VERIFY0(dsl_dataset_hold_obj(dp,
776 		    dsl_dir_phys(ds->ds_dir)->dd_origin_obj, FTAG, &origin));
777 
778 		if (dsl_dir_phys(origin->ds_dir)->dd_clones == 0) {
779 			dmu_buf_will_dirty(origin->ds_dir->dd_dbuf, tx);
780 			dsl_dir_phys(origin->ds_dir)->dd_clones =
781 			    zap_create(mos, DMU_OT_DSL_CLONES, DMU_OT_NONE,
782 			    0, tx);
783 		}
784 
785 		VERIFY0(zap_add_int(dp->dp_meta_objset,
786 		    dsl_dir_phys(origin->ds_dir)->dd_clones,
787 		    ds->ds_object, tx));
788 
789 		dsl_dataset_rele(origin, FTAG);
790 	}
791 	return (0);
792 }
793 
794 void
795 dsl_pool_upgrade_dir_clones(dsl_pool_t *dp, dmu_tx_t *tx)
796 {
797 	ASSERT(dmu_tx_is_syncing(tx));
798 	uint64_t obj;
799 
800 	(void) dsl_dir_create_sync(dp, dp->dp_root_dir, FREE_DIR_NAME, tx);
801 	VERIFY0(dsl_pool_open_special_dir(dp,
802 	    FREE_DIR_NAME, &dp->dp_free_dir));
803 
804 	/*
805 	 * We can't use bpobj_alloc(), because spa_version() still
806 	 * returns the old version, and we need a new-version bpobj with
807 	 * subobj support.  So call dmu_object_alloc() directly.
808 	 */
809 	obj = dmu_object_alloc(dp->dp_meta_objset, DMU_OT_BPOBJ,
810 	    SPA_OLD_MAXBLOCKSIZE, DMU_OT_BPOBJ_HDR, sizeof (bpobj_phys_t), tx);
811 	VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
812 	    DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx));
813 	VERIFY0(bpobj_open(&dp->dp_free_bpobj, dp->dp_meta_objset, obj));
814 
815 	VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
816 	    upgrade_dir_clones_cb, tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE));
817 }
818 
819 void
820 dsl_pool_create_origin(dsl_pool_t *dp, dmu_tx_t *tx)
821 {
822 	uint64_t dsobj;
823 	dsl_dataset_t *ds;
824 
825 	ASSERT(dmu_tx_is_syncing(tx));
826 	ASSERT(dp->dp_origin_snap == NULL);
827 	ASSERT(rrw_held(&dp->dp_config_rwlock, RW_WRITER));
828 
829 	/* create the origin dir, ds, & snap-ds */
830 	dsobj = dsl_dataset_create_sync(dp->dp_root_dir, ORIGIN_DIR_NAME,
831 	    NULL, 0, kcred, tx);
832 	VERIFY0(dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
833 	dsl_dataset_snapshot_sync_impl(ds, ORIGIN_DIR_NAME, tx);
834 	VERIFY0(dsl_dataset_hold_obj(dp, dsl_dataset_phys(ds)->ds_prev_snap_obj,
835 	    dp, &dp->dp_origin_snap));
836 	dsl_dataset_rele(ds, FTAG);
837 }
838 
839 taskq_t *
840 dsl_pool_vnrele_taskq(dsl_pool_t *dp)
841 {
842 	return (dp->dp_vnrele_taskq);
843 }
844 
845 /*
846  * Walk through the pool-wide zap object of temporary snapshot user holds
847  * and release them.
848  */
849 void
850 dsl_pool_clean_tmp_userrefs(dsl_pool_t *dp)
851 {
852 	zap_attribute_t za;
853 	zap_cursor_t zc;
854 	objset_t *mos = dp->dp_meta_objset;
855 	uint64_t zapobj = dp->dp_tmp_userrefs_obj;
856 	nvlist_t *holds;
857 
858 	if (zapobj == 0)
859 		return;
860 	ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
861 
862 	holds = fnvlist_alloc();
863 
864 	for (zap_cursor_init(&zc, mos, zapobj);
865 	    zap_cursor_retrieve(&zc, &za) == 0;
866 	    zap_cursor_advance(&zc)) {
867 		char *htag;
868 		nvlist_t *tags;
869 
870 		htag = strchr(za.za_name, '-');
871 		*htag = '\0';
872 		++htag;
873 		if (nvlist_lookup_nvlist(holds, za.za_name, &tags) != 0) {
874 			tags = fnvlist_alloc();
875 			fnvlist_add_boolean(tags, htag);
876 			fnvlist_add_nvlist(holds, za.za_name, tags);
877 			fnvlist_free(tags);
878 		} else {
879 			fnvlist_add_boolean(tags, htag);
880 		}
881 	}
882 	dsl_dataset_user_release_tmp(dp, holds);
883 	fnvlist_free(holds);
884 	zap_cursor_fini(&zc);
885 }
886 
887 /*
888  * Create the pool-wide zap object for storing temporary snapshot holds.
889  */
890 void
891 dsl_pool_user_hold_create_obj(dsl_pool_t *dp, dmu_tx_t *tx)
892 {
893 	objset_t *mos = dp->dp_meta_objset;
894 
895 	ASSERT(dp->dp_tmp_userrefs_obj == 0);
896 	ASSERT(dmu_tx_is_syncing(tx));
897 
898 	dp->dp_tmp_userrefs_obj = zap_create_link(mos, DMU_OT_USERREFS,
899 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_TMP_USERREFS, tx);
900 }
901 
902 static int
903 dsl_pool_user_hold_rele_impl(dsl_pool_t *dp, uint64_t dsobj,
904     const char *tag, uint64_t now, dmu_tx_t *tx, boolean_t holding)
905 {
906 	objset_t *mos = dp->dp_meta_objset;
907 	uint64_t zapobj = dp->dp_tmp_userrefs_obj;
908 	char *name;
909 	int error;
910 
911 	ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
912 	ASSERT(dmu_tx_is_syncing(tx));
913 
914 	/*
915 	 * If the pool was created prior to SPA_VERSION_USERREFS, the
916 	 * zap object for temporary holds might not exist yet.
917 	 */
918 	if (zapobj == 0) {
919 		if (holding) {
920 			dsl_pool_user_hold_create_obj(dp, tx);
921 			zapobj = dp->dp_tmp_userrefs_obj;
922 		} else {
923 			return (SET_ERROR(ENOENT));
924 		}
925 	}
926 
927 	name = kmem_asprintf("%llx-%s", (u_longlong_t)dsobj, tag);
928 	if (holding)
929 		error = zap_add(mos, zapobj, name, 8, 1, &now, tx);
930 	else
931 		error = zap_remove(mos, zapobj, name, tx);
932 	strfree(name);
933 
934 	return (error);
935 }
936 
937 /*
938  * Add a temporary hold for the given dataset object and tag.
939  */
940 int
941 dsl_pool_user_hold(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
942     uint64_t now, dmu_tx_t *tx)
943 {
944 	return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, now, tx, B_TRUE));
945 }
946 
947 /*
948  * Release a temporary hold for the given dataset object and tag.
949  */
950 int
951 dsl_pool_user_release(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
952     dmu_tx_t *tx)
953 {
954 	return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, NULL,
955 	    tx, B_FALSE));
956 }
957 
958 /*
959  * DSL Pool Configuration Lock
960  *
961  * The dp_config_rwlock protects against changes to DSL state (e.g. dataset
962  * creation / destruction / rename / property setting).  It must be held for
963  * read to hold a dataset or dsl_dir.  I.e. you must call
964  * dsl_pool_config_enter() or dsl_pool_hold() before calling
965  * dsl_{dataset,dir}_hold{_obj}.  In most circumstances, the dp_config_rwlock
966  * must be held continuously until all datasets and dsl_dirs are released.
967  *
968  * The only exception to this rule is that if a "long hold" is placed on
969  * a dataset, then the dp_config_rwlock may be dropped while the dataset
970  * is still held.  The long hold will prevent the dataset from being
971  * destroyed -- the destroy will fail with EBUSY.  A long hold can be
972  * obtained by calling dsl_dataset_long_hold(), or by "owning" a dataset
973  * (by calling dsl_{dataset,objset}_{try}own{_obj}).
974  *
975  * Legitimate long-holders (including owners) should be long-running, cancelable
976  * tasks that should cause "zfs destroy" to fail.  This includes DMU
977  * consumers (i.e. a ZPL filesystem being mounted or ZVOL being open),
978  * "zfs send", and "zfs diff".  There are several other long-holders whose
979  * uses are suboptimal (e.g. "zfs promote", and zil_suspend()).
980  *
981  * The usual formula for long-holding would be:
982  * dsl_pool_hold()
983  * dsl_dataset_hold()
984  * ... perform checks ...
985  * dsl_dataset_long_hold()
986  * dsl_pool_rele()
987  * ... perform long-running task ...
988  * dsl_dataset_long_rele()
989  * dsl_dataset_rele()
990  *
991  * Note that when the long hold is released, the dataset is still held but
992  * the pool is not held.  The dataset may change arbitrarily during this time
993  * (e.g. it could be destroyed).  Therefore you shouldn't do anything to the
994  * dataset except release it.
995  *
996  * User-initiated operations (e.g. ioctls, zfs_ioc_*()) are either read-only
997  * or modifying operations.
998  *
999  * Modifying operations should generally use dsl_sync_task().  The synctask
1000  * infrastructure enforces proper locking strategy with respect to the
1001  * dp_config_rwlock.  See the comment above dsl_sync_task() for details.
1002  *
1003  * Read-only operations will manually hold the pool, then the dataset, obtain
1004  * information from the dataset, then release the pool and dataset.
1005  * dmu_objset_{hold,rele}() are convenience routines that also do the pool
1006  * hold/rele.
1007  */
1008 
1009 int
1010 dsl_pool_hold(const char *name, void *tag, dsl_pool_t **dp)
1011 {
1012 	spa_t *spa;
1013 	int error;
1014 
1015 	error = spa_open(name, &spa, tag);
1016 	if (error == 0) {
1017 		*dp = spa_get_dsl(spa);
1018 		dsl_pool_config_enter(*dp, tag);
1019 	}
1020 	return (error);
1021 }
1022 
1023 void
1024 dsl_pool_rele(dsl_pool_t *dp, void *tag)
1025 {
1026 	dsl_pool_config_exit(dp, tag);
1027 	spa_close(dp->dp_spa, tag);
1028 }
1029 
1030 void
1031 dsl_pool_config_enter(dsl_pool_t *dp, void *tag)
1032 {
1033 	/*
1034 	 * We use a "reentrant" reader-writer lock, but not reentrantly.
1035 	 *
1036 	 * The rrwlock can (with the track_all flag) track all reading threads,
1037 	 * which is very useful for debugging which code path failed to release
1038 	 * the lock, and for verifying that the *current* thread does hold
1039 	 * the lock.
1040 	 *
1041 	 * (Unlike a rwlock, which knows that N threads hold it for
1042 	 * read, but not *which* threads, so rw_held(RW_READER) returns TRUE
1043 	 * if any thread holds it for read, even if this thread doesn't).
1044 	 */
1045 	ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER));
1046 	rrw_enter(&dp->dp_config_rwlock, RW_READER, tag);
1047 }
1048 
1049 void
1050 dsl_pool_config_enter_prio(dsl_pool_t *dp, void *tag)
1051 {
1052 	ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER));
1053 	rrw_enter_read_prio(&dp->dp_config_rwlock, tag);
1054 }
1055 
1056 void
1057 dsl_pool_config_exit(dsl_pool_t *dp, void *tag)
1058 {
1059 	rrw_exit(&dp->dp_config_rwlock, tag);
1060 }
1061 
1062 boolean_t
1063 dsl_pool_config_held(dsl_pool_t *dp)
1064 {
1065 	return (RRW_LOCK_HELD(&dp->dp_config_rwlock));
1066 }
1067 
1068 boolean_t
1069 dsl_pool_config_held_writer(dsl_pool_t *dp)
1070 {
1071 	return (RRW_WRITE_HELD(&dp->dp_config_rwlock));
1072 }
1073