1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2014 by Delphix. All rights reserved. 24 * Copyright (c) 2013 Steven Hartland. All rights reserved. 25 */ 26 27 #include <sys/dsl_pool.h> 28 #include <sys/dsl_dataset.h> 29 #include <sys/dsl_prop.h> 30 #include <sys/dsl_dir.h> 31 #include <sys/dsl_synctask.h> 32 #include <sys/dsl_scan.h> 33 #include <sys/dnode.h> 34 #include <sys/dmu_tx.h> 35 #include <sys/dmu_objset.h> 36 #include <sys/arc.h> 37 #include <sys/zap.h> 38 #include <sys/zio.h> 39 #include <sys/zfs_context.h> 40 #include <sys/fs/zfs.h> 41 #include <sys/zfs_znode.h> 42 #include <sys/spa_impl.h> 43 #include <sys/dsl_deadlist.h> 44 #include <sys/bptree.h> 45 #include <sys/zfeature.h> 46 #include <sys/zil_impl.h> 47 #include <sys/dsl_userhold.h> 48 49 /* 50 * ZFS Write Throttle 51 * ------------------ 52 * 53 * ZFS must limit the rate of incoming writes to the rate at which it is able 54 * to sync data modifications to the backend storage. Throttling by too much 55 * creates an artificial limit; throttling by too little can only be sustained 56 * for short periods and would lead to highly lumpy performance. On a per-pool 57 * basis, ZFS tracks the amount of modified (dirty) data. As operations change 58 * data, the amount of dirty data increases; as ZFS syncs out data, the amount 59 * of dirty data decreases. When the amount of dirty data exceeds a 60 * predetermined threshold further modifications are blocked until the amount 61 * of dirty data decreases (as data is synced out). 62 * 63 * The limit on dirty data is tunable, and should be adjusted according to 64 * both the IO capacity and available memory of the system. The larger the 65 * window, the more ZFS is able to aggregate and amortize metadata (and data) 66 * changes. However, memory is a limited resource, and allowing for more dirty 67 * data comes at the cost of keeping other useful data in memory (for example 68 * ZFS data cached by the ARC). 69 * 70 * Implementation 71 * 72 * As buffers are modified dsl_pool_willuse_space() increments both the per- 73 * txg (dp_dirty_pertxg[]) and poolwide (dp_dirty_total) accounting of 74 * dirty space used; dsl_pool_dirty_space() decrements those values as data 75 * is synced out from dsl_pool_sync(). While only the poolwide value is 76 * relevant, the per-txg value is useful for debugging. The tunable 77 * zfs_dirty_data_max determines the dirty space limit. Once that value is 78 * exceeded, new writes are halted until space frees up. 79 * 80 * The zfs_dirty_data_sync tunable dictates the threshold at which we 81 * ensure that there is a txg syncing (see the comment in txg.c for a full 82 * description of transaction group stages). 83 * 84 * The IO scheduler uses both the dirty space limit and current amount of 85 * dirty data as inputs. Those values affect the number of concurrent IOs ZFS 86 * issues. See the comment in vdev_queue.c for details of the IO scheduler. 87 * 88 * The delay is also calculated based on the amount of dirty data. See the 89 * comment above dmu_tx_delay() for details. 90 */ 91 92 /* 93 * zfs_dirty_data_max will be set to zfs_dirty_data_max_percent% of all memory, 94 * capped at zfs_dirty_data_max_max. It can also be overridden in /etc/system. 95 */ 96 uint64_t zfs_dirty_data_max; 97 uint64_t zfs_dirty_data_max_max = 4ULL * 1024 * 1024 * 1024; 98 int zfs_dirty_data_max_percent = 10; 99 100 /* 101 * If there is at least this much dirty data, push out a txg. 102 */ 103 uint64_t zfs_dirty_data_sync = 64 * 1024 * 1024; 104 105 /* 106 * Once there is this amount of dirty data, the dmu_tx_delay() will kick in 107 * and delay each transaction. 108 * This value should be >= zfs_vdev_async_write_active_max_dirty_percent. 109 */ 110 int zfs_delay_min_dirty_percent = 60; 111 112 /* 113 * This controls how quickly the delay approaches infinity. 114 * Larger values cause it to delay more for a given amount of dirty data. 115 * Therefore larger values will cause there to be less dirty data for a 116 * given throughput. 117 * 118 * For the smoothest delay, this value should be about 1 billion divided 119 * by the maximum number of operations per second. This will smoothly 120 * handle between 10x and 1/10th this number. 121 * 122 * Note: zfs_delay_scale * zfs_dirty_data_max must be < 2^64, due to the 123 * multiply in dmu_tx_delay(). 124 */ 125 uint64_t zfs_delay_scale = 1000 * 1000 * 1000 / 2000; 126 127 128 hrtime_t zfs_throttle_delay = MSEC2NSEC(10); 129 hrtime_t zfs_throttle_resolution = MSEC2NSEC(10); 130 131 int 132 dsl_pool_open_special_dir(dsl_pool_t *dp, const char *name, dsl_dir_t **ddp) 133 { 134 uint64_t obj; 135 int err; 136 137 err = zap_lookup(dp->dp_meta_objset, 138 dp->dp_root_dir->dd_phys->dd_child_dir_zapobj, 139 name, sizeof (obj), 1, &obj); 140 if (err) 141 return (err); 142 143 return (dsl_dir_hold_obj(dp, obj, name, dp, ddp)); 144 } 145 146 static dsl_pool_t * 147 dsl_pool_open_impl(spa_t *spa, uint64_t txg) 148 { 149 dsl_pool_t *dp; 150 blkptr_t *bp = spa_get_rootblkptr(spa); 151 152 dp = kmem_zalloc(sizeof (dsl_pool_t), KM_SLEEP); 153 dp->dp_spa = spa; 154 dp->dp_meta_rootbp = *bp; 155 rrw_init(&dp->dp_config_rwlock, B_TRUE); 156 txg_init(dp, txg); 157 158 txg_list_create(&dp->dp_dirty_datasets, 159 offsetof(dsl_dataset_t, ds_dirty_link)); 160 txg_list_create(&dp->dp_dirty_zilogs, 161 offsetof(zilog_t, zl_dirty_link)); 162 txg_list_create(&dp->dp_dirty_dirs, 163 offsetof(dsl_dir_t, dd_dirty_link)); 164 txg_list_create(&dp->dp_sync_tasks, 165 offsetof(dsl_sync_task_t, dst_node)); 166 167 mutex_init(&dp->dp_lock, NULL, MUTEX_DEFAULT, NULL); 168 cv_init(&dp->dp_spaceavail_cv, NULL, CV_DEFAULT, NULL); 169 170 dp->dp_vnrele_taskq = taskq_create("zfs_vn_rele_taskq", 1, minclsyspri, 171 1, 4, 0); 172 173 return (dp); 174 } 175 176 int 177 dsl_pool_init(spa_t *spa, uint64_t txg, dsl_pool_t **dpp) 178 { 179 int err; 180 dsl_pool_t *dp = dsl_pool_open_impl(spa, txg); 181 182 err = dmu_objset_open_impl(spa, NULL, &dp->dp_meta_rootbp, 183 &dp->dp_meta_objset); 184 if (err != 0) 185 dsl_pool_close(dp); 186 else 187 *dpp = dp; 188 189 return (err); 190 } 191 192 int 193 dsl_pool_open(dsl_pool_t *dp) 194 { 195 int err; 196 dsl_dir_t *dd; 197 dsl_dataset_t *ds; 198 uint64_t obj; 199 200 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); 201 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 202 DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1, 203 &dp->dp_root_dir_obj); 204 if (err) 205 goto out; 206 207 err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj, 208 NULL, dp, &dp->dp_root_dir); 209 if (err) 210 goto out; 211 212 err = dsl_pool_open_special_dir(dp, MOS_DIR_NAME, &dp->dp_mos_dir); 213 if (err) 214 goto out; 215 216 if (spa_version(dp->dp_spa) >= SPA_VERSION_ORIGIN) { 217 err = dsl_pool_open_special_dir(dp, ORIGIN_DIR_NAME, &dd); 218 if (err) 219 goto out; 220 err = dsl_dataset_hold_obj(dp, dd->dd_phys->dd_head_dataset_obj, 221 FTAG, &ds); 222 if (err == 0) { 223 err = dsl_dataset_hold_obj(dp, 224 ds->ds_phys->ds_prev_snap_obj, dp, 225 &dp->dp_origin_snap); 226 dsl_dataset_rele(ds, FTAG); 227 } 228 dsl_dir_rele(dd, dp); 229 if (err) 230 goto out; 231 } 232 233 if (spa_version(dp->dp_spa) >= SPA_VERSION_DEADLISTS) { 234 err = dsl_pool_open_special_dir(dp, FREE_DIR_NAME, 235 &dp->dp_free_dir); 236 if (err) 237 goto out; 238 239 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 240 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj); 241 if (err) 242 goto out; 243 VERIFY0(bpobj_open(&dp->dp_free_bpobj, 244 dp->dp_meta_objset, obj)); 245 } 246 247 /* 248 * Note: errors ignored, because the leak dir will not exist if we 249 * have not encountered a leak yet. 250 */ 251 (void) dsl_pool_open_special_dir(dp, LEAK_DIR_NAME, 252 &dp->dp_leak_dir); 253 254 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_ASYNC_DESTROY)) { 255 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 256 DMU_POOL_BPTREE_OBJ, sizeof (uint64_t), 1, 257 &dp->dp_bptree_obj); 258 if (err != 0) 259 goto out; 260 } 261 262 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMPTY_BPOBJ)) { 263 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 264 DMU_POOL_EMPTY_BPOBJ, sizeof (uint64_t), 1, 265 &dp->dp_empty_bpobj); 266 if (err != 0) 267 goto out; 268 } 269 270 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 271 DMU_POOL_TMP_USERREFS, sizeof (uint64_t), 1, 272 &dp->dp_tmp_userrefs_obj); 273 if (err == ENOENT) 274 err = 0; 275 if (err) 276 goto out; 277 278 err = dsl_scan_init(dp, dp->dp_tx.tx_open_txg); 279 280 out: 281 rrw_exit(&dp->dp_config_rwlock, FTAG); 282 return (err); 283 } 284 285 void 286 dsl_pool_close(dsl_pool_t *dp) 287 { 288 /* 289 * Drop our references from dsl_pool_open(). 290 * 291 * Since we held the origin_snap from "syncing" context (which 292 * includes pool-opening context), it actually only got a "ref" 293 * and not a hold, so just drop that here. 294 */ 295 if (dp->dp_origin_snap) 296 dsl_dataset_rele(dp->dp_origin_snap, dp); 297 if (dp->dp_mos_dir) 298 dsl_dir_rele(dp->dp_mos_dir, dp); 299 if (dp->dp_free_dir) 300 dsl_dir_rele(dp->dp_free_dir, dp); 301 if (dp->dp_leak_dir) 302 dsl_dir_rele(dp->dp_leak_dir, dp); 303 if (dp->dp_root_dir) 304 dsl_dir_rele(dp->dp_root_dir, dp); 305 306 bpobj_close(&dp->dp_free_bpobj); 307 308 /* undo the dmu_objset_open_impl(mos) from dsl_pool_open() */ 309 if (dp->dp_meta_objset) 310 dmu_objset_evict(dp->dp_meta_objset); 311 312 txg_list_destroy(&dp->dp_dirty_datasets); 313 txg_list_destroy(&dp->dp_dirty_zilogs); 314 txg_list_destroy(&dp->dp_sync_tasks); 315 txg_list_destroy(&dp->dp_dirty_dirs); 316 317 arc_flush(dp->dp_spa); 318 txg_fini(dp); 319 dsl_scan_fini(dp); 320 rrw_destroy(&dp->dp_config_rwlock); 321 mutex_destroy(&dp->dp_lock); 322 taskq_destroy(dp->dp_vnrele_taskq); 323 if (dp->dp_blkstats) 324 kmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t)); 325 kmem_free(dp, sizeof (dsl_pool_t)); 326 } 327 328 dsl_pool_t * 329 dsl_pool_create(spa_t *spa, nvlist_t *zplprops, uint64_t txg) 330 { 331 int err; 332 dsl_pool_t *dp = dsl_pool_open_impl(spa, txg); 333 dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg); 334 objset_t *os; 335 dsl_dataset_t *ds; 336 uint64_t obj; 337 338 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); 339 340 /* create and open the MOS (meta-objset) */ 341 dp->dp_meta_objset = dmu_objset_create_impl(spa, 342 NULL, &dp->dp_meta_rootbp, DMU_OST_META, tx); 343 344 /* create the pool directory */ 345 err = zap_create_claim(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 346 DMU_OT_OBJECT_DIRECTORY, DMU_OT_NONE, 0, tx); 347 ASSERT0(err); 348 349 /* Initialize scan structures */ 350 VERIFY0(dsl_scan_init(dp, txg)); 351 352 /* create and open the root dir */ 353 dp->dp_root_dir_obj = dsl_dir_create_sync(dp, NULL, NULL, tx); 354 VERIFY0(dsl_dir_hold_obj(dp, dp->dp_root_dir_obj, 355 NULL, dp, &dp->dp_root_dir)); 356 357 /* create and open the meta-objset dir */ 358 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, MOS_DIR_NAME, tx); 359 VERIFY0(dsl_pool_open_special_dir(dp, 360 MOS_DIR_NAME, &dp->dp_mos_dir)); 361 362 if (spa_version(spa) >= SPA_VERSION_DEADLISTS) { 363 /* create and open the free dir */ 364 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, 365 FREE_DIR_NAME, tx); 366 VERIFY0(dsl_pool_open_special_dir(dp, 367 FREE_DIR_NAME, &dp->dp_free_dir)); 368 369 /* create and open the free_bplist */ 370 obj = bpobj_alloc(dp->dp_meta_objset, SPA_MAXBLOCKSIZE, tx); 371 VERIFY(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 372 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx) == 0); 373 VERIFY0(bpobj_open(&dp->dp_free_bpobj, 374 dp->dp_meta_objset, obj)); 375 } 376 377 if (spa_version(spa) >= SPA_VERSION_DSL_SCRUB) 378 dsl_pool_create_origin(dp, tx); 379 380 /* create the root dataset */ 381 obj = dsl_dataset_create_sync_dd(dp->dp_root_dir, NULL, 0, tx); 382 383 /* create the root objset */ 384 VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG, &ds)); 385 os = dmu_objset_create_impl(dp->dp_spa, ds, 386 dsl_dataset_get_blkptr(ds), DMU_OST_ZFS, tx); 387 #ifdef _KERNEL 388 zfs_create_fs(os, kcred, zplprops, tx); 389 #endif 390 dsl_dataset_rele(ds, FTAG); 391 392 dmu_tx_commit(tx); 393 394 rrw_exit(&dp->dp_config_rwlock, FTAG); 395 396 return (dp); 397 } 398 399 /* 400 * Account for the meta-objset space in its placeholder dsl_dir. 401 */ 402 void 403 dsl_pool_mos_diduse_space(dsl_pool_t *dp, 404 int64_t used, int64_t comp, int64_t uncomp) 405 { 406 ASSERT3U(comp, ==, uncomp); /* it's all metadata */ 407 mutex_enter(&dp->dp_lock); 408 dp->dp_mos_used_delta += used; 409 dp->dp_mos_compressed_delta += comp; 410 dp->dp_mos_uncompressed_delta += uncomp; 411 mutex_exit(&dp->dp_lock); 412 } 413 414 static int 415 deadlist_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 416 { 417 dsl_deadlist_t *dl = arg; 418 dsl_deadlist_insert(dl, bp, tx); 419 return (0); 420 } 421 422 static void 423 dsl_pool_sync_mos(dsl_pool_t *dp, dmu_tx_t *tx) 424 { 425 zio_t *zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED); 426 dmu_objset_sync(dp->dp_meta_objset, zio, tx); 427 VERIFY0(zio_wait(zio)); 428 dprintf_bp(&dp->dp_meta_rootbp, "meta objset rootbp is %s", ""); 429 spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp); 430 } 431 432 static void 433 dsl_pool_dirty_delta(dsl_pool_t *dp, int64_t delta) 434 { 435 ASSERT(MUTEX_HELD(&dp->dp_lock)); 436 437 if (delta < 0) 438 ASSERT3U(-delta, <=, dp->dp_dirty_total); 439 440 dp->dp_dirty_total += delta; 441 442 /* 443 * Note: we signal even when increasing dp_dirty_total. 444 * This ensures forward progress -- each thread wakes the next waiter. 445 */ 446 if (dp->dp_dirty_total <= zfs_dirty_data_max) 447 cv_signal(&dp->dp_spaceavail_cv); 448 } 449 450 void 451 dsl_pool_sync(dsl_pool_t *dp, uint64_t txg) 452 { 453 zio_t *zio; 454 dmu_tx_t *tx; 455 dsl_dir_t *dd; 456 dsl_dataset_t *ds; 457 objset_t *mos = dp->dp_meta_objset; 458 list_t synced_datasets; 459 460 list_create(&synced_datasets, sizeof (dsl_dataset_t), 461 offsetof(dsl_dataset_t, ds_synced_link)); 462 463 tx = dmu_tx_create_assigned(dp, txg); 464 465 /* 466 * Write out all dirty blocks of dirty datasets. 467 */ 468 zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED); 469 while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) { 470 /* 471 * We must not sync any non-MOS datasets twice, because 472 * we may have taken a snapshot of them. However, we 473 * may sync newly-created datasets on pass 2. 474 */ 475 ASSERT(!list_link_active(&ds->ds_synced_link)); 476 list_insert_tail(&synced_datasets, ds); 477 dsl_dataset_sync(ds, zio, tx); 478 } 479 VERIFY0(zio_wait(zio)); 480 481 /* 482 * We have written all of the accounted dirty data, so our 483 * dp_space_towrite should now be zero. However, some seldom-used 484 * code paths do not adhere to this (e.g. dbuf_undirty(), also 485 * rounding error in dbuf_write_physdone). 486 * Shore up the accounting of any dirtied space now. 487 */ 488 dsl_pool_undirty_space(dp, dp->dp_dirty_pertxg[txg & TXG_MASK], txg); 489 490 /* 491 * After the data blocks have been written (ensured by the zio_wait() 492 * above), update the user/group space accounting. 493 */ 494 for (ds = list_head(&synced_datasets); ds != NULL; 495 ds = list_next(&synced_datasets, ds)) { 496 dmu_objset_do_userquota_updates(ds->ds_objset, tx); 497 } 498 499 /* 500 * Sync the datasets again to push out the changes due to 501 * userspace updates. This must be done before we process the 502 * sync tasks, so that any snapshots will have the correct 503 * user accounting information (and we won't get confused 504 * about which blocks are part of the snapshot). 505 */ 506 zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED); 507 while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) { 508 ASSERT(list_link_active(&ds->ds_synced_link)); 509 dmu_buf_rele(ds->ds_dbuf, ds); 510 dsl_dataset_sync(ds, zio, tx); 511 } 512 VERIFY0(zio_wait(zio)); 513 514 /* 515 * Now that the datasets have been completely synced, we can 516 * clean up our in-memory structures accumulated while syncing: 517 * 518 * - move dead blocks from the pending deadlist to the on-disk deadlist 519 * - release hold from dsl_dataset_dirty() 520 */ 521 while ((ds = list_remove_head(&synced_datasets)) != NULL) { 522 objset_t *os = ds->ds_objset; 523 bplist_iterate(&ds->ds_pending_deadlist, 524 deadlist_enqueue_cb, &ds->ds_deadlist, tx); 525 ASSERT(!dmu_objset_is_dirty(os, txg)); 526 dmu_buf_rele(ds->ds_dbuf, ds); 527 } 528 while ((dd = txg_list_remove(&dp->dp_dirty_dirs, txg)) != NULL) { 529 dsl_dir_sync(dd, tx); 530 } 531 532 /* 533 * The MOS's space is accounted for in the pool/$MOS 534 * (dp_mos_dir). We can't modify the mos while we're syncing 535 * it, so we remember the deltas and apply them here. 536 */ 537 if (dp->dp_mos_used_delta != 0 || dp->dp_mos_compressed_delta != 0 || 538 dp->dp_mos_uncompressed_delta != 0) { 539 dsl_dir_diduse_space(dp->dp_mos_dir, DD_USED_HEAD, 540 dp->dp_mos_used_delta, 541 dp->dp_mos_compressed_delta, 542 dp->dp_mos_uncompressed_delta, tx); 543 dp->dp_mos_used_delta = 0; 544 dp->dp_mos_compressed_delta = 0; 545 dp->dp_mos_uncompressed_delta = 0; 546 } 547 548 if (list_head(&mos->os_dirty_dnodes[txg & TXG_MASK]) != NULL || 549 list_head(&mos->os_free_dnodes[txg & TXG_MASK]) != NULL) { 550 dsl_pool_sync_mos(dp, tx); 551 } 552 553 /* 554 * If we modify a dataset in the same txg that we want to destroy it, 555 * its dsl_dir's dd_dbuf will be dirty, and thus have a hold on it. 556 * dsl_dir_destroy_check() will fail if there are unexpected holds. 557 * Therefore, we want to sync the MOS (thus syncing the dd_dbuf 558 * and clearing the hold on it) before we process the sync_tasks. 559 * The MOS data dirtied by the sync_tasks will be synced on the next 560 * pass. 561 */ 562 if (!txg_list_empty(&dp->dp_sync_tasks, txg)) { 563 dsl_sync_task_t *dst; 564 /* 565 * No more sync tasks should have been added while we 566 * were syncing. 567 */ 568 ASSERT3U(spa_sync_pass(dp->dp_spa), ==, 1); 569 while ((dst = txg_list_remove(&dp->dp_sync_tasks, txg)) != NULL) 570 dsl_sync_task_sync(dst, tx); 571 } 572 573 dmu_tx_commit(tx); 574 575 DTRACE_PROBE2(dsl_pool_sync__done, dsl_pool_t *dp, dp, uint64_t, txg); 576 } 577 578 void 579 dsl_pool_sync_done(dsl_pool_t *dp, uint64_t txg) 580 { 581 zilog_t *zilog; 582 583 while (zilog = txg_list_remove(&dp->dp_dirty_zilogs, txg)) { 584 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os); 585 zil_clean(zilog, txg); 586 ASSERT(!dmu_objset_is_dirty(zilog->zl_os, txg)); 587 dmu_buf_rele(ds->ds_dbuf, zilog); 588 } 589 ASSERT(!dmu_objset_is_dirty(dp->dp_meta_objset, txg)); 590 } 591 592 /* 593 * TRUE if the current thread is the tx_sync_thread or if we 594 * are being called from SPA context during pool initialization. 595 */ 596 int 597 dsl_pool_sync_context(dsl_pool_t *dp) 598 { 599 return (curthread == dp->dp_tx.tx_sync_thread || 600 spa_is_initializing(dp->dp_spa)); 601 } 602 603 uint64_t 604 dsl_pool_adjustedsize(dsl_pool_t *dp, boolean_t netfree) 605 { 606 uint64_t space, resv; 607 608 /* 609 * If we're trying to assess whether it's OK to do a free, 610 * cut the reservation in half to allow forward progress 611 * (e.g. make it possible to rm(1) files from a full pool). 612 */ 613 space = spa_get_dspace(dp->dp_spa); 614 resv = spa_get_slop_space(dp->dp_spa); 615 if (netfree) 616 resv >>= 1; 617 618 return (space - resv); 619 } 620 621 boolean_t 622 dsl_pool_need_dirty_delay(dsl_pool_t *dp) 623 { 624 uint64_t delay_min_bytes = 625 zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100; 626 boolean_t rv; 627 628 mutex_enter(&dp->dp_lock); 629 if (dp->dp_dirty_total > zfs_dirty_data_sync) 630 txg_kick(dp); 631 rv = (dp->dp_dirty_total > delay_min_bytes); 632 mutex_exit(&dp->dp_lock); 633 return (rv); 634 } 635 636 void 637 dsl_pool_dirty_space(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx) 638 { 639 if (space > 0) { 640 mutex_enter(&dp->dp_lock); 641 dp->dp_dirty_pertxg[tx->tx_txg & TXG_MASK] += space; 642 dsl_pool_dirty_delta(dp, space); 643 mutex_exit(&dp->dp_lock); 644 } 645 } 646 647 void 648 dsl_pool_undirty_space(dsl_pool_t *dp, int64_t space, uint64_t txg) 649 { 650 ASSERT3S(space, >=, 0); 651 if (space == 0) 652 return; 653 mutex_enter(&dp->dp_lock); 654 if (dp->dp_dirty_pertxg[txg & TXG_MASK] < space) { 655 /* XXX writing something we didn't dirty? */ 656 space = dp->dp_dirty_pertxg[txg & TXG_MASK]; 657 } 658 ASSERT3U(dp->dp_dirty_pertxg[txg & TXG_MASK], >=, space); 659 dp->dp_dirty_pertxg[txg & TXG_MASK] -= space; 660 ASSERT3U(dp->dp_dirty_total, >=, space); 661 dsl_pool_dirty_delta(dp, -space); 662 mutex_exit(&dp->dp_lock); 663 } 664 665 /* ARGSUSED */ 666 static int 667 upgrade_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg) 668 { 669 dmu_tx_t *tx = arg; 670 dsl_dataset_t *ds, *prev = NULL; 671 int err; 672 673 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds); 674 if (err) 675 return (err); 676 677 while (ds->ds_phys->ds_prev_snap_obj != 0) { 678 err = dsl_dataset_hold_obj(dp, ds->ds_phys->ds_prev_snap_obj, 679 FTAG, &prev); 680 if (err) { 681 dsl_dataset_rele(ds, FTAG); 682 return (err); 683 } 684 685 if (prev->ds_phys->ds_next_snap_obj != ds->ds_object) 686 break; 687 dsl_dataset_rele(ds, FTAG); 688 ds = prev; 689 prev = NULL; 690 } 691 692 if (prev == NULL) { 693 prev = dp->dp_origin_snap; 694 695 /* 696 * The $ORIGIN can't have any data, or the accounting 697 * will be wrong. 698 */ 699 ASSERT0(prev->ds_phys->ds_bp.blk_birth); 700 701 /* The origin doesn't get attached to itself */ 702 if (ds->ds_object == prev->ds_object) { 703 dsl_dataset_rele(ds, FTAG); 704 return (0); 705 } 706 707 dmu_buf_will_dirty(ds->ds_dbuf, tx); 708 ds->ds_phys->ds_prev_snap_obj = prev->ds_object; 709 ds->ds_phys->ds_prev_snap_txg = prev->ds_phys->ds_creation_txg; 710 711 dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx); 712 ds->ds_dir->dd_phys->dd_origin_obj = prev->ds_object; 713 714 dmu_buf_will_dirty(prev->ds_dbuf, tx); 715 prev->ds_phys->ds_num_children++; 716 717 if (ds->ds_phys->ds_next_snap_obj == 0) { 718 ASSERT(ds->ds_prev == NULL); 719 VERIFY0(dsl_dataset_hold_obj(dp, 720 ds->ds_phys->ds_prev_snap_obj, ds, &ds->ds_prev)); 721 } 722 } 723 724 ASSERT3U(ds->ds_dir->dd_phys->dd_origin_obj, ==, prev->ds_object); 725 ASSERT3U(ds->ds_phys->ds_prev_snap_obj, ==, prev->ds_object); 726 727 if (prev->ds_phys->ds_next_clones_obj == 0) { 728 dmu_buf_will_dirty(prev->ds_dbuf, tx); 729 prev->ds_phys->ds_next_clones_obj = 730 zap_create(dp->dp_meta_objset, 731 DMU_OT_NEXT_CLONES, DMU_OT_NONE, 0, tx); 732 } 733 VERIFY0(zap_add_int(dp->dp_meta_objset, 734 prev->ds_phys->ds_next_clones_obj, ds->ds_object, tx)); 735 736 dsl_dataset_rele(ds, FTAG); 737 if (prev != dp->dp_origin_snap) 738 dsl_dataset_rele(prev, FTAG); 739 return (0); 740 } 741 742 void 743 dsl_pool_upgrade_clones(dsl_pool_t *dp, dmu_tx_t *tx) 744 { 745 ASSERT(dmu_tx_is_syncing(tx)); 746 ASSERT(dp->dp_origin_snap != NULL); 747 748 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, upgrade_clones_cb, 749 tx, DS_FIND_CHILDREN)); 750 } 751 752 /* ARGSUSED */ 753 static int 754 upgrade_dir_clones_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg) 755 { 756 dmu_tx_t *tx = arg; 757 objset_t *mos = dp->dp_meta_objset; 758 759 if (ds->ds_dir->dd_phys->dd_origin_obj != 0) { 760 dsl_dataset_t *origin; 761 762 VERIFY0(dsl_dataset_hold_obj(dp, 763 ds->ds_dir->dd_phys->dd_origin_obj, FTAG, &origin)); 764 765 if (origin->ds_dir->dd_phys->dd_clones == 0) { 766 dmu_buf_will_dirty(origin->ds_dir->dd_dbuf, tx); 767 origin->ds_dir->dd_phys->dd_clones = zap_create(mos, 768 DMU_OT_DSL_CLONES, DMU_OT_NONE, 0, tx); 769 } 770 771 VERIFY0(zap_add_int(dp->dp_meta_objset, 772 origin->ds_dir->dd_phys->dd_clones, ds->ds_object, tx)); 773 774 dsl_dataset_rele(origin, FTAG); 775 } 776 return (0); 777 } 778 779 void 780 dsl_pool_upgrade_dir_clones(dsl_pool_t *dp, dmu_tx_t *tx) 781 { 782 ASSERT(dmu_tx_is_syncing(tx)); 783 uint64_t obj; 784 785 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, FREE_DIR_NAME, tx); 786 VERIFY0(dsl_pool_open_special_dir(dp, 787 FREE_DIR_NAME, &dp->dp_free_dir)); 788 789 /* 790 * We can't use bpobj_alloc(), because spa_version() still 791 * returns the old version, and we need a new-version bpobj with 792 * subobj support. So call dmu_object_alloc() directly. 793 */ 794 obj = dmu_object_alloc(dp->dp_meta_objset, DMU_OT_BPOBJ, 795 SPA_MAXBLOCKSIZE, DMU_OT_BPOBJ_HDR, sizeof (bpobj_phys_t), tx); 796 VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 797 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx)); 798 VERIFY0(bpobj_open(&dp->dp_free_bpobj, dp->dp_meta_objset, obj)); 799 800 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 801 upgrade_dir_clones_cb, tx, DS_FIND_CHILDREN)); 802 } 803 804 void 805 dsl_pool_create_origin(dsl_pool_t *dp, dmu_tx_t *tx) 806 { 807 uint64_t dsobj; 808 dsl_dataset_t *ds; 809 810 ASSERT(dmu_tx_is_syncing(tx)); 811 ASSERT(dp->dp_origin_snap == NULL); 812 ASSERT(rrw_held(&dp->dp_config_rwlock, RW_WRITER)); 813 814 /* create the origin dir, ds, & snap-ds */ 815 dsobj = dsl_dataset_create_sync(dp->dp_root_dir, ORIGIN_DIR_NAME, 816 NULL, 0, kcred, tx); 817 VERIFY0(dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds)); 818 dsl_dataset_snapshot_sync_impl(ds, ORIGIN_DIR_NAME, tx); 819 VERIFY0(dsl_dataset_hold_obj(dp, ds->ds_phys->ds_prev_snap_obj, 820 dp, &dp->dp_origin_snap)); 821 dsl_dataset_rele(ds, FTAG); 822 } 823 824 taskq_t * 825 dsl_pool_vnrele_taskq(dsl_pool_t *dp) 826 { 827 return (dp->dp_vnrele_taskq); 828 } 829 830 /* 831 * Walk through the pool-wide zap object of temporary snapshot user holds 832 * and release them. 833 */ 834 void 835 dsl_pool_clean_tmp_userrefs(dsl_pool_t *dp) 836 { 837 zap_attribute_t za; 838 zap_cursor_t zc; 839 objset_t *mos = dp->dp_meta_objset; 840 uint64_t zapobj = dp->dp_tmp_userrefs_obj; 841 nvlist_t *holds; 842 843 if (zapobj == 0) 844 return; 845 ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS); 846 847 holds = fnvlist_alloc(); 848 849 for (zap_cursor_init(&zc, mos, zapobj); 850 zap_cursor_retrieve(&zc, &za) == 0; 851 zap_cursor_advance(&zc)) { 852 char *htag; 853 nvlist_t *tags; 854 855 htag = strchr(za.za_name, '-'); 856 *htag = '\0'; 857 ++htag; 858 if (nvlist_lookup_nvlist(holds, za.za_name, &tags) != 0) { 859 tags = fnvlist_alloc(); 860 fnvlist_add_boolean(tags, htag); 861 fnvlist_add_nvlist(holds, za.za_name, tags); 862 fnvlist_free(tags); 863 } else { 864 fnvlist_add_boolean(tags, htag); 865 } 866 } 867 dsl_dataset_user_release_tmp(dp, holds); 868 fnvlist_free(holds); 869 zap_cursor_fini(&zc); 870 } 871 872 /* 873 * Create the pool-wide zap object for storing temporary snapshot holds. 874 */ 875 void 876 dsl_pool_user_hold_create_obj(dsl_pool_t *dp, dmu_tx_t *tx) 877 { 878 objset_t *mos = dp->dp_meta_objset; 879 880 ASSERT(dp->dp_tmp_userrefs_obj == 0); 881 ASSERT(dmu_tx_is_syncing(tx)); 882 883 dp->dp_tmp_userrefs_obj = zap_create_link(mos, DMU_OT_USERREFS, 884 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_TMP_USERREFS, tx); 885 } 886 887 static int 888 dsl_pool_user_hold_rele_impl(dsl_pool_t *dp, uint64_t dsobj, 889 const char *tag, uint64_t now, dmu_tx_t *tx, boolean_t holding) 890 { 891 objset_t *mos = dp->dp_meta_objset; 892 uint64_t zapobj = dp->dp_tmp_userrefs_obj; 893 char *name; 894 int error; 895 896 ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS); 897 ASSERT(dmu_tx_is_syncing(tx)); 898 899 /* 900 * If the pool was created prior to SPA_VERSION_USERREFS, the 901 * zap object for temporary holds might not exist yet. 902 */ 903 if (zapobj == 0) { 904 if (holding) { 905 dsl_pool_user_hold_create_obj(dp, tx); 906 zapobj = dp->dp_tmp_userrefs_obj; 907 } else { 908 return (SET_ERROR(ENOENT)); 909 } 910 } 911 912 name = kmem_asprintf("%llx-%s", (u_longlong_t)dsobj, tag); 913 if (holding) 914 error = zap_add(mos, zapobj, name, 8, 1, &now, tx); 915 else 916 error = zap_remove(mos, zapobj, name, tx); 917 strfree(name); 918 919 return (error); 920 } 921 922 /* 923 * Add a temporary hold for the given dataset object and tag. 924 */ 925 int 926 dsl_pool_user_hold(dsl_pool_t *dp, uint64_t dsobj, const char *tag, 927 uint64_t now, dmu_tx_t *tx) 928 { 929 return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, now, tx, B_TRUE)); 930 } 931 932 /* 933 * Release a temporary hold for the given dataset object and tag. 934 */ 935 int 936 dsl_pool_user_release(dsl_pool_t *dp, uint64_t dsobj, const char *tag, 937 dmu_tx_t *tx) 938 { 939 return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, NULL, 940 tx, B_FALSE)); 941 } 942 943 /* 944 * DSL Pool Configuration Lock 945 * 946 * The dp_config_rwlock protects against changes to DSL state (e.g. dataset 947 * creation / destruction / rename / property setting). It must be held for 948 * read to hold a dataset or dsl_dir. I.e. you must call 949 * dsl_pool_config_enter() or dsl_pool_hold() before calling 950 * dsl_{dataset,dir}_hold{_obj}. In most circumstances, the dp_config_rwlock 951 * must be held continuously until all datasets and dsl_dirs are released. 952 * 953 * The only exception to this rule is that if a "long hold" is placed on 954 * a dataset, then the dp_config_rwlock may be dropped while the dataset 955 * is still held. The long hold will prevent the dataset from being 956 * destroyed -- the destroy will fail with EBUSY. A long hold can be 957 * obtained by calling dsl_dataset_long_hold(), or by "owning" a dataset 958 * (by calling dsl_{dataset,objset}_{try}own{_obj}). 959 * 960 * Legitimate long-holders (including owners) should be long-running, cancelable 961 * tasks that should cause "zfs destroy" to fail. This includes DMU 962 * consumers (i.e. a ZPL filesystem being mounted or ZVOL being open), 963 * "zfs send", and "zfs diff". There are several other long-holders whose 964 * uses are suboptimal (e.g. "zfs promote", and zil_suspend()). 965 * 966 * The usual formula for long-holding would be: 967 * dsl_pool_hold() 968 * dsl_dataset_hold() 969 * ... perform checks ... 970 * dsl_dataset_long_hold() 971 * dsl_pool_rele() 972 * ... perform long-running task ... 973 * dsl_dataset_long_rele() 974 * dsl_dataset_rele() 975 * 976 * Note that when the long hold is released, the dataset is still held but 977 * the pool is not held. The dataset may change arbitrarily during this time 978 * (e.g. it could be destroyed). Therefore you shouldn't do anything to the 979 * dataset except release it. 980 * 981 * User-initiated operations (e.g. ioctls, zfs_ioc_*()) are either read-only 982 * or modifying operations. 983 * 984 * Modifying operations should generally use dsl_sync_task(). The synctask 985 * infrastructure enforces proper locking strategy with respect to the 986 * dp_config_rwlock. See the comment above dsl_sync_task() for details. 987 * 988 * Read-only operations will manually hold the pool, then the dataset, obtain 989 * information from the dataset, then release the pool and dataset. 990 * dmu_objset_{hold,rele}() are convenience routines that also do the pool 991 * hold/rele. 992 */ 993 994 int 995 dsl_pool_hold(const char *name, void *tag, dsl_pool_t **dp) 996 { 997 spa_t *spa; 998 int error; 999 1000 error = spa_open(name, &spa, tag); 1001 if (error == 0) { 1002 *dp = spa_get_dsl(spa); 1003 dsl_pool_config_enter(*dp, tag); 1004 } 1005 return (error); 1006 } 1007 1008 void 1009 dsl_pool_rele(dsl_pool_t *dp, void *tag) 1010 { 1011 dsl_pool_config_exit(dp, tag); 1012 spa_close(dp->dp_spa, tag); 1013 } 1014 1015 void 1016 dsl_pool_config_enter(dsl_pool_t *dp, void *tag) 1017 { 1018 /* 1019 * We use a "reentrant" reader-writer lock, but not reentrantly. 1020 * 1021 * The rrwlock can (with the track_all flag) track all reading threads, 1022 * which is very useful for debugging which code path failed to release 1023 * the lock, and for verifying that the *current* thread does hold 1024 * the lock. 1025 * 1026 * (Unlike a rwlock, which knows that N threads hold it for 1027 * read, but not *which* threads, so rw_held(RW_READER) returns TRUE 1028 * if any thread holds it for read, even if this thread doesn't). 1029 */ 1030 ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER)); 1031 rrw_enter(&dp->dp_config_rwlock, RW_READER, tag); 1032 } 1033 1034 void 1035 dsl_pool_config_exit(dsl_pool_t *dp, void *tag) 1036 { 1037 rrw_exit(&dp->dp_config_rwlock, tag); 1038 } 1039 1040 boolean_t 1041 dsl_pool_config_held(dsl_pool_t *dp) 1042 { 1043 return (RRW_LOCK_HELD(&dp->dp_config_rwlock)); 1044 } 1045