1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012, 2016 by Delphix. All rights reserved. 24 * Copyright (c) 2013 Martin Matuska. All rights reserved. 25 * Copyright (c) 2014 Joyent, Inc. All rights reserved. 26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 27 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 28 */ 29 30 #include <sys/dmu.h> 31 #include <sys/dmu_objset.h> 32 #include <sys/dmu_tx.h> 33 #include <sys/dsl_dataset.h> 34 #include <sys/dsl_dir.h> 35 #include <sys/dsl_prop.h> 36 #include <sys/dsl_synctask.h> 37 #include <sys/dsl_deleg.h> 38 #include <sys/dmu_impl.h> 39 #include <sys/spa.h> 40 #include <sys/metaslab.h> 41 #include <sys/zap.h> 42 #include <sys/zio.h> 43 #include <sys/arc.h> 44 #include <sys/sunddi.h> 45 #include <sys/zfeature.h> 46 #include <sys/policy.h> 47 #include <sys/zfs_znode.h> 48 #include "zfs_namecheck.h" 49 #include "zfs_prop.h" 50 51 /* 52 * Filesystem and Snapshot Limits 53 * ------------------------------ 54 * 55 * These limits are used to restrict the number of filesystems and/or snapshots 56 * that can be created at a given level in the tree or below. A typical 57 * use-case is with a delegated dataset where the administrator wants to ensure 58 * that a user within the zone is not creating too many additional filesystems 59 * or snapshots, even though they're not exceeding their space quota. 60 * 61 * The filesystem and snapshot counts are stored as extensible properties. This 62 * capability is controlled by a feature flag and must be enabled to be used. 63 * Once enabled, the feature is not active until the first limit is set. At 64 * that point, future operations to create/destroy filesystems or snapshots 65 * will validate and update the counts. 66 * 67 * Because the count properties will not exist before the feature is active, 68 * the counts are updated when a limit is first set on an uninitialized 69 * dsl_dir node in the tree (The filesystem/snapshot count on a node includes 70 * all of the nested filesystems/snapshots. Thus, a new leaf node has a 71 * filesystem count of 0 and a snapshot count of 0. Non-existent filesystem and 72 * snapshot count properties on a node indicate uninitialized counts on that 73 * node.) When first setting a limit on an uninitialized node, the code starts 74 * at the filesystem with the new limit and descends into all sub-filesystems 75 * to add the count properties. 76 * 77 * In practice this is lightweight since a limit is typically set when the 78 * filesystem is created and thus has no children. Once valid, changing the 79 * limit value won't require a re-traversal since the counts are already valid. 80 * When recursively fixing the counts, if a node with a limit is encountered 81 * during the descent, the counts are known to be valid and there is no need to 82 * descend into that filesystem's children. The counts on filesystems above the 83 * one with the new limit will still be uninitialized, unless a limit is 84 * eventually set on one of those filesystems. The counts are always recursively 85 * updated when a limit is set on a dataset, unless there is already a limit. 86 * When a new limit value is set on a filesystem with an existing limit, it is 87 * possible for the new limit to be less than the current count at that level 88 * since a user who can change the limit is also allowed to exceed the limit. 89 * 90 * Once the feature is active, then whenever a filesystem or snapshot is 91 * created, the code recurses up the tree, validating the new count against the 92 * limit at each initialized level. In practice, most levels will not have a 93 * limit set. If there is a limit at any initialized level up the tree, the 94 * check must pass or the creation will fail. Likewise, when a filesystem or 95 * snapshot is destroyed, the counts are recursively adjusted all the way up 96 * the initizized nodes in the tree. Renaming a filesystem into different point 97 * in the tree will first validate, then update the counts on each branch up to 98 * the common ancestor. A receive will also validate the counts and then update 99 * them. 100 * 101 * An exception to the above behavior is that the limit is not enforced if the 102 * user has permission to modify the limit. This is primarily so that 103 * recursive snapshots in the global zone always work. We want to prevent a 104 * denial-of-service in which a lower level delegated dataset could max out its 105 * limit and thus block recursive snapshots from being taken in the global zone. 106 * Because of this, it is possible for the snapshot count to be over the limit 107 * and snapshots taken in the global zone could cause a lower level dataset to 108 * hit or exceed its limit. The administrator taking the global zone recursive 109 * snapshot should be aware of this side-effect and behave accordingly. 110 * For consistency, the filesystem limit is also not enforced if the user can 111 * modify the limit. 112 * 113 * The filesystem and snapshot limits are validated by dsl_fs_ss_limit_check() 114 * and updated by dsl_fs_ss_count_adjust(). A new limit value is setup in 115 * dsl_dir_activate_fs_ss_limit() and the counts are adjusted, if necessary, by 116 * dsl_dir_init_fs_ss_count(). 117 * 118 * There is a special case when we receive a filesystem that already exists. In 119 * this case a temporary clone name of %X is created (see dmu_recv_begin). We 120 * never update the filesystem counts for temporary clones. 121 * 122 * Likewise, we do not update the snapshot counts for temporary snapshots, 123 * such as those created by zfs diff. 124 */ 125 126 /* 127 * Tunable to control EDQUOT behaviour. With this set to a value != 0, zfs 128 * doesn't always wait for a dirty txg to complete when an operation can't 129 * get through due to space exhaustion. Instead it fails early in a range 130 * of the tunable around the quota. 131 * This vastly helps to reduce the number of threads waiting for the txg 132 * to commit when a busy filesystem is near quota, especially in combination 133 * with NFS, where each waiter takes up a server thread. 134 */ 135 uint64_t early_edquot_threshold = 32 * 1048576; /* tunable */ 136 137 extern inline dsl_dir_phys_t *dsl_dir_phys(dsl_dir_t *dd); 138 139 static uint64_t dsl_dir_space_towrite(dsl_dir_t *dd); 140 141 static void 142 dsl_dir_evict_async(void *dbu) 143 { 144 dsl_dir_t *dd = dbu; 145 dsl_pool_t *dp = dd->dd_pool; 146 int t; 147 148 dd->dd_dbuf = NULL; 149 150 for (t = 0; t < TXG_SIZE; t++) { 151 ASSERT(!txg_list_member(&dp->dp_dirty_dirs, dd, t)); 152 ASSERT(dd->dd_tempreserved[t] == 0); 153 ASSERT(dd->dd_space_towrite[t] == 0); 154 } 155 156 if (dd->dd_parent) 157 dsl_dir_async_rele(dd->dd_parent, dd); 158 159 spa_async_close(dd->dd_pool->dp_spa, dd); 160 161 dsl_prop_fini(dd); 162 mutex_destroy(&dd->dd_lock); 163 kmem_free(dd, sizeof (dsl_dir_t)); 164 } 165 166 int 167 dsl_dir_hold_obj(dsl_pool_t *dp, uint64_t ddobj, 168 const char *tail, void *tag, dsl_dir_t **ddp) 169 { 170 dmu_buf_t *dbuf; 171 dsl_dir_t *dd; 172 int err; 173 174 ASSERT(dsl_pool_config_held(dp)); 175 176 err = dmu_bonus_hold(dp->dp_meta_objset, ddobj, tag, &dbuf); 177 if (err != 0) 178 return (err); 179 dd = dmu_buf_get_user(dbuf); 180 #ifdef ZFS_DEBUG 181 { 182 dmu_object_info_t doi; 183 dmu_object_info_from_db(dbuf, &doi); 184 ASSERT3U(doi.doi_bonus_type, ==, DMU_OT_DSL_DIR); 185 ASSERT3U(doi.doi_bonus_size, >=, sizeof (dsl_dir_phys_t)); 186 } 187 #endif 188 if (dd == NULL) { 189 dsl_dir_t *winner; 190 191 dd = kmem_zalloc(sizeof (dsl_dir_t), KM_SLEEP); 192 dd->dd_object = ddobj; 193 dd->dd_dbuf = dbuf; 194 dd->dd_pool = dp; 195 mutex_init(&dd->dd_lock, NULL, MUTEX_DEFAULT, NULL); 196 dsl_prop_init(dd); 197 198 dsl_dir_snap_cmtime_update(dd); 199 200 if (dsl_dir_phys(dd)->dd_parent_obj) { 201 err = dsl_dir_hold_obj(dp, 202 dsl_dir_phys(dd)->dd_parent_obj, NULL, dd, 203 &dd->dd_parent); 204 if (err != 0) 205 goto errout; 206 if (tail) { 207 #ifdef ZFS_DEBUG 208 uint64_t foundobj; 209 210 err = zap_lookup(dp->dp_meta_objset, 211 dsl_dir_phys(dd->dd_parent)-> 212 dd_child_dir_zapobj, tail, 213 sizeof (foundobj), 1, &foundobj); 214 ASSERT(err || foundobj == ddobj); 215 #endif 216 (void) strcpy(dd->dd_myname, tail); 217 } else { 218 err = zap_value_search(dp->dp_meta_objset, 219 dsl_dir_phys(dd->dd_parent)-> 220 dd_child_dir_zapobj, 221 ddobj, 0, dd->dd_myname); 222 } 223 if (err != 0) 224 goto errout; 225 } else { 226 (void) strcpy(dd->dd_myname, spa_name(dp->dp_spa)); 227 } 228 229 if (dsl_dir_is_clone(dd)) { 230 dmu_buf_t *origin_bonus; 231 dsl_dataset_phys_t *origin_phys; 232 233 /* 234 * We can't open the origin dataset, because 235 * that would require opening this dsl_dir. 236 * Just look at its phys directly instead. 237 */ 238 err = dmu_bonus_hold(dp->dp_meta_objset, 239 dsl_dir_phys(dd)->dd_origin_obj, FTAG, 240 &origin_bonus); 241 if (err != 0) 242 goto errout; 243 origin_phys = origin_bonus->db_data; 244 dd->dd_origin_txg = 245 origin_phys->ds_creation_txg; 246 dmu_buf_rele(origin_bonus, FTAG); 247 } 248 249 dmu_buf_init_user(&dd->dd_dbu, NULL, dsl_dir_evict_async, 250 &dd->dd_dbuf); 251 winner = dmu_buf_set_user_ie(dbuf, &dd->dd_dbu); 252 if (winner != NULL) { 253 if (dd->dd_parent) 254 dsl_dir_rele(dd->dd_parent, dd); 255 dsl_prop_fini(dd); 256 mutex_destroy(&dd->dd_lock); 257 kmem_free(dd, sizeof (dsl_dir_t)); 258 dd = winner; 259 } else { 260 spa_open_ref(dp->dp_spa, dd); 261 } 262 } 263 264 /* 265 * The dsl_dir_t has both open-to-close and instantiate-to-evict 266 * holds on the spa. We need the open-to-close holds because 267 * otherwise the spa_refcnt wouldn't change when we open a 268 * dir which the spa also has open, so we could incorrectly 269 * think it was OK to unload/export/destroy the pool. We need 270 * the instantiate-to-evict hold because the dsl_dir_t has a 271 * pointer to the dd_pool, which has a pointer to the spa_t. 272 */ 273 spa_open_ref(dp->dp_spa, tag); 274 ASSERT3P(dd->dd_pool, ==, dp); 275 ASSERT3U(dd->dd_object, ==, ddobj); 276 ASSERT3P(dd->dd_dbuf, ==, dbuf); 277 *ddp = dd; 278 return (0); 279 280 errout: 281 if (dd->dd_parent) 282 dsl_dir_rele(dd->dd_parent, dd); 283 dsl_prop_fini(dd); 284 mutex_destroy(&dd->dd_lock); 285 kmem_free(dd, sizeof (dsl_dir_t)); 286 dmu_buf_rele(dbuf, tag); 287 return (err); 288 } 289 290 void 291 dsl_dir_rele(dsl_dir_t *dd, void *tag) 292 { 293 dprintf_dd(dd, "%s\n", ""); 294 spa_close(dd->dd_pool->dp_spa, tag); 295 dmu_buf_rele(dd->dd_dbuf, tag); 296 } 297 298 /* 299 * Remove a reference to the given dsl dir that is being asynchronously 300 * released. Async releases occur from a taskq performing eviction of 301 * dsl datasets and dirs. This process is identical to a normal release 302 * with the exception of using the async API for releasing the reference on 303 * the spa. 304 */ 305 void 306 dsl_dir_async_rele(dsl_dir_t *dd, void *tag) 307 { 308 dprintf_dd(dd, "%s\n", ""); 309 spa_async_close(dd->dd_pool->dp_spa, tag); 310 dmu_buf_rele(dd->dd_dbuf, tag); 311 } 312 313 /* buf must be at least ZFS_MAX_DATASET_NAME_LEN bytes */ 314 void 315 dsl_dir_name(dsl_dir_t *dd, char *buf) 316 { 317 if (dd->dd_parent) { 318 dsl_dir_name(dd->dd_parent, buf); 319 VERIFY3U(strlcat(buf, "/", ZFS_MAX_DATASET_NAME_LEN), <, 320 ZFS_MAX_DATASET_NAME_LEN); 321 } else { 322 buf[0] = '\0'; 323 } 324 if (!MUTEX_HELD(&dd->dd_lock)) { 325 /* 326 * recursive mutex so that we can use 327 * dprintf_dd() with dd_lock held 328 */ 329 mutex_enter(&dd->dd_lock); 330 VERIFY3U(strlcat(buf, dd->dd_myname, ZFS_MAX_DATASET_NAME_LEN), 331 <, ZFS_MAX_DATASET_NAME_LEN); 332 mutex_exit(&dd->dd_lock); 333 } else { 334 VERIFY3U(strlcat(buf, dd->dd_myname, ZFS_MAX_DATASET_NAME_LEN), 335 <, ZFS_MAX_DATASET_NAME_LEN); 336 } 337 } 338 339 /* Calculate name length, avoiding all the strcat calls of dsl_dir_name */ 340 int 341 dsl_dir_namelen(dsl_dir_t *dd) 342 { 343 int result = 0; 344 345 if (dd->dd_parent) { 346 /* parent's name + 1 for the "/" */ 347 result = dsl_dir_namelen(dd->dd_parent) + 1; 348 } 349 350 if (!MUTEX_HELD(&dd->dd_lock)) { 351 /* see dsl_dir_name */ 352 mutex_enter(&dd->dd_lock); 353 result += strlen(dd->dd_myname); 354 mutex_exit(&dd->dd_lock); 355 } else { 356 result += strlen(dd->dd_myname); 357 } 358 359 return (result); 360 } 361 362 static int 363 getcomponent(const char *path, char *component, const char **nextp) 364 { 365 char *p; 366 367 if ((path == NULL) || (path[0] == '\0')) 368 return (SET_ERROR(ENOENT)); 369 /* This would be a good place to reserve some namespace... */ 370 p = strpbrk(path, "/@"); 371 if (p && (p[1] == '/' || p[1] == '@')) { 372 /* two separators in a row */ 373 return (SET_ERROR(EINVAL)); 374 } 375 if (p == NULL || p == path) { 376 /* 377 * if the first thing is an @ or /, it had better be an 378 * @ and it had better not have any more ats or slashes, 379 * and it had better have something after the @. 380 */ 381 if (p != NULL && 382 (p[0] != '@' || strpbrk(path+1, "/@") || p[1] == '\0')) 383 return (SET_ERROR(EINVAL)); 384 if (strlen(path) >= ZFS_MAX_DATASET_NAME_LEN) 385 return (SET_ERROR(ENAMETOOLONG)); 386 (void) strcpy(component, path); 387 p = NULL; 388 } else if (p[0] == '/') { 389 if (p - path >= ZFS_MAX_DATASET_NAME_LEN) 390 return (SET_ERROR(ENAMETOOLONG)); 391 (void) strncpy(component, path, p - path); 392 component[p - path] = '\0'; 393 p++; 394 } else if (p[0] == '@') { 395 /* 396 * if the next separator is an @, there better not be 397 * any more slashes. 398 */ 399 if (strchr(path, '/')) 400 return (SET_ERROR(EINVAL)); 401 if (p - path >= ZFS_MAX_DATASET_NAME_LEN) 402 return (SET_ERROR(ENAMETOOLONG)); 403 (void) strncpy(component, path, p - path); 404 component[p - path] = '\0'; 405 } else { 406 panic("invalid p=%p", (void *)p); 407 } 408 *nextp = p; 409 return (0); 410 } 411 412 /* 413 * Return the dsl_dir_t, and possibly the last component which couldn't 414 * be found in *tail. The name must be in the specified dsl_pool_t. This 415 * thread must hold the dp_config_rwlock for the pool. Returns NULL if the 416 * path is bogus, or if tail==NULL and we couldn't parse the whole name. 417 * (*tail)[0] == '@' means that the last component is a snapshot. 418 */ 419 int 420 dsl_dir_hold(dsl_pool_t *dp, const char *name, void *tag, 421 dsl_dir_t **ddp, const char **tailp) 422 { 423 char buf[ZFS_MAX_DATASET_NAME_LEN]; 424 const char *spaname, *next, *nextnext = NULL; 425 int err; 426 dsl_dir_t *dd; 427 uint64_t ddobj; 428 429 err = getcomponent(name, buf, &next); 430 if (err != 0) 431 return (err); 432 433 /* Make sure the name is in the specified pool. */ 434 spaname = spa_name(dp->dp_spa); 435 if (strcmp(buf, spaname) != 0) 436 return (SET_ERROR(EXDEV)); 437 438 ASSERT(dsl_pool_config_held(dp)); 439 440 err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj, NULL, tag, &dd); 441 if (err != 0) { 442 return (err); 443 } 444 445 while (next != NULL) { 446 dsl_dir_t *child_dd; 447 err = getcomponent(next, buf, &nextnext); 448 if (err != 0) 449 break; 450 ASSERT(next[0] != '\0'); 451 if (next[0] == '@') 452 break; 453 dprintf("looking up %s in obj%lld\n", 454 buf, dsl_dir_phys(dd)->dd_child_dir_zapobj); 455 456 err = zap_lookup(dp->dp_meta_objset, 457 dsl_dir_phys(dd)->dd_child_dir_zapobj, 458 buf, sizeof (ddobj), 1, &ddobj); 459 if (err != 0) { 460 if (err == ENOENT) 461 err = 0; 462 break; 463 } 464 465 err = dsl_dir_hold_obj(dp, ddobj, buf, tag, &child_dd); 466 if (err != 0) 467 break; 468 dsl_dir_rele(dd, tag); 469 dd = child_dd; 470 next = nextnext; 471 } 472 473 if (err != 0) { 474 dsl_dir_rele(dd, tag); 475 return (err); 476 } 477 478 /* 479 * It's an error if there's more than one component left, or 480 * tailp==NULL and there's any component left. 481 */ 482 if (next != NULL && 483 (tailp == NULL || (nextnext && nextnext[0] != '\0'))) { 484 /* bad path name */ 485 dsl_dir_rele(dd, tag); 486 dprintf("next=%p (%s) tail=%p\n", next, next?next:"", tailp); 487 err = SET_ERROR(ENOENT); 488 } 489 if (tailp != NULL) 490 *tailp = next; 491 *ddp = dd; 492 return (err); 493 } 494 495 /* 496 * If the counts are already initialized for this filesystem and its 497 * descendants then do nothing, otherwise initialize the counts. 498 * 499 * The counts on this filesystem, and those below, may be uninitialized due to 500 * either the use of a pre-existing pool which did not support the 501 * filesystem/snapshot limit feature, or one in which the feature had not yet 502 * been enabled. 503 * 504 * Recursively descend the filesystem tree and update the filesystem/snapshot 505 * counts on each filesystem below, then update the cumulative count on the 506 * current filesystem. If the filesystem already has a count set on it, 507 * then we know that its counts, and the counts on the filesystems below it, 508 * are already correct, so we don't have to update this filesystem. 509 */ 510 static void 511 dsl_dir_init_fs_ss_count(dsl_dir_t *dd, dmu_tx_t *tx) 512 { 513 uint64_t my_fs_cnt = 0; 514 uint64_t my_ss_cnt = 0; 515 dsl_pool_t *dp = dd->dd_pool; 516 objset_t *os = dp->dp_meta_objset; 517 zap_cursor_t *zc; 518 zap_attribute_t *za; 519 dsl_dataset_t *ds; 520 521 ASSERT(spa_feature_is_active(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT)); 522 ASSERT(dsl_pool_config_held(dp)); 523 ASSERT(dmu_tx_is_syncing(tx)); 524 525 dsl_dir_zapify(dd, tx); 526 527 /* 528 * If the filesystem count has already been initialized then we 529 * don't need to recurse down any further. 530 */ 531 if (zap_contains(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT) == 0) 532 return; 533 534 zc = kmem_alloc(sizeof (zap_cursor_t), KM_SLEEP); 535 za = kmem_alloc(sizeof (zap_attribute_t), KM_SLEEP); 536 537 /* Iterate my child dirs */ 538 for (zap_cursor_init(zc, os, dsl_dir_phys(dd)->dd_child_dir_zapobj); 539 zap_cursor_retrieve(zc, za) == 0; zap_cursor_advance(zc)) { 540 dsl_dir_t *chld_dd; 541 uint64_t count; 542 543 VERIFY0(dsl_dir_hold_obj(dp, za->za_first_integer, NULL, FTAG, 544 &chld_dd)); 545 546 /* 547 * Ignore hidden ($FREE, $MOS & $ORIGIN) objsets and 548 * temporary datasets. 549 */ 550 if (chld_dd->dd_myname[0] == '$' || 551 chld_dd->dd_myname[0] == '%') { 552 dsl_dir_rele(chld_dd, FTAG); 553 continue; 554 } 555 556 my_fs_cnt++; /* count this child */ 557 558 dsl_dir_init_fs_ss_count(chld_dd, tx); 559 560 VERIFY0(zap_lookup(os, chld_dd->dd_object, 561 DD_FIELD_FILESYSTEM_COUNT, sizeof (count), 1, &count)); 562 my_fs_cnt += count; 563 VERIFY0(zap_lookup(os, chld_dd->dd_object, 564 DD_FIELD_SNAPSHOT_COUNT, sizeof (count), 1, &count)); 565 my_ss_cnt += count; 566 567 dsl_dir_rele(chld_dd, FTAG); 568 } 569 zap_cursor_fini(zc); 570 /* Count my snapshots (we counted children's snapshots above) */ 571 VERIFY0(dsl_dataset_hold_obj(dd->dd_pool, 572 dsl_dir_phys(dd)->dd_head_dataset_obj, FTAG, &ds)); 573 574 for (zap_cursor_init(zc, os, dsl_dataset_phys(ds)->ds_snapnames_zapobj); 575 zap_cursor_retrieve(zc, za) == 0; 576 zap_cursor_advance(zc)) { 577 /* Don't count temporary snapshots */ 578 if (za->za_name[0] != '%') 579 my_ss_cnt++; 580 } 581 zap_cursor_fini(zc); 582 583 dsl_dataset_rele(ds, FTAG); 584 585 kmem_free(zc, sizeof (zap_cursor_t)); 586 kmem_free(za, sizeof (zap_attribute_t)); 587 588 /* we're in a sync task, update counts */ 589 dmu_buf_will_dirty(dd->dd_dbuf, tx); 590 VERIFY0(zap_add(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT, 591 sizeof (my_fs_cnt), 1, &my_fs_cnt, tx)); 592 VERIFY0(zap_add(os, dd->dd_object, DD_FIELD_SNAPSHOT_COUNT, 593 sizeof (my_ss_cnt), 1, &my_ss_cnt, tx)); 594 } 595 596 static int 597 dsl_dir_actv_fs_ss_limit_check(void *arg, dmu_tx_t *tx) 598 { 599 char *ddname = (char *)arg; 600 dsl_pool_t *dp = dmu_tx_pool(tx); 601 dsl_dataset_t *ds; 602 dsl_dir_t *dd; 603 int error; 604 605 error = dsl_dataset_hold(dp, ddname, FTAG, &ds); 606 if (error != 0) 607 return (error); 608 609 if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT)) { 610 dsl_dataset_rele(ds, FTAG); 611 return (SET_ERROR(ENOTSUP)); 612 } 613 614 dd = ds->ds_dir; 615 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT) && 616 dsl_dir_is_zapified(dd) && 617 zap_contains(dp->dp_meta_objset, dd->dd_object, 618 DD_FIELD_FILESYSTEM_COUNT) == 0) { 619 dsl_dataset_rele(ds, FTAG); 620 return (SET_ERROR(EALREADY)); 621 } 622 623 dsl_dataset_rele(ds, FTAG); 624 return (0); 625 } 626 627 static void 628 dsl_dir_actv_fs_ss_limit_sync(void *arg, dmu_tx_t *tx) 629 { 630 char *ddname = (char *)arg; 631 dsl_pool_t *dp = dmu_tx_pool(tx); 632 dsl_dataset_t *ds; 633 spa_t *spa; 634 635 VERIFY0(dsl_dataset_hold(dp, ddname, FTAG, &ds)); 636 637 spa = dsl_dataset_get_spa(ds); 638 639 if (!spa_feature_is_active(spa, SPA_FEATURE_FS_SS_LIMIT)) { 640 /* 641 * Since the feature was not active and we're now setting a 642 * limit, increment the feature-active counter so that the 643 * feature becomes active for the first time. 644 * 645 * We are already in a sync task so we can update the MOS. 646 */ 647 spa_feature_incr(spa, SPA_FEATURE_FS_SS_LIMIT, tx); 648 } 649 650 /* 651 * Since we are now setting a non-UINT64_MAX limit on the filesystem, 652 * we need to ensure the counts are correct. Descend down the tree from 653 * this point and update all of the counts to be accurate. 654 */ 655 dsl_dir_init_fs_ss_count(ds->ds_dir, tx); 656 657 dsl_dataset_rele(ds, FTAG); 658 } 659 660 /* 661 * Make sure the feature is enabled and activate it if necessary. 662 * Since we're setting a limit, ensure the on-disk counts are valid. 663 * This is only called by the ioctl path when setting a limit value. 664 * 665 * We do not need to validate the new limit, since users who can change the 666 * limit are also allowed to exceed the limit. 667 */ 668 int 669 dsl_dir_activate_fs_ss_limit(const char *ddname) 670 { 671 int error; 672 673 error = dsl_sync_task(ddname, dsl_dir_actv_fs_ss_limit_check, 674 dsl_dir_actv_fs_ss_limit_sync, (void *)ddname, 0, 675 ZFS_SPACE_CHECK_RESERVED); 676 677 if (error == EALREADY) 678 error = 0; 679 680 return (error); 681 } 682 683 /* 684 * Used to determine if the filesystem_limit or snapshot_limit should be 685 * enforced. We allow the limit to be exceeded if the user has permission to 686 * write the property value. We pass in the creds that we got in the open 687 * context since we will always be the GZ root in syncing context. We also have 688 * to handle the case where we are allowed to change the limit on the current 689 * dataset, but there may be another limit in the tree above. 690 * 691 * We can never modify these two properties within a non-global zone. In 692 * addition, the other checks are modeled on zfs_secpolicy_write_perms. We 693 * can't use that function since we are already holding the dp_config_rwlock. 694 * In addition, we already have the dd and dealing with snapshots is simplified 695 * in this code. 696 */ 697 698 typedef enum { 699 ENFORCE_ALWAYS, 700 ENFORCE_NEVER, 701 ENFORCE_ABOVE 702 } enforce_res_t; 703 704 static enforce_res_t 705 dsl_enforce_ds_ss_limits(dsl_dir_t *dd, zfs_prop_t prop, cred_t *cr) 706 { 707 enforce_res_t enforce = ENFORCE_ALWAYS; 708 uint64_t obj; 709 dsl_dataset_t *ds; 710 uint64_t zoned; 711 712 ASSERT(prop == ZFS_PROP_FILESYSTEM_LIMIT || 713 prop == ZFS_PROP_SNAPSHOT_LIMIT); 714 715 #ifdef _KERNEL 716 if (crgetzoneid(cr) != GLOBAL_ZONEID) 717 return (ENFORCE_ALWAYS); 718 719 if (secpolicy_zfs(cr) == 0) 720 return (ENFORCE_NEVER); 721 #endif 722 723 if ((obj = dsl_dir_phys(dd)->dd_head_dataset_obj) == 0) 724 return (ENFORCE_ALWAYS); 725 726 ASSERT(dsl_pool_config_held(dd->dd_pool)); 727 728 if (dsl_dataset_hold_obj(dd->dd_pool, obj, FTAG, &ds) != 0) 729 return (ENFORCE_ALWAYS); 730 731 if (dsl_prop_get_ds(ds, "zoned", 8, 1, &zoned, NULL) || zoned) { 732 /* Only root can access zoned fs's from the GZ */ 733 enforce = ENFORCE_ALWAYS; 734 } else { 735 if (dsl_deleg_access_impl(ds, zfs_prop_to_name(prop), cr) == 0) 736 enforce = ENFORCE_ABOVE; 737 } 738 739 dsl_dataset_rele(ds, FTAG); 740 return (enforce); 741 } 742 743 /* 744 * Check if adding additional child filesystem(s) would exceed any filesystem 745 * limits or adding additional snapshot(s) would exceed any snapshot limits. 746 * The prop argument indicates which limit to check. 747 * 748 * Note that all filesystem limits up to the root (or the highest 749 * initialized) filesystem or the given ancestor must be satisfied. 750 */ 751 int 752 dsl_fs_ss_limit_check(dsl_dir_t *dd, uint64_t delta, zfs_prop_t prop, 753 dsl_dir_t *ancestor, cred_t *cr) 754 { 755 objset_t *os = dd->dd_pool->dp_meta_objset; 756 uint64_t limit, count; 757 char *count_prop; 758 enforce_res_t enforce; 759 int err = 0; 760 761 ASSERT(dsl_pool_config_held(dd->dd_pool)); 762 ASSERT(prop == ZFS_PROP_FILESYSTEM_LIMIT || 763 prop == ZFS_PROP_SNAPSHOT_LIMIT); 764 765 /* 766 * If we're allowed to change the limit, don't enforce the limit 767 * e.g. this can happen if a snapshot is taken by an administrative 768 * user in the global zone (i.e. a recursive snapshot by root). 769 * However, we must handle the case of delegated permissions where we 770 * are allowed to change the limit on the current dataset, but there 771 * is another limit in the tree above. 772 */ 773 enforce = dsl_enforce_ds_ss_limits(dd, prop, cr); 774 if (enforce == ENFORCE_NEVER) 775 return (0); 776 777 /* 778 * e.g. if renaming a dataset with no snapshots, count adjustment 779 * is 0. 780 */ 781 if (delta == 0) 782 return (0); 783 784 if (prop == ZFS_PROP_SNAPSHOT_LIMIT) { 785 /* 786 * We don't enforce the limit for temporary snapshots. This is 787 * indicated by a NULL cred_t argument. 788 */ 789 if (cr == NULL) 790 return (0); 791 792 count_prop = DD_FIELD_SNAPSHOT_COUNT; 793 } else { 794 count_prop = DD_FIELD_FILESYSTEM_COUNT; 795 } 796 797 /* 798 * If an ancestor has been provided, stop checking the limit once we 799 * hit that dir. We need this during rename so that we don't overcount 800 * the check once we recurse up to the common ancestor. 801 */ 802 if (ancestor == dd) 803 return (0); 804 805 /* 806 * If we hit an uninitialized node while recursing up the tree, we can 807 * stop since we know there is no limit here (or above). The counts are 808 * not valid on this node and we know we won't touch this node's counts. 809 */ 810 if (!dsl_dir_is_zapified(dd) || zap_lookup(os, dd->dd_object, 811 count_prop, sizeof (count), 1, &count) == ENOENT) 812 return (0); 813 814 err = dsl_prop_get_dd(dd, zfs_prop_to_name(prop), 8, 1, &limit, NULL, 815 B_FALSE); 816 if (err != 0) 817 return (err); 818 819 /* Is there a limit which we've hit? */ 820 if (enforce == ENFORCE_ALWAYS && (count + delta) > limit) 821 return (SET_ERROR(EDQUOT)); 822 823 if (dd->dd_parent != NULL) 824 err = dsl_fs_ss_limit_check(dd->dd_parent, delta, prop, 825 ancestor, cr); 826 827 return (err); 828 } 829 830 /* 831 * Adjust the filesystem or snapshot count for the specified dsl_dir_t and all 832 * parents. When a new filesystem/snapshot is created, increment the count on 833 * all parents, and when a filesystem/snapshot is destroyed, decrement the 834 * count. 835 */ 836 void 837 dsl_fs_ss_count_adjust(dsl_dir_t *dd, int64_t delta, const char *prop, 838 dmu_tx_t *tx) 839 { 840 int err; 841 objset_t *os = dd->dd_pool->dp_meta_objset; 842 uint64_t count; 843 844 ASSERT(dsl_pool_config_held(dd->dd_pool)); 845 ASSERT(dmu_tx_is_syncing(tx)); 846 ASSERT(strcmp(prop, DD_FIELD_FILESYSTEM_COUNT) == 0 || 847 strcmp(prop, DD_FIELD_SNAPSHOT_COUNT) == 0); 848 849 /* 850 * When we receive an incremental stream into a filesystem that already 851 * exists, a temporary clone is created. We don't count this temporary 852 * clone, whose name begins with a '%'. We also ignore hidden ($FREE, 853 * $MOS & $ORIGIN) objsets. 854 */ 855 if ((dd->dd_myname[0] == '%' || dd->dd_myname[0] == '$') && 856 strcmp(prop, DD_FIELD_FILESYSTEM_COUNT) == 0) 857 return; 858 859 /* 860 * e.g. if renaming a dataset with no snapshots, count adjustment is 0 861 */ 862 if (delta == 0) 863 return; 864 865 /* 866 * If we hit an uninitialized node while recursing up the tree, we can 867 * stop since we know the counts are not valid on this node and we 868 * know we shouldn't touch this node's counts. An uninitialized count 869 * on the node indicates that either the feature has not yet been 870 * activated or there are no limits on this part of the tree. 871 */ 872 if (!dsl_dir_is_zapified(dd) || (err = zap_lookup(os, dd->dd_object, 873 prop, sizeof (count), 1, &count)) == ENOENT) 874 return; 875 VERIFY0(err); 876 877 count += delta; 878 /* Use a signed verify to make sure we're not neg. */ 879 VERIFY3S(count, >=, 0); 880 881 VERIFY0(zap_update(os, dd->dd_object, prop, sizeof (count), 1, &count, 882 tx)); 883 884 /* Roll up this additional count into our ancestors */ 885 if (dd->dd_parent != NULL) 886 dsl_fs_ss_count_adjust(dd->dd_parent, delta, prop, tx); 887 } 888 889 uint64_t 890 dsl_dir_create_sync(dsl_pool_t *dp, dsl_dir_t *pds, const char *name, 891 dmu_tx_t *tx) 892 { 893 objset_t *mos = dp->dp_meta_objset; 894 uint64_t ddobj; 895 dsl_dir_phys_t *ddphys; 896 dmu_buf_t *dbuf; 897 898 ddobj = dmu_object_alloc(mos, DMU_OT_DSL_DIR, 0, 899 DMU_OT_DSL_DIR, sizeof (dsl_dir_phys_t), tx); 900 if (pds) { 901 VERIFY(0 == zap_add(mos, dsl_dir_phys(pds)->dd_child_dir_zapobj, 902 name, sizeof (uint64_t), 1, &ddobj, tx)); 903 } else { 904 /* it's the root dir */ 905 VERIFY(0 == zap_add(mos, DMU_POOL_DIRECTORY_OBJECT, 906 DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1, &ddobj, tx)); 907 } 908 VERIFY(0 == dmu_bonus_hold(mos, ddobj, FTAG, &dbuf)); 909 dmu_buf_will_dirty(dbuf, tx); 910 ddphys = dbuf->db_data; 911 912 ddphys->dd_creation_time = gethrestime_sec(); 913 if (pds) { 914 ddphys->dd_parent_obj = pds->dd_object; 915 916 /* update the filesystem counts */ 917 dsl_fs_ss_count_adjust(pds, 1, DD_FIELD_FILESYSTEM_COUNT, tx); 918 } 919 ddphys->dd_props_zapobj = zap_create(mos, 920 DMU_OT_DSL_PROPS, DMU_OT_NONE, 0, tx); 921 ddphys->dd_child_dir_zapobj = zap_create(mos, 922 DMU_OT_DSL_DIR_CHILD_MAP, DMU_OT_NONE, 0, tx); 923 if (spa_version(dp->dp_spa) >= SPA_VERSION_USED_BREAKDOWN) 924 ddphys->dd_flags |= DD_FLAG_USED_BREAKDOWN; 925 dmu_buf_rele(dbuf, FTAG); 926 927 return (ddobj); 928 } 929 930 boolean_t 931 dsl_dir_is_clone(dsl_dir_t *dd) 932 { 933 return (dsl_dir_phys(dd)->dd_origin_obj && 934 (dd->dd_pool->dp_origin_snap == NULL || 935 dsl_dir_phys(dd)->dd_origin_obj != 936 dd->dd_pool->dp_origin_snap->ds_object)); 937 } 938 939 void 940 dsl_dir_stats(dsl_dir_t *dd, nvlist_t *nv) 941 { 942 mutex_enter(&dd->dd_lock); 943 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USED, 944 dsl_dir_phys(dd)->dd_used_bytes); 945 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_QUOTA, 946 dsl_dir_phys(dd)->dd_quota); 947 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_RESERVATION, 948 dsl_dir_phys(dd)->dd_reserved); 949 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_COMPRESSRATIO, 950 dsl_dir_phys(dd)->dd_compressed_bytes == 0 ? 100 : 951 (dsl_dir_phys(dd)->dd_uncompressed_bytes * 100 / 952 dsl_dir_phys(dd)->dd_compressed_bytes)); 953 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_LOGICALUSED, 954 dsl_dir_phys(dd)->dd_uncompressed_bytes); 955 if (dsl_dir_phys(dd)->dd_flags & DD_FLAG_USED_BREAKDOWN) { 956 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDSNAP, 957 dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_SNAP]); 958 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDDS, 959 dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_HEAD]); 960 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDREFRESERV, 961 dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_REFRSRV]); 962 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDCHILD, 963 dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_CHILD] + 964 dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_CHILD_RSRV]); 965 } 966 mutex_exit(&dd->dd_lock); 967 968 if (dsl_dir_is_zapified(dd)) { 969 uint64_t count; 970 objset_t *os = dd->dd_pool->dp_meta_objset; 971 972 if (zap_lookup(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT, 973 sizeof (count), 1, &count) == 0) { 974 dsl_prop_nvlist_add_uint64(nv, 975 ZFS_PROP_FILESYSTEM_COUNT, count); 976 } 977 if (zap_lookup(os, dd->dd_object, DD_FIELD_SNAPSHOT_COUNT, 978 sizeof (count), 1, &count) == 0) { 979 dsl_prop_nvlist_add_uint64(nv, 980 ZFS_PROP_SNAPSHOT_COUNT, count); 981 } 982 } 983 984 if (dsl_dir_is_clone(dd)) { 985 dsl_dataset_t *ds; 986 char buf[ZFS_MAX_DATASET_NAME_LEN]; 987 988 VERIFY0(dsl_dataset_hold_obj(dd->dd_pool, 989 dsl_dir_phys(dd)->dd_origin_obj, FTAG, &ds)); 990 dsl_dataset_name(ds, buf); 991 dsl_dataset_rele(ds, FTAG); 992 dsl_prop_nvlist_add_string(nv, ZFS_PROP_ORIGIN, buf); 993 } 994 } 995 996 void 997 dsl_dir_dirty(dsl_dir_t *dd, dmu_tx_t *tx) 998 { 999 dsl_pool_t *dp = dd->dd_pool; 1000 1001 ASSERT(dsl_dir_phys(dd)); 1002 1003 if (txg_list_add(&dp->dp_dirty_dirs, dd, tx->tx_txg)) { 1004 /* up the hold count until we can be written out */ 1005 dmu_buf_add_ref(dd->dd_dbuf, dd); 1006 } 1007 } 1008 1009 static int64_t 1010 parent_delta(dsl_dir_t *dd, uint64_t used, int64_t delta) 1011 { 1012 uint64_t old_accounted = MAX(used, dsl_dir_phys(dd)->dd_reserved); 1013 uint64_t new_accounted = 1014 MAX(used + delta, dsl_dir_phys(dd)->dd_reserved); 1015 return (new_accounted - old_accounted); 1016 } 1017 1018 void 1019 dsl_dir_sync(dsl_dir_t *dd, dmu_tx_t *tx) 1020 { 1021 ASSERT(dmu_tx_is_syncing(tx)); 1022 1023 mutex_enter(&dd->dd_lock); 1024 ASSERT0(dd->dd_tempreserved[tx->tx_txg&TXG_MASK]); 1025 dprintf_dd(dd, "txg=%llu towrite=%lluK\n", tx->tx_txg, 1026 dd->dd_space_towrite[tx->tx_txg&TXG_MASK] / 1024); 1027 dd->dd_space_towrite[tx->tx_txg&TXG_MASK] = 0; 1028 mutex_exit(&dd->dd_lock); 1029 1030 /* release the hold from dsl_dir_dirty */ 1031 dmu_buf_rele(dd->dd_dbuf, dd); 1032 } 1033 1034 static uint64_t 1035 dsl_dir_space_towrite(dsl_dir_t *dd) 1036 { 1037 uint64_t space = 0; 1038 int i; 1039 1040 ASSERT(MUTEX_HELD(&dd->dd_lock)); 1041 1042 for (i = 0; i < TXG_SIZE; i++) { 1043 space += dd->dd_space_towrite[i&TXG_MASK]; 1044 ASSERT3U(dd->dd_space_towrite[i&TXG_MASK], >=, 0); 1045 } 1046 return (space); 1047 } 1048 1049 /* 1050 * How much space would dd have available if ancestor had delta applied 1051 * to it? If ondiskonly is set, we're only interested in what's 1052 * on-disk, not estimated pending changes. 1053 */ 1054 uint64_t 1055 dsl_dir_space_available(dsl_dir_t *dd, 1056 dsl_dir_t *ancestor, int64_t delta, int ondiskonly) 1057 { 1058 uint64_t parentspace, myspace, quota, used; 1059 1060 /* 1061 * If there are no restrictions otherwise, assume we have 1062 * unlimited space available. 1063 */ 1064 quota = UINT64_MAX; 1065 parentspace = UINT64_MAX; 1066 1067 if (dd->dd_parent != NULL) { 1068 parentspace = dsl_dir_space_available(dd->dd_parent, 1069 ancestor, delta, ondiskonly); 1070 } 1071 1072 mutex_enter(&dd->dd_lock); 1073 if (dsl_dir_phys(dd)->dd_quota != 0) 1074 quota = dsl_dir_phys(dd)->dd_quota; 1075 used = dsl_dir_phys(dd)->dd_used_bytes; 1076 if (!ondiskonly) 1077 used += dsl_dir_space_towrite(dd); 1078 1079 if (dd->dd_parent == NULL) { 1080 uint64_t poolsize = dsl_pool_adjustedsize(dd->dd_pool, FALSE); 1081 quota = MIN(quota, poolsize); 1082 } 1083 1084 if (dsl_dir_phys(dd)->dd_reserved > used && parentspace != UINT64_MAX) { 1085 /* 1086 * We have some space reserved, in addition to what our 1087 * parent gave us. 1088 */ 1089 parentspace += dsl_dir_phys(dd)->dd_reserved - used; 1090 } 1091 1092 if (dd == ancestor) { 1093 ASSERT(delta <= 0); 1094 ASSERT(used >= -delta); 1095 used += delta; 1096 if (parentspace != UINT64_MAX) 1097 parentspace -= delta; 1098 } 1099 1100 if (used > quota) { 1101 /* over quota */ 1102 myspace = 0; 1103 } else { 1104 /* 1105 * the lesser of the space provided by our parent and 1106 * the space left in our quota 1107 */ 1108 myspace = MIN(parentspace, quota - used); 1109 } 1110 1111 mutex_exit(&dd->dd_lock); 1112 1113 return (myspace); 1114 } 1115 1116 struct tempreserve { 1117 list_node_t tr_node; 1118 dsl_dir_t *tr_ds; 1119 uint64_t tr_size; 1120 }; 1121 1122 static int 1123 dsl_dir_tempreserve_impl(dsl_dir_t *dd, uint64_t asize, boolean_t netfree, 1124 boolean_t ignorequota, boolean_t checkrefquota, list_t *tr_list, 1125 dmu_tx_t *tx, boolean_t first) 1126 { 1127 uint64_t txg = tx->tx_txg; 1128 uint64_t est_inflight, used_on_disk, quota, parent_rsrv; 1129 uint64_t deferred = 0; 1130 struct tempreserve *tr; 1131 int retval = EDQUOT; 1132 int txgidx = txg & TXG_MASK; 1133 int i; 1134 uint64_t ref_rsrv = 0; 1135 1136 ASSERT3U(txg, !=, 0); 1137 ASSERT3S(asize, >, 0); 1138 1139 mutex_enter(&dd->dd_lock); 1140 1141 /* 1142 * Check against the dsl_dir's quota. We don't add in the delta 1143 * when checking for over-quota because they get one free hit. 1144 */ 1145 est_inflight = dsl_dir_space_towrite(dd); 1146 for (i = 0; i < TXG_SIZE; i++) 1147 est_inflight += dd->dd_tempreserved[i]; 1148 used_on_disk = dsl_dir_phys(dd)->dd_used_bytes; 1149 1150 /* 1151 * On the first iteration, fetch the dataset's used-on-disk and 1152 * refreservation values. Also, if checkrefquota is set, test if 1153 * allocating this space would exceed the dataset's refquota. 1154 */ 1155 if (first && tx->tx_objset) { 1156 int error; 1157 dsl_dataset_t *ds = tx->tx_objset->os_dsl_dataset; 1158 1159 error = dsl_dataset_check_quota(ds, checkrefquota, 1160 asize, est_inflight, &used_on_disk, &ref_rsrv); 1161 if (error) { 1162 mutex_exit(&dd->dd_lock); 1163 return (error); 1164 } 1165 } 1166 1167 /* 1168 * If this transaction will result in a net free of space, 1169 * we want to let it through. 1170 */ 1171 if (ignorequota || netfree || dsl_dir_phys(dd)->dd_quota == 0) 1172 quota = UINT64_MAX; 1173 else 1174 quota = dsl_dir_phys(dd)->dd_quota; 1175 1176 /* 1177 * Adjust the quota against the actual pool size at the root 1178 * minus any outstanding deferred frees. 1179 * To ensure that it's possible to remove files from a full 1180 * pool without inducing transient overcommits, we throttle 1181 * netfree transactions against a quota that is slightly larger, 1182 * but still within the pool's allocation slop. In cases where 1183 * we're very close to full, this will allow a steady trickle of 1184 * removes to get through. 1185 */ 1186 if (dd->dd_parent == NULL) { 1187 spa_t *spa = dd->dd_pool->dp_spa; 1188 uint64_t poolsize = dsl_pool_adjustedsize(dd->dd_pool, netfree); 1189 deferred = metaslab_class_get_deferred(spa_normal_class(spa)); 1190 if (poolsize - deferred < quota) { 1191 quota = poolsize - deferred; 1192 retval = ENOSPC; 1193 } 1194 } 1195 1196 /* 1197 * If they are requesting more space, and our current estimate 1198 * is over quota, they get to try again unless the actual 1199 * on-disk is over quota and there are no pending changes (which 1200 * may free up space for us). 1201 */ 1202 if (used_on_disk + est_inflight >= quota) { 1203 if (est_inflight > early_edquot_threshold || 1204 used_on_disk + early_edquot_threshold < quota || 1205 (retval == ENOSPC && used_on_disk < quota + deferred)) 1206 retval = ERESTART; 1207 dprintf_dd(dd, "failing: used=%lluK inflight = %lluK " 1208 "quota=%lluK tr=%lluK err=%d\n", 1209 used_on_disk>>10, est_inflight>>10, 1210 quota>>10, asize>>10, retval); 1211 mutex_exit(&dd->dd_lock); 1212 return (SET_ERROR(retval)); 1213 } 1214 1215 /* We need to up our estimated delta before dropping dd_lock */ 1216 dd->dd_tempreserved[txgidx] += asize; 1217 1218 parent_rsrv = parent_delta(dd, used_on_disk + est_inflight, 1219 asize - ref_rsrv); 1220 mutex_exit(&dd->dd_lock); 1221 1222 tr = kmem_zalloc(sizeof (struct tempreserve), KM_SLEEP); 1223 tr->tr_ds = dd; 1224 tr->tr_size = asize; 1225 list_insert_tail(tr_list, tr); 1226 1227 /* see if it's OK with our parent */ 1228 if (dd->dd_parent && parent_rsrv) { 1229 boolean_t ismos = (dsl_dir_phys(dd)->dd_head_dataset_obj == 0); 1230 1231 return (dsl_dir_tempreserve_impl(dd->dd_parent, 1232 parent_rsrv, netfree, ismos, TRUE, tr_list, tx, FALSE)); 1233 } else { 1234 return (0); 1235 } 1236 } 1237 1238 /* 1239 * Reserve space in this dsl_dir, to be used in this tx's txg. 1240 * After the space has been dirtied (and dsl_dir_willuse_space() 1241 * has been called), the reservation should be canceled, using 1242 * dsl_dir_tempreserve_clear(). 1243 */ 1244 int 1245 dsl_dir_tempreserve_space(dsl_dir_t *dd, uint64_t lsize, uint64_t asize, 1246 uint64_t fsize, uint64_t usize, void **tr_cookiep, dmu_tx_t *tx) 1247 { 1248 int err; 1249 list_t *tr_list; 1250 1251 if (asize == 0) { 1252 *tr_cookiep = NULL; 1253 return (0); 1254 } 1255 1256 tr_list = kmem_alloc(sizeof (list_t), KM_SLEEP); 1257 list_create(tr_list, sizeof (struct tempreserve), 1258 offsetof(struct tempreserve, tr_node)); 1259 ASSERT3S(asize, >, 0); 1260 ASSERT3S(fsize, >=, 0); 1261 1262 err = arc_tempreserve_space(lsize, tx->tx_txg); 1263 if (err == 0) { 1264 struct tempreserve *tr; 1265 1266 tr = kmem_zalloc(sizeof (struct tempreserve), KM_SLEEP); 1267 tr->tr_size = lsize; 1268 list_insert_tail(tr_list, tr); 1269 } else { 1270 if (err == EAGAIN) { 1271 /* 1272 * If arc_memory_throttle() detected that pageout 1273 * is running and we are low on memory, we delay new 1274 * non-pageout transactions to give pageout an 1275 * advantage. 1276 * 1277 * It is unfortunate to be delaying while the caller's 1278 * locks are held. 1279 */ 1280 txg_delay(dd->dd_pool, tx->tx_txg, 1281 MSEC2NSEC(10), MSEC2NSEC(10)); 1282 err = SET_ERROR(ERESTART); 1283 } 1284 } 1285 1286 if (err == 0) { 1287 err = dsl_dir_tempreserve_impl(dd, asize, fsize >= asize, 1288 FALSE, asize > usize, tr_list, tx, TRUE); 1289 } 1290 1291 if (err != 0) 1292 dsl_dir_tempreserve_clear(tr_list, tx); 1293 else 1294 *tr_cookiep = tr_list; 1295 1296 return (err); 1297 } 1298 1299 /* 1300 * Clear a temporary reservation that we previously made with 1301 * dsl_dir_tempreserve_space(). 1302 */ 1303 void 1304 dsl_dir_tempreserve_clear(void *tr_cookie, dmu_tx_t *tx) 1305 { 1306 int txgidx = tx->tx_txg & TXG_MASK; 1307 list_t *tr_list = tr_cookie; 1308 struct tempreserve *tr; 1309 1310 ASSERT3U(tx->tx_txg, !=, 0); 1311 1312 if (tr_cookie == NULL) 1313 return; 1314 1315 while ((tr = list_head(tr_list)) != NULL) { 1316 if (tr->tr_ds) { 1317 mutex_enter(&tr->tr_ds->dd_lock); 1318 ASSERT3U(tr->tr_ds->dd_tempreserved[txgidx], >=, 1319 tr->tr_size); 1320 tr->tr_ds->dd_tempreserved[txgidx] -= tr->tr_size; 1321 mutex_exit(&tr->tr_ds->dd_lock); 1322 } else { 1323 arc_tempreserve_clear(tr->tr_size); 1324 } 1325 list_remove(tr_list, tr); 1326 kmem_free(tr, sizeof (struct tempreserve)); 1327 } 1328 1329 kmem_free(tr_list, sizeof (list_t)); 1330 } 1331 1332 /* 1333 * This should be called from open context when we think we're going to write 1334 * or free space, for example when dirtying data. Be conservative; it's okay 1335 * to write less space or free more, but we don't want to write more or free 1336 * less than the amount specified. 1337 */ 1338 void 1339 dsl_dir_willuse_space(dsl_dir_t *dd, int64_t space, dmu_tx_t *tx) 1340 { 1341 int64_t parent_space; 1342 uint64_t est_used; 1343 1344 mutex_enter(&dd->dd_lock); 1345 if (space > 0) 1346 dd->dd_space_towrite[tx->tx_txg & TXG_MASK] += space; 1347 1348 est_used = dsl_dir_space_towrite(dd) + dsl_dir_phys(dd)->dd_used_bytes; 1349 parent_space = parent_delta(dd, est_used, space); 1350 mutex_exit(&dd->dd_lock); 1351 1352 /* Make sure that we clean up dd_space_to* */ 1353 dsl_dir_dirty(dd, tx); 1354 1355 /* XXX this is potentially expensive and unnecessary... */ 1356 if (parent_space && dd->dd_parent) 1357 dsl_dir_willuse_space(dd->dd_parent, parent_space, tx); 1358 } 1359 1360 /* call from syncing context when we actually write/free space for this dd */ 1361 void 1362 dsl_dir_diduse_space(dsl_dir_t *dd, dd_used_t type, 1363 int64_t used, int64_t compressed, int64_t uncompressed, dmu_tx_t *tx) 1364 { 1365 int64_t accounted_delta; 1366 1367 /* 1368 * dsl_dataset_set_refreservation_sync_impl() calls this with 1369 * dd_lock held, so that it can atomically update 1370 * ds->ds_reserved and the dsl_dir accounting, so that 1371 * dsl_dataset_check_quota() can see dataset and dir accounting 1372 * consistently. 1373 */ 1374 boolean_t needlock = !MUTEX_HELD(&dd->dd_lock); 1375 1376 ASSERT(dmu_tx_is_syncing(tx)); 1377 ASSERT(type < DD_USED_NUM); 1378 1379 dmu_buf_will_dirty(dd->dd_dbuf, tx); 1380 1381 if (needlock) 1382 mutex_enter(&dd->dd_lock); 1383 accounted_delta = 1384 parent_delta(dd, dsl_dir_phys(dd)->dd_used_bytes, used); 1385 ASSERT(used >= 0 || dsl_dir_phys(dd)->dd_used_bytes >= -used); 1386 ASSERT(compressed >= 0 || 1387 dsl_dir_phys(dd)->dd_compressed_bytes >= -compressed); 1388 ASSERT(uncompressed >= 0 || 1389 dsl_dir_phys(dd)->dd_uncompressed_bytes >= -uncompressed); 1390 dsl_dir_phys(dd)->dd_used_bytes += used; 1391 dsl_dir_phys(dd)->dd_uncompressed_bytes += uncompressed; 1392 dsl_dir_phys(dd)->dd_compressed_bytes += compressed; 1393 1394 if (dsl_dir_phys(dd)->dd_flags & DD_FLAG_USED_BREAKDOWN) { 1395 ASSERT(used > 0 || 1396 dsl_dir_phys(dd)->dd_used_breakdown[type] >= -used); 1397 dsl_dir_phys(dd)->dd_used_breakdown[type] += used; 1398 #ifdef DEBUG 1399 dd_used_t t; 1400 uint64_t u = 0; 1401 for (t = 0; t < DD_USED_NUM; t++) 1402 u += dsl_dir_phys(dd)->dd_used_breakdown[t]; 1403 ASSERT3U(u, ==, dsl_dir_phys(dd)->dd_used_bytes); 1404 #endif 1405 } 1406 if (needlock) 1407 mutex_exit(&dd->dd_lock); 1408 1409 if (dd->dd_parent != NULL) { 1410 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD, 1411 accounted_delta, compressed, uncompressed, tx); 1412 dsl_dir_transfer_space(dd->dd_parent, 1413 used - accounted_delta, 1414 DD_USED_CHILD_RSRV, DD_USED_CHILD, tx); 1415 } 1416 } 1417 1418 void 1419 dsl_dir_transfer_space(dsl_dir_t *dd, int64_t delta, 1420 dd_used_t oldtype, dd_used_t newtype, dmu_tx_t *tx) 1421 { 1422 ASSERT(dmu_tx_is_syncing(tx)); 1423 ASSERT(oldtype < DD_USED_NUM); 1424 ASSERT(newtype < DD_USED_NUM); 1425 1426 if (delta == 0 || 1427 !(dsl_dir_phys(dd)->dd_flags & DD_FLAG_USED_BREAKDOWN)) 1428 return; 1429 1430 dmu_buf_will_dirty(dd->dd_dbuf, tx); 1431 mutex_enter(&dd->dd_lock); 1432 ASSERT(delta > 0 ? 1433 dsl_dir_phys(dd)->dd_used_breakdown[oldtype] >= delta : 1434 dsl_dir_phys(dd)->dd_used_breakdown[newtype] >= -delta); 1435 ASSERT(dsl_dir_phys(dd)->dd_used_bytes >= ABS(delta)); 1436 dsl_dir_phys(dd)->dd_used_breakdown[oldtype] -= delta; 1437 dsl_dir_phys(dd)->dd_used_breakdown[newtype] += delta; 1438 mutex_exit(&dd->dd_lock); 1439 } 1440 1441 typedef struct dsl_dir_set_qr_arg { 1442 const char *ddsqra_name; 1443 zprop_source_t ddsqra_source; 1444 uint64_t ddsqra_value; 1445 } dsl_dir_set_qr_arg_t; 1446 1447 static int 1448 dsl_dir_set_quota_check(void *arg, dmu_tx_t *tx) 1449 { 1450 dsl_dir_set_qr_arg_t *ddsqra = arg; 1451 dsl_pool_t *dp = dmu_tx_pool(tx); 1452 dsl_dataset_t *ds; 1453 int error; 1454 uint64_t towrite, newval; 1455 1456 error = dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds); 1457 if (error != 0) 1458 return (error); 1459 1460 error = dsl_prop_predict(ds->ds_dir, "quota", 1461 ddsqra->ddsqra_source, ddsqra->ddsqra_value, &newval); 1462 if (error != 0) { 1463 dsl_dataset_rele(ds, FTAG); 1464 return (error); 1465 } 1466 1467 if (newval == 0) { 1468 dsl_dataset_rele(ds, FTAG); 1469 return (0); 1470 } 1471 1472 mutex_enter(&ds->ds_dir->dd_lock); 1473 /* 1474 * If we are doing the preliminary check in open context, and 1475 * there are pending changes, then don't fail it, since the 1476 * pending changes could under-estimate the amount of space to be 1477 * freed up. 1478 */ 1479 towrite = dsl_dir_space_towrite(ds->ds_dir); 1480 if ((dmu_tx_is_syncing(tx) || towrite == 0) && 1481 (newval < dsl_dir_phys(ds->ds_dir)->dd_reserved || 1482 newval < dsl_dir_phys(ds->ds_dir)->dd_used_bytes + towrite)) { 1483 error = SET_ERROR(ENOSPC); 1484 } 1485 mutex_exit(&ds->ds_dir->dd_lock); 1486 dsl_dataset_rele(ds, FTAG); 1487 return (error); 1488 } 1489 1490 static void 1491 dsl_dir_set_quota_sync(void *arg, dmu_tx_t *tx) 1492 { 1493 dsl_dir_set_qr_arg_t *ddsqra = arg; 1494 dsl_pool_t *dp = dmu_tx_pool(tx); 1495 dsl_dataset_t *ds; 1496 uint64_t newval; 1497 1498 VERIFY0(dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds)); 1499 1500 if (spa_version(dp->dp_spa) >= SPA_VERSION_RECVD_PROPS) { 1501 dsl_prop_set_sync_impl(ds, zfs_prop_to_name(ZFS_PROP_QUOTA), 1502 ddsqra->ddsqra_source, sizeof (ddsqra->ddsqra_value), 1, 1503 &ddsqra->ddsqra_value, tx); 1504 1505 VERIFY0(dsl_prop_get_int_ds(ds, 1506 zfs_prop_to_name(ZFS_PROP_QUOTA), &newval)); 1507 } else { 1508 newval = ddsqra->ddsqra_value; 1509 spa_history_log_internal_ds(ds, "set", tx, "%s=%lld", 1510 zfs_prop_to_name(ZFS_PROP_QUOTA), (longlong_t)newval); 1511 } 1512 1513 dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx); 1514 mutex_enter(&ds->ds_dir->dd_lock); 1515 dsl_dir_phys(ds->ds_dir)->dd_quota = newval; 1516 mutex_exit(&ds->ds_dir->dd_lock); 1517 dsl_dataset_rele(ds, FTAG); 1518 } 1519 1520 int 1521 dsl_dir_set_quota(const char *ddname, zprop_source_t source, uint64_t quota) 1522 { 1523 dsl_dir_set_qr_arg_t ddsqra; 1524 1525 ddsqra.ddsqra_name = ddname; 1526 ddsqra.ddsqra_source = source; 1527 ddsqra.ddsqra_value = quota; 1528 1529 return (dsl_sync_task(ddname, dsl_dir_set_quota_check, 1530 dsl_dir_set_quota_sync, &ddsqra, 0, ZFS_SPACE_CHECK_NONE)); 1531 } 1532 1533 int 1534 dsl_dir_set_reservation_check(void *arg, dmu_tx_t *tx) 1535 { 1536 dsl_dir_set_qr_arg_t *ddsqra = arg; 1537 dsl_pool_t *dp = dmu_tx_pool(tx); 1538 dsl_dataset_t *ds; 1539 dsl_dir_t *dd; 1540 uint64_t newval, used, avail; 1541 int error; 1542 1543 error = dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds); 1544 if (error != 0) 1545 return (error); 1546 dd = ds->ds_dir; 1547 1548 /* 1549 * If we are doing the preliminary check in open context, the 1550 * space estimates may be inaccurate. 1551 */ 1552 if (!dmu_tx_is_syncing(tx)) { 1553 dsl_dataset_rele(ds, FTAG); 1554 return (0); 1555 } 1556 1557 error = dsl_prop_predict(ds->ds_dir, 1558 zfs_prop_to_name(ZFS_PROP_RESERVATION), 1559 ddsqra->ddsqra_source, ddsqra->ddsqra_value, &newval); 1560 if (error != 0) { 1561 dsl_dataset_rele(ds, FTAG); 1562 return (error); 1563 } 1564 1565 mutex_enter(&dd->dd_lock); 1566 used = dsl_dir_phys(dd)->dd_used_bytes; 1567 mutex_exit(&dd->dd_lock); 1568 1569 if (dd->dd_parent) { 1570 avail = dsl_dir_space_available(dd->dd_parent, 1571 NULL, 0, FALSE); 1572 } else { 1573 avail = dsl_pool_adjustedsize(dd->dd_pool, B_FALSE) - used; 1574 } 1575 1576 if (MAX(used, newval) > MAX(used, dsl_dir_phys(dd)->dd_reserved)) { 1577 uint64_t delta = MAX(used, newval) - 1578 MAX(used, dsl_dir_phys(dd)->dd_reserved); 1579 1580 if (delta > avail || 1581 (dsl_dir_phys(dd)->dd_quota > 0 && 1582 newval > dsl_dir_phys(dd)->dd_quota)) 1583 error = SET_ERROR(ENOSPC); 1584 } 1585 1586 dsl_dataset_rele(ds, FTAG); 1587 return (error); 1588 } 1589 1590 void 1591 dsl_dir_set_reservation_sync_impl(dsl_dir_t *dd, uint64_t value, dmu_tx_t *tx) 1592 { 1593 uint64_t used; 1594 int64_t delta; 1595 1596 dmu_buf_will_dirty(dd->dd_dbuf, tx); 1597 1598 mutex_enter(&dd->dd_lock); 1599 used = dsl_dir_phys(dd)->dd_used_bytes; 1600 delta = MAX(used, value) - MAX(used, dsl_dir_phys(dd)->dd_reserved); 1601 dsl_dir_phys(dd)->dd_reserved = value; 1602 1603 if (dd->dd_parent != NULL) { 1604 /* Roll up this additional usage into our ancestors */ 1605 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD_RSRV, 1606 delta, 0, 0, tx); 1607 } 1608 mutex_exit(&dd->dd_lock); 1609 } 1610 1611 1612 static void 1613 dsl_dir_set_reservation_sync(void *arg, dmu_tx_t *tx) 1614 { 1615 dsl_dir_set_qr_arg_t *ddsqra = arg; 1616 dsl_pool_t *dp = dmu_tx_pool(tx); 1617 dsl_dataset_t *ds; 1618 uint64_t newval; 1619 1620 VERIFY0(dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds)); 1621 1622 if (spa_version(dp->dp_spa) >= SPA_VERSION_RECVD_PROPS) { 1623 dsl_prop_set_sync_impl(ds, 1624 zfs_prop_to_name(ZFS_PROP_RESERVATION), 1625 ddsqra->ddsqra_source, sizeof (ddsqra->ddsqra_value), 1, 1626 &ddsqra->ddsqra_value, tx); 1627 1628 VERIFY0(dsl_prop_get_int_ds(ds, 1629 zfs_prop_to_name(ZFS_PROP_RESERVATION), &newval)); 1630 } else { 1631 newval = ddsqra->ddsqra_value; 1632 spa_history_log_internal_ds(ds, "set", tx, "%s=%lld", 1633 zfs_prop_to_name(ZFS_PROP_RESERVATION), 1634 (longlong_t)newval); 1635 } 1636 1637 dsl_dir_set_reservation_sync_impl(ds->ds_dir, newval, tx); 1638 dsl_dataset_rele(ds, FTAG); 1639 } 1640 1641 int 1642 dsl_dir_set_reservation(const char *ddname, zprop_source_t source, 1643 uint64_t reservation) 1644 { 1645 dsl_dir_set_qr_arg_t ddsqra; 1646 1647 ddsqra.ddsqra_name = ddname; 1648 ddsqra.ddsqra_source = source; 1649 ddsqra.ddsqra_value = reservation; 1650 1651 return (dsl_sync_task(ddname, dsl_dir_set_reservation_check, 1652 dsl_dir_set_reservation_sync, &ddsqra, 0, ZFS_SPACE_CHECK_NONE)); 1653 } 1654 1655 static dsl_dir_t * 1656 closest_common_ancestor(dsl_dir_t *ds1, dsl_dir_t *ds2) 1657 { 1658 for (; ds1; ds1 = ds1->dd_parent) { 1659 dsl_dir_t *dd; 1660 for (dd = ds2; dd; dd = dd->dd_parent) { 1661 if (ds1 == dd) 1662 return (dd); 1663 } 1664 } 1665 return (NULL); 1666 } 1667 1668 /* 1669 * If delta is applied to dd, how much of that delta would be applied to 1670 * ancestor? Syncing context only. 1671 */ 1672 static int64_t 1673 would_change(dsl_dir_t *dd, int64_t delta, dsl_dir_t *ancestor) 1674 { 1675 if (dd == ancestor) 1676 return (delta); 1677 1678 mutex_enter(&dd->dd_lock); 1679 delta = parent_delta(dd, dsl_dir_phys(dd)->dd_used_bytes, delta); 1680 mutex_exit(&dd->dd_lock); 1681 return (would_change(dd->dd_parent, delta, ancestor)); 1682 } 1683 1684 typedef struct dsl_dir_rename_arg { 1685 const char *ddra_oldname; 1686 const char *ddra_newname; 1687 cred_t *ddra_cred; 1688 } dsl_dir_rename_arg_t; 1689 1690 /* ARGSUSED */ 1691 static int 1692 dsl_valid_rename(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg) 1693 { 1694 int *deltap = arg; 1695 char namebuf[ZFS_MAX_DATASET_NAME_LEN]; 1696 1697 dsl_dataset_name(ds, namebuf); 1698 1699 if (strlen(namebuf) + *deltap >= ZFS_MAX_DATASET_NAME_LEN) 1700 return (SET_ERROR(ENAMETOOLONG)); 1701 return (0); 1702 } 1703 1704 static int 1705 dsl_dir_rename_check(void *arg, dmu_tx_t *tx) 1706 { 1707 dsl_dir_rename_arg_t *ddra = arg; 1708 dsl_pool_t *dp = dmu_tx_pool(tx); 1709 dsl_dir_t *dd, *newparent; 1710 const char *mynewname; 1711 int error; 1712 int delta = strlen(ddra->ddra_newname) - strlen(ddra->ddra_oldname); 1713 1714 /* target dir should exist */ 1715 error = dsl_dir_hold(dp, ddra->ddra_oldname, FTAG, &dd, NULL); 1716 if (error != 0) 1717 return (error); 1718 1719 /* new parent should exist */ 1720 error = dsl_dir_hold(dp, ddra->ddra_newname, FTAG, 1721 &newparent, &mynewname); 1722 if (error != 0) { 1723 dsl_dir_rele(dd, FTAG); 1724 return (error); 1725 } 1726 1727 /* can't rename to different pool */ 1728 if (dd->dd_pool != newparent->dd_pool) { 1729 dsl_dir_rele(newparent, FTAG); 1730 dsl_dir_rele(dd, FTAG); 1731 return (SET_ERROR(ENXIO)); 1732 } 1733 1734 /* new name should not already exist */ 1735 if (mynewname == NULL) { 1736 dsl_dir_rele(newparent, FTAG); 1737 dsl_dir_rele(dd, FTAG); 1738 return (SET_ERROR(EEXIST)); 1739 } 1740 1741 /* if the name length is growing, validate child name lengths */ 1742 if (delta > 0) { 1743 error = dmu_objset_find_dp(dp, dd->dd_object, dsl_valid_rename, 1744 &delta, DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS); 1745 if (error != 0) { 1746 dsl_dir_rele(newparent, FTAG); 1747 dsl_dir_rele(dd, FTAG); 1748 return (error); 1749 } 1750 } 1751 1752 if (dmu_tx_is_syncing(tx)) { 1753 if (spa_feature_is_active(dp->dp_spa, 1754 SPA_FEATURE_FS_SS_LIMIT)) { 1755 /* 1756 * Although this is the check function and we don't 1757 * normally make on-disk changes in check functions, 1758 * we need to do that here. 1759 * 1760 * Ensure this portion of the tree's counts have been 1761 * initialized in case the new parent has limits set. 1762 */ 1763 dsl_dir_init_fs_ss_count(dd, tx); 1764 } 1765 } 1766 1767 if (newparent != dd->dd_parent) { 1768 /* is there enough space? */ 1769 uint64_t myspace = 1770 MAX(dsl_dir_phys(dd)->dd_used_bytes, 1771 dsl_dir_phys(dd)->dd_reserved); 1772 objset_t *os = dd->dd_pool->dp_meta_objset; 1773 uint64_t fs_cnt = 0; 1774 uint64_t ss_cnt = 0; 1775 1776 if (dsl_dir_is_zapified(dd)) { 1777 int err; 1778 1779 err = zap_lookup(os, dd->dd_object, 1780 DD_FIELD_FILESYSTEM_COUNT, sizeof (fs_cnt), 1, 1781 &fs_cnt); 1782 if (err != ENOENT && err != 0) { 1783 dsl_dir_rele(newparent, FTAG); 1784 dsl_dir_rele(dd, FTAG); 1785 return (err); 1786 } 1787 1788 /* 1789 * have to add 1 for the filesystem itself that we're 1790 * moving 1791 */ 1792 fs_cnt++; 1793 1794 err = zap_lookup(os, dd->dd_object, 1795 DD_FIELD_SNAPSHOT_COUNT, sizeof (ss_cnt), 1, 1796 &ss_cnt); 1797 if (err != ENOENT && err != 0) { 1798 dsl_dir_rele(newparent, FTAG); 1799 dsl_dir_rele(dd, FTAG); 1800 return (err); 1801 } 1802 } 1803 1804 /* no rename into our descendant */ 1805 if (closest_common_ancestor(dd, newparent) == dd) { 1806 dsl_dir_rele(newparent, FTAG); 1807 dsl_dir_rele(dd, FTAG); 1808 return (SET_ERROR(EINVAL)); 1809 } 1810 1811 error = dsl_dir_transfer_possible(dd->dd_parent, 1812 newparent, fs_cnt, ss_cnt, myspace, ddra->ddra_cred); 1813 if (error != 0) { 1814 dsl_dir_rele(newparent, FTAG); 1815 dsl_dir_rele(dd, FTAG); 1816 return (error); 1817 } 1818 } 1819 1820 dsl_dir_rele(newparent, FTAG); 1821 dsl_dir_rele(dd, FTAG); 1822 return (0); 1823 } 1824 1825 static void 1826 dsl_dir_rename_sync(void *arg, dmu_tx_t *tx) 1827 { 1828 dsl_dir_rename_arg_t *ddra = arg; 1829 dsl_pool_t *dp = dmu_tx_pool(tx); 1830 dsl_dir_t *dd, *newparent; 1831 const char *mynewname; 1832 int error; 1833 objset_t *mos = dp->dp_meta_objset; 1834 1835 VERIFY0(dsl_dir_hold(dp, ddra->ddra_oldname, FTAG, &dd, NULL)); 1836 VERIFY0(dsl_dir_hold(dp, ddra->ddra_newname, FTAG, &newparent, 1837 &mynewname)); 1838 1839 /* Log this before we change the name. */ 1840 spa_history_log_internal_dd(dd, "rename", tx, 1841 "-> %s", ddra->ddra_newname); 1842 1843 if (newparent != dd->dd_parent) { 1844 objset_t *os = dd->dd_pool->dp_meta_objset; 1845 uint64_t fs_cnt = 0; 1846 uint64_t ss_cnt = 0; 1847 1848 /* 1849 * We already made sure the dd counts were initialized in the 1850 * check function. 1851 */ 1852 if (spa_feature_is_active(dp->dp_spa, 1853 SPA_FEATURE_FS_SS_LIMIT)) { 1854 VERIFY0(zap_lookup(os, dd->dd_object, 1855 DD_FIELD_FILESYSTEM_COUNT, sizeof (fs_cnt), 1, 1856 &fs_cnt)); 1857 /* add 1 for the filesystem itself that we're moving */ 1858 fs_cnt++; 1859 1860 VERIFY0(zap_lookup(os, dd->dd_object, 1861 DD_FIELD_SNAPSHOT_COUNT, sizeof (ss_cnt), 1, 1862 &ss_cnt)); 1863 } 1864 1865 dsl_fs_ss_count_adjust(dd->dd_parent, -fs_cnt, 1866 DD_FIELD_FILESYSTEM_COUNT, tx); 1867 dsl_fs_ss_count_adjust(newparent, fs_cnt, 1868 DD_FIELD_FILESYSTEM_COUNT, tx); 1869 1870 dsl_fs_ss_count_adjust(dd->dd_parent, -ss_cnt, 1871 DD_FIELD_SNAPSHOT_COUNT, tx); 1872 dsl_fs_ss_count_adjust(newparent, ss_cnt, 1873 DD_FIELD_SNAPSHOT_COUNT, tx); 1874 1875 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD, 1876 -dsl_dir_phys(dd)->dd_used_bytes, 1877 -dsl_dir_phys(dd)->dd_compressed_bytes, 1878 -dsl_dir_phys(dd)->dd_uncompressed_bytes, tx); 1879 dsl_dir_diduse_space(newparent, DD_USED_CHILD, 1880 dsl_dir_phys(dd)->dd_used_bytes, 1881 dsl_dir_phys(dd)->dd_compressed_bytes, 1882 dsl_dir_phys(dd)->dd_uncompressed_bytes, tx); 1883 1884 if (dsl_dir_phys(dd)->dd_reserved > 1885 dsl_dir_phys(dd)->dd_used_bytes) { 1886 uint64_t unused_rsrv = dsl_dir_phys(dd)->dd_reserved - 1887 dsl_dir_phys(dd)->dd_used_bytes; 1888 1889 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD_RSRV, 1890 -unused_rsrv, 0, 0, tx); 1891 dsl_dir_diduse_space(newparent, DD_USED_CHILD_RSRV, 1892 unused_rsrv, 0, 0, tx); 1893 } 1894 } 1895 1896 dmu_buf_will_dirty(dd->dd_dbuf, tx); 1897 1898 /* remove from old parent zapobj */ 1899 error = zap_remove(mos, 1900 dsl_dir_phys(dd->dd_parent)->dd_child_dir_zapobj, 1901 dd->dd_myname, tx); 1902 ASSERT0(error); 1903 1904 (void) strcpy(dd->dd_myname, mynewname); 1905 dsl_dir_rele(dd->dd_parent, dd); 1906 dsl_dir_phys(dd)->dd_parent_obj = newparent->dd_object; 1907 VERIFY0(dsl_dir_hold_obj(dp, 1908 newparent->dd_object, NULL, dd, &dd->dd_parent)); 1909 1910 /* add to new parent zapobj */ 1911 VERIFY0(zap_add(mos, dsl_dir_phys(newparent)->dd_child_dir_zapobj, 1912 dd->dd_myname, 8, 1, &dd->dd_object, tx)); 1913 1914 dsl_prop_notify_all(dd); 1915 1916 dsl_dir_rele(newparent, FTAG); 1917 dsl_dir_rele(dd, FTAG); 1918 } 1919 1920 int 1921 dsl_dir_rename(const char *oldname, const char *newname) 1922 { 1923 dsl_dir_rename_arg_t ddra; 1924 1925 ddra.ddra_oldname = oldname; 1926 ddra.ddra_newname = newname; 1927 ddra.ddra_cred = CRED(); 1928 1929 return (dsl_sync_task(oldname, 1930 dsl_dir_rename_check, dsl_dir_rename_sync, &ddra, 1931 3, ZFS_SPACE_CHECK_RESERVED)); 1932 } 1933 1934 int 1935 dsl_dir_transfer_possible(dsl_dir_t *sdd, dsl_dir_t *tdd, 1936 uint64_t fs_cnt, uint64_t ss_cnt, uint64_t space, cred_t *cr) 1937 { 1938 dsl_dir_t *ancestor; 1939 int64_t adelta; 1940 uint64_t avail; 1941 int err; 1942 1943 ancestor = closest_common_ancestor(sdd, tdd); 1944 adelta = would_change(sdd, -space, ancestor); 1945 avail = dsl_dir_space_available(tdd, ancestor, adelta, FALSE); 1946 if (avail < space) 1947 return (SET_ERROR(ENOSPC)); 1948 1949 err = dsl_fs_ss_limit_check(tdd, fs_cnt, ZFS_PROP_FILESYSTEM_LIMIT, 1950 ancestor, cr); 1951 if (err != 0) 1952 return (err); 1953 err = dsl_fs_ss_limit_check(tdd, ss_cnt, ZFS_PROP_SNAPSHOT_LIMIT, 1954 ancestor, cr); 1955 if (err != 0) 1956 return (err); 1957 1958 return (0); 1959 } 1960 1961 timestruc_t 1962 dsl_dir_snap_cmtime(dsl_dir_t *dd) 1963 { 1964 timestruc_t t; 1965 1966 mutex_enter(&dd->dd_lock); 1967 t = dd->dd_snap_cmtime; 1968 mutex_exit(&dd->dd_lock); 1969 1970 return (t); 1971 } 1972 1973 void 1974 dsl_dir_snap_cmtime_update(dsl_dir_t *dd) 1975 { 1976 timestruc_t t; 1977 1978 gethrestime(&t); 1979 mutex_enter(&dd->dd_lock); 1980 dd->dd_snap_cmtime = t; 1981 mutex_exit(&dd->dd_lock); 1982 } 1983 1984 void 1985 dsl_dir_zapify(dsl_dir_t *dd, dmu_tx_t *tx) 1986 { 1987 objset_t *mos = dd->dd_pool->dp_meta_objset; 1988 dmu_object_zapify(mos, dd->dd_object, DMU_OT_DSL_DIR, tx); 1989 } 1990 1991 boolean_t 1992 dsl_dir_is_zapified(dsl_dir_t *dd) 1993 { 1994 dmu_object_info_t doi; 1995 1996 dmu_object_info_from_db(dd->dd_dbuf, &doi); 1997 return (doi.doi_type == DMU_OTN_ZAP_METADATA); 1998 } 1999