1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 * Copyright (c) 2011, 2015 by Delphix. All rights reserved. 25 * Copyright (c) 2014, Joyent, Inc. All rights reserved. 26 * Copyright 2014 HybridCluster. All rights reserved. 27 */ 28 29 #include <sys/dmu.h> 30 #include <sys/dmu_impl.h> 31 #include <sys/dmu_tx.h> 32 #include <sys/dbuf.h> 33 #include <sys/dnode.h> 34 #include <sys/zfs_context.h> 35 #include <sys/dmu_objset.h> 36 #include <sys/dmu_traverse.h> 37 #include <sys/dsl_dataset.h> 38 #include <sys/dsl_dir.h> 39 #include <sys/dsl_prop.h> 40 #include <sys/dsl_pool.h> 41 #include <sys/dsl_synctask.h> 42 #include <sys/zfs_ioctl.h> 43 #include <sys/zap.h> 44 #include <sys/zio_checksum.h> 45 #include <sys/zfs_znode.h> 46 #include <zfs_fletcher.h> 47 #include <sys/avl.h> 48 #include <sys/ddt.h> 49 #include <sys/zfs_onexit.h> 50 #include <sys/dmu_send.h> 51 #include <sys/dsl_destroy.h> 52 #include <sys/blkptr.h> 53 #include <sys/dsl_bookmark.h> 54 #include <sys/zfeature.h> 55 #include <sys/bqueue.h> 56 57 /* Set this tunable to TRUE to replace corrupt data with 0x2f5baddb10c */ 58 int zfs_send_corrupt_data = B_FALSE; 59 int zfs_send_queue_length = 16 * 1024 * 1024; 60 int zfs_recv_queue_length = 16 * 1024 * 1024; 61 62 static char *dmu_recv_tag = "dmu_recv_tag"; 63 static const char *recv_clone_name = "%recv"; 64 65 #define BP_SPAN(datablkszsec, indblkshift, level) \ 66 (((uint64_t)datablkszsec) << (SPA_MINBLOCKSHIFT + \ 67 (level) * (indblkshift - SPA_BLKPTRSHIFT))) 68 69 struct send_thread_arg { 70 bqueue_t q; 71 dsl_dataset_t *ds; /* Dataset to traverse */ 72 uint64_t fromtxg; /* Traverse from this txg */ 73 int flags; /* flags to pass to traverse_dataset */ 74 int error_code; 75 boolean_t cancel; 76 }; 77 78 struct send_block_record { 79 boolean_t eos_marker; /* Marks the end of the stream */ 80 blkptr_t bp; 81 zbookmark_phys_t zb; 82 uint8_t indblkshift; 83 uint16_t datablkszsec; 84 bqueue_node_t ln; 85 }; 86 87 static int 88 dump_bytes(dmu_sendarg_t *dsp, void *buf, int len) 89 { 90 dsl_dataset_t *ds = dsp->dsa_os->os_dsl_dataset; 91 ssize_t resid; /* have to get resid to get detailed errno */ 92 ASSERT0(len % 8); 93 94 dsp->dsa_err = vn_rdwr(UIO_WRITE, dsp->dsa_vp, 95 (caddr_t)buf, len, 96 0, UIO_SYSSPACE, FAPPEND, RLIM64_INFINITY, CRED(), &resid); 97 98 mutex_enter(&ds->ds_sendstream_lock); 99 *dsp->dsa_off += len; 100 mutex_exit(&ds->ds_sendstream_lock); 101 102 return (dsp->dsa_err); 103 } 104 105 /* 106 * For all record types except BEGIN, fill in the checksum (overlaid in 107 * drr_u.drr_checksum.drr_checksum). The checksum verifies everything 108 * up to the start of the checksum itself. 109 */ 110 static int 111 dump_record(dmu_sendarg_t *dsp, void *payload, int payload_len) 112 { 113 ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum), 114 ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t)); 115 fletcher_4_incremental_native(dsp->dsa_drr, 116 offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum), 117 &dsp->dsa_zc); 118 if (dsp->dsa_drr->drr_type != DRR_BEGIN) { 119 ASSERT(ZIO_CHECKSUM_IS_ZERO(&dsp->dsa_drr->drr_u. 120 drr_checksum.drr_checksum)); 121 dsp->dsa_drr->drr_u.drr_checksum.drr_checksum = dsp->dsa_zc; 122 } 123 fletcher_4_incremental_native(&dsp->dsa_drr-> 124 drr_u.drr_checksum.drr_checksum, 125 sizeof (zio_cksum_t), &dsp->dsa_zc); 126 if (dump_bytes(dsp, dsp->dsa_drr, sizeof (dmu_replay_record_t)) != 0) 127 return (SET_ERROR(EINTR)); 128 if (payload_len != 0) { 129 fletcher_4_incremental_native(payload, payload_len, 130 &dsp->dsa_zc); 131 if (dump_bytes(dsp, payload, payload_len) != 0) 132 return (SET_ERROR(EINTR)); 133 } 134 return (0); 135 } 136 137 static int 138 dump_free(dmu_sendarg_t *dsp, uint64_t object, uint64_t offset, 139 uint64_t length) 140 { 141 struct drr_free *drrf = &(dsp->dsa_drr->drr_u.drr_free); 142 143 /* 144 * When we receive a free record, dbuf_free_range() assumes 145 * that the receiving system doesn't have any dbufs in the range 146 * being freed. This is always true because there is a one-record 147 * constraint: we only send one WRITE record for any given 148 * object+offset. We know that the one-record constraint is 149 * true because we always send data in increasing order by 150 * object,offset. 151 * 152 * If the increasing-order constraint ever changes, we should find 153 * another way to assert that the one-record constraint is still 154 * satisfied. 155 */ 156 ASSERT(object > dsp->dsa_last_data_object || 157 (object == dsp->dsa_last_data_object && 158 offset > dsp->dsa_last_data_offset)); 159 160 /* 161 * If we are doing a non-incremental send, then there can't 162 * be any data in the dataset we're receiving into. Therefore 163 * a free record would simply be a no-op. Save space by not 164 * sending it to begin with. 165 */ 166 if (!dsp->dsa_incremental) 167 return (0); 168 169 if (length != -1ULL && offset + length < offset) 170 length = -1ULL; 171 172 /* 173 * If there is a pending op, but it's not PENDING_FREE, push it out, 174 * since free block aggregation can only be done for blocks of the 175 * same type (i.e., DRR_FREE records can only be aggregated with 176 * other DRR_FREE records. DRR_FREEOBJECTS records can only be 177 * aggregated with other DRR_FREEOBJECTS records. 178 */ 179 if (dsp->dsa_pending_op != PENDING_NONE && 180 dsp->dsa_pending_op != PENDING_FREE) { 181 if (dump_record(dsp, NULL, 0) != 0) 182 return (SET_ERROR(EINTR)); 183 dsp->dsa_pending_op = PENDING_NONE; 184 } 185 186 if (dsp->dsa_pending_op == PENDING_FREE) { 187 /* 188 * There should never be a PENDING_FREE if length is -1 189 * (because dump_dnode is the only place where this 190 * function is called with a -1, and only after flushing 191 * any pending record). 192 */ 193 ASSERT(length != -1ULL); 194 /* 195 * Check to see whether this free block can be aggregated 196 * with pending one. 197 */ 198 if (drrf->drr_object == object && drrf->drr_offset + 199 drrf->drr_length == offset) { 200 drrf->drr_length += length; 201 return (0); 202 } else { 203 /* not a continuation. Push out pending record */ 204 if (dump_record(dsp, NULL, 0) != 0) 205 return (SET_ERROR(EINTR)); 206 dsp->dsa_pending_op = PENDING_NONE; 207 } 208 } 209 /* create a FREE record and make it pending */ 210 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t)); 211 dsp->dsa_drr->drr_type = DRR_FREE; 212 drrf->drr_object = object; 213 drrf->drr_offset = offset; 214 drrf->drr_length = length; 215 drrf->drr_toguid = dsp->dsa_toguid; 216 if (length == -1ULL) { 217 if (dump_record(dsp, NULL, 0) != 0) 218 return (SET_ERROR(EINTR)); 219 } else { 220 dsp->dsa_pending_op = PENDING_FREE; 221 } 222 223 return (0); 224 } 225 226 static int 227 dump_write(dmu_sendarg_t *dsp, dmu_object_type_t type, 228 uint64_t object, uint64_t offset, int blksz, const blkptr_t *bp, void *data) 229 { 230 struct drr_write *drrw = &(dsp->dsa_drr->drr_u.drr_write); 231 232 /* 233 * We send data in increasing object, offset order. 234 * See comment in dump_free() for details. 235 */ 236 ASSERT(object > dsp->dsa_last_data_object || 237 (object == dsp->dsa_last_data_object && 238 offset > dsp->dsa_last_data_offset)); 239 dsp->dsa_last_data_object = object; 240 dsp->dsa_last_data_offset = offset + blksz - 1; 241 242 /* 243 * If there is any kind of pending aggregation (currently either 244 * a grouping of free objects or free blocks), push it out to 245 * the stream, since aggregation can't be done across operations 246 * of different types. 247 */ 248 if (dsp->dsa_pending_op != PENDING_NONE) { 249 if (dump_record(dsp, NULL, 0) != 0) 250 return (SET_ERROR(EINTR)); 251 dsp->dsa_pending_op = PENDING_NONE; 252 } 253 /* write a WRITE record */ 254 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t)); 255 dsp->dsa_drr->drr_type = DRR_WRITE; 256 drrw->drr_object = object; 257 drrw->drr_type = type; 258 drrw->drr_offset = offset; 259 drrw->drr_length = blksz; 260 drrw->drr_toguid = dsp->dsa_toguid; 261 if (bp == NULL || BP_IS_EMBEDDED(bp)) { 262 /* 263 * There's no pre-computed checksum for partial-block 264 * writes or embedded BP's, so (like 265 * fletcher4-checkummed blocks) userland will have to 266 * compute a dedup-capable checksum itself. 267 */ 268 drrw->drr_checksumtype = ZIO_CHECKSUM_OFF; 269 } else { 270 drrw->drr_checksumtype = BP_GET_CHECKSUM(bp); 271 if (zio_checksum_table[drrw->drr_checksumtype].ci_dedup) 272 drrw->drr_checksumflags |= DRR_CHECKSUM_DEDUP; 273 DDK_SET_LSIZE(&drrw->drr_key, BP_GET_LSIZE(bp)); 274 DDK_SET_PSIZE(&drrw->drr_key, BP_GET_PSIZE(bp)); 275 DDK_SET_COMPRESS(&drrw->drr_key, BP_GET_COMPRESS(bp)); 276 drrw->drr_key.ddk_cksum = bp->blk_cksum; 277 } 278 279 if (dump_record(dsp, data, blksz) != 0) 280 return (SET_ERROR(EINTR)); 281 return (0); 282 } 283 284 static int 285 dump_write_embedded(dmu_sendarg_t *dsp, uint64_t object, uint64_t offset, 286 int blksz, const blkptr_t *bp) 287 { 288 char buf[BPE_PAYLOAD_SIZE]; 289 struct drr_write_embedded *drrw = 290 &(dsp->dsa_drr->drr_u.drr_write_embedded); 291 292 if (dsp->dsa_pending_op != PENDING_NONE) { 293 if (dump_record(dsp, NULL, 0) != 0) 294 return (EINTR); 295 dsp->dsa_pending_op = PENDING_NONE; 296 } 297 298 ASSERT(BP_IS_EMBEDDED(bp)); 299 300 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t)); 301 dsp->dsa_drr->drr_type = DRR_WRITE_EMBEDDED; 302 drrw->drr_object = object; 303 drrw->drr_offset = offset; 304 drrw->drr_length = blksz; 305 drrw->drr_toguid = dsp->dsa_toguid; 306 drrw->drr_compression = BP_GET_COMPRESS(bp); 307 drrw->drr_etype = BPE_GET_ETYPE(bp); 308 drrw->drr_lsize = BPE_GET_LSIZE(bp); 309 drrw->drr_psize = BPE_GET_PSIZE(bp); 310 311 decode_embedded_bp_compressed(bp, buf); 312 313 if (dump_record(dsp, buf, P2ROUNDUP(drrw->drr_psize, 8)) != 0) 314 return (EINTR); 315 return (0); 316 } 317 318 static int 319 dump_spill(dmu_sendarg_t *dsp, uint64_t object, int blksz, void *data) 320 { 321 struct drr_spill *drrs = &(dsp->dsa_drr->drr_u.drr_spill); 322 323 if (dsp->dsa_pending_op != PENDING_NONE) { 324 if (dump_record(dsp, NULL, 0) != 0) 325 return (SET_ERROR(EINTR)); 326 dsp->dsa_pending_op = PENDING_NONE; 327 } 328 329 /* write a SPILL record */ 330 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t)); 331 dsp->dsa_drr->drr_type = DRR_SPILL; 332 drrs->drr_object = object; 333 drrs->drr_length = blksz; 334 drrs->drr_toguid = dsp->dsa_toguid; 335 336 if (dump_record(dsp, data, blksz) != 0) 337 return (SET_ERROR(EINTR)); 338 return (0); 339 } 340 341 static int 342 dump_freeobjects(dmu_sendarg_t *dsp, uint64_t firstobj, uint64_t numobjs) 343 { 344 struct drr_freeobjects *drrfo = &(dsp->dsa_drr->drr_u.drr_freeobjects); 345 346 /* See comment in dump_free(). */ 347 if (!dsp->dsa_incremental) 348 return (0); 349 350 /* 351 * If there is a pending op, but it's not PENDING_FREEOBJECTS, 352 * push it out, since free block aggregation can only be done for 353 * blocks of the same type (i.e., DRR_FREE records can only be 354 * aggregated with other DRR_FREE records. DRR_FREEOBJECTS records 355 * can only be aggregated with other DRR_FREEOBJECTS records. 356 */ 357 if (dsp->dsa_pending_op != PENDING_NONE && 358 dsp->dsa_pending_op != PENDING_FREEOBJECTS) { 359 if (dump_record(dsp, NULL, 0) != 0) 360 return (SET_ERROR(EINTR)); 361 dsp->dsa_pending_op = PENDING_NONE; 362 } 363 if (dsp->dsa_pending_op == PENDING_FREEOBJECTS) { 364 /* 365 * See whether this free object array can be aggregated 366 * with pending one 367 */ 368 if (drrfo->drr_firstobj + drrfo->drr_numobjs == firstobj) { 369 drrfo->drr_numobjs += numobjs; 370 return (0); 371 } else { 372 /* can't be aggregated. Push out pending record */ 373 if (dump_record(dsp, NULL, 0) != 0) 374 return (SET_ERROR(EINTR)); 375 dsp->dsa_pending_op = PENDING_NONE; 376 } 377 } 378 379 /* write a FREEOBJECTS record */ 380 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t)); 381 dsp->dsa_drr->drr_type = DRR_FREEOBJECTS; 382 drrfo->drr_firstobj = firstobj; 383 drrfo->drr_numobjs = numobjs; 384 drrfo->drr_toguid = dsp->dsa_toguid; 385 386 dsp->dsa_pending_op = PENDING_FREEOBJECTS; 387 388 return (0); 389 } 390 391 static int 392 dump_dnode(dmu_sendarg_t *dsp, uint64_t object, dnode_phys_t *dnp) 393 { 394 struct drr_object *drro = &(dsp->dsa_drr->drr_u.drr_object); 395 396 if (dnp == NULL || dnp->dn_type == DMU_OT_NONE) 397 return (dump_freeobjects(dsp, object, 1)); 398 399 if (dsp->dsa_pending_op != PENDING_NONE) { 400 if (dump_record(dsp, NULL, 0) != 0) 401 return (SET_ERROR(EINTR)); 402 dsp->dsa_pending_op = PENDING_NONE; 403 } 404 405 /* write an OBJECT record */ 406 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t)); 407 dsp->dsa_drr->drr_type = DRR_OBJECT; 408 drro->drr_object = object; 409 drro->drr_type = dnp->dn_type; 410 drro->drr_bonustype = dnp->dn_bonustype; 411 drro->drr_blksz = dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT; 412 drro->drr_bonuslen = dnp->dn_bonuslen; 413 drro->drr_checksumtype = dnp->dn_checksum; 414 drro->drr_compress = dnp->dn_compress; 415 drro->drr_toguid = dsp->dsa_toguid; 416 417 if (!(dsp->dsa_featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) && 418 drro->drr_blksz > SPA_OLD_MAXBLOCKSIZE) 419 drro->drr_blksz = SPA_OLD_MAXBLOCKSIZE; 420 421 if (dump_record(dsp, DN_BONUS(dnp), 422 P2ROUNDUP(dnp->dn_bonuslen, 8)) != 0) { 423 return (SET_ERROR(EINTR)); 424 } 425 426 /* Free anything past the end of the file. */ 427 if (dump_free(dsp, object, (dnp->dn_maxblkid + 1) * 428 (dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT), -1ULL) != 0) 429 return (SET_ERROR(EINTR)); 430 if (dsp->dsa_err != 0) 431 return (SET_ERROR(EINTR)); 432 return (0); 433 } 434 435 static boolean_t 436 backup_do_embed(dmu_sendarg_t *dsp, const blkptr_t *bp) 437 { 438 if (!BP_IS_EMBEDDED(bp)) 439 return (B_FALSE); 440 441 /* 442 * Compression function must be legacy, or explicitly enabled. 443 */ 444 if ((BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_LEGACY_FUNCTIONS && 445 !(dsp->dsa_featureflags & DMU_BACKUP_FEATURE_EMBED_DATA_LZ4))) 446 return (B_FALSE); 447 448 /* 449 * Embed type must be explicitly enabled. 450 */ 451 switch (BPE_GET_ETYPE(bp)) { 452 case BP_EMBEDDED_TYPE_DATA: 453 if (dsp->dsa_featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) 454 return (B_TRUE); 455 break; 456 default: 457 return (B_FALSE); 458 } 459 return (B_FALSE); 460 } 461 462 /* 463 * This is the callback function to traverse_dataset that acts as the worker 464 * thread for dmu_send_impl. 465 */ 466 /*ARGSUSED*/ 467 static int 468 send_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 469 const zbookmark_phys_t *zb, const struct dnode_phys *dnp, void *arg) 470 { 471 struct send_thread_arg *sta = arg; 472 struct send_block_record *record; 473 uint64_t record_size; 474 int err = 0; 475 476 if (sta->cancel) 477 return (SET_ERROR(EINTR)); 478 479 if (bp == NULL) { 480 ASSERT3U(zb->zb_level, ==, ZB_DNODE_LEVEL); 481 return (0); 482 } else if (zb->zb_level < 0) { 483 return (0); 484 } 485 486 record = kmem_zalloc(sizeof (struct send_block_record), KM_SLEEP); 487 record->eos_marker = B_FALSE; 488 record->bp = *bp; 489 record->zb = *zb; 490 record->indblkshift = dnp->dn_indblkshift; 491 record->datablkszsec = dnp->dn_datablkszsec; 492 record_size = dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT; 493 bqueue_enqueue(&sta->q, record, record_size); 494 495 return (err); 496 } 497 498 /* 499 * This function kicks off the traverse_dataset. It also handles setting the 500 * error code of the thread in case something goes wrong, and pushes the End of 501 * Stream record when the traverse_dataset call has finished. If there is no 502 * dataset to traverse, the thread immediately pushes End of Stream marker. 503 */ 504 static void 505 send_traverse_thread(void *arg) 506 { 507 struct send_thread_arg *st_arg = arg; 508 int err; 509 struct send_block_record *data; 510 511 if (st_arg->ds != NULL) { 512 err = traverse_dataset(st_arg->ds, st_arg->fromtxg, 513 st_arg->flags, send_cb, arg); 514 if (err != EINTR) 515 st_arg->error_code = err; 516 } 517 data = kmem_zalloc(sizeof (*data), KM_SLEEP); 518 data->eos_marker = B_TRUE; 519 bqueue_enqueue(&st_arg->q, data, 1); 520 } 521 522 /* 523 * This function actually handles figuring out what kind of record needs to be 524 * dumped, reading the data (which has hopefully been prefetched), and calling 525 * the appropriate helper function. 526 */ 527 static int 528 do_dump(dmu_sendarg_t *dsa, struct send_block_record *data) 529 { 530 dsl_dataset_t *ds = dmu_objset_ds(dsa->dsa_os); 531 const blkptr_t *bp = &data->bp; 532 const zbookmark_phys_t *zb = &data->zb; 533 uint8_t indblkshift = data->indblkshift; 534 uint16_t dblkszsec = data->datablkszsec; 535 spa_t *spa = ds->ds_dir->dd_pool->dp_spa; 536 dmu_object_type_t type = bp ? BP_GET_TYPE(bp) : DMU_OT_NONE; 537 int err = 0; 538 539 ASSERT3U(zb->zb_level, >=, 0); 540 541 if (zb->zb_object != DMU_META_DNODE_OBJECT && 542 DMU_OBJECT_IS_SPECIAL(zb->zb_object)) { 543 return (0); 544 } else if (BP_IS_HOLE(bp) && 545 zb->zb_object == DMU_META_DNODE_OBJECT) { 546 uint64_t span = BP_SPAN(dblkszsec, indblkshift, zb->zb_level); 547 uint64_t dnobj = (zb->zb_blkid * span) >> DNODE_SHIFT; 548 err = dump_freeobjects(dsa, dnobj, span >> DNODE_SHIFT); 549 } else if (BP_IS_HOLE(bp)) { 550 uint64_t span = BP_SPAN(dblkszsec, indblkshift, zb->zb_level); 551 uint64_t offset = zb->zb_blkid * span; 552 err = dump_free(dsa, zb->zb_object, offset, span); 553 } else if (zb->zb_level > 0 || type == DMU_OT_OBJSET) { 554 return (0); 555 } else if (type == DMU_OT_DNODE) { 556 int blksz = BP_GET_LSIZE(bp); 557 arc_flags_t aflags = ARC_FLAG_WAIT; 558 arc_buf_t *abuf; 559 560 ASSERT0(zb->zb_level); 561 562 if (arc_read(NULL, spa, bp, arc_getbuf_func, &abuf, 563 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL, 564 &aflags, zb) != 0) 565 return (SET_ERROR(EIO)); 566 567 dnode_phys_t *blk = abuf->b_data; 568 uint64_t dnobj = zb->zb_blkid * (blksz >> DNODE_SHIFT); 569 for (int i = 0; i < blksz >> DNODE_SHIFT; i++) { 570 err = dump_dnode(dsa, dnobj + i, blk + i); 571 if (err != 0) 572 break; 573 } 574 (void) arc_buf_remove_ref(abuf, &abuf); 575 } else if (type == DMU_OT_SA) { 576 arc_flags_t aflags = ARC_FLAG_WAIT; 577 arc_buf_t *abuf; 578 int blksz = BP_GET_LSIZE(bp); 579 580 if (arc_read(NULL, spa, bp, arc_getbuf_func, &abuf, 581 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL, 582 &aflags, zb) != 0) 583 return (SET_ERROR(EIO)); 584 585 err = dump_spill(dsa, zb->zb_object, blksz, abuf->b_data); 586 (void) arc_buf_remove_ref(abuf, &abuf); 587 } else if (backup_do_embed(dsa, bp)) { 588 /* it's an embedded level-0 block of a regular object */ 589 int blksz = dblkszsec << SPA_MINBLOCKSHIFT; 590 ASSERT0(zb->zb_level); 591 err = dump_write_embedded(dsa, zb->zb_object, 592 zb->zb_blkid * blksz, blksz, bp); 593 } else { 594 /* it's a level-0 block of a regular object */ 595 arc_flags_t aflags = ARC_FLAG_WAIT; 596 arc_buf_t *abuf; 597 int blksz = dblkszsec << SPA_MINBLOCKSHIFT; 598 uint64_t offset; 599 600 ASSERT0(zb->zb_level); 601 if (arc_read(NULL, spa, bp, arc_getbuf_func, &abuf, 602 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL, 603 &aflags, zb) != 0) { 604 if (zfs_send_corrupt_data) { 605 /* Send a block filled with 0x"zfs badd bloc" */ 606 abuf = arc_buf_alloc(spa, blksz, &abuf, 607 ARC_BUFC_DATA); 608 uint64_t *ptr; 609 for (ptr = abuf->b_data; 610 (char *)ptr < (char *)abuf->b_data + blksz; 611 ptr++) 612 *ptr = 0x2f5baddb10cULL; 613 } else { 614 return (SET_ERROR(EIO)); 615 } 616 } 617 618 offset = zb->zb_blkid * blksz; 619 620 if (!(dsa->dsa_featureflags & 621 DMU_BACKUP_FEATURE_LARGE_BLOCKS) && 622 blksz > SPA_OLD_MAXBLOCKSIZE) { 623 char *buf = abuf->b_data; 624 while (blksz > 0 && err == 0) { 625 int n = MIN(blksz, SPA_OLD_MAXBLOCKSIZE); 626 err = dump_write(dsa, type, zb->zb_object, 627 offset, n, NULL, buf); 628 offset += n; 629 buf += n; 630 blksz -= n; 631 } 632 } else { 633 err = dump_write(dsa, type, zb->zb_object, 634 offset, blksz, bp, abuf->b_data); 635 } 636 (void) arc_buf_remove_ref(abuf, &abuf); 637 } 638 639 ASSERT(err == 0 || err == EINTR); 640 return (err); 641 } 642 643 /* 644 * Pop the new data off the queue, and free the old data. 645 */ 646 static struct send_block_record * 647 get_next_record(bqueue_t *bq, struct send_block_record *data) 648 { 649 struct send_block_record *tmp = bqueue_dequeue(bq); 650 kmem_free(data, sizeof (*data)); 651 return (tmp); 652 } 653 654 /* 655 * Actually do the bulk of the work in a zfs send. 656 * 657 * Note: Releases dp using the specified tag. 658 */ 659 static int 660 dmu_send_impl(void *tag, dsl_pool_t *dp, dsl_dataset_t *to_ds, 661 zfs_bookmark_phys_t *ancestor_zb, boolean_t is_clone, boolean_t embedok, 662 boolean_t large_block_ok, int outfd, vnode_t *vp, offset_t *off) 663 { 664 objset_t *os; 665 dmu_replay_record_t *drr; 666 dmu_sendarg_t *dsp; 667 int err; 668 uint64_t fromtxg = 0; 669 uint64_t featureflags = 0; 670 struct send_thread_arg to_arg; 671 672 err = dmu_objset_from_ds(to_ds, &os); 673 if (err != 0) { 674 dsl_pool_rele(dp, tag); 675 return (err); 676 } 677 678 drr = kmem_zalloc(sizeof (dmu_replay_record_t), KM_SLEEP); 679 drr->drr_type = DRR_BEGIN; 680 drr->drr_u.drr_begin.drr_magic = DMU_BACKUP_MAGIC; 681 DMU_SET_STREAM_HDRTYPE(drr->drr_u.drr_begin.drr_versioninfo, 682 DMU_SUBSTREAM); 683 684 #ifdef _KERNEL 685 if (dmu_objset_type(os) == DMU_OST_ZFS) { 686 uint64_t version; 687 if (zfs_get_zplprop(os, ZFS_PROP_VERSION, &version) != 0) { 688 kmem_free(drr, sizeof (dmu_replay_record_t)); 689 dsl_pool_rele(dp, tag); 690 return (SET_ERROR(EINVAL)); 691 } 692 if (version >= ZPL_VERSION_SA) { 693 featureflags |= DMU_BACKUP_FEATURE_SA_SPILL; 694 } 695 } 696 #endif 697 698 if (large_block_ok && to_ds->ds_feature_inuse[SPA_FEATURE_LARGE_BLOCKS]) 699 featureflags |= DMU_BACKUP_FEATURE_LARGE_BLOCKS; 700 if (embedok && 701 spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA)) { 702 featureflags |= DMU_BACKUP_FEATURE_EMBED_DATA; 703 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS)) 704 featureflags |= DMU_BACKUP_FEATURE_EMBED_DATA_LZ4; 705 } 706 707 DMU_SET_FEATUREFLAGS(drr->drr_u.drr_begin.drr_versioninfo, 708 featureflags); 709 710 drr->drr_u.drr_begin.drr_creation_time = 711 dsl_dataset_phys(to_ds)->ds_creation_time; 712 drr->drr_u.drr_begin.drr_type = dmu_objset_type(os); 713 if (is_clone) 714 drr->drr_u.drr_begin.drr_flags |= DRR_FLAG_CLONE; 715 drr->drr_u.drr_begin.drr_toguid = dsl_dataset_phys(to_ds)->ds_guid; 716 if (dsl_dataset_phys(to_ds)->ds_flags & DS_FLAG_CI_DATASET) 717 drr->drr_u.drr_begin.drr_flags |= DRR_FLAG_CI_DATA; 718 719 if (ancestor_zb != NULL) { 720 drr->drr_u.drr_begin.drr_fromguid = 721 ancestor_zb->zbm_guid; 722 fromtxg = ancestor_zb->zbm_creation_txg; 723 } 724 dsl_dataset_name(to_ds, drr->drr_u.drr_begin.drr_toname); 725 if (!to_ds->ds_is_snapshot) { 726 (void) strlcat(drr->drr_u.drr_begin.drr_toname, "@--head--", 727 sizeof (drr->drr_u.drr_begin.drr_toname)); 728 } 729 730 dsp = kmem_zalloc(sizeof (dmu_sendarg_t), KM_SLEEP); 731 732 dsp->dsa_drr = drr; 733 dsp->dsa_vp = vp; 734 dsp->dsa_outfd = outfd; 735 dsp->dsa_proc = curproc; 736 dsp->dsa_os = os; 737 dsp->dsa_off = off; 738 dsp->dsa_toguid = dsl_dataset_phys(to_ds)->ds_guid; 739 dsp->dsa_pending_op = PENDING_NONE; 740 dsp->dsa_incremental = (ancestor_zb != NULL); 741 dsp->dsa_featureflags = featureflags; 742 743 mutex_enter(&to_ds->ds_sendstream_lock); 744 list_insert_head(&to_ds->ds_sendstreams, dsp); 745 mutex_exit(&to_ds->ds_sendstream_lock); 746 747 dsl_dataset_long_hold(to_ds, FTAG); 748 dsl_pool_rele(dp, tag); 749 750 if (dump_record(dsp, NULL, 0) != 0) { 751 err = dsp->dsa_err; 752 goto out; 753 } 754 755 err = bqueue_init(&to_arg.q, zfs_send_queue_length, 756 offsetof(struct send_block_record, ln)); 757 to_arg.error_code = 0; 758 to_arg.cancel = B_FALSE; 759 to_arg.ds = to_ds; 760 to_arg.fromtxg = fromtxg; 761 to_arg.flags = TRAVERSE_PRE | TRAVERSE_PREFETCH; 762 (void) thread_create(NULL, 0, send_traverse_thread, &to_arg, 0, curproc, 763 TS_RUN, minclsyspri); 764 765 struct send_block_record *to_data; 766 to_data = bqueue_dequeue(&to_arg.q); 767 768 while (!to_data->eos_marker && err == 0) { 769 err = do_dump(dsp, to_data); 770 to_data = get_next_record(&to_arg.q, to_data); 771 if (issig(JUSTLOOKING) && issig(FORREAL)) 772 err = EINTR; 773 } 774 775 if (err != 0) { 776 to_arg.cancel = B_TRUE; 777 while (!to_data->eos_marker) { 778 to_data = get_next_record(&to_arg.q, to_data); 779 } 780 } 781 kmem_free(to_data, sizeof (*to_data)); 782 783 bqueue_destroy(&to_arg.q); 784 785 if (err == 0 && to_arg.error_code != 0) 786 err = to_arg.error_code; 787 788 if (err != 0) 789 goto out; 790 791 if (dsp->dsa_pending_op != PENDING_NONE) 792 if (dump_record(dsp, NULL, 0) != 0) 793 err = SET_ERROR(EINTR); 794 795 if (err != 0) { 796 if (err == EINTR && dsp->dsa_err != 0) 797 err = dsp->dsa_err; 798 goto out; 799 } 800 801 bzero(drr, sizeof (dmu_replay_record_t)); 802 drr->drr_type = DRR_END; 803 drr->drr_u.drr_end.drr_checksum = dsp->dsa_zc; 804 drr->drr_u.drr_end.drr_toguid = dsp->dsa_toguid; 805 806 if (dump_record(dsp, NULL, 0) != 0) 807 err = dsp->dsa_err; 808 809 out: 810 mutex_enter(&to_ds->ds_sendstream_lock); 811 list_remove(&to_ds->ds_sendstreams, dsp); 812 mutex_exit(&to_ds->ds_sendstream_lock); 813 814 kmem_free(drr, sizeof (dmu_replay_record_t)); 815 kmem_free(dsp, sizeof (dmu_sendarg_t)); 816 817 dsl_dataset_long_rele(to_ds, FTAG); 818 819 return (err); 820 } 821 822 int 823 dmu_send_obj(const char *pool, uint64_t tosnap, uint64_t fromsnap, 824 boolean_t embedok, boolean_t large_block_ok, 825 int outfd, vnode_t *vp, offset_t *off) 826 { 827 dsl_pool_t *dp; 828 dsl_dataset_t *ds; 829 dsl_dataset_t *fromds = NULL; 830 int err; 831 832 err = dsl_pool_hold(pool, FTAG, &dp); 833 if (err != 0) 834 return (err); 835 836 err = dsl_dataset_hold_obj(dp, tosnap, FTAG, &ds); 837 if (err != 0) { 838 dsl_pool_rele(dp, FTAG); 839 return (err); 840 } 841 842 if (fromsnap != 0) { 843 zfs_bookmark_phys_t zb; 844 boolean_t is_clone; 845 846 err = dsl_dataset_hold_obj(dp, fromsnap, FTAG, &fromds); 847 if (err != 0) { 848 dsl_dataset_rele(ds, FTAG); 849 dsl_pool_rele(dp, FTAG); 850 return (err); 851 } 852 if (!dsl_dataset_is_before(ds, fromds, 0)) 853 err = SET_ERROR(EXDEV); 854 zb.zbm_creation_time = 855 dsl_dataset_phys(fromds)->ds_creation_time; 856 zb.zbm_creation_txg = dsl_dataset_phys(fromds)->ds_creation_txg; 857 zb.zbm_guid = dsl_dataset_phys(fromds)->ds_guid; 858 is_clone = (fromds->ds_dir != ds->ds_dir); 859 dsl_dataset_rele(fromds, FTAG); 860 err = dmu_send_impl(FTAG, dp, ds, &zb, is_clone, 861 embedok, large_block_ok, outfd, vp, off); 862 } else { 863 err = dmu_send_impl(FTAG, dp, ds, NULL, B_FALSE, 864 embedok, large_block_ok, outfd, vp, off); 865 } 866 dsl_dataset_rele(ds, FTAG); 867 return (err); 868 } 869 870 int 871 dmu_send(const char *tosnap, const char *fromsnap, 872 boolean_t embedok, boolean_t large_block_ok, 873 int outfd, vnode_t *vp, offset_t *off) 874 { 875 dsl_pool_t *dp; 876 dsl_dataset_t *ds; 877 int err; 878 boolean_t owned = B_FALSE; 879 880 if (fromsnap != NULL && strpbrk(fromsnap, "@#") == NULL) 881 return (SET_ERROR(EINVAL)); 882 883 err = dsl_pool_hold(tosnap, FTAG, &dp); 884 if (err != 0) 885 return (err); 886 887 if (strchr(tosnap, '@') == NULL && spa_writeable(dp->dp_spa)) { 888 /* 889 * We are sending a filesystem or volume. Ensure 890 * that it doesn't change by owning the dataset. 891 */ 892 err = dsl_dataset_own(dp, tosnap, FTAG, &ds); 893 owned = B_TRUE; 894 } else { 895 err = dsl_dataset_hold(dp, tosnap, FTAG, &ds); 896 } 897 if (err != 0) { 898 dsl_pool_rele(dp, FTAG); 899 return (err); 900 } 901 902 if (fromsnap != NULL) { 903 zfs_bookmark_phys_t zb; 904 boolean_t is_clone = B_FALSE; 905 int fsnamelen = strchr(tosnap, '@') - tosnap; 906 907 /* 908 * If the fromsnap is in a different filesystem, then 909 * mark the send stream as a clone. 910 */ 911 if (strncmp(tosnap, fromsnap, fsnamelen) != 0 || 912 (fromsnap[fsnamelen] != '@' && 913 fromsnap[fsnamelen] != '#')) { 914 is_clone = B_TRUE; 915 } 916 917 if (strchr(fromsnap, '@')) { 918 dsl_dataset_t *fromds; 919 err = dsl_dataset_hold(dp, fromsnap, FTAG, &fromds); 920 if (err == 0) { 921 if (!dsl_dataset_is_before(ds, fromds, 0)) 922 err = SET_ERROR(EXDEV); 923 zb.zbm_creation_time = 924 dsl_dataset_phys(fromds)->ds_creation_time; 925 zb.zbm_creation_txg = 926 dsl_dataset_phys(fromds)->ds_creation_txg; 927 zb.zbm_guid = dsl_dataset_phys(fromds)->ds_guid; 928 is_clone = (ds->ds_dir != fromds->ds_dir); 929 dsl_dataset_rele(fromds, FTAG); 930 } 931 } else { 932 err = dsl_bookmark_lookup(dp, fromsnap, ds, &zb); 933 } 934 if (err != 0) { 935 dsl_dataset_rele(ds, FTAG); 936 dsl_pool_rele(dp, FTAG); 937 return (err); 938 } 939 err = dmu_send_impl(FTAG, dp, ds, &zb, is_clone, 940 embedok, large_block_ok, outfd, vp, off); 941 } else { 942 err = dmu_send_impl(FTAG, dp, ds, NULL, B_FALSE, 943 embedok, large_block_ok, outfd, vp, off); 944 } 945 if (owned) 946 dsl_dataset_disown(ds, FTAG); 947 else 948 dsl_dataset_rele(ds, FTAG); 949 return (err); 950 } 951 952 static int 953 dmu_adjust_send_estimate_for_indirects(dsl_dataset_t *ds, uint64_t size, 954 uint64_t *sizep) 955 { 956 int err; 957 /* 958 * Assume that space (both on-disk and in-stream) is dominated by 959 * data. We will adjust for indirect blocks and the copies property, 960 * but ignore per-object space used (eg, dnodes and DRR_OBJECT records). 961 */ 962 963 /* 964 * Subtract out approximate space used by indirect blocks. 965 * Assume most space is used by data blocks (non-indirect, non-dnode). 966 * Assume all blocks are recordsize. Assume ditto blocks and 967 * internal fragmentation counter out compression. 968 * 969 * Therefore, space used by indirect blocks is sizeof(blkptr_t) per 970 * block, which we observe in practice. 971 */ 972 uint64_t recordsize; 973 err = dsl_prop_get_int_ds(ds, "recordsize", &recordsize); 974 if (err != 0) 975 return (err); 976 size -= size / recordsize * sizeof (blkptr_t); 977 978 /* Add in the space for the record associated with each block. */ 979 size += size / recordsize * sizeof (dmu_replay_record_t); 980 981 *sizep = size; 982 983 return (0); 984 } 985 986 int 987 dmu_send_estimate(dsl_dataset_t *ds, dsl_dataset_t *fromds, uint64_t *sizep) 988 { 989 dsl_pool_t *dp = ds->ds_dir->dd_pool; 990 int err; 991 uint64_t size; 992 993 ASSERT(dsl_pool_config_held(dp)); 994 995 /* tosnap must be a snapshot */ 996 if (!ds->ds_is_snapshot) 997 return (SET_ERROR(EINVAL)); 998 999 /* fromsnap, if provided, must be a snapshot */ 1000 if (fromds != NULL && !fromds->ds_is_snapshot) 1001 return (SET_ERROR(EINVAL)); 1002 1003 /* 1004 * fromsnap must be an earlier snapshot from the same fs as tosnap, 1005 * or the origin's fs. 1006 */ 1007 if (fromds != NULL && !dsl_dataset_is_before(ds, fromds, 0)) 1008 return (SET_ERROR(EXDEV)); 1009 1010 /* Get uncompressed size estimate of changed data. */ 1011 if (fromds == NULL) { 1012 size = dsl_dataset_phys(ds)->ds_uncompressed_bytes; 1013 } else { 1014 uint64_t used, comp; 1015 err = dsl_dataset_space_written(fromds, ds, 1016 &used, &comp, &size); 1017 if (err != 0) 1018 return (err); 1019 } 1020 1021 err = dmu_adjust_send_estimate_for_indirects(ds, size, sizep); 1022 return (err); 1023 } 1024 1025 /* 1026 * Simple callback used to traverse the blocks of a snapshot and sum their 1027 * uncompressed size 1028 */ 1029 /* ARGSUSED */ 1030 static int 1031 dmu_calculate_send_traversal(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 1032 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg) 1033 { 1034 uint64_t *spaceptr = arg; 1035 if (bp != NULL && !BP_IS_HOLE(bp)) { 1036 *spaceptr += BP_GET_UCSIZE(bp); 1037 } 1038 return (0); 1039 } 1040 1041 /* 1042 * Given a desination snapshot and a TXG, calculate the approximate size of a 1043 * send stream sent from that TXG. from_txg may be zero, indicating that the 1044 * whole snapshot will be sent. 1045 */ 1046 int 1047 dmu_send_estimate_from_txg(dsl_dataset_t *ds, uint64_t from_txg, 1048 uint64_t *sizep) 1049 { 1050 dsl_pool_t *dp = ds->ds_dir->dd_pool; 1051 int err; 1052 uint64_t size = 0; 1053 1054 ASSERT(dsl_pool_config_held(dp)); 1055 1056 /* tosnap must be a snapshot */ 1057 if (!dsl_dataset_is_snapshot(ds)) 1058 return (SET_ERROR(EINVAL)); 1059 1060 /* verify that from_txg is before the provided snapshot was taken */ 1061 if (from_txg >= dsl_dataset_phys(ds)->ds_creation_txg) { 1062 return (SET_ERROR(EXDEV)); 1063 } 1064 1065 /* 1066 * traverse the blocks of the snapshot with birth times after 1067 * from_txg, summing their uncompressed size 1068 */ 1069 err = traverse_dataset(ds, from_txg, TRAVERSE_POST, 1070 dmu_calculate_send_traversal, &size); 1071 if (err) 1072 return (err); 1073 1074 err = dmu_adjust_send_estimate_for_indirects(ds, size, sizep); 1075 return (err); 1076 } 1077 1078 typedef struct dmu_recv_begin_arg { 1079 const char *drba_origin; 1080 dmu_recv_cookie_t *drba_cookie; 1081 cred_t *drba_cred; 1082 uint64_t drba_snapobj; 1083 } dmu_recv_begin_arg_t; 1084 1085 static int 1086 recv_begin_check_existing_impl(dmu_recv_begin_arg_t *drba, dsl_dataset_t *ds, 1087 uint64_t fromguid) 1088 { 1089 uint64_t val; 1090 int error; 1091 dsl_pool_t *dp = ds->ds_dir->dd_pool; 1092 1093 /* temporary clone name must not exist */ 1094 error = zap_lookup(dp->dp_meta_objset, 1095 dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, recv_clone_name, 1096 8, 1, &val); 1097 if (error != ENOENT) 1098 return (error == 0 ? EBUSY : error); 1099 1100 /* new snapshot name must not exist */ 1101 error = zap_lookup(dp->dp_meta_objset, 1102 dsl_dataset_phys(ds)->ds_snapnames_zapobj, 1103 drba->drba_cookie->drc_tosnap, 8, 1, &val); 1104 if (error != ENOENT) 1105 return (error == 0 ? EEXIST : error); 1106 1107 /* 1108 * Check snapshot limit before receiving. We'll recheck again at the 1109 * end, but might as well abort before receiving if we're already over 1110 * the limit. 1111 * 1112 * Note that we do not check the file system limit with 1113 * dsl_dir_fscount_check because the temporary %clones don't count 1114 * against that limit. 1115 */ 1116 error = dsl_fs_ss_limit_check(ds->ds_dir, 1, ZFS_PROP_SNAPSHOT_LIMIT, 1117 NULL, drba->drba_cred); 1118 if (error != 0) 1119 return (error); 1120 1121 if (fromguid != 0) { 1122 dsl_dataset_t *snap; 1123 uint64_t obj = dsl_dataset_phys(ds)->ds_prev_snap_obj; 1124 1125 /* Find snapshot in this dir that matches fromguid. */ 1126 while (obj != 0) { 1127 error = dsl_dataset_hold_obj(dp, obj, FTAG, 1128 &snap); 1129 if (error != 0) 1130 return (SET_ERROR(ENODEV)); 1131 if (snap->ds_dir != ds->ds_dir) { 1132 dsl_dataset_rele(snap, FTAG); 1133 return (SET_ERROR(ENODEV)); 1134 } 1135 if (dsl_dataset_phys(snap)->ds_guid == fromguid) 1136 break; 1137 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj; 1138 dsl_dataset_rele(snap, FTAG); 1139 } 1140 if (obj == 0) 1141 return (SET_ERROR(ENODEV)); 1142 1143 if (drba->drba_cookie->drc_force) { 1144 drba->drba_snapobj = obj; 1145 } else { 1146 /* 1147 * If we are not forcing, there must be no 1148 * changes since fromsnap. 1149 */ 1150 if (dsl_dataset_modified_since_snap(ds, snap)) { 1151 dsl_dataset_rele(snap, FTAG); 1152 return (SET_ERROR(ETXTBSY)); 1153 } 1154 drba->drba_snapobj = ds->ds_prev->ds_object; 1155 } 1156 1157 dsl_dataset_rele(snap, FTAG); 1158 } else { 1159 /* if full, then must be forced */ 1160 if (!drba->drba_cookie->drc_force) 1161 return (SET_ERROR(EEXIST)); 1162 /* start from $ORIGIN@$ORIGIN, if supported */ 1163 drba->drba_snapobj = dp->dp_origin_snap != NULL ? 1164 dp->dp_origin_snap->ds_object : 0; 1165 } 1166 1167 return (0); 1168 1169 } 1170 1171 static int 1172 dmu_recv_begin_check(void *arg, dmu_tx_t *tx) 1173 { 1174 dmu_recv_begin_arg_t *drba = arg; 1175 dsl_pool_t *dp = dmu_tx_pool(tx); 1176 struct drr_begin *drrb = drba->drba_cookie->drc_drrb; 1177 uint64_t fromguid = drrb->drr_fromguid; 1178 int flags = drrb->drr_flags; 1179 int error; 1180 uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo); 1181 dsl_dataset_t *ds; 1182 const char *tofs = drba->drba_cookie->drc_tofs; 1183 1184 /* already checked */ 1185 ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC); 1186 1187 if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) == 1188 DMU_COMPOUNDSTREAM || 1189 drrb->drr_type >= DMU_OST_NUMTYPES || 1190 ((flags & DRR_FLAG_CLONE) && drba->drba_origin == NULL)) 1191 return (SET_ERROR(EINVAL)); 1192 1193 /* Verify pool version supports SA if SA_SPILL feature set */ 1194 if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) && 1195 spa_version(dp->dp_spa) < SPA_VERSION_SA) 1196 return (SET_ERROR(ENOTSUP)); 1197 1198 /* 1199 * The receiving code doesn't know how to translate a WRITE_EMBEDDED 1200 * record to a plan WRITE record, so the pool must have the 1201 * EMBEDDED_DATA feature enabled if the stream has WRITE_EMBEDDED 1202 * records. Same with WRITE_EMBEDDED records that use LZ4 compression. 1203 */ 1204 if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) && 1205 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA)) 1206 return (SET_ERROR(ENOTSUP)); 1207 if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA_LZ4) && 1208 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS)) 1209 return (SET_ERROR(ENOTSUP)); 1210 1211 /* 1212 * The receiving code doesn't know how to translate large blocks 1213 * to smaller ones, so the pool must have the LARGE_BLOCKS 1214 * feature enabled if the stream has LARGE_BLOCKS. 1215 */ 1216 if ((featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) && 1217 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LARGE_BLOCKS)) 1218 return (SET_ERROR(ENOTSUP)); 1219 1220 error = dsl_dataset_hold(dp, tofs, FTAG, &ds); 1221 if (error == 0) { 1222 /* target fs already exists; recv into temp clone */ 1223 1224 /* Can't recv a clone into an existing fs */ 1225 if (flags & DRR_FLAG_CLONE) { 1226 dsl_dataset_rele(ds, FTAG); 1227 return (SET_ERROR(EINVAL)); 1228 } 1229 1230 error = recv_begin_check_existing_impl(drba, ds, fromguid); 1231 dsl_dataset_rele(ds, FTAG); 1232 } else if (error == ENOENT) { 1233 /* target fs does not exist; must be a full backup or clone */ 1234 char buf[MAXNAMELEN]; 1235 1236 /* 1237 * If it's a non-clone incremental, we are missing the 1238 * target fs, so fail the recv. 1239 */ 1240 if (fromguid != 0 && !(flags & DRR_FLAG_CLONE || 1241 drba->drba_origin)) 1242 return (SET_ERROR(ENOENT)); 1243 1244 /* Open the parent of tofs */ 1245 ASSERT3U(strlen(tofs), <, MAXNAMELEN); 1246 (void) strlcpy(buf, tofs, strrchr(tofs, '/') - tofs + 1); 1247 error = dsl_dataset_hold(dp, buf, FTAG, &ds); 1248 if (error != 0) 1249 return (error); 1250 1251 /* 1252 * Check filesystem and snapshot limits before receiving. We'll 1253 * recheck snapshot limits again at the end (we create the 1254 * filesystems and increment those counts during begin_sync). 1255 */ 1256 error = dsl_fs_ss_limit_check(ds->ds_dir, 1, 1257 ZFS_PROP_FILESYSTEM_LIMIT, NULL, drba->drba_cred); 1258 if (error != 0) { 1259 dsl_dataset_rele(ds, FTAG); 1260 return (error); 1261 } 1262 1263 error = dsl_fs_ss_limit_check(ds->ds_dir, 1, 1264 ZFS_PROP_SNAPSHOT_LIMIT, NULL, drba->drba_cred); 1265 if (error != 0) { 1266 dsl_dataset_rele(ds, FTAG); 1267 return (error); 1268 } 1269 1270 if (drba->drba_origin != NULL) { 1271 dsl_dataset_t *origin; 1272 error = dsl_dataset_hold(dp, drba->drba_origin, 1273 FTAG, &origin); 1274 if (error != 0) { 1275 dsl_dataset_rele(ds, FTAG); 1276 return (error); 1277 } 1278 if (!origin->ds_is_snapshot) { 1279 dsl_dataset_rele(origin, FTAG); 1280 dsl_dataset_rele(ds, FTAG); 1281 return (SET_ERROR(EINVAL)); 1282 } 1283 if (dsl_dataset_phys(origin)->ds_guid != fromguid) { 1284 dsl_dataset_rele(origin, FTAG); 1285 dsl_dataset_rele(ds, FTAG); 1286 return (SET_ERROR(ENODEV)); 1287 } 1288 dsl_dataset_rele(origin, FTAG); 1289 } 1290 dsl_dataset_rele(ds, FTAG); 1291 error = 0; 1292 } 1293 return (error); 1294 } 1295 1296 static void 1297 dmu_recv_begin_sync(void *arg, dmu_tx_t *tx) 1298 { 1299 dmu_recv_begin_arg_t *drba = arg; 1300 dsl_pool_t *dp = dmu_tx_pool(tx); 1301 struct drr_begin *drrb = drba->drba_cookie->drc_drrb; 1302 const char *tofs = drba->drba_cookie->drc_tofs; 1303 dsl_dataset_t *ds, *newds; 1304 uint64_t dsobj; 1305 int error; 1306 uint64_t crflags; 1307 1308 crflags = (drrb->drr_flags & DRR_FLAG_CI_DATA) ? 1309 DS_FLAG_CI_DATASET : 0; 1310 1311 error = dsl_dataset_hold(dp, tofs, FTAG, &ds); 1312 if (error == 0) { 1313 /* create temporary clone */ 1314 dsl_dataset_t *snap = NULL; 1315 if (drba->drba_snapobj != 0) { 1316 VERIFY0(dsl_dataset_hold_obj(dp, 1317 drba->drba_snapobj, FTAG, &snap)); 1318 } 1319 dsobj = dsl_dataset_create_sync(ds->ds_dir, recv_clone_name, 1320 snap, crflags, drba->drba_cred, tx); 1321 if (drba->drba_snapobj != 0) 1322 dsl_dataset_rele(snap, FTAG); 1323 dsl_dataset_rele(ds, FTAG); 1324 } else { 1325 dsl_dir_t *dd; 1326 const char *tail; 1327 dsl_dataset_t *origin = NULL; 1328 1329 VERIFY0(dsl_dir_hold(dp, tofs, FTAG, &dd, &tail)); 1330 1331 if (drba->drba_origin != NULL) { 1332 VERIFY0(dsl_dataset_hold(dp, drba->drba_origin, 1333 FTAG, &origin)); 1334 } 1335 1336 /* Create new dataset. */ 1337 dsobj = dsl_dataset_create_sync(dd, 1338 strrchr(tofs, '/') + 1, 1339 origin, crflags, drba->drba_cred, tx); 1340 if (origin != NULL) 1341 dsl_dataset_rele(origin, FTAG); 1342 dsl_dir_rele(dd, FTAG); 1343 drba->drba_cookie->drc_newfs = B_TRUE; 1344 } 1345 VERIFY0(dsl_dataset_own_obj(dp, dsobj, dmu_recv_tag, &newds)); 1346 1347 dmu_buf_will_dirty(newds->ds_dbuf, tx); 1348 dsl_dataset_phys(newds)->ds_flags |= DS_FLAG_INCONSISTENT; 1349 1350 /* 1351 * If we actually created a non-clone, we need to create the 1352 * objset in our new dataset. 1353 */ 1354 if (BP_IS_HOLE(dsl_dataset_get_blkptr(newds))) { 1355 (void) dmu_objset_create_impl(dp->dp_spa, 1356 newds, dsl_dataset_get_blkptr(newds), drrb->drr_type, tx); 1357 } 1358 1359 drba->drba_cookie->drc_ds = newds; 1360 1361 spa_history_log_internal_ds(newds, "receive", tx, ""); 1362 } 1363 1364 /* 1365 * NB: callers *MUST* call dmu_recv_stream() if dmu_recv_begin() 1366 * succeeds; otherwise we will leak the holds on the datasets. 1367 */ 1368 int 1369 dmu_recv_begin(char *tofs, char *tosnap, struct drr_begin *drrb, 1370 boolean_t force, char *origin, dmu_recv_cookie_t *drc) 1371 { 1372 dmu_recv_begin_arg_t drba = { 0 }; 1373 dmu_replay_record_t *drr; 1374 1375 bzero(drc, sizeof (dmu_recv_cookie_t)); 1376 drc->drc_drrb = drrb; 1377 drc->drc_tosnap = tosnap; 1378 drc->drc_tofs = tofs; 1379 drc->drc_force = force; 1380 drc->drc_cred = CRED(); 1381 1382 if (drrb->drr_magic == BSWAP_64(DMU_BACKUP_MAGIC)) 1383 drc->drc_byteswap = B_TRUE; 1384 else if (drrb->drr_magic != DMU_BACKUP_MAGIC) 1385 return (SET_ERROR(EINVAL)); 1386 1387 drr = kmem_zalloc(sizeof (dmu_replay_record_t), KM_SLEEP); 1388 drr->drr_type = DRR_BEGIN; 1389 drr->drr_u.drr_begin = *drc->drc_drrb; 1390 if (drc->drc_byteswap) { 1391 fletcher_4_incremental_byteswap(drr, 1392 sizeof (dmu_replay_record_t), &drc->drc_cksum); 1393 } else { 1394 fletcher_4_incremental_native(drr, 1395 sizeof (dmu_replay_record_t), &drc->drc_cksum); 1396 } 1397 kmem_free(drr, sizeof (dmu_replay_record_t)); 1398 1399 if (drc->drc_byteswap) { 1400 drrb->drr_magic = BSWAP_64(drrb->drr_magic); 1401 drrb->drr_versioninfo = BSWAP_64(drrb->drr_versioninfo); 1402 drrb->drr_creation_time = BSWAP_64(drrb->drr_creation_time); 1403 drrb->drr_type = BSWAP_32(drrb->drr_type); 1404 drrb->drr_toguid = BSWAP_64(drrb->drr_toguid); 1405 drrb->drr_fromguid = BSWAP_64(drrb->drr_fromguid); 1406 } 1407 1408 drba.drba_origin = origin; 1409 drba.drba_cookie = drc; 1410 drba.drba_cred = CRED(); 1411 1412 return (dsl_sync_task(tofs, dmu_recv_begin_check, dmu_recv_begin_sync, 1413 &drba, 5, ZFS_SPACE_CHECK_NORMAL)); 1414 } 1415 1416 struct receive_record_arg { 1417 dmu_replay_record_t header; 1418 void *payload; /* Pointer to a buffer containing the payload */ 1419 /* 1420 * If the record is a write, pointer to the arc_buf_t containing the 1421 * payload. 1422 */ 1423 arc_buf_t *write_buf; 1424 int payload_size; 1425 boolean_t eos_marker; /* Marks the end of the stream */ 1426 bqueue_node_t node; 1427 }; 1428 1429 struct receive_writer_arg { 1430 objset_t *os; 1431 boolean_t byteswap; 1432 bqueue_t q; 1433 /* 1434 * These three args are used to signal to the main thread that we're 1435 * done. 1436 */ 1437 kmutex_t mutex; 1438 kcondvar_t cv; 1439 boolean_t done; 1440 int err; 1441 /* A map from guid to dataset to help handle dedup'd streams. */ 1442 avl_tree_t *guid_to_ds_map; 1443 }; 1444 1445 struct receive_arg { 1446 objset_t *os; 1447 vnode_t *vp; /* The vnode to read the stream from */ 1448 uint64_t voff; /* The current offset in the stream */ 1449 /* 1450 * A record that has had its payload read in, but hasn't yet been handed 1451 * off to the worker thread. 1452 */ 1453 struct receive_record_arg *rrd; 1454 /* A record that has had its header read in, but not its payload. */ 1455 struct receive_record_arg *next_rrd; 1456 zio_cksum_t cksum; 1457 zio_cksum_t prev_cksum; 1458 int err; 1459 boolean_t byteswap; 1460 /* Sorted list of objects not to issue prefetches for. */ 1461 list_t ignore_obj_list; 1462 }; 1463 1464 struct receive_ign_obj_node { 1465 list_node_t node; 1466 uint64_t object; 1467 }; 1468 1469 typedef struct guid_map_entry { 1470 uint64_t guid; 1471 dsl_dataset_t *gme_ds; 1472 avl_node_t avlnode; 1473 } guid_map_entry_t; 1474 1475 static int 1476 guid_compare(const void *arg1, const void *arg2) 1477 { 1478 const guid_map_entry_t *gmep1 = arg1; 1479 const guid_map_entry_t *gmep2 = arg2; 1480 1481 if (gmep1->guid < gmep2->guid) 1482 return (-1); 1483 else if (gmep1->guid > gmep2->guid) 1484 return (1); 1485 return (0); 1486 } 1487 1488 static void 1489 free_guid_map_onexit(void *arg) 1490 { 1491 avl_tree_t *ca = arg; 1492 void *cookie = NULL; 1493 guid_map_entry_t *gmep; 1494 1495 while ((gmep = avl_destroy_nodes(ca, &cookie)) != NULL) { 1496 dsl_dataset_long_rele(gmep->gme_ds, gmep); 1497 dsl_dataset_rele(gmep->gme_ds, gmep); 1498 kmem_free(gmep, sizeof (guid_map_entry_t)); 1499 } 1500 avl_destroy(ca); 1501 kmem_free(ca, sizeof (avl_tree_t)); 1502 } 1503 1504 static int 1505 receive_read(struct receive_arg *ra, int len, void *buf) 1506 { 1507 int done = 0; 1508 1509 /* some things will require 8-byte alignment, so everything must */ 1510 ASSERT0(len % 8); 1511 1512 while (done < len) { 1513 ssize_t resid; 1514 1515 ra->err = vn_rdwr(UIO_READ, ra->vp, 1516 (char *)buf + done, len - done, 1517 ra->voff, UIO_SYSSPACE, FAPPEND, 1518 RLIM64_INFINITY, CRED(), &resid); 1519 1520 if (resid == len - done) 1521 ra->err = SET_ERROR(EINVAL); 1522 ra->voff += len - done - resid; 1523 done = len - resid; 1524 if (ra->err != 0) 1525 return (ra->err); 1526 } 1527 1528 ASSERT3U(done, ==, len); 1529 return (0); 1530 } 1531 1532 static void 1533 byteswap_record(dmu_replay_record_t *drr) 1534 { 1535 #define DO64(X) (drr->drr_u.X = BSWAP_64(drr->drr_u.X)) 1536 #define DO32(X) (drr->drr_u.X = BSWAP_32(drr->drr_u.X)) 1537 drr->drr_type = BSWAP_32(drr->drr_type); 1538 drr->drr_payloadlen = BSWAP_32(drr->drr_payloadlen); 1539 1540 switch (drr->drr_type) { 1541 case DRR_BEGIN: 1542 DO64(drr_begin.drr_magic); 1543 DO64(drr_begin.drr_versioninfo); 1544 DO64(drr_begin.drr_creation_time); 1545 DO32(drr_begin.drr_type); 1546 DO32(drr_begin.drr_flags); 1547 DO64(drr_begin.drr_toguid); 1548 DO64(drr_begin.drr_fromguid); 1549 break; 1550 case DRR_OBJECT: 1551 DO64(drr_object.drr_object); 1552 DO32(drr_object.drr_type); 1553 DO32(drr_object.drr_bonustype); 1554 DO32(drr_object.drr_blksz); 1555 DO32(drr_object.drr_bonuslen); 1556 DO64(drr_object.drr_toguid); 1557 break; 1558 case DRR_FREEOBJECTS: 1559 DO64(drr_freeobjects.drr_firstobj); 1560 DO64(drr_freeobjects.drr_numobjs); 1561 DO64(drr_freeobjects.drr_toguid); 1562 break; 1563 case DRR_WRITE: 1564 DO64(drr_write.drr_object); 1565 DO32(drr_write.drr_type); 1566 DO64(drr_write.drr_offset); 1567 DO64(drr_write.drr_length); 1568 DO64(drr_write.drr_toguid); 1569 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write.drr_key.ddk_cksum); 1570 DO64(drr_write.drr_key.ddk_prop); 1571 break; 1572 case DRR_WRITE_BYREF: 1573 DO64(drr_write_byref.drr_object); 1574 DO64(drr_write_byref.drr_offset); 1575 DO64(drr_write_byref.drr_length); 1576 DO64(drr_write_byref.drr_toguid); 1577 DO64(drr_write_byref.drr_refguid); 1578 DO64(drr_write_byref.drr_refobject); 1579 DO64(drr_write_byref.drr_refoffset); 1580 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write_byref. 1581 drr_key.ddk_cksum); 1582 DO64(drr_write_byref.drr_key.ddk_prop); 1583 break; 1584 case DRR_WRITE_EMBEDDED: 1585 DO64(drr_write_embedded.drr_object); 1586 DO64(drr_write_embedded.drr_offset); 1587 DO64(drr_write_embedded.drr_length); 1588 DO64(drr_write_embedded.drr_toguid); 1589 DO32(drr_write_embedded.drr_lsize); 1590 DO32(drr_write_embedded.drr_psize); 1591 break; 1592 case DRR_FREE: 1593 DO64(drr_free.drr_object); 1594 DO64(drr_free.drr_offset); 1595 DO64(drr_free.drr_length); 1596 DO64(drr_free.drr_toguid); 1597 break; 1598 case DRR_SPILL: 1599 DO64(drr_spill.drr_object); 1600 DO64(drr_spill.drr_length); 1601 DO64(drr_spill.drr_toguid); 1602 break; 1603 case DRR_END: 1604 DO64(drr_end.drr_toguid); 1605 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_end.drr_checksum); 1606 break; 1607 } 1608 1609 if (drr->drr_type != DRR_BEGIN) { 1610 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_checksum.drr_checksum); 1611 } 1612 1613 #undef DO64 1614 #undef DO32 1615 } 1616 1617 static inline uint8_t 1618 deduce_nblkptr(dmu_object_type_t bonus_type, uint64_t bonus_size) 1619 { 1620 if (bonus_type == DMU_OT_SA) { 1621 return (1); 1622 } else { 1623 return (1 + 1624 ((DN_MAX_BONUSLEN - bonus_size) >> SPA_BLKPTRSHIFT)); 1625 } 1626 } 1627 1628 static int 1629 receive_object(struct receive_writer_arg *rwa, struct drr_object *drro, 1630 void *data) 1631 { 1632 dmu_object_info_t doi; 1633 dmu_tx_t *tx; 1634 uint64_t object; 1635 int err; 1636 1637 if (drro->drr_type == DMU_OT_NONE || 1638 !DMU_OT_IS_VALID(drro->drr_type) || 1639 !DMU_OT_IS_VALID(drro->drr_bonustype) || 1640 drro->drr_checksumtype >= ZIO_CHECKSUM_FUNCTIONS || 1641 drro->drr_compress >= ZIO_COMPRESS_FUNCTIONS || 1642 P2PHASE(drro->drr_blksz, SPA_MINBLOCKSIZE) || 1643 drro->drr_blksz < SPA_MINBLOCKSIZE || 1644 drro->drr_blksz > spa_maxblocksize(dmu_objset_spa(rwa->os)) || 1645 drro->drr_bonuslen > DN_MAX_BONUSLEN) { 1646 return (SET_ERROR(EINVAL)); 1647 } 1648 1649 err = dmu_object_info(rwa->os, drro->drr_object, &doi); 1650 1651 if (err != 0 && err != ENOENT) 1652 return (SET_ERROR(EINVAL)); 1653 object = err == 0 ? drro->drr_object : DMU_NEW_OBJECT; 1654 1655 /* 1656 * If we are losing blkptrs or changing the block size this must 1657 * be a new file instance. We must clear out the previous file 1658 * contents before we can change this type of metadata in the dnode. 1659 */ 1660 if (err == 0) { 1661 int nblkptr; 1662 1663 nblkptr = deduce_nblkptr(drro->drr_bonustype, 1664 drro->drr_bonuslen); 1665 1666 if (drro->drr_blksz != doi.doi_data_block_size || 1667 nblkptr < doi.doi_nblkptr) { 1668 err = dmu_free_long_range(rwa->os, drro->drr_object, 1669 0, DMU_OBJECT_END); 1670 if (err != 0) 1671 return (SET_ERROR(EINVAL)); 1672 } 1673 } 1674 1675 tx = dmu_tx_create(rwa->os); 1676 dmu_tx_hold_bonus(tx, object); 1677 err = dmu_tx_assign(tx, TXG_WAIT); 1678 if (err != 0) { 1679 dmu_tx_abort(tx); 1680 return (err); 1681 } 1682 1683 if (object == DMU_NEW_OBJECT) { 1684 /* currently free, want to be allocated */ 1685 err = dmu_object_claim(rwa->os, drro->drr_object, 1686 drro->drr_type, drro->drr_blksz, 1687 drro->drr_bonustype, drro->drr_bonuslen, tx); 1688 } else if (drro->drr_type != doi.doi_type || 1689 drro->drr_blksz != doi.doi_data_block_size || 1690 drro->drr_bonustype != doi.doi_bonus_type || 1691 drro->drr_bonuslen != doi.doi_bonus_size) { 1692 /* currently allocated, but with different properties */ 1693 err = dmu_object_reclaim(rwa->os, drro->drr_object, 1694 drro->drr_type, drro->drr_blksz, 1695 drro->drr_bonustype, drro->drr_bonuslen, tx); 1696 } 1697 if (err != 0) { 1698 dmu_tx_commit(tx); 1699 return (SET_ERROR(EINVAL)); 1700 } 1701 1702 dmu_object_set_checksum(rwa->os, drro->drr_object, 1703 drro->drr_checksumtype, tx); 1704 dmu_object_set_compress(rwa->os, drro->drr_object, 1705 drro->drr_compress, tx); 1706 1707 if (data != NULL) { 1708 dmu_buf_t *db; 1709 1710 VERIFY0(dmu_bonus_hold(rwa->os, drro->drr_object, FTAG, &db)); 1711 dmu_buf_will_dirty(db, tx); 1712 1713 ASSERT3U(db->db_size, >=, drro->drr_bonuslen); 1714 bcopy(data, db->db_data, drro->drr_bonuslen); 1715 if (rwa->byteswap) { 1716 dmu_object_byteswap_t byteswap = 1717 DMU_OT_BYTESWAP(drro->drr_bonustype); 1718 dmu_ot_byteswap[byteswap].ob_func(db->db_data, 1719 drro->drr_bonuslen); 1720 } 1721 dmu_buf_rele(db, FTAG); 1722 } 1723 dmu_tx_commit(tx); 1724 return (0); 1725 } 1726 1727 /* ARGSUSED */ 1728 static int 1729 receive_freeobjects(struct receive_writer_arg *rwa, 1730 struct drr_freeobjects *drrfo) 1731 { 1732 uint64_t obj; 1733 1734 if (drrfo->drr_firstobj + drrfo->drr_numobjs < drrfo->drr_firstobj) 1735 return (SET_ERROR(EINVAL)); 1736 1737 for (obj = drrfo->drr_firstobj; 1738 obj < drrfo->drr_firstobj + drrfo->drr_numobjs; 1739 (void) dmu_object_next(rwa->os, &obj, FALSE, 0)) { 1740 int err; 1741 1742 if (dmu_object_info(rwa->os, obj, NULL) != 0) 1743 continue; 1744 1745 err = dmu_free_long_object(rwa->os, obj); 1746 if (err != 0) 1747 return (err); 1748 } 1749 return (0); 1750 } 1751 1752 static int 1753 receive_write(struct receive_writer_arg *rwa, struct drr_write *drrw, 1754 arc_buf_t *abuf) 1755 { 1756 dmu_tx_t *tx; 1757 int err; 1758 1759 if (drrw->drr_offset + drrw->drr_length < drrw->drr_offset || 1760 !DMU_OT_IS_VALID(drrw->drr_type)) 1761 return (SET_ERROR(EINVAL)); 1762 1763 if (dmu_object_info(rwa->os, drrw->drr_object, NULL) != 0) 1764 return (SET_ERROR(EINVAL)); 1765 1766 tx = dmu_tx_create(rwa->os); 1767 1768 dmu_tx_hold_write(tx, drrw->drr_object, 1769 drrw->drr_offset, drrw->drr_length); 1770 err = dmu_tx_assign(tx, TXG_WAIT); 1771 if (err != 0) { 1772 dmu_tx_abort(tx); 1773 return (err); 1774 } 1775 if (rwa->byteswap) { 1776 dmu_object_byteswap_t byteswap = 1777 DMU_OT_BYTESWAP(drrw->drr_type); 1778 dmu_ot_byteswap[byteswap].ob_func(abuf->b_data, 1779 drrw->drr_length); 1780 } 1781 1782 dmu_buf_t *bonus; 1783 if (dmu_bonus_hold(rwa->os, drrw->drr_object, FTAG, &bonus) != 0) 1784 return (SET_ERROR(EINVAL)); 1785 dmu_assign_arcbuf(bonus, drrw->drr_offset, abuf, tx); 1786 dmu_tx_commit(tx); 1787 dmu_buf_rele(bonus, FTAG); 1788 return (0); 1789 } 1790 1791 /* 1792 * Handle a DRR_WRITE_BYREF record. This record is used in dedup'ed 1793 * streams to refer to a copy of the data that is already on the 1794 * system because it came in earlier in the stream. This function 1795 * finds the earlier copy of the data, and uses that copy instead of 1796 * data from the stream to fulfill this write. 1797 */ 1798 static int 1799 receive_write_byref(struct receive_writer_arg *rwa, 1800 struct drr_write_byref *drrwbr) 1801 { 1802 dmu_tx_t *tx; 1803 int err; 1804 guid_map_entry_t gmesrch; 1805 guid_map_entry_t *gmep; 1806 avl_index_t where; 1807 objset_t *ref_os = NULL; 1808 dmu_buf_t *dbp; 1809 1810 if (drrwbr->drr_offset + drrwbr->drr_length < drrwbr->drr_offset) 1811 return (SET_ERROR(EINVAL)); 1812 1813 /* 1814 * If the GUID of the referenced dataset is different from the 1815 * GUID of the target dataset, find the referenced dataset. 1816 */ 1817 if (drrwbr->drr_toguid != drrwbr->drr_refguid) { 1818 gmesrch.guid = drrwbr->drr_refguid; 1819 if ((gmep = avl_find(rwa->guid_to_ds_map, &gmesrch, 1820 &where)) == NULL) { 1821 return (SET_ERROR(EINVAL)); 1822 } 1823 if (dmu_objset_from_ds(gmep->gme_ds, &ref_os)) 1824 return (SET_ERROR(EINVAL)); 1825 } else { 1826 ref_os = rwa->os; 1827 } 1828 1829 err = dmu_buf_hold(ref_os, drrwbr->drr_refobject, 1830 drrwbr->drr_refoffset, FTAG, &dbp, DMU_READ_PREFETCH); 1831 if (err != 0) 1832 return (err); 1833 1834 tx = dmu_tx_create(rwa->os); 1835 1836 dmu_tx_hold_write(tx, drrwbr->drr_object, 1837 drrwbr->drr_offset, drrwbr->drr_length); 1838 err = dmu_tx_assign(tx, TXG_WAIT); 1839 if (err != 0) { 1840 dmu_tx_abort(tx); 1841 return (err); 1842 } 1843 dmu_write(rwa->os, drrwbr->drr_object, 1844 drrwbr->drr_offset, drrwbr->drr_length, dbp->db_data, tx); 1845 dmu_buf_rele(dbp, FTAG); 1846 dmu_tx_commit(tx); 1847 return (0); 1848 } 1849 1850 static int 1851 receive_write_embedded(struct receive_writer_arg *rwa, 1852 struct drr_write_embedded *drrwnp, void *data) 1853 { 1854 dmu_tx_t *tx; 1855 int err; 1856 1857 if (drrwnp->drr_offset + drrwnp->drr_length < drrwnp->drr_offset) 1858 return (EINVAL); 1859 1860 if (drrwnp->drr_psize > BPE_PAYLOAD_SIZE) 1861 return (EINVAL); 1862 1863 if (drrwnp->drr_etype >= NUM_BP_EMBEDDED_TYPES) 1864 return (EINVAL); 1865 if (drrwnp->drr_compression >= ZIO_COMPRESS_FUNCTIONS) 1866 return (EINVAL); 1867 1868 tx = dmu_tx_create(rwa->os); 1869 1870 dmu_tx_hold_write(tx, drrwnp->drr_object, 1871 drrwnp->drr_offset, drrwnp->drr_length); 1872 err = dmu_tx_assign(tx, TXG_WAIT); 1873 if (err != 0) { 1874 dmu_tx_abort(tx); 1875 return (err); 1876 } 1877 1878 dmu_write_embedded(rwa->os, drrwnp->drr_object, 1879 drrwnp->drr_offset, data, drrwnp->drr_etype, 1880 drrwnp->drr_compression, drrwnp->drr_lsize, drrwnp->drr_psize, 1881 rwa->byteswap ^ ZFS_HOST_BYTEORDER, tx); 1882 1883 dmu_tx_commit(tx); 1884 return (0); 1885 } 1886 1887 static int 1888 receive_spill(struct receive_writer_arg *rwa, struct drr_spill *drrs, 1889 void *data) 1890 { 1891 dmu_tx_t *tx; 1892 dmu_buf_t *db, *db_spill; 1893 int err; 1894 1895 if (drrs->drr_length < SPA_MINBLOCKSIZE || 1896 drrs->drr_length > spa_maxblocksize(dmu_objset_spa(rwa->os))) 1897 return (SET_ERROR(EINVAL)); 1898 1899 if (dmu_object_info(rwa->os, drrs->drr_object, NULL) != 0) 1900 return (SET_ERROR(EINVAL)); 1901 1902 VERIFY0(dmu_bonus_hold(rwa->os, drrs->drr_object, FTAG, &db)); 1903 if ((err = dmu_spill_hold_by_bonus(db, FTAG, &db_spill)) != 0) { 1904 dmu_buf_rele(db, FTAG); 1905 return (err); 1906 } 1907 1908 tx = dmu_tx_create(rwa->os); 1909 1910 dmu_tx_hold_spill(tx, db->db_object); 1911 1912 err = dmu_tx_assign(tx, TXG_WAIT); 1913 if (err != 0) { 1914 dmu_buf_rele(db, FTAG); 1915 dmu_buf_rele(db_spill, FTAG); 1916 dmu_tx_abort(tx); 1917 return (err); 1918 } 1919 dmu_buf_will_dirty(db_spill, tx); 1920 1921 if (db_spill->db_size < drrs->drr_length) 1922 VERIFY(0 == dbuf_spill_set_blksz(db_spill, 1923 drrs->drr_length, tx)); 1924 bcopy(data, db_spill->db_data, drrs->drr_length); 1925 1926 dmu_buf_rele(db, FTAG); 1927 dmu_buf_rele(db_spill, FTAG); 1928 1929 dmu_tx_commit(tx); 1930 return (0); 1931 } 1932 1933 /* ARGSUSED */ 1934 static int 1935 receive_free(struct receive_writer_arg *rwa, struct drr_free *drrf) 1936 { 1937 int err; 1938 1939 if (drrf->drr_length != -1ULL && 1940 drrf->drr_offset + drrf->drr_length < drrf->drr_offset) 1941 return (SET_ERROR(EINVAL)); 1942 1943 if (dmu_object_info(rwa->os, drrf->drr_object, NULL) != 0) 1944 return (SET_ERROR(EINVAL)); 1945 1946 err = dmu_free_long_range(rwa->os, drrf->drr_object, 1947 drrf->drr_offset, drrf->drr_length); 1948 1949 return (err); 1950 } 1951 1952 /* used to destroy the drc_ds on error */ 1953 static void 1954 dmu_recv_cleanup_ds(dmu_recv_cookie_t *drc) 1955 { 1956 char name[MAXNAMELEN]; 1957 dsl_dataset_name(drc->drc_ds, name); 1958 dsl_dataset_disown(drc->drc_ds, dmu_recv_tag); 1959 (void) dsl_destroy_head(name); 1960 } 1961 1962 static void 1963 receive_cksum(struct receive_arg *ra, int len, void *buf) 1964 { 1965 if (ra->byteswap) { 1966 fletcher_4_incremental_byteswap(buf, len, &ra->cksum); 1967 } else { 1968 fletcher_4_incremental_native(buf, len, &ra->cksum); 1969 } 1970 } 1971 1972 /* 1973 * Read the payload into a buffer of size len, and update the current record's 1974 * payload field. 1975 * Allocate ra->next_rrd and read the next record's header into 1976 * ra->next_rrd->header. 1977 * Verify checksum of payload and next record. 1978 */ 1979 static int 1980 receive_read_payload_and_next_header(struct receive_arg *ra, int len, void *buf) 1981 { 1982 int err; 1983 1984 if (len != 0) { 1985 ASSERT3U(len, <=, SPA_MAXBLOCKSIZE); 1986 ra->rrd->payload = buf; 1987 ra->rrd->payload_size = len; 1988 err = receive_read(ra, len, ra->rrd->payload); 1989 if (err != 0) 1990 return (err); 1991 receive_cksum(ra, len, ra->rrd->payload); 1992 } 1993 1994 ra->prev_cksum = ra->cksum; 1995 1996 ra->next_rrd = kmem_zalloc(sizeof (*ra->next_rrd), KM_SLEEP); 1997 err = receive_read(ra, sizeof (ra->next_rrd->header), 1998 &ra->next_rrd->header); 1999 if (err != 0) { 2000 kmem_free(ra->next_rrd, sizeof (*ra->next_rrd)); 2001 ra->next_rrd = NULL; 2002 return (err); 2003 } 2004 if (ra->next_rrd->header.drr_type == DRR_BEGIN) { 2005 kmem_free(ra->next_rrd, sizeof (*ra->next_rrd)); 2006 ra->next_rrd = NULL; 2007 return (SET_ERROR(EINVAL)); 2008 } 2009 2010 /* 2011 * Note: checksum is of everything up to but not including the 2012 * checksum itself. 2013 */ 2014 ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum), 2015 ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t)); 2016 receive_cksum(ra, 2017 offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum), 2018 &ra->next_rrd->header); 2019 2020 zio_cksum_t cksum_orig = 2021 ra->next_rrd->header.drr_u.drr_checksum.drr_checksum; 2022 zio_cksum_t *cksump = 2023 &ra->next_rrd->header.drr_u.drr_checksum.drr_checksum; 2024 2025 if (ra->byteswap) 2026 byteswap_record(&ra->next_rrd->header); 2027 2028 if ((!ZIO_CHECKSUM_IS_ZERO(cksump)) && 2029 !ZIO_CHECKSUM_EQUAL(ra->cksum, *cksump)) { 2030 kmem_free(ra->next_rrd, sizeof (*ra->next_rrd)); 2031 ra->next_rrd = NULL; 2032 return (SET_ERROR(ECKSUM)); 2033 } 2034 2035 receive_cksum(ra, sizeof (cksum_orig), &cksum_orig); 2036 2037 return (0); 2038 } 2039 2040 /* 2041 * Issue the prefetch reads for any necessary indirect blocks. 2042 * 2043 * We use the object ignore list to tell us whether or not to issue prefetches 2044 * for a given object. We do this for both correctness (in case the blocksize 2045 * of an object has changed) and performance (if the object doesn't exist, don't 2046 * needlessly try to issue prefetches). We also trim the list as we go through 2047 * the stream to prevent it from growing to an unbounded size. 2048 * 2049 * The object numbers within will always be in sorted order, and any write 2050 * records we see will also be in sorted order, but they're not sorted with 2051 * respect to each other (i.e. we can get several object records before 2052 * receiving each object's write records). As a result, once we've reached a 2053 * given object number, we can safely remove any reference to lower object 2054 * numbers in the ignore list. In practice, we receive up to 32 object records 2055 * before receiving write records, so the list can have up to 32 nodes in it. 2056 */ 2057 /* ARGSUSED */ 2058 static void 2059 receive_read_prefetch(struct receive_arg *ra, 2060 uint64_t object, uint64_t offset, uint64_t length) 2061 { 2062 struct receive_ign_obj_node *node = list_head(&ra->ignore_obj_list); 2063 while (node != NULL && node->object < object) { 2064 VERIFY3P(node, ==, list_remove_head(&ra->ignore_obj_list)); 2065 kmem_free(node, sizeof (*node)); 2066 node = list_head(&ra->ignore_obj_list); 2067 } 2068 if (node == NULL || node->object > object) { 2069 dmu_prefetch(ra->os, object, 1, offset, length, 2070 ZIO_PRIORITY_SYNC_READ); 2071 } 2072 } 2073 2074 /* 2075 * Read records off the stream, issuing any necessary prefetches. 2076 */ 2077 static int 2078 receive_read_record(struct receive_arg *ra) 2079 { 2080 int err; 2081 2082 switch (ra->rrd->header.drr_type) { 2083 case DRR_OBJECT: 2084 { 2085 struct drr_object *drro = &ra->rrd->header.drr_u.drr_object; 2086 uint32_t size = P2ROUNDUP(drro->drr_bonuslen, 8); 2087 void *buf = kmem_zalloc(size, KM_SLEEP); 2088 dmu_object_info_t doi; 2089 err = receive_read_payload_and_next_header(ra, size, buf); 2090 if (err != 0) { 2091 kmem_free(buf, size); 2092 return (err); 2093 } 2094 err = dmu_object_info(ra->os, drro->drr_object, &doi); 2095 /* 2096 * See receive_read_prefetch for an explanation why we're 2097 * storing this object in the ignore_obj_list. 2098 */ 2099 if (err == ENOENT || 2100 (err == 0 && doi.doi_data_block_size != drro->drr_blksz)) { 2101 struct receive_ign_obj_node *node = 2102 kmem_zalloc(sizeof (*node), 2103 KM_SLEEP); 2104 node->object = drro->drr_object; 2105 #ifdef ZFS_DEBUG 2106 struct receive_ign_obj_node *last_object = 2107 list_tail(&ra->ignore_obj_list); 2108 uint64_t last_objnum = (last_object != NULL ? 2109 last_object->object : 0); 2110 ASSERT3U(node->object, >, last_objnum); 2111 #endif 2112 list_insert_tail(&ra->ignore_obj_list, node); 2113 err = 0; 2114 } 2115 return (err); 2116 } 2117 case DRR_FREEOBJECTS: 2118 { 2119 err = receive_read_payload_and_next_header(ra, 0, NULL); 2120 return (err); 2121 } 2122 case DRR_WRITE: 2123 { 2124 struct drr_write *drrw = &ra->rrd->header.drr_u.drr_write; 2125 arc_buf_t *abuf = arc_loan_buf(dmu_objset_spa(ra->os), 2126 drrw->drr_length); 2127 2128 err = receive_read_payload_and_next_header(ra, 2129 drrw->drr_length, abuf->b_data); 2130 if (err != 0) { 2131 dmu_return_arcbuf(abuf); 2132 return (err); 2133 } 2134 ra->rrd->write_buf = abuf; 2135 receive_read_prefetch(ra, drrw->drr_object, drrw->drr_offset, 2136 drrw->drr_length); 2137 return (err); 2138 } 2139 case DRR_WRITE_BYREF: 2140 { 2141 struct drr_write_byref *drrwb = 2142 &ra->rrd->header.drr_u.drr_write_byref; 2143 err = receive_read_payload_and_next_header(ra, 0, NULL); 2144 receive_read_prefetch(ra, drrwb->drr_object, drrwb->drr_offset, 2145 drrwb->drr_length); 2146 return (err); 2147 } 2148 case DRR_WRITE_EMBEDDED: 2149 { 2150 struct drr_write_embedded *drrwe = 2151 &ra->rrd->header.drr_u.drr_write_embedded; 2152 uint32_t size = P2ROUNDUP(drrwe->drr_psize, 8); 2153 void *buf = kmem_zalloc(size, KM_SLEEP); 2154 2155 err = receive_read_payload_and_next_header(ra, size, buf); 2156 if (err != 0) { 2157 kmem_free(buf, size); 2158 return (err); 2159 } 2160 2161 receive_read_prefetch(ra, drrwe->drr_object, drrwe->drr_offset, 2162 drrwe->drr_length); 2163 return (err); 2164 } 2165 case DRR_FREE: 2166 { 2167 /* 2168 * It might be beneficial to prefetch indirect blocks here, but 2169 * we don't really have the data to decide for sure. 2170 */ 2171 err = receive_read_payload_and_next_header(ra, 0, NULL); 2172 return (err); 2173 } 2174 case DRR_END: 2175 { 2176 struct drr_end *drre = &ra->rrd->header.drr_u.drr_end; 2177 if (!ZIO_CHECKSUM_EQUAL(ra->prev_cksum, drre->drr_checksum)) 2178 return (SET_ERROR(EINVAL)); 2179 return (0); 2180 } 2181 case DRR_SPILL: 2182 { 2183 struct drr_spill *drrs = &ra->rrd->header.drr_u.drr_spill; 2184 void *buf = kmem_zalloc(drrs->drr_length, KM_SLEEP); 2185 err = receive_read_payload_and_next_header(ra, drrs->drr_length, 2186 buf); 2187 if (err != 0) 2188 kmem_free(buf, drrs->drr_length); 2189 return (err); 2190 } 2191 default: 2192 return (SET_ERROR(EINVAL)); 2193 } 2194 } 2195 2196 /* 2197 * Commit the records to the pool. 2198 */ 2199 static int 2200 receive_process_record(struct receive_writer_arg *rwa, 2201 struct receive_record_arg *rrd) 2202 { 2203 int err; 2204 2205 switch (rrd->header.drr_type) { 2206 case DRR_OBJECT: 2207 { 2208 struct drr_object *drro = &rrd->header.drr_u.drr_object; 2209 err = receive_object(rwa, drro, rrd->payload); 2210 kmem_free(rrd->payload, rrd->payload_size); 2211 rrd->payload = NULL; 2212 return (err); 2213 } 2214 case DRR_FREEOBJECTS: 2215 { 2216 struct drr_freeobjects *drrfo = 2217 &rrd->header.drr_u.drr_freeobjects; 2218 return (receive_freeobjects(rwa, drrfo)); 2219 } 2220 case DRR_WRITE: 2221 { 2222 struct drr_write *drrw = &rrd->header.drr_u.drr_write; 2223 err = receive_write(rwa, drrw, rrd->write_buf); 2224 /* if receive_write() is successful, it consumes the arc_buf */ 2225 if (err != 0) 2226 dmu_return_arcbuf(rrd->write_buf); 2227 rrd->write_buf = NULL; 2228 rrd->payload = NULL; 2229 return (err); 2230 } 2231 case DRR_WRITE_BYREF: 2232 { 2233 struct drr_write_byref *drrwbr = 2234 &rrd->header.drr_u.drr_write_byref; 2235 return (receive_write_byref(rwa, drrwbr)); 2236 } 2237 case DRR_WRITE_EMBEDDED: 2238 { 2239 struct drr_write_embedded *drrwe = 2240 &rrd->header.drr_u.drr_write_embedded; 2241 err = receive_write_embedded(rwa, drrwe, rrd->payload); 2242 kmem_free(rrd->payload, rrd->payload_size); 2243 rrd->payload = NULL; 2244 return (err); 2245 } 2246 case DRR_FREE: 2247 { 2248 struct drr_free *drrf = &rrd->header.drr_u.drr_free; 2249 return (receive_free(rwa, drrf)); 2250 } 2251 case DRR_SPILL: 2252 { 2253 struct drr_spill *drrs = &rrd->header.drr_u.drr_spill; 2254 err = receive_spill(rwa, drrs, rrd->payload); 2255 kmem_free(rrd->payload, rrd->payload_size); 2256 rrd->payload = NULL; 2257 return (err); 2258 } 2259 default: 2260 return (SET_ERROR(EINVAL)); 2261 } 2262 } 2263 2264 /* 2265 * dmu_recv_stream's worker thread; pull records off the queue, and then call 2266 * receive_process_record When we're done, signal the main thread and exit. 2267 */ 2268 static void 2269 receive_writer_thread(void *arg) 2270 { 2271 struct receive_writer_arg *rwa = arg; 2272 struct receive_record_arg *rrd; 2273 for (rrd = bqueue_dequeue(&rwa->q); !rrd->eos_marker; 2274 rrd = bqueue_dequeue(&rwa->q)) { 2275 /* 2276 * If there's an error, the main thread will stop putting things 2277 * on the queue, but we need to clear everything in it before we 2278 * can exit. 2279 */ 2280 if (rwa->err == 0) { 2281 rwa->err = receive_process_record(rwa, rrd); 2282 } else if (rrd->write_buf != NULL) { 2283 dmu_return_arcbuf(rrd->write_buf); 2284 rrd->write_buf = NULL; 2285 rrd->payload = NULL; 2286 } else if (rrd->payload != NULL) { 2287 kmem_free(rrd->payload, rrd->payload_size); 2288 rrd->payload = NULL; 2289 } 2290 kmem_free(rrd, sizeof (*rrd)); 2291 } 2292 kmem_free(rrd, sizeof (*rrd)); 2293 mutex_enter(&rwa->mutex); 2294 rwa->done = B_TRUE; 2295 cv_signal(&rwa->cv); 2296 mutex_exit(&rwa->mutex); 2297 } 2298 2299 /* 2300 * Read in the stream's records, one by one, and apply them to the pool. There 2301 * are two threads involved; the thread that calls this function will spin up a 2302 * worker thread, read the records off the stream one by one, and issue 2303 * prefetches for any necessary indirect blocks. It will then push the records 2304 * onto an internal blocking queue. The worker thread will pull the records off 2305 * the queue, and actually write the data into the DMU. This way, the worker 2306 * thread doesn't have to wait for reads to complete, since everything it needs 2307 * (the indirect blocks) will be prefetched. 2308 * 2309 * NB: callers *must* call dmu_recv_end() if this succeeds. 2310 */ 2311 int 2312 dmu_recv_stream(dmu_recv_cookie_t *drc, vnode_t *vp, offset_t *voffp, 2313 int cleanup_fd, uint64_t *action_handlep) 2314 { 2315 int err = 0; 2316 struct receive_arg ra = { 0 }; 2317 struct receive_writer_arg rwa = { 0 }; 2318 int featureflags; 2319 2320 ra.byteswap = drc->drc_byteswap; 2321 ra.cksum = drc->drc_cksum; 2322 ra.vp = vp; 2323 ra.voff = *voffp; 2324 list_create(&ra.ignore_obj_list, sizeof (struct receive_ign_obj_node), 2325 offsetof(struct receive_ign_obj_node, node)); 2326 2327 /* these were verified in dmu_recv_begin */ 2328 ASSERT3U(DMU_GET_STREAM_HDRTYPE(drc->drc_drrb->drr_versioninfo), ==, 2329 DMU_SUBSTREAM); 2330 ASSERT3U(drc->drc_drrb->drr_type, <, DMU_OST_NUMTYPES); 2331 2332 /* 2333 * Open the objset we are modifying. 2334 */ 2335 VERIFY0(dmu_objset_from_ds(drc->drc_ds, &ra.os)); 2336 2337 ASSERT(dsl_dataset_phys(drc->drc_ds)->ds_flags & DS_FLAG_INCONSISTENT); 2338 2339 featureflags = DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo); 2340 2341 /* if this stream is dedup'ed, set up the avl tree for guid mapping */ 2342 if (featureflags & DMU_BACKUP_FEATURE_DEDUP) { 2343 minor_t minor; 2344 2345 if (cleanup_fd == -1) { 2346 ra.err = SET_ERROR(EBADF); 2347 goto out; 2348 } 2349 ra.err = zfs_onexit_fd_hold(cleanup_fd, &minor); 2350 if (ra.err != 0) { 2351 cleanup_fd = -1; 2352 goto out; 2353 } 2354 2355 if (*action_handlep == 0) { 2356 rwa.guid_to_ds_map = 2357 kmem_alloc(sizeof (avl_tree_t), KM_SLEEP); 2358 avl_create(rwa.guid_to_ds_map, guid_compare, 2359 sizeof (guid_map_entry_t), 2360 offsetof(guid_map_entry_t, avlnode)); 2361 err = zfs_onexit_add_cb(minor, 2362 free_guid_map_onexit, rwa.guid_to_ds_map, 2363 action_handlep); 2364 if (ra.err != 0) 2365 goto out; 2366 } else { 2367 err = zfs_onexit_cb_data(minor, *action_handlep, 2368 (void **)&rwa.guid_to_ds_map); 2369 if (ra.err != 0) 2370 goto out; 2371 } 2372 2373 drc->drc_guid_to_ds_map = rwa.guid_to_ds_map; 2374 } 2375 2376 err = receive_read_payload_and_next_header(&ra, 0, NULL); 2377 if (err) 2378 goto out; 2379 2380 (void) bqueue_init(&rwa.q, zfs_recv_queue_length, 2381 offsetof(struct receive_record_arg, node)); 2382 cv_init(&rwa.cv, NULL, CV_DEFAULT, NULL); 2383 mutex_init(&rwa.mutex, NULL, MUTEX_DEFAULT, NULL); 2384 rwa.os = ra.os; 2385 rwa.byteswap = drc->drc_byteswap; 2386 2387 (void) thread_create(NULL, 0, receive_writer_thread, &rwa, 0, curproc, 2388 TS_RUN, minclsyspri); 2389 /* 2390 * We're reading rwa.err without locks, which is safe since we are the 2391 * only reader, and the worker thread is the only writer. It's ok if we 2392 * miss a write for an iteration or two of the loop, since the writer 2393 * thread will keep freeing records we send it until we send it an eos 2394 * marker. 2395 * 2396 * We can leave this loop in 3 ways: First, if rwa.err is 2397 * non-zero. In that case, the writer thread will free the rrd we just 2398 * pushed. Second, if we're interrupted; in that case, either it's the 2399 * first loop and ra.rrd was never allocated, or it's later, and ra.rrd 2400 * has been handed off to the writer thread who will free it. Finally, 2401 * if receive_read_record fails or we're at the end of the stream, then 2402 * we free ra.rrd and exit. 2403 */ 2404 while (rwa.err == 0) { 2405 if (issig(JUSTLOOKING) && issig(FORREAL)) { 2406 err = SET_ERROR(EINTR); 2407 break; 2408 } 2409 2410 ASSERT3P(ra.rrd, ==, NULL); 2411 ra.rrd = ra.next_rrd; 2412 ra.next_rrd = NULL; 2413 /* Allocates and loads header into ra.next_rrd */ 2414 err = receive_read_record(&ra); 2415 2416 if (ra.rrd->header.drr_type == DRR_END || err != 0) { 2417 kmem_free(ra.rrd, sizeof (*ra.rrd)); 2418 ra.rrd = NULL; 2419 break; 2420 } 2421 2422 bqueue_enqueue(&rwa.q, ra.rrd, 2423 sizeof (struct receive_record_arg) + ra.rrd->payload_size); 2424 ra.rrd = NULL; 2425 } 2426 if (ra.next_rrd == NULL) 2427 ra.next_rrd = kmem_zalloc(sizeof (*ra.next_rrd), KM_SLEEP); 2428 ra.next_rrd->eos_marker = B_TRUE; 2429 bqueue_enqueue(&rwa.q, ra.next_rrd, 1); 2430 2431 mutex_enter(&rwa.mutex); 2432 while (!rwa.done) { 2433 cv_wait(&rwa.cv, &rwa.mutex); 2434 } 2435 mutex_exit(&rwa.mutex); 2436 2437 cv_destroy(&rwa.cv); 2438 mutex_destroy(&rwa.mutex); 2439 bqueue_destroy(&rwa.q); 2440 if (err == 0) 2441 err = rwa.err; 2442 2443 out: 2444 if ((featureflags & DMU_BACKUP_FEATURE_DEDUP) && (cleanup_fd != -1)) 2445 zfs_onexit_fd_rele(cleanup_fd); 2446 2447 if (err != 0) { 2448 /* 2449 * destroy what we created, so we don't leave it in the 2450 * inconsistent restoring state. 2451 */ 2452 dmu_recv_cleanup_ds(drc); 2453 } 2454 2455 *voffp = ra.voff; 2456 for (struct receive_ign_obj_node *n = 2457 list_remove_head(&ra.ignore_obj_list); n != NULL; 2458 n = list_remove_head(&ra.ignore_obj_list)) { 2459 kmem_free(n, sizeof (*n)); 2460 } 2461 list_destroy(&ra.ignore_obj_list); 2462 return (err); 2463 } 2464 2465 static int 2466 dmu_recv_end_check(void *arg, dmu_tx_t *tx) 2467 { 2468 dmu_recv_cookie_t *drc = arg; 2469 dsl_pool_t *dp = dmu_tx_pool(tx); 2470 int error; 2471 2472 ASSERT3P(drc->drc_ds->ds_owner, ==, dmu_recv_tag); 2473 2474 if (!drc->drc_newfs) { 2475 dsl_dataset_t *origin_head; 2476 2477 error = dsl_dataset_hold(dp, drc->drc_tofs, FTAG, &origin_head); 2478 if (error != 0) 2479 return (error); 2480 if (drc->drc_force) { 2481 /* 2482 * We will destroy any snapshots in tofs (i.e. before 2483 * origin_head) that are after the origin (which is 2484 * the snap before drc_ds, because drc_ds can not 2485 * have any snaps of its own). 2486 */ 2487 uint64_t obj; 2488 2489 obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj; 2490 while (obj != 2491 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) { 2492 dsl_dataset_t *snap; 2493 error = dsl_dataset_hold_obj(dp, obj, FTAG, 2494 &snap); 2495 if (error != 0) 2496 break; 2497 if (snap->ds_dir != origin_head->ds_dir) 2498 error = SET_ERROR(EINVAL); 2499 if (error == 0) { 2500 error = dsl_destroy_snapshot_check_impl( 2501 snap, B_FALSE); 2502 } 2503 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj; 2504 dsl_dataset_rele(snap, FTAG); 2505 if (error != 0) 2506 break; 2507 } 2508 if (error != 0) { 2509 dsl_dataset_rele(origin_head, FTAG); 2510 return (error); 2511 } 2512 } 2513 error = dsl_dataset_clone_swap_check_impl(drc->drc_ds, 2514 origin_head, drc->drc_force, drc->drc_owner, tx); 2515 if (error != 0) { 2516 dsl_dataset_rele(origin_head, FTAG); 2517 return (error); 2518 } 2519 error = dsl_dataset_snapshot_check_impl(origin_head, 2520 drc->drc_tosnap, tx, B_TRUE, 1, drc->drc_cred); 2521 dsl_dataset_rele(origin_head, FTAG); 2522 if (error != 0) 2523 return (error); 2524 2525 error = dsl_destroy_head_check_impl(drc->drc_ds, 1); 2526 } else { 2527 error = dsl_dataset_snapshot_check_impl(drc->drc_ds, 2528 drc->drc_tosnap, tx, B_TRUE, 1, drc->drc_cred); 2529 } 2530 return (error); 2531 } 2532 2533 static void 2534 dmu_recv_end_sync(void *arg, dmu_tx_t *tx) 2535 { 2536 dmu_recv_cookie_t *drc = arg; 2537 dsl_pool_t *dp = dmu_tx_pool(tx); 2538 2539 spa_history_log_internal_ds(drc->drc_ds, "finish receiving", 2540 tx, "snap=%s", drc->drc_tosnap); 2541 2542 if (!drc->drc_newfs) { 2543 dsl_dataset_t *origin_head; 2544 2545 VERIFY0(dsl_dataset_hold(dp, drc->drc_tofs, FTAG, 2546 &origin_head)); 2547 2548 if (drc->drc_force) { 2549 /* 2550 * Destroy any snapshots of drc_tofs (origin_head) 2551 * after the origin (the snap before drc_ds). 2552 */ 2553 uint64_t obj; 2554 2555 obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj; 2556 while (obj != 2557 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) { 2558 dsl_dataset_t *snap; 2559 VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG, 2560 &snap)); 2561 ASSERT3P(snap->ds_dir, ==, origin_head->ds_dir); 2562 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj; 2563 dsl_destroy_snapshot_sync_impl(snap, 2564 B_FALSE, tx); 2565 dsl_dataset_rele(snap, FTAG); 2566 } 2567 } 2568 VERIFY3P(drc->drc_ds->ds_prev, ==, 2569 origin_head->ds_prev); 2570 2571 dsl_dataset_clone_swap_sync_impl(drc->drc_ds, 2572 origin_head, tx); 2573 dsl_dataset_snapshot_sync_impl(origin_head, 2574 drc->drc_tosnap, tx); 2575 2576 /* set snapshot's creation time and guid */ 2577 dmu_buf_will_dirty(origin_head->ds_prev->ds_dbuf, tx); 2578 dsl_dataset_phys(origin_head->ds_prev)->ds_creation_time = 2579 drc->drc_drrb->drr_creation_time; 2580 dsl_dataset_phys(origin_head->ds_prev)->ds_guid = 2581 drc->drc_drrb->drr_toguid; 2582 dsl_dataset_phys(origin_head->ds_prev)->ds_flags &= 2583 ~DS_FLAG_INCONSISTENT; 2584 2585 dmu_buf_will_dirty(origin_head->ds_dbuf, tx); 2586 dsl_dataset_phys(origin_head)->ds_flags &= 2587 ~DS_FLAG_INCONSISTENT; 2588 2589 dsl_dataset_rele(origin_head, FTAG); 2590 dsl_destroy_head_sync_impl(drc->drc_ds, tx); 2591 2592 if (drc->drc_owner != NULL) 2593 VERIFY3P(origin_head->ds_owner, ==, drc->drc_owner); 2594 } else { 2595 dsl_dataset_t *ds = drc->drc_ds; 2596 2597 dsl_dataset_snapshot_sync_impl(ds, drc->drc_tosnap, tx); 2598 2599 /* set snapshot's creation time and guid */ 2600 dmu_buf_will_dirty(ds->ds_prev->ds_dbuf, tx); 2601 dsl_dataset_phys(ds->ds_prev)->ds_creation_time = 2602 drc->drc_drrb->drr_creation_time; 2603 dsl_dataset_phys(ds->ds_prev)->ds_guid = 2604 drc->drc_drrb->drr_toguid; 2605 dsl_dataset_phys(ds->ds_prev)->ds_flags &= 2606 ~DS_FLAG_INCONSISTENT; 2607 2608 dmu_buf_will_dirty(ds->ds_dbuf, tx); 2609 dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT; 2610 } 2611 drc->drc_newsnapobj = dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj; 2612 /* 2613 * Release the hold from dmu_recv_begin. This must be done before 2614 * we return to open context, so that when we free the dataset's dnode, 2615 * we can evict its bonus buffer. 2616 */ 2617 dsl_dataset_disown(drc->drc_ds, dmu_recv_tag); 2618 drc->drc_ds = NULL; 2619 } 2620 2621 static int 2622 add_ds_to_guidmap(const char *name, avl_tree_t *guid_map, uint64_t snapobj) 2623 { 2624 dsl_pool_t *dp; 2625 dsl_dataset_t *snapds; 2626 guid_map_entry_t *gmep; 2627 int err; 2628 2629 ASSERT(guid_map != NULL); 2630 2631 err = dsl_pool_hold(name, FTAG, &dp); 2632 if (err != 0) 2633 return (err); 2634 gmep = kmem_alloc(sizeof (*gmep), KM_SLEEP); 2635 err = dsl_dataset_hold_obj(dp, snapobj, gmep, &snapds); 2636 if (err == 0) { 2637 gmep->guid = dsl_dataset_phys(snapds)->ds_guid; 2638 gmep->gme_ds = snapds; 2639 avl_add(guid_map, gmep); 2640 dsl_dataset_long_hold(snapds, gmep); 2641 } else { 2642 kmem_free(gmep, sizeof (*gmep)); 2643 } 2644 2645 dsl_pool_rele(dp, FTAG); 2646 return (err); 2647 } 2648 2649 static int dmu_recv_end_modified_blocks = 3; 2650 2651 static int 2652 dmu_recv_existing_end(dmu_recv_cookie_t *drc) 2653 { 2654 int error; 2655 char name[MAXNAMELEN]; 2656 2657 #ifdef _KERNEL 2658 /* 2659 * We will be destroying the ds; make sure its origin is unmounted if 2660 * necessary. 2661 */ 2662 dsl_dataset_name(drc->drc_ds, name); 2663 zfs_destroy_unmount_origin(name); 2664 #endif 2665 2666 error = dsl_sync_task(drc->drc_tofs, 2667 dmu_recv_end_check, dmu_recv_end_sync, drc, 2668 dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL); 2669 2670 if (error != 0) 2671 dmu_recv_cleanup_ds(drc); 2672 return (error); 2673 } 2674 2675 static int 2676 dmu_recv_new_end(dmu_recv_cookie_t *drc) 2677 { 2678 int error; 2679 2680 error = dsl_sync_task(drc->drc_tofs, 2681 dmu_recv_end_check, dmu_recv_end_sync, drc, 2682 dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL); 2683 2684 if (error != 0) { 2685 dmu_recv_cleanup_ds(drc); 2686 } else if (drc->drc_guid_to_ds_map != NULL) { 2687 (void) add_ds_to_guidmap(drc->drc_tofs, 2688 drc->drc_guid_to_ds_map, 2689 drc->drc_newsnapobj); 2690 } 2691 return (error); 2692 } 2693 2694 int 2695 dmu_recv_end(dmu_recv_cookie_t *drc, void *owner) 2696 { 2697 drc->drc_owner = owner; 2698 2699 if (drc->drc_newfs) 2700 return (dmu_recv_new_end(drc)); 2701 else 2702 return (dmu_recv_existing_end(drc)); 2703 } 2704 2705 /* 2706 * Return TRUE if this objset is currently being received into. 2707 */ 2708 boolean_t 2709 dmu_objset_is_receiving(objset_t *os) 2710 { 2711 return (os->os_dsl_dataset != NULL && 2712 os->os_dsl_dataset->ds_owner == dmu_recv_tag); 2713 } 2714