xref: /titanic_51/usr/src/uts/common/fs/zfs/dmu.c (revision bbaa8b60dd95d714741fc474adad3cf710ef4efd)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2013 by Delphix. All rights reserved.
24  */
25 /* Copyright (c) 2013 by Saso Kiselkov. All rights reserved. */
26 /* Copyright (c) 2013, Joyent, Inc. All rights reserved. */
27 
28 #include <sys/dmu.h>
29 #include <sys/dmu_impl.h>
30 #include <sys/dmu_tx.h>
31 #include <sys/dbuf.h>
32 #include <sys/dnode.h>
33 #include <sys/zfs_context.h>
34 #include <sys/dmu_objset.h>
35 #include <sys/dmu_traverse.h>
36 #include <sys/dsl_dataset.h>
37 #include <sys/dsl_dir.h>
38 #include <sys/dsl_pool.h>
39 #include <sys/dsl_synctask.h>
40 #include <sys/dsl_prop.h>
41 #include <sys/dmu_zfetch.h>
42 #include <sys/zfs_ioctl.h>
43 #include <sys/zap.h>
44 #include <sys/zio_checksum.h>
45 #include <sys/zio_compress.h>
46 #include <sys/sa.h>
47 #ifdef _KERNEL
48 #include <sys/vmsystm.h>
49 #include <sys/zfs_znode.h>
50 #endif
51 
52 /*
53  * Enable/disable nopwrite feature.
54  */
55 int zfs_nopwrite_enabled = 1;
56 
57 const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = {
58 	{	DMU_BSWAP_UINT8,	TRUE,	"unallocated"		},
59 	{	DMU_BSWAP_ZAP,		TRUE,	"object directory"	},
60 	{	DMU_BSWAP_UINT64,	TRUE,	"object array"		},
61 	{	DMU_BSWAP_UINT8,	TRUE,	"packed nvlist"		},
62 	{	DMU_BSWAP_UINT64,	TRUE,	"packed nvlist size"	},
63 	{	DMU_BSWAP_UINT64,	TRUE,	"bpobj"			},
64 	{	DMU_BSWAP_UINT64,	TRUE,	"bpobj header"		},
65 	{	DMU_BSWAP_UINT64,	TRUE,	"SPA space map header"	},
66 	{	DMU_BSWAP_UINT64,	TRUE,	"SPA space map"		},
67 	{	DMU_BSWAP_UINT64,	TRUE,	"ZIL intent log"	},
68 	{	DMU_BSWAP_DNODE,	TRUE,	"DMU dnode"		},
69 	{	DMU_BSWAP_OBJSET,	TRUE,	"DMU objset"		},
70 	{	DMU_BSWAP_UINT64,	TRUE,	"DSL directory"		},
71 	{	DMU_BSWAP_ZAP,		TRUE,	"DSL directory child map"},
72 	{	DMU_BSWAP_ZAP,		TRUE,	"DSL dataset snap map"	},
73 	{	DMU_BSWAP_ZAP,		TRUE,	"DSL props"		},
74 	{	DMU_BSWAP_UINT64,	TRUE,	"DSL dataset"		},
75 	{	DMU_BSWAP_ZNODE,	TRUE,	"ZFS znode"		},
76 	{	DMU_BSWAP_OLDACL,	TRUE,	"ZFS V0 ACL"		},
77 	{	DMU_BSWAP_UINT8,	FALSE,	"ZFS plain file"	},
78 	{	DMU_BSWAP_ZAP,		TRUE,	"ZFS directory"		},
79 	{	DMU_BSWAP_ZAP,		TRUE,	"ZFS master node"	},
80 	{	DMU_BSWAP_ZAP,		TRUE,	"ZFS delete queue"	},
81 	{	DMU_BSWAP_UINT8,	FALSE,	"zvol object"		},
82 	{	DMU_BSWAP_ZAP,		TRUE,	"zvol prop"		},
83 	{	DMU_BSWAP_UINT8,	FALSE,	"other uint8[]"		},
84 	{	DMU_BSWAP_UINT64,	FALSE,	"other uint64[]"	},
85 	{	DMU_BSWAP_ZAP,		TRUE,	"other ZAP"		},
86 	{	DMU_BSWAP_ZAP,		TRUE,	"persistent error log"	},
87 	{	DMU_BSWAP_UINT8,	TRUE,	"SPA history"		},
88 	{	DMU_BSWAP_UINT64,	TRUE,	"SPA history offsets"	},
89 	{	DMU_BSWAP_ZAP,		TRUE,	"Pool properties"	},
90 	{	DMU_BSWAP_ZAP,		TRUE,	"DSL permissions"	},
91 	{	DMU_BSWAP_ACL,		TRUE,	"ZFS ACL"		},
92 	{	DMU_BSWAP_UINT8,	TRUE,	"ZFS SYSACL"		},
93 	{	DMU_BSWAP_UINT8,	TRUE,	"FUID table"		},
94 	{	DMU_BSWAP_UINT64,	TRUE,	"FUID table size"	},
95 	{	DMU_BSWAP_ZAP,		TRUE,	"DSL dataset next clones"},
96 	{	DMU_BSWAP_ZAP,		TRUE,	"scan work queue"	},
97 	{	DMU_BSWAP_ZAP,		TRUE,	"ZFS user/group used"	},
98 	{	DMU_BSWAP_ZAP,		TRUE,	"ZFS user/group quota"	},
99 	{	DMU_BSWAP_ZAP,		TRUE,	"snapshot refcount tags"},
100 	{	DMU_BSWAP_ZAP,		TRUE,	"DDT ZAP algorithm"	},
101 	{	DMU_BSWAP_ZAP,		TRUE,	"DDT statistics"	},
102 	{	DMU_BSWAP_UINT8,	TRUE,	"System attributes"	},
103 	{	DMU_BSWAP_ZAP,		TRUE,	"SA master node"	},
104 	{	DMU_BSWAP_ZAP,		TRUE,	"SA attr registration"	},
105 	{	DMU_BSWAP_ZAP,		TRUE,	"SA attr layouts"	},
106 	{	DMU_BSWAP_ZAP,		TRUE,	"scan translations"	},
107 	{	DMU_BSWAP_UINT8,	FALSE,	"deduplicated block"	},
108 	{	DMU_BSWAP_ZAP,		TRUE,	"DSL deadlist map"	},
109 	{	DMU_BSWAP_UINT64,	TRUE,	"DSL deadlist map hdr"	},
110 	{	DMU_BSWAP_ZAP,		TRUE,	"DSL dir clones"	},
111 	{	DMU_BSWAP_UINT64,	TRUE,	"bpobj subobj"		}
112 };
113 
114 const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS] = {
115 	{	byteswap_uint8_array,	"uint8"		},
116 	{	byteswap_uint16_array,	"uint16"	},
117 	{	byteswap_uint32_array,	"uint32"	},
118 	{	byteswap_uint64_array,	"uint64"	},
119 	{	zap_byteswap,		"zap"		},
120 	{	dnode_buf_byteswap,	"dnode"		},
121 	{	dmu_objset_byteswap,	"objset"	},
122 	{	zfs_znode_byteswap,	"znode"		},
123 	{	zfs_oldacl_byteswap,	"oldacl"	},
124 	{	zfs_acl_byteswap,	"acl"		}
125 };
126 
127 int
128 dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset,
129     void *tag, dmu_buf_t **dbp, int flags)
130 {
131 	dnode_t *dn;
132 	uint64_t blkid;
133 	dmu_buf_impl_t *db;
134 	int err;
135 	int db_flags = DB_RF_CANFAIL;
136 
137 	if (flags & DMU_READ_NO_PREFETCH)
138 		db_flags |= DB_RF_NOPREFETCH;
139 
140 	err = dnode_hold(os, object, FTAG, &dn);
141 	if (err)
142 		return (err);
143 	blkid = dbuf_whichblock(dn, offset);
144 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
145 	db = dbuf_hold(dn, blkid, tag);
146 	rw_exit(&dn->dn_struct_rwlock);
147 	if (db == NULL) {
148 		err = SET_ERROR(EIO);
149 	} else {
150 		err = dbuf_read(db, NULL, db_flags);
151 		if (err) {
152 			dbuf_rele(db, tag);
153 			db = NULL;
154 		}
155 	}
156 
157 	dnode_rele(dn, FTAG);
158 	*dbp = &db->db; /* NULL db plus first field offset is NULL */
159 	return (err);
160 }
161 
162 int
163 dmu_bonus_max(void)
164 {
165 	return (DN_MAX_BONUSLEN);
166 }
167 
168 int
169 dmu_set_bonus(dmu_buf_t *db_fake, int newsize, dmu_tx_t *tx)
170 {
171 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
172 	dnode_t *dn;
173 	int error;
174 
175 	DB_DNODE_ENTER(db);
176 	dn = DB_DNODE(db);
177 
178 	if (dn->dn_bonus != db) {
179 		error = SET_ERROR(EINVAL);
180 	} else if (newsize < 0 || newsize > db_fake->db_size) {
181 		error = SET_ERROR(EINVAL);
182 	} else {
183 		dnode_setbonuslen(dn, newsize, tx);
184 		error = 0;
185 	}
186 
187 	DB_DNODE_EXIT(db);
188 	return (error);
189 }
190 
191 int
192 dmu_set_bonustype(dmu_buf_t *db_fake, dmu_object_type_t type, dmu_tx_t *tx)
193 {
194 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
195 	dnode_t *dn;
196 	int error;
197 
198 	DB_DNODE_ENTER(db);
199 	dn = DB_DNODE(db);
200 
201 	if (!DMU_OT_IS_VALID(type)) {
202 		error = SET_ERROR(EINVAL);
203 	} else if (dn->dn_bonus != db) {
204 		error = SET_ERROR(EINVAL);
205 	} else {
206 		dnode_setbonus_type(dn, type, tx);
207 		error = 0;
208 	}
209 
210 	DB_DNODE_EXIT(db);
211 	return (error);
212 }
213 
214 dmu_object_type_t
215 dmu_get_bonustype(dmu_buf_t *db_fake)
216 {
217 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
218 	dnode_t *dn;
219 	dmu_object_type_t type;
220 
221 	DB_DNODE_ENTER(db);
222 	dn = DB_DNODE(db);
223 	type = dn->dn_bonustype;
224 	DB_DNODE_EXIT(db);
225 
226 	return (type);
227 }
228 
229 int
230 dmu_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx)
231 {
232 	dnode_t *dn;
233 	int error;
234 
235 	error = dnode_hold(os, object, FTAG, &dn);
236 	dbuf_rm_spill(dn, tx);
237 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
238 	dnode_rm_spill(dn, tx);
239 	rw_exit(&dn->dn_struct_rwlock);
240 	dnode_rele(dn, FTAG);
241 	return (error);
242 }
243 
244 /*
245  * returns ENOENT, EIO, or 0.
246  */
247 int
248 dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **dbp)
249 {
250 	dnode_t *dn;
251 	dmu_buf_impl_t *db;
252 	int error;
253 
254 	error = dnode_hold(os, object, FTAG, &dn);
255 	if (error)
256 		return (error);
257 
258 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
259 	if (dn->dn_bonus == NULL) {
260 		rw_exit(&dn->dn_struct_rwlock);
261 		rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
262 		if (dn->dn_bonus == NULL)
263 			dbuf_create_bonus(dn);
264 	}
265 	db = dn->dn_bonus;
266 
267 	/* as long as the bonus buf is held, the dnode will be held */
268 	if (refcount_add(&db->db_holds, tag) == 1) {
269 		VERIFY(dnode_add_ref(dn, db));
270 		(void) atomic_inc_32_nv(&dn->dn_dbufs_count);
271 	}
272 
273 	/*
274 	 * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's
275 	 * hold and incrementing the dbuf count to ensure that dnode_move() sees
276 	 * a dnode hold for every dbuf.
277 	 */
278 	rw_exit(&dn->dn_struct_rwlock);
279 
280 	dnode_rele(dn, FTAG);
281 
282 	VERIFY(0 == dbuf_read(db, NULL, DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH));
283 
284 	*dbp = &db->db;
285 	return (0);
286 }
287 
288 /*
289  * returns ENOENT, EIO, or 0.
290  *
291  * This interface will allocate a blank spill dbuf when a spill blk
292  * doesn't already exist on the dnode.
293  *
294  * if you only want to find an already existing spill db, then
295  * dmu_spill_hold_existing() should be used.
296  */
297 int
298 dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, void *tag, dmu_buf_t **dbp)
299 {
300 	dmu_buf_impl_t *db = NULL;
301 	int err;
302 
303 	if ((flags & DB_RF_HAVESTRUCT) == 0)
304 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
305 
306 	db = dbuf_hold(dn, DMU_SPILL_BLKID, tag);
307 
308 	if ((flags & DB_RF_HAVESTRUCT) == 0)
309 		rw_exit(&dn->dn_struct_rwlock);
310 
311 	ASSERT(db != NULL);
312 	err = dbuf_read(db, NULL, flags);
313 	if (err == 0)
314 		*dbp = &db->db;
315 	else
316 		dbuf_rele(db, tag);
317 	return (err);
318 }
319 
320 int
321 dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp)
322 {
323 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
324 	dnode_t *dn;
325 	int err;
326 
327 	DB_DNODE_ENTER(db);
328 	dn = DB_DNODE(db);
329 
330 	if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_SA) {
331 		err = SET_ERROR(EINVAL);
332 	} else {
333 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
334 
335 		if (!dn->dn_have_spill) {
336 			err = SET_ERROR(ENOENT);
337 		} else {
338 			err = dmu_spill_hold_by_dnode(dn,
339 			    DB_RF_HAVESTRUCT | DB_RF_CANFAIL, tag, dbp);
340 		}
341 
342 		rw_exit(&dn->dn_struct_rwlock);
343 	}
344 
345 	DB_DNODE_EXIT(db);
346 	return (err);
347 }
348 
349 int
350 dmu_spill_hold_by_bonus(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp)
351 {
352 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
353 	dnode_t *dn;
354 	int err;
355 
356 	DB_DNODE_ENTER(db);
357 	dn = DB_DNODE(db);
358 	err = dmu_spill_hold_by_dnode(dn, DB_RF_CANFAIL, tag, dbp);
359 	DB_DNODE_EXIT(db);
360 
361 	return (err);
362 }
363 
364 /*
365  * Note: longer-term, we should modify all of the dmu_buf_*() interfaces
366  * to take a held dnode rather than <os, object> -- the lookup is wasteful,
367  * and can induce severe lock contention when writing to several files
368  * whose dnodes are in the same block.
369  */
370 static int
371 dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length,
372     int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp, uint32_t flags)
373 {
374 	dmu_buf_t **dbp;
375 	uint64_t blkid, nblks, i;
376 	uint32_t dbuf_flags;
377 	int err;
378 	zio_t *zio;
379 
380 	ASSERT(length <= DMU_MAX_ACCESS);
381 
382 	dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT;
383 	if (flags & DMU_READ_NO_PREFETCH || length > zfetch_array_rd_sz)
384 		dbuf_flags |= DB_RF_NOPREFETCH;
385 
386 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
387 	if (dn->dn_datablkshift) {
388 		int blkshift = dn->dn_datablkshift;
389 		nblks = (P2ROUNDUP(offset+length, 1ULL<<blkshift) -
390 		    P2ALIGN(offset, 1ULL<<blkshift)) >> blkshift;
391 	} else {
392 		if (offset + length > dn->dn_datablksz) {
393 			zfs_panic_recover("zfs: accessing past end of object "
394 			    "%llx/%llx (size=%u access=%llu+%llu)",
395 			    (longlong_t)dn->dn_objset->
396 			    os_dsl_dataset->ds_object,
397 			    (longlong_t)dn->dn_object, dn->dn_datablksz,
398 			    (longlong_t)offset, (longlong_t)length);
399 			rw_exit(&dn->dn_struct_rwlock);
400 			return (SET_ERROR(EIO));
401 		}
402 		nblks = 1;
403 	}
404 	dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP);
405 
406 	zio = zio_root(dn->dn_objset->os_spa, NULL, NULL, ZIO_FLAG_CANFAIL);
407 	blkid = dbuf_whichblock(dn, offset);
408 	for (i = 0; i < nblks; i++) {
409 		dmu_buf_impl_t *db = dbuf_hold(dn, blkid+i, tag);
410 		if (db == NULL) {
411 			rw_exit(&dn->dn_struct_rwlock);
412 			dmu_buf_rele_array(dbp, nblks, tag);
413 			zio_nowait(zio);
414 			return (SET_ERROR(EIO));
415 		}
416 		/* initiate async i/o */
417 		if (read) {
418 			(void) dbuf_read(db, zio, dbuf_flags);
419 		}
420 		dbp[i] = &db->db;
421 	}
422 	rw_exit(&dn->dn_struct_rwlock);
423 
424 	/* wait for async i/o */
425 	err = zio_wait(zio);
426 	if (err) {
427 		dmu_buf_rele_array(dbp, nblks, tag);
428 		return (err);
429 	}
430 
431 	/* wait for other io to complete */
432 	if (read) {
433 		for (i = 0; i < nblks; i++) {
434 			dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i];
435 			mutex_enter(&db->db_mtx);
436 			while (db->db_state == DB_READ ||
437 			    db->db_state == DB_FILL)
438 				cv_wait(&db->db_changed, &db->db_mtx);
439 			if (db->db_state == DB_UNCACHED)
440 				err = SET_ERROR(EIO);
441 			mutex_exit(&db->db_mtx);
442 			if (err) {
443 				dmu_buf_rele_array(dbp, nblks, tag);
444 				return (err);
445 			}
446 		}
447 	}
448 
449 	*numbufsp = nblks;
450 	*dbpp = dbp;
451 	return (0);
452 }
453 
454 static int
455 dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset,
456     uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp)
457 {
458 	dnode_t *dn;
459 	int err;
460 
461 	err = dnode_hold(os, object, FTAG, &dn);
462 	if (err)
463 		return (err);
464 
465 	err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
466 	    numbufsp, dbpp, DMU_READ_PREFETCH);
467 
468 	dnode_rele(dn, FTAG);
469 
470 	return (err);
471 }
472 
473 int
474 dmu_buf_hold_array_by_bonus(dmu_buf_t *db_fake, uint64_t offset,
475     uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp)
476 {
477 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
478 	dnode_t *dn;
479 	int err;
480 
481 	DB_DNODE_ENTER(db);
482 	dn = DB_DNODE(db);
483 	err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
484 	    numbufsp, dbpp, DMU_READ_PREFETCH);
485 	DB_DNODE_EXIT(db);
486 
487 	return (err);
488 }
489 
490 void
491 dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, void *tag)
492 {
493 	int i;
494 	dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake;
495 
496 	if (numbufs == 0)
497 		return;
498 
499 	for (i = 0; i < numbufs; i++) {
500 		if (dbp[i])
501 			dbuf_rele(dbp[i], tag);
502 	}
503 
504 	kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs);
505 }
506 
507 /*
508  * Issue prefetch i/os for the given blocks.
509  *
510  * Note: The assumption is that we *know* these blocks will be needed
511  * almost immediately.  Therefore, the prefetch i/os will be issued at
512  * ZIO_PRIORITY_SYNC_READ
513  *
514  * Note: indirect blocks and other metadata will be read synchronously,
515  * causing this function to block if they are not already cached.
516  */
517 void
518 dmu_prefetch(objset_t *os, uint64_t object, uint64_t offset, uint64_t len)
519 {
520 	dnode_t *dn;
521 	uint64_t blkid;
522 	int nblks, err;
523 
524 	if (zfs_prefetch_disable)
525 		return;
526 
527 	if (len == 0) {  /* they're interested in the bonus buffer */
528 		dn = DMU_META_DNODE(os);
529 
530 		if (object == 0 || object >= DN_MAX_OBJECT)
531 			return;
532 
533 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
534 		blkid = dbuf_whichblock(dn, object * sizeof (dnode_phys_t));
535 		dbuf_prefetch(dn, blkid, ZIO_PRIORITY_SYNC_READ);
536 		rw_exit(&dn->dn_struct_rwlock);
537 		return;
538 	}
539 
540 	/*
541 	 * XXX - Note, if the dnode for the requested object is not
542 	 * already cached, we will do a *synchronous* read in the
543 	 * dnode_hold() call.  The same is true for any indirects.
544 	 */
545 	err = dnode_hold(os, object, FTAG, &dn);
546 	if (err != 0)
547 		return;
548 
549 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
550 	if (dn->dn_datablkshift) {
551 		int blkshift = dn->dn_datablkshift;
552 		nblks = (P2ROUNDUP(offset + len, 1 << blkshift) -
553 		    P2ALIGN(offset, 1 << blkshift)) >> blkshift;
554 	} else {
555 		nblks = (offset < dn->dn_datablksz);
556 	}
557 
558 	if (nblks != 0) {
559 		blkid = dbuf_whichblock(dn, offset);
560 		for (int i = 0; i < nblks; i++)
561 			dbuf_prefetch(dn, blkid + i, ZIO_PRIORITY_SYNC_READ);
562 	}
563 
564 	rw_exit(&dn->dn_struct_rwlock);
565 
566 	dnode_rele(dn, FTAG);
567 }
568 
569 /*
570  * Get the next "chunk" of file data to free.  We traverse the file from
571  * the end so that the file gets shorter over time (if we crashes in the
572  * middle, this will leave us in a better state).  We find allocated file
573  * data by simply searching the allocated level 1 indirects.
574  *
575  * On input, *start should be the first offset that does not need to be
576  * freed (e.g. "offset + length").  On return, *start will be the first
577  * offset that should be freed.
578  */
579 static int
580 get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t minimum)
581 {
582 	uint64_t maxblks = DMU_MAX_ACCESS >> (dn->dn_indblkshift + 1);
583 	/* bytes of data covered by a level-1 indirect block */
584 	uint64_t iblkrange =
585 	    dn->dn_datablksz * EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT);
586 
587 	ASSERT3U(minimum, <=, *start);
588 
589 	if (*start - minimum <= iblkrange * maxblks) {
590 		*start = minimum;
591 		return (0);
592 	}
593 	ASSERT(ISP2(iblkrange));
594 
595 	for (uint64_t blks = 0; *start > minimum && blks < maxblks; blks++) {
596 		int err;
597 
598 		/*
599 		 * dnode_next_offset(BACKWARDS) will find an allocated L1
600 		 * indirect block at or before the input offset.  We must
601 		 * decrement *start so that it is at the end of the region
602 		 * to search.
603 		 */
604 		(*start)--;
605 		err = dnode_next_offset(dn,
606 		    DNODE_FIND_BACKWARDS, start, 2, 1, 0);
607 
608 		/* if there are no indirect blocks before start, we are done */
609 		if (err == ESRCH) {
610 			*start = minimum;
611 			break;
612 		} else if (err != 0) {
613 			return (err);
614 		}
615 
616 		/* set start to the beginning of this L1 indirect */
617 		*start = P2ALIGN(*start, iblkrange);
618 	}
619 	if (*start < minimum)
620 		*start = minimum;
621 	return (0);
622 }
623 
624 static int
625 dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset,
626     uint64_t length)
627 {
628 	uint64_t object_size = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
629 	int err;
630 
631 	if (offset >= object_size)
632 		return (0);
633 
634 	if (length == DMU_OBJECT_END || offset + length > object_size)
635 		length = object_size - offset;
636 
637 	while (length != 0) {
638 		uint64_t chunk_end, chunk_begin;
639 
640 		chunk_end = chunk_begin = offset + length;
641 
642 		/* move chunk_begin backwards to the beginning of this chunk */
643 		err = get_next_chunk(dn, &chunk_begin, offset);
644 		if (err)
645 			return (err);
646 		ASSERT3U(chunk_begin, >=, offset);
647 		ASSERT3U(chunk_begin, <=, chunk_end);
648 
649 		dmu_tx_t *tx = dmu_tx_create(os);
650 		dmu_tx_hold_free(tx, dn->dn_object,
651 		    chunk_begin, chunk_end - chunk_begin);
652 		err = dmu_tx_assign(tx, TXG_WAIT);
653 		if (err) {
654 			dmu_tx_abort(tx);
655 			return (err);
656 		}
657 		dnode_free_range(dn, chunk_begin, chunk_end - chunk_begin, tx);
658 		dmu_tx_commit(tx);
659 
660 		length -= chunk_end - chunk_begin;
661 	}
662 	return (0);
663 }
664 
665 int
666 dmu_free_long_range(objset_t *os, uint64_t object,
667     uint64_t offset, uint64_t length)
668 {
669 	dnode_t *dn;
670 	int err;
671 
672 	err = dnode_hold(os, object, FTAG, &dn);
673 	if (err != 0)
674 		return (err);
675 	err = dmu_free_long_range_impl(os, dn, offset, length);
676 	dnode_rele(dn, FTAG);
677 	return (err);
678 }
679 
680 int
681 dmu_free_long_object(objset_t *os, uint64_t object)
682 {
683 	dmu_tx_t *tx;
684 	int err;
685 
686 	err = dmu_free_long_range(os, object, 0, DMU_OBJECT_END);
687 	if (err != 0)
688 		return (err);
689 
690 	tx = dmu_tx_create(os);
691 	dmu_tx_hold_bonus(tx, object);
692 	dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
693 	err = dmu_tx_assign(tx, TXG_WAIT);
694 	if (err == 0) {
695 		err = dmu_object_free(os, object, tx);
696 		dmu_tx_commit(tx);
697 	} else {
698 		dmu_tx_abort(tx);
699 	}
700 
701 	return (err);
702 }
703 
704 int
705 dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
706     uint64_t size, dmu_tx_t *tx)
707 {
708 	dnode_t *dn;
709 	int err = dnode_hold(os, object, FTAG, &dn);
710 	if (err)
711 		return (err);
712 	ASSERT(offset < UINT64_MAX);
713 	ASSERT(size == -1ULL || size <= UINT64_MAX - offset);
714 	dnode_free_range(dn, offset, size, tx);
715 	dnode_rele(dn, FTAG);
716 	return (0);
717 }
718 
719 int
720 dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
721     void *buf, uint32_t flags)
722 {
723 	dnode_t *dn;
724 	dmu_buf_t **dbp;
725 	int numbufs, err;
726 
727 	err = dnode_hold(os, object, FTAG, &dn);
728 	if (err)
729 		return (err);
730 
731 	/*
732 	 * Deal with odd block sizes, where there can't be data past the first
733 	 * block.  If we ever do the tail block optimization, we will need to
734 	 * handle that here as well.
735 	 */
736 	if (dn->dn_maxblkid == 0) {
737 		int newsz = offset > dn->dn_datablksz ? 0 :
738 		    MIN(size, dn->dn_datablksz - offset);
739 		bzero((char *)buf + newsz, size - newsz);
740 		size = newsz;
741 	}
742 
743 	while (size > 0) {
744 		uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2);
745 		int i;
746 
747 		/*
748 		 * NB: we could do this block-at-a-time, but it's nice
749 		 * to be reading in parallel.
750 		 */
751 		err = dmu_buf_hold_array_by_dnode(dn, offset, mylen,
752 		    TRUE, FTAG, &numbufs, &dbp, flags);
753 		if (err)
754 			break;
755 
756 		for (i = 0; i < numbufs; i++) {
757 			int tocpy;
758 			int bufoff;
759 			dmu_buf_t *db = dbp[i];
760 
761 			ASSERT(size > 0);
762 
763 			bufoff = offset - db->db_offset;
764 			tocpy = (int)MIN(db->db_size - bufoff, size);
765 
766 			bcopy((char *)db->db_data + bufoff, buf, tocpy);
767 
768 			offset += tocpy;
769 			size -= tocpy;
770 			buf = (char *)buf + tocpy;
771 		}
772 		dmu_buf_rele_array(dbp, numbufs, FTAG);
773 	}
774 	dnode_rele(dn, FTAG);
775 	return (err);
776 }
777 
778 void
779 dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
780     const void *buf, dmu_tx_t *tx)
781 {
782 	dmu_buf_t **dbp;
783 	int numbufs, i;
784 
785 	if (size == 0)
786 		return;
787 
788 	VERIFY(0 == dmu_buf_hold_array(os, object, offset, size,
789 	    FALSE, FTAG, &numbufs, &dbp));
790 
791 	for (i = 0; i < numbufs; i++) {
792 		int tocpy;
793 		int bufoff;
794 		dmu_buf_t *db = dbp[i];
795 
796 		ASSERT(size > 0);
797 
798 		bufoff = offset - db->db_offset;
799 		tocpy = (int)MIN(db->db_size - bufoff, size);
800 
801 		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
802 
803 		if (tocpy == db->db_size)
804 			dmu_buf_will_fill(db, tx);
805 		else
806 			dmu_buf_will_dirty(db, tx);
807 
808 		bcopy(buf, (char *)db->db_data + bufoff, tocpy);
809 
810 		if (tocpy == db->db_size)
811 			dmu_buf_fill_done(db, tx);
812 
813 		offset += tocpy;
814 		size -= tocpy;
815 		buf = (char *)buf + tocpy;
816 	}
817 	dmu_buf_rele_array(dbp, numbufs, FTAG);
818 }
819 
820 void
821 dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
822     dmu_tx_t *tx)
823 {
824 	dmu_buf_t **dbp;
825 	int numbufs, i;
826 
827 	if (size == 0)
828 		return;
829 
830 	VERIFY(0 == dmu_buf_hold_array(os, object, offset, size,
831 	    FALSE, FTAG, &numbufs, &dbp));
832 
833 	for (i = 0; i < numbufs; i++) {
834 		dmu_buf_t *db = dbp[i];
835 
836 		dmu_buf_will_not_fill(db, tx);
837 	}
838 	dmu_buf_rele_array(dbp, numbufs, FTAG);
839 }
840 
841 /*
842  * DMU support for xuio
843  */
844 kstat_t *xuio_ksp = NULL;
845 
846 int
847 dmu_xuio_init(xuio_t *xuio, int nblk)
848 {
849 	dmu_xuio_t *priv;
850 	uio_t *uio = &xuio->xu_uio;
851 
852 	uio->uio_iovcnt = nblk;
853 	uio->uio_iov = kmem_zalloc(nblk * sizeof (iovec_t), KM_SLEEP);
854 
855 	priv = kmem_zalloc(sizeof (dmu_xuio_t), KM_SLEEP);
856 	priv->cnt = nblk;
857 	priv->bufs = kmem_zalloc(nblk * sizeof (arc_buf_t *), KM_SLEEP);
858 	priv->iovp = uio->uio_iov;
859 	XUIO_XUZC_PRIV(xuio) = priv;
860 
861 	if (XUIO_XUZC_RW(xuio) == UIO_READ)
862 		XUIOSTAT_INCR(xuiostat_onloan_rbuf, nblk);
863 	else
864 		XUIOSTAT_INCR(xuiostat_onloan_wbuf, nblk);
865 
866 	return (0);
867 }
868 
869 void
870 dmu_xuio_fini(xuio_t *xuio)
871 {
872 	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
873 	int nblk = priv->cnt;
874 
875 	kmem_free(priv->iovp, nblk * sizeof (iovec_t));
876 	kmem_free(priv->bufs, nblk * sizeof (arc_buf_t *));
877 	kmem_free(priv, sizeof (dmu_xuio_t));
878 
879 	if (XUIO_XUZC_RW(xuio) == UIO_READ)
880 		XUIOSTAT_INCR(xuiostat_onloan_rbuf, -nblk);
881 	else
882 		XUIOSTAT_INCR(xuiostat_onloan_wbuf, -nblk);
883 }
884 
885 /*
886  * Initialize iov[priv->next] and priv->bufs[priv->next] with { off, n, abuf }
887  * and increase priv->next by 1.
888  */
889 int
890 dmu_xuio_add(xuio_t *xuio, arc_buf_t *abuf, offset_t off, size_t n)
891 {
892 	struct iovec *iov;
893 	uio_t *uio = &xuio->xu_uio;
894 	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
895 	int i = priv->next++;
896 
897 	ASSERT(i < priv->cnt);
898 	ASSERT(off + n <= arc_buf_size(abuf));
899 	iov = uio->uio_iov + i;
900 	iov->iov_base = (char *)abuf->b_data + off;
901 	iov->iov_len = n;
902 	priv->bufs[i] = abuf;
903 	return (0);
904 }
905 
906 int
907 dmu_xuio_cnt(xuio_t *xuio)
908 {
909 	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
910 	return (priv->cnt);
911 }
912 
913 arc_buf_t *
914 dmu_xuio_arcbuf(xuio_t *xuio, int i)
915 {
916 	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
917 
918 	ASSERT(i < priv->cnt);
919 	return (priv->bufs[i]);
920 }
921 
922 void
923 dmu_xuio_clear(xuio_t *xuio, int i)
924 {
925 	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
926 
927 	ASSERT(i < priv->cnt);
928 	priv->bufs[i] = NULL;
929 }
930 
931 static void
932 xuio_stat_init(void)
933 {
934 	xuio_ksp = kstat_create("zfs", 0, "xuio_stats", "misc",
935 	    KSTAT_TYPE_NAMED, sizeof (xuio_stats) / sizeof (kstat_named_t),
936 	    KSTAT_FLAG_VIRTUAL);
937 	if (xuio_ksp != NULL) {
938 		xuio_ksp->ks_data = &xuio_stats;
939 		kstat_install(xuio_ksp);
940 	}
941 }
942 
943 static void
944 xuio_stat_fini(void)
945 {
946 	if (xuio_ksp != NULL) {
947 		kstat_delete(xuio_ksp);
948 		xuio_ksp = NULL;
949 	}
950 }
951 
952 void
953 xuio_stat_wbuf_copied()
954 {
955 	XUIOSTAT_BUMP(xuiostat_wbuf_copied);
956 }
957 
958 void
959 xuio_stat_wbuf_nocopy()
960 {
961 	XUIOSTAT_BUMP(xuiostat_wbuf_nocopy);
962 }
963 
964 #ifdef _KERNEL
965 int
966 dmu_read_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size)
967 {
968 	dmu_buf_t **dbp;
969 	int numbufs, i, err;
970 	xuio_t *xuio = NULL;
971 
972 	/*
973 	 * NB: we could do this block-at-a-time, but it's nice
974 	 * to be reading in parallel.
975 	 */
976 	err = dmu_buf_hold_array(os, object, uio->uio_loffset, size, TRUE, FTAG,
977 	    &numbufs, &dbp);
978 	if (err)
979 		return (err);
980 
981 	if (uio->uio_extflg == UIO_XUIO)
982 		xuio = (xuio_t *)uio;
983 
984 	for (i = 0; i < numbufs; i++) {
985 		int tocpy;
986 		int bufoff;
987 		dmu_buf_t *db = dbp[i];
988 
989 		ASSERT(size > 0);
990 
991 		bufoff = uio->uio_loffset - db->db_offset;
992 		tocpy = (int)MIN(db->db_size - bufoff, size);
993 
994 		if (xuio) {
995 			dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
996 			arc_buf_t *dbuf_abuf = dbi->db_buf;
997 			arc_buf_t *abuf = dbuf_loan_arcbuf(dbi);
998 			err = dmu_xuio_add(xuio, abuf, bufoff, tocpy);
999 			if (!err) {
1000 				uio->uio_resid -= tocpy;
1001 				uio->uio_loffset += tocpy;
1002 			}
1003 
1004 			if (abuf == dbuf_abuf)
1005 				XUIOSTAT_BUMP(xuiostat_rbuf_nocopy);
1006 			else
1007 				XUIOSTAT_BUMP(xuiostat_rbuf_copied);
1008 		} else {
1009 			err = uiomove((char *)db->db_data + bufoff, tocpy,
1010 			    UIO_READ, uio);
1011 		}
1012 		if (err)
1013 			break;
1014 
1015 		size -= tocpy;
1016 	}
1017 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1018 
1019 	return (err);
1020 }
1021 
1022 static int
1023 dmu_write_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size, dmu_tx_t *tx)
1024 {
1025 	dmu_buf_t **dbp;
1026 	int numbufs;
1027 	int err = 0;
1028 	int i;
1029 
1030 	err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size,
1031 	    FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH);
1032 	if (err)
1033 		return (err);
1034 
1035 	for (i = 0; i < numbufs; i++) {
1036 		int tocpy;
1037 		int bufoff;
1038 		dmu_buf_t *db = dbp[i];
1039 
1040 		ASSERT(size > 0);
1041 
1042 		bufoff = uio->uio_loffset - db->db_offset;
1043 		tocpy = (int)MIN(db->db_size - bufoff, size);
1044 
1045 		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1046 
1047 		if (tocpy == db->db_size)
1048 			dmu_buf_will_fill(db, tx);
1049 		else
1050 			dmu_buf_will_dirty(db, tx);
1051 
1052 		/*
1053 		 * XXX uiomove could block forever (eg. nfs-backed
1054 		 * pages).  There needs to be a uiolockdown() function
1055 		 * to lock the pages in memory, so that uiomove won't
1056 		 * block.
1057 		 */
1058 		err = uiomove((char *)db->db_data + bufoff, tocpy,
1059 		    UIO_WRITE, uio);
1060 
1061 		if (tocpy == db->db_size)
1062 			dmu_buf_fill_done(db, tx);
1063 
1064 		if (err)
1065 			break;
1066 
1067 		size -= tocpy;
1068 	}
1069 
1070 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1071 	return (err);
1072 }
1073 
1074 int
1075 dmu_write_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size,
1076     dmu_tx_t *tx)
1077 {
1078 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1079 	dnode_t *dn;
1080 	int err;
1081 
1082 	if (size == 0)
1083 		return (0);
1084 
1085 	DB_DNODE_ENTER(db);
1086 	dn = DB_DNODE(db);
1087 	err = dmu_write_uio_dnode(dn, uio, size, tx);
1088 	DB_DNODE_EXIT(db);
1089 
1090 	return (err);
1091 }
1092 
1093 int
1094 dmu_write_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size,
1095     dmu_tx_t *tx)
1096 {
1097 	dnode_t *dn;
1098 	int err;
1099 
1100 	if (size == 0)
1101 		return (0);
1102 
1103 	err = dnode_hold(os, object, FTAG, &dn);
1104 	if (err)
1105 		return (err);
1106 
1107 	err = dmu_write_uio_dnode(dn, uio, size, tx);
1108 
1109 	dnode_rele(dn, FTAG);
1110 
1111 	return (err);
1112 }
1113 
1114 int
1115 dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1116     page_t *pp, dmu_tx_t *tx)
1117 {
1118 	dmu_buf_t **dbp;
1119 	int numbufs, i;
1120 	int err;
1121 
1122 	if (size == 0)
1123 		return (0);
1124 
1125 	err = dmu_buf_hold_array(os, object, offset, size,
1126 	    FALSE, FTAG, &numbufs, &dbp);
1127 	if (err)
1128 		return (err);
1129 
1130 	for (i = 0; i < numbufs; i++) {
1131 		int tocpy, copied, thiscpy;
1132 		int bufoff;
1133 		dmu_buf_t *db = dbp[i];
1134 		caddr_t va;
1135 
1136 		ASSERT(size > 0);
1137 		ASSERT3U(db->db_size, >=, PAGESIZE);
1138 
1139 		bufoff = offset - db->db_offset;
1140 		tocpy = (int)MIN(db->db_size - bufoff, size);
1141 
1142 		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1143 
1144 		if (tocpy == db->db_size)
1145 			dmu_buf_will_fill(db, tx);
1146 		else
1147 			dmu_buf_will_dirty(db, tx);
1148 
1149 		for (copied = 0; copied < tocpy; copied += PAGESIZE) {
1150 			ASSERT3U(pp->p_offset, ==, db->db_offset + bufoff);
1151 			thiscpy = MIN(PAGESIZE, tocpy - copied);
1152 			va = zfs_map_page(pp, S_READ);
1153 			bcopy(va, (char *)db->db_data + bufoff, thiscpy);
1154 			zfs_unmap_page(pp, va);
1155 			pp = pp->p_next;
1156 			bufoff += PAGESIZE;
1157 		}
1158 
1159 		if (tocpy == db->db_size)
1160 			dmu_buf_fill_done(db, tx);
1161 
1162 		offset += tocpy;
1163 		size -= tocpy;
1164 	}
1165 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1166 	return (err);
1167 }
1168 #endif
1169 
1170 /*
1171  * Allocate a loaned anonymous arc buffer.
1172  */
1173 arc_buf_t *
1174 dmu_request_arcbuf(dmu_buf_t *handle, int size)
1175 {
1176 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle;
1177 	spa_t *spa;
1178 
1179 	DB_GET_SPA(&spa, db);
1180 	return (arc_loan_buf(spa, size));
1181 }
1182 
1183 /*
1184  * Free a loaned arc buffer.
1185  */
1186 void
1187 dmu_return_arcbuf(arc_buf_t *buf)
1188 {
1189 	arc_return_buf(buf, FTAG);
1190 	VERIFY(arc_buf_remove_ref(buf, FTAG));
1191 }
1192 
1193 /*
1194  * When possible directly assign passed loaned arc buffer to a dbuf.
1195  * If this is not possible copy the contents of passed arc buf via
1196  * dmu_write().
1197  */
1198 void
1199 dmu_assign_arcbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf,
1200     dmu_tx_t *tx)
1201 {
1202 	dmu_buf_impl_t *dbuf = (dmu_buf_impl_t *)handle;
1203 	dnode_t *dn;
1204 	dmu_buf_impl_t *db;
1205 	uint32_t blksz = (uint32_t)arc_buf_size(buf);
1206 	uint64_t blkid;
1207 
1208 	DB_DNODE_ENTER(dbuf);
1209 	dn = DB_DNODE(dbuf);
1210 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
1211 	blkid = dbuf_whichblock(dn, offset);
1212 	VERIFY((db = dbuf_hold(dn, blkid, FTAG)) != NULL);
1213 	rw_exit(&dn->dn_struct_rwlock);
1214 	DB_DNODE_EXIT(dbuf);
1215 
1216 	if (offset == db->db.db_offset && blksz == db->db.db_size) {
1217 		dbuf_assign_arcbuf(db, buf, tx);
1218 		dbuf_rele(db, FTAG);
1219 	} else {
1220 		objset_t *os;
1221 		uint64_t object;
1222 
1223 		DB_DNODE_ENTER(dbuf);
1224 		dn = DB_DNODE(dbuf);
1225 		os = dn->dn_objset;
1226 		object = dn->dn_object;
1227 		DB_DNODE_EXIT(dbuf);
1228 
1229 		dbuf_rele(db, FTAG);
1230 		dmu_write(os, object, offset, blksz, buf->b_data, tx);
1231 		dmu_return_arcbuf(buf);
1232 		XUIOSTAT_BUMP(xuiostat_wbuf_copied);
1233 	}
1234 }
1235 
1236 typedef struct {
1237 	dbuf_dirty_record_t	*dsa_dr;
1238 	dmu_sync_cb_t		*dsa_done;
1239 	zgd_t			*dsa_zgd;
1240 	dmu_tx_t		*dsa_tx;
1241 } dmu_sync_arg_t;
1242 
1243 /* ARGSUSED */
1244 static void
1245 dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg)
1246 {
1247 	dmu_sync_arg_t *dsa = varg;
1248 	dmu_buf_t *db = dsa->dsa_zgd->zgd_db;
1249 	blkptr_t *bp = zio->io_bp;
1250 
1251 	if (zio->io_error == 0) {
1252 		if (BP_IS_HOLE(bp)) {
1253 			/*
1254 			 * A block of zeros may compress to a hole, but the
1255 			 * block size still needs to be known for replay.
1256 			 */
1257 			BP_SET_LSIZE(bp, db->db_size);
1258 		} else {
1259 			ASSERT(BP_GET_LEVEL(bp) == 0);
1260 			bp->blk_fill = 1;
1261 		}
1262 	}
1263 }
1264 
1265 static void
1266 dmu_sync_late_arrival_ready(zio_t *zio)
1267 {
1268 	dmu_sync_ready(zio, NULL, zio->io_private);
1269 }
1270 
1271 /* ARGSUSED */
1272 static void
1273 dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg)
1274 {
1275 	dmu_sync_arg_t *dsa = varg;
1276 	dbuf_dirty_record_t *dr = dsa->dsa_dr;
1277 	dmu_buf_impl_t *db = dr->dr_dbuf;
1278 
1279 	mutex_enter(&db->db_mtx);
1280 	ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC);
1281 	if (zio->io_error == 0) {
1282 		dr->dt.dl.dr_nopwrite = !!(zio->io_flags & ZIO_FLAG_NOPWRITE);
1283 		if (dr->dt.dl.dr_nopwrite) {
1284 			blkptr_t *bp = zio->io_bp;
1285 			blkptr_t *bp_orig = &zio->io_bp_orig;
1286 			uint8_t chksum = BP_GET_CHECKSUM(bp_orig);
1287 
1288 			ASSERT(BP_EQUAL(bp, bp_orig));
1289 			ASSERT(zio->io_prop.zp_compress != ZIO_COMPRESS_OFF);
1290 			ASSERT(zio_checksum_table[chksum].ci_dedup);
1291 		}
1292 		dr->dt.dl.dr_overridden_by = *zio->io_bp;
1293 		dr->dt.dl.dr_override_state = DR_OVERRIDDEN;
1294 		dr->dt.dl.dr_copies = zio->io_prop.zp_copies;
1295 		if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by))
1296 			BP_ZERO(&dr->dt.dl.dr_overridden_by);
1297 	} else {
1298 		dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1299 	}
1300 	cv_broadcast(&db->db_changed);
1301 	mutex_exit(&db->db_mtx);
1302 
1303 	dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1304 
1305 	kmem_free(dsa, sizeof (*dsa));
1306 }
1307 
1308 static void
1309 dmu_sync_late_arrival_done(zio_t *zio)
1310 {
1311 	blkptr_t *bp = zio->io_bp;
1312 	dmu_sync_arg_t *dsa = zio->io_private;
1313 	blkptr_t *bp_orig = &zio->io_bp_orig;
1314 
1315 	if (zio->io_error == 0 && !BP_IS_HOLE(bp)) {
1316 		/*
1317 		 * If we didn't allocate a new block (i.e. ZIO_FLAG_NOPWRITE)
1318 		 * then there is nothing to do here. Otherwise, free the
1319 		 * newly allocated block in this txg.
1320 		 */
1321 		if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
1322 			ASSERT(BP_EQUAL(bp, bp_orig));
1323 		} else {
1324 			ASSERT(BP_IS_HOLE(bp_orig) || !BP_EQUAL(bp, bp_orig));
1325 			ASSERT(zio->io_bp->blk_birth == zio->io_txg);
1326 			ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa));
1327 			zio_free(zio->io_spa, zio->io_txg, zio->io_bp);
1328 		}
1329 	}
1330 
1331 	dmu_tx_commit(dsa->dsa_tx);
1332 
1333 	dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1334 
1335 	kmem_free(dsa, sizeof (*dsa));
1336 }
1337 
1338 static int
1339 dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd,
1340     zio_prop_t *zp, zbookmark_t *zb)
1341 {
1342 	dmu_sync_arg_t *dsa;
1343 	dmu_tx_t *tx;
1344 
1345 	tx = dmu_tx_create(os);
1346 	dmu_tx_hold_space(tx, zgd->zgd_db->db_size);
1347 	if (dmu_tx_assign(tx, TXG_WAIT) != 0) {
1348 		dmu_tx_abort(tx);
1349 		/* Make zl_get_data do txg_waited_synced() */
1350 		return (SET_ERROR(EIO));
1351 	}
1352 
1353 	dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
1354 	dsa->dsa_dr = NULL;
1355 	dsa->dsa_done = done;
1356 	dsa->dsa_zgd = zgd;
1357 	dsa->dsa_tx = tx;
1358 
1359 	zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp,
1360 	    zgd->zgd_db->db_data, zgd->zgd_db->db_size, zp,
1361 	    dmu_sync_late_arrival_ready, NULL, dmu_sync_late_arrival_done, dsa,
1362 	    ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, zb));
1363 
1364 	return (0);
1365 }
1366 
1367 /*
1368  * Intent log support: sync the block associated with db to disk.
1369  * N.B. and XXX: the caller is responsible for making sure that the
1370  * data isn't changing while dmu_sync() is writing it.
1371  *
1372  * Return values:
1373  *
1374  *	EEXIST: this txg has already been synced, so there's nothing to do.
1375  *		The caller should not log the write.
1376  *
1377  *	ENOENT: the block was dbuf_free_range()'d, so there's nothing to do.
1378  *		The caller should not log the write.
1379  *
1380  *	EALREADY: this block is already in the process of being synced.
1381  *		The caller should track its progress (somehow).
1382  *
1383  *	EIO: could not do the I/O.
1384  *		The caller should do a txg_wait_synced().
1385  *
1386  *	0: the I/O has been initiated.
1387  *		The caller should log this blkptr in the done callback.
1388  *		It is possible that the I/O will fail, in which case
1389  *		the error will be reported to the done callback and
1390  *		propagated to pio from zio_done().
1391  */
1392 int
1393 dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd)
1394 {
1395 	blkptr_t *bp = zgd->zgd_bp;
1396 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db;
1397 	objset_t *os = db->db_objset;
1398 	dsl_dataset_t *ds = os->os_dsl_dataset;
1399 	dbuf_dirty_record_t *dr;
1400 	dmu_sync_arg_t *dsa;
1401 	zbookmark_t zb;
1402 	zio_prop_t zp;
1403 	dnode_t *dn;
1404 
1405 	ASSERT(pio != NULL);
1406 	ASSERT(txg != 0);
1407 
1408 	SET_BOOKMARK(&zb, ds->ds_object,
1409 	    db->db.db_object, db->db_level, db->db_blkid);
1410 
1411 	DB_DNODE_ENTER(db);
1412 	dn = DB_DNODE(db);
1413 	dmu_write_policy(os, dn, db->db_level, WP_DMU_SYNC, &zp);
1414 	DB_DNODE_EXIT(db);
1415 
1416 	/*
1417 	 * If we're frozen (running ziltest), we always need to generate a bp.
1418 	 */
1419 	if (txg > spa_freeze_txg(os->os_spa))
1420 		return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
1421 
1422 	/*
1423 	 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf()
1424 	 * and us.  If we determine that this txg is not yet syncing,
1425 	 * but it begins to sync a moment later, that's OK because the
1426 	 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx.
1427 	 */
1428 	mutex_enter(&db->db_mtx);
1429 
1430 	if (txg <= spa_last_synced_txg(os->os_spa)) {
1431 		/*
1432 		 * This txg has already synced.  There's nothing to do.
1433 		 */
1434 		mutex_exit(&db->db_mtx);
1435 		return (SET_ERROR(EEXIST));
1436 	}
1437 
1438 	if (txg <= spa_syncing_txg(os->os_spa)) {
1439 		/*
1440 		 * This txg is currently syncing, so we can't mess with
1441 		 * the dirty record anymore; just write a new log block.
1442 		 */
1443 		mutex_exit(&db->db_mtx);
1444 		return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
1445 	}
1446 
1447 	dr = db->db_last_dirty;
1448 	while (dr && dr->dr_txg != txg)
1449 		dr = dr->dr_next;
1450 
1451 	if (dr == NULL) {
1452 		/*
1453 		 * There's no dr for this dbuf, so it must have been freed.
1454 		 * There's no need to log writes to freed blocks, so we're done.
1455 		 */
1456 		mutex_exit(&db->db_mtx);
1457 		return (SET_ERROR(ENOENT));
1458 	}
1459 
1460 	ASSERT(dr->dr_next == NULL || dr->dr_next->dr_txg < txg);
1461 
1462 	/*
1463 	 * Assume the on-disk data is X, the current syncing data is Y,
1464 	 * and the current in-memory data is Z (currently in dmu_sync).
1465 	 * X and Z are identical but Y is has been modified. Normally,
1466 	 * when X and Z are the same we will perform a nopwrite but if Y
1467 	 * is different we must disable nopwrite since the resulting write
1468 	 * of Y to disk can free the block containing X. If we allowed a
1469 	 * nopwrite to occur the block pointing to Z would reference a freed
1470 	 * block. Since this is a rare case we simplify this by disabling
1471 	 * nopwrite if the current dmu_sync-ing dbuf has been modified in
1472 	 * a previous transaction.
1473 	 */
1474 	if (dr->dr_next)
1475 		zp.zp_nopwrite = B_FALSE;
1476 
1477 	ASSERT(dr->dr_txg == txg);
1478 	if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC ||
1479 	    dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
1480 		/*
1481 		 * We have already issued a sync write for this buffer,
1482 		 * or this buffer has already been synced.  It could not
1483 		 * have been dirtied since, or we would have cleared the state.
1484 		 */
1485 		mutex_exit(&db->db_mtx);
1486 		return (SET_ERROR(EALREADY));
1487 	}
1488 
1489 	ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
1490 	dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC;
1491 	mutex_exit(&db->db_mtx);
1492 
1493 	dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
1494 	dsa->dsa_dr = dr;
1495 	dsa->dsa_done = done;
1496 	dsa->dsa_zgd = zgd;
1497 	dsa->dsa_tx = NULL;
1498 
1499 	zio_nowait(arc_write(pio, os->os_spa, txg,
1500 	    bp, dr->dt.dl.dr_data, DBUF_IS_L2CACHEABLE(db),
1501 	    DBUF_IS_L2COMPRESSIBLE(db), &zp, dmu_sync_ready,
1502 	    NULL, dmu_sync_done, dsa, ZIO_PRIORITY_SYNC_WRITE,
1503 	    ZIO_FLAG_CANFAIL, &zb));
1504 
1505 	return (0);
1506 }
1507 
1508 int
1509 dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs,
1510 	dmu_tx_t *tx)
1511 {
1512 	dnode_t *dn;
1513 	int err;
1514 
1515 	err = dnode_hold(os, object, FTAG, &dn);
1516 	if (err)
1517 		return (err);
1518 	err = dnode_set_blksz(dn, size, ibs, tx);
1519 	dnode_rele(dn, FTAG);
1520 	return (err);
1521 }
1522 
1523 void
1524 dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
1525 	dmu_tx_t *tx)
1526 {
1527 	dnode_t *dn;
1528 
1529 	/* XXX assumes dnode_hold will not get an i/o error */
1530 	(void) dnode_hold(os, object, FTAG, &dn);
1531 	ASSERT(checksum < ZIO_CHECKSUM_FUNCTIONS);
1532 	dn->dn_checksum = checksum;
1533 	dnode_setdirty(dn, tx);
1534 	dnode_rele(dn, FTAG);
1535 }
1536 
1537 void
1538 dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
1539 	dmu_tx_t *tx)
1540 {
1541 	dnode_t *dn;
1542 
1543 	/* XXX assumes dnode_hold will not get an i/o error */
1544 	(void) dnode_hold(os, object, FTAG, &dn);
1545 	ASSERT(compress < ZIO_COMPRESS_FUNCTIONS);
1546 	dn->dn_compress = compress;
1547 	dnode_setdirty(dn, tx);
1548 	dnode_rele(dn, FTAG);
1549 }
1550 
1551 int zfs_mdcomp_disable = 0;
1552 
1553 void
1554 dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp)
1555 {
1556 	dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET;
1557 	boolean_t ismd = (level > 0 || DMU_OT_IS_METADATA(type) ||
1558 	    (wp & WP_SPILL));
1559 	enum zio_checksum checksum = os->os_checksum;
1560 	enum zio_compress compress = os->os_compress;
1561 	enum zio_checksum dedup_checksum = os->os_dedup_checksum;
1562 	boolean_t dedup = B_FALSE;
1563 	boolean_t nopwrite = B_FALSE;
1564 	boolean_t dedup_verify = os->os_dedup_verify;
1565 	int copies = os->os_copies;
1566 
1567 	/*
1568 	 * We maintain different write policies for each of the following
1569 	 * types of data:
1570 	 *	 1. metadata
1571 	 *	 2. preallocated blocks (i.e. level-0 blocks of a dump device)
1572 	 *	 3. all other level 0 blocks
1573 	 */
1574 	if (ismd) {
1575 		/*
1576 		 * XXX -- we should design a compression algorithm
1577 		 * that specializes in arrays of bps.
1578 		 */
1579 		compress = zfs_mdcomp_disable ? ZIO_COMPRESS_EMPTY :
1580 		    ZIO_COMPRESS_LZJB;
1581 
1582 		/*
1583 		 * Metadata always gets checksummed.  If the data
1584 		 * checksum is multi-bit correctable, and it's not a
1585 		 * ZBT-style checksum, then it's suitable for metadata
1586 		 * as well.  Otherwise, the metadata checksum defaults
1587 		 * to fletcher4.
1588 		 */
1589 		if (zio_checksum_table[checksum].ci_correctable < 1 ||
1590 		    zio_checksum_table[checksum].ci_eck)
1591 			checksum = ZIO_CHECKSUM_FLETCHER_4;
1592 	} else if (wp & WP_NOFILL) {
1593 		ASSERT(level == 0);
1594 
1595 		/*
1596 		 * If we're writing preallocated blocks, we aren't actually
1597 		 * writing them so don't set any policy properties.  These
1598 		 * blocks are currently only used by an external subsystem
1599 		 * outside of zfs (i.e. dump) and not written by the zio
1600 		 * pipeline.
1601 		 */
1602 		compress = ZIO_COMPRESS_OFF;
1603 		checksum = ZIO_CHECKSUM_NOPARITY;
1604 	} else {
1605 		compress = zio_compress_select(dn->dn_compress, compress);
1606 
1607 		checksum = (dedup_checksum == ZIO_CHECKSUM_OFF) ?
1608 		    zio_checksum_select(dn->dn_checksum, checksum) :
1609 		    dedup_checksum;
1610 
1611 		/*
1612 		 * Determine dedup setting.  If we are in dmu_sync(),
1613 		 * we won't actually dedup now because that's all
1614 		 * done in syncing context; but we do want to use the
1615 		 * dedup checkum.  If the checksum is not strong
1616 		 * enough to ensure unique signatures, force
1617 		 * dedup_verify.
1618 		 */
1619 		if (dedup_checksum != ZIO_CHECKSUM_OFF) {
1620 			dedup = (wp & WP_DMU_SYNC) ? B_FALSE : B_TRUE;
1621 			if (!zio_checksum_table[checksum].ci_dedup)
1622 				dedup_verify = B_TRUE;
1623 		}
1624 
1625 		/*
1626 		 * Enable nopwrite if we have a cryptographically secure
1627 		 * checksum that has no known collisions (i.e. SHA-256)
1628 		 * and compression is enabled.  We don't enable nopwrite if
1629 		 * dedup is enabled as the two features are mutually exclusive.
1630 		 */
1631 		nopwrite = (!dedup && zio_checksum_table[checksum].ci_dedup &&
1632 		    compress != ZIO_COMPRESS_OFF && zfs_nopwrite_enabled);
1633 	}
1634 
1635 	zp->zp_checksum = checksum;
1636 	zp->zp_compress = compress;
1637 	zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type;
1638 	zp->zp_level = level;
1639 	zp->zp_copies = MIN(copies + ismd, spa_max_replication(os->os_spa));
1640 	zp->zp_dedup = dedup;
1641 	zp->zp_dedup_verify = dedup && dedup_verify;
1642 	zp->zp_nopwrite = nopwrite;
1643 }
1644 
1645 int
1646 dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off)
1647 {
1648 	dnode_t *dn;
1649 	int i, err;
1650 
1651 	err = dnode_hold(os, object, FTAG, &dn);
1652 	if (err)
1653 		return (err);
1654 	/*
1655 	 * Sync any current changes before
1656 	 * we go trundling through the block pointers.
1657 	 */
1658 	for (i = 0; i < TXG_SIZE; i++) {
1659 		if (list_link_active(&dn->dn_dirty_link[i]))
1660 			break;
1661 	}
1662 	if (i != TXG_SIZE) {
1663 		dnode_rele(dn, FTAG);
1664 		txg_wait_synced(dmu_objset_pool(os), 0);
1665 		err = dnode_hold(os, object, FTAG, &dn);
1666 		if (err)
1667 			return (err);
1668 	}
1669 
1670 	err = dnode_next_offset(dn, (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0);
1671 	dnode_rele(dn, FTAG);
1672 
1673 	return (err);
1674 }
1675 
1676 void
1677 dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
1678 {
1679 	dnode_phys_t *dnp;
1680 
1681 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
1682 	mutex_enter(&dn->dn_mtx);
1683 
1684 	dnp = dn->dn_phys;
1685 
1686 	doi->doi_data_block_size = dn->dn_datablksz;
1687 	doi->doi_metadata_block_size = dn->dn_indblkshift ?
1688 	    1ULL << dn->dn_indblkshift : 0;
1689 	doi->doi_type = dn->dn_type;
1690 	doi->doi_bonus_type = dn->dn_bonustype;
1691 	doi->doi_bonus_size = dn->dn_bonuslen;
1692 	doi->doi_indirection = dn->dn_nlevels;
1693 	doi->doi_checksum = dn->dn_checksum;
1694 	doi->doi_compress = dn->dn_compress;
1695 	doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9;
1696 	doi->doi_max_offset = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
1697 	doi->doi_fill_count = 0;
1698 	for (int i = 0; i < dnp->dn_nblkptr; i++)
1699 		doi->doi_fill_count += dnp->dn_blkptr[i].blk_fill;
1700 
1701 	mutex_exit(&dn->dn_mtx);
1702 	rw_exit(&dn->dn_struct_rwlock);
1703 }
1704 
1705 /*
1706  * Get information on a DMU object.
1707  * If doi is NULL, just indicates whether the object exists.
1708  */
1709 int
1710 dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi)
1711 {
1712 	dnode_t *dn;
1713 	int err = dnode_hold(os, object, FTAG, &dn);
1714 
1715 	if (err)
1716 		return (err);
1717 
1718 	if (doi != NULL)
1719 		dmu_object_info_from_dnode(dn, doi);
1720 
1721 	dnode_rele(dn, FTAG);
1722 	return (0);
1723 }
1724 
1725 /*
1726  * As above, but faster; can be used when you have a held dbuf in hand.
1727  */
1728 void
1729 dmu_object_info_from_db(dmu_buf_t *db_fake, dmu_object_info_t *doi)
1730 {
1731 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1732 
1733 	DB_DNODE_ENTER(db);
1734 	dmu_object_info_from_dnode(DB_DNODE(db), doi);
1735 	DB_DNODE_EXIT(db);
1736 }
1737 
1738 /*
1739  * Faster still when you only care about the size.
1740  * This is specifically optimized for zfs_getattr().
1741  */
1742 void
1743 dmu_object_size_from_db(dmu_buf_t *db_fake, uint32_t *blksize,
1744     u_longlong_t *nblk512)
1745 {
1746 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1747 	dnode_t *dn;
1748 
1749 	DB_DNODE_ENTER(db);
1750 	dn = DB_DNODE(db);
1751 
1752 	*blksize = dn->dn_datablksz;
1753 	/* add 1 for dnode space */
1754 	*nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >>
1755 	    SPA_MINBLOCKSHIFT) + 1;
1756 	DB_DNODE_EXIT(db);
1757 }
1758 
1759 void
1760 byteswap_uint64_array(void *vbuf, size_t size)
1761 {
1762 	uint64_t *buf = vbuf;
1763 	size_t count = size >> 3;
1764 	int i;
1765 
1766 	ASSERT((size & 7) == 0);
1767 
1768 	for (i = 0; i < count; i++)
1769 		buf[i] = BSWAP_64(buf[i]);
1770 }
1771 
1772 void
1773 byteswap_uint32_array(void *vbuf, size_t size)
1774 {
1775 	uint32_t *buf = vbuf;
1776 	size_t count = size >> 2;
1777 	int i;
1778 
1779 	ASSERT((size & 3) == 0);
1780 
1781 	for (i = 0; i < count; i++)
1782 		buf[i] = BSWAP_32(buf[i]);
1783 }
1784 
1785 void
1786 byteswap_uint16_array(void *vbuf, size_t size)
1787 {
1788 	uint16_t *buf = vbuf;
1789 	size_t count = size >> 1;
1790 	int i;
1791 
1792 	ASSERT((size & 1) == 0);
1793 
1794 	for (i = 0; i < count; i++)
1795 		buf[i] = BSWAP_16(buf[i]);
1796 }
1797 
1798 /* ARGSUSED */
1799 void
1800 byteswap_uint8_array(void *vbuf, size_t size)
1801 {
1802 }
1803 
1804 void
1805 dmu_init(void)
1806 {
1807 	zfs_dbgmsg_init();
1808 	sa_cache_init();
1809 	xuio_stat_init();
1810 	dmu_objset_init();
1811 	dnode_init();
1812 	dbuf_init();
1813 	zfetch_init();
1814 	l2arc_init();
1815 	arc_init();
1816 }
1817 
1818 void
1819 dmu_fini(void)
1820 {
1821 	arc_fini(); /* arc depends on l2arc, so arc must go first */
1822 	l2arc_fini();
1823 	zfetch_fini();
1824 	dbuf_fini();
1825 	dnode_fini();
1826 	dmu_objset_fini();
1827 	xuio_stat_fini();
1828 	sa_cache_fini();
1829 	zfs_dbgmsg_fini();
1830 }
1831