1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2013 by Delphix. All rights reserved. 24 */ 25 /* Copyright (c) 2013 by Saso Kiselkov. All rights reserved. */ 26 /* Copyright (c) 2013, Joyent, Inc. All rights reserved. */ 27 28 #include <sys/dmu.h> 29 #include <sys/dmu_impl.h> 30 #include <sys/dmu_tx.h> 31 #include <sys/dbuf.h> 32 #include <sys/dnode.h> 33 #include <sys/zfs_context.h> 34 #include <sys/dmu_objset.h> 35 #include <sys/dmu_traverse.h> 36 #include <sys/dsl_dataset.h> 37 #include <sys/dsl_dir.h> 38 #include <sys/dsl_pool.h> 39 #include <sys/dsl_synctask.h> 40 #include <sys/dsl_prop.h> 41 #include <sys/dmu_zfetch.h> 42 #include <sys/zfs_ioctl.h> 43 #include <sys/zap.h> 44 #include <sys/zio_checksum.h> 45 #include <sys/zio_compress.h> 46 #include <sys/sa.h> 47 #ifdef _KERNEL 48 #include <sys/vmsystm.h> 49 #include <sys/zfs_znode.h> 50 #endif 51 52 /* 53 * Enable/disable nopwrite feature. 54 */ 55 int zfs_nopwrite_enabled = 1; 56 57 const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = { 58 { DMU_BSWAP_UINT8, TRUE, "unallocated" }, 59 { DMU_BSWAP_ZAP, TRUE, "object directory" }, 60 { DMU_BSWAP_UINT64, TRUE, "object array" }, 61 { DMU_BSWAP_UINT8, TRUE, "packed nvlist" }, 62 { DMU_BSWAP_UINT64, TRUE, "packed nvlist size" }, 63 { DMU_BSWAP_UINT64, TRUE, "bpobj" }, 64 { DMU_BSWAP_UINT64, TRUE, "bpobj header" }, 65 { DMU_BSWAP_UINT64, TRUE, "SPA space map header" }, 66 { DMU_BSWAP_UINT64, TRUE, "SPA space map" }, 67 { DMU_BSWAP_UINT64, TRUE, "ZIL intent log" }, 68 { DMU_BSWAP_DNODE, TRUE, "DMU dnode" }, 69 { DMU_BSWAP_OBJSET, TRUE, "DMU objset" }, 70 { DMU_BSWAP_UINT64, TRUE, "DSL directory" }, 71 { DMU_BSWAP_ZAP, TRUE, "DSL directory child map"}, 72 { DMU_BSWAP_ZAP, TRUE, "DSL dataset snap map" }, 73 { DMU_BSWAP_ZAP, TRUE, "DSL props" }, 74 { DMU_BSWAP_UINT64, TRUE, "DSL dataset" }, 75 { DMU_BSWAP_ZNODE, TRUE, "ZFS znode" }, 76 { DMU_BSWAP_OLDACL, TRUE, "ZFS V0 ACL" }, 77 { DMU_BSWAP_UINT8, FALSE, "ZFS plain file" }, 78 { DMU_BSWAP_ZAP, TRUE, "ZFS directory" }, 79 { DMU_BSWAP_ZAP, TRUE, "ZFS master node" }, 80 { DMU_BSWAP_ZAP, TRUE, "ZFS delete queue" }, 81 { DMU_BSWAP_UINT8, FALSE, "zvol object" }, 82 { DMU_BSWAP_ZAP, TRUE, "zvol prop" }, 83 { DMU_BSWAP_UINT8, FALSE, "other uint8[]" }, 84 { DMU_BSWAP_UINT64, FALSE, "other uint64[]" }, 85 { DMU_BSWAP_ZAP, TRUE, "other ZAP" }, 86 { DMU_BSWAP_ZAP, TRUE, "persistent error log" }, 87 { DMU_BSWAP_UINT8, TRUE, "SPA history" }, 88 { DMU_BSWAP_UINT64, TRUE, "SPA history offsets" }, 89 { DMU_BSWAP_ZAP, TRUE, "Pool properties" }, 90 { DMU_BSWAP_ZAP, TRUE, "DSL permissions" }, 91 { DMU_BSWAP_ACL, TRUE, "ZFS ACL" }, 92 { DMU_BSWAP_UINT8, TRUE, "ZFS SYSACL" }, 93 { DMU_BSWAP_UINT8, TRUE, "FUID table" }, 94 { DMU_BSWAP_UINT64, TRUE, "FUID table size" }, 95 { DMU_BSWAP_ZAP, TRUE, "DSL dataset next clones"}, 96 { DMU_BSWAP_ZAP, TRUE, "scan work queue" }, 97 { DMU_BSWAP_ZAP, TRUE, "ZFS user/group used" }, 98 { DMU_BSWAP_ZAP, TRUE, "ZFS user/group quota" }, 99 { DMU_BSWAP_ZAP, TRUE, "snapshot refcount tags"}, 100 { DMU_BSWAP_ZAP, TRUE, "DDT ZAP algorithm" }, 101 { DMU_BSWAP_ZAP, TRUE, "DDT statistics" }, 102 { DMU_BSWAP_UINT8, TRUE, "System attributes" }, 103 { DMU_BSWAP_ZAP, TRUE, "SA master node" }, 104 { DMU_BSWAP_ZAP, TRUE, "SA attr registration" }, 105 { DMU_BSWAP_ZAP, TRUE, "SA attr layouts" }, 106 { DMU_BSWAP_ZAP, TRUE, "scan translations" }, 107 { DMU_BSWAP_UINT8, FALSE, "deduplicated block" }, 108 { DMU_BSWAP_ZAP, TRUE, "DSL deadlist map" }, 109 { DMU_BSWAP_UINT64, TRUE, "DSL deadlist map hdr" }, 110 { DMU_BSWAP_ZAP, TRUE, "DSL dir clones" }, 111 { DMU_BSWAP_UINT64, TRUE, "bpobj subobj" } 112 }; 113 114 const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS] = { 115 { byteswap_uint8_array, "uint8" }, 116 { byteswap_uint16_array, "uint16" }, 117 { byteswap_uint32_array, "uint32" }, 118 { byteswap_uint64_array, "uint64" }, 119 { zap_byteswap, "zap" }, 120 { dnode_buf_byteswap, "dnode" }, 121 { dmu_objset_byteswap, "objset" }, 122 { zfs_znode_byteswap, "znode" }, 123 { zfs_oldacl_byteswap, "oldacl" }, 124 { zfs_acl_byteswap, "acl" } 125 }; 126 127 int 128 dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset, 129 void *tag, dmu_buf_t **dbp, int flags) 130 { 131 dnode_t *dn; 132 uint64_t blkid; 133 dmu_buf_impl_t *db; 134 int err; 135 int db_flags = DB_RF_CANFAIL; 136 137 if (flags & DMU_READ_NO_PREFETCH) 138 db_flags |= DB_RF_NOPREFETCH; 139 140 err = dnode_hold(os, object, FTAG, &dn); 141 if (err) 142 return (err); 143 blkid = dbuf_whichblock(dn, offset); 144 rw_enter(&dn->dn_struct_rwlock, RW_READER); 145 db = dbuf_hold(dn, blkid, tag); 146 rw_exit(&dn->dn_struct_rwlock); 147 if (db == NULL) { 148 err = SET_ERROR(EIO); 149 } else { 150 err = dbuf_read(db, NULL, db_flags); 151 if (err) { 152 dbuf_rele(db, tag); 153 db = NULL; 154 } 155 } 156 157 dnode_rele(dn, FTAG); 158 *dbp = &db->db; /* NULL db plus first field offset is NULL */ 159 return (err); 160 } 161 162 int 163 dmu_bonus_max(void) 164 { 165 return (DN_MAX_BONUSLEN); 166 } 167 168 int 169 dmu_set_bonus(dmu_buf_t *db_fake, int newsize, dmu_tx_t *tx) 170 { 171 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 172 dnode_t *dn; 173 int error; 174 175 DB_DNODE_ENTER(db); 176 dn = DB_DNODE(db); 177 178 if (dn->dn_bonus != db) { 179 error = SET_ERROR(EINVAL); 180 } else if (newsize < 0 || newsize > db_fake->db_size) { 181 error = SET_ERROR(EINVAL); 182 } else { 183 dnode_setbonuslen(dn, newsize, tx); 184 error = 0; 185 } 186 187 DB_DNODE_EXIT(db); 188 return (error); 189 } 190 191 int 192 dmu_set_bonustype(dmu_buf_t *db_fake, dmu_object_type_t type, dmu_tx_t *tx) 193 { 194 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 195 dnode_t *dn; 196 int error; 197 198 DB_DNODE_ENTER(db); 199 dn = DB_DNODE(db); 200 201 if (!DMU_OT_IS_VALID(type)) { 202 error = SET_ERROR(EINVAL); 203 } else if (dn->dn_bonus != db) { 204 error = SET_ERROR(EINVAL); 205 } else { 206 dnode_setbonus_type(dn, type, tx); 207 error = 0; 208 } 209 210 DB_DNODE_EXIT(db); 211 return (error); 212 } 213 214 dmu_object_type_t 215 dmu_get_bonustype(dmu_buf_t *db_fake) 216 { 217 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 218 dnode_t *dn; 219 dmu_object_type_t type; 220 221 DB_DNODE_ENTER(db); 222 dn = DB_DNODE(db); 223 type = dn->dn_bonustype; 224 DB_DNODE_EXIT(db); 225 226 return (type); 227 } 228 229 int 230 dmu_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx) 231 { 232 dnode_t *dn; 233 int error; 234 235 error = dnode_hold(os, object, FTAG, &dn); 236 dbuf_rm_spill(dn, tx); 237 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 238 dnode_rm_spill(dn, tx); 239 rw_exit(&dn->dn_struct_rwlock); 240 dnode_rele(dn, FTAG); 241 return (error); 242 } 243 244 /* 245 * returns ENOENT, EIO, or 0. 246 */ 247 int 248 dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **dbp) 249 { 250 dnode_t *dn; 251 dmu_buf_impl_t *db; 252 int error; 253 254 error = dnode_hold(os, object, FTAG, &dn); 255 if (error) 256 return (error); 257 258 rw_enter(&dn->dn_struct_rwlock, RW_READER); 259 if (dn->dn_bonus == NULL) { 260 rw_exit(&dn->dn_struct_rwlock); 261 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 262 if (dn->dn_bonus == NULL) 263 dbuf_create_bonus(dn); 264 } 265 db = dn->dn_bonus; 266 267 /* as long as the bonus buf is held, the dnode will be held */ 268 if (refcount_add(&db->db_holds, tag) == 1) { 269 VERIFY(dnode_add_ref(dn, db)); 270 (void) atomic_inc_32_nv(&dn->dn_dbufs_count); 271 } 272 273 /* 274 * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's 275 * hold and incrementing the dbuf count to ensure that dnode_move() sees 276 * a dnode hold for every dbuf. 277 */ 278 rw_exit(&dn->dn_struct_rwlock); 279 280 dnode_rele(dn, FTAG); 281 282 VERIFY(0 == dbuf_read(db, NULL, DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH)); 283 284 *dbp = &db->db; 285 return (0); 286 } 287 288 /* 289 * returns ENOENT, EIO, or 0. 290 * 291 * This interface will allocate a blank spill dbuf when a spill blk 292 * doesn't already exist on the dnode. 293 * 294 * if you only want to find an already existing spill db, then 295 * dmu_spill_hold_existing() should be used. 296 */ 297 int 298 dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, void *tag, dmu_buf_t **dbp) 299 { 300 dmu_buf_impl_t *db = NULL; 301 int err; 302 303 if ((flags & DB_RF_HAVESTRUCT) == 0) 304 rw_enter(&dn->dn_struct_rwlock, RW_READER); 305 306 db = dbuf_hold(dn, DMU_SPILL_BLKID, tag); 307 308 if ((flags & DB_RF_HAVESTRUCT) == 0) 309 rw_exit(&dn->dn_struct_rwlock); 310 311 ASSERT(db != NULL); 312 err = dbuf_read(db, NULL, flags); 313 if (err == 0) 314 *dbp = &db->db; 315 else 316 dbuf_rele(db, tag); 317 return (err); 318 } 319 320 int 321 dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp) 322 { 323 dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus; 324 dnode_t *dn; 325 int err; 326 327 DB_DNODE_ENTER(db); 328 dn = DB_DNODE(db); 329 330 if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_SA) { 331 err = SET_ERROR(EINVAL); 332 } else { 333 rw_enter(&dn->dn_struct_rwlock, RW_READER); 334 335 if (!dn->dn_have_spill) { 336 err = SET_ERROR(ENOENT); 337 } else { 338 err = dmu_spill_hold_by_dnode(dn, 339 DB_RF_HAVESTRUCT | DB_RF_CANFAIL, tag, dbp); 340 } 341 342 rw_exit(&dn->dn_struct_rwlock); 343 } 344 345 DB_DNODE_EXIT(db); 346 return (err); 347 } 348 349 int 350 dmu_spill_hold_by_bonus(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp) 351 { 352 dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus; 353 dnode_t *dn; 354 int err; 355 356 DB_DNODE_ENTER(db); 357 dn = DB_DNODE(db); 358 err = dmu_spill_hold_by_dnode(dn, DB_RF_CANFAIL, tag, dbp); 359 DB_DNODE_EXIT(db); 360 361 return (err); 362 } 363 364 /* 365 * Note: longer-term, we should modify all of the dmu_buf_*() interfaces 366 * to take a held dnode rather than <os, object> -- the lookup is wasteful, 367 * and can induce severe lock contention when writing to several files 368 * whose dnodes are in the same block. 369 */ 370 static int 371 dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length, 372 int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp, uint32_t flags) 373 { 374 dmu_buf_t **dbp; 375 uint64_t blkid, nblks, i; 376 uint32_t dbuf_flags; 377 int err; 378 zio_t *zio; 379 380 ASSERT(length <= DMU_MAX_ACCESS); 381 382 dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT; 383 if (flags & DMU_READ_NO_PREFETCH || length > zfetch_array_rd_sz) 384 dbuf_flags |= DB_RF_NOPREFETCH; 385 386 rw_enter(&dn->dn_struct_rwlock, RW_READER); 387 if (dn->dn_datablkshift) { 388 int blkshift = dn->dn_datablkshift; 389 nblks = (P2ROUNDUP(offset+length, 1ULL<<blkshift) - 390 P2ALIGN(offset, 1ULL<<blkshift)) >> blkshift; 391 } else { 392 if (offset + length > dn->dn_datablksz) { 393 zfs_panic_recover("zfs: accessing past end of object " 394 "%llx/%llx (size=%u access=%llu+%llu)", 395 (longlong_t)dn->dn_objset-> 396 os_dsl_dataset->ds_object, 397 (longlong_t)dn->dn_object, dn->dn_datablksz, 398 (longlong_t)offset, (longlong_t)length); 399 rw_exit(&dn->dn_struct_rwlock); 400 return (SET_ERROR(EIO)); 401 } 402 nblks = 1; 403 } 404 dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP); 405 406 zio = zio_root(dn->dn_objset->os_spa, NULL, NULL, ZIO_FLAG_CANFAIL); 407 blkid = dbuf_whichblock(dn, offset); 408 for (i = 0; i < nblks; i++) { 409 dmu_buf_impl_t *db = dbuf_hold(dn, blkid+i, tag); 410 if (db == NULL) { 411 rw_exit(&dn->dn_struct_rwlock); 412 dmu_buf_rele_array(dbp, nblks, tag); 413 zio_nowait(zio); 414 return (SET_ERROR(EIO)); 415 } 416 /* initiate async i/o */ 417 if (read) { 418 (void) dbuf_read(db, zio, dbuf_flags); 419 } 420 dbp[i] = &db->db; 421 } 422 rw_exit(&dn->dn_struct_rwlock); 423 424 /* wait for async i/o */ 425 err = zio_wait(zio); 426 if (err) { 427 dmu_buf_rele_array(dbp, nblks, tag); 428 return (err); 429 } 430 431 /* wait for other io to complete */ 432 if (read) { 433 for (i = 0; i < nblks; i++) { 434 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i]; 435 mutex_enter(&db->db_mtx); 436 while (db->db_state == DB_READ || 437 db->db_state == DB_FILL) 438 cv_wait(&db->db_changed, &db->db_mtx); 439 if (db->db_state == DB_UNCACHED) 440 err = SET_ERROR(EIO); 441 mutex_exit(&db->db_mtx); 442 if (err) { 443 dmu_buf_rele_array(dbp, nblks, tag); 444 return (err); 445 } 446 } 447 } 448 449 *numbufsp = nblks; 450 *dbpp = dbp; 451 return (0); 452 } 453 454 static int 455 dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset, 456 uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp) 457 { 458 dnode_t *dn; 459 int err; 460 461 err = dnode_hold(os, object, FTAG, &dn); 462 if (err) 463 return (err); 464 465 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag, 466 numbufsp, dbpp, DMU_READ_PREFETCH); 467 468 dnode_rele(dn, FTAG); 469 470 return (err); 471 } 472 473 int 474 dmu_buf_hold_array_by_bonus(dmu_buf_t *db_fake, uint64_t offset, 475 uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp) 476 { 477 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 478 dnode_t *dn; 479 int err; 480 481 DB_DNODE_ENTER(db); 482 dn = DB_DNODE(db); 483 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag, 484 numbufsp, dbpp, DMU_READ_PREFETCH); 485 DB_DNODE_EXIT(db); 486 487 return (err); 488 } 489 490 void 491 dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, void *tag) 492 { 493 int i; 494 dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake; 495 496 if (numbufs == 0) 497 return; 498 499 for (i = 0; i < numbufs; i++) { 500 if (dbp[i]) 501 dbuf_rele(dbp[i], tag); 502 } 503 504 kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs); 505 } 506 507 /* 508 * Issue prefetch i/os for the given blocks. 509 * 510 * Note: The assumption is that we *know* these blocks will be needed 511 * almost immediately. Therefore, the prefetch i/os will be issued at 512 * ZIO_PRIORITY_SYNC_READ 513 * 514 * Note: indirect blocks and other metadata will be read synchronously, 515 * causing this function to block if they are not already cached. 516 */ 517 void 518 dmu_prefetch(objset_t *os, uint64_t object, uint64_t offset, uint64_t len) 519 { 520 dnode_t *dn; 521 uint64_t blkid; 522 int nblks, err; 523 524 if (zfs_prefetch_disable) 525 return; 526 527 if (len == 0) { /* they're interested in the bonus buffer */ 528 dn = DMU_META_DNODE(os); 529 530 if (object == 0 || object >= DN_MAX_OBJECT) 531 return; 532 533 rw_enter(&dn->dn_struct_rwlock, RW_READER); 534 blkid = dbuf_whichblock(dn, object * sizeof (dnode_phys_t)); 535 dbuf_prefetch(dn, blkid, ZIO_PRIORITY_SYNC_READ); 536 rw_exit(&dn->dn_struct_rwlock); 537 return; 538 } 539 540 /* 541 * XXX - Note, if the dnode for the requested object is not 542 * already cached, we will do a *synchronous* read in the 543 * dnode_hold() call. The same is true for any indirects. 544 */ 545 err = dnode_hold(os, object, FTAG, &dn); 546 if (err != 0) 547 return; 548 549 rw_enter(&dn->dn_struct_rwlock, RW_READER); 550 if (dn->dn_datablkshift) { 551 int blkshift = dn->dn_datablkshift; 552 nblks = (P2ROUNDUP(offset + len, 1 << blkshift) - 553 P2ALIGN(offset, 1 << blkshift)) >> blkshift; 554 } else { 555 nblks = (offset < dn->dn_datablksz); 556 } 557 558 if (nblks != 0) { 559 blkid = dbuf_whichblock(dn, offset); 560 for (int i = 0; i < nblks; i++) 561 dbuf_prefetch(dn, blkid + i, ZIO_PRIORITY_SYNC_READ); 562 } 563 564 rw_exit(&dn->dn_struct_rwlock); 565 566 dnode_rele(dn, FTAG); 567 } 568 569 /* 570 * Get the next "chunk" of file data to free. We traverse the file from 571 * the end so that the file gets shorter over time (if we crashes in the 572 * middle, this will leave us in a better state). We find allocated file 573 * data by simply searching the allocated level 1 indirects. 574 * 575 * On input, *start should be the first offset that does not need to be 576 * freed (e.g. "offset + length"). On return, *start will be the first 577 * offset that should be freed. 578 */ 579 static int 580 get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t minimum) 581 { 582 uint64_t maxblks = DMU_MAX_ACCESS >> (dn->dn_indblkshift + 1); 583 /* bytes of data covered by a level-1 indirect block */ 584 uint64_t iblkrange = 585 dn->dn_datablksz * EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT); 586 587 ASSERT3U(minimum, <=, *start); 588 589 if (*start - minimum <= iblkrange * maxblks) { 590 *start = minimum; 591 return (0); 592 } 593 ASSERT(ISP2(iblkrange)); 594 595 for (uint64_t blks = 0; *start > minimum && blks < maxblks; blks++) { 596 int err; 597 598 /* 599 * dnode_next_offset(BACKWARDS) will find an allocated L1 600 * indirect block at or before the input offset. We must 601 * decrement *start so that it is at the end of the region 602 * to search. 603 */ 604 (*start)--; 605 err = dnode_next_offset(dn, 606 DNODE_FIND_BACKWARDS, start, 2, 1, 0); 607 608 /* if there are no indirect blocks before start, we are done */ 609 if (err == ESRCH) { 610 *start = minimum; 611 break; 612 } else if (err != 0) { 613 return (err); 614 } 615 616 /* set start to the beginning of this L1 indirect */ 617 *start = P2ALIGN(*start, iblkrange); 618 } 619 if (*start < minimum) 620 *start = minimum; 621 return (0); 622 } 623 624 static int 625 dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset, 626 uint64_t length) 627 { 628 uint64_t object_size = (dn->dn_maxblkid + 1) * dn->dn_datablksz; 629 int err; 630 631 if (offset >= object_size) 632 return (0); 633 634 if (length == DMU_OBJECT_END || offset + length > object_size) 635 length = object_size - offset; 636 637 while (length != 0) { 638 uint64_t chunk_end, chunk_begin; 639 640 chunk_end = chunk_begin = offset + length; 641 642 /* move chunk_begin backwards to the beginning of this chunk */ 643 err = get_next_chunk(dn, &chunk_begin, offset); 644 if (err) 645 return (err); 646 ASSERT3U(chunk_begin, >=, offset); 647 ASSERT3U(chunk_begin, <=, chunk_end); 648 649 dmu_tx_t *tx = dmu_tx_create(os); 650 dmu_tx_hold_free(tx, dn->dn_object, 651 chunk_begin, chunk_end - chunk_begin); 652 err = dmu_tx_assign(tx, TXG_WAIT); 653 if (err) { 654 dmu_tx_abort(tx); 655 return (err); 656 } 657 dnode_free_range(dn, chunk_begin, chunk_end - chunk_begin, tx); 658 dmu_tx_commit(tx); 659 660 length -= chunk_end - chunk_begin; 661 } 662 return (0); 663 } 664 665 int 666 dmu_free_long_range(objset_t *os, uint64_t object, 667 uint64_t offset, uint64_t length) 668 { 669 dnode_t *dn; 670 int err; 671 672 err = dnode_hold(os, object, FTAG, &dn); 673 if (err != 0) 674 return (err); 675 err = dmu_free_long_range_impl(os, dn, offset, length); 676 dnode_rele(dn, FTAG); 677 return (err); 678 } 679 680 int 681 dmu_free_long_object(objset_t *os, uint64_t object) 682 { 683 dmu_tx_t *tx; 684 int err; 685 686 err = dmu_free_long_range(os, object, 0, DMU_OBJECT_END); 687 if (err != 0) 688 return (err); 689 690 tx = dmu_tx_create(os); 691 dmu_tx_hold_bonus(tx, object); 692 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END); 693 err = dmu_tx_assign(tx, TXG_WAIT); 694 if (err == 0) { 695 err = dmu_object_free(os, object, tx); 696 dmu_tx_commit(tx); 697 } else { 698 dmu_tx_abort(tx); 699 } 700 701 return (err); 702 } 703 704 int 705 dmu_free_range(objset_t *os, uint64_t object, uint64_t offset, 706 uint64_t size, dmu_tx_t *tx) 707 { 708 dnode_t *dn; 709 int err = dnode_hold(os, object, FTAG, &dn); 710 if (err) 711 return (err); 712 ASSERT(offset < UINT64_MAX); 713 ASSERT(size == -1ULL || size <= UINT64_MAX - offset); 714 dnode_free_range(dn, offset, size, tx); 715 dnode_rele(dn, FTAG); 716 return (0); 717 } 718 719 int 720 dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 721 void *buf, uint32_t flags) 722 { 723 dnode_t *dn; 724 dmu_buf_t **dbp; 725 int numbufs, err; 726 727 err = dnode_hold(os, object, FTAG, &dn); 728 if (err) 729 return (err); 730 731 /* 732 * Deal with odd block sizes, where there can't be data past the first 733 * block. If we ever do the tail block optimization, we will need to 734 * handle that here as well. 735 */ 736 if (dn->dn_maxblkid == 0) { 737 int newsz = offset > dn->dn_datablksz ? 0 : 738 MIN(size, dn->dn_datablksz - offset); 739 bzero((char *)buf + newsz, size - newsz); 740 size = newsz; 741 } 742 743 while (size > 0) { 744 uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2); 745 int i; 746 747 /* 748 * NB: we could do this block-at-a-time, but it's nice 749 * to be reading in parallel. 750 */ 751 err = dmu_buf_hold_array_by_dnode(dn, offset, mylen, 752 TRUE, FTAG, &numbufs, &dbp, flags); 753 if (err) 754 break; 755 756 for (i = 0; i < numbufs; i++) { 757 int tocpy; 758 int bufoff; 759 dmu_buf_t *db = dbp[i]; 760 761 ASSERT(size > 0); 762 763 bufoff = offset - db->db_offset; 764 tocpy = (int)MIN(db->db_size - bufoff, size); 765 766 bcopy((char *)db->db_data + bufoff, buf, tocpy); 767 768 offset += tocpy; 769 size -= tocpy; 770 buf = (char *)buf + tocpy; 771 } 772 dmu_buf_rele_array(dbp, numbufs, FTAG); 773 } 774 dnode_rele(dn, FTAG); 775 return (err); 776 } 777 778 void 779 dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 780 const void *buf, dmu_tx_t *tx) 781 { 782 dmu_buf_t **dbp; 783 int numbufs, i; 784 785 if (size == 0) 786 return; 787 788 VERIFY(0 == dmu_buf_hold_array(os, object, offset, size, 789 FALSE, FTAG, &numbufs, &dbp)); 790 791 for (i = 0; i < numbufs; i++) { 792 int tocpy; 793 int bufoff; 794 dmu_buf_t *db = dbp[i]; 795 796 ASSERT(size > 0); 797 798 bufoff = offset - db->db_offset; 799 tocpy = (int)MIN(db->db_size - bufoff, size); 800 801 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); 802 803 if (tocpy == db->db_size) 804 dmu_buf_will_fill(db, tx); 805 else 806 dmu_buf_will_dirty(db, tx); 807 808 bcopy(buf, (char *)db->db_data + bufoff, tocpy); 809 810 if (tocpy == db->db_size) 811 dmu_buf_fill_done(db, tx); 812 813 offset += tocpy; 814 size -= tocpy; 815 buf = (char *)buf + tocpy; 816 } 817 dmu_buf_rele_array(dbp, numbufs, FTAG); 818 } 819 820 void 821 dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 822 dmu_tx_t *tx) 823 { 824 dmu_buf_t **dbp; 825 int numbufs, i; 826 827 if (size == 0) 828 return; 829 830 VERIFY(0 == dmu_buf_hold_array(os, object, offset, size, 831 FALSE, FTAG, &numbufs, &dbp)); 832 833 for (i = 0; i < numbufs; i++) { 834 dmu_buf_t *db = dbp[i]; 835 836 dmu_buf_will_not_fill(db, tx); 837 } 838 dmu_buf_rele_array(dbp, numbufs, FTAG); 839 } 840 841 /* 842 * DMU support for xuio 843 */ 844 kstat_t *xuio_ksp = NULL; 845 846 int 847 dmu_xuio_init(xuio_t *xuio, int nblk) 848 { 849 dmu_xuio_t *priv; 850 uio_t *uio = &xuio->xu_uio; 851 852 uio->uio_iovcnt = nblk; 853 uio->uio_iov = kmem_zalloc(nblk * sizeof (iovec_t), KM_SLEEP); 854 855 priv = kmem_zalloc(sizeof (dmu_xuio_t), KM_SLEEP); 856 priv->cnt = nblk; 857 priv->bufs = kmem_zalloc(nblk * sizeof (arc_buf_t *), KM_SLEEP); 858 priv->iovp = uio->uio_iov; 859 XUIO_XUZC_PRIV(xuio) = priv; 860 861 if (XUIO_XUZC_RW(xuio) == UIO_READ) 862 XUIOSTAT_INCR(xuiostat_onloan_rbuf, nblk); 863 else 864 XUIOSTAT_INCR(xuiostat_onloan_wbuf, nblk); 865 866 return (0); 867 } 868 869 void 870 dmu_xuio_fini(xuio_t *xuio) 871 { 872 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 873 int nblk = priv->cnt; 874 875 kmem_free(priv->iovp, nblk * sizeof (iovec_t)); 876 kmem_free(priv->bufs, nblk * sizeof (arc_buf_t *)); 877 kmem_free(priv, sizeof (dmu_xuio_t)); 878 879 if (XUIO_XUZC_RW(xuio) == UIO_READ) 880 XUIOSTAT_INCR(xuiostat_onloan_rbuf, -nblk); 881 else 882 XUIOSTAT_INCR(xuiostat_onloan_wbuf, -nblk); 883 } 884 885 /* 886 * Initialize iov[priv->next] and priv->bufs[priv->next] with { off, n, abuf } 887 * and increase priv->next by 1. 888 */ 889 int 890 dmu_xuio_add(xuio_t *xuio, arc_buf_t *abuf, offset_t off, size_t n) 891 { 892 struct iovec *iov; 893 uio_t *uio = &xuio->xu_uio; 894 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 895 int i = priv->next++; 896 897 ASSERT(i < priv->cnt); 898 ASSERT(off + n <= arc_buf_size(abuf)); 899 iov = uio->uio_iov + i; 900 iov->iov_base = (char *)abuf->b_data + off; 901 iov->iov_len = n; 902 priv->bufs[i] = abuf; 903 return (0); 904 } 905 906 int 907 dmu_xuio_cnt(xuio_t *xuio) 908 { 909 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 910 return (priv->cnt); 911 } 912 913 arc_buf_t * 914 dmu_xuio_arcbuf(xuio_t *xuio, int i) 915 { 916 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 917 918 ASSERT(i < priv->cnt); 919 return (priv->bufs[i]); 920 } 921 922 void 923 dmu_xuio_clear(xuio_t *xuio, int i) 924 { 925 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 926 927 ASSERT(i < priv->cnt); 928 priv->bufs[i] = NULL; 929 } 930 931 static void 932 xuio_stat_init(void) 933 { 934 xuio_ksp = kstat_create("zfs", 0, "xuio_stats", "misc", 935 KSTAT_TYPE_NAMED, sizeof (xuio_stats) / sizeof (kstat_named_t), 936 KSTAT_FLAG_VIRTUAL); 937 if (xuio_ksp != NULL) { 938 xuio_ksp->ks_data = &xuio_stats; 939 kstat_install(xuio_ksp); 940 } 941 } 942 943 static void 944 xuio_stat_fini(void) 945 { 946 if (xuio_ksp != NULL) { 947 kstat_delete(xuio_ksp); 948 xuio_ksp = NULL; 949 } 950 } 951 952 void 953 xuio_stat_wbuf_copied() 954 { 955 XUIOSTAT_BUMP(xuiostat_wbuf_copied); 956 } 957 958 void 959 xuio_stat_wbuf_nocopy() 960 { 961 XUIOSTAT_BUMP(xuiostat_wbuf_nocopy); 962 } 963 964 #ifdef _KERNEL 965 int 966 dmu_read_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size) 967 { 968 dmu_buf_t **dbp; 969 int numbufs, i, err; 970 xuio_t *xuio = NULL; 971 972 /* 973 * NB: we could do this block-at-a-time, but it's nice 974 * to be reading in parallel. 975 */ 976 err = dmu_buf_hold_array(os, object, uio->uio_loffset, size, TRUE, FTAG, 977 &numbufs, &dbp); 978 if (err) 979 return (err); 980 981 if (uio->uio_extflg == UIO_XUIO) 982 xuio = (xuio_t *)uio; 983 984 for (i = 0; i < numbufs; i++) { 985 int tocpy; 986 int bufoff; 987 dmu_buf_t *db = dbp[i]; 988 989 ASSERT(size > 0); 990 991 bufoff = uio->uio_loffset - db->db_offset; 992 tocpy = (int)MIN(db->db_size - bufoff, size); 993 994 if (xuio) { 995 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 996 arc_buf_t *dbuf_abuf = dbi->db_buf; 997 arc_buf_t *abuf = dbuf_loan_arcbuf(dbi); 998 err = dmu_xuio_add(xuio, abuf, bufoff, tocpy); 999 if (!err) { 1000 uio->uio_resid -= tocpy; 1001 uio->uio_loffset += tocpy; 1002 } 1003 1004 if (abuf == dbuf_abuf) 1005 XUIOSTAT_BUMP(xuiostat_rbuf_nocopy); 1006 else 1007 XUIOSTAT_BUMP(xuiostat_rbuf_copied); 1008 } else { 1009 err = uiomove((char *)db->db_data + bufoff, tocpy, 1010 UIO_READ, uio); 1011 } 1012 if (err) 1013 break; 1014 1015 size -= tocpy; 1016 } 1017 dmu_buf_rele_array(dbp, numbufs, FTAG); 1018 1019 return (err); 1020 } 1021 1022 static int 1023 dmu_write_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size, dmu_tx_t *tx) 1024 { 1025 dmu_buf_t **dbp; 1026 int numbufs; 1027 int err = 0; 1028 int i; 1029 1030 err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size, 1031 FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH); 1032 if (err) 1033 return (err); 1034 1035 for (i = 0; i < numbufs; i++) { 1036 int tocpy; 1037 int bufoff; 1038 dmu_buf_t *db = dbp[i]; 1039 1040 ASSERT(size > 0); 1041 1042 bufoff = uio->uio_loffset - db->db_offset; 1043 tocpy = (int)MIN(db->db_size - bufoff, size); 1044 1045 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); 1046 1047 if (tocpy == db->db_size) 1048 dmu_buf_will_fill(db, tx); 1049 else 1050 dmu_buf_will_dirty(db, tx); 1051 1052 /* 1053 * XXX uiomove could block forever (eg. nfs-backed 1054 * pages). There needs to be a uiolockdown() function 1055 * to lock the pages in memory, so that uiomove won't 1056 * block. 1057 */ 1058 err = uiomove((char *)db->db_data + bufoff, tocpy, 1059 UIO_WRITE, uio); 1060 1061 if (tocpy == db->db_size) 1062 dmu_buf_fill_done(db, tx); 1063 1064 if (err) 1065 break; 1066 1067 size -= tocpy; 1068 } 1069 1070 dmu_buf_rele_array(dbp, numbufs, FTAG); 1071 return (err); 1072 } 1073 1074 int 1075 dmu_write_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size, 1076 dmu_tx_t *tx) 1077 { 1078 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb; 1079 dnode_t *dn; 1080 int err; 1081 1082 if (size == 0) 1083 return (0); 1084 1085 DB_DNODE_ENTER(db); 1086 dn = DB_DNODE(db); 1087 err = dmu_write_uio_dnode(dn, uio, size, tx); 1088 DB_DNODE_EXIT(db); 1089 1090 return (err); 1091 } 1092 1093 int 1094 dmu_write_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size, 1095 dmu_tx_t *tx) 1096 { 1097 dnode_t *dn; 1098 int err; 1099 1100 if (size == 0) 1101 return (0); 1102 1103 err = dnode_hold(os, object, FTAG, &dn); 1104 if (err) 1105 return (err); 1106 1107 err = dmu_write_uio_dnode(dn, uio, size, tx); 1108 1109 dnode_rele(dn, FTAG); 1110 1111 return (err); 1112 } 1113 1114 int 1115 dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 1116 page_t *pp, dmu_tx_t *tx) 1117 { 1118 dmu_buf_t **dbp; 1119 int numbufs, i; 1120 int err; 1121 1122 if (size == 0) 1123 return (0); 1124 1125 err = dmu_buf_hold_array(os, object, offset, size, 1126 FALSE, FTAG, &numbufs, &dbp); 1127 if (err) 1128 return (err); 1129 1130 for (i = 0; i < numbufs; i++) { 1131 int tocpy, copied, thiscpy; 1132 int bufoff; 1133 dmu_buf_t *db = dbp[i]; 1134 caddr_t va; 1135 1136 ASSERT(size > 0); 1137 ASSERT3U(db->db_size, >=, PAGESIZE); 1138 1139 bufoff = offset - db->db_offset; 1140 tocpy = (int)MIN(db->db_size - bufoff, size); 1141 1142 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); 1143 1144 if (tocpy == db->db_size) 1145 dmu_buf_will_fill(db, tx); 1146 else 1147 dmu_buf_will_dirty(db, tx); 1148 1149 for (copied = 0; copied < tocpy; copied += PAGESIZE) { 1150 ASSERT3U(pp->p_offset, ==, db->db_offset + bufoff); 1151 thiscpy = MIN(PAGESIZE, tocpy - copied); 1152 va = zfs_map_page(pp, S_READ); 1153 bcopy(va, (char *)db->db_data + bufoff, thiscpy); 1154 zfs_unmap_page(pp, va); 1155 pp = pp->p_next; 1156 bufoff += PAGESIZE; 1157 } 1158 1159 if (tocpy == db->db_size) 1160 dmu_buf_fill_done(db, tx); 1161 1162 offset += tocpy; 1163 size -= tocpy; 1164 } 1165 dmu_buf_rele_array(dbp, numbufs, FTAG); 1166 return (err); 1167 } 1168 #endif 1169 1170 /* 1171 * Allocate a loaned anonymous arc buffer. 1172 */ 1173 arc_buf_t * 1174 dmu_request_arcbuf(dmu_buf_t *handle, int size) 1175 { 1176 dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle; 1177 spa_t *spa; 1178 1179 DB_GET_SPA(&spa, db); 1180 return (arc_loan_buf(spa, size)); 1181 } 1182 1183 /* 1184 * Free a loaned arc buffer. 1185 */ 1186 void 1187 dmu_return_arcbuf(arc_buf_t *buf) 1188 { 1189 arc_return_buf(buf, FTAG); 1190 VERIFY(arc_buf_remove_ref(buf, FTAG)); 1191 } 1192 1193 /* 1194 * When possible directly assign passed loaned arc buffer to a dbuf. 1195 * If this is not possible copy the contents of passed arc buf via 1196 * dmu_write(). 1197 */ 1198 void 1199 dmu_assign_arcbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf, 1200 dmu_tx_t *tx) 1201 { 1202 dmu_buf_impl_t *dbuf = (dmu_buf_impl_t *)handle; 1203 dnode_t *dn; 1204 dmu_buf_impl_t *db; 1205 uint32_t blksz = (uint32_t)arc_buf_size(buf); 1206 uint64_t blkid; 1207 1208 DB_DNODE_ENTER(dbuf); 1209 dn = DB_DNODE(dbuf); 1210 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1211 blkid = dbuf_whichblock(dn, offset); 1212 VERIFY((db = dbuf_hold(dn, blkid, FTAG)) != NULL); 1213 rw_exit(&dn->dn_struct_rwlock); 1214 DB_DNODE_EXIT(dbuf); 1215 1216 if (offset == db->db.db_offset && blksz == db->db.db_size) { 1217 dbuf_assign_arcbuf(db, buf, tx); 1218 dbuf_rele(db, FTAG); 1219 } else { 1220 objset_t *os; 1221 uint64_t object; 1222 1223 DB_DNODE_ENTER(dbuf); 1224 dn = DB_DNODE(dbuf); 1225 os = dn->dn_objset; 1226 object = dn->dn_object; 1227 DB_DNODE_EXIT(dbuf); 1228 1229 dbuf_rele(db, FTAG); 1230 dmu_write(os, object, offset, blksz, buf->b_data, tx); 1231 dmu_return_arcbuf(buf); 1232 XUIOSTAT_BUMP(xuiostat_wbuf_copied); 1233 } 1234 } 1235 1236 typedef struct { 1237 dbuf_dirty_record_t *dsa_dr; 1238 dmu_sync_cb_t *dsa_done; 1239 zgd_t *dsa_zgd; 1240 dmu_tx_t *dsa_tx; 1241 } dmu_sync_arg_t; 1242 1243 /* ARGSUSED */ 1244 static void 1245 dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg) 1246 { 1247 dmu_sync_arg_t *dsa = varg; 1248 dmu_buf_t *db = dsa->dsa_zgd->zgd_db; 1249 blkptr_t *bp = zio->io_bp; 1250 1251 if (zio->io_error == 0) { 1252 if (BP_IS_HOLE(bp)) { 1253 /* 1254 * A block of zeros may compress to a hole, but the 1255 * block size still needs to be known for replay. 1256 */ 1257 BP_SET_LSIZE(bp, db->db_size); 1258 } else { 1259 ASSERT(BP_GET_LEVEL(bp) == 0); 1260 bp->blk_fill = 1; 1261 } 1262 } 1263 } 1264 1265 static void 1266 dmu_sync_late_arrival_ready(zio_t *zio) 1267 { 1268 dmu_sync_ready(zio, NULL, zio->io_private); 1269 } 1270 1271 /* ARGSUSED */ 1272 static void 1273 dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg) 1274 { 1275 dmu_sync_arg_t *dsa = varg; 1276 dbuf_dirty_record_t *dr = dsa->dsa_dr; 1277 dmu_buf_impl_t *db = dr->dr_dbuf; 1278 1279 mutex_enter(&db->db_mtx); 1280 ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC); 1281 if (zio->io_error == 0) { 1282 dr->dt.dl.dr_nopwrite = !!(zio->io_flags & ZIO_FLAG_NOPWRITE); 1283 if (dr->dt.dl.dr_nopwrite) { 1284 blkptr_t *bp = zio->io_bp; 1285 blkptr_t *bp_orig = &zio->io_bp_orig; 1286 uint8_t chksum = BP_GET_CHECKSUM(bp_orig); 1287 1288 ASSERT(BP_EQUAL(bp, bp_orig)); 1289 ASSERT(zio->io_prop.zp_compress != ZIO_COMPRESS_OFF); 1290 ASSERT(zio_checksum_table[chksum].ci_dedup); 1291 } 1292 dr->dt.dl.dr_overridden_by = *zio->io_bp; 1293 dr->dt.dl.dr_override_state = DR_OVERRIDDEN; 1294 dr->dt.dl.dr_copies = zio->io_prop.zp_copies; 1295 if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by)) 1296 BP_ZERO(&dr->dt.dl.dr_overridden_by); 1297 } else { 1298 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 1299 } 1300 cv_broadcast(&db->db_changed); 1301 mutex_exit(&db->db_mtx); 1302 1303 dsa->dsa_done(dsa->dsa_zgd, zio->io_error); 1304 1305 kmem_free(dsa, sizeof (*dsa)); 1306 } 1307 1308 static void 1309 dmu_sync_late_arrival_done(zio_t *zio) 1310 { 1311 blkptr_t *bp = zio->io_bp; 1312 dmu_sync_arg_t *dsa = zio->io_private; 1313 blkptr_t *bp_orig = &zio->io_bp_orig; 1314 1315 if (zio->io_error == 0 && !BP_IS_HOLE(bp)) { 1316 /* 1317 * If we didn't allocate a new block (i.e. ZIO_FLAG_NOPWRITE) 1318 * then there is nothing to do here. Otherwise, free the 1319 * newly allocated block in this txg. 1320 */ 1321 if (zio->io_flags & ZIO_FLAG_NOPWRITE) { 1322 ASSERT(BP_EQUAL(bp, bp_orig)); 1323 } else { 1324 ASSERT(BP_IS_HOLE(bp_orig) || !BP_EQUAL(bp, bp_orig)); 1325 ASSERT(zio->io_bp->blk_birth == zio->io_txg); 1326 ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa)); 1327 zio_free(zio->io_spa, zio->io_txg, zio->io_bp); 1328 } 1329 } 1330 1331 dmu_tx_commit(dsa->dsa_tx); 1332 1333 dsa->dsa_done(dsa->dsa_zgd, zio->io_error); 1334 1335 kmem_free(dsa, sizeof (*dsa)); 1336 } 1337 1338 static int 1339 dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd, 1340 zio_prop_t *zp, zbookmark_t *zb) 1341 { 1342 dmu_sync_arg_t *dsa; 1343 dmu_tx_t *tx; 1344 1345 tx = dmu_tx_create(os); 1346 dmu_tx_hold_space(tx, zgd->zgd_db->db_size); 1347 if (dmu_tx_assign(tx, TXG_WAIT) != 0) { 1348 dmu_tx_abort(tx); 1349 /* Make zl_get_data do txg_waited_synced() */ 1350 return (SET_ERROR(EIO)); 1351 } 1352 1353 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP); 1354 dsa->dsa_dr = NULL; 1355 dsa->dsa_done = done; 1356 dsa->dsa_zgd = zgd; 1357 dsa->dsa_tx = tx; 1358 1359 zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp, 1360 zgd->zgd_db->db_data, zgd->zgd_db->db_size, zp, 1361 dmu_sync_late_arrival_ready, NULL, dmu_sync_late_arrival_done, dsa, 1362 ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, zb)); 1363 1364 return (0); 1365 } 1366 1367 /* 1368 * Intent log support: sync the block associated with db to disk. 1369 * N.B. and XXX: the caller is responsible for making sure that the 1370 * data isn't changing while dmu_sync() is writing it. 1371 * 1372 * Return values: 1373 * 1374 * EEXIST: this txg has already been synced, so there's nothing to do. 1375 * The caller should not log the write. 1376 * 1377 * ENOENT: the block was dbuf_free_range()'d, so there's nothing to do. 1378 * The caller should not log the write. 1379 * 1380 * EALREADY: this block is already in the process of being synced. 1381 * The caller should track its progress (somehow). 1382 * 1383 * EIO: could not do the I/O. 1384 * The caller should do a txg_wait_synced(). 1385 * 1386 * 0: the I/O has been initiated. 1387 * The caller should log this blkptr in the done callback. 1388 * It is possible that the I/O will fail, in which case 1389 * the error will be reported to the done callback and 1390 * propagated to pio from zio_done(). 1391 */ 1392 int 1393 dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd) 1394 { 1395 blkptr_t *bp = zgd->zgd_bp; 1396 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db; 1397 objset_t *os = db->db_objset; 1398 dsl_dataset_t *ds = os->os_dsl_dataset; 1399 dbuf_dirty_record_t *dr; 1400 dmu_sync_arg_t *dsa; 1401 zbookmark_t zb; 1402 zio_prop_t zp; 1403 dnode_t *dn; 1404 1405 ASSERT(pio != NULL); 1406 ASSERT(txg != 0); 1407 1408 SET_BOOKMARK(&zb, ds->ds_object, 1409 db->db.db_object, db->db_level, db->db_blkid); 1410 1411 DB_DNODE_ENTER(db); 1412 dn = DB_DNODE(db); 1413 dmu_write_policy(os, dn, db->db_level, WP_DMU_SYNC, &zp); 1414 DB_DNODE_EXIT(db); 1415 1416 /* 1417 * If we're frozen (running ziltest), we always need to generate a bp. 1418 */ 1419 if (txg > spa_freeze_txg(os->os_spa)) 1420 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb)); 1421 1422 /* 1423 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf() 1424 * and us. If we determine that this txg is not yet syncing, 1425 * but it begins to sync a moment later, that's OK because the 1426 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx. 1427 */ 1428 mutex_enter(&db->db_mtx); 1429 1430 if (txg <= spa_last_synced_txg(os->os_spa)) { 1431 /* 1432 * This txg has already synced. There's nothing to do. 1433 */ 1434 mutex_exit(&db->db_mtx); 1435 return (SET_ERROR(EEXIST)); 1436 } 1437 1438 if (txg <= spa_syncing_txg(os->os_spa)) { 1439 /* 1440 * This txg is currently syncing, so we can't mess with 1441 * the dirty record anymore; just write a new log block. 1442 */ 1443 mutex_exit(&db->db_mtx); 1444 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb)); 1445 } 1446 1447 dr = db->db_last_dirty; 1448 while (dr && dr->dr_txg != txg) 1449 dr = dr->dr_next; 1450 1451 if (dr == NULL) { 1452 /* 1453 * There's no dr for this dbuf, so it must have been freed. 1454 * There's no need to log writes to freed blocks, so we're done. 1455 */ 1456 mutex_exit(&db->db_mtx); 1457 return (SET_ERROR(ENOENT)); 1458 } 1459 1460 ASSERT(dr->dr_next == NULL || dr->dr_next->dr_txg < txg); 1461 1462 /* 1463 * Assume the on-disk data is X, the current syncing data is Y, 1464 * and the current in-memory data is Z (currently in dmu_sync). 1465 * X and Z are identical but Y is has been modified. Normally, 1466 * when X and Z are the same we will perform a nopwrite but if Y 1467 * is different we must disable nopwrite since the resulting write 1468 * of Y to disk can free the block containing X. If we allowed a 1469 * nopwrite to occur the block pointing to Z would reference a freed 1470 * block. Since this is a rare case we simplify this by disabling 1471 * nopwrite if the current dmu_sync-ing dbuf has been modified in 1472 * a previous transaction. 1473 */ 1474 if (dr->dr_next) 1475 zp.zp_nopwrite = B_FALSE; 1476 1477 ASSERT(dr->dr_txg == txg); 1478 if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC || 1479 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) { 1480 /* 1481 * We have already issued a sync write for this buffer, 1482 * or this buffer has already been synced. It could not 1483 * have been dirtied since, or we would have cleared the state. 1484 */ 1485 mutex_exit(&db->db_mtx); 1486 return (SET_ERROR(EALREADY)); 1487 } 1488 1489 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN); 1490 dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC; 1491 mutex_exit(&db->db_mtx); 1492 1493 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP); 1494 dsa->dsa_dr = dr; 1495 dsa->dsa_done = done; 1496 dsa->dsa_zgd = zgd; 1497 dsa->dsa_tx = NULL; 1498 1499 zio_nowait(arc_write(pio, os->os_spa, txg, 1500 bp, dr->dt.dl.dr_data, DBUF_IS_L2CACHEABLE(db), 1501 DBUF_IS_L2COMPRESSIBLE(db), &zp, dmu_sync_ready, 1502 NULL, dmu_sync_done, dsa, ZIO_PRIORITY_SYNC_WRITE, 1503 ZIO_FLAG_CANFAIL, &zb)); 1504 1505 return (0); 1506 } 1507 1508 int 1509 dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs, 1510 dmu_tx_t *tx) 1511 { 1512 dnode_t *dn; 1513 int err; 1514 1515 err = dnode_hold(os, object, FTAG, &dn); 1516 if (err) 1517 return (err); 1518 err = dnode_set_blksz(dn, size, ibs, tx); 1519 dnode_rele(dn, FTAG); 1520 return (err); 1521 } 1522 1523 void 1524 dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum, 1525 dmu_tx_t *tx) 1526 { 1527 dnode_t *dn; 1528 1529 /* XXX assumes dnode_hold will not get an i/o error */ 1530 (void) dnode_hold(os, object, FTAG, &dn); 1531 ASSERT(checksum < ZIO_CHECKSUM_FUNCTIONS); 1532 dn->dn_checksum = checksum; 1533 dnode_setdirty(dn, tx); 1534 dnode_rele(dn, FTAG); 1535 } 1536 1537 void 1538 dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress, 1539 dmu_tx_t *tx) 1540 { 1541 dnode_t *dn; 1542 1543 /* XXX assumes dnode_hold will not get an i/o error */ 1544 (void) dnode_hold(os, object, FTAG, &dn); 1545 ASSERT(compress < ZIO_COMPRESS_FUNCTIONS); 1546 dn->dn_compress = compress; 1547 dnode_setdirty(dn, tx); 1548 dnode_rele(dn, FTAG); 1549 } 1550 1551 int zfs_mdcomp_disable = 0; 1552 1553 void 1554 dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp) 1555 { 1556 dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET; 1557 boolean_t ismd = (level > 0 || DMU_OT_IS_METADATA(type) || 1558 (wp & WP_SPILL)); 1559 enum zio_checksum checksum = os->os_checksum; 1560 enum zio_compress compress = os->os_compress; 1561 enum zio_checksum dedup_checksum = os->os_dedup_checksum; 1562 boolean_t dedup = B_FALSE; 1563 boolean_t nopwrite = B_FALSE; 1564 boolean_t dedup_verify = os->os_dedup_verify; 1565 int copies = os->os_copies; 1566 1567 /* 1568 * We maintain different write policies for each of the following 1569 * types of data: 1570 * 1. metadata 1571 * 2. preallocated blocks (i.e. level-0 blocks of a dump device) 1572 * 3. all other level 0 blocks 1573 */ 1574 if (ismd) { 1575 /* 1576 * XXX -- we should design a compression algorithm 1577 * that specializes in arrays of bps. 1578 */ 1579 compress = zfs_mdcomp_disable ? ZIO_COMPRESS_EMPTY : 1580 ZIO_COMPRESS_LZJB; 1581 1582 /* 1583 * Metadata always gets checksummed. If the data 1584 * checksum is multi-bit correctable, and it's not a 1585 * ZBT-style checksum, then it's suitable for metadata 1586 * as well. Otherwise, the metadata checksum defaults 1587 * to fletcher4. 1588 */ 1589 if (zio_checksum_table[checksum].ci_correctable < 1 || 1590 zio_checksum_table[checksum].ci_eck) 1591 checksum = ZIO_CHECKSUM_FLETCHER_4; 1592 } else if (wp & WP_NOFILL) { 1593 ASSERT(level == 0); 1594 1595 /* 1596 * If we're writing preallocated blocks, we aren't actually 1597 * writing them so don't set any policy properties. These 1598 * blocks are currently only used by an external subsystem 1599 * outside of zfs (i.e. dump) and not written by the zio 1600 * pipeline. 1601 */ 1602 compress = ZIO_COMPRESS_OFF; 1603 checksum = ZIO_CHECKSUM_NOPARITY; 1604 } else { 1605 compress = zio_compress_select(dn->dn_compress, compress); 1606 1607 checksum = (dedup_checksum == ZIO_CHECKSUM_OFF) ? 1608 zio_checksum_select(dn->dn_checksum, checksum) : 1609 dedup_checksum; 1610 1611 /* 1612 * Determine dedup setting. If we are in dmu_sync(), 1613 * we won't actually dedup now because that's all 1614 * done in syncing context; but we do want to use the 1615 * dedup checkum. If the checksum is not strong 1616 * enough to ensure unique signatures, force 1617 * dedup_verify. 1618 */ 1619 if (dedup_checksum != ZIO_CHECKSUM_OFF) { 1620 dedup = (wp & WP_DMU_SYNC) ? B_FALSE : B_TRUE; 1621 if (!zio_checksum_table[checksum].ci_dedup) 1622 dedup_verify = B_TRUE; 1623 } 1624 1625 /* 1626 * Enable nopwrite if we have a cryptographically secure 1627 * checksum that has no known collisions (i.e. SHA-256) 1628 * and compression is enabled. We don't enable nopwrite if 1629 * dedup is enabled as the two features are mutually exclusive. 1630 */ 1631 nopwrite = (!dedup && zio_checksum_table[checksum].ci_dedup && 1632 compress != ZIO_COMPRESS_OFF && zfs_nopwrite_enabled); 1633 } 1634 1635 zp->zp_checksum = checksum; 1636 zp->zp_compress = compress; 1637 zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type; 1638 zp->zp_level = level; 1639 zp->zp_copies = MIN(copies + ismd, spa_max_replication(os->os_spa)); 1640 zp->zp_dedup = dedup; 1641 zp->zp_dedup_verify = dedup && dedup_verify; 1642 zp->zp_nopwrite = nopwrite; 1643 } 1644 1645 int 1646 dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off) 1647 { 1648 dnode_t *dn; 1649 int i, err; 1650 1651 err = dnode_hold(os, object, FTAG, &dn); 1652 if (err) 1653 return (err); 1654 /* 1655 * Sync any current changes before 1656 * we go trundling through the block pointers. 1657 */ 1658 for (i = 0; i < TXG_SIZE; i++) { 1659 if (list_link_active(&dn->dn_dirty_link[i])) 1660 break; 1661 } 1662 if (i != TXG_SIZE) { 1663 dnode_rele(dn, FTAG); 1664 txg_wait_synced(dmu_objset_pool(os), 0); 1665 err = dnode_hold(os, object, FTAG, &dn); 1666 if (err) 1667 return (err); 1668 } 1669 1670 err = dnode_next_offset(dn, (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0); 1671 dnode_rele(dn, FTAG); 1672 1673 return (err); 1674 } 1675 1676 void 1677 dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi) 1678 { 1679 dnode_phys_t *dnp; 1680 1681 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1682 mutex_enter(&dn->dn_mtx); 1683 1684 dnp = dn->dn_phys; 1685 1686 doi->doi_data_block_size = dn->dn_datablksz; 1687 doi->doi_metadata_block_size = dn->dn_indblkshift ? 1688 1ULL << dn->dn_indblkshift : 0; 1689 doi->doi_type = dn->dn_type; 1690 doi->doi_bonus_type = dn->dn_bonustype; 1691 doi->doi_bonus_size = dn->dn_bonuslen; 1692 doi->doi_indirection = dn->dn_nlevels; 1693 doi->doi_checksum = dn->dn_checksum; 1694 doi->doi_compress = dn->dn_compress; 1695 doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9; 1696 doi->doi_max_offset = (dn->dn_maxblkid + 1) * dn->dn_datablksz; 1697 doi->doi_fill_count = 0; 1698 for (int i = 0; i < dnp->dn_nblkptr; i++) 1699 doi->doi_fill_count += dnp->dn_blkptr[i].blk_fill; 1700 1701 mutex_exit(&dn->dn_mtx); 1702 rw_exit(&dn->dn_struct_rwlock); 1703 } 1704 1705 /* 1706 * Get information on a DMU object. 1707 * If doi is NULL, just indicates whether the object exists. 1708 */ 1709 int 1710 dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi) 1711 { 1712 dnode_t *dn; 1713 int err = dnode_hold(os, object, FTAG, &dn); 1714 1715 if (err) 1716 return (err); 1717 1718 if (doi != NULL) 1719 dmu_object_info_from_dnode(dn, doi); 1720 1721 dnode_rele(dn, FTAG); 1722 return (0); 1723 } 1724 1725 /* 1726 * As above, but faster; can be used when you have a held dbuf in hand. 1727 */ 1728 void 1729 dmu_object_info_from_db(dmu_buf_t *db_fake, dmu_object_info_t *doi) 1730 { 1731 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 1732 1733 DB_DNODE_ENTER(db); 1734 dmu_object_info_from_dnode(DB_DNODE(db), doi); 1735 DB_DNODE_EXIT(db); 1736 } 1737 1738 /* 1739 * Faster still when you only care about the size. 1740 * This is specifically optimized for zfs_getattr(). 1741 */ 1742 void 1743 dmu_object_size_from_db(dmu_buf_t *db_fake, uint32_t *blksize, 1744 u_longlong_t *nblk512) 1745 { 1746 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 1747 dnode_t *dn; 1748 1749 DB_DNODE_ENTER(db); 1750 dn = DB_DNODE(db); 1751 1752 *blksize = dn->dn_datablksz; 1753 /* add 1 for dnode space */ 1754 *nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >> 1755 SPA_MINBLOCKSHIFT) + 1; 1756 DB_DNODE_EXIT(db); 1757 } 1758 1759 void 1760 byteswap_uint64_array(void *vbuf, size_t size) 1761 { 1762 uint64_t *buf = vbuf; 1763 size_t count = size >> 3; 1764 int i; 1765 1766 ASSERT((size & 7) == 0); 1767 1768 for (i = 0; i < count; i++) 1769 buf[i] = BSWAP_64(buf[i]); 1770 } 1771 1772 void 1773 byteswap_uint32_array(void *vbuf, size_t size) 1774 { 1775 uint32_t *buf = vbuf; 1776 size_t count = size >> 2; 1777 int i; 1778 1779 ASSERT((size & 3) == 0); 1780 1781 for (i = 0; i < count; i++) 1782 buf[i] = BSWAP_32(buf[i]); 1783 } 1784 1785 void 1786 byteswap_uint16_array(void *vbuf, size_t size) 1787 { 1788 uint16_t *buf = vbuf; 1789 size_t count = size >> 1; 1790 int i; 1791 1792 ASSERT((size & 1) == 0); 1793 1794 for (i = 0; i < count; i++) 1795 buf[i] = BSWAP_16(buf[i]); 1796 } 1797 1798 /* ARGSUSED */ 1799 void 1800 byteswap_uint8_array(void *vbuf, size_t size) 1801 { 1802 } 1803 1804 void 1805 dmu_init(void) 1806 { 1807 zfs_dbgmsg_init(); 1808 sa_cache_init(); 1809 xuio_stat_init(); 1810 dmu_objset_init(); 1811 dnode_init(); 1812 dbuf_init(); 1813 zfetch_init(); 1814 l2arc_init(); 1815 arc_init(); 1816 } 1817 1818 void 1819 dmu_fini(void) 1820 { 1821 arc_fini(); /* arc depends on l2arc, so arc must go first */ 1822 l2arc_fini(); 1823 zfetch_fini(); 1824 dbuf_fini(); 1825 dnode_fini(); 1826 dmu_objset_fini(); 1827 xuio_stat_fini(); 1828 sa_cache_fini(); 1829 zfs_dbgmsg_fini(); 1830 } 1831