xref: /titanic_51/usr/src/uts/common/fs/zfs/dbuf.c (revision 9aff5184bfbc5b708bf2ddd810ce726347b52332)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
24  * Copyright (c) 2012, 2014 by Delphix. All rights reserved.
25  * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
26  * Copyright (c) 2013, Joyent, Inc. All rights reserved.
27  */
28 
29 #include <sys/zfs_context.h>
30 #include <sys/dmu.h>
31 #include <sys/dmu_send.h>
32 #include <sys/dmu_impl.h>
33 #include <sys/dbuf.h>
34 #include <sys/dmu_objset.h>
35 #include <sys/dsl_dataset.h>
36 #include <sys/dsl_dir.h>
37 #include <sys/dmu_tx.h>
38 #include <sys/spa.h>
39 #include <sys/zio.h>
40 #include <sys/dmu_zfetch.h>
41 #include <sys/sa.h>
42 #include <sys/sa_impl.h>
43 #include <sys/range_tree.h>
44 
45 /*
46  * Number of times that zfs_free_range() took the slow path while doing
47  * a zfs receive.  A nonzero value indicates a potential performance problem.
48  */
49 uint64_t zfs_free_range_recv_miss;
50 
51 static void dbuf_destroy(dmu_buf_impl_t *db);
52 static boolean_t dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx);
53 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx);
54 
55 /*
56  * Global data structures and functions for the dbuf cache.
57  */
58 static kmem_cache_t *dbuf_cache;
59 
60 /* ARGSUSED */
61 static int
62 dbuf_cons(void *vdb, void *unused, int kmflag)
63 {
64 	dmu_buf_impl_t *db = vdb;
65 	bzero(db, sizeof (dmu_buf_impl_t));
66 
67 	mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL);
68 	cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL);
69 	refcount_create(&db->db_holds);
70 	return (0);
71 }
72 
73 /* ARGSUSED */
74 static void
75 dbuf_dest(void *vdb, void *unused)
76 {
77 	dmu_buf_impl_t *db = vdb;
78 	mutex_destroy(&db->db_mtx);
79 	cv_destroy(&db->db_changed);
80 	refcount_destroy(&db->db_holds);
81 }
82 
83 /*
84  * dbuf hash table routines
85  */
86 static dbuf_hash_table_t dbuf_hash_table;
87 
88 static uint64_t dbuf_hash_count;
89 
90 static uint64_t
91 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid)
92 {
93 	uintptr_t osv = (uintptr_t)os;
94 	uint64_t crc = -1ULL;
95 
96 	ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
97 	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (lvl)) & 0xFF];
98 	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (osv >> 6)) & 0xFF];
99 	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 0)) & 0xFF];
100 	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 8)) & 0xFF];
101 	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 0)) & 0xFF];
102 	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 8)) & 0xFF];
103 
104 	crc ^= (osv>>14) ^ (obj>>16) ^ (blkid>>16);
105 
106 	return (crc);
107 }
108 
109 #define	DBUF_HASH(os, obj, level, blkid) dbuf_hash(os, obj, level, blkid);
110 
111 #define	DBUF_EQUAL(dbuf, os, obj, level, blkid)		\
112 	((dbuf)->db.db_object == (obj) &&		\
113 	(dbuf)->db_objset == (os) &&			\
114 	(dbuf)->db_level == (level) &&			\
115 	(dbuf)->db_blkid == (blkid))
116 
117 dmu_buf_impl_t *
118 dbuf_find(dnode_t *dn, uint8_t level, uint64_t blkid)
119 {
120 	dbuf_hash_table_t *h = &dbuf_hash_table;
121 	objset_t *os = dn->dn_objset;
122 	uint64_t obj = dn->dn_object;
123 	uint64_t hv = DBUF_HASH(os, obj, level, blkid);
124 	uint64_t idx = hv & h->hash_table_mask;
125 	dmu_buf_impl_t *db;
126 
127 	mutex_enter(DBUF_HASH_MUTEX(h, idx));
128 	for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) {
129 		if (DBUF_EQUAL(db, os, obj, level, blkid)) {
130 			mutex_enter(&db->db_mtx);
131 			if (db->db_state != DB_EVICTING) {
132 				mutex_exit(DBUF_HASH_MUTEX(h, idx));
133 				return (db);
134 			}
135 			mutex_exit(&db->db_mtx);
136 		}
137 	}
138 	mutex_exit(DBUF_HASH_MUTEX(h, idx));
139 	return (NULL);
140 }
141 
142 /*
143  * Insert an entry into the hash table.  If there is already an element
144  * equal to elem in the hash table, then the already existing element
145  * will be returned and the new element will not be inserted.
146  * Otherwise returns NULL.
147  */
148 static dmu_buf_impl_t *
149 dbuf_hash_insert(dmu_buf_impl_t *db)
150 {
151 	dbuf_hash_table_t *h = &dbuf_hash_table;
152 	objset_t *os = db->db_objset;
153 	uint64_t obj = db->db.db_object;
154 	int level = db->db_level;
155 	uint64_t blkid = db->db_blkid;
156 	uint64_t hv = DBUF_HASH(os, obj, level, blkid);
157 	uint64_t idx = hv & h->hash_table_mask;
158 	dmu_buf_impl_t *dbf;
159 
160 	mutex_enter(DBUF_HASH_MUTEX(h, idx));
161 	for (dbf = h->hash_table[idx]; dbf != NULL; dbf = dbf->db_hash_next) {
162 		if (DBUF_EQUAL(dbf, os, obj, level, blkid)) {
163 			mutex_enter(&dbf->db_mtx);
164 			if (dbf->db_state != DB_EVICTING) {
165 				mutex_exit(DBUF_HASH_MUTEX(h, idx));
166 				return (dbf);
167 			}
168 			mutex_exit(&dbf->db_mtx);
169 		}
170 	}
171 
172 	mutex_enter(&db->db_mtx);
173 	db->db_hash_next = h->hash_table[idx];
174 	h->hash_table[idx] = db;
175 	mutex_exit(DBUF_HASH_MUTEX(h, idx));
176 	atomic_add_64(&dbuf_hash_count, 1);
177 
178 	return (NULL);
179 }
180 
181 /*
182  * Remove an entry from the hash table.  This operation will
183  * fail if there are any existing holds on the db.
184  */
185 static void
186 dbuf_hash_remove(dmu_buf_impl_t *db)
187 {
188 	dbuf_hash_table_t *h = &dbuf_hash_table;
189 	uint64_t hv = DBUF_HASH(db->db_objset, db->db.db_object,
190 	    db->db_level, db->db_blkid);
191 	uint64_t idx = hv & h->hash_table_mask;
192 	dmu_buf_impl_t *dbf, **dbp;
193 
194 	/*
195 	 * We musn't hold db_mtx to maintin lock ordering:
196 	 * DBUF_HASH_MUTEX > db_mtx.
197 	 */
198 	ASSERT(refcount_is_zero(&db->db_holds));
199 	ASSERT(db->db_state == DB_EVICTING);
200 	ASSERT(!MUTEX_HELD(&db->db_mtx));
201 
202 	mutex_enter(DBUF_HASH_MUTEX(h, idx));
203 	dbp = &h->hash_table[idx];
204 	while ((dbf = *dbp) != db) {
205 		dbp = &dbf->db_hash_next;
206 		ASSERT(dbf != NULL);
207 	}
208 	*dbp = db->db_hash_next;
209 	db->db_hash_next = NULL;
210 	mutex_exit(DBUF_HASH_MUTEX(h, idx));
211 	atomic_add_64(&dbuf_hash_count, -1);
212 }
213 
214 static arc_evict_func_t dbuf_do_evict;
215 
216 static void
217 dbuf_evict_user(dmu_buf_impl_t *db)
218 {
219 	ASSERT(MUTEX_HELD(&db->db_mtx));
220 
221 	if (db->db_level != 0 || db->db_evict_func == NULL)
222 		return;
223 
224 	if (db->db_user_data_ptr_ptr)
225 		*db->db_user_data_ptr_ptr = db->db.db_data;
226 	db->db_evict_func(&db->db, db->db_user_ptr);
227 	db->db_user_ptr = NULL;
228 	db->db_user_data_ptr_ptr = NULL;
229 	db->db_evict_func = NULL;
230 }
231 
232 boolean_t
233 dbuf_is_metadata(dmu_buf_impl_t *db)
234 {
235 	if (db->db_level > 0) {
236 		return (B_TRUE);
237 	} else {
238 		boolean_t is_metadata;
239 
240 		DB_DNODE_ENTER(db);
241 		is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type);
242 		DB_DNODE_EXIT(db);
243 
244 		return (is_metadata);
245 	}
246 }
247 
248 void
249 dbuf_evict(dmu_buf_impl_t *db)
250 {
251 	ASSERT(MUTEX_HELD(&db->db_mtx));
252 	ASSERT(db->db_buf == NULL);
253 	ASSERT(db->db_data_pending == NULL);
254 
255 	dbuf_clear(db);
256 	dbuf_destroy(db);
257 }
258 
259 void
260 dbuf_init(void)
261 {
262 	uint64_t hsize = 1ULL << 16;
263 	dbuf_hash_table_t *h = &dbuf_hash_table;
264 	int i;
265 
266 	/*
267 	 * The hash table is big enough to fill all of physical memory
268 	 * with an average 4K block size.  The table will take up
269 	 * totalmem*sizeof(void*)/4K (i.e. 2MB/GB with 8-byte pointers).
270 	 */
271 	while (hsize * 4096 < physmem * PAGESIZE)
272 		hsize <<= 1;
273 
274 retry:
275 	h->hash_table_mask = hsize - 1;
276 	h->hash_table = kmem_zalloc(hsize * sizeof (void *), KM_NOSLEEP);
277 	if (h->hash_table == NULL) {
278 		/* XXX - we should really return an error instead of assert */
279 		ASSERT(hsize > (1ULL << 10));
280 		hsize >>= 1;
281 		goto retry;
282 	}
283 
284 	dbuf_cache = kmem_cache_create("dmu_buf_impl_t",
285 	    sizeof (dmu_buf_impl_t),
286 	    0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0);
287 
288 	for (i = 0; i < DBUF_MUTEXES; i++)
289 		mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL);
290 }
291 
292 void
293 dbuf_fini(void)
294 {
295 	dbuf_hash_table_t *h = &dbuf_hash_table;
296 	int i;
297 
298 	for (i = 0; i < DBUF_MUTEXES; i++)
299 		mutex_destroy(&h->hash_mutexes[i]);
300 	kmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
301 	kmem_cache_destroy(dbuf_cache);
302 }
303 
304 /*
305  * Other stuff.
306  */
307 
308 #ifdef ZFS_DEBUG
309 static void
310 dbuf_verify(dmu_buf_impl_t *db)
311 {
312 	dnode_t *dn;
313 	dbuf_dirty_record_t *dr;
314 
315 	ASSERT(MUTEX_HELD(&db->db_mtx));
316 
317 	if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY))
318 		return;
319 
320 	ASSERT(db->db_objset != NULL);
321 	DB_DNODE_ENTER(db);
322 	dn = DB_DNODE(db);
323 	if (dn == NULL) {
324 		ASSERT(db->db_parent == NULL);
325 		ASSERT(db->db_blkptr == NULL);
326 	} else {
327 		ASSERT3U(db->db.db_object, ==, dn->dn_object);
328 		ASSERT3P(db->db_objset, ==, dn->dn_objset);
329 		ASSERT3U(db->db_level, <, dn->dn_nlevels);
330 		ASSERT(db->db_blkid == DMU_BONUS_BLKID ||
331 		    db->db_blkid == DMU_SPILL_BLKID ||
332 		    !list_is_empty(&dn->dn_dbufs));
333 	}
334 	if (db->db_blkid == DMU_BONUS_BLKID) {
335 		ASSERT(dn != NULL);
336 		ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
337 		ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID);
338 	} else if (db->db_blkid == DMU_SPILL_BLKID) {
339 		ASSERT(dn != NULL);
340 		ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
341 		ASSERT0(db->db.db_offset);
342 	} else {
343 		ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size);
344 	}
345 
346 	for (dr = db->db_data_pending; dr != NULL; dr = dr->dr_next)
347 		ASSERT(dr->dr_dbuf == db);
348 
349 	for (dr = db->db_last_dirty; dr != NULL; dr = dr->dr_next)
350 		ASSERT(dr->dr_dbuf == db);
351 
352 	/*
353 	 * We can't assert that db_size matches dn_datablksz because it
354 	 * can be momentarily different when another thread is doing
355 	 * dnode_set_blksz().
356 	 */
357 	if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) {
358 		dr = db->db_data_pending;
359 		/*
360 		 * It should only be modified in syncing context, so
361 		 * make sure we only have one copy of the data.
362 		 */
363 		ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf);
364 	}
365 
366 	/* verify db->db_blkptr */
367 	if (db->db_blkptr) {
368 		if (db->db_parent == dn->dn_dbuf) {
369 			/* db is pointed to by the dnode */
370 			/* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */
371 			if (DMU_OBJECT_IS_SPECIAL(db->db.db_object))
372 				ASSERT(db->db_parent == NULL);
373 			else
374 				ASSERT(db->db_parent != NULL);
375 			if (db->db_blkid != DMU_SPILL_BLKID)
376 				ASSERT3P(db->db_blkptr, ==,
377 				    &dn->dn_phys->dn_blkptr[db->db_blkid]);
378 		} else {
379 			/* db is pointed to by an indirect block */
380 			int epb = db->db_parent->db.db_size >> SPA_BLKPTRSHIFT;
381 			ASSERT3U(db->db_parent->db_level, ==, db->db_level+1);
382 			ASSERT3U(db->db_parent->db.db_object, ==,
383 			    db->db.db_object);
384 			/*
385 			 * dnode_grow_indblksz() can make this fail if we don't
386 			 * have the struct_rwlock.  XXX indblksz no longer
387 			 * grows.  safe to do this now?
388 			 */
389 			if (RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
390 				ASSERT3P(db->db_blkptr, ==,
391 				    ((blkptr_t *)db->db_parent->db.db_data +
392 				    db->db_blkid % epb));
393 			}
394 		}
395 	}
396 	if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) &&
397 	    (db->db_buf == NULL || db->db_buf->b_data) &&
398 	    db->db.db_data && db->db_blkid != DMU_BONUS_BLKID &&
399 	    db->db_state != DB_FILL && !dn->dn_free_txg) {
400 		/*
401 		 * If the blkptr isn't set but they have nonzero data,
402 		 * it had better be dirty, otherwise we'll lose that
403 		 * data when we evict this buffer.
404 		 */
405 		if (db->db_dirtycnt == 0) {
406 			uint64_t *buf = db->db.db_data;
407 			int i;
408 
409 			for (i = 0; i < db->db.db_size >> 3; i++) {
410 				ASSERT(buf[i] == 0);
411 			}
412 		}
413 	}
414 	DB_DNODE_EXIT(db);
415 }
416 #endif
417 
418 static void
419 dbuf_update_data(dmu_buf_impl_t *db)
420 {
421 	ASSERT(MUTEX_HELD(&db->db_mtx));
422 	if (db->db_level == 0 && db->db_user_data_ptr_ptr) {
423 		ASSERT(!refcount_is_zero(&db->db_holds));
424 		*db->db_user_data_ptr_ptr = db->db.db_data;
425 	}
426 }
427 
428 static void
429 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf)
430 {
431 	ASSERT(MUTEX_HELD(&db->db_mtx));
432 	ASSERT(db->db_buf == NULL || !arc_has_callback(db->db_buf));
433 	db->db_buf = buf;
434 	if (buf != NULL) {
435 		ASSERT(buf->b_data != NULL);
436 		db->db.db_data = buf->b_data;
437 		if (!arc_released(buf))
438 			arc_set_callback(buf, dbuf_do_evict, db);
439 		dbuf_update_data(db);
440 	} else {
441 		dbuf_evict_user(db);
442 		db->db.db_data = NULL;
443 		if (db->db_state != DB_NOFILL)
444 			db->db_state = DB_UNCACHED;
445 	}
446 }
447 
448 /*
449  * Loan out an arc_buf for read.  Return the loaned arc_buf.
450  */
451 arc_buf_t *
452 dbuf_loan_arcbuf(dmu_buf_impl_t *db)
453 {
454 	arc_buf_t *abuf;
455 
456 	mutex_enter(&db->db_mtx);
457 	if (arc_released(db->db_buf) || refcount_count(&db->db_holds) > 1) {
458 		int blksz = db->db.db_size;
459 		spa_t *spa = db->db_objset->os_spa;
460 
461 		mutex_exit(&db->db_mtx);
462 		abuf = arc_loan_buf(spa, blksz);
463 		bcopy(db->db.db_data, abuf->b_data, blksz);
464 	} else {
465 		abuf = db->db_buf;
466 		arc_loan_inuse_buf(abuf, db);
467 		dbuf_set_data(db, NULL);
468 		mutex_exit(&db->db_mtx);
469 	}
470 	return (abuf);
471 }
472 
473 uint64_t
474 dbuf_whichblock(dnode_t *dn, uint64_t offset)
475 {
476 	if (dn->dn_datablkshift) {
477 		return (offset >> dn->dn_datablkshift);
478 	} else {
479 		ASSERT3U(offset, <, dn->dn_datablksz);
480 		return (0);
481 	}
482 }
483 
484 static void
485 dbuf_read_done(zio_t *zio, arc_buf_t *buf, void *vdb)
486 {
487 	dmu_buf_impl_t *db = vdb;
488 
489 	mutex_enter(&db->db_mtx);
490 	ASSERT3U(db->db_state, ==, DB_READ);
491 	/*
492 	 * All reads are synchronous, so we must have a hold on the dbuf
493 	 */
494 	ASSERT(refcount_count(&db->db_holds) > 0);
495 	ASSERT(db->db_buf == NULL);
496 	ASSERT(db->db.db_data == NULL);
497 	if (db->db_level == 0 && db->db_freed_in_flight) {
498 		/* we were freed in flight; disregard any error */
499 		arc_release(buf, db);
500 		bzero(buf->b_data, db->db.db_size);
501 		arc_buf_freeze(buf);
502 		db->db_freed_in_flight = FALSE;
503 		dbuf_set_data(db, buf);
504 		db->db_state = DB_CACHED;
505 	} else if (zio == NULL || zio->io_error == 0) {
506 		dbuf_set_data(db, buf);
507 		db->db_state = DB_CACHED;
508 	} else {
509 		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
510 		ASSERT3P(db->db_buf, ==, NULL);
511 		VERIFY(arc_buf_remove_ref(buf, db));
512 		db->db_state = DB_UNCACHED;
513 	}
514 	cv_broadcast(&db->db_changed);
515 	dbuf_rele_and_unlock(db, NULL);
516 }
517 
518 static void
519 dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t *flags)
520 {
521 	dnode_t *dn;
522 	zbookmark_t zb;
523 	uint32_t aflags = ARC_NOWAIT;
524 
525 	DB_DNODE_ENTER(db);
526 	dn = DB_DNODE(db);
527 	ASSERT(!refcount_is_zero(&db->db_holds));
528 	/* We need the struct_rwlock to prevent db_blkptr from changing. */
529 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
530 	ASSERT(MUTEX_HELD(&db->db_mtx));
531 	ASSERT(db->db_state == DB_UNCACHED);
532 	ASSERT(db->db_buf == NULL);
533 
534 	if (db->db_blkid == DMU_BONUS_BLKID) {
535 		int bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen);
536 
537 		ASSERT3U(bonuslen, <=, db->db.db_size);
538 		db->db.db_data = zio_buf_alloc(DN_MAX_BONUSLEN);
539 		arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
540 		if (bonuslen < DN_MAX_BONUSLEN)
541 			bzero(db->db.db_data, DN_MAX_BONUSLEN);
542 		if (bonuslen)
543 			bcopy(DN_BONUS(dn->dn_phys), db->db.db_data, bonuslen);
544 		DB_DNODE_EXIT(db);
545 		dbuf_update_data(db);
546 		db->db_state = DB_CACHED;
547 		mutex_exit(&db->db_mtx);
548 		return;
549 	}
550 
551 	/*
552 	 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync()
553 	 * processes the delete record and clears the bp while we are waiting
554 	 * for the dn_mtx (resulting in a "no" from block_freed).
555 	 */
556 	if (db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr) ||
557 	    (db->db_level == 0 && (dnode_block_freed(dn, db->db_blkid) ||
558 	    BP_IS_HOLE(db->db_blkptr)))) {
559 		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
560 
561 		DB_DNODE_EXIT(db);
562 		dbuf_set_data(db, arc_buf_alloc(db->db_objset->os_spa,
563 		    db->db.db_size, db, type));
564 		bzero(db->db.db_data, db->db.db_size);
565 		db->db_state = DB_CACHED;
566 		*flags |= DB_RF_CACHED;
567 		mutex_exit(&db->db_mtx);
568 		return;
569 	}
570 
571 	DB_DNODE_EXIT(db);
572 
573 	db->db_state = DB_READ;
574 	mutex_exit(&db->db_mtx);
575 
576 	if (DBUF_IS_L2CACHEABLE(db))
577 		aflags |= ARC_L2CACHE;
578 	if (DBUF_IS_L2COMPRESSIBLE(db))
579 		aflags |= ARC_L2COMPRESS;
580 
581 	SET_BOOKMARK(&zb, db->db_objset->os_dsl_dataset ?
582 	    db->db_objset->os_dsl_dataset->ds_object : DMU_META_OBJSET,
583 	    db->db.db_object, db->db_level, db->db_blkid);
584 
585 	dbuf_add_ref(db, NULL);
586 
587 	(void) arc_read(zio, db->db_objset->os_spa, db->db_blkptr,
588 	    dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ,
589 	    (*flags & DB_RF_CANFAIL) ? ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED,
590 	    &aflags, &zb);
591 	if (aflags & ARC_CACHED)
592 		*flags |= DB_RF_CACHED;
593 }
594 
595 int
596 dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
597 {
598 	int err = 0;
599 	boolean_t havepzio = (zio != NULL);
600 	boolean_t prefetch;
601 	dnode_t *dn;
602 
603 	/*
604 	 * We don't have to hold the mutex to check db_state because it
605 	 * can't be freed while we have a hold on the buffer.
606 	 */
607 	ASSERT(!refcount_is_zero(&db->db_holds));
608 
609 	if (db->db_state == DB_NOFILL)
610 		return (SET_ERROR(EIO));
611 
612 	DB_DNODE_ENTER(db);
613 	dn = DB_DNODE(db);
614 	if ((flags & DB_RF_HAVESTRUCT) == 0)
615 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
616 
617 	prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
618 	    (flags & DB_RF_NOPREFETCH) == 0 && dn != NULL &&
619 	    DBUF_IS_CACHEABLE(db);
620 
621 	mutex_enter(&db->db_mtx);
622 	if (db->db_state == DB_CACHED) {
623 		mutex_exit(&db->db_mtx);
624 		if (prefetch)
625 			dmu_zfetch(&dn->dn_zfetch, db->db.db_offset,
626 			    db->db.db_size, TRUE);
627 		if ((flags & DB_RF_HAVESTRUCT) == 0)
628 			rw_exit(&dn->dn_struct_rwlock);
629 		DB_DNODE_EXIT(db);
630 	} else if (db->db_state == DB_UNCACHED) {
631 		spa_t *spa = dn->dn_objset->os_spa;
632 
633 		if (zio == NULL)
634 			zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
635 		dbuf_read_impl(db, zio, &flags);
636 
637 		/* dbuf_read_impl has dropped db_mtx for us */
638 
639 		if (prefetch)
640 			dmu_zfetch(&dn->dn_zfetch, db->db.db_offset,
641 			    db->db.db_size, flags & DB_RF_CACHED);
642 
643 		if ((flags & DB_RF_HAVESTRUCT) == 0)
644 			rw_exit(&dn->dn_struct_rwlock);
645 		DB_DNODE_EXIT(db);
646 
647 		if (!havepzio)
648 			err = zio_wait(zio);
649 	} else {
650 		/*
651 		 * Another reader came in while the dbuf was in flight
652 		 * between UNCACHED and CACHED.  Either a writer will finish
653 		 * writing the buffer (sending the dbuf to CACHED) or the
654 		 * first reader's request will reach the read_done callback
655 		 * and send the dbuf to CACHED.  Otherwise, a failure
656 		 * occurred and the dbuf went to UNCACHED.
657 		 */
658 		mutex_exit(&db->db_mtx);
659 		if (prefetch)
660 			dmu_zfetch(&dn->dn_zfetch, db->db.db_offset,
661 			    db->db.db_size, TRUE);
662 		if ((flags & DB_RF_HAVESTRUCT) == 0)
663 			rw_exit(&dn->dn_struct_rwlock);
664 		DB_DNODE_EXIT(db);
665 
666 		/* Skip the wait per the caller's request. */
667 		mutex_enter(&db->db_mtx);
668 		if ((flags & DB_RF_NEVERWAIT) == 0) {
669 			while (db->db_state == DB_READ ||
670 			    db->db_state == DB_FILL) {
671 				ASSERT(db->db_state == DB_READ ||
672 				    (flags & DB_RF_HAVESTRUCT) == 0);
673 				cv_wait(&db->db_changed, &db->db_mtx);
674 			}
675 			if (db->db_state == DB_UNCACHED)
676 				err = SET_ERROR(EIO);
677 		}
678 		mutex_exit(&db->db_mtx);
679 	}
680 
681 	ASSERT(err || havepzio || db->db_state == DB_CACHED);
682 	return (err);
683 }
684 
685 static void
686 dbuf_noread(dmu_buf_impl_t *db)
687 {
688 	ASSERT(!refcount_is_zero(&db->db_holds));
689 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
690 	mutex_enter(&db->db_mtx);
691 	while (db->db_state == DB_READ || db->db_state == DB_FILL)
692 		cv_wait(&db->db_changed, &db->db_mtx);
693 	if (db->db_state == DB_UNCACHED) {
694 		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
695 		spa_t *spa = db->db_objset->os_spa;
696 
697 		ASSERT(db->db_buf == NULL);
698 		ASSERT(db->db.db_data == NULL);
699 		dbuf_set_data(db, arc_buf_alloc(spa, db->db.db_size, db, type));
700 		db->db_state = DB_FILL;
701 	} else if (db->db_state == DB_NOFILL) {
702 		dbuf_set_data(db, NULL);
703 	} else {
704 		ASSERT3U(db->db_state, ==, DB_CACHED);
705 	}
706 	mutex_exit(&db->db_mtx);
707 }
708 
709 /*
710  * This is our just-in-time copy function.  It makes a copy of
711  * buffers, that have been modified in a previous transaction
712  * group, before we modify them in the current active group.
713  *
714  * This function is used in two places: when we are dirtying a
715  * buffer for the first time in a txg, and when we are freeing
716  * a range in a dnode that includes this buffer.
717  *
718  * Note that when we are called from dbuf_free_range() we do
719  * not put a hold on the buffer, we just traverse the active
720  * dbuf list for the dnode.
721  */
722 static void
723 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg)
724 {
725 	dbuf_dirty_record_t *dr = db->db_last_dirty;
726 
727 	ASSERT(MUTEX_HELD(&db->db_mtx));
728 	ASSERT(db->db.db_data != NULL);
729 	ASSERT(db->db_level == 0);
730 	ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT);
731 
732 	if (dr == NULL ||
733 	    (dr->dt.dl.dr_data !=
734 	    ((db->db_blkid  == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf)))
735 		return;
736 
737 	/*
738 	 * If the last dirty record for this dbuf has not yet synced
739 	 * and its referencing the dbuf data, either:
740 	 *	reset the reference to point to a new copy,
741 	 * or (if there a no active holders)
742 	 *	just null out the current db_data pointer.
743 	 */
744 	ASSERT(dr->dr_txg >= txg - 2);
745 	if (db->db_blkid == DMU_BONUS_BLKID) {
746 		/* Note that the data bufs here are zio_bufs */
747 		dr->dt.dl.dr_data = zio_buf_alloc(DN_MAX_BONUSLEN);
748 		arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
749 		bcopy(db->db.db_data, dr->dt.dl.dr_data, DN_MAX_BONUSLEN);
750 	} else if (refcount_count(&db->db_holds) > db->db_dirtycnt) {
751 		int size = db->db.db_size;
752 		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
753 		spa_t *spa = db->db_objset->os_spa;
754 
755 		dr->dt.dl.dr_data = arc_buf_alloc(spa, size, db, type);
756 		bcopy(db->db.db_data, dr->dt.dl.dr_data->b_data, size);
757 	} else {
758 		dbuf_set_data(db, NULL);
759 	}
760 }
761 
762 void
763 dbuf_unoverride(dbuf_dirty_record_t *dr)
764 {
765 	dmu_buf_impl_t *db = dr->dr_dbuf;
766 	blkptr_t *bp = &dr->dt.dl.dr_overridden_by;
767 	uint64_t txg = dr->dr_txg;
768 
769 	ASSERT(MUTEX_HELD(&db->db_mtx));
770 	ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC);
771 	ASSERT(db->db_level == 0);
772 
773 	if (db->db_blkid == DMU_BONUS_BLKID ||
774 	    dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN)
775 		return;
776 
777 	ASSERT(db->db_data_pending != dr);
778 
779 	/* free this block */
780 	if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite)
781 		zio_free(db->db_objset->os_spa, txg, bp);
782 
783 	dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
784 	dr->dt.dl.dr_nopwrite = B_FALSE;
785 
786 	/*
787 	 * Release the already-written buffer, so we leave it in
788 	 * a consistent dirty state.  Note that all callers are
789 	 * modifying the buffer, so they will immediately do
790 	 * another (redundant) arc_release().  Therefore, leave
791 	 * the buf thawed to save the effort of freezing &
792 	 * immediately re-thawing it.
793 	 */
794 	arc_release(dr->dt.dl.dr_data, db);
795 }
796 
797 /*
798  * Evict (if its unreferenced) or clear (if its referenced) any level-0
799  * data blocks in the free range, so that any future readers will find
800  * empty blocks.
801  *
802  * This is a no-op if the dataset is in the middle of an incremental
803  * receive; see comment below for details.
804  */
805 void
806 dbuf_free_range(dnode_t *dn, uint64_t start, uint64_t end, dmu_tx_t *tx)
807 {
808 	dmu_buf_impl_t *db, *db_next;
809 	uint64_t txg = tx->tx_txg;
810 
811 	if (end > dn->dn_maxblkid && (end != DMU_SPILL_BLKID))
812 		end = dn->dn_maxblkid;
813 	dprintf_dnode(dn, "start=%llu end=%llu\n", start, end);
814 
815 	mutex_enter(&dn->dn_dbufs_mtx);
816 	if (start >= dn->dn_unlisted_l0_blkid * dn->dn_datablksz) {
817 		/* There can't be any dbufs in this range; no need to search. */
818 		mutex_exit(&dn->dn_dbufs_mtx);
819 		return;
820 	} else if (dmu_objset_is_receiving(dn->dn_objset)) {
821 		/*
822 		 * If we are receiving, we expect there to be no dbufs in
823 		 * the range to be freed, because receive modifies each
824 		 * block at most once, and in offset order.  If this is
825 		 * not the case, it can lead to performance problems,
826 		 * so note that we unexpectedly took the slow path.
827 		 */
828 		atomic_inc_64(&zfs_free_range_recv_miss);
829 	}
830 
831 	for (db = list_head(&dn->dn_dbufs); db != NULL; db = db_next) {
832 		db_next = list_next(&dn->dn_dbufs, db);
833 		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
834 
835 		if (db->db_level != 0)
836 			continue;
837 		if (db->db_blkid < start || db->db_blkid > end)
838 			continue;
839 
840 		/* found a level 0 buffer in the range */
841 		mutex_enter(&db->db_mtx);
842 		if (dbuf_undirty(db, tx)) {
843 			/* mutex has been dropped and dbuf destroyed */
844 			continue;
845 		}
846 
847 		if (db->db_state == DB_UNCACHED ||
848 		    db->db_state == DB_NOFILL ||
849 		    db->db_state == DB_EVICTING) {
850 			ASSERT(db->db.db_data == NULL);
851 			mutex_exit(&db->db_mtx);
852 			continue;
853 		}
854 		if (db->db_state == DB_READ || db->db_state == DB_FILL) {
855 			/* will be handled in dbuf_read_done or dbuf_rele */
856 			db->db_freed_in_flight = TRUE;
857 			mutex_exit(&db->db_mtx);
858 			continue;
859 		}
860 		if (refcount_count(&db->db_holds) == 0) {
861 			ASSERT(db->db_buf);
862 			dbuf_clear(db);
863 			continue;
864 		}
865 		/* The dbuf is referenced */
866 
867 		if (db->db_last_dirty != NULL) {
868 			dbuf_dirty_record_t *dr = db->db_last_dirty;
869 
870 			if (dr->dr_txg == txg) {
871 				/*
872 				 * This buffer is "in-use", re-adjust the file
873 				 * size to reflect that this buffer may
874 				 * contain new data when we sync.
875 				 */
876 				if (db->db_blkid != DMU_SPILL_BLKID &&
877 				    db->db_blkid > dn->dn_maxblkid)
878 					dn->dn_maxblkid = db->db_blkid;
879 				dbuf_unoverride(dr);
880 			} else {
881 				/*
882 				 * This dbuf is not dirty in the open context.
883 				 * Either uncache it (if its not referenced in
884 				 * the open context) or reset its contents to
885 				 * empty.
886 				 */
887 				dbuf_fix_old_data(db, txg);
888 			}
889 		}
890 		/* clear the contents if its cached */
891 		if (db->db_state == DB_CACHED) {
892 			ASSERT(db->db.db_data != NULL);
893 			arc_release(db->db_buf, db);
894 			bzero(db->db.db_data, db->db.db_size);
895 			arc_buf_freeze(db->db_buf);
896 		}
897 
898 		mutex_exit(&db->db_mtx);
899 	}
900 	mutex_exit(&dn->dn_dbufs_mtx);
901 }
902 
903 static int
904 dbuf_block_freeable(dmu_buf_impl_t *db)
905 {
906 	dsl_dataset_t *ds = db->db_objset->os_dsl_dataset;
907 	uint64_t birth_txg = 0;
908 
909 	/*
910 	 * We don't need any locking to protect db_blkptr:
911 	 * If it's syncing, then db_last_dirty will be set
912 	 * so we'll ignore db_blkptr.
913 	 *
914 	 * This logic ensures that only block births for
915 	 * filled blocks are considered.
916 	 */
917 	ASSERT(MUTEX_HELD(&db->db_mtx));
918 	if (db->db_last_dirty && (db->db_blkptr == NULL ||
919 	    !BP_IS_HOLE(db->db_blkptr))) {
920 		birth_txg = db->db_last_dirty->dr_txg;
921 	} else if (db->db_blkptr != NULL && !BP_IS_HOLE(db->db_blkptr)) {
922 		birth_txg = db->db_blkptr->blk_birth;
923 	}
924 
925 	/*
926 	 * If this block don't exist or is in a snapshot, it can't be freed.
927 	 * Don't pass the bp to dsl_dataset_block_freeable() since we
928 	 * are holding the db_mtx lock and might deadlock if we are
929 	 * prefetching a dedup-ed block.
930 	 */
931 	if (birth_txg != 0)
932 		return (ds == NULL ||
933 		    dsl_dataset_block_freeable(ds, NULL, birth_txg));
934 	else
935 		return (B_FALSE);
936 }
937 
938 void
939 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx)
940 {
941 	arc_buf_t *buf, *obuf;
942 	int osize = db->db.db_size;
943 	arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
944 	dnode_t *dn;
945 
946 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
947 
948 	DB_DNODE_ENTER(db);
949 	dn = DB_DNODE(db);
950 
951 	/* XXX does *this* func really need the lock? */
952 	ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
953 
954 	/*
955 	 * This call to dmu_buf_will_dirty() with the dn_struct_rwlock held
956 	 * is OK, because there can be no other references to the db
957 	 * when we are changing its size, so no concurrent DB_FILL can
958 	 * be happening.
959 	 */
960 	/*
961 	 * XXX we should be doing a dbuf_read, checking the return
962 	 * value and returning that up to our callers
963 	 */
964 	dmu_buf_will_dirty(&db->db, tx);
965 
966 	/* create the data buffer for the new block */
967 	buf = arc_buf_alloc(dn->dn_objset->os_spa, size, db, type);
968 
969 	/* copy old block data to the new block */
970 	obuf = db->db_buf;
971 	bcopy(obuf->b_data, buf->b_data, MIN(osize, size));
972 	/* zero the remainder */
973 	if (size > osize)
974 		bzero((uint8_t *)buf->b_data + osize, size - osize);
975 
976 	mutex_enter(&db->db_mtx);
977 	dbuf_set_data(db, buf);
978 	VERIFY(arc_buf_remove_ref(obuf, db));
979 	db->db.db_size = size;
980 
981 	if (db->db_level == 0) {
982 		ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg);
983 		db->db_last_dirty->dt.dl.dr_data = buf;
984 	}
985 	mutex_exit(&db->db_mtx);
986 
987 	dnode_willuse_space(dn, size-osize, tx);
988 	DB_DNODE_EXIT(db);
989 }
990 
991 void
992 dbuf_release_bp(dmu_buf_impl_t *db)
993 {
994 	objset_t *os = db->db_objset;
995 
996 	ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
997 	ASSERT(arc_released(os->os_phys_buf) ||
998 	    list_link_active(&os->os_dsl_dataset->ds_synced_link));
999 	ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf));
1000 
1001 	(void) arc_release(db->db_buf, db);
1002 }
1003 
1004 dbuf_dirty_record_t *
1005 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
1006 {
1007 	dnode_t *dn;
1008 	objset_t *os;
1009 	dbuf_dirty_record_t **drp, *dr;
1010 	int drop_struct_lock = FALSE;
1011 	boolean_t do_free_accounting = B_FALSE;
1012 	int txgoff = tx->tx_txg & TXG_MASK;
1013 
1014 	ASSERT(tx->tx_txg != 0);
1015 	ASSERT(!refcount_is_zero(&db->db_holds));
1016 	DMU_TX_DIRTY_BUF(tx, db);
1017 
1018 	DB_DNODE_ENTER(db);
1019 	dn = DB_DNODE(db);
1020 	/*
1021 	 * Shouldn't dirty a regular buffer in syncing context.  Private
1022 	 * objects may be dirtied in syncing context, but only if they
1023 	 * were already pre-dirtied in open context.
1024 	 */
1025 	ASSERT(!dmu_tx_is_syncing(tx) ||
1026 	    BP_IS_HOLE(dn->dn_objset->os_rootbp) ||
1027 	    DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1028 	    dn->dn_objset->os_dsl_dataset == NULL);
1029 	/*
1030 	 * We make this assert for private objects as well, but after we
1031 	 * check if we're already dirty.  They are allowed to re-dirty
1032 	 * in syncing context.
1033 	 */
1034 	ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
1035 	    dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1036 	    (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
1037 
1038 	mutex_enter(&db->db_mtx);
1039 	/*
1040 	 * XXX make this true for indirects too?  The problem is that
1041 	 * transactions created with dmu_tx_create_assigned() from
1042 	 * syncing context don't bother holding ahead.
1043 	 */
1044 	ASSERT(db->db_level != 0 ||
1045 	    db->db_state == DB_CACHED || db->db_state == DB_FILL ||
1046 	    db->db_state == DB_NOFILL);
1047 
1048 	mutex_enter(&dn->dn_mtx);
1049 	/*
1050 	 * Don't set dirtyctx to SYNC if we're just modifying this as we
1051 	 * initialize the objset.
1052 	 */
1053 	if (dn->dn_dirtyctx == DN_UNDIRTIED &&
1054 	    !BP_IS_HOLE(dn->dn_objset->os_rootbp)) {
1055 		dn->dn_dirtyctx =
1056 		    (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN);
1057 		ASSERT(dn->dn_dirtyctx_firstset == NULL);
1058 		dn->dn_dirtyctx_firstset = kmem_alloc(1, KM_SLEEP);
1059 	}
1060 	mutex_exit(&dn->dn_mtx);
1061 
1062 	if (db->db_blkid == DMU_SPILL_BLKID)
1063 		dn->dn_have_spill = B_TRUE;
1064 
1065 	/*
1066 	 * If this buffer is already dirty, we're done.
1067 	 */
1068 	drp = &db->db_last_dirty;
1069 	ASSERT(*drp == NULL || (*drp)->dr_txg <= tx->tx_txg ||
1070 	    db->db.db_object == DMU_META_DNODE_OBJECT);
1071 	while ((dr = *drp) != NULL && dr->dr_txg > tx->tx_txg)
1072 		drp = &dr->dr_next;
1073 	if (dr && dr->dr_txg == tx->tx_txg) {
1074 		DB_DNODE_EXIT(db);
1075 
1076 		if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) {
1077 			/*
1078 			 * If this buffer has already been written out,
1079 			 * we now need to reset its state.
1080 			 */
1081 			dbuf_unoverride(dr);
1082 			if (db->db.db_object != DMU_META_DNODE_OBJECT &&
1083 			    db->db_state != DB_NOFILL)
1084 				arc_buf_thaw(db->db_buf);
1085 		}
1086 		mutex_exit(&db->db_mtx);
1087 		return (dr);
1088 	}
1089 
1090 	/*
1091 	 * Only valid if not already dirty.
1092 	 */
1093 	ASSERT(dn->dn_object == 0 ||
1094 	    dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1095 	    (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
1096 
1097 	ASSERT3U(dn->dn_nlevels, >, db->db_level);
1098 	ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) ||
1099 	    dn->dn_phys->dn_nlevels > db->db_level ||
1100 	    dn->dn_next_nlevels[txgoff] > db->db_level ||
1101 	    dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level ||
1102 	    dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level);
1103 
1104 	/*
1105 	 * We should only be dirtying in syncing context if it's the
1106 	 * mos or we're initializing the os or it's a special object.
1107 	 * However, we are allowed to dirty in syncing context provided
1108 	 * we already dirtied it in open context.  Hence we must make
1109 	 * this assertion only if we're not already dirty.
1110 	 */
1111 	os = dn->dn_objset;
1112 	ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1113 	    os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp));
1114 	ASSERT(db->db.db_size != 0);
1115 
1116 	dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
1117 
1118 	if (db->db_blkid != DMU_BONUS_BLKID) {
1119 		/*
1120 		 * Update the accounting.
1121 		 * Note: we delay "free accounting" until after we drop
1122 		 * the db_mtx.  This keeps us from grabbing other locks
1123 		 * (and possibly deadlocking) in bp_get_dsize() while
1124 		 * also holding the db_mtx.
1125 		 */
1126 		dnode_willuse_space(dn, db->db.db_size, tx);
1127 		do_free_accounting = dbuf_block_freeable(db);
1128 	}
1129 
1130 	/*
1131 	 * If this buffer is dirty in an old transaction group we need
1132 	 * to make a copy of it so that the changes we make in this
1133 	 * transaction group won't leak out when we sync the older txg.
1134 	 */
1135 	dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP);
1136 	if (db->db_level == 0) {
1137 		void *data_old = db->db_buf;
1138 
1139 		if (db->db_state != DB_NOFILL) {
1140 			if (db->db_blkid == DMU_BONUS_BLKID) {
1141 				dbuf_fix_old_data(db, tx->tx_txg);
1142 				data_old = db->db.db_data;
1143 			} else if (db->db.db_object != DMU_META_DNODE_OBJECT) {
1144 				/*
1145 				 * Release the data buffer from the cache so
1146 				 * that we can modify it without impacting
1147 				 * possible other users of this cached data
1148 				 * block.  Note that indirect blocks and
1149 				 * private objects are not released until the
1150 				 * syncing state (since they are only modified
1151 				 * then).
1152 				 */
1153 				arc_release(db->db_buf, db);
1154 				dbuf_fix_old_data(db, tx->tx_txg);
1155 				data_old = db->db_buf;
1156 			}
1157 			ASSERT(data_old != NULL);
1158 		}
1159 		dr->dt.dl.dr_data = data_old;
1160 	} else {
1161 		mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_DEFAULT, NULL);
1162 		list_create(&dr->dt.di.dr_children,
1163 		    sizeof (dbuf_dirty_record_t),
1164 		    offsetof(dbuf_dirty_record_t, dr_dirty_node));
1165 	}
1166 	if (db->db_blkid != DMU_BONUS_BLKID && os->os_dsl_dataset != NULL)
1167 		dr->dr_accounted = db->db.db_size;
1168 	dr->dr_dbuf = db;
1169 	dr->dr_txg = tx->tx_txg;
1170 	dr->dr_next = *drp;
1171 	*drp = dr;
1172 
1173 	/*
1174 	 * We could have been freed_in_flight between the dbuf_noread
1175 	 * and dbuf_dirty.  We win, as though the dbuf_noread() had
1176 	 * happened after the free.
1177 	 */
1178 	if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1179 	    db->db_blkid != DMU_SPILL_BLKID) {
1180 		mutex_enter(&dn->dn_mtx);
1181 		if (dn->dn_free_ranges[txgoff] != NULL) {
1182 			range_tree_clear(dn->dn_free_ranges[txgoff],
1183 			    db->db_blkid, 1);
1184 		}
1185 		mutex_exit(&dn->dn_mtx);
1186 		db->db_freed_in_flight = FALSE;
1187 	}
1188 
1189 	/*
1190 	 * This buffer is now part of this txg
1191 	 */
1192 	dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg);
1193 	db->db_dirtycnt += 1;
1194 	ASSERT3U(db->db_dirtycnt, <=, 3);
1195 
1196 	mutex_exit(&db->db_mtx);
1197 
1198 	if (db->db_blkid == DMU_BONUS_BLKID ||
1199 	    db->db_blkid == DMU_SPILL_BLKID) {
1200 		mutex_enter(&dn->dn_mtx);
1201 		ASSERT(!list_link_active(&dr->dr_dirty_node));
1202 		list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
1203 		mutex_exit(&dn->dn_mtx);
1204 		dnode_setdirty(dn, tx);
1205 		DB_DNODE_EXIT(db);
1206 		return (dr);
1207 	} else if (do_free_accounting) {
1208 		blkptr_t *bp = db->db_blkptr;
1209 		int64_t willfree = (bp && !BP_IS_HOLE(bp)) ?
1210 		    bp_get_dsize(os->os_spa, bp) : db->db.db_size;
1211 		/*
1212 		 * This is only a guess -- if the dbuf is dirty
1213 		 * in a previous txg, we don't know how much
1214 		 * space it will use on disk yet.  We should
1215 		 * really have the struct_rwlock to access
1216 		 * db_blkptr, but since this is just a guess,
1217 		 * it's OK if we get an odd answer.
1218 		 */
1219 		ddt_prefetch(os->os_spa, bp);
1220 		dnode_willuse_space(dn, -willfree, tx);
1221 	}
1222 
1223 	if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
1224 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
1225 		drop_struct_lock = TRUE;
1226 	}
1227 
1228 	if (db->db_level == 0) {
1229 		dnode_new_blkid(dn, db->db_blkid, tx, drop_struct_lock);
1230 		ASSERT(dn->dn_maxblkid >= db->db_blkid);
1231 	}
1232 
1233 	if (db->db_level+1 < dn->dn_nlevels) {
1234 		dmu_buf_impl_t *parent = db->db_parent;
1235 		dbuf_dirty_record_t *di;
1236 		int parent_held = FALSE;
1237 
1238 		if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) {
1239 			int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1240 
1241 			parent = dbuf_hold_level(dn, db->db_level+1,
1242 			    db->db_blkid >> epbs, FTAG);
1243 			ASSERT(parent != NULL);
1244 			parent_held = TRUE;
1245 		}
1246 		if (drop_struct_lock)
1247 			rw_exit(&dn->dn_struct_rwlock);
1248 		ASSERT3U(db->db_level+1, ==, parent->db_level);
1249 		di = dbuf_dirty(parent, tx);
1250 		if (parent_held)
1251 			dbuf_rele(parent, FTAG);
1252 
1253 		mutex_enter(&db->db_mtx);
1254 		/*
1255 		 * Since we've dropped the mutex, it's possible that
1256 		 * dbuf_undirty() might have changed this out from under us.
1257 		 */
1258 		if (db->db_last_dirty == dr ||
1259 		    dn->dn_object == DMU_META_DNODE_OBJECT) {
1260 			mutex_enter(&di->dt.di.dr_mtx);
1261 			ASSERT3U(di->dr_txg, ==, tx->tx_txg);
1262 			ASSERT(!list_link_active(&dr->dr_dirty_node));
1263 			list_insert_tail(&di->dt.di.dr_children, dr);
1264 			mutex_exit(&di->dt.di.dr_mtx);
1265 			dr->dr_parent = di;
1266 		}
1267 		mutex_exit(&db->db_mtx);
1268 	} else {
1269 		ASSERT(db->db_level+1 == dn->dn_nlevels);
1270 		ASSERT(db->db_blkid < dn->dn_nblkptr);
1271 		ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf);
1272 		mutex_enter(&dn->dn_mtx);
1273 		ASSERT(!list_link_active(&dr->dr_dirty_node));
1274 		list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
1275 		mutex_exit(&dn->dn_mtx);
1276 		if (drop_struct_lock)
1277 			rw_exit(&dn->dn_struct_rwlock);
1278 	}
1279 
1280 	dnode_setdirty(dn, tx);
1281 	DB_DNODE_EXIT(db);
1282 	return (dr);
1283 }
1284 
1285 /*
1286  * Undirty a buffer in the transaction group referenced by the given
1287  * transaction.  Return whether this evicted the dbuf.
1288  */
1289 static boolean_t
1290 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
1291 {
1292 	dnode_t *dn;
1293 	uint64_t txg = tx->tx_txg;
1294 	dbuf_dirty_record_t *dr, **drp;
1295 
1296 	ASSERT(txg != 0);
1297 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1298 	ASSERT0(db->db_level);
1299 	ASSERT(MUTEX_HELD(&db->db_mtx));
1300 
1301 	/*
1302 	 * If this buffer is not dirty, we're done.
1303 	 */
1304 	for (drp = &db->db_last_dirty; (dr = *drp) != NULL; drp = &dr->dr_next)
1305 		if (dr->dr_txg <= txg)
1306 			break;
1307 	if (dr == NULL || dr->dr_txg < txg)
1308 		return (B_FALSE);
1309 	ASSERT(dr->dr_txg == txg);
1310 	ASSERT(dr->dr_dbuf == db);
1311 
1312 	DB_DNODE_ENTER(db);
1313 	dn = DB_DNODE(db);
1314 
1315 	dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
1316 
1317 	ASSERT(db->db.db_size != 0);
1318 
1319 	/*
1320 	 * Any space we accounted for in dp_dirty_* will be cleaned up by
1321 	 * dsl_pool_sync().  This is relatively rare so the discrepancy
1322 	 * is not a big deal.
1323 	 */
1324 
1325 	*drp = dr->dr_next;
1326 
1327 	/*
1328 	 * Note that there are three places in dbuf_dirty()
1329 	 * where this dirty record may be put on a list.
1330 	 * Make sure to do a list_remove corresponding to
1331 	 * every one of those list_insert calls.
1332 	 */
1333 	if (dr->dr_parent) {
1334 		mutex_enter(&dr->dr_parent->dt.di.dr_mtx);
1335 		list_remove(&dr->dr_parent->dt.di.dr_children, dr);
1336 		mutex_exit(&dr->dr_parent->dt.di.dr_mtx);
1337 	} else if (db->db_blkid == DMU_SPILL_BLKID ||
1338 	    db->db_level+1 == dn->dn_nlevels) {
1339 		ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf);
1340 		mutex_enter(&dn->dn_mtx);
1341 		list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr);
1342 		mutex_exit(&dn->dn_mtx);
1343 	}
1344 	DB_DNODE_EXIT(db);
1345 
1346 	if (db->db_state != DB_NOFILL) {
1347 		dbuf_unoverride(dr);
1348 
1349 		ASSERT(db->db_buf != NULL);
1350 		ASSERT(dr->dt.dl.dr_data != NULL);
1351 		if (dr->dt.dl.dr_data != db->db_buf)
1352 			VERIFY(arc_buf_remove_ref(dr->dt.dl.dr_data, db));
1353 	}
1354 	kmem_free(dr, sizeof (dbuf_dirty_record_t));
1355 
1356 	ASSERT(db->db_dirtycnt > 0);
1357 	db->db_dirtycnt -= 1;
1358 
1359 	if (refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) {
1360 		arc_buf_t *buf = db->db_buf;
1361 
1362 		ASSERT(db->db_state == DB_NOFILL || arc_released(buf));
1363 		dbuf_set_data(db, NULL);
1364 		VERIFY(arc_buf_remove_ref(buf, db));
1365 		dbuf_evict(db);
1366 		return (B_TRUE);
1367 	}
1368 
1369 	return (B_FALSE);
1370 }
1371 
1372 void
1373 dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx)
1374 {
1375 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1376 	int rf = DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH;
1377 
1378 	ASSERT(tx->tx_txg != 0);
1379 	ASSERT(!refcount_is_zero(&db->db_holds));
1380 
1381 	DB_DNODE_ENTER(db);
1382 	if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock))
1383 		rf |= DB_RF_HAVESTRUCT;
1384 	DB_DNODE_EXIT(db);
1385 	(void) dbuf_read(db, NULL, rf);
1386 	(void) dbuf_dirty(db, tx);
1387 }
1388 
1389 void
1390 dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
1391 {
1392 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1393 
1394 	db->db_state = DB_NOFILL;
1395 
1396 	dmu_buf_will_fill(db_fake, tx);
1397 }
1398 
1399 void
1400 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
1401 {
1402 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1403 
1404 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1405 	ASSERT(tx->tx_txg != 0);
1406 	ASSERT(db->db_level == 0);
1407 	ASSERT(!refcount_is_zero(&db->db_holds));
1408 
1409 	ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT ||
1410 	    dmu_tx_private_ok(tx));
1411 
1412 	dbuf_noread(db);
1413 	(void) dbuf_dirty(db, tx);
1414 }
1415 
1416 #pragma weak dmu_buf_fill_done = dbuf_fill_done
1417 /* ARGSUSED */
1418 void
1419 dbuf_fill_done(dmu_buf_impl_t *db, dmu_tx_t *tx)
1420 {
1421 	mutex_enter(&db->db_mtx);
1422 	DBUF_VERIFY(db);
1423 
1424 	if (db->db_state == DB_FILL) {
1425 		if (db->db_level == 0 && db->db_freed_in_flight) {
1426 			ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1427 			/* we were freed while filling */
1428 			/* XXX dbuf_undirty? */
1429 			bzero(db->db.db_data, db->db.db_size);
1430 			db->db_freed_in_flight = FALSE;
1431 		}
1432 		db->db_state = DB_CACHED;
1433 		cv_broadcast(&db->db_changed);
1434 	}
1435 	mutex_exit(&db->db_mtx);
1436 }
1437 
1438 /*
1439  * Directly assign a provided arc buf to a given dbuf if it's not referenced
1440  * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf.
1441  */
1442 void
1443 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx)
1444 {
1445 	ASSERT(!refcount_is_zero(&db->db_holds));
1446 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1447 	ASSERT(db->db_level == 0);
1448 	ASSERT(DBUF_GET_BUFC_TYPE(db) == ARC_BUFC_DATA);
1449 	ASSERT(buf != NULL);
1450 	ASSERT(arc_buf_size(buf) == db->db.db_size);
1451 	ASSERT(tx->tx_txg != 0);
1452 
1453 	arc_return_buf(buf, db);
1454 	ASSERT(arc_released(buf));
1455 
1456 	mutex_enter(&db->db_mtx);
1457 
1458 	while (db->db_state == DB_READ || db->db_state == DB_FILL)
1459 		cv_wait(&db->db_changed, &db->db_mtx);
1460 
1461 	ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED);
1462 
1463 	if (db->db_state == DB_CACHED &&
1464 	    refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) {
1465 		mutex_exit(&db->db_mtx);
1466 		(void) dbuf_dirty(db, tx);
1467 		bcopy(buf->b_data, db->db.db_data, db->db.db_size);
1468 		VERIFY(arc_buf_remove_ref(buf, db));
1469 		xuio_stat_wbuf_copied();
1470 		return;
1471 	}
1472 
1473 	xuio_stat_wbuf_nocopy();
1474 	if (db->db_state == DB_CACHED) {
1475 		dbuf_dirty_record_t *dr = db->db_last_dirty;
1476 
1477 		ASSERT(db->db_buf != NULL);
1478 		if (dr != NULL && dr->dr_txg == tx->tx_txg) {
1479 			ASSERT(dr->dt.dl.dr_data == db->db_buf);
1480 			if (!arc_released(db->db_buf)) {
1481 				ASSERT(dr->dt.dl.dr_override_state ==
1482 				    DR_OVERRIDDEN);
1483 				arc_release(db->db_buf, db);
1484 			}
1485 			dr->dt.dl.dr_data = buf;
1486 			VERIFY(arc_buf_remove_ref(db->db_buf, db));
1487 		} else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) {
1488 			arc_release(db->db_buf, db);
1489 			VERIFY(arc_buf_remove_ref(db->db_buf, db));
1490 		}
1491 		db->db_buf = NULL;
1492 	}
1493 	ASSERT(db->db_buf == NULL);
1494 	dbuf_set_data(db, buf);
1495 	db->db_state = DB_FILL;
1496 	mutex_exit(&db->db_mtx);
1497 	(void) dbuf_dirty(db, tx);
1498 	dmu_buf_fill_done(&db->db, tx);
1499 }
1500 
1501 /*
1502  * "Clear" the contents of this dbuf.  This will mark the dbuf
1503  * EVICTING and clear *most* of its references.  Unfortunately,
1504  * when we are not holding the dn_dbufs_mtx, we can't clear the
1505  * entry in the dn_dbufs list.  We have to wait until dbuf_destroy()
1506  * in this case.  For callers from the DMU we will usually see:
1507  *	dbuf_clear()->arc_buf_evict()->dbuf_do_evict()->dbuf_destroy()
1508  * For the arc callback, we will usually see:
1509  *	dbuf_do_evict()->dbuf_clear();dbuf_destroy()
1510  * Sometimes, though, we will get a mix of these two:
1511  *	DMU: dbuf_clear()->arc_buf_evict()
1512  *	ARC: dbuf_do_evict()->dbuf_destroy()
1513  */
1514 void
1515 dbuf_clear(dmu_buf_impl_t *db)
1516 {
1517 	dnode_t *dn;
1518 	dmu_buf_impl_t *parent = db->db_parent;
1519 	dmu_buf_impl_t *dndb;
1520 	int dbuf_gone = FALSE;
1521 
1522 	ASSERT(MUTEX_HELD(&db->db_mtx));
1523 	ASSERT(refcount_is_zero(&db->db_holds));
1524 
1525 	dbuf_evict_user(db);
1526 
1527 	if (db->db_state == DB_CACHED) {
1528 		ASSERT(db->db.db_data != NULL);
1529 		if (db->db_blkid == DMU_BONUS_BLKID) {
1530 			zio_buf_free(db->db.db_data, DN_MAX_BONUSLEN);
1531 			arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
1532 		}
1533 		db->db.db_data = NULL;
1534 		db->db_state = DB_UNCACHED;
1535 	}
1536 
1537 	ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL);
1538 	ASSERT(db->db_data_pending == NULL);
1539 
1540 	db->db_state = DB_EVICTING;
1541 	db->db_blkptr = NULL;
1542 
1543 	DB_DNODE_ENTER(db);
1544 	dn = DB_DNODE(db);
1545 	dndb = dn->dn_dbuf;
1546 	if (db->db_blkid != DMU_BONUS_BLKID && MUTEX_HELD(&dn->dn_dbufs_mtx)) {
1547 		list_remove(&dn->dn_dbufs, db);
1548 		(void) atomic_dec_32_nv(&dn->dn_dbufs_count);
1549 		membar_producer();
1550 		DB_DNODE_EXIT(db);
1551 		/*
1552 		 * Decrementing the dbuf count means that the hold corresponding
1553 		 * to the removed dbuf is no longer discounted in dnode_move(),
1554 		 * so the dnode cannot be moved until after we release the hold.
1555 		 * The membar_producer() ensures visibility of the decremented
1556 		 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually
1557 		 * release any lock.
1558 		 */
1559 		dnode_rele(dn, db);
1560 		db->db_dnode_handle = NULL;
1561 	} else {
1562 		DB_DNODE_EXIT(db);
1563 	}
1564 
1565 	if (db->db_buf)
1566 		dbuf_gone = arc_buf_evict(db->db_buf);
1567 
1568 	if (!dbuf_gone)
1569 		mutex_exit(&db->db_mtx);
1570 
1571 	/*
1572 	 * If this dbuf is referenced from an indirect dbuf,
1573 	 * decrement the ref count on the indirect dbuf.
1574 	 */
1575 	if (parent && parent != dndb)
1576 		dbuf_rele(parent, db);
1577 }
1578 
1579 static int
1580 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse,
1581     dmu_buf_impl_t **parentp, blkptr_t **bpp)
1582 {
1583 	int nlevels, epbs;
1584 
1585 	*parentp = NULL;
1586 	*bpp = NULL;
1587 
1588 	ASSERT(blkid != DMU_BONUS_BLKID);
1589 
1590 	if (blkid == DMU_SPILL_BLKID) {
1591 		mutex_enter(&dn->dn_mtx);
1592 		if (dn->dn_have_spill &&
1593 		    (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
1594 			*bpp = &dn->dn_phys->dn_spill;
1595 		else
1596 			*bpp = NULL;
1597 		dbuf_add_ref(dn->dn_dbuf, NULL);
1598 		*parentp = dn->dn_dbuf;
1599 		mutex_exit(&dn->dn_mtx);
1600 		return (0);
1601 	}
1602 
1603 	if (dn->dn_phys->dn_nlevels == 0)
1604 		nlevels = 1;
1605 	else
1606 		nlevels = dn->dn_phys->dn_nlevels;
1607 
1608 	epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1609 
1610 	ASSERT3U(level * epbs, <, 64);
1611 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
1612 	if (level >= nlevels ||
1613 	    (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) {
1614 		/* the buffer has no parent yet */
1615 		return (SET_ERROR(ENOENT));
1616 	} else if (level < nlevels-1) {
1617 		/* this block is referenced from an indirect block */
1618 		int err = dbuf_hold_impl(dn, level+1,
1619 		    blkid >> epbs, fail_sparse, NULL, parentp);
1620 		if (err)
1621 			return (err);
1622 		err = dbuf_read(*parentp, NULL,
1623 		    (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL));
1624 		if (err) {
1625 			dbuf_rele(*parentp, NULL);
1626 			*parentp = NULL;
1627 			return (err);
1628 		}
1629 		*bpp = ((blkptr_t *)(*parentp)->db.db_data) +
1630 		    (blkid & ((1ULL << epbs) - 1));
1631 		return (0);
1632 	} else {
1633 		/* the block is referenced from the dnode */
1634 		ASSERT3U(level, ==, nlevels-1);
1635 		ASSERT(dn->dn_phys->dn_nblkptr == 0 ||
1636 		    blkid < dn->dn_phys->dn_nblkptr);
1637 		if (dn->dn_dbuf) {
1638 			dbuf_add_ref(dn->dn_dbuf, NULL);
1639 			*parentp = dn->dn_dbuf;
1640 		}
1641 		*bpp = &dn->dn_phys->dn_blkptr[blkid];
1642 		return (0);
1643 	}
1644 }
1645 
1646 static dmu_buf_impl_t *
1647 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid,
1648     dmu_buf_impl_t *parent, blkptr_t *blkptr)
1649 {
1650 	objset_t *os = dn->dn_objset;
1651 	dmu_buf_impl_t *db, *odb;
1652 
1653 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
1654 	ASSERT(dn->dn_type != DMU_OT_NONE);
1655 
1656 	db = kmem_cache_alloc(dbuf_cache, KM_SLEEP);
1657 
1658 	db->db_objset = os;
1659 	db->db.db_object = dn->dn_object;
1660 	db->db_level = level;
1661 	db->db_blkid = blkid;
1662 	db->db_last_dirty = NULL;
1663 	db->db_dirtycnt = 0;
1664 	db->db_dnode_handle = dn->dn_handle;
1665 	db->db_parent = parent;
1666 	db->db_blkptr = blkptr;
1667 
1668 	db->db_user_ptr = NULL;
1669 	db->db_user_data_ptr_ptr = NULL;
1670 	db->db_evict_func = NULL;
1671 	db->db_immediate_evict = 0;
1672 	db->db_freed_in_flight = 0;
1673 
1674 	if (blkid == DMU_BONUS_BLKID) {
1675 		ASSERT3P(parent, ==, dn->dn_dbuf);
1676 		db->db.db_size = DN_MAX_BONUSLEN -
1677 		    (dn->dn_nblkptr-1) * sizeof (blkptr_t);
1678 		ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
1679 		db->db.db_offset = DMU_BONUS_BLKID;
1680 		db->db_state = DB_UNCACHED;
1681 		/* the bonus dbuf is not placed in the hash table */
1682 		arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER);
1683 		return (db);
1684 	} else if (blkid == DMU_SPILL_BLKID) {
1685 		db->db.db_size = (blkptr != NULL) ?
1686 		    BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE;
1687 		db->db.db_offset = 0;
1688 	} else {
1689 		int blocksize =
1690 		    db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz;
1691 		db->db.db_size = blocksize;
1692 		db->db.db_offset = db->db_blkid * blocksize;
1693 	}
1694 
1695 	/*
1696 	 * Hold the dn_dbufs_mtx while we get the new dbuf
1697 	 * in the hash table *and* added to the dbufs list.
1698 	 * This prevents a possible deadlock with someone
1699 	 * trying to look up this dbuf before its added to the
1700 	 * dn_dbufs list.
1701 	 */
1702 	mutex_enter(&dn->dn_dbufs_mtx);
1703 	db->db_state = DB_EVICTING;
1704 	if ((odb = dbuf_hash_insert(db)) != NULL) {
1705 		/* someone else inserted it first */
1706 		kmem_cache_free(dbuf_cache, db);
1707 		mutex_exit(&dn->dn_dbufs_mtx);
1708 		return (odb);
1709 	}
1710 	list_insert_head(&dn->dn_dbufs, db);
1711 	if (db->db_level == 0 && db->db_blkid >=
1712 	    dn->dn_unlisted_l0_blkid)
1713 		dn->dn_unlisted_l0_blkid = db->db_blkid + 1;
1714 	db->db_state = DB_UNCACHED;
1715 	mutex_exit(&dn->dn_dbufs_mtx);
1716 	arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER);
1717 
1718 	if (parent && parent != dn->dn_dbuf)
1719 		dbuf_add_ref(parent, db);
1720 
1721 	ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
1722 	    refcount_count(&dn->dn_holds) > 0);
1723 	(void) refcount_add(&dn->dn_holds, db);
1724 	(void) atomic_inc_32_nv(&dn->dn_dbufs_count);
1725 
1726 	dprintf_dbuf(db, "db=%p\n", db);
1727 
1728 	return (db);
1729 }
1730 
1731 static int
1732 dbuf_do_evict(void *private)
1733 {
1734 	arc_buf_t *buf = private;
1735 	dmu_buf_impl_t *db = buf->b_private;
1736 
1737 	if (!MUTEX_HELD(&db->db_mtx))
1738 		mutex_enter(&db->db_mtx);
1739 
1740 	ASSERT(refcount_is_zero(&db->db_holds));
1741 
1742 	if (db->db_state != DB_EVICTING) {
1743 		ASSERT(db->db_state == DB_CACHED);
1744 		DBUF_VERIFY(db);
1745 		db->db_buf = NULL;
1746 		dbuf_evict(db);
1747 	} else {
1748 		mutex_exit(&db->db_mtx);
1749 		dbuf_destroy(db);
1750 	}
1751 	return (0);
1752 }
1753 
1754 static void
1755 dbuf_destroy(dmu_buf_impl_t *db)
1756 {
1757 	ASSERT(refcount_is_zero(&db->db_holds));
1758 
1759 	if (db->db_blkid != DMU_BONUS_BLKID) {
1760 		/*
1761 		 * If this dbuf is still on the dn_dbufs list,
1762 		 * remove it from that list.
1763 		 */
1764 		if (db->db_dnode_handle != NULL) {
1765 			dnode_t *dn;
1766 
1767 			DB_DNODE_ENTER(db);
1768 			dn = DB_DNODE(db);
1769 			mutex_enter(&dn->dn_dbufs_mtx);
1770 			list_remove(&dn->dn_dbufs, db);
1771 			(void) atomic_dec_32_nv(&dn->dn_dbufs_count);
1772 			mutex_exit(&dn->dn_dbufs_mtx);
1773 			DB_DNODE_EXIT(db);
1774 			/*
1775 			 * Decrementing the dbuf count means that the hold
1776 			 * corresponding to the removed dbuf is no longer
1777 			 * discounted in dnode_move(), so the dnode cannot be
1778 			 * moved until after we release the hold.
1779 			 */
1780 			dnode_rele(dn, db);
1781 			db->db_dnode_handle = NULL;
1782 		}
1783 		dbuf_hash_remove(db);
1784 	}
1785 	db->db_parent = NULL;
1786 	db->db_buf = NULL;
1787 
1788 	ASSERT(!list_link_active(&db->db_link));
1789 	ASSERT(db->db.db_data == NULL);
1790 	ASSERT(db->db_hash_next == NULL);
1791 	ASSERT(db->db_blkptr == NULL);
1792 	ASSERT(db->db_data_pending == NULL);
1793 
1794 	kmem_cache_free(dbuf_cache, db);
1795 	arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER);
1796 }
1797 
1798 void
1799 dbuf_prefetch(dnode_t *dn, uint64_t blkid, zio_priority_t prio)
1800 {
1801 	dmu_buf_impl_t *db = NULL;
1802 	blkptr_t *bp = NULL;
1803 
1804 	ASSERT(blkid != DMU_BONUS_BLKID);
1805 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
1806 
1807 	if (dnode_block_freed(dn, blkid))
1808 		return;
1809 
1810 	/* dbuf_find() returns with db_mtx held */
1811 	if (db = dbuf_find(dn, 0, blkid)) {
1812 		/*
1813 		 * This dbuf is already in the cache.  We assume that
1814 		 * it is already CACHED, or else about to be either
1815 		 * read or filled.
1816 		 */
1817 		mutex_exit(&db->db_mtx);
1818 		return;
1819 	}
1820 
1821 	if (dbuf_findbp(dn, 0, blkid, TRUE, &db, &bp) == 0) {
1822 		if (bp && !BP_IS_HOLE(bp)) {
1823 			dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
1824 			uint32_t aflags = ARC_NOWAIT | ARC_PREFETCH;
1825 			zbookmark_t zb;
1826 
1827 			SET_BOOKMARK(&zb, ds ? ds->ds_object : DMU_META_OBJSET,
1828 			    dn->dn_object, 0, blkid);
1829 
1830 			(void) arc_read(NULL, dn->dn_objset->os_spa,
1831 			    bp, NULL, NULL, prio,
1832 			    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
1833 			    &aflags, &zb);
1834 		}
1835 		if (db)
1836 			dbuf_rele(db, NULL);
1837 	}
1838 }
1839 
1840 /*
1841  * Returns with db_holds incremented, and db_mtx not held.
1842  * Note: dn_struct_rwlock must be held.
1843  */
1844 int
1845 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid, int fail_sparse,
1846     void *tag, dmu_buf_impl_t **dbp)
1847 {
1848 	dmu_buf_impl_t *db, *parent = NULL;
1849 
1850 	ASSERT(blkid != DMU_BONUS_BLKID);
1851 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
1852 	ASSERT3U(dn->dn_nlevels, >, level);
1853 
1854 	*dbp = NULL;
1855 top:
1856 	/* dbuf_find() returns with db_mtx held */
1857 	db = dbuf_find(dn, level, blkid);
1858 
1859 	if (db == NULL) {
1860 		blkptr_t *bp = NULL;
1861 		int err;
1862 
1863 		ASSERT3P(parent, ==, NULL);
1864 		err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp);
1865 		if (fail_sparse) {
1866 			if (err == 0 && bp && BP_IS_HOLE(bp))
1867 				err = SET_ERROR(ENOENT);
1868 			if (err) {
1869 				if (parent)
1870 					dbuf_rele(parent, NULL);
1871 				return (err);
1872 			}
1873 		}
1874 		if (err && err != ENOENT)
1875 			return (err);
1876 		db = dbuf_create(dn, level, blkid, parent, bp);
1877 	}
1878 
1879 	if (db->db_buf && refcount_is_zero(&db->db_holds)) {
1880 		arc_buf_add_ref(db->db_buf, db);
1881 		if (db->db_buf->b_data == NULL) {
1882 			dbuf_clear(db);
1883 			if (parent) {
1884 				dbuf_rele(parent, NULL);
1885 				parent = NULL;
1886 			}
1887 			goto top;
1888 		}
1889 		ASSERT3P(db->db.db_data, ==, db->db_buf->b_data);
1890 	}
1891 
1892 	ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf));
1893 
1894 	/*
1895 	 * If this buffer is currently syncing out, and we are are
1896 	 * still referencing it from db_data, we need to make a copy
1897 	 * of it in case we decide we want to dirty it again in this txg.
1898 	 */
1899 	if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1900 	    dn->dn_object != DMU_META_DNODE_OBJECT &&
1901 	    db->db_state == DB_CACHED && db->db_data_pending) {
1902 		dbuf_dirty_record_t *dr = db->db_data_pending;
1903 
1904 		if (dr->dt.dl.dr_data == db->db_buf) {
1905 			arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1906 
1907 			dbuf_set_data(db,
1908 			    arc_buf_alloc(dn->dn_objset->os_spa,
1909 			    db->db.db_size, db, type));
1910 			bcopy(dr->dt.dl.dr_data->b_data, db->db.db_data,
1911 			    db->db.db_size);
1912 		}
1913 	}
1914 
1915 	(void) refcount_add(&db->db_holds, tag);
1916 	dbuf_update_data(db);
1917 	DBUF_VERIFY(db);
1918 	mutex_exit(&db->db_mtx);
1919 
1920 	/* NOTE: we can't rele the parent until after we drop the db_mtx */
1921 	if (parent)
1922 		dbuf_rele(parent, NULL);
1923 
1924 	ASSERT3P(DB_DNODE(db), ==, dn);
1925 	ASSERT3U(db->db_blkid, ==, blkid);
1926 	ASSERT3U(db->db_level, ==, level);
1927 	*dbp = db;
1928 
1929 	return (0);
1930 }
1931 
1932 dmu_buf_impl_t *
1933 dbuf_hold(dnode_t *dn, uint64_t blkid, void *tag)
1934 {
1935 	dmu_buf_impl_t *db;
1936 	int err = dbuf_hold_impl(dn, 0, blkid, FALSE, tag, &db);
1937 	return (err ? NULL : db);
1938 }
1939 
1940 dmu_buf_impl_t *
1941 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, void *tag)
1942 {
1943 	dmu_buf_impl_t *db;
1944 	int err = dbuf_hold_impl(dn, level, blkid, FALSE, tag, &db);
1945 	return (err ? NULL : db);
1946 }
1947 
1948 void
1949 dbuf_create_bonus(dnode_t *dn)
1950 {
1951 	ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
1952 
1953 	ASSERT(dn->dn_bonus == NULL);
1954 	dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL);
1955 }
1956 
1957 int
1958 dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx)
1959 {
1960 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1961 	dnode_t *dn;
1962 
1963 	if (db->db_blkid != DMU_SPILL_BLKID)
1964 		return (SET_ERROR(ENOTSUP));
1965 	if (blksz == 0)
1966 		blksz = SPA_MINBLOCKSIZE;
1967 	if (blksz > SPA_MAXBLOCKSIZE)
1968 		blksz = SPA_MAXBLOCKSIZE;
1969 	else
1970 		blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE);
1971 
1972 	DB_DNODE_ENTER(db);
1973 	dn = DB_DNODE(db);
1974 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1975 	dbuf_new_size(db, blksz, tx);
1976 	rw_exit(&dn->dn_struct_rwlock);
1977 	DB_DNODE_EXIT(db);
1978 
1979 	return (0);
1980 }
1981 
1982 void
1983 dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx)
1984 {
1985 	dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx);
1986 }
1987 
1988 #pragma weak dmu_buf_add_ref = dbuf_add_ref
1989 void
1990 dbuf_add_ref(dmu_buf_impl_t *db, void *tag)
1991 {
1992 	int64_t holds = refcount_add(&db->db_holds, tag);
1993 	ASSERT(holds > 1);
1994 }
1995 
1996 /*
1997  * If you call dbuf_rele() you had better not be referencing the dnode handle
1998  * unless you have some other direct or indirect hold on the dnode. (An indirect
1999  * hold is a hold on one of the dnode's dbufs, including the bonus buffer.)
2000  * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the
2001  * dnode's parent dbuf evicting its dnode handles.
2002  */
2003 void
2004 dbuf_rele(dmu_buf_impl_t *db, void *tag)
2005 {
2006 	mutex_enter(&db->db_mtx);
2007 	dbuf_rele_and_unlock(db, tag);
2008 }
2009 
2010 void
2011 dmu_buf_rele(dmu_buf_t *db, void *tag)
2012 {
2013 	dbuf_rele((dmu_buf_impl_t *)db, tag);
2014 }
2015 
2016 /*
2017  * dbuf_rele() for an already-locked dbuf.  This is necessary to allow
2018  * db_dirtycnt and db_holds to be updated atomically.
2019  */
2020 void
2021 dbuf_rele_and_unlock(dmu_buf_impl_t *db, void *tag)
2022 {
2023 	int64_t holds;
2024 
2025 	ASSERT(MUTEX_HELD(&db->db_mtx));
2026 	DBUF_VERIFY(db);
2027 
2028 	/*
2029 	 * Remove the reference to the dbuf before removing its hold on the
2030 	 * dnode so we can guarantee in dnode_move() that a referenced bonus
2031 	 * buffer has a corresponding dnode hold.
2032 	 */
2033 	holds = refcount_remove(&db->db_holds, tag);
2034 	ASSERT(holds >= 0);
2035 
2036 	/*
2037 	 * We can't freeze indirects if there is a possibility that they
2038 	 * may be modified in the current syncing context.
2039 	 */
2040 	if (db->db_buf && holds == (db->db_level == 0 ? db->db_dirtycnt : 0))
2041 		arc_buf_freeze(db->db_buf);
2042 
2043 	if (holds == db->db_dirtycnt &&
2044 	    db->db_level == 0 && db->db_immediate_evict)
2045 		dbuf_evict_user(db);
2046 
2047 	if (holds == 0) {
2048 		if (db->db_blkid == DMU_BONUS_BLKID) {
2049 			mutex_exit(&db->db_mtx);
2050 
2051 			/*
2052 			 * If the dnode moves here, we cannot cross this barrier
2053 			 * until the move completes.
2054 			 */
2055 			DB_DNODE_ENTER(db);
2056 			(void) atomic_dec_32_nv(&DB_DNODE(db)->dn_dbufs_count);
2057 			DB_DNODE_EXIT(db);
2058 			/*
2059 			 * The bonus buffer's dnode hold is no longer discounted
2060 			 * in dnode_move(). The dnode cannot move until after
2061 			 * the dnode_rele().
2062 			 */
2063 			dnode_rele(DB_DNODE(db), db);
2064 		} else if (db->db_buf == NULL) {
2065 			/*
2066 			 * This is a special case: we never associated this
2067 			 * dbuf with any data allocated from the ARC.
2068 			 */
2069 			ASSERT(db->db_state == DB_UNCACHED ||
2070 			    db->db_state == DB_NOFILL);
2071 			dbuf_evict(db);
2072 		} else if (arc_released(db->db_buf)) {
2073 			arc_buf_t *buf = db->db_buf;
2074 			/*
2075 			 * This dbuf has anonymous data associated with it.
2076 			 */
2077 			dbuf_set_data(db, NULL);
2078 			VERIFY(arc_buf_remove_ref(buf, db));
2079 			dbuf_evict(db);
2080 		} else {
2081 			VERIFY(!arc_buf_remove_ref(db->db_buf, db));
2082 
2083 			/*
2084 			 * A dbuf will be eligible for eviction if either the
2085 			 * 'primarycache' property is set or a duplicate
2086 			 * copy of this buffer is already cached in the arc.
2087 			 *
2088 			 * In the case of the 'primarycache' a buffer
2089 			 * is considered for eviction if it matches the
2090 			 * criteria set in the property.
2091 			 *
2092 			 * To decide if our buffer is considered a
2093 			 * duplicate, we must call into the arc to determine
2094 			 * if multiple buffers are referencing the same
2095 			 * block on-disk. If so, then we simply evict
2096 			 * ourselves.
2097 			 */
2098 			if (!DBUF_IS_CACHEABLE(db) ||
2099 			    arc_buf_eviction_needed(db->db_buf))
2100 				dbuf_clear(db);
2101 			else
2102 				mutex_exit(&db->db_mtx);
2103 		}
2104 	} else {
2105 		mutex_exit(&db->db_mtx);
2106 	}
2107 }
2108 
2109 #pragma weak dmu_buf_refcount = dbuf_refcount
2110 uint64_t
2111 dbuf_refcount(dmu_buf_impl_t *db)
2112 {
2113 	return (refcount_count(&db->db_holds));
2114 }
2115 
2116 void *
2117 dmu_buf_set_user(dmu_buf_t *db_fake, void *user_ptr, void *user_data_ptr_ptr,
2118     dmu_buf_evict_func_t *evict_func)
2119 {
2120 	return (dmu_buf_update_user(db_fake, NULL, user_ptr,
2121 	    user_data_ptr_ptr, evict_func));
2122 }
2123 
2124 void *
2125 dmu_buf_set_user_ie(dmu_buf_t *db_fake, void *user_ptr, void *user_data_ptr_ptr,
2126     dmu_buf_evict_func_t *evict_func)
2127 {
2128 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2129 
2130 	db->db_immediate_evict = TRUE;
2131 	return (dmu_buf_update_user(db_fake, NULL, user_ptr,
2132 	    user_data_ptr_ptr, evict_func));
2133 }
2134 
2135 void *
2136 dmu_buf_update_user(dmu_buf_t *db_fake, void *old_user_ptr, void *user_ptr,
2137     void *user_data_ptr_ptr, dmu_buf_evict_func_t *evict_func)
2138 {
2139 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2140 	ASSERT(db->db_level == 0);
2141 
2142 	ASSERT((user_ptr == NULL) == (evict_func == NULL));
2143 
2144 	mutex_enter(&db->db_mtx);
2145 
2146 	if (db->db_user_ptr == old_user_ptr) {
2147 		db->db_user_ptr = user_ptr;
2148 		db->db_user_data_ptr_ptr = user_data_ptr_ptr;
2149 		db->db_evict_func = evict_func;
2150 
2151 		dbuf_update_data(db);
2152 	} else {
2153 		old_user_ptr = db->db_user_ptr;
2154 	}
2155 
2156 	mutex_exit(&db->db_mtx);
2157 	return (old_user_ptr);
2158 }
2159 
2160 void *
2161 dmu_buf_get_user(dmu_buf_t *db_fake)
2162 {
2163 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2164 	ASSERT(!refcount_is_zero(&db->db_holds));
2165 
2166 	return (db->db_user_ptr);
2167 }
2168 
2169 boolean_t
2170 dmu_buf_freeable(dmu_buf_t *dbuf)
2171 {
2172 	boolean_t res = B_FALSE;
2173 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
2174 
2175 	if (db->db_blkptr)
2176 		res = dsl_dataset_block_freeable(db->db_objset->os_dsl_dataset,
2177 		    db->db_blkptr, db->db_blkptr->blk_birth);
2178 
2179 	return (res);
2180 }
2181 
2182 blkptr_t *
2183 dmu_buf_get_blkptr(dmu_buf_t *db)
2184 {
2185 	dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
2186 	return (dbi->db_blkptr);
2187 }
2188 
2189 static void
2190 dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db)
2191 {
2192 	/* ASSERT(dmu_tx_is_syncing(tx) */
2193 	ASSERT(MUTEX_HELD(&db->db_mtx));
2194 
2195 	if (db->db_blkptr != NULL)
2196 		return;
2197 
2198 	if (db->db_blkid == DMU_SPILL_BLKID) {
2199 		db->db_blkptr = &dn->dn_phys->dn_spill;
2200 		BP_ZERO(db->db_blkptr);
2201 		return;
2202 	}
2203 	if (db->db_level == dn->dn_phys->dn_nlevels-1) {
2204 		/*
2205 		 * This buffer was allocated at a time when there was
2206 		 * no available blkptrs from the dnode, or it was
2207 		 * inappropriate to hook it in (i.e., nlevels mis-match).
2208 		 */
2209 		ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr);
2210 		ASSERT(db->db_parent == NULL);
2211 		db->db_parent = dn->dn_dbuf;
2212 		db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid];
2213 		DBUF_VERIFY(db);
2214 	} else {
2215 		dmu_buf_impl_t *parent = db->db_parent;
2216 		int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
2217 
2218 		ASSERT(dn->dn_phys->dn_nlevels > 1);
2219 		if (parent == NULL) {
2220 			mutex_exit(&db->db_mtx);
2221 			rw_enter(&dn->dn_struct_rwlock, RW_READER);
2222 			(void) dbuf_hold_impl(dn, db->db_level+1,
2223 			    db->db_blkid >> epbs, FALSE, db, &parent);
2224 			rw_exit(&dn->dn_struct_rwlock);
2225 			mutex_enter(&db->db_mtx);
2226 			db->db_parent = parent;
2227 		}
2228 		db->db_blkptr = (blkptr_t *)parent->db.db_data +
2229 		    (db->db_blkid & ((1ULL << epbs) - 1));
2230 		DBUF_VERIFY(db);
2231 	}
2232 }
2233 
2234 static void
2235 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
2236 {
2237 	dmu_buf_impl_t *db = dr->dr_dbuf;
2238 	dnode_t *dn;
2239 	zio_t *zio;
2240 
2241 	ASSERT(dmu_tx_is_syncing(tx));
2242 
2243 	dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
2244 
2245 	mutex_enter(&db->db_mtx);
2246 
2247 	ASSERT(db->db_level > 0);
2248 	DBUF_VERIFY(db);
2249 
2250 	/* Read the block if it hasn't been read yet. */
2251 	if (db->db_buf == NULL) {
2252 		mutex_exit(&db->db_mtx);
2253 		(void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED);
2254 		mutex_enter(&db->db_mtx);
2255 	}
2256 	ASSERT3U(db->db_state, ==, DB_CACHED);
2257 	ASSERT(db->db_buf != NULL);
2258 
2259 	DB_DNODE_ENTER(db);
2260 	dn = DB_DNODE(db);
2261 	/* Indirect block size must match what the dnode thinks it is. */
2262 	ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
2263 	dbuf_check_blkptr(dn, db);
2264 	DB_DNODE_EXIT(db);
2265 
2266 	/* Provide the pending dirty record to child dbufs */
2267 	db->db_data_pending = dr;
2268 
2269 	mutex_exit(&db->db_mtx);
2270 	dbuf_write(dr, db->db_buf, tx);
2271 
2272 	zio = dr->dr_zio;
2273 	mutex_enter(&dr->dt.di.dr_mtx);
2274 	dbuf_sync_list(&dr->dt.di.dr_children, tx);
2275 	ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
2276 	mutex_exit(&dr->dt.di.dr_mtx);
2277 	zio_nowait(zio);
2278 }
2279 
2280 static void
2281 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
2282 {
2283 	arc_buf_t **datap = &dr->dt.dl.dr_data;
2284 	dmu_buf_impl_t *db = dr->dr_dbuf;
2285 	dnode_t *dn;
2286 	objset_t *os;
2287 	uint64_t txg = tx->tx_txg;
2288 
2289 	ASSERT(dmu_tx_is_syncing(tx));
2290 
2291 	dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
2292 
2293 	mutex_enter(&db->db_mtx);
2294 	/*
2295 	 * To be synced, we must be dirtied.  But we
2296 	 * might have been freed after the dirty.
2297 	 */
2298 	if (db->db_state == DB_UNCACHED) {
2299 		/* This buffer has been freed since it was dirtied */
2300 		ASSERT(db->db.db_data == NULL);
2301 	} else if (db->db_state == DB_FILL) {
2302 		/* This buffer was freed and is now being re-filled */
2303 		ASSERT(db->db.db_data != dr->dt.dl.dr_data);
2304 	} else {
2305 		ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL);
2306 	}
2307 	DBUF_VERIFY(db);
2308 
2309 	DB_DNODE_ENTER(db);
2310 	dn = DB_DNODE(db);
2311 
2312 	if (db->db_blkid == DMU_SPILL_BLKID) {
2313 		mutex_enter(&dn->dn_mtx);
2314 		dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR;
2315 		mutex_exit(&dn->dn_mtx);
2316 	}
2317 
2318 	/*
2319 	 * If this is a bonus buffer, simply copy the bonus data into the
2320 	 * dnode.  It will be written out when the dnode is synced (and it
2321 	 * will be synced, since it must have been dirty for dbuf_sync to
2322 	 * be called).
2323 	 */
2324 	if (db->db_blkid == DMU_BONUS_BLKID) {
2325 		dbuf_dirty_record_t **drp;
2326 
2327 		ASSERT(*datap != NULL);
2328 		ASSERT0(db->db_level);
2329 		ASSERT3U(dn->dn_phys->dn_bonuslen, <=, DN_MAX_BONUSLEN);
2330 		bcopy(*datap, DN_BONUS(dn->dn_phys), dn->dn_phys->dn_bonuslen);
2331 		DB_DNODE_EXIT(db);
2332 
2333 		if (*datap != db->db.db_data) {
2334 			zio_buf_free(*datap, DN_MAX_BONUSLEN);
2335 			arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
2336 		}
2337 		db->db_data_pending = NULL;
2338 		drp = &db->db_last_dirty;
2339 		while (*drp != dr)
2340 			drp = &(*drp)->dr_next;
2341 		ASSERT(dr->dr_next == NULL);
2342 		ASSERT(dr->dr_dbuf == db);
2343 		*drp = dr->dr_next;
2344 		kmem_free(dr, sizeof (dbuf_dirty_record_t));
2345 		ASSERT(db->db_dirtycnt > 0);
2346 		db->db_dirtycnt -= 1;
2347 		dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg);
2348 		return;
2349 	}
2350 
2351 	os = dn->dn_objset;
2352 
2353 	/*
2354 	 * This function may have dropped the db_mtx lock allowing a dmu_sync
2355 	 * operation to sneak in. As a result, we need to ensure that we
2356 	 * don't check the dr_override_state until we have returned from
2357 	 * dbuf_check_blkptr.
2358 	 */
2359 	dbuf_check_blkptr(dn, db);
2360 
2361 	/*
2362 	 * If this buffer is in the middle of an immediate write,
2363 	 * wait for the synchronous IO to complete.
2364 	 */
2365 	while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) {
2366 		ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT);
2367 		cv_wait(&db->db_changed, &db->db_mtx);
2368 		ASSERT(dr->dt.dl.dr_override_state != DR_NOT_OVERRIDDEN);
2369 	}
2370 
2371 	if (db->db_state != DB_NOFILL &&
2372 	    dn->dn_object != DMU_META_DNODE_OBJECT &&
2373 	    refcount_count(&db->db_holds) > 1 &&
2374 	    dr->dt.dl.dr_override_state != DR_OVERRIDDEN &&
2375 	    *datap == db->db_buf) {
2376 		/*
2377 		 * If this buffer is currently "in use" (i.e., there
2378 		 * are active holds and db_data still references it),
2379 		 * then make a copy before we start the write so that
2380 		 * any modifications from the open txg will not leak
2381 		 * into this write.
2382 		 *
2383 		 * NOTE: this copy does not need to be made for
2384 		 * objects only modified in the syncing context (e.g.
2385 		 * DNONE_DNODE blocks).
2386 		 */
2387 		int blksz = arc_buf_size(*datap);
2388 		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
2389 		*datap = arc_buf_alloc(os->os_spa, blksz, db, type);
2390 		bcopy(db->db.db_data, (*datap)->b_data, blksz);
2391 	}
2392 	db->db_data_pending = dr;
2393 
2394 	mutex_exit(&db->db_mtx);
2395 
2396 	dbuf_write(dr, *datap, tx);
2397 
2398 	ASSERT(!list_link_active(&dr->dr_dirty_node));
2399 	if (dn->dn_object == DMU_META_DNODE_OBJECT) {
2400 		list_insert_tail(&dn->dn_dirty_records[txg&TXG_MASK], dr);
2401 		DB_DNODE_EXIT(db);
2402 	} else {
2403 		/*
2404 		 * Although zio_nowait() does not "wait for an IO", it does
2405 		 * initiate the IO. If this is an empty write it seems plausible
2406 		 * that the IO could actually be completed before the nowait
2407 		 * returns. We need to DB_DNODE_EXIT() first in case
2408 		 * zio_nowait() invalidates the dbuf.
2409 		 */
2410 		DB_DNODE_EXIT(db);
2411 		zio_nowait(dr->dr_zio);
2412 	}
2413 }
2414 
2415 void
2416 dbuf_sync_list(list_t *list, dmu_tx_t *tx)
2417 {
2418 	dbuf_dirty_record_t *dr;
2419 
2420 	while (dr = list_head(list)) {
2421 		if (dr->dr_zio != NULL) {
2422 			/*
2423 			 * If we find an already initialized zio then we
2424 			 * are processing the meta-dnode, and we have finished.
2425 			 * The dbufs for all dnodes are put back on the list
2426 			 * during processing, so that we can zio_wait()
2427 			 * these IOs after initiating all child IOs.
2428 			 */
2429 			ASSERT3U(dr->dr_dbuf->db.db_object, ==,
2430 			    DMU_META_DNODE_OBJECT);
2431 			break;
2432 		}
2433 		list_remove(list, dr);
2434 		if (dr->dr_dbuf->db_level > 0)
2435 			dbuf_sync_indirect(dr, tx);
2436 		else
2437 			dbuf_sync_leaf(dr, tx);
2438 	}
2439 }
2440 
2441 /* ARGSUSED */
2442 static void
2443 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
2444 {
2445 	dmu_buf_impl_t *db = vdb;
2446 	dnode_t *dn;
2447 	blkptr_t *bp = zio->io_bp;
2448 	blkptr_t *bp_orig = &zio->io_bp_orig;
2449 	spa_t *spa = zio->io_spa;
2450 	int64_t delta;
2451 	uint64_t fill = 0;
2452 	int i;
2453 
2454 	ASSERT(db->db_blkptr == bp);
2455 
2456 	DB_DNODE_ENTER(db);
2457 	dn = DB_DNODE(db);
2458 	delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig);
2459 	dnode_diduse_space(dn, delta - zio->io_prev_space_delta);
2460 	zio->io_prev_space_delta = delta;
2461 
2462 	if (bp->blk_birth != 0) {
2463 		ASSERT((db->db_blkid != DMU_SPILL_BLKID &&
2464 		    BP_GET_TYPE(bp) == dn->dn_type) ||
2465 		    (db->db_blkid == DMU_SPILL_BLKID &&
2466 		    BP_GET_TYPE(bp) == dn->dn_bonustype));
2467 		ASSERT(BP_GET_LEVEL(bp) == db->db_level);
2468 	}
2469 
2470 	mutex_enter(&db->db_mtx);
2471 
2472 #ifdef ZFS_DEBUG
2473 	if (db->db_blkid == DMU_SPILL_BLKID) {
2474 		ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
2475 		ASSERT(!(BP_IS_HOLE(db->db_blkptr)) &&
2476 		    db->db_blkptr == &dn->dn_phys->dn_spill);
2477 	}
2478 #endif
2479 
2480 	if (db->db_level == 0) {
2481 		mutex_enter(&dn->dn_mtx);
2482 		if (db->db_blkid > dn->dn_phys->dn_maxblkid &&
2483 		    db->db_blkid != DMU_SPILL_BLKID)
2484 			dn->dn_phys->dn_maxblkid = db->db_blkid;
2485 		mutex_exit(&dn->dn_mtx);
2486 
2487 		if (dn->dn_type == DMU_OT_DNODE) {
2488 			dnode_phys_t *dnp = db->db.db_data;
2489 			for (i = db->db.db_size >> DNODE_SHIFT; i > 0;
2490 			    i--, dnp++) {
2491 				if (dnp->dn_type != DMU_OT_NONE)
2492 					fill++;
2493 			}
2494 		} else {
2495 			if (BP_IS_HOLE(bp)) {
2496 				fill = 0;
2497 			} else {
2498 				fill = 1;
2499 			}
2500 		}
2501 	} else {
2502 		blkptr_t *ibp = db->db.db_data;
2503 		ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
2504 		for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) {
2505 			if (BP_IS_HOLE(ibp))
2506 				continue;
2507 			fill += ibp->blk_fill;
2508 		}
2509 	}
2510 	DB_DNODE_EXIT(db);
2511 
2512 	bp->blk_fill = fill;
2513 
2514 	mutex_exit(&db->db_mtx);
2515 }
2516 
2517 /*
2518  * The SPA will call this callback several times for each zio - once
2519  * for every physical child i/o (zio->io_phys_children times).  This
2520  * allows the DMU to monitor the progress of each logical i/o.  For example,
2521  * there may be 2 copies of an indirect block, or many fragments of a RAID-Z
2522  * block.  There may be a long delay before all copies/fragments are completed,
2523  * so this callback allows us to retire dirty space gradually, as the physical
2524  * i/os complete.
2525  */
2526 /* ARGSUSED */
2527 static void
2528 dbuf_write_physdone(zio_t *zio, arc_buf_t *buf, void *arg)
2529 {
2530 	dmu_buf_impl_t *db = arg;
2531 	objset_t *os = db->db_objset;
2532 	dsl_pool_t *dp = dmu_objset_pool(os);
2533 	dbuf_dirty_record_t *dr;
2534 	int delta = 0;
2535 
2536 	dr = db->db_data_pending;
2537 	ASSERT3U(dr->dr_txg, ==, zio->io_txg);
2538 
2539 	/*
2540 	 * The callback will be called io_phys_children times.  Retire one
2541 	 * portion of our dirty space each time we are called.  Any rounding
2542 	 * error will be cleaned up by dsl_pool_sync()'s call to
2543 	 * dsl_pool_undirty_space().
2544 	 */
2545 	delta = dr->dr_accounted / zio->io_phys_children;
2546 	dsl_pool_undirty_space(dp, delta, zio->io_txg);
2547 }
2548 
2549 /* ARGSUSED */
2550 static void
2551 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb)
2552 {
2553 	dmu_buf_impl_t *db = vdb;
2554 	blkptr_t *bp_orig = &zio->io_bp_orig;
2555 	blkptr_t *bp = db->db_blkptr;
2556 	objset_t *os = db->db_objset;
2557 	dmu_tx_t *tx = os->os_synctx;
2558 	dbuf_dirty_record_t **drp, *dr;
2559 
2560 	ASSERT0(zio->io_error);
2561 	ASSERT(db->db_blkptr == bp);
2562 
2563 	/*
2564 	 * For nopwrites and rewrites we ensure that the bp matches our
2565 	 * original and bypass all the accounting.
2566 	 */
2567 	if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) {
2568 		ASSERT(BP_EQUAL(bp, bp_orig));
2569 	} else {
2570 		dsl_dataset_t *ds = os->os_dsl_dataset;
2571 		(void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE);
2572 		dsl_dataset_block_born(ds, bp, tx);
2573 	}
2574 
2575 	mutex_enter(&db->db_mtx);
2576 
2577 	DBUF_VERIFY(db);
2578 
2579 	drp = &db->db_last_dirty;
2580 	while ((dr = *drp) != db->db_data_pending)
2581 		drp = &dr->dr_next;
2582 	ASSERT(!list_link_active(&dr->dr_dirty_node));
2583 	ASSERT(dr->dr_dbuf == db);
2584 	ASSERT(dr->dr_next == NULL);
2585 	*drp = dr->dr_next;
2586 
2587 #ifdef ZFS_DEBUG
2588 	if (db->db_blkid == DMU_SPILL_BLKID) {
2589 		dnode_t *dn;
2590 
2591 		DB_DNODE_ENTER(db);
2592 		dn = DB_DNODE(db);
2593 		ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
2594 		ASSERT(!(BP_IS_HOLE(db->db_blkptr)) &&
2595 		    db->db_blkptr == &dn->dn_phys->dn_spill);
2596 		DB_DNODE_EXIT(db);
2597 	}
2598 #endif
2599 
2600 	if (db->db_level == 0) {
2601 		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2602 		ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
2603 		if (db->db_state != DB_NOFILL) {
2604 			if (dr->dt.dl.dr_data != db->db_buf)
2605 				VERIFY(arc_buf_remove_ref(dr->dt.dl.dr_data,
2606 				    db));
2607 			else if (!arc_released(db->db_buf))
2608 				arc_set_callback(db->db_buf, dbuf_do_evict, db);
2609 		}
2610 	} else {
2611 		dnode_t *dn;
2612 
2613 		DB_DNODE_ENTER(db);
2614 		dn = DB_DNODE(db);
2615 		ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
2616 		ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift);
2617 		if (!BP_IS_HOLE(db->db_blkptr)) {
2618 			int epbs =
2619 			    dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
2620 			ASSERT3U(db->db_blkid, <=,
2621 			    dn->dn_phys->dn_maxblkid >> (db->db_level * epbs));
2622 			ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
2623 			    db->db.db_size);
2624 			arc_set_callback(db->db_buf, dbuf_do_evict, db);
2625 		}
2626 		DB_DNODE_EXIT(db);
2627 		mutex_destroy(&dr->dt.di.dr_mtx);
2628 		list_destroy(&dr->dt.di.dr_children);
2629 	}
2630 	kmem_free(dr, sizeof (dbuf_dirty_record_t));
2631 
2632 	cv_broadcast(&db->db_changed);
2633 	ASSERT(db->db_dirtycnt > 0);
2634 	db->db_dirtycnt -= 1;
2635 	db->db_data_pending = NULL;
2636 	dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg);
2637 }
2638 
2639 static void
2640 dbuf_write_nofill_ready(zio_t *zio)
2641 {
2642 	dbuf_write_ready(zio, NULL, zio->io_private);
2643 }
2644 
2645 static void
2646 dbuf_write_nofill_done(zio_t *zio)
2647 {
2648 	dbuf_write_done(zio, NULL, zio->io_private);
2649 }
2650 
2651 static void
2652 dbuf_write_override_ready(zio_t *zio)
2653 {
2654 	dbuf_dirty_record_t *dr = zio->io_private;
2655 	dmu_buf_impl_t *db = dr->dr_dbuf;
2656 
2657 	dbuf_write_ready(zio, NULL, db);
2658 }
2659 
2660 static void
2661 dbuf_write_override_done(zio_t *zio)
2662 {
2663 	dbuf_dirty_record_t *dr = zio->io_private;
2664 	dmu_buf_impl_t *db = dr->dr_dbuf;
2665 	blkptr_t *obp = &dr->dt.dl.dr_overridden_by;
2666 
2667 	mutex_enter(&db->db_mtx);
2668 	if (!BP_EQUAL(zio->io_bp, obp)) {
2669 		if (!BP_IS_HOLE(obp))
2670 			dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp);
2671 		arc_release(dr->dt.dl.dr_data, db);
2672 	}
2673 	mutex_exit(&db->db_mtx);
2674 
2675 	dbuf_write_done(zio, NULL, db);
2676 }
2677 
2678 /* Issue I/O to commit a dirty buffer to disk. */
2679 static void
2680 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx)
2681 {
2682 	dmu_buf_impl_t *db = dr->dr_dbuf;
2683 	dnode_t *dn;
2684 	objset_t *os;
2685 	dmu_buf_impl_t *parent = db->db_parent;
2686 	uint64_t txg = tx->tx_txg;
2687 	zbookmark_t zb;
2688 	zio_prop_t zp;
2689 	zio_t *zio;
2690 	int wp_flag = 0;
2691 
2692 	DB_DNODE_ENTER(db);
2693 	dn = DB_DNODE(db);
2694 	os = dn->dn_objset;
2695 
2696 	if (db->db_state != DB_NOFILL) {
2697 		if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) {
2698 			/*
2699 			 * Private object buffers are released here rather
2700 			 * than in dbuf_dirty() since they are only modified
2701 			 * in the syncing context and we don't want the
2702 			 * overhead of making multiple copies of the data.
2703 			 */
2704 			if (BP_IS_HOLE(db->db_blkptr)) {
2705 				arc_buf_thaw(data);
2706 			} else {
2707 				dbuf_release_bp(db);
2708 			}
2709 		}
2710 	}
2711 
2712 	if (parent != dn->dn_dbuf) {
2713 		/* Our parent is an indirect block. */
2714 		/* We have a dirty parent that has been scheduled for write. */
2715 		ASSERT(parent && parent->db_data_pending);
2716 		/* Our parent's buffer is one level closer to the dnode. */
2717 		ASSERT(db->db_level == parent->db_level-1);
2718 		/*
2719 		 * We're about to modify our parent's db_data by modifying
2720 		 * our block pointer, so the parent must be released.
2721 		 */
2722 		ASSERT(arc_released(parent->db_buf));
2723 		zio = parent->db_data_pending->dr_zio;
2724 	} else {
2725 		/* Our parent is the dnode itself. */
2726 		ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 &&
2727 		    db->db_blkid != DMU_SPILL_BLKID) ||
2728 		    (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0));
2729 		if (db->db_blkid != DMU_SPILL_BLKID)
2730 			ASSERT3P(db->db_blkptr, ==,
2731 			    &dn->dn_phys->dn_blkptr[db->db_blkid]);
2732 		zio = dn->dn_zio;
2733 	}
2734 
2735 	ASSERT(db->db_level == 0 || data == db->db_buf);
2736 	ASSERT3U(db->db_blkptr->blk_birth, <=, txg);
2737 	ASSERT(zio);
2738 
2739 	SET_BOOKMARK(&zb, os->os_dsl_dataset ?
2740 	    os->os_dsl_dataset->ds_object : DMU_META_OBJSET,
2741 	    db->db.db_object, db->db_level, db->db_blkid);
2742 
2743 	if (db->db_blkid == DMU_SPILL_BLKID)
2744 		wp_flag = WP_SPILL;
2745 	wp_flag |= (db->db_state == DB_NOFILL) ? WP_NOFILL : 0;
2746 
2747 	dmu_write_policy(os, dn, db->db_level, wp_flag, &zp);
2748 	DB_DNODE_EXIT(db);
2749 
2750 	if (db->db_level == 0 && dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
2751 		ASSERT(db->db_state != DB_NOFILL);
2752 		dr->dr_zio = zio_write(zio, os->os_spa, txg,
2753 		    db->db_blkptr, data->b_data, arc_buf_size(data), &zp,
2754 		    dbuf_write_override_ready, NULL, dbuf_write_override_done,
2755 		    dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
2756 		mutex_enter(&db->db_mtx);
2757 		dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
2758 		zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by,
2759 		    dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite);
2760 		mutex_exit(&db->db_mtx);
2761 	} else if (db->db_state == DB_NOFILL) {
2762 		ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF ||
2763 		    zp.zp_checksum == ZIO_CHECKSUM_NOPARITY);
2764 		dr->dr_zio = zio_write(zio, os->os_spa, txg,
2765 		    db->db_blkptr, NULL, db->db.db_size, &zp,
2766 		    dbuf_write_nofill_ready, NULL, dbuf_write_nofill_done, db,
2767 		    ZIO_PRIORITY_ASYNC_WRITE,
2768 		    ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb);
2769 	} else {
2770 		ASSERT(arc_released(data));
2771 		dr->dr_zio = arc_write(zio, os->os_spa, txg,
2772 		    db->db_blkptr, data, DBUF_IS_L2CACHEABLE(db),
2773 		    DBUF_IS_L2COMPRESSIBLE(db), &zp, dbuf_write_ready,
2774 		    dbuf_write_physdone, dbuf_write_done, db,
2775 		    ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
2776 	}
2777 }
2778