1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/zfs_context.h> 29 #include <sys/dmu.h> 30 #include <sys/dmu_impl.h> 31 #include <sys/dbuf.h> 32 #include <sys/dmu_objset.h> 33 #include <sys/dsl_dataset.h> 34 #include <sys/dsl_dir.h> 35 #include <sys/dmu_tx.h> 36 #include <sys/spa.h> 37 #include <sys/zio.h> 38 #include <sys/dmu_zfetch.h> 39 40 static void dbuf_destroy(dmu_buf_impl_t *db); 41 static int dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx); 42 static arc_done_func_t dbuf_write_done; 43 44 /* 45 * Global data structures and functions for the dbuf cache. 46 */ 47 taskq_t *dbuf_tq; 48 static kmem_cache_t *dbuf_cache; 49 50 /* ARGSUSED */ 51 static int 52 dbuf_cons(void *vdb, void *unused, int kmflag) 53 { 54 dmu_buf_impl_t *db = vdb; 55 bzero(db, sizeof (dmu_buf_impl_t)); 56 57 mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL); 58 cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL); 59 refcount_create(&db->db_holds); 60 return (0); 61 } 62 63 /* ARGSUSED */ 64 static void 65 dbuf_dest(void *vdb, void *unused) 66 { 67 dmu_buf_impl_t *db = vdb; 68 mutex_destroy(&db->db_mtx); 69 cv_destroy(&db->db_changed); 70 refcount_destroy(&db->db_holds); 71 } 72 73 /* 74 * dbuf hash table routines 75 */ 76 static dbuf_hash_table_t dbuf_hash_table; 77 78 static uint64_t dbuf_hash_count; 79 80 static uint64_t 81 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid) 82 { 83 uintptr_t osv = (uintptr_t)os; 84 uint64_t crc = -1ULL; 85 86 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY); 87 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (lvl)) & 0xFF]; 88 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (osv >> 6)) & 0xFF]; 89 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 0)) & 0xFF]; 90 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 8)) & 0xFF]; 91 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 0)) & 0xFF]; 92 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 8)) & 0xFF]; 93 94 crc ^= (osv>>14) ^ (obj>>16) ^ (blkid>>16); 95 96 return (crc); 97 } 98 99 #define DBUF_HASH(os, obj, level, blkid) dbuf_hash(os, obj, level, blkid); 100 101 #define DBUF_EQUAL(dbuf, os, obj, level, blkid) \ 102 ((dbuf)->db.db_object == (obj) && \ 103 (dbuf)->db_objset == (os) && \ 104 (dbuf)->db_level == (level) && \ 105 (dbuf)->db_blkid == (blkid)) 106 107 dmu_buf_impl_t * 108 dbuf_find(dnode_t *dn, uint8_t level, uint64_t blkid) 109 { 110 dbuf_hash_table_t *h = &dbuf_hash_table; 111 objset_impl_t *os = dn->dn_objset; 112 uint64_t obj = dn->dn_object; 113 uint64_t hv = DBUF_HASH(os, obj, level, blkid); 114 uint64_t idx = hv & h->hash_table_mask; 115 dmu_buf_impl_t *db; 116 117 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 118 for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) { 119 if (DBUF_EQUAL(db, os, obj, level, blkid)) { 120 mutex_enter(&db->db_mtx); 121 if (db->db_state != DB_EVICTING) { 122 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 123 return (db); 124 } 125 mutex_exit(&db->db_mtx); 126 } 127 } 128 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 129 return (NULL); 130 } 131 132 /* 133 * Insert an entry into the hash table. If there is already an element 134 * equal to elem in the hash table, then the already existing element 135 * will be returned and the new element will not be inserted. 136 * Otherwise returns NULL. 137 */ 138 static dmu_buf_impl_t * 139 dbuf_hash_insert(dmu_buf_impl_t *db) 140 { 141 dbuf_hash_table_t *h = &dbuf_hash_table; 142 objset_impl_t *os = db->db_objset; 143 uint64_t obj = db->db.db_object; 144 int level = db->db_level; 145 uint64_t blkid = db->db_blkid; 146 uint64_t hv = DBUF_HASH(os, obj, level, blkid); 147 uint64_t idx = hv & h->hash_table_mask; 148 dmu_buf_impl_t *dbf; 149 150 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 151 for (dbf = h->hash_table[idx]; dbf != NULL; dbf = dbf->db_hash_next) { 152 if (DBUF_EQUAL(dbf, os, obj, level, blkid)) { 153 mutex_enter(&dbf->db_mtx); 154 if (dbf->db_state != DB_EVICTING) { 155 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 156 return (dbf); 157 } 158 mutex_exit(&dbf->db_mtx); 159 } 160 } 161 162 mutex_enter(&db->db_mtx); 163 db->db_hash_next = h->hash_table[idx]; 164 h->hash_table[idx] = db; 165 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 166 atomic_add_64(&dbuf_hash_count, 1); 167 168 return (NULL); 169 } 170 171 /* 172 * Remove an entry from the hash table. This operation will 173 * fail if there are any existing holds on the db. 174 */ 175 static void 176 dbuf_hash_remove(dmu_buf_impl_t *db) 177 { 178 dbuf_hash_table_t *h = &dbuf_hash_table; 179 uint64_t hv = DBUF_HASH(db->db_objset, db->db.db_object, 180 db->db_level, db->db_blkid); 181 uint64_t idx = hv & h->hash_table_mask; 182 dmu_buf_impl_t *dbf, **dbp; 183 184 /* 185 * We musn't hold db_mtx to maintin lock ordering: 186 * DBUF_HASH_MUTEX > db_mtx. 187 */ 188 ASSERT(refcount_is_zero(&db->db_holds)); 189 ASSERT(db->db_state == DB_EVICTING); 190 ASSERT(!MUTEX_HELD(&db->db_mtx)); 191 192 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 193 dbp = &h->hash_table[idx]; 194 while ((dbf = *dbp) != db) { 195 dbp = &dbf->db_hash_next; 196 ASSERT(dbf != NULL); 197 } 198 *dbp = db->db_hash_next; 199 db->db_hash_next = NULL; 200 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 201 atomic_add_64(&dbuf_hash_count, -1); 202 } 203 204 static arc_evict_func_t dbuf_do_evict; 205 206 static void 207 dbuf_evict_user(dmu_buf_impl_t *db) 208 { 209 ASSERT(MUTEX_HELD(&db->db_mtx)); 210 211 if (db->db_level != 0 || db->db_d.db_evict_func == NULL) 212 return; 213 214 if (db->db_d.db_user_data_ptr_ptr) 215 *db->db_d.db_user_data_ptr_ptr = db->db.db_data; 216 db->db_d.db_evict_func(&db->db, db->db_d.db_user_ptr); 217 db->db_d.db_user_ptr = NULL; 218 db->db_d.db_user_data_ptr_ptr = NULL; 219 db->db_d.db_evict_func = NULL; 220 } 221 222 void 223 dbuf_evict(dmu_buf_impl_t *db) 224 { 225 int i; 226 227 ASSERT(MUTEX_HELD(&db->db_mtx)); 228 ASSERT(db->db_buf == NULL); 229 230 #ifdef ZFS_DEBUG 231 for (i = 0; i < TXG_SIZE; i++) { 232 ASSERT(!list_link_active(&db->db_dirty_node[i])); 233 ASSERT(db->db_level != 0 || db->db_d.db_data_old[i] == NULL); 234 } 235 #endif 236 dbuf_clear(db); 237 dbuf_destroy(db); 238 } 239 240 void 241 dbuf_init(void) 242 { 243 uint64_t hsize = 1ULL << 16; 244 dbuf_hash_table_t *h = &dbuf_hash_table; 245 int i; 246 247 /* 248 * The hash table is big enough to fill all of physical memory 249 * with an average 4K block size. The table will take up 250 * totalmem*sizeof(void*)/4K (i.e. 2MB/GB with 8-byte pointers). 251 */ 252 while (hsize * 4096 < physmem * PAGESIZE) 253 hsize <<= 1; 254 255 retry: 256 h->hash_table_mask = hsize - 1; 257 h->hash_table = kmem_zalloc(hsize * sizeof (void *), KM_NOSLEEP); 258 if (h->hash_table == NULL) { 259 /* XXX - we should really return an error instead of assert */ 260 ASSERT(hsize > (1ULL << 10)); 261 hsize >>= 1; 262 goto retry; 263 } 264 265 dbuf_cache = kmem_cache_create("dmu_buf_impl_t", 266 sizeof (dmu_buf_impl_t), 267 0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0); 268 dbuf_tq = taskq_create("dbuf_tq", 8, maxclsyspri, 50, INT_MAX, 269 TASKQ_PREPOPULATE); 270 271 for (i = 0; i < DBUF_MUTEXES; i++) 272 mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL); 273 } 274 275 void 276 dbuf_fini(void) 277 { 278 dbuf_hash_table_t *h = &dbuf_hash_table; 279 int i; 280 281 taskq_destroy(dbuf_tq); 282 dbuf_tq = NULL; 283 284 for (i = 0; i < DBUF_MUTEXES; i++) 285 mutex_destroy(&h->hash_mutexes[i]); 286 kmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *)); 287 kmem_cache_destroy(dbuf_cache); 288 } 289 290 /* 291 * Other stuff. 292 */ 293 294 #ifdef ZFS_DEBUG 295 static void 296 dbuf_verify(dmu_buf_impl_t *db) 297 { 298 int i; 299 dnode_t *dn = db->db_dnode; 300 301 ASSERT(MUTEX_HELD(&db->db_mtx)); 302 303 if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY)) 304 return; 305 306 ASSERT(db->db_objset != NULL); 307 if (dn == NULL) { 308 ASSERT(db->db_parent == NULL); 309 ASSERT(db->db_blkptr == NULL); 310 } else { 311 ASSERT3U(db->db.db_object, ==, dn->dn_object); 312 ASSERT3P(db->db_objset, ==, dn->dn_objset); 313 ASSERT3U(db->db_level, <, dn->dn_nlevels); 314 ASSERT(db->db_blkid == DB_BONUS_BLKID || 315 list_head(&dn->dn_dbufs)); 316 } 317 if (db->db_blkid == DB_BONUS_BLKID) { 318 ASSERT(dn != NULL); 319 ASSERT3U(db->db.db_size, ==, dn->dn_bonuslen); 320 ASSERT3U(db->db.db_offset, ==, DB_BONUS_BLKID); 321 } else { 322 ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size); 323 } 324 325 if (db->db_level == 0) { 326 /* we can be momentarily larger in dnode_set_blksz() */ 327 if (db->db_blkid != DB_BONUS_BLKID && dn) { 328 ASSERT3U(db->db.db_size, >=, dn->dn_datablksz); 329 } 330 if (db->db.db_object == DMU_META_DNODE_OBJECT) { 331 for (i = 0; i < TXG_SIZE; i++) { 332 /* 333 * it should only be modified in syncing 334 * context, so make sure we only have 335 * one copy of the data. 336 */ 337 ASSERT(db->db_d.db_data_old[i] == NULL || 338 db->db_d.db_data_old[i] == db->db_buf); 339 } 340 } 341 } 342 343 /* verify db->db_blkptr */ 344 if (db->db_blkptr) { 345 if (db->db_parent == dn->dn_dbuf) { 346 /* db is pointed to by the dnode */ 347 /* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */ 348 if (db->db.db_object == DMU_META_DNODE_OBJECT) 349 ASSERT(db->db_parent == NULL); 350 else 351 ASSERT(db->db_parent != NULL); 352 ASSERT3P(db->db_blkptr, ==, 353 &dn->dn_phys->dn_blkptr[db->db_blkid]); 354 } else { 355 /* db is pointed to by an indirect block */ 356 int epb = db->db_parent->db.db_size >> SPA_BLKPTRSHIFT; 357 ASSERT3U(db->db_parent->db_level, ==, db->db_level+1); 358 ASSERT3U(db->db_parent->db.db_object, ==, 359 db->db.db_object); 360 /* 361 * dnode_grow_indblksz() can make this fail if we don't 362 * have the struct_rwlock. XXX indblksz no longer 363 * grows. safe to do this now? 364 */ 365 if (RW_WRITE_HELD(&db->db_dnode->dn_struct_rwlock)) { 366 ASSERT3P(db->db_blkptr, ==, 367 ((blkptr_t *)db->db_parent->db.db_data + 368 db->db_blkid % epb)); 369 } 370 } 371 } 372 if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) && 373 db->db.db_data && db->db_blkid != DB_BONUS_BLKID && 374 db->db_state != DB_FILL && !dn->dn_free_txg) { 375 /* 376 * If the blkptr isn't set but they have nonzero data, 377 * it had better be dirty, otherwise we'll lose that 378 * data when we evict this buffer. 379 */ 380 if (db->db_dirtycnt == 0) { 381 uint64_t *buf = db->db.db_data; 382 int i; 383 384 for (i = 0; i < db->db.db_size >> 3; i++) { 385 ASSERT(buf[i] == 0); 386 } 387 } 388 } 389 } 390 #endif 391 392 static void 393 dbuf_update_data(dmu_buf_impl_t *db) 394 { 395 ASSERT(MUTEX_HELD(&db->db_mtx)); 396 if (db->db_level == 0 && db->db_d.db_user_data_ptr_ptr) { 397 ASSERT(!refcount_is_zero(&db->db_holds)); 398 *db->db_d.db_user_data_ptr_ptr = db->db.db_data; 399 } 400 } 401 402 static void 403 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf) 404 { 405 ASSERT(MUTEX_HELD(&db->db_mtx)); 406 ASSERT(db->db_buf == NULL || !arc_has_callback(db->db_buf)); 407 db->db_buf = buf; 408 if (buf != NULL) { 409 ASSERT(buf->b_data != NULL); 410 db->db.db_data = buf->b_data; 411 if (!arc_released(buf)) 412 arc_set_callback(buf, dbuf_do_evict, db); 413 dbuf_update_data(db); 414 } else { 415 dbuf_evict_user(db); 416 db->db.db_data = NULL; 417 db->db_state = DB_UNCACHED; 418 } 419 } 420 421 uint64_t 422 dbuf_whichblock(dnode_t *dn, uint64_t offset) 423 { 424 if (dn->dn_datablkshift) { 425 return (offset >> dn->dn_datablkshift); 426 } else { 427 ASSERT3U(offset, <, dn->dn_datablksz); 428 return (0); 429 } 430 } 431 432 static void 433 dbuf_read_done(zio_t *zio, arc_buf_t *buf, void *vdb) 434 { 435 dmu_buf_impl_t *db = vdb; 436 437 mutex_enter(&db->db_mtx); 438 ASSERT3U(db->db_state, ==, DB_READ); 439 /* 440 * All reads are synchronous, so we must have a hold on the dbuf 441 */ 442 ASSERT(refcount_count(&db->db_holds) > 0); 443 ASSERT(db->db_buf == NULL); 444 ASSERT(db->db.db_data == NULL); 445 if (db->db_level == 0 && db->db_d.db_freed_in_flight) { 446 /* we were freed in flight; disregard any error */ 447 arc_release(buf, db); 448 bzero(buf->b_data, db->db.db_size); 449 db->db_d.db_freed_in_flight = FALSE; 450 dbuf_set_data(db, buf); 451 db->db_state = DB_CACHED; 452 } else if (zio == NULL || zio->io_error == 0) { 453 dbuf_set_data(db, buf); 454 db->db_state = DB_CACHED; 455 } else { 456 ASSERT(db->db_blkid != DB_BONUS_BLKID); 457 ASSERT3P(db->db_buf, ==, NULL); 458 VERIFY(arc_buf_remove_ref(buf, db) == 1); 459 db->db_state = DB_UNCACHED; 460 } 461 cv_broadcast(&db->db_changed); 462 mutex_exit(&db->db_mtx); 463 dbuf_rele(db, NULL); 464 } 465 466 static void 467 dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t *flags) 468 { 469 blkptr_t *bp; 470 zbookmark_t zb; 471 uint32_t aflags = ARC_NOWAIT; 472 473 ASSERT(!refcount_is_zero(&db->db_holds)); 474 /* We need the struct_rwlock to prevent db_blkptr from changing. */ 475 ASSERT(RW_LOCK_HELD(&db->db_dnode->dn_struct_rwlock)); 476 ASSERT(MUTEX_HELD(&db->db_mtx)); 477 ASSERT(db->db_state == DB_UNCACHED); 478 ASSERT(db->db_buf == NULL); 479 480 if (db->db_blkid == DB_BONUS_BLKID) { 481 ASSERT3U(db->db_dnode->dn_bonuslen, ==, db->db.db_size); 482 db->db.db_data = zio_buf_alloc(DN_MAX_BONUSLEN); 483 if (db->db.db_size < DN_MAX_BONUSLEN) 484 bzero(db->db.db_data, DN_MAX_BONUSLEN); 485 bcopy(DN_BONUS(db->db_dnode->dn_phys), db->db.db_data, 486 db->db.db_size); 487 dbuf_update_data(db); 488 db->db_state = DB_CACHED; 489 mutex_exit(&db->db_mtx); 490 return; 491 } 492 493 if (db->db_level == 0 && dnode_block_freed(db->db_dnode, db->db_blkid)) 494 bp = NULL; 495 else 496 bp = db->db_blkptr; 497 498 if (bp == NULL) 499 dprintf_dbuf(db, "blkptr: %s\n", "NULL"); 500 else 501 dprintf_dbuf_bp(db, bp, "%s", "blkptr:"); 502 503 if (bp == NULL || BP_IS_HOLE(bp)) { 504 ASSERT(bp == NULL || BP_IS_HOLE(bp)); 505 dbuf_set_data(db, arc_buf_alloc(db->db_dnode->dn_objset->os_spa, 506 db->db.db_size, db)); 507 bzero(db->db.db_data, db->db.db_size); 508 db->db_state = DB_CACHED; 509 *flags |= DB_RF_CACHED; 510 mutex_exit(&db->db_mtx); 511 return; 512 } 513 514 db->db_state = DB_READ; 515 mutex_exit(&db->db_mtx); 516 517 zb.zb_objset = db->db_objset->os_dsl_dataset ? 518 db->db_objset->os_dsl_dataset->ds_object : 0; 519 zb.zb_object = db->db.db_object; 520 zb.zb_level = db->db_level; 521 zb.zb_blkid = db->db_blkid; 522 523 dbuf_add_ref(db, NULL); 524 /* ZIO_FLAG_CANFAIL callers have to check the parent zio's error */ 525 (void) arc_read(zio, db->db_dnode->dn_objset->os_spa, bp, 526 db->db_level > 0 ? byteswap_uint64_array : 527 dmu_ot[db->db_dnode->dn_type].ot_byteswap, 528 dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ, 529 (*flags & DB_RF_CANFAIL) ? ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED, 530 &aflags, &zb); 531 if (aflags & ARC_CACHED) 532 *flags |= DB_RF_CACHED; 533 } 534 535 int 536 dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags) 537 { 538 int err = 0; 539 int havepzio = (zio != NULL); 540 int prefetch; 541 542 /* 543 * We don't have to hold the mutex to check db_state because it 544 * can't be freed while we have a hold on the buffer. 545 */ 546 ASSERT(!refcount_is_zero(&db->db_holds)); 547 548 if ((flags & DB_RF_HAVESTRUCT) == 0) 549 rw_enter(&db->db_dnode->dn_struct_rwlock, RW_READER); 550 551 prefetch = db->db_level == 0 && db->db_blkid != DB_BONUS_BLKID && 552 (flags & DB_RF_NOPREFETCH) == 0 && db->db_dnode != NULL; 553 554 mutex_enter(&db->db_mtx); 555 if (db->db_state == DB_CACHED) { 556 mutex_exit(&db->db_mtx); 557 if (prefetch) 558 dmu_zfetch(&db->db_dnode->dn_zfetch, db->db.db_offset, 559 db->db.db_size, TRUE); 560 if ((flags & DB_RF_HAVESTRUCT) == 0) 561 rw_exit(&db->db_dnode->dn_struct_rwlock); 562 } else if (db->db_state == DB_UNCACHED) { 563 if (zio == NULL) { 564 zio = zio_root(db->db_dnode->dn_objset->os_spa, 565 NULL, NULL, ZIO_FLAG_CANFAIL); 566 } 567 dbuf_read_impl(db, zio, &flags); 568 569 /* dbuf_read_impl has dropped db_mtx for us */ 570 571 if (prefetch) 572 dmu_zfetch(&db->db_dnode->dn_zfetch, db->db.db_offset, 573 db->db.db_size, flags & DB_RF_CACHED); 574 575 if ((flags & DB_RF_HAVESTRUCT) == 0) 576 rw_exit(&db->db_dnode->dn_struct_rwlock); 577 578 if (!havepzio) 579 err = zio_wait(zio); 580 } else { 581 mutex_exit(&db->db_mtx); 582 if (prefetch) 583 dmu_zfetch(&db->db_dnode->dn_zfetch, db->db.db_offset, 584 db->db.db_size, TRUE); 585 if ((flags & DB_RF_HAVESTRUCT) == 0) 586 rw_exit(&db->db_dnode->dn_struct_rwlock); 587 588 mutex_enter(&db->db_mtx); 589 if ((flags & DB_RF_NEVERWAIT) == 0) { 590 while (db->db_state == DB_READ || 591 db->db_state == DB_FILL) { 592 ASSERT(db->db_state == DB_READ || 593 (flags & DB_RF_HAVESTRUCT) == 0); 594 cv_wait(&db->db_changed, &db->db_mtx); 595 } 596 if (db->db_state == DB_UNCACHED) 597 err = EIO; 598 } 599 mutex_exit(&db->db_mtx); 600 } 601 602 ASSERT(err || havepzio || db->db_state == DB_CACHED); 603 return (err); 604 } 605 606 static void 607 dbuf_noread(dmu_buf_impl_t *db) 608 { 609 ASSERT(!refcount_is_zero(&db->db_holds)); 610 ASSERT(db->db_blkid != DB_BONUS_BLKID); 611 mutex_enter(&db->db_mtx); 612 while (db->db_state == DB_READ || db->db_state == DB_FILL) 613 cv_wait(&db->db_changed, &db->db_mtx); 614 if (db->db_state == DB_UNCACHED) { 615 ASSERT(db->db_buf == NULL); 616 ASSERT(db->db.db_data == NULL); 617 dbuf_set_data(db, arc_buf_alloc(db->db_dnode->dn_objset->os_spa, 618 db->db.db_size, db)); 619 db->db_state = DB_FILL; 620 } else { 621 ASSERT3U(db->db_state, ==, DB_CACHED); 622 } 623 mutex_exit(&db->db_mtx); 624 } 625 626 /* 627 * This is our just-in-time copy function. It makes a copy of 628 * buffers, that have been modified in a previous transaction 629 * group, before we modify them in the current active group. 630 * 631 * This function is used in two places: when we are dirtying a 632 * buffer for the first time in a txg, and when we are freeing 633 * a range in a dnode that includes this buffer. 634 * 635 * Note that when we are called from dbuf_free_range() we do 636 * not put a hold on the buffer, we just traverse the active 637 * dbuf list for the dnode. 638 */ 639 static void 640 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg) 641 { 642 arc_buf_t **quiescing, **syncing; 643 644 ASSERT(MUTEX_HELD(&db->db_mtx)); 645 ASSERT(db->db.db_data != NULL); 646 ASSERT(db->db_blkid != DB_BONUS_BLKID); 647 648 quiescing = (arc_buf_t **)&db->db_d.db_data_old[(txg-1)&TXG_MASK]; 649 syncing = (arc_buf_t **)&db->db_d.db_data_old[(txg-2)&TXG_MASK]; 650 651 /* 652 * If this buffer is referenced from the current quiescing 653 * transaction group: either make a copy and reset the reference 654 * to point to the copy, or (if there a no active holders) just 655 * null out the current db_data pointer. 656 */ 657 if (*quiescing == db->db_buf) { 658 /* 659 * If the quiescing txg is "dirty", then we better not 660 * be referencing the same buffer from the syncing txg. 661 */ 662 ASSERT(*syncing != db->db_buf); 663 if (refcount_count(&db->db_holds) > db->db_dirtycnt) { 664 int size = db->db.db_size; 665 *quiescing = arc_buf_alloc( 666 db->db_dnode->dn_objset->os_spa, size, db); 667 bcopy(db->db.db_data, (*quiescing)->b_data, size); 668 } else { 669 dbuf_set_data(db, NULL); 670 } 671 return; 672 } 673 674 /* 675 * If this buffer is referenced from the current syncing 676 * transaction group: either 677 * 1 - make a copy and reset the reference, or 678 * 2 - if there are no holders, just null the current db_data. 679 */ 680 if (*syncing == db->db_buf) { 681 ASSERT3P(*quiescing, ==, NULL); 682 ASSERT3U(db->db_dirtycnt, ==, 1); 683 if (refcount_count(&db->db_holds) > db->db_dirtycnt) { 684 int size = db->db.db_size; 685 /* we can't copy if we have already started a write */ 686 ASSERT(*syncing != db->db_data_pending); 687 *syncing = arc_buf_alloc( 688 db->db_dnode->dn_objset->os_spa, size, db); 689 bcopy(db->db.db_data, (*syncing)->b_data, size); 690 } else { 691 dbuf_set_data(db, NULL); 692 } 693 } 694 } 695 696 /* 697 * This is the "bonus buffer" version of the above routine 698 */ 699 static void 700 dbuf_fix_old_bonus_data(dmu_buf_impl_t *db, uint64_t txg) 701 { 702 void **quiescing, **syncing; 703 704 ASSERT(MUTEX_HELD(&db->db_mtx)); 705 ASSERT(db->db.db_data != NULL); 706 ASSERT(db->db_blkid == DB_BONUS_BLKID); 707 708 quiescing = &db->db_d.db_data_old[(txg-1)&TXG_MASK]; 709 syncing = &db->db_d.db_data_old[(txg-2)&TXG_MASK]; 710 711 if (*quiescing == db->db.db_data) { 712 ASSERT(*syncing != db->db.db_data); 713 *quiescing = zio_buf_alloc(DN_MAX_BONUSLEN); 714 bcopy(db->db.db_data, *quiescing, DN_MAX_BONUSLEN); 715 } else if (*syncing == db->db.db_data) { 716 ASSERT3P(*quiescing, ==, NULL); 717 ASSERT3U(db->db_dirtycnt, ==, 1); 718 *syncing = zio_buf_alloc(DN_MAX_BONUSLEN); 719 bcopy(db->db.db_data, *syncing, DN_MAX_BONUSLEN); 720 } 721 } 722 723 void 724 dbuf_unoverride(dmu_buf_impl_t *db, uint64_t txg) 725 { 726 ASSERT(db->db_blkid != DB_BONUS_BLKID); 727 ASSERT(MUTEX_HELD(&db->db_mtx)); 728 ASSERT(db->db_d.db_overridden_by[txg&TXG_MASK] != IN_DMU_SYNC); 729 730 if (db->db_d.db_overridden_by[txg&TXG_MASK] != NULL) { 731 /* free this block */ 732 ASSERT(list_link_active(&db->db_dirty_node[txg&TXG_MASK]) || 733 db->db_dnode->dn_free_txg == txg); 734 if (!BP_IS_HOLE(db->db_d.db_overridden_by[txg&TXG_MASK])) { 735 /* XXX can get silent EIO here */ 736 (void) arc_free(NULL, db->db_dnode->dn_objset->os_spa, 737 txg, db->db_d.db_overridden_by[txg&TXG_MASK], 738 NULL, NULL, ARC_WAIT); 739 } 740 kmem_free(db->db_d.db_overridden_by[txg&TXG_MASK], 741 sizeof (blkptr_t)); 742 db->db_d.db_overridden_by[txg&TXG_MASK] = NULL; 743 /* release the already-written buffer */ 744 arc_release(db->db_d.db_data_old[txg&TXG_MASK], db); 745 } 746 } 747 748 void 749 dbuf_free_range(dnode_t *dn, uint64_t blkid, uint64_t nblks, dmu_tx_t *tx) 750 { 751 dmu_buf_impl_t *db, *db_next; 752 uint64_t txg = tx->tx_txg; 753 754 dprintf_dnode(dn, "blkid=%llu nblks=%llu\n", blkid, nblks); 755 mutex_enter(&dn->dn_dbufs_mtx); 756 for (db = list_head(&dn->dn_dbufs); db; db = db_next) { 757 db_next = list_next(&dn->dn_dbufs, db); 758 ASSERT(db->db_blkid != DB_BONUS_BLKID); 759 if (db->db_level != 0) 760 continue; 761 dprintf_dbuf(db, "found buf %s\n", ""); 762 if (db->db_blkid < blkid || 763 db->db_blkid >= blkid+nblks) 764 continue; 765 766 /* found a level 0 buffer in the range */ 767 if (dbuf_undirty(db, tx)) 768 continue; 769 770 mutex_enter(&db->db_mtx); 771 if (db->db_state == DB_UNCACHED || 772 db->db_state == DB_EVICTING) { 773 ASSERT(db->db.db_data == NULL); 774 mutex_exit(&db->db_mtx); 775 continue; 776 } 777 if (db->db_state == DB_READ || db->db_state == DB_FILL) { 778 /* will be handled in dbuf_read_done or dbuf_rele */ 779 db->db_d.db_freed_in_flight = TRUE; 780 mutex_exit(&db->db_mtx); 781 continue; 782 } 783 if (refcount_count(&db->db_holds) == 0) { 784 ASSERT(db->db_buf); 785 dbuf_clear(db); 786 continue; 787 } 788 /* The dbuf is CACHED and referenced */ 789 790 if (!list_link_active(&db->db_dirty_node[txg & TXG_MASK])) { 791 /* 792 * This dbuf is not currently dirty. We will either 793 * uncache it (if its not referenced in the open 794 * context) or reset its contents to empty. 795 */ 796 dbuf_fix_old_data(db, txg); 797 } else if (db->db_d.db_overridden_by[txg & TXG_MASK] != NULL) { 798 /* 799 * This dbuf is overridden. Clear that state. 800 */ 801 dbuf_unoverride(db, txg); 802 } 803 /* fill in with appropriate data */ 804 if (db->db_state == DB_CACHED) { 805 ASSERT(db->db.db_data != NULL); 806 arc_release(db->db_buf, db); 807 bzero(db->db.db_data, db->db.db_size); 808 } 809 810 mutex_exit(&db->db_mtx); 811 } 812 mutex_exit(&dn->dn_dbufs_mtx); 813 } 814 815 static int 816 dbuf_new_block(dmu_buf_impl_t *db) 817 { 818 dsl_dataset_t *ds = db->db_objset->os_dsl_dataset; 819 uint64_t birth_txg = 0; 820 821 /* Don't count meta-objects */ 822 if (ds == NULL) 823 return (FALSE); 824 825 /* 826 * We don't need any locking to protect db_blkptr: 827 * If it's syncing, then db_dirtied will be set so we'll 828 * ignore db_blkptr. 829 */ 830 ASSERT(MUTEX_HELD(&db->db_mtx)); /* XXX strictly necessary? */ 831 /* If we have been dirtied since the last snapshot, its not new */ 832 if (db->db_dirtied) 833 birth_txg = db->db_dirtied; 834 else if (db->db_blkptr) 835 birth_txg = db->db_blkptr->blk_birth; 836 837 if (birth_txg) 838 return (!dsl_dataset_block_freeable(ds, birth_txg)); 839 else 840 return (TRUE); 841 } 842 843 void 844 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx) 845 { 846 arc_buf_t *buf, *obuf; 847 int osize = db->db.db_size; 848 849 ASSERT(db->db_blkid != DB_BONUS_BLKID); 850 851 /* XXX does *this* func really need the lock? */ 852 ASSERT(RW_WRITE_HELD(&db->db_dnode->dn_struct_rwlock)); 853 854 /* 855 * This call to dbuf_will_dirty() with the dn_struct_rwlock held 856 * is OK, because there can be no other references to the db 857 * when we are changing its size, so no concurrent DB_FILL can 858 * be happening. 859 */ 860 /* 861 * XXX we should be doing a dbuf_read, checking the return 862 * value and returning that up to our callers 863 */ 864 dbuf_will_dirty(db, tx); 865 866 /* create the data buffer for the new block */ 867 buf = arc_buf_alloc(db->db_dnode->dn_objset->os_spa, size, db); 868 869 /* copy old block data to the new block */ 870 obuf = db->db_buf; 871 bcopy(obuf->b_data, buf->b_data, MIN(osize, size)); 872 /* zero the remainder */ 873 if (size > osize) 874 bzero((uint8_t *)buf->b_data + osize, size - osize); 875 876 mutex_enter(&db->db_mtx); 877 dbuf_set_data(db, buf); 878 VERIFY(arc_buf_remove_ref(obuf, db) == 1); 879 db->db.db_size = size; 880 881 if (db->db_level == 0) 882 db->db_d.db_data_old[tx->tx_txg&TXG_MASK] = buf; 883 mutex_exit(&db->db_mtx); 884 885 dnode_willuse_space(db->db_dnode, size-osize, tx); 886 } 887 888 void 889 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx) 890 { 891 dnode_t *dn = db->db_dnode; 892 objset_impl_t *os = dn->dn_objset; 893 int drop_struct_lock = FALSE; 894 int txgoff = tx->tx_txg & TXG_MASK; 895 896 ASSERT(tx->tx_txg != 0); 897 ASSERT(!refcount_is_zero(&db->db_holds)); 898 DMU_TX_DIRTY_BUF(tx, db); 899 900 /* 901 * Shouldn't dirty a regular buffer in syncing context. Private 902 * objects may be dirtied in syncing context, but only if they 903 * were already pre-dirtied in open context. 904 * XXX We may want to prohibit dirtying in syncing context even 905 * if they did pre-dirty. 906 */ 907 ASSERT(!(dmu_tx_is_syncing(tx) && 908 !BP_IS_HOLE(&dn->dn_objset->os_rootbp) && 909 dn->dn_object != DMU_META_DNODE_OBJECT && 910 dn->dn_objset->os_dsl_dataset != NULL && 911 !dsl_dir_is_private( 912 dn->dn_objset->os_dsl_dataset->ds_dir))); 913 914 /* 915 * We make this assert for private objects as well, but after we 916 * check if we're already dirty. They are allowed to re-dirty 917 * in syncing context. 918 */ 919 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || 920 dn->dn_dirtyctx == DN_UNDIRTIED || 921 dn->dn_dirtyctx == 922 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN)); 923 924 mutex_enter(&db->db_mtx); 925 /* XXX make this true for indirects too? */ 926 ASSERT(db->db_level != 0 || db->db_state == DB_CACHED || 927 db->db_state == DB_FILL); 928 929 /* 930 * If this buffer is currently part of an "overridden" region, 931 * we now need to remove it from that region. 932 */ 933 if (db->db_level == 0 && db->db_blkid != DB_BONUS_BLKID && 934 db->db_d.db_overridden_by[txgoff] != NULL) { 935 dbuf_unoverride(db, tx->tx_txg); 936 } 937 938 mutex_enter(&dn->dn_mtx); 939 /* 940 * Don't set dirtyctx to SYNC if we're just modifying this as we 941 * initialize the objset. 942 */ 943 if (dn->dn_dirtyctx == DN_UNDIRTIED && 944 !BP_IS_HOLE(&dn->dn_objset->os_rootbp)) { 945 dn->dn_dirtyctx = 946 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN); 947 ASSERT(dn->dn_dirtyctx_firstset == NULL); 948 dn->dn_dirtyctx_firstset = kmem_alloc(1, KM_SLEEP); 949 } 950 mutex_exit(&dn->dn_mtx); 951 952 /* 953 * If this buffer is already dirty, we're done. 954 */ 955 if (list_link_active(&db->db_dirty_node[txgoff])) { 956 mutex_exit(&db->db_mtx); 957 return; 958 } 959 960 /* 961 * Only valid if not already dirty. 962 */ 963 ASSERT(dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx == 964 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN)); 965 966 ASSERT3U(dn->dn_nlevels, >, db->db_level); 967 ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) || 968 dn->dn_phys->dn_nlevels > db->db_level || 969 dn->dn_next_nlevels[txgoff] > db->db_level || 970 dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level || 971 dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level); 972 973 /* 974 * We should only be dirtying in syncing context if it's the 975 * mos, a spa os, or we're initializing the os. However, we are 976 * allowed to dirty in syncing context provided we already 977 * dirtied it in open context. Hence we must make this 978 * assertion only if we're not already dirty. 979 */ 980 ASSERT(!dmu_tx_is_syncing(tx) || 981 os->os_dsl_dataset == NULL || 982 !dsl_dir_is_private(os->os_dsl_dataset->ds_dir) || 983 !BP_IS_HOLE(&os->os_rootbp)); 984 ASSERT(db->db.db_size != 0); 985 986 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size); 987 988 /* 989 * If this buffer is dirty in an old transaction group we need 990 * to make a copy of it so that the changes we make in this 991 * transaction group won't leak out when we sync the older txg. 992 */ 993 if (db->db_blkid == DB_BONUS_BLKID) { 994 ASSERT(db->db.db_data != NULL); 995 ASSERT(db->db_d.db_data_old[txgoff] == NULL); 996 dbuf_fix_old_bonus_data(db, tx->tx_txg); 997 db->db_d.db_data_old[txgoff] = db->db.db_data; 998 } else if (db->db_level == 0) { 999 /* 1000 * Release the data buffer from the cache so that we 1001 * can modify it without impacting possible other users 1002 * of this cached data block. Note that indirect blocks 1003 * and private objects are not released until the syncing 1004 * state (since they are only modified then). 1005 */ 1006 ASSERT(db->db_buf != NULL); 1007 ASSERT(db->db_d.db_data_old[txgoff] == NULL); 1008 if (db->db.db_object != DMU_META_DNODE_OBJECT) { 1009 arc_release(db->db_buf, db); 1010 dbuf_fix_old_data(db, tx->tx_txg); 1011 ASSERT(db->db_buf != NULL); 1012 } 1013 db->db_d.db_data_old[txgoff] = db->db_buf; 1014 } 1015 1016 mutex_enter(&dn->dn_mtx); 1017 /* 1018 * We could have been freed_in_flight between the dbuf_noread 1019 * and dbuf_dirty. We win, as though the dbuf_noread() had 1020 * happened after the free. 1021 */ 1022 if (db->db_level == 0 && db->db_blkid != DB_BONUS_BLKID) { 1023 dnode_clear_range(dn, db->db_blkid, 1, tx); 1024 db->db_d.db_freed_in_flight = FALSE; 1025 } 1026 1027 db->db_dirtied = tx->tx_txg; 1028 list_insert_tail(&dn->dn_dirty_dbufs[txgoff], db); 1029 mutex_exit(&dn->dn_mtx); 1030 1031 if (db->db_blkid != DB_BONUS_BLKID) { 1032 /* 1033 * Update the accounting. 1034 */ 1035 if (!dbuf_new_block(db) && db->db_blkptr) { 1036 /* 1037 * This is only a guess -- if the dbuf is dirty 1038 * in a previous txg, we don't know how much 1039 * space it will use on disk yet. We should 1040 * really have the struct_rwlock to access 1041 * db_blkptr, but since this is just a guess, 1042 * it's OK if we get an odd answer. 1043 */ 1044 dnode_willuse_space(dn, 1045 -bp_get_dasize(os->os_spa, db->db_blkptr), tx); 1046 } 1047 dnode_willuse_space(dn, db->db.db_size, tx); 1048 } 1049 1050 /* 1051 * This buffer is now part of this txg 1052 */ 1053 dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg); 1054 db->db_dirtycnt += 1; 1055 ASSERT3U(db->db_dirtycnt, <=, 3); 1056 1057 mutex_exit(&db->db_mtx); 1058 1059 if (db->db_blkid == DB_BONUS_BLKID) { 1060 dnode_setdirty(dn, tx); 1061 return; 1062 } 1063 1064 if (db->db_level == 0) 1065 dnode_new_blkid(dn, db->db_blkid, tx); 1066 1067 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) { 1068 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1069 drop_struct_lock = TRUE; 1070 } 1071 1072 if (db->db_level < dn->dn_nlevels-1) { 1073 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 1074 dmu_buf_impl_t *parent; 1075 parent = dbuf_hold_level(dn, db->db_level+1, 1076 db->db_blkid >> epbs, FTAG); 1077 if (drop_struct_lock) 1078 rw_exit(&dn->dn_struct_rwlock); 1079 dbuf_dirty(parent, tx); 1080 dbuf_rele(parent, FTAG); 1081 } else { 1082 if (drop_struct_lock) 1083 rw_exit(&dn->dn_struct_rwlock); 1084 } 1085 1086 dnode_setdirty(dn, tx); 1087 } 1088 1089 static int 1090 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx) 1091 { 1092 dnode_t *dn = db->db_dnode; 1093 int txgoff = tx->tx_txg & TXG_MASK; 1094 int64_t holds; 1095 1096 ASSERT(tx->tx_txg != 0); 1097 ASSERT(db->db_blkid != DB_BONUS_BLKID); 1098 1099 mutex_enter(&db->db_mtx); 1100 1101 /* 1102 * If this buffer is not dirty, we're done. 1103 */ 1104 if (!list_link_active(&db->db_dirty_node[txgoff])) { 1105 mutex_exit(&db->db_mtx); 1106 return (0); 1107 } 1108 1109 /* 1110 * If this buffer is currently held, we cannot undirty 1111 * it, since one of the current holders may be in the 1112 * middle of an update. Note that users of dbuf_undirty() 1113 * should not place a hold on the dbuf before the call. 1114 * XXX - this check assumes we are being called from 1115 * dbuf_free_range(), perhaps we should move it there? 1116 */ 1117 if (refcount_count(&db->db_holds) > db->db_dirtycnt) { 1118 mutex_exit(&db->db_mtx); 1119 mutex_enter(&dn->dn_mtx); 1120 dnode_clear_range(dn, db->db_blkid, 1, tx); 1121 mutex_exit(&dn->dn_mtx); 1122 return (0); 1123 } 1124 1125 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size); 1126 1127 dbuf_unoverride(db, tx->tx_txg); 1128 1129 ASSERT(db->db.db_size != 0); 1130 if (db->db_level == 0) { 1131 ASSERT(db->db_buf != NULL); 1132 ASSERT(db->db_d.db_data_old[txgoff] != NULL); 1133 if (db->db_d.db_data_old[txgoff] != db->db_buf) 1134 VERIFY(arc_buf_remove_ref( 1135 db->db_d.db_data_old[txgoff], db) == 1); 1136 db->db_d.db_data_old[txgoff] = NULL; 1137 } 1138 1139 /* XXX would be nice to fix up dn_towrite_space[] */ 1140 /* XXX undo db_dirtied? but how? */ 1141 /* db->db_dirtied = tx->tx_txg; */ 1142 1143 mutex_enter(&dn->dn_mtx); 1144 list_remove(&dn->dn_dirty_dbufs[txgoff], db); 1145 mutex_exit(&dn->dn_mtx); 1146 1147 ASSERT(db->db_dirtycnt > 0); 1148 db->db_dirtycnt -= 1; 1149 1150 if ((holds = refcount_remove(&db->db_holds, 1151 (void *)(uintptr_t)tx->tx_txg)) == 0) { 1152 arc_buf_t *buf = db->db_buf; 1153 1154 ASSERT(arc_released(buf)); 1155 dbuf_set_data(db, NULL); 1156 VERIFY(arc_buf_remove_ref(buf, db) == 1); 1157 dbuf_evict(db); 1158 return (1); 1159 } 1160 ASSERT(holds > 0); 1161 1162 mutex_exit(&db->db_mtx); 1163 return (0); 1164 } 1165 1166 #pragma weak dmu_buf_will_dirty = dbuf_will_dirty 1167 void 1168 dbuf_will_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx) 1169 { 1170 int rf = DB_RF_MUST_SUCCEED; 1171 1172 ASSERT(tx->tx_txg != 0); 1173 ASSERT(!refcount_is_zero(&db->db_holds)); 1174 1175 if (RW_WRITE_HELD(&db->db_dnode->dn_struct_rwlock)) 1176 rf |= DB_RF_HAVESTRUCT; 1177 (void) dbuf_read(db, NULL, rf); 1178 dbuf_dirty(db, tx); 1179 } 1180 1181 void 1182 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx) 1183 { 1184 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 1185 1186 ASSERT(db->db_blkid != DB_BONUS_BLKID); 1187 ASSERT(tx->tx_txg != 0); 1188 ASSERT(db->db_level == 0); 1189 ASSERT(!refcount_is_zero(&db->db_holds)); 1190 1191 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT || 1192 dmu_tx_private_ok(tx)); 1193 1194 dbuf_noread(db); 1195 dbuf_dirty(db, tx); 1196 } 1197 1198 #pragma weak dmu_buf_fill_done = dbuf_fill_done 1199 /* ARGSUSED */ 1200 void 1201 dbuf_fill_done(dmu_buf_impl_t *db, dmu_tx_t *tx) 1202 { 1203 mutex_enter(&db->db_mtx); 1204 DBUF_VERIFY(db); 1205 1206 if (db->db_state == DB_FILL) { 1207 if (db->db_level == 0 && db->db_d.db_freed_in_flight) { 1208 ASSERT(db->db_blkid != DB_BONUS_BLKID); 1209 /* we were freed while filling */ 1210 /* XXX dbuf_undirty? */ 1211 bzero(db->db.db_data, db->db.db_size); 1212 db->db_d.db_freed_in_flight = FALSE; 1213 } 1214 db->db_state = DB_CACHED; 1215 cv_broadcast(&db->db_changed); 1216 } 1217 mutex_exit(&db->db_mtx); 1218 } 1219 1220 /* 1221 * "Clear" the contents of this dbuf. This will mark the dbuf 1222 * EVICTING and clear *most* of its references. Unfortunetely, 1223 * when we are not holding the dn_dbufs_mtx, we can't clear the 1224 * entry in the dn_dbufs list. We have to wait until dbuf_destroy() 1225 * in this case. For callers from the DMU we will usually see: 1226 * dbuf_clear()->arc_buf_evict()->dbuf_do_evict()->dbuf_destroy() 1227 * For the arc callback, we will usually see: 1228 * dbuf_do_evict()->dbuf_clear();dbuf_destroy() 1229 * Sometimes, though, we will get a mix of these two: 1230 * DMU: dbuf_clear()->arc_buf_evict() 1231 * ARC: dbuf_do_evict()->dbuf_destroy() 1232 */ 1233 void 1234 dbuf_clear(dmu_buf_impl_t *db) 1235 { 1236 dnode_t *dn = db->db_dnode; 1237 dmu_buf_impl_t *parent = db->db_parent; 1238 dmu_buf_impl_t *dndb = dn->dn_dbuf; 1239 int dbuf_gone = FALSE; 1240 1241 ASSERT(MUTEX_HELD(&db->db_mtx)); 1242 ASSERT(refcount_is_zero(&db->db_holds)); 1243 1244 dbuf_evict_user(db); 1245 1246 if (db->db_state == DB_CACHED) { 1247 ASSERT(db->db.db_data != NULL); 1248 if (db->db_blkid == DB_BONUS_BLKID) 1249 zio_buf_free(db->db.db_data, DN_MAX_BONUSLEN); 1250 db->db.db_data = NULL; 1251 db->db_state = DB_UNCACHED; 1252 } 1253 1254 ASSERT3U(db->db_state, ==, DB_UNCACHED); 1255 ASSERT(db->db_data_pending == NULL); 1256 1257 db->db_state = DB_EVICTING; 1258 db->db_blkptr = NULL; 1259 1260 if (db->db_blkid != DB_BONUS_BLKID && MUTEX_HELD(&dn->dn_dbufs_mtx)) { 1261 list_remove(&dn->dn_dbufs, db); 1262 dnode_rele(dn, db); 1263 } 1264 1265 if (db->db_buf) 1266 dbuf_gone = arc_buf_evict(db->db_buf); 1267 1268 if (!dbuf_gone) 1269 mutex_exit(&db->db_mtx); 1270 1271 /* 1272 * If this dbuf is referened from an indirect dbuf, 1273 * decrement the ref count on the indirect dbuf. 1274 */ 1275 if (parent && parent != dndb) 1276 dbuf_rele(parent, db); 1277 } 1278 1279 static int 1280 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse, 1281 dmu_buf_impl_t **parentp, blkptr_t **bpp) 1282 { 1283 int nlevels, epbs; 1284 1285 ASSERT(blkid != DB_BONUS_BLKID); 1286 1287 if (dn->dn_phys->dn_nlevels == 0) 1288 nlevels = 1; 1289 else 1290 nlevels = dn->dn_phys->dn_nlevels; 1291 1292 epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 1293 1294 ASSERT3U(level * epbs, <, 64); 1295 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 1296 if (level >= nlevels || 1297 (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) { 1298 /* the buffer has no parent yet */ 1299 *parentp = NULL; 1300 *bpp = NULL; 1301 return (ENOENT); 1302 } else if (level < nlevels-1) { 1303 /* this block is referenced from an indirect block */ 1304 int err = dbuf_hold_impl(dn, level+1, 1305 blkid >> epbs, fail_sparse, NULL, parentp); 1306 if (err) 1307 return (err); 1308 err = dbuf_read(*parentp, NULL, 1309 (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL)); 1310 if (err) { 1311 dbuf_rele(*parentp, NULL); 1312 *parentp = NULL; 1313 return (err); 1314 } 1315 *bpp = ((blkptr_t *)(*parentp)->db.db_data) + 1316 (blkid & ((1ULL << epbs) - 1)); 1317 return (0); 1318 } else { 1319 /* the block is referenced from the dnode */ 1320 ASSERT3U(level, ==, nlevels-1); 1321 ASSERT(dn->dn_phys->dn_nblkptr == 0 || 1322 blkid < dn->dn_phys->dn_nblkptr); 1323 if (dn->dn_dbuf) { 1324 dbuf_add_ref(dn->dn_dbuf, NULL); 1325 *parentp = dn->dn_dbuf; 1326 } 1327 *bpp = &dn->dn_phys->dn_blkptr[blkid]; 1328 return (0); 1329 } 1330 } 1331 1332 static dmu_buf_impl_t * 1333 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid, 1334 dmu_buf_impl_t *parent, blkptr_t *blkptr) 1335 { 1336 objset_impl_t *os = dn->dn_objset; 1337 dmu_buf_impl_t *db, *odb; 1338 1339 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 1340 ASSERT(dn->dn_type != DMU_OT_NONE); 1341 1342 db = kmem_cache_alloc(dbuf_cache, KM_SLEEP); 1343 1344 db->db_objset = os; 1345 db->db.db_object = dn->dn_object; 1346 db->db_level = level; 1347 db->db_blkid = blkid; 1348 db->db_dirtied = 0; 1349 db->db_dirtycnt = 0; 1350 db->db_dnode = dn; 1351 db->db_parent = parent; 1352 db->db_blkptr = blkptr; 1353 1354 bzero(&db->db_d, sizeof (db->db_d)); 1355 1356 if (blkid == DB_BONUS_BLKID) { 1357 ASSERT3P(parent, ==, dn->dn_dbuf); 1358 db->db.db_size = dn->dn_bonuslen; 1359 db->db.db_offset = DB_BONUS_BLKID; 1360 db->db_state = DB_UNCACHED; 1361 /* the bonus dbuf is not placed in the hash table */ 1362 return (db); 1363 } else { 1364 int blocksize = 1365 db->db_level ? 1<<dn->dn_indblkshift : dn->dn_datablksz; 1366 db->db.db_size = blocksize; 1367 db->db.db_offset = db->db_blkid * blocksize; 1368 } 1369 1370 /* 1371 * Hold the dn_dbufs_mtx while we get the new dbuf 1372 * in the hash table *and* added to the dbufs list. 1373 * This prevents a possible deadlock with someone 1374 * trying to look up this dbuf before its added to the 1375 * dn_dbufs list. 1376 */ 1377 mutex_enter(&dn->dn_dbufs_mtx); 1378 db->db_state = DB_EVICTING; 1379 if ((odb = dbuf_hash_insert(db)) != NULL) { 1380 /* someone else inserted it first */ 1381 kmem_cache_free(dbuf_cache, db); 1382 mutex_exit(&dn->dn_dbufs_mtx); 1383 return (odb); 1384 } 1385 list_insert_head(&dn->dn_dbufs, db); 1386 db->db_state = DB_UNCACHED; 1387 mutex_exit(&dn->dn_dbufs_mtx); 1388 1389 if (parent && parent != dn->dn_dbuf) 1390 dbuf_add_ref(parent, db); 1391 1392 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || 1393 refcount_count(&dn->dn_holds) > 0); 1394 (void) refcount_add(&dn->dn_holds, db); 1395 1396 dprintf_dbuf(db, "db=%p\n", db); 1397 1398 return (db); 1399 } 1400 1401 static int 1402 dbuf_do_evict(void *private) 1403 { 1404 arc_buf_t *buf = private; 1405 dmu_buf_impl_t *db = buf->b_private; 1406 1407 if (!MUTEX_HELD(&db->db_mtx)) 1408 mutex_enter(&db->db_mtx); 1409 1410 ASSERT(refcount_is_zero(&db->db_holds)); 1411 1412 if (db->db_state != DB_EVICTING) { 1413 ASSERT(db->db_state == DB_CACHED); 1414 DBUF_VERIFY(db); 1415 db->db_buf = NULL; 1416 dbuf_evict(db); 1417 } else { 1418 mutex_exit(&db->db_mtx); 1419 dbuf_destroy(db); 1420 } 1421 return (0); 1422 } 1423 1424 static void 1425 dbuf_destroy(dmu_buf_impl_t *db) 1426 { 1427 ASSERT(refcount_is_zero(&db->db_holds)); 1428 1429 if (db->db_blkid != DB_BONUS_BLKID) { 1430 dnode_t *dn = db->db_dnode; 1431 1432 /* 1433 * If this dbuf is still on the dn_dbufs list, 1434 * remove it from that list. 1435 */ 1436 if (list_link_active(&db->db_link)) { 1437 mutex_enter(&dn->dn_dbufs_mtx); 1438 list_remove(&dn->dn_dbufs, db); 1439 mutex_exit(&dn->dn_dbufs_mtx); 1440 1441 dnode_rele(dn, db); 1442 } 1443 dbuf_hash_remove(db); 1444 } 1445 db->db_parent = NULL; 1446 db->db_dnode = NULL; 1447 db->db_buf = NULL; 1448 1449 ASSERT(db->db.db_data == NULL); 1450 ASSERT(db->db_hash_next == NULL); 1451 ASSERT(db->db_blkptr == NULL); 1452 ASSERT(db->db_data_pending == NULL); 1453 1454 kmem_cache_free(dbuf_cache, db); 1455 } 1456 1457 void 1458 dbuf_prefetch(dnode_t *dn, uint64_t blkid) 1459 { 1460 dmu_buf_impl_t *db = NULL; 1461 blkptr_t *bp = NULL; 1462 1463 ASSERT(blkid != DB_BONUS_BLKID); 1464 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 1465 1466 if (dnode_block_freed(dn, blkid)) 1467 return; 1468 1469 /* dbuf_find() returns with db_mtx held */ 1470 if (db = dbuf_find(dn, 0, blkid)) { 1471 if (refcount_count(&db->db_holds) > 0) { 1472 /* 1473 * This dbuf is active. We assume that it is 1474 * already CACHED, or else about to be either 1475 * read or filled. 1476 */ 1477 mutex_exit(&db->db_mtx); 1478 return; 1479 } 1480 mutex_exit(&db->db_mtx); 1481 } 1482 1483 if (dbuf_findbp(dn, 0, blkid, TRUE, &db, &bp) == 0) { 1484 if (bp && !BP_IS_HOLE(bp)) { 1485 uint32_t aflags = ARC_NOWAIT | ARC_PREFETCH; 1486 zbookmark_t zb; 1487 zb.zb_objset = dn->dn_objset->os_dsl_dataset ? 1488 dn->dn_objset->os_dsl_dataset->ds_object : 0; 1489 zb.zb_object = dn->dn_object; 1490 zb.zb_level = 0; 1491 zb.zb_blkid = blkid; 1492 1493 (void) arc_read(NULL, dn->dn_objset->os_spa, bp, 1494 dmu_ot[dn->dn_type].ot_byteswap, 1495 NULL, NULL, ZIO_PRIORITY_ASYNC_READ, 1496 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 1497 &aflags, &zb); 1498 } 1499 if (db) 1500 dbuf_rele(db, NULL); 1501 } 1502 } 1503 1504 /* 1505 * Returns with db_holds incremented, and db_mtx not held. 1506 * Note: dn_struct_rwlock must be held. 1507 */ 1508 int 1509 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid, int fail_sparse, 1510 void *tag, dmu_buf_impl_t **dbp) 1511 { 1512 dmu_buf_impl_t *db, *parent = NULL; 1513 1514 ASSERT(blkid != DB_BONUS_BLKID); 1515 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 1516 ASSERT3U(dn->dn_nlevels, >, level); 1517 1518 *dbp = NULL; 1519 top: 1520 /* dbuf_find() returns with db_mtx held */ 1521 db = dbuf_find(dn, level, blkid); 1522 1523 if (db == NULL) { 1524 blkptr_t *bp = NULL; 1525 int err; 1526 1527 ASSERT3P(parent, ==, NULL); 1528 err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp); 1529 if (fail_sparse) { 1530 if (err == 0 && bp && BP_IS_HOLE(bp)) 1531 err = ENOENT; 1532 if (err) { 1533 if (parent) 1534 dbuf_rele(parent, NULL); 1535 return (err); 1536 } 1537 } 1538 if (err && err != ENOENT) 1539 return (err); 1540 db = dbuf_create(dn, level, blkid, parent, bp); 1541 } 1542 1543 if (db->db_buf && refcount_is_zero(&db->db_holds)) { 1544 arc_buf_add_ref(db->db_buf, db); 1545 if (db->db_buf->b_data == NULL) { 1546 dbuf_clear(db); 1547 if (parent) { 1548 dbuf_rele(parent, NULL); 1549 parent = NULL; 1550 } 1551 goto top; 1552 } 1553 ASSERT3P(db->db.db_data, ==, db->db_buf->b_data); 1554 } 1555 1556 ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf)); 1557 1558 /* 1559 * If this buffer is currently syncing out, and we are 1560 * are still referencing it from db_data, we need to make 1561 * a copy of it in case we decide we want to dirty it 1562 * again in this txg. 1563 */ 1564 if (db->db_level == 0 && db->db_state == DB_CACHED && 1565 dn->dn_object != DMU_META_DNODE_OBJECT && 1566 db->db_data_pending == db->db_buf) { 1567 int size = (db->db_blkid == DB_BONUS_BLKID) ? 1568 DN_MAX_BONUSLEN : db->db.db_size; 1569 1570 dbuf_set_data(db, arc_buf_alloc(db->db_dnode->dn_objset->os_spa, 1571 size, db)); 1572 bcopy(db->db_data_pending->b_data, db->db.db_data, 1573 db->db.db_size); 1574 } 1575 1576 (void) refcount_add(&db->db_holds, tag); 1577 dbuf_update_data(db); 1578 DBUF_VERIFY(db); 1579 mutex_exit(&db->db_mtx); 1580 1581 /* NOTE: we can't rele the parent until after we drop the db_mtx */ 1582 if (parent) 1583 dbuf_rele(parent, NULL); 1584 1585 ASSERT3P(db->db_dnode, ==, dn); 1586 ASSERT3U(db->db_blkid, ==, blkid); 1587 ASSERT3U(db->db_level, ==, level); 1588 *dbp = db; 1589 1590 return (0); 1591 } 1592 1593 dmu_buf_impl_t * 1594 dbuf_hold(dnode_t *dn, uint64_t blkid, void *tag) 1595 { 1596 dmu_buf_impl_t *db; 1597 int err = dbuf_hold_impl(dn, 0, blkid, FALSE, tag, &db); 1598 return (err ? NULL : db); 1599 } 1600 1601 dmu_buf_impl_t * 1602 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, void *tag) 1603 { 1604 dmu_buf_impl_t *db; 1605 int err = dbuf_hold_impl(dn, level, blkid, FALSE, tag, &db); 1606 return (err ? NULL : db); 1607 } 1608 1609 dmu_buf_impl_t * 1610 dbuf_create_bonus(dnode_t *dn) 1611 { 1612 dmu_buf_impl_t *db = dn->dn_bonus; 1613 1614 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); 1615 1616 ASSERT(dn->dn_bonus == NULL); 1617 db = dbuf_create(dn, 0, DB_BONUS_BLKID, dn->dn_dbuf, NULL); 1618 return (db); 1619 } 1620 1621 #pragma weak dmu_buf_add_ref = dbuf_add_ref 1622 void 1623 dbuf_add_ref(dmu_buf_impl_t *db, void *tag) 1624 { 1625 int64_t holds = refcount_add(&db->db_holds, tag); 1626 ASSERT(holds > 1); 1627 } 1628 1629 #pragma weak dmu_buf_rele = dbuf_rele 1630 void 1631 dbuf_rele(dmu_buf_impl_t *db, void *tag) 1632 { 1633 int64_t holds; 1634 1635 mutex_enter(&db->db_mtx); 1636 DBUF_VERIFY(db); 1637 1638 holds = refcount_remove(&db->db_holds, tag); 1639 ASSERT(holds >= 0); 1640 1641 if (holds == db->db_dirtycnt && 1642 db->db_level == 0 && db->db_d.db_immediate_evict) 1643 dbuf_evict_user(db); 1644 1645 if (holds == 0) { 1646 if (db->db_blkid == DB_BONUS_BLKID) { 1647 mutex_exit(&db->db_mtx); 1648 dnode_rele(db->db_dnode, db); 1649 } else if (db->db_buf == NULL) { 1650 /* 1651 * This is a special case: we never associated this 1652 * dbuf with any data allocated from the ARC. 1653 */ 1654 ASSERT3U(db->db_state, ==, DB_UNCACHED); 1655 dbuf_evict(db); 1656 } else if (arc_released(db->db_buf)) { 1657 arc_buf_t *buf = db->db_buf; 1658 /* 1659 * This dbuf has anonymous data associated with it. 1660 */ 1661 dbuf_set_data(db, NULL); 1662 VERIFY(arc_buf_remove_ref(buf, db) == 1); 1663 dbuf_evict(db); 1664 } else { 1665 VERIFY(arc_buf_remove_ref(db->db_buf, db) == 0); 1666 mutex_exit(&db->db_mtx); 1667 } 1668 } else { 1669 mutex_exit(&db->db_mtx); 1670 } 1671 } 1672 1673 #pragma weak dmu_buf_refcount = dbuf_refcount 1674 uint64_t 1675 dbuf_refcount(dmu_buf_impl_t *db) 1676 { 1677 return (refcount_count(&db->db_holds)); 1678 } 1679 1680 void * 1681 dmu_buf_set_user(dmu_buf_t *db_fake, void *user_ptr, void *user_data_ptr_ptr, 1682 dmu_buf_evict_func_t *evict_func) 1683 { 1684 return (dmu_buf_update_user(db_fake, NULL, user_ptr, 1685 user_data_ptr_ptr, evict_func)); 1686 } 1687 1688 void * 1689 dmu_buf_set_user_ie(dmu_buf_t *db_fake, void *user_ptr, void *user_data_ptr_ptr, 1690 dmu_buf_evict_func_t *evict_func) 1691 { 1692 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 1693 1694 db->db_d.db_immediate_evict = TRUE; 1695 return (dmu_buf_update_user(db_fake, NULL, user_ptr, 1696 user_data_ptr_ptr, evict_func)); 1697 } 1698 1699 void * 1700 dmu_buf_update_user(dmu_buf_t *db_fake, void *old_user_ptr, void *user_ptr, 1701 void *user_data_ptr_ptr, dmu_buf_evict_func_t *evict_func) 1702 { 1703 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 1704 ASSERT(db->db_level == 0); 1705 1706 ASSERT((user_ptr == NULL) == (evict_func == NULL)); 1707 1708 mutex_enter(&db->db_mtx); 1709 1710 if (db->db_d.db_user_ptr == old_user_ptr) { 1711 db->db_d.db_user_ptr = user_ptr; 1712 db->db_d.db_user_data_ptr_ptr = user_data_ptr_ptr; 1713 db->db_d.db_evict_func = evict_func; 1714 1715 dbuf_update_data(db); 1716 } else { 1717 old_user_ptr = db->db_d.db_user_ptr; 1718 } 1719 1720 mutex_exit(&db->db_mtx); 1721 return (old_user_ptr); 1722 } 1723 1724 void * 1725 dmu_buf_get_user(dmu_buf_t *db_fake) 1726 { 1727 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 1728 ASSERT(!refcount_is_zero(&db->db_holds)); 1729 1730 return (db->db_d.db_user_ptr); 1731 } 1732 1733 void 1734 dbuf_sync(dmu_buf_impl_t *db, zio_t *zio, dmu_tx_t *tx) 1735 { 1736 arc_buf_t **data; 1737 uint64_t txg = tx->tx_txg; 1738 dnode_t *dn = db->db_dnode; 1739 objset_impl_t *os = dn->dn_objset; 1740 int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 1741 int checksum, compress; 1742 zbookmark_t zb; 1743 int blksz; 1744 1745 ASSERT(dmu_tx_is_syncing(tx)); 1746 1747 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr); 1748 1749 mutex_enter(&db->db_mtx); 1750 /* 1751 * To be synced, we must be dirtied. But we 1752 * might have been freed after the dirty. 1753 */ 1754 if (db->db_state == DB_UNCACHED) { 1755 /* This buffer has been freed since it was dirtied */ 1756 ASSERT(db->db.db_data == NULL); 1757 } else if (db->db_state == DB_FILL) { 1758 /* This buffer was freed and is now being re-filled */ 1759 ASSERT(db->db.db_data != db->db_d.db_data_old[txg&TXG_MASK]); 1760 } else { 1761 ASSERT3U(db->db_state, ==, DB_CACHED); 1762 } 1763 DBUF_VERIFY(db); 1764 1765 /* 1766 * Don't need a lock on db_dirty (dn_mtx), because it can't 1767 * be modified yet. 1768 */ 1769 1770 if (db->db_blkid == DB_BONUS_BLKID) { 1771 void **datap = &db->db_d.db_data_old[txg&TXG_MASK]; 1772 /* 1773 * Simply copy the bonus data into the dnode. It will 1774 * be written out when the dnode is synced (and it will 1775 * be synced, since it must have been dirty for dbuf_sync 1776 * to be called). 1777 */ 1778 /* 1779 * Use dn_phys->dn_bonuslen since db.db_size is the length 1780 * of the bonus buffer in the open transaction rather than 1781 * the syncing transaction. 1782 */ 1783 ASSERT(*datap != NULL); 1784 ASSERT3U(db->db_level, ==, 0); 1785 ASSERT3U(dn->dn_phys->dn_bonuslen, <=, DN_MAX_BONUSLEN); 1786 bcopy(*datap, DN_BONUS(dn->dn_phys), dn->dn_phys->dn_bonuslen); 1787 if (*datap != db->db.db_data) 1788 zio_buf_free(*datap, DN_MAX_BONUSLEN); 1789 db->db_d.db_data_old[txg&TXG_MASK] = NULL; 1790 db->db_data_pending = NULL; 1791 if (db->db_dirtied == txg) 1792 db->db_dirtied = 0; 1793 ASSERT(db->db_dirtycnt > 0); 1794 db->db_dirtycnt -= 1; 1795 mutex_exit(&db->db_mtx); 1796 dbuf_rele(db, (void *)(uintptr_t)txg); 1797 return; 1798 } 1799 1800 if (db->db_level == 0) { 1801 data = (arc_buf_t **)&db->db_d.db_data_old[txg&TXG_MASK]; 1802 blksz = arc_buf_size(*data); 1803 1804 /* 1805 * This buffer is in the middle of an immdiate write. 1806 * Wait for the synchronous IO to complete. 1807 */ 1808 while (db->db_d.db_overridden_by[txg&TXG_MASK] == IN_DMU_SYNC) { 1809 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT); 1810 cv_wait(&db->db_changed, &db->db_mtx); 1811 ASSERT(db->db_d.db_overridden_by[txg&TXG_MASK]); 1812 } 1813 /* 1814 * If this buffer is currently "in use" (i.e., there are 1815 * active holds and db_data still references it), then make 1816 * a copy before we start the write so that any modifications 1817 * from the open txg will not leak into this write. 1818 * 1819 * NOTE: this copy does not need to be made for objects only 1820 * modified in the syncing context (e.g. DNONE_DNODE blocks) 1821 * or if there is no actual write involved (bonus blocks). 1822 */ 1823 if (dn->dn_object != DMU_META_DNODE_OBJECT && 1824 db->db_d.db_overridden_by[txg&TXG_MASK] == NULL) { 1825 if (refcount_count(&db->db_holds) > 1 && 1826 *data == db->db_buf) { 1827 *data = arc_buf_alloc(os->os_spa, blksz, db); 1828 bcopy(db->db.db_data, (*data)->b_data, blksz); 1829 } 1830 db->db_data_pending = *data; 1831 } else if (dn->dn_object == DMU_META_DNODE_OBJECT) { 1832 /* 1833 * Private object buffers are released here rather 1834 * than in dbuf_dirty() since they are only modified 1835 * in the syncing context and we don't want the 1836 * overhead of making multiple copies of the data. 1837 */ 1838 arc_release(db->db_buf, db); 1839 } 1840 } else { 1841 data = &db->db_buf; 1842 if (*data == NULL) { 1843 /* 1844 * This can happen if we dirty and then free 1845 * the level-0 data blocks in the same txg. So 1846 * this indirect remains unchanged. 1847 */ 1848 if (db->db_dirtied == txg) 1849 db->db_dirtied = 0; 1850 ASSERT(db->db_dirtycnt > 0); 1851 db->db_dirtycnt -= 1; 1852 mutex_exit(&db->db_mtx); 1853 dbuf_rele(db, (void *)(uintptr_t)txg); 1854 return; 1855 } 1856 blksz = db->db.db_size; 1857 ASSERT3U(blksz, ==, 1<<dn->dn_phys->dn_indblkshift); 1858 } 1859 1860 ASSERT(*data != NULL); 1861 1862 if (db->db_level > 0 && !arc_released(db->db_buf)) { 1863 /* 1864 * This indirect buffer was marked dirty, but 1865 * never modified (if it had been modified, then 1866 * we would have released the buffer). There is 1867 * no reason to write anything. 1868 */ 1869 db->db_data_pending = NULL; 1870 if (db->db_dirtied == txg) 1871 db->db_dirtied = 0; 1872 ASSERT(db->db_dirtycnt > 0); 1873 db->db_dirtycnt -= 1; 1874 mutex_exit(&db->db_mtx); 1875 dbuf_rele(db, (void *)(uintptr_t)txg); 1876 return; 1877 } else if (db->db_blkptr == NULL && 1878 db->db_level == dn->dn_phys->dn_nlevels-1 && 1879 db->db_blkid < dn->dn_phys->dn_nblkptr) { 1880 /* 1881 * This buffer was allocated at a time when there was 1882 * no available blkptrs from the dnode, or it was 1883 * inappropriate to hook it in (i.e., nlevels mis-match). 1884 */ 1885 ASSERT(db->db_blkptr == NULL); 1886 ASSERT(db->db_parent == NULL); 1887 db->db_parent = dn->dn_dbuf; 1888 db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid]; 1889 DBUF_VERIFY(db); 1890 mutex_exit(&db->db_mtx); 1891 } else if (db->db_blkptr == NULL) { 1892 dmu_buf_impl_t *parent = db->db_parent; 1893 1894 mutex_exit(&db->db_mtx); 1895 ASSERT(dn->dn_phys->dn_nlevels > 1); 1896 if (parent == NULL) { 1897 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1898 (void) dbuf_hold_impl(dn, db->db_level+1, 1899 db->db_blkid >> epbs, FALSE, FTAG, &parent); 1900 rw_exit(&dn->dn_struct_rwlock); 1901 dbuf_add_ref(parent, db); 1902 db->db_parent = parent; 1903 dbuf_rele(parent, FTAG); 1904 } 1905 (void) dbuf_read(parent, NULL, DB_RF_MUST_SUCCEED); 1906 } else { 1907 mutex_exit(&db->db_mtx); 1908 } 1909 1910 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || db->db_parent != NULL); 1911 1912 if (db->db_level > 0 && 1913 db->db_blkid > dn->dn_phys->dn_maxblkid >> (db->db_level * epbs)) { 1914 /* 1915 * Don't write indirect blocks past EOF. 1916 * We get these when we truncate a file *after* dirtying 1917 * blocks in the truncate range (we undirty the level 0 1918 * blocks in dbuf_free_range(), but not the indirects). 1919 */ 1920 #ifdef ZFS_DEBUG 1921 /* 1922 * Verify that this indirect block is empty. 1923 */ 1924 blkptr_t *bplist; 1925 int i; 1926 1927 mutex_enter(&db->db_mtx); 1928 bplist = db->db.db_data; 1929 for (i = 0; i < (1 << epbs); i++) { 1930 if (!BP_IS_HOLE(&bplist[i])) { 1931 panic("data past EOF: " 1932 "db=%p level=%d id=%llu i=%d\n", 1933 db, db->db_level, 1934 (u_longlong_t)db->db_blkid, i); 1935 } 1936 } 1937 mutex_exit(&db->db_mtx); 1938 #endif 1939 ASSERT(db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)); 1940 mutex_enter(&db->db_mtx); 1941 db->db_dirtycnt -= 1; 1942 mutex_exit(&db->db_mtx); 1943 dbuf_rele(db, (void *)(uintptr_t)txg); 1944 return; 1945 } 1946 1947 if (db->db_parent != dn->dn_dbuf) { 1948 dmu_buf_impl_t *parent = db->db_parent; 1949 1950 mutex_enter(&db->db_mtx); 1951 ASSERT(db->db_level == parent->db_level-1); 1952 ASSERT(list_link_active(&parent->db_dirty_node[txg&TXG_MASK])); 1953 /* 1954 * We may have read this indirect block after we dirtied it, 1955 * so never released it from the cache. 1956 */ 1957 arc_release(parent->db_buf, db->db_parent); 1958 1959 db->db_blkptr = (blkptr_t *)parent->db.db_data + 1960 (db->db_blkid & ((1ULL << epbs) - 1)); 1961 DBUF_VERIFY(db); 1962 mutex_exit(&db->db_mtx); 1963 #ifdef ZFS_DEBUG 1964 } else { 1965 /* 1966 * We don't need to dnode_setdirty(dn) because if we got 1967 * here then the parent is already dirty. 1968 */ 1969 ASSERT(db->db_level == dn->dn_phys->dn_nlevels-1); 1970 ASSERT3P(db->db_blkptr, ==, 1971 &dn->dn_phys->dn_blkptr[db->db_blkid]); 1972 #endif 1973 } 1974 ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf)); 1975 1976 if (db->db_level == 0 && 1977 db->db_d.db_overridden_by[txg&TXG_MASK] != NULL) { 1978 arc_buf_t **old = 1979 (arc_buf_t **)&db->db_d.db_data_old[txg&TXG_MASK]; 1980 blkptr_t **bpp = &db->db_d.db_overridden_by[txg&TXG_MASK]; 1981 int old_size = bp_get_dasize(os->os_spa, db->db_blkptr); 1982 int new_size = bp_get_dasize(os->os_spa, *bpp); 1983 1984 ASSERT(db->db_blkid != DB_BONUS_BLKID); 1985 1986 dnode_diduse_space(dn, new_size-old_size); 1987 mutex_enter(&dn->dn_mtx); 1988 if (db->db_blkid > dn->dn_phys->dn_maxblkid) 1989 dn->dn_phys->dn_maxblkid = db->db_blkid; 1990 mutex_exit(&dn->dn_mtx); 1991 1992 dsl_dataset_block_born(os->os_dsl_dataset, *bpp, tx); 1993 if (!BP_IS_HOLE(db->db_blkptr)) 1994 dsl_dataset_block_kill(os->os_dsl_dataset, 1995 db->db_blkptr, os->os_synctx); 1996 1997 mutex_enter(&db->db_mtx); 1998 *db->db_blkptr = **bpp; 1999 kmem_free(*bpp, sizeof (blkptr_t)); 2000 *bpp = NULL; 2001 2002 if (*old != db->db_buf) 2003 VERIFY(arc_buf_remove_ref(*old, db) == 1); 2004 else if (!BP_IS_HOLE(db->db_blkptr)) 2005 arc_set_callback(db->db_buf, dbuf_do_evict, db); 2006 else 2007 ASSERT(arc_released(db->db_buf)); 2008 *old = NULL; 2009 db->db_data_pending = NULL; 2010 2011 cv_broadcast(&db->db_changed); 2012 2013 ASSERT(db->db_dirtycnt > 0); 2014 db->db_dirtycnt -= 1; 2015 mutex_exit(&db->db_mtx); 2016 dbuf_rele(db, (void *)(uintptr_t)txg); 2017 return; 2018 } 2019 2020 if (db->db_level > 0) { 2021 /* 2022 * XXX -- we should design a compression algorithm 2023 * that specializes in arrays of bps. 2024 */ 2025 checksum = ZIO_CHECKSUM_FLETCHER_4; 2026 compress = ZIO_COMPRESS_LZJB; 2027 } else { 2028 /* 2029 * Allow dnode settings to override objset settings, 2030 * except for metadata checksums. 2031 */ 2032 if (dmu_ot[dn->dn_type].ot_metadata) { 2033 checksum = os->os_md_checksum; 2034 compress = zio_compress_select(dn->dn_compress, 2035 os->os_md_compress); 2036 } else { 2037 checksum = zio_checksum_select(dn->dn_checksum, 2038 os->os_checksum); 2039 compress = zio_compress_select(dn->dn_compress, 2040 os->os_compress); 2041 } 2042 } 2043 #ifdef ZFS_DEBUG 2044 if (db->db_parent) { 2045 ASSERT(list_link_active( 2046 &db->db_parent->db_dirty_node[txg&TXG_MASK])); 2047 ASSERT(db->db_parent == dn->dn_dbuf || 2048 db->db_parent->db_level > 0); 2049 if (dn->dn_object == DMU_META_DNODE_OBJECT || db->db_level > 0) 2050 ASSERT(*data == db->db_buf); 2051 } 2052 #endif 2053 ASSERT3U(db->db_blkptr->blk_birth, <=, tx->tx_txg); 2054 zb.zb_objset = os->os_dsl_dataset ? os->os_dsl_dataset->ds_object : 0; 2055 zb.zb_object = db->db.db_object; 2056 zb.zb_level = db->db_level; 2057 zb.zb_blkid = db->db_blkid; 2058 2059 (void) arc_write(zio, os->os_spa, checksum, compress, 2060 dmu_get_replication_level(os->os_spa, &zb, dn->dn_type), txg, 2061 db->db_blkptr, *data, dbuf_write_done, db, 2062 ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, ARC_NOWAIT, &zb); 2063 /* 2064 * We can't access db after arc_write, since it could finish 2065 * and be freed, and we have no locks on it. 2066 */ 2067 } 2068 2069 struct dbuf_arg { 2070 objset_impl_t *os; 2071 blkptr_t bp; 2072 }; 2073 2074 static void 2075 dbuf_do_born(void *arg) 2076 { 2077 struct dbuf_arg *da = arg; 2078 dsl_dataset_block_born(da->os->os_dsl_dataset, 2079 &da->bp, da->os->os_synctx); 2080 kmem_free(da, sizeof (struct dbuf_arg)); 2081 } 2082 2083 static void 2084 dbuf_do_kill(void *arg) 2085 { 2086 struct dbuf_arg *da = arg; 2087 dsl_dataset_block_kill(da->os->os_dsl_dataset, 2088 &da->bp, da->os->os_synctx); 2089 kmem_free(da, sizeof (struct dbuf_arg)); 2090 } 2091 2092 /* ARGSUSED */ 2093 static void 2094 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb) 2095 { 2096 dmu_buf_impl_t *db = vdb; 2097 dnode_t *dn = db->db_dnode; 2098 objset_impl_t *os = dn->dn_objset; 2099 uint64_t txg = zio->io_txg; 2100 uint64_t fill = 0; 2101 int i; 2102 int old_size, new_size; 2103 2104 ASSERT3U(zio->io_error, ==, 0); 2105 2106 dprintf_dbuf_bp(db, &zio->io_bp_orig, "bp_orig: %s", ""); 2107 2108 old_size = bp_get_dasize(os->os_spa, &zio->io_bp_orig); 2109 new_size = bp_get_dasize(os->os_spa, zio->io_bp); 2110 2111 dnode_diduse_space(dn, new_size-old_size); 2112 2113 mutex_enter(&db->db_mtx); 2114 2115 ASSERT(db->db_d.db_overridden_by[txg&TXG_MASK] == NULL); 2116 2117 if (db->db_dirtied == txg) 2118 db->db_dirtied = 0; 2119 2120 if (db->db_level == 0) { 2121 arc_buf_t **old = 2122 (arc_buf_t **)&db->db_d.db_data_old[txg&TXG_MASK]; 2123 2124 ASSERT(db->db_blkid != DB_BONUS_BLKID); 2125 2126 if (*old != db->db_buf) 2127 VERIFY(arc_buf_remove_ref(*old, db) == 1); 2128 else if (!BP_IS_HOLE(db->db_blkptr)) 2129 arc_set_callback(db->db_buf, dbuf_do_evict, db); 2130 else 2131 ASSERT(arc_released(db->db_buf)); 2132 *old = NULL; 2133 db->db_data_pending = NULL; 2134 2135 mutex_enter(&dn->dn_mtx); 2136 if (db->db_blkid > dn->dn_phys->dn_maxblkid && 2137 !BP_IS_HOLE(db->db_blkptr)) 2138 dn->dn_phys->dn_maxblkid = db->db_blkid; 2139 mutex_exit(&dn->dn_mtx); 2140 2141 if (dn->dn_type == DMU_OT_DNODE) { 2142 dnode_phys_t *dnp = db->db.db_data; 2143 for (i = db->db.db_size >> DNODE_SHIFT; i > 0; 2144 i--, dnp++) { 2145 if (dnp->dn_type != DMU_OT_NONE) 2146 fill++; 2147 } 2148 } else { 2149 if (!BP_IS_HOLE(db->db_blkptr)) 2150 fill = 1; 2151 } 2152 } else { 2153 blkptr_t *bp = db->db.db_data; 2154 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift); 2155 if (!BP_IS_HOLE(db->db_blkptr)) { 2156 int epbs = 2157 dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 2158 ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, db->db.db_size); 2159 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==, 2160 db->db.db_size); 2161 ASSERT3U(dn->dn_phys->dn_maxblkid 2162 >> (db->db_level * epbs), >=, db->db_blkid); 2163 arc_set_callback(db->db_buf, dbuf_do_evict, db); 2164 } 2165 for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, bp++) { 2166 if (BP_IS_HOLE(bp)) 2167 continue; 2168 ASSERT3U(BP_GET_LSIZE(bp), ==, 2169 db->db_level == 1 ? dn->dn_datablksz : 2170 (1<<dn->dn_phys->dn_indblkshift)); 2171 fill += bp->blk_fill; 2172 } 2173 } 2174 2175 if (!BP_IS_HOLE(db->db_blkptr)) { 2176 db->db_blkptr->blk_fill = fill; 2177 BP_SET_TYPE(db->db_blkptr, dn->dn_type); 2178 BP_SET_LEVEL(db->db_blkptr, db->db_level); 2179 } else { 2180 ASSERT3U(fill, ==, 0); 2181 ASSERT3U(db->db_blkptr->blk_fill, ==, 0); 2182 } 2183 2184 dprintf_dbuf_bp(db, db->db_blkptr, 2185 "wrote %llu bytes to blkptr:", zio->io_size); 2186 2187 ASSERT(db->db_parent == NULL || 2188 list_link_active(&db->db_parent->db_dirty_node[txg&TXG_MASK])); 2189 cv_broadcast(&db->db_changed); 2190 ASSERT(db->db_dirtycnt > 0); 2191 db->db_dirtycnt -= 1; 2192 mutex_exit(&db->db_mtx); 2193 2194 /* We must do this after we've set the bp's type and level */ 2195 if (!DVA_EQUAL(BP_IDENTITY(zio->io_bp), 2196 BP_IDENTITY(&zio->io_bp_orig))) { 2197 struct dbuf_arg *da; 2198 da = kmem_alloc(sizeof (struct dbuf_arg), KM_SLEEP); 2199 da->os = os; 2200 da->bp = *zio->io_bp; 2201 (void) taskq_dispatch(dbuf_tq, dbuf_do_born, da, 0); 2202 if (!BP_IS_HOLE(&zio->io_bp_orig)) { 2203 da = kmem_alloc(sizeof (struct dbuf_arg), KM_SLEEP); 2204 da->os = os; 2205 da->bp = zio->io_bp_orig; 2206 (void) taskq_dispatch(dbuf_tq, dbuf_do_kill, da, 0); 2207 } 2208 } 2209 2210 dbuf_rele(db, (void *)(uintptr_t)txg); 2211 } 2212