xref: /titanic_51/usr/src/uts/common/fs/zfs/arc.c (revision fc51f9bbbff02dbd8c3adf640b1a184ceeb58fa5)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * DVA-based Adjustable Replacement Cache
28  *
29  * While much of the theory of operation used here is
30  * based on the self-tuning, low overhead replacement cache
31  * presented by Megiddo and Modha at FAST 2003, there are some
32  * significant differences:
33  *
34  * 1. The Megiddo and Modha model assumes any page is evictable.
35  * Pages in its cache cannot be "locked" into memory.  This makes
36  * the eviction algorithm simple: evict the last page in the list.
37  * This also make the performance characteristics easy to reason
38  * about.  Our cache is not so simple.  At any given moment, some
39  * subset of the blocks in the cache are un-evictable because we
40  * have handed out a reference to them.  Blocks are only evictable
41  * when there are no external references active.  This makes
42  * eviction far more problematic:  we choose to evict the evictable
43  * blocks that are the "lowest" in the list.
44  *
45  * There are times when it is not possible to evict the requested
46  * space.  In these circumstances we are unable to adjust the cache
47  * size.  To prevent the cache growing unbounded at these times we
48  * implement a "cache throttle" that slows the flow of new data
49  * into the cache until we can make space available.
50  *
51  * 2. The Megiddo and Modha model assumes a fixed cache size.
52  * Pages are evicted when the cache is full and there is a cache
53  * miss.  Our model has a variable sized cache.  It grows with
54  * high use, but also tries to react to memory pressure from the
55  * operating system: decreasing its size when system memory is
56  * tight.
57  *
58  * 3. The Megiddo and Modha model assumes a fixed page size. All
59  * elements of the cache are therefor exactly the same size.  So
60  * when adjusting the cache size following a cache miss, its simply
61  * a matter of choosing a single page to evict.  In our model, we
62  * have variable sized cache blocks (rangeing from 512 bytes to
63  * 128K bytes).  We therefor choose a set of blocks to evict to make
64  * space for a cache miss that approximates as closely as possible
65  * the space used by the new block.
66  *
67  * See also:  "ARC: A Self-Tuning, Low Overhead Replacement Cache"
68  * by N. Megiddo & D. Modha, FAST 2003
69  */
70 
71 /*
72  * The locking model:
73  *
74  * A new reference to a cache buffer can be obtained in two
75  * ways: 1) via a hash table lookup using the DVA as a key,
76  * or 2) via one of the ARC lists.  The arc_read() interface
77  * uses method 1, while the internal arc algorithms for
78  * adjusting the cache use method 2.  We therefor provide two
79  * types of locks: 1) the hash table lock array, and 2) the
80  * arc list locks.
81  *
82  * Buffers do not have their own mutexs, rather they rely on the
83  * hash table mutexs for the bulk of their protection (i.e. most
84  * fields in the arc_buf_hdr_t are protected by these mutexs).
85  *
86  * buf_hash_find() returns the appropriate mutex (held) when it
87  * locates the requested buffer in the hash table.  It returns
88  * NULL for the mutex if the buffer was not in the table.
89  *
90  * buf_hash_remove() expects the appropriate hash mutex to be
91  * already held before it is invoked.
92  *
93  * Each arc state also has a mutex which is used to protect the
94  * buffer list associated with the state.  When attempting to
95  * obtain a hash table lock while holding an arc list lock you
96  * must use: mutex_tryenter() to avoid deadlock.  Also note that
97  * the active state mutex must be held before the ghost state mutex.
98  *
99  * Arc buffers may have an associated eviction callback function.
100  * This function will be invoked prior to removing the buffer (e.g.
101  * in arc_do_user_evicts()).  Note however that the data associated
102  * with the buffer may be evicted prior to the callback.  The callback
103  * must be made with *no locks held* (to prevent deadlock).  Additionally,
104  * the users of callbacks must ensure that their private data is
105  * protected from simultaneous callbacks from arc_buf_evict()
106  * and arc_do_user_evicts().
107  *
108  * Note that the majority of the performance stats are manipulated
109  * with atomic operations.
110  *
111  * The L2ARC uses the l2arc_buflist_mtx global mutex for the following:
112  *
113  *	- L2ARC buflist creation
114  *	- L2ARC buflist eviction
115  *	- L2ARC write completion, which walks L2ARC buflists
116  *	- ARC header destruction, as it removes from L2ARC buflists
117  *	- ARC header release, as it removes from L2ARC buflists
118  */
119 
120 #include <sys/spa.h>
121 #include <sys/zio.h>
122 #include <sys/zio_checksum.h>
123 #include <sys/zfs_context.h>
124 #include <sys/arc.h>
125 #include <sys/refcount.h>
126 #include <sys/vdev.h>
127 #ifdef _KERNEL
128 #include <sys/vmsystm.h>
129 #include <vm/anon.h>
130 #include <sys/fs/swapnode.h>
131 #include <sys/dnlc.h>
132 #endif
133 #include <sys/callb.h>
134 #include <sys/kstat.h>
135 
136 static kmutex_t		arc_reclaim_thr_lock;
137 static kcondvar_t	arc_reclaim_thr_cv;	/* used to signal reclaim thr */
138 static uint8_t		arc_thread_exit;
139 
140 extern int zfs_write_limit_shift;
141 extern uint64_t zfs_write_limit_max;
142 extern kmutex_t zfs_write_limit_lock;
143 
144 #define	ARC_REDUCE_DNLC_PERCENT	3
145 uint_t arc_reduce_dnlc_percent = ARC_REDUCE_DNLC_PERCENT;
146 
147 typedef enum arc_reclaim_strategy {
148 	ARC_RECLAIM_AGGR,		/* Aggressive reclaim strategy */
149 	ARC_RECLAIM_CONS		/* Conservative reclaim strategy */
150 } arc_reclaim_strategy_t;
151 
152 /* number of seconds before growing cache again */
153 static int		arc_grow_retry = 60;
154 
155 /* shift of arc_c for calculating both min and max arc_p */
156 static int		arc_p_min_shift = 4;
157 
158 /* log2(fraction of arc to reclaim) */
159 static int		arc_shrink_shift = 5;
160 
161 /*
162  * minimum lifespan of a prefetch block in clock ticks
163  * (initialized in arc_init())
164  */
165 static int		arc_min_prefetch_lifespan;
166 
167 static int arc_dead;
168 
169 /*
170  * The arc has filled available memory and has now warmed up.
171  */
172 static boolean_t arc_warm;
173 
174 /*
175  * These tunables are for performance analysis.
176  */
177 uint64_t zfs_arc_max;
178 uint64_t zfs_arc_min;
179 uint64_t zfs_arc_meta_limit = 0;
180 int zfs_mdcomp_disable = 0;
181 int zfs_arc_grow_retry = 0;
182 int zfs_arc_shrink_shift = 0;
183 int zfs_arc_p_min_shift = 0;
184 
185 /*
186  * Note that buffers can be in one of 6 states:
187  *	ARC_anon	- anonymous (discussed below)
188  *	ARC_mru		- recently used, currently cached
189  *	ARC_mru_ghost	- recentely used, no longer in cache
190  *	ARC_mfu		- frequently used, currently cached
191  *	ARC_mfu_ghost	- frequently used, no longer in cache
192  *	ARC_l2c_only	- exists in L2ARC but not other states
193  * When there are no active references to the buffer, they are
194  * are linked onto a list in one of these arc states.  These are
195  * the only buffers that can be evicted or deleted.  Within each
196  * state there are multiple lists, one for meta-data and one for
197  * non-meta-data.  Meta-data (indirect blocks, blocks of dnodes,
198  * etc.) is tracked separately so that it can be managed more
199  * explicitly: favored over data, limited explicitly.
200  *
201  * Anonymous buffers are buffers that are not associated with
202  * a DVA.  These are buffers that hold dirty block copies
203  * before they are written to stable storage.  By definition,
204  * they are "ref'd" and are considered part of arc_mru
205  * that cannot be freed.  Generally, they will aquire a DVA
206  * as they are written and migrate onto the arc_mru list.
207  *
208  * The ARC_l2c_only state is for buffers that are in the second
209  * level ARC but no longer in any of the ARC_m* lists.  The second
210  * level ARC itself may also contain buffers that are in any of
211  * the ARC_m* states - meaning that a buffer can exist in two
212  * places.  The reason for the ARC_l2c_only state is to keep the
213  * buffer header in the hash table, so that reads that hit the
214  * second level ARC benefit from these fast lookups.
215  */
216 
217 typedef struct arc_state {
218 	list_t	arcs_list[ARC_BUFC_NUMTYPES];	/* list of evictable buffers */
219 	uint64_t arcs_lsize[ARC_BUFC_NUMTYPES];	/* amount of evictable data */
220 	uint64_t arcs_size;	/* total amount of data in this state */
221 	kmutex_t arcs_mtx;
222 } arc_state_t;
223 
224 /* The 6 states: */
225 static arc_state_t ARC_anon;
226 static arc_state_t ARC_mru;
227 static arc_state_t ARC_mru_ghost;
228 static arc_state_t ARC_mfu;
229 static arc_state_t ARC_mfu_ghost;
230 static arc_state_t ARC_l2c_only;
231 
232 typedef struct arc_stats {
233 	kstat_named_t arcstat_hits;
234 	kstat_named_t arcstat_misses;
235 	kstat_named_t arcstat_demand_data_hits;
236 	kstat_named_t arcstat_demand_data_misses;
237 	kstat_named_t arcstat_demand_metadata_hits;
238 	kstat_named_t arcstat_demand_metadata_misses;
239 	kstat_named_t arcstat_prefetch_data_hits;
240 	kstat_named_t arcstat_prefetch_data_misses;
241 	kstat_named_t arcstat_prefetch_metadata_hits;
242 	kstat_named_t arcstat_prefetch_metadata_misses;
243 	kstat_named_t arcstat_mru_hits;
244 	kstat_named_t arcstat_mru_ghost_hits;
245 	kstat_named_t arcstat_mfu_hits;
246 	kstat_named_t arcstat_mfu_ghost_hits;
247 	kstat_named_t arcstat_deleted;
248 	kstat_named_t arcstat_recycle_miss;
249 	kstat_named_t arcstat_mutex_miss;
250 	kstat_named_t arcstat_evict_skip;
251 	kstat_named_t arcstat_hash_elements;
252 	kstat_named_t arcstat_hash_elements_max;
253 	kstat_named_t arcstat_hash_collisions;
254 	kstat_named_t arcstat_hash_chains;
255 	kstat_named_t arcstat_hash_chain_max;
256 	kstat_named_t arcstat_p;
257 	kstat_named_t arcstat_c;
258 	kstat_named_t arcstat_c_min;
259 	kstat_named_t arcstat_c_max;
260 	kstat_named_t arcstat_size;
261 	kstat_named_t arcstat_hdr_size;
262 	kstat_named_t arcstat_data_size;
263 	kstat_named_t arcstat_other_size;
264 	kstat_named_t arcstat_l2_hits;
265 	kstat_named_t arcstat_l2_misses;
266 	kstat_named_t arcstat_l2_feeds;
267 	kstat_named_t arcstat_l2_rw_clash;
268 	kstat_named_t arcstat_l2_read_bytes;
269 	kstat_named_t arcstat_l2_write_bytes;
270 	kstat_named_t arcstat_l2_writes_sent;
271 	kstat_named_t arcstat_l2_writes_done;
272 	kstat_named_t arcstat_l2_writes_error;
273 	kstat_named_t arcstat_l2_writes_hdr_miss;
274 	kstat_named_t arcstat_l2_evict_lock_retry;
275 	kstat_named_t arcstat_l2_evict_reading;
276 	kstat_named_t arcstat_l2_free_on_write;
277 	kstat_named_t arcstat_l2_abort_lowmem;
278 	kstat_named_t arcstat_l2_cksum_bad;
279 	kstat_named_t arcstat_l2_io_error;
280 	kstat_named_t arcstat_l2_size;
281 	kstat_named_t arcstat_l2_hdr_size;
282 	kstat_named_t arcstat_memory_throttle_count;
283 } arc_stats_t;
284 
285 static arc_stats_t arc_stats = {
286 	{ "hits",			KSTAT_DATA_UINT64 },
287 	{ "misses",			KSTAT_DATA_UINT64 },
288 	{ "demand_data_hits",		KSTAT_DATA_UINT64 },
289 	{ "demand_data_misses",		KSTAT_DATA_UINT64 },
290 	{ "demand_metadata_hits",	KSTAT_DATA_UINT64 },
291 	{ "demand_metadata_misses",	KSTAT_DATA_UINT64 },
292 	{ "prefetch_data_hits",		KSTAT_DATA_UINT64 },
293 	{ "prefetch_data_misses",	KSTAT_DATA_UINT64 },
294 	{ "prefetch_metadata_hits",	KSTAT_DATA_UINT64 },
295 	{ "prefetch_metadata_misses",	KSTAT_DATA_UINT64 },
296 	{ "mru_hits",			KSTAT_DATA_UINT64 },
297 	{ "mru_ghost_hits",		KSTAT_DATA_UINT64 },
298 	{ "mfu_hits",			KSTAT_DATA_UINT64 },
299 	{ "mfu_ghost_hits",		KSTAT_DATA_UINT64 },
300 	{ "deleted",			KSTAT_DATA_UINT64 },
301 	{ "recycle_miss",		KSTAT_DATA_UINT64 },
302 	{ "mutex_miss",			KSTAT_DATA_UINT64 },
303 	{ "evict_skip",			KSTAT_DATA_UINT64 },
304 	{ "hash_elements",		KSTAT_DATA_UINT64 },
305 	{ "hash_elements_max",		KSTAT_DATA_UINT64 },
306 	{ "hash_collisions",		KSTAT_DATA_UINT64 },
307 	{ "hash_chains",		KSTAT_DATA_UINT64 },
308 	{ "hash_chain_max",		KSTAT_DATA_UINT64 },
309 	{ "p",				KSTAT_DATA_UINT64 },
310 	{ "c",				KSTAT_DATA_UINT64 },
311 	{ "c_min",			KSTAT_DATA_UINT64 },
312 	{ "c_max",			KSTAT_DATA_UINT64 },
313 	{ "size",			KSTAT_DATA_UINT64 },
314 	{ "hdr_size",			KSTAT_DATA_UINT64 },
315 	{ "data_size",			KSTAT_DATA_UINT64 },
316 	{ "other_size",			KSTAT_DATA_UINT64 },
317 	{ "l2_hits",			KSTAT_DATA_UINT64 },
318 	{ "l2_misses",			KSTAT_DATA_UINT64 },
319 	{ "l2_feeds",			KSTAT_DATA_UINT64 },
320 	{ "l2_rw_clash",		KSTAT_DATA_UINT64 },
321 	{ "l2_read_bytes",		KSTAT_DATA_UINT64 },
322 	{ "l2_write_bytes",		KSTAT_DATA_UINT64 },
323 	{ "l2_writes_sent",		KSTAT_DATA_UINT64 },
324 	{ "l2_writes_done",		KSTAT_DATA_UINT64 },
325 	{ "l2_writes_error",		KSTAT_DATA_UINT64 },
326 	{ "l2_writes_hdr_miss",		KSTAT_DATA_UINT64 },
327 	{ "l2_evict_lock_retry",	KSTAT_DATA_UINT64 },
328 	{ "l2_evict_reading",		KSTAT_DATA_UINT64 },
329 	{ "l2_free_on_write",		KSTAT_DATA_UINT64 },
330 	{ "l2_abort_lowmem",		KSTAT_DATA_UINT64 },
331 	{ "l2_cksum_bad",		KSTAT_DATA_UINT64 },
332 	{ "l2_io_error",		KSTAT_DATA_UINT64 },
333 	{ "l2_size",			KSTAT_DATA_UINT64 },
334 	{ "l2_hdr_size",		KSTAT_DATA_UINT64 },
335 	{ "memory_throttle_count",	KSTAT_DATA_UINT64 }
336 };
337 
338 #define	ARCSTAT(stat)	(arc_stats.stat.value.ui64)
339 
340 #define	ARCSTAT_INCR(stat, val) \
341 	atomic_add_64(&arc_stats.stat.value.ui64, (val));
342 
343 #define	ARCSTAT_BUMP(stat) 	ARCSTAT_INCR(stat, 1)
344 #define	ARCSTAT_BUMPDOWN(stat)	ARCSTAT_INCR(stat, -1)
345 
346 #define	ARCSTAT_MAX(stat, val) {					\
347 	uint64_t m;							\
348 	while ((val) > (m = arc_stats.stat.value.ui64) &&		\
349 	    (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val))))	\
350 		continue;						\
351 }
352 
353 #define	ARCSTAT_MAXSTAT(stat) \
354 	ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
355 
356 /*
357  * We define a macro to allow ARC hits/misses to be easily broken down by
358  * two separate conditions, giving a total of four different subtypes for
359  * each of hits and misses (so eight statistics total).
360  */
361 #define	ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
362 	if (cond1) {							\
363 		if (cond2) {						\
364 			ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
365 		} else {						\
366 			ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
367 		}							\
368 	} else {							\
369 		if (cond2) {						\
370 			ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
371 		} else {						\
372 			ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
373 		}							\
374 	}
375 
376 kstat_t			*arc_ksp;
377 static arc_state_t 	*arc_anon;
378 static arc_state_t	*arc_mru;
379 static arc_state_t	*arc_mru_ghost;
380 static arc_state_t	*arc_mfu;
381 static arc_state_t	*arc_mfu_ghost;
382 static arc_state_t	*arc_l2c_only;
383 
384 /*
385  * There are several ARC variables that are critical to export as kstats --
386  * but we don't want to have to grovel around in the kstat whenever we wish to
387  * manipulate them.  For these variables, we therefore define them to be in
388  * terms of the statistic variable.  This assures that we are not introducing
389  * the possibility of inconsistency by having shadow copies of the variables,
390  * while still allowing the code to be readable.
391  */
392 #define	arc_size	ARCSTAT(arcstat_size)	/* actual total arc size */
393 #define	arc_p		ARCSTAT(arcstat_p)	/* target size of MRU */
394 #define	arc_c		ARCSTAT(arcstat_c)	/* target size of cache */
395 #define	arc_c_min	ARCSTAT(arcstat_c_min)	/* min target cache size */
396 #define	arc_c_max	ARCSTAT(arcstat_c_max)	/* max target cache size */
397 
398 static int		arc_no_grow;	/* Don't try to grow cache size */
399 static uint64_t		arc_tempreserve;
400 static uint64_t		arc_loaned_bytes;
401 static uint64_t		arc_meta_used;
402 static uint64_t		arc_meta_limit;
403 static uint64_t		arc_meta_max = 0;
404 
405 typedef struct l2arc_buf_hdr l2arc_buf_hdr_t;
406 
407 typedef struct arc_callback arc_callback_t;
408 
409 struct arc_callback {
410 	void			*acb_private;
411 	arc_done_func_t		*acb_done;
412 	arc_buf_t		*acb_buf;
413 	zio_t			*acb_zio_dummy;
414 	arc_callback_t		*acb_next;
415 };
416 
417 typedef struct arc_write_callback arc_write_callback_t;
418 
419 struct arc_write_callback {
420 	void		*awcb_private;
421 	arc_done_func_t	*awcb_ready;
422 	arc_done_func_t	*awcb_done;
423 	arc_buf_t	*awcb_buf;
424 };
425 
426 struct arc_buf_hdr {
427 	/* protected by hash lock */
428 	dva_t			b_dva;
429 	uint64_t		b_birth;
430 	uint64_t		b_cksum0;
431 
432 	kmutex_t		b_freeze_lock;
433 	zio_cksum_t		*b_freeze_cksum;
434 
435 	arc_buf_hdr_t		*b_hash_next;
436 	arc_buf_t		*b_buf;
437 	uint32_t		b_flags;
438 	uint32_t		b_datacnt;
439 
440 	arc_callback_t		*b_acb;
441 	kcondvar_t		b_cv;
442 
443 	/* immutable */
444 	arc_buf_contents_t	b_type;
445 	uint64_t		b_size;
446 	uint64_t		b_spa;
447 
448 	/* protected by arc state mutex */
449 	arc_state_t		*b_state;
450 	list_node_t		b_arc_node;
451 
452 	/* updated atomically */
453 	clock_t			b_arc_access;
454 
455 	/* self protecting */
456 	refcount_t		b_refcnt;
457 
458 	l2arc_buf_hdr_t		*b_l2hdr;
459 	list_node_t		b_l2node;
460 };
461 
462 static arc_buf_t *arc_eviction_list;
463 static kmutex_t arc_eviction_mtx;
464 static arc_buf_hdr_t arc_eviction_hdr;
465 static void arc_get_data_buf(arc_buf_t *buf);
466 static void arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock);
467 static int arc_evict_needed(arc_buf_contents_t type);
468 static void arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes);
469 
470 #define	GHOST_STATE(state)	\
471 	((state) == arc_mru_ghost || (state) == arc_mfu_ghost ||	\
472 	(state) == arc_l2c_only)
473 
474 /*
475  * Private ARC flags.  These flags are private ARC only flags that will show up
476  * in b_flags in the arc_hdr_buf_t.  Some flags are publicly declared, and can
477  * be passed in as arc_flags in things like arc_read.  However, these flags
478  * should never be passed and should only be set by ARC code.  When adding new
479  * public flags, make sure not to smash the private ones.
480  */
481 
482 #define	ARC_IN_HASH_TABLE	(1 << 9)	/* this buffer is hashed */
483 #define	ARC_IO_IN_PROGRESS	(1 << 10)	/* I/O in progress for buf */
484 #define	ARC_IO_ERROR		(1 << 11)	/* I/O failed for buf */
485 #define	ARC_FREED_IN_READ	(1 << 12)	/* buf freed while in read */
486 #define	ARC_BUF_AVAILABLE	(1 << 13)	/* block not in active use */
487 #define	ARC_INDIRECT		(1 << 14)	/* this is an indirect block */
488 #define	ARC_FREE_IN_PROGRESS	(1 << 15)	/* hdr about to be freed */
489 #define	ARC_L2_WRITING		(1 << 16)	/* L2ARC write in progress */
490 #define	ARC_L2_EVICTED		(1 << 17)	/* evicted during I/O */
491 #define	ARC_L2_WRITE_HEAD	(1 << 18)	/* head of write list */
492 #define	ARC_STORED		(1 << 19)	/* has been store()d to */
493 
494 #define	HDR_IN_HASH_TABLE(hdr)	((hdr)->b_flags & ARC_IN_HASH_TABLE)
495 #define	HDR_IO_IN_PROGRESS(hdr)	((hdr)->b_flags & ARC_IO_IN_PROGRESS)
496 #define	HDR_IO_ERROR(hdr)	((hdr)->b_flags & ARC_IO_ERROR)
497 #define	HDR_PREFETCH(hdr)	((hdr)->b_flags & ARC_PREFETCH)
498 #define	HDR_FREED_IN_READ(hdr)	((hdr)->b_flags & ARC_FREED_IN_READ)
499 #define	HDR_BUF_AVAILABLE(hdr)	((hdr)->b_flags & ARC_BUF_AVAILABLE)
500 #define	HDR_FREE_IN_PROGRESS(hdr)	((hdr)->b_flags & ARC_FREE_IN_PROGRESS)
501 #define	HDR_L2CACHE(hdr)	((hdr)->b_flags & ARC_L2CACHE)
502 #define	HDR_L2_READING(hdr)	((hdr)->b_flags & ARC_IO_IN_PROGRESS &&	\
503 				    (hdr)->b_l2hdr != NULL)
504 #define	HDR_L2_WRITING(hdr)	((hdr)->b_flags & ARC_L2_WRITING)
505 #define	HDR_L2_EVICTED(hdr)	((hdr)->b_flags & ARC_L2_EVICTED)
506 #define	HDR_L2_WRITE_HEAD(hdr)	((hdr)->b_flags & ARC_L2_WRITE_HEAD)
507 
508 /*
509  * Other sizes
510  */
511 
512 #define	HDR_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
513 #define	L2HDR_SIZE ((int64_t)sizeof (l2arc_buf_hdr_t))
514 
515 /*
516  * Hash table routines
517  */
518 
519 #define	HT_LOCK_PAD	64
520 
521 struct ht_lock {
522 	kmutex_t	ht_lock;
523 #ifdef _KERNEL
524 	unsigned char	pad[(HT_LOCK_PAD - sizeof (kmutex_t))];
525 #endif
526 };
527 
528 #define	BUF_LOCKS 256
529 typedef struct buf_hash_table {
530 	uint64_t ht_mask;
531 	arc_buf_hdr_t **ht_table;
532 	struct ht_lock ht_locks[BUF_LOCKS];
533 } buf_hash_table_t;
534 
535 static buf_hash_table_t buf_hash_table;
536 
537 #define	BUF_HASH_INDEX(spa, dva, birth) \
538 	(buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
539 #define	BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
540 #define	BUF_HASH_LOCK(idx)	(&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
541 #define	HDR_LOCK(buf) \
542 	(BUF_HASH_LOCK(BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth)))
543 
544 uint64_t zfs_crc64_table[256];
545 
546 /*
547  * Level 2 ARC
548  */
549 
550 #define	L2ARC_WRITE_SIZE	(8 * 1024 * 1024)	/* initial write max */
551 #define	L2ARC_HEADROOM		2		/* num of writes */
552 #define	L2ARC_FEED_SECS		1		/* caching interval secs */
553 #define	L2ARC_FEED_MIN_MS	200		/* min caching interval ms */
554 
555 #define	l2arc_writes_sent	ARCSTAT(arcstat_l2_writes_sent)
556 #define	l2arc_writes_done	ARCSTAT(arcstat_l2_writes_done)
557 
558 /*
559  * L2ARC Performance Tunables
560  */
561 uint64_t l2arc_write_max = L2ARC_WRITE_SIZE;	/* default max write size */
562 uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE;	/* extra write during warmup */
563 uint64_t l2arc_headroom = L2ARC_HEADROOM;	/* number of dev writes */
564 uint64_t l2arc_feed_secs = L2ARC_FEED_SECS;	/* interval seconds */
565 uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS;	/* min interval milliseconds */
566 boolean_t l2arc_noprefetch = B_TRUE;		/* don't cache prefetch bufs */
567 boolean_t l2arc_feed_again = B_TRUE;		/* turbo warmup */
568 boolean_t l2arc_norw = B_TRUE;			/* no reads during writes */
569 
570 /*
571  * L2ARC Internals
572  */
573 typedef struct l2arc_dev {
574 	vdev_t			*l2ad_vdev;	/* vdev */
575 	spa_t			*l2ad_spa;	/* spa */
576 	uint64_t		l2ad_hand;	/* next write location */
577 	uint64_t		l2ad_write;	/* desired write size, bytes */
578 	uint64_t		l2ad_boost;	/* warmup write boost, bytes */
579 	uint64_t		l2ad_start;	/* first addr on device */
580 	uint64_t		l2ad_end;	/* last addr on device */
581 	uint64_t		l2ad_evict;	/* last addr eviction reached */
582 	boolean_t		l2ad_first;	/* first sweep through */
583 	boolean_t		l2ad_writing;	/* currently writing */
584 	list_t			*l2ad_buflist;	/* buffer list */
585 	list_node_t		l2ad_node;	/* device list node */
586 } l2arc_dev_t;
587 
588 static list_t L2ARC_dev_list;			/* device list */
589 static list_t *l2arc_dev_list;			/* device list pointer */
590 static kmutex_t l2arc_dev_mtx;			/* device list mutex */
591 static l2arc_dev_t *l2arc_dev_last;		/* last device used */
592 static kmutex_t l2arc_buflist_mtx;		/* mutex for all buflists */
593 static list_t L2ARC_free_on_write;		/* free after write buf list */
594 static list_t *l2arc_free_on_write;		/* free after write list ptr */
595 static kmutex_t l2arc_free_on_write_mtx;	/* mutex for list */
596 static uint64_t l2arc_ndev;			/* number of devices */
597 
598 typedef struct l2arc_read_callback {
599 	arc_buf_t	*l2rcb_buf;		/* read buffer */
600 	spa_t		*l2rcb_spa;		/* spa */
601 	blkptr_t	l2rcb_bp;		/* original blkptr */
602 	zbookmark_t	l2rcb_zb;		/* original bookmark */
603 	int		l2rcb_flags;		/* original flags */
604 } l2arc_read_callback_t;
605 
606 typedef struct l2arc_write_callback {
607 	l2arc_dev_t	*l2wcb_dev;		/* device info */
608 	arc_buf_hdr_t	*l2wcb_head;		/* head of write buflist */
609 } l2arc_write_callback_t;
610 
611 struct l2arc_buf_hdr {
612 	/* protected by arc_buf_hdr  mutex */
613 	l2arc_dev_t	*b_dev;			/* L2ARC device */
614 	uint64_t	b_daddr;		/* disk address, offset byte */
615 };
616 
617 typedef struct l2arc_data_free {
618 	/* protected by l2arc_free_on_write_mtx */
619 	void		*l2df_data;
620 	size_t		l2df_size;
621 	void		(*l2df_func)(void *, size_t);
622 	list_node_t	l2df_list_node;
623 } l2arc_data_free_t;
624 
625 static kmutex_t l2arc_feed_thr_lock;
626 static kcondvar_t l2arc_feed_thr_cv;
627 static uint8_t l2arc_thread_exit;
628 
629 static void l2arc_read_done(zio_t *zio);
630 static void l2arc_hdr_stat_add(void);
631 static void l2arc_hdr_stat_remove(void);
632 
633 static uint64_t
634 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
635 {
636 	uint8_t *vdva = (uint8_t *)dva;
637 	uint64_t crc = -1ULL;
638 	int i;
639 
640 	ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
641 
642 	for (i = 0; i < sizeof (dva_t); i++)
643 		crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF];
644 
645 	crc ^= (spa>>8) ^ birth;
646 
647 	return (crc);
648 }
649 
650 #define	BUF_EMPTY(buf)						\
651 	((buf)->b_dva.dva_word[0] == 0 &&			\
652 	(buf)->b_dva.dva_word[1] == 0 &&			\
653 	(buf)->b_birth == 0)
654 
655 #define	BUF_EQUAL(spa, dva, birth, buf)				\
656 	((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) &&	\
657 	((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) &&	\
658 	((buf)->b_birth == birth) && ((buf)->b_spa == spa)
659 
660 static arc_buf_hdr_t *
661 buf_hash_find(uint64_t spa, const dva_t *dva, uint64_t birth, kmutex_t **lockp)
662 {
663 	uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
664 	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
665 	arc_buf_hdr_t *buf;
666 
667 	mutex_enter(hash_lock);
668 	for (buf = buf_hash_table.ht_table[idx]; buf != NULL;
669 	    buf = buf->b_hash_next) {
670 		if (BUF_EQUAL(spa, dva, birth, buf)) {
671 			*lockp = hash_lock;
672 			return (buf);
673 		}
674 	}
675 	mutex_exit(hash_lock);
676 	*lockp = NULL;
677 	return (NULL);
678 }
679 
680 /*
681  * Insert an entry into the hash table.  If there is already an element
682  * equal to elem in the hash table, then the already existing element
683  * will be returned and the new element will not be inserted.
684  * Otherwise returns NULL.
685  */
686 static arc_buf_hdr_t *
687 buf_hash_insert(arc_buf_hdr_t *buf, kmutex_t **lockp)
688 {
689 	uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
690 	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
691 	arc_buf_hdr_t *fbuf;
692 	uint32_t i;
693 
694 	ASSERT(!HDR_IN_HASH_TABLE(buf));
695 	*lockp = hash_lock;
696 	mutex_enter(hash_lock);
697 	for (fbuf = buf_hash_table.ht_table[idx], i = 0; fbuf != NULL;
698 	    fbuf = fbuf->b_hash_next, i++) {
699 		if (BUF_EQUAL(buf->b_spa, &buf->b_dva, buf->b_birth, fbuf))
700 			return (fbuf);
701 	}
702 
703 	buf->b_hash_next = buf_hash_table.ht_table[idx];
704 	buf_hash_table.ht_table[idx] = buf;
705 	buf->b_flags |= ARC_IN_HASH_TABLE;
706 
707 	/* collect some hash table performance data */
708 	if (i > 0) {
709 		ARCSTAT_BUMP(arcstat_hash_collisions);
710 		if (i == 1)
711 			ARCSTAT_BUMP(arcstat_hash_chains);
712 
713 		ARCSTAT_MAX(arcstat_hash_chain_max, i);
714 	}
715 
716 	ARCSTAT_BUMP(arcstat_hash_elements);
717 	ARCSTAT_MAXSTAT(arcstat_hash_elements);
718 
719 	return (NULL);
720 }
721 
722 static void
723 buf_hash_remove(arc_buf_hdr_t *buf)
724 {
725 	arc_buf_hdr_t *fbuf, **bufp;
726 	uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
727 
728 	ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
729 	ASSERT(HDR_IN_HASH_TABLE(buf));
730 
731 	bufp = &buf_hash_table.ht_table[idx];
732 	while ((fbuf = *bufp) != buf) {
733 		ASSERT(fbuf != NULL);
734 		bufp = &fbuf->b_hash_next;
735 	}
736 	*bufp = buf->b_hash_next;
737 	buf->b_hash_next = NULL;
738 	buf->b_flags &= ~ARC_IN_HASH_TABLE;
739 
740 	/* collect some hash table performance data */
741 	ARCSTAT_BUMPDOWN(arcstat_hash_elements);
742 
743 	if (buf_hash_table.ht_table[idx] &&
744 	    buf_hash_table.ht_table[idx]->b_hash_next == NULL)
745 		ARCSTAT_BUMPDOWN(arcstat_hash_chains);
746 }
747 
748 /*
749  * Global data structures and functions for the buf kmem cache.
750  */
751 static kmem_cache_t *hdr_cache;
752 static kmem_cache_t *buf_cache;
753 
754 static void
755 buf_fini(void)
756 {
757 	int i;
758 
759 	kmem_free(buf_hash_table.ht_table,
760 	    (buf_hash_table.ht_mask + 1) * sizeof (void *));
761 	for (i = 0; i < BUF_LOCKS; i++)
762 		mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
763 	kmem_cache_destroy(hdr_cache);
764 	kmem_cache_destroy(buf_cache);
765 }
766 
767 /*
768  * Constructor callback - called when the cache is empty
769  * and a new buf is requested.
770  */
771 /* ARGSUSED */
772 static int
773 hdr_cons(void *vbuf, void *unused, int kmflag)
774 {
775 	arc_buf_hdr_t *buf = vbuf;
776 
777 	bzero(buf, sizeof (arc_buf_hdr_t));
778 	refcount_create(&buf->b_refcnt);
779 	cv_init(&buf->b_cv, NULL, CV_DEFAULT, NULL);
780 	mutex_init(&buf->b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
781 	arc_space_consume(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS);
782 
783 	return (0);
784 }
785 
786 /* ARGSUSED */
787 static int
788 buf_cons(void *vbuf, void *unused, int kmflag)
789 {
790 	arc_buf_t *buf = vbuf;
791 
792 	bzero(buf, sizeof (arc_buf_t));
793 	rw_init(&buf->b_lock, NULL, RW_DEFAULT, NULL);
794 	arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
795 
796 	return (0);
797 }
798 
799 /*
800  * Destructor callback - called when a cached buf is
801  * no longer required.
802  */
803 /* ARGSUSED */
804 static void
805 hdr_dest(void *vbuf, void *unused)
806 {
807 	arc_buf_hdr_t *buf = vbuf;
808 
809 	refcount_destroy(&buf->b_refcnt);
810 	cv_destroy(&buf->b_cv);
811 	mutex_destroy(&buf->b_freeze_lock);
812 	arc_space_return(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS);
813 }
814 
815 /* ARGSUSED */
816 static void
817 buf_dest(void *vbuf, void *unused)
818 {
819 	arc_buf_t *buf = vbuf;
820 
821 	rw_destroy(&buf->b_lock);
822 	arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
823 }
824 
825 /*
826  * Reclaim callback -- invoked when memory is low.
827  */
828 /* ARGSUSED */
829 static void
830 hdr_recl(void *unused)
831 {
832 	dprintf("hdr_recl called\n");
833 	/*
834 	 * umem calls the reclaim func when we destroy the buf cache,
835 	 * which is after we do arc_fini().
836 	 */
837 	if (!arc_dead)
838 		cv_signal(&arc_reclaim_thr_cv);
839 }
840 
841 static void
842 buf_init(void)
843 {
844 	uint64_t *ct;
845 	uint64_t hsize = 1ULL << 12;
846 	int i, j;
847 
848 	/*
849 	 * The hash table is big enough to fill all of physical memory
850 	 * with an average 64K block size.  The table will take up
851 	 * totalmem*sizeof(void*)/64K (eg. 128KB/GB with 8-byte pointers).
852 	 */
853 	while (hsize * 65536 < physmem * PAGESIZE)
854 		hsize <<= 1;
855 retry:
856 	buf_hash_table.ht_mask = hsize - 1;
857 	buf_hash_table.ht_table =
858 	    kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
859 	if (buf_hash_table.ht_table == NULL) {
860 		ASSERT(hsize > (1ULL << 8));
861 		hsize >>= 1;
862 		goto retry;
863 	}
864 
865 	hdr_cache = kmem_cache_create("arc_buf_hdr_t", sizeof (arc_buf_hdr_t),
866 	    0, hdr_cons, hdr_dest, hdr_recl, NULL, NULL, 0);
867 	buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
868 	    0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
869 
870 	for (i = 0; i < 256; i++)
871 		for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
872 			*ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
873 
874 	for (i = 0; i < BUF_LOCKS; i++) {
875 		mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
876 		    NULL, MUTEX_DEFAULT, NULL);
877 	}
878 }
879 
880 #define	ARC_MINTIME	(hz>>4) /* 62 ms */
881 
882 static void
883 arc_cksum_verify(arc_buf_t *buf)
884 {
885 	zio_cksum_t zc;
886 
887 	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
888 		return;
889 
890 	mutex_enter(&buf->b_hdr->b_freeze_lock);
891 	if (buf->b_hdr->b_freeze_cksum == NULL ||
892 	    (buf->b_hdr->b_flags & ARC_IO_ERROR)) {
893 		mutex_exit(&buf->b_hdr->b_freeze_lock);
894 		return;
895 	}
896 	fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
897 	if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc))
898 		panic("buffer modified while frozen!");
899 	mutex_exit(&buf->b_hdr->b_freeze_lock);
900 }
901 
902 static int
903 arc_cksum_equal(arc_buf_t *buf)
904 {
905 	zio_cksum_t zc;
906 	int equal;
907 
908 	mutex_enter(&buf->b_hdr->b_freeze_lock);
909 	fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
910 	equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc);
911 	mutex_exit(&buf->b_hdr->b_freeze_lock);
912 
913 	return (equal);
914 }
915 
916 static void
917 arc_cksum_compute(arc_buf_t *buf, boolean_t force)
918 {
919 	if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY))
920 		return;
921 
922 	mutex_enter(&buf->b_hdr->b_freeze_lock);
923 	if (buf->b_hdr->b_freeze_cksum != NULL) {
924 		mutex_exit(&buf->b_hdr->b_freeze_lock);
925 		return;
926 	}
927 	buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP);
928 	fletcher_2_native(buf->b_data, buf->b_hdr->b_size,
929 	    buf->b_hdr->b_freeze_cksum);
930 	mutex_exit(&buf->b_hdr->b_freeze_lock);
931 }
932 
933 void
934 arc_buf_thaw(arc_buf_t *buf)
935 {
936 	if (zfs_flags & ZFS_DEBUG_MODIFY) {
937 		if (buf->b_hdr->b_state != arc_anon)
938 			panic("modifying non-anon buffer!");
939 		if (buf->b_hdr->b_flags & ARC_IO_IN_PROGRESS)
940 			panic("modifying buffer while i/o in progress!");
941 		arc_cksum_verify(buf);
942 	}
943 
944 	mutex_enter(&buf->b_hdr->b_freeze_lock);
945 	if (buf->b_hdr->b_freeze_cksum != NULL) {
946 		kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t));
947 		buf->b_hdr->b_freeze_cksum = NULL;
948 	}
949 	mutex_exit(&buf->b_hdr->b_freeze_lock);
950 }
951 
952 void
953 arc_buf_freeze(arc_buf_t *buf)
954 {
955 	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
956 		return;
957 
958 	ASSERT(buf->b_hdr->b_freeze_cksum != NULL ||
959 	    buf->b_hdr->b_state == arc_anon);
960 	arc_cksum_compute(buf, B_FALSE);
961 }
962 
963 static void
964 add_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
965 {
966 	ASSERT(MUTEX_HELD(hash_lock));
967 
968 	if ((refcount_add(&ab->b_refcnt, tag) == 1) &&
969 	    (ab->b_state != arc_anon)) {
970 		uint64_t delta = ab->b_size * ab->b_datacnt;
971 		list_t *list = &ab->b_state->arcs_list[ab->b_type];
972 		uint64_t *size = &ab->b_state->arcs_lsize[ab->b_type];
973 
974 		ASSERT(!MUTEX_HELD(&ab->b_state->arcs_mtx));
975 		mutex_enter(&ab->b_state->arcs_mtx);
976 		ASSERT(list_link_active(&ab->b_arc_node));
977 		list_remove(list, ab);
978 		if (GHOST_STATE(ab->b_state)) {
979 			ASSERT3U(ab->b_datacnt, ==, 0);
980 			ASSERT3P(ab->b_buf, ==, NULL);
981 			delta = ab->b_size;
982 		}
983 		ASSERT(delta > 0);
984 		ASSERT3U(*size, >=, delta);
985 		atomic_add_64(size, -delta);
986 		mutex_exit(&ab->b_state->arcs_mtx);
987 		/* remove the prefetch flag if we get a reference */
988 		if (ab->b_flags & ARC_PREFETCH)
989 			ab->b_flags &= ~ARC_PREFETCH;
990 	}
991 }
992 
993 static int
994 remove_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
995 {
996 	int cnt;
997 	arc_state_t *state = ab->b_state;
998 
999 	ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
1000 	ASSERT(!GHOST_STATE(state));
1001 
1002 	if (((cnt = refcount_remove(&ab->b_refcnt, tag)) == 0) &&
1003 	    (state != arc_anon)) {
1004 		uint64_t *size = &state->arcs_lsize[ab->b_type];
1005 
1006 		ASSERT(!MUTEX_HELD(&state->arcs_mtx));
1007 		mutex_enter(&state->arcs_mtx);
1008 		ASSERT(!list_link_active(&ab->b_arc_node));
1009 		list_insert_head(&state->arcs_list[ab->b_type], ab);
1010 		ASSERT(ab->b_datacnt > 0);
1011 		atomic_add_64(size, ab->b_size * ab->b_datacnt);
1012 		mutex_exit(&state->arcs_mtx);
1013 	}
1014 	return (cnt);
1015 }
1016 
1017 /*
1018  * Move the supplied buffer to the indicated state.  The mutex
1019  * for the buffer must be held by the caller.
1020  */
1021 static void
1022 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *ab, kmutex_t *hash_lock)
1023 {
1024 	arc_state_t *old_state = ab->b_state;
1025 	int64_t refcnt = refcount_count(&ab->b_refcnt);
1026 	uint64_t from_delta, to_delta;
1027 
1028 	ASSERT(MUTEX_HELD(hash_lock));
1029 	ASSERT(new_state != old_state);
1030 	ASSERT(refcnt == 0 || ab->b_datacnt > 0);
1031 	ASSERT(ab->b_datacnt == 0 || !GHOST_STATE(new_state));
1032 
1033 	from_delta = to_delta = ab->b_datacnt * ab->b_size;
1034 
1035 	/*
1036 	 * If this buffer is evictable, transfer it from the
1037 	 * old state list to the new state list.
1038 	 */
1039 	if (refcnt == 0) {
1040 		if (old_state != arc_anon) {
1041 			int use_mutex = !MUTEX_HELD(&old_state->arcs_mtx);
1042 			uint64_t *size = &old_state->arcs_lsize[ab->b_type];
1043 
1044 			if (use_mutex)
1045 				mutex_enter(&old_state->arcs_mtx);
1046 
1047 			ASSERT(list_link_active(&ab->b_arc_node));
1048 			list_remove(&old_state->arcs_list[ab->b_type], ab);
1049 
1050 			/*
1051 			 * If prefetching out of the ghost cache,
1052 			 * we will have a non-null datacnt.
1053 			 */
1054 			if (GHOST_STATE(old_state) && ab->b_datacnt == 0) {
1055 				/* ghost elements have a ghost size */
1056 				ASSERT(ab->b_buf == NULL);
1057 				from_delta = ab->b_size;
1058 			}
1059 			ASSERT3U(*size, >=, from_delta);
1060 			atomic_add_64(size, -from_delta);
1061 
1062 			if (use_mutex)
1063 				mutex_exit(&old_state->arcs_mtx);
1064 		}
1065 		if (new_state != arc_anon) {
1066 			int use_mutex = !MUTEX_HELD(&new_state->arcs_mtx);
1067 			uint64_t *size = &new_state->arcs_lsize[ab->b_type];
1068 
1069 			if (use_mutex)
1070 				mutex_enter(&new_state->arcs_mtx);
1071 
1072 			list_insert_head(&new_state->arcs_list[ab->b_type], ab);
1073 
1074 			/* ghost elements have a ghost size */
1075 			if (GHOST_STATE(new_state)) {
1076 				ASSERT(ab->b_datacnt == 0);
1077 				ASSERT(ab->b_buf == NULL);
1078 				to_delta = ab->b_size;
1079 			}
1080 			atomic_add_64(size, to_delta);
1081 
1082 			if (use_mutex)
1083 				mutex_exit(&new_state->arcs_mtx);
1084 		}
1085 	}
1086 
1087 	ASSERT(!BUF_EMPTY(ab));
1088 	if (new_state == arc_anon) {
1089 		buf_hash_remove(ab);
1090 	}
1091 
1092 	/* adjust state sizes */
1093 	if (to_delta)
1094 		atomic_add_64(&new_state->arcs_size, to_delta);
1095 	if (from_delta) {
1096 		ASSERT3U(old_state->arcs_size, >=, from_delta);
1097 		atomic_add_64(&old_state->arcs_size, -from_delta);
1098 	}
1099 	ab->b_state = new_state;
1100 
1101 	/* adjust l2arc hdr stats */
1102 	if (new_state == arc_l2c_only)
1103 		l2arc_hdr_stat_add();
1104 	else if (old_state == arc_l2c_only)
1105 		l2arc_hdr_stat_remove();
1106 }
1107 
1108 void
1109 arc_space_consume(uint64_t space, arc_space_type_t type)
1110 {
1111 	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1112 
1113 	switch (type) {
1114 	case ARC_SPACE_DATA:
1115 		ARCSTAT_INCR(arcstat_data_size, space);
1116 		break;
1117 	case ARC_SPACE_OTHER:
1118 		ARCSTAT_INCR(arcstat_other_size, space);
1119 		break;
1120 	case ARC_SPACE_HDRS:
1121 		ARCSTAT_INCR(arcstat_hdr_size, space);
1122 		break;
1123 	case ARC_SPACE_L2HDRS:
1124 		ARCSTAT_INCR(arcstat_l2_hdr_size, space);
1125 		break;
1126 	}
1127 
1128 	atomic_add_64(&arc_meta_used, space);
1129 	atomic_add_64(&arc_size, space);
1130 }
1131 
1132 void
1133 arc_space_return(uint64_t space, arc_space_type_t type)
1134 {
1135 	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1136 
1137 	switch (type) {
1138 	case ARC_SPACE_DATA:
1139 		ARCSTAT_INCR(arcstat_data_size, -space);
1140 		break;
1141 	case ARC_SPACE_OTHER:
1142 		ARCSTAT_INCR(arcstat_other_size, -space);
1143 		break;
1144 	case ARC_SPACE_HDRS:
1145 		ARCSTAT_INCR(arcstat_hdr_size, -space);
1146 		break;
1147 	case ARC_SPACE_L2HDRS:
1148 		ARCSTAT_INCR(arcstat_l2_hdr_size, -space);
1149 		break;
1150 	}
1151 
1152 	ASSERT(arc_meta_used >= space);
1153 	if (arc_meta_max < arc_meta_used)
1154 		arc_meta_max = arc_meta_used;
1155 	atomic_add_64(&arc_meta_used, -space);
1156 	ASSERT(arc_size >= space);
1157 	atomic_add_64(&arc_size, -space);
1158 }
1159 
1160 void *
1161 arc_data_buf_alloc(uint64_t size)
1162 {
1163 	if (arc_evict_needed(ARC_BUFC_DATA))
1164 		cv_signal(&arc_reclaim_thr_cv);
1165 	atomic_add_64(&arc_size, size);
1166 	return (zio_data_buf_alloc(size));
1167 }
1168 
1169 void
1170 arc_data_buf_free(void *buf, uint64_t size)
1171 {
1172 	zio_data_buf_free(buf, size);
1173 	ASSERT(arc_size >= size);
1174 	atomic_add_64(&arc_size, -size);
1175 }
1176 
1177 arc_buf_t *
1178 arc_buf_alloc(spa_t *spa, int size, void *tag, arc_buf_contents_t type)
1179 {
1180 	arc_buf_hdr_t *hdr;
1181 	arc_buf_t *buf;
1182 
1183 	ASSERT3U(size, >, 0);
1184 	hdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
1185 	ASSERT(BUF_EMPTY(hdr));
1186 	hdr->b_size = size;
1187 	hdr->b_type = type;
1188 	hdr->b_spa = spa_guid(spa);
1189 	hdr->b_state = arc_anon;
1190 	hdr->b_arc_access = 0;
1191 	buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1192 	buf->b_hdr = hdr;
1193 	buf->b_data = NULL;
1194 	buf->b_efunc = NULL;
1195 	buf->b_private = NULL;
1196 	buf->b_next = NULL;
1197 	hdr->b_buf = buf;
1198 	arc_get_data_buf(buf);
1199 	hdr->b_datacnt = 1;
1200 	hdr->b_flags = 0;
1201 	ASSERT(refcount_is_zero(&hdr->b_refcnt));
1202 	(void) refcount_add(&hdr->b_refcnt, tag);
1203 
1204 	return (buf);
1205 }
1206 
1207 static char *arc_onloan_tag = "onloan";
1208 
1209 /*
1210  * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
1211  * flight data by arc_tempreserve_space() until they are "returned". Loaned
1212  * buffers must be returned to the arc before they can be used by the DMU or
1213  * freed.
1214  */
1215 arc_buf_t *
1216 arc_loan_buf(spa_t *spa, int size)
1217 {
1218 	arc_buf_t *buf;
1219 
1220 	buf = arc_buf_alloc(spa, size, arc_onloan_tag, ARC_BUFC_DATA);
1221 
1222 	atomic_add_64(&arc_loaned_bytes, size);
1223 	return (buf);
1224 }
1225 
1226 /*
1227  * Return a loaned arc buffer to the arc.
1228  */
1229 void
1230 arc_return_buf(arc_buf_t *buf, void *tag)
1231 {
1232 	arc_buf_hdr_t *hdr = buf->b_hdr;
1233 
1234 	ASSERT(hdr->b_state == arc_anon);
1235 	ASSERT(buf->b_data != NULL);
1236 	VERIFY(refcount_remove(&hdr->b_refcnt, arc_onloan_tag) == 0);
1237 	VERIFY(refcount_add(&hdr->b_refcnt, tag) == 1);
1238 
1239 	atomic_add_64(&arc_loaned_bytes, -hdr->b_size);
1240 }
1241 
1242 static arc_buf_t *
1243 arc_buf_clone(arc_buf_t *from)
1244 {
1245 	arc_buf_t *buf;
1246 	arc_buf_hdr_t *hdr = from->b_hdr;
1247 	uint64_t size = hdr->b_size;
1248 
1249 	buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1250 	buf->b_hdr = hdr;
1251 	buf->b_data = NULL;
1252 	buf->b_efunc = NULL;
1253 	buf->b_private = NULL;
1254 	buf->b_next = hdr->b_buf;
1255 	hdr->b_buf = buf;
1256 	arc_get_data_buf(buf);
1257 	bcopy(from->b_data, buf->b_data, size);
1258 	hdr->b_datacnt += 1;
1259 	return (buf);
1260 }
1261 
1262 void
1263 arc_buf_add_ref(arc_buf_t *buf, void* tag)
1264 {
1265 	arc_buf_hdr_t *hdr;
1266 	kmutex_t *hash_lock;
1267 
1268 	/*
1269 	 * Check to see if this buffer is evicted.  Callers
1270 	 * must verify b_data != NULL to know if the add_ref
1271 	 * was successful.
1272 	 */
1273 	rw_enter(&buf->b_lock, RW_READER);
1274 	if (buf->b_data == NULL) {
1275 		rw_exit(&buf->b_lock);
1276 		return;
1277 	}
1278 	hdr = buf->b_hdr;
1279 	ASSERT(hdr != NULL);
1280 	hash_lock = HDR_LOCK(hdr);
1281 	mutex_enter(hash_lock);
1282 	rw_exit(&buf->b_lock);
1283 
1284 	ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
1285 	add_reference(hdr, hash_lock, tag);
1286 	DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
1287 	arc_access(hdr, hash_lock);
1288 	mutex_exit(hash_lock);
1289 	ARCSTAT_BUMP(arcstat_hits);
1290 	ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
1291 	    demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
1292 	    data, metadata, hits);
1293 }
1294 
1295 /*
1296  * Free the arc data buffer.  If it is an l2arc write in progress,
1297  * the buffer is placed on l2arc_free_on_write to be freed later.
1298  */
1299 static void
1300 arc_buf_data_free(arc_buf_hdr_t *hdr, void (*free_func)(void *, size_t),
1301     void *data, size_t size)
1302 {
1303 	if (HDR_L2_WRITING(hdr)) {
1304 		l2arc_data_free_t *df;
1305 		df = kmem_alloc(sizeof (l2arc_data_free_t), KM_SLEEP);
1306 		df->l2df_data = data;
1307 		df->l2df_size = size;
1308 		df->l2df_func = free_func;
1309 		mutex_enter(&l2arc_free_on_write_mtx);
1310 		list_insert_head(l2arc_free_on_write, df);
1311 		mutex_exit(&l2arc_free_on_write_mtx);
1312 		ARCSTAT_BUMP(arcstat_l2_free_on_write);
1313 	} else {
1314 		free_func(data, size);
1315 	}
1316 }
1317 
1318 static void
1319 arc_buf_destroy(arc_buf_t *buf, boolean_t recycle, boolean_t all)
1320 {
1321 	arc_buf_t **bufp;
1322 
1323 	/* free up data associated with the buf */
1324 	if (buf->b_data) {
1325 		arc_state_t *state = buf->b_hdr->b_state;
1326 		uint64_t size = buf->b_hdr->b_size;
1327 		arc_buf_contents_t type = buf->b_hdr->b_type;
1328 
1329 		arc_cksum_verify(buf);
1330 		if (!recycle) {
1331 			if (type == ARC_BUFC_METADATA) {
1332 				arc_buf_data_free(buf->b_hdr, zio_buf_free,
1333 				    buf->b_data, size);
1334 				arc_space_return(size, ARC_SPACE_DATA);
1335 			} else {
1336 				ASSERT(type == ARC_BUFC_DATA);
1337 				arc_buf_data_free(buf->b_hdr,
1338 				    zio_data_buf_free, buf->b_data, size);
1339 				ARCSTAT_INCR(arcstat_data_size, -size);
1340 				atomic_add_64(&arc_size, -size);
1341 			}
1342 		}
1343 		if (list_link_active(&buf->b_hdr->b_arc_node)) {
1344 			uint64_t *cnt = &state->arcs_lsize[type];
1345 
1346 			ASSERT(refcount_is_zero(&buf->b_hdr->b_refcnt));
1347 			ASSERT(state != arc_anon);
1348 
1349 			ASSERT3U(*cnt, >=, size);
1350 			atomic_add_64(cnt, -size);
1351 		}
1352 		ASSERT3U(state->arcs_size, >=, size);
1353 		atomic_add_64(&state->arcs_size, -size);
1354 		buf->b_data = NULL;
1355 		ASSERT(buf->b_hdr->b_datacnt > 0);
1356 		buf->b_hdr->b_datacnt -= 1;
1357 	}
1358 
1359 	/* only remove the buf if requested */
1360 	if (!all)
1361 		return;
1362 
1363 	/* remove the buf from the hdr list */
1364 	for (bufp = &buf->b_hdr->b_buf; *bufp != buf; bufp = &(*bufp)->b_next)
1365 		continue;
1366 	*bufp = buf->b_next;
1367 
1368 	ASSERT(buf->b_efunc == NULL);
1369 
1370 	/* clean up the buf */
1371 	buf->b_hdr = NULL;
1372 	kmem_cache_free(buf_cache, buf);
1373 }
1374 
1375 static void
1376 arc_hdr_destroy(arc_buf_hdr_t *hdr)
1377 {
1378 	ASSERT(refcount_is_zero(&hdr->b_refcnt));
1379 	ASSERT3P(hdr->b_state, ==, arc_anon);
1380 	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
1381 	ASSERT(!(hdr->b_flags & ARC_STORED));
1382 
1383 	if (hdr->b_l2hdr != NULL) {
1384 		if (!MUTEX_HELD(&l2arc_buflist_mtx)) {
1385 			/*
1386 			 * To prevent arc_free() and l2arc_evict() from
1387 			 * attempting to free the same buffer at the same time,
1388 			 * a FREE_IN_PROGRESS flag is given to arc_free() to
1389 			 * give it priority.  l2arc_evict() can't destroy this
1390 			 * header while we are waiting on l2arc_buflist_mtx.
1391 			 *
1392 			 * The hdr may be removed from l2ad_buflist before we
1393 			 * grab l2arc_buflist_mtx, so b_l2hdr is rechecked.
1394 			 */
1395 			mutex_enter(&l2arc_buflist_mtx);
1396 			if (hdr->b_l2hdr != NULL) {
1397 				list_remove(hdr->b_l2hdr->b_dev->l2ad_buflist,
1398 				    hdr);
1399 			}
1400 			mutex_exit(&l2arc_buflist_mtx);
1401 		} else {
1402 			list_remove(hdr->b_l2hdr->b_dev->l2ad_buflist, hdr);
1403 		}
1404 		ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
1405 		kmem_free(hdr->b_l2hdr, sizeof (l2arc_buf_hdr_t));
1406 		if (hdr->b_state == arc_l2c_only)
1407 			l2arc_hdr_stat_remove();
1408 		hdr->b_l2hdr = NULL;
1409 	}
1410 
1411 	if (!BUF_EMPTY(hdr)) {
1412 		ASSERT(!HDR_IN_HASH_TABLE(hdr));
1413 		bzero(&hdr->b_dva, sizeof (dva_t));
1414 		hdr->b_birth = 0;
1415 		hdr->b_cksum0 = 0;
1416 	}
1417 	while (hdr->b_buf) {
1418 		arc_buf_t *buf = hdr->b_buf;
1419 
1420 		if (buf->b_efunc) {
1421 			mutex_enter(&arc_eviction_mtx);
1422 			rw_enter(&buf->b_lock, RW_WRITER);
1423 			ASSERT(buf->b_hdr != NULL);
1424 			arc_buf_destroy(hdr->b_buf, FALSE, FALSE);
1425 			hdr->b_buf = buf->b_next;
1426 			buf->b_hdr = &arc_eviction_hdr;
1427 			buf->b_next = arc_eviction_list;
1428 			arc_eviction_list = buf;
1429 			rw_exit(&buf->b_lock);
1430 			mutex_exit(&arc_eviction_mtx);
1431 		} else {
1432 			arc_buf_destroy(hdr->b_buf, FALSE, TRUE);
1433 		}
1434 	}
1435 	if (hdr->b_freeze_cksum != NULL) {
1436 		kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1437 		hdr->b_freeze_cksum = NULL;
1438 	}
1439 
1440 	ASSERT(!list_link_active(&hdr->b_arc_node));
1441 	ASSERT3P(hdr->b_hash_next, ==, NULL);
1442 	ASSERT3P(hdr->b_acb, ==, NULL);
1443 	kmem_cache_free(hdr_cache, hdr);
1444 }
1445 
1446 void
1447 arc_buf_free(arc_buf_t *buf, void *tag)
1448 {
1449 	arc_buf_hdr_t *hdr = buf->b_hdr;
1450 	int hashed = hdr->b_state != arc_anon;
1451 
1452 	ASSERT(buf->b_efunc == NULL);
1453 	ASSERT(buf->b_data != NULL);
1454 
1455 	if (hashed) {
1456 		kmutex_t *hash_lock = HDR_LOCK(hdr);
1457 
1458 		mutex_enter(hash_lock);
1459 		(void) remove_reference(hdr, hash_lock, tag);
1460 		if (hdr->b_datacnt > 1)
1461 			arc_buf_destroy(buf, FALSE, TRUE);
1462 		else
1463 			hdr->b_flags |= ARC_BUF_AVAILABLE;
1464 		mutex_exit(hash_lock);
1465 	} else if (HDR_IO_IN_PROGRESS(hdr)) {
1466 		int destroy_hdr;
1467 		/*
1468 		 * We are in the middle of an async write.  Don't destroy
1469 		 * this buffer unless the write completes before we finish
1470 		 * decrementing the reference count.
1471 		 */
1472 		mutex_enter(&arc_eviction_mtx);
1473 		(void) remove_reference(hdr, NULL, tag);
1474 		ASSERT(refcount_is_zero(&hdr->b_refcnt));
1475 		destroy_hdr = !HDR_IO_IN_PROGRESS(hdr);
1476 		mutex_exit(&arc_eviction_mtx);
1477 		if (destroy_hdr)
1478 			arc_hdr_destroy(hdr);
1479 	} else {
1480 		if (remove_reference(hdr, NULL, tag) > 0) {
1481 			ASSERT(HDR_IO_ERROR(hdr));
1482 			arc_buf_destroy(buf, FALSE, TRUE);
1483 		} else {
1484 			arc_hdr_destroy(hdr);
1485 		}
1486 	}
1487 }
1488 
1489 int
1490 arc_buf_remove_ref(arc_buf_t *buf, void* tag)
1491 {
1492 	arc_buf_hdr_t *hdr = buf->b_hdr;
1493 	kmutex_t *hash_lock = HDR_LOCK(hdr);
1494 	int no_callback = (buf->b_efunc == NULL);
1495 
1496 	if (hdr->b_state == arc_anon) {
1497 		arc_buf_free(buf, tag);
1498 		return (no_callback);
1499 	}
1500 
1501 	mutex_enter(hash_lock);
1502 	ASSERT(hdr->b_state != arc_anon);
1503 	ASSERT(buf->b_data != NULL);
1504 
1505 	(void) remove_reference(hdr, hash_lock, tag);
1506 	if (hdr->b_datacnt > 1) {
1507 		if (no_callback)
1508 			arc_buf_destroy(buf, FALSE, TRUE);
1509 	} else if (no_callback) {
1510 		ASSERT(hdr->b_buf == buf && buf->b_next == NULL);
1511 		hdr->b_flags |= ARC_BUF_AVAILABLE;
1512 	}
1513 	ASSERT(no_callback || hdr->b_datacnt > 1 ||
1514 	    refcount_is_zero(&hdr->b_refcnt));
1515 	mutex_exit(hash_lock);
1516 	return (no_callback);
1517 }
1518 
1519 int
1520 arc_buf_size(arc_buf_t *buf)
1521 {
1522 	return (buf->b_hdr->b_size);
1523 }
1524 
1525 /*
1526  * Evict buffers from list until we've removed the specified number of
1527  * bytes.  Move the removed buffers to the appropriate evict state.
1528  * If the recycle flag is set, then attempt to "recycle" a buffer:
1529  * - look for a buffer to evict that is `bytes' long.
1530  * - return the data block from this buffer rather than freeing it.
1531  * This flag is used by callers that are trying to make space for a
1532  * new buffer in a full arc cache.
1533  *
1534  * This function makes a "best effort".  It skips over any buffers
1535  * it can't get a hash_lock on, and so may not catch all candidates.
1536  * It may also return without evicting as much space as requested.
1537  */
1538 static void *
1539 arc_evict(arc_state_t *state, uint64_t spa, int64_t bytes, boolean_t recycle,
1540     arc_buf_contents_t type)
1541 {
1542 	arc_state_t *evicted_state;
1543 	uint64_t bytes_evicted = 0, skipped = 0, missed = 0;
1544 	arc_buf_hdr_t *ab, *ab_prev = NULL;
1545 	list_t *list = &state->arcs_list[type];
1546 	kmutex_t *hash_lock;
1547 	boolean_t have_lock;
1548 	void *stolen = NULL;
1549 
1550 	ASSERT(state == arc_mru || state == arc_mfu);
1551 
1552 	evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
1553 
1554 	mutex_enter(&state->arcs_mtx);
1555 	mutex_enter(&evicted_state->arcs_mtx);
1556 
1557 	for (ab = list_tail(list); ab; ab = ab_prev) {
1558 		ab_prev = list_prev(list, ab);
1559 		/* prefetch buffers have a minimum lifespan */
1560 		if (HDR_IO_IN_PROGRESS(ab) ||
1561 		    (spa && ab->b_spa != spa) ||
1562 		    (ab->b_flags & (ARC_PREFETCH|ARC_INDIRECT) &&
1563 		    lbolt - ab->b_arc_access < arc_min_prefetch_lifespan)) {
1564 			skipped++;
1565 			continue;
1566 		}
1567 		/* "lookahead" for better eviction candidate */
1568 		if (recycle && ab->b_size != bytes &&
1569 		    ab_prev && ab_prev->b_size == bytes)
1570 			continue;
1571 		hash_lock = HDR_LOCK(ab);
1572 		have_lock = MUTEX_HELD(hash_lock);
1573 		if (have_lock || mutex_tryenter(hash_lock)) {
1574 			ASSERT3U(refcount_count(&ab->b_refcnt), ==, 0);
1575 			ASSERT(ab->b_datacnt > 0);
1576 			while (ab->b_buf) {
1577 				arc_buf_t *buf = ab->b_buf;
1578 				if (!rw_tryenter(&buf->b_lock, RW_WRITER)) {
1579 					missed += 1;
1580 					break;
1581 				}
1582 				if (buf->b_data) {
1583 					bytes_evicted += ab->b_size;
1584 					if (recycle && ab->b_type == type &&
1585 					    ab->b_size == bytes &&
1586 					    !HDR_L2_WRITING(ab)) {
1587 						stolen = buf->b_data;
1588 						recycle = FALSE;
1589 					}
1590 				}
1591 				if (buf->b_efunc) {
1592 					mutex_enter(&arc_eviction_mtx);
1593 					arc_buf_destroy(buf,
1594 					    buf->b_data == stolen, FALSE);
1595 					ab->b_buf = buf->b_next;
1596 					buf->b_hdr = &arc_eviction_hdr;
1597 					buf->b_next = arc_eviction_list;
1598 					arc_eviction_list = buf;
1599 					mutex_exit(&arc_eviction_mtx);
1600 					rw_exit(&buf->b_lock);
1601 				} else {
1602 					rw_exit(&buf->b_lock);
1603 					arc_buf_destroy(buf,
1604 					    buf->b_data == stolen, TRUE);
1605 				}
1606 			}
1607 			if (ab->b_datacnt == 0) {
1608 				arc_change_state(evicted_state, ab, hash_lock);
1609 				ASSERT(HDR_IN_HASH_TABLE(ab));
1610 				ab->b_flags |= ARC_IN_HASH_TABLE;
1611 				ab->b_flags &= ~ARC_BUF_AVAILABLE;
1612 				DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, ab);
1613 			}
1614 			if (!have_lock)
1615 				mutex_exit(hash_lock);
1616 			if (bytes >= 0 && bytes_evicted >= bytes)
1617 				break;
1618 		} else {
1619 			missed += 1;
1620 		}
1621 	}
1622 
1623 	mutex_exit(&evicted_state->arcs_mtx);
1624 	mutex_exit(&state->arcs_mtx);
1625 
1626 	if (bytes_evicted < bytes)
1627 		dprintf("only evicted %lld bytes from %x",
1628 		    (longlong_t)bytes_evicted, state);
1629 
1630 	if (skipped)
1631 		ARCSTAT_INCR(arcstat_evict_skip, skipped);
1632 
1633 	if (missed)
1634 		ARCSTAT_INCR(arcstat_mutex_miss, missed);
1635 
1636 	/*
1637 	 * We have just evicted some date into the ghost state, make
1638 	 * sure we also adjust the ghost state size if necessary.
1639 	 */
1640 	if (arc_no_grow &&
1641 	    arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size > arc_c) {
1642 		int64_t mru_over = arc_anon->arcs_size + arc_mru->arcs_size +
1643 		    arc_mru_ghost->arcs_size - arc_c;
1644 
1645 		if (mru_over > 0 && arc_mru_ghost->arcs_lsize[type] > 0) {
1646 			int64_t todelete =
1647 			    MIN(arc_mru_ghost->arcs_lsize[type], mru_over);
1648 			arc_evict_ghost(arc_mru_ghost, NULL, todelete);
1649 		} else if (arc_mfu_ghost->arcs_lsize[type] > 0) {
1650 			int64_t todelete = MIN(arc_mfu_ghost->arcs_lsize[type],
1651 			    arc_mru_ghost->arcs_size +
1652 			    arc_mfu_ghost->arcs_size - arc_c);
1653 			arc_evict_ghost(arc_mfu_ghost, NULL, todelete);
1654 		}
1655 	}
1656 
1657 	return (stolen);
1658 }
1659 
1660 /*
1661  * Remove buffers from list until we've removed the specified number of
1662  * bytes.  Destroy the buffers that are removed.
1663  */
1664 static void
1665 arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes)
1666 {
1667 	arc_buf_hdr_t *ab, *ab_prev;
1668 	list_t *list = &state->arcs_list[ARC_BUFC_DATA];
1669 	kmutex_t *hash_lock;
1670 	uint64_t bytes_deleted = 0;
1671 	uint64_t bufs_skipped = 0;
1672 
1673 	ASSERT(GHOST_STATE(state));
1674 top:
1675 	mutex_enter(&state->arcs_mtx);
1676 	for (ab = list_tail(list); ab; ab = ab_prev) {
1677 		ab_prev = list_prev(list, ab);
1678 		if (spa && ab->b_spa != spa)
1679 			continue;
1680 		hash_lock = HDR_LOCK(ab);
1681 		if (mutex_tryenter(hash_lock)) {
1682 			ASSERT(!HDR_IO_IN_PROGRESS(ab));
1683 			ASSERT(ab->b_buf == NULL);
1684 			ARCSTAT_BUMP(arcstat_deleted);
1685 			bytes_deleted += ab->b_size;
1686 
1687 			if (ab->b_l2hdr != NULL) {
1688 				/*
1689 				 * This buffer is cached on the 2nd Level ARC;
1690 				 * don't destroy the header.
1691 				 */
1692 				arc_change_state(arc_l2c_only, ab, hash_lock);
1693 				mutex_exit(hash_lock);
1694 			} else {
1695 				arc_change_state(arc_anon, ab, hash_lock);
1696 				mutex_exit(hash_lock);
1697 				arc_hdr_destroy(ab);
1698 			}
1699 
1700 			DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, ab);
1701 			if (bytes >= 0 && bytes_deleted >= bytes)
1702 				break;
1703 		} else {
1704 			if (bytes < 0) {
1705 				mutex_exit(&state->arcs_mtx);
1706 				mutex_enter(hash_lock);
1707 				mutex_exit(hash_lock);
1708 				goto top;
1709 			}
1710 			bufs_skipped += 1;
1711 		}
1712 	}
1713 	mutex_exit(&state->arcs_mtx);
1714 
1715 	if (list == &state->arcs_list[ARC_BUFC_DATA] &&
1716 	    (bytes < 0 || bytes_deleted < bytes)) {
1717 		list = &state->arcs_list[ARC_BUFC_METADATA];
1718 		goto top;
1719 	}
1720 
1721 	if (bufs_skipped) {
1722 		ARCSTAT_INCR(arcstat_mutex_miss, bufs_skipped);
1723 		ASSERT(bytes >= 0);
1724 	}
1725 
1726 	if (bytes_deleted < bytes)
1727 		dprintf("only deleted %lld bytes from %p",
1728 		    (longlong_t)bytes_deleted, state);
1729 }
1730 
1731 static void
1732 arc_adjust(void)
1733 {
1734 	int64_t adjustment, delta;
1735 
1736 	/*
1737 	 * Adjust MRU size
1738 	 */
1739 
1740 	adjustment = MIN(arc_size - arc_c,
1741 	    arc_anon->arcs_size + arc_mru->arcs_size + arc_meta_used - arc_p);
1742 
1743 	if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_DATA] > 0) {
1744 		delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_DATA], adjustment);
1745 		(void) arc_evict(arc_mru, NULL, delta, FALSE, ARC_BUFC_DATA);
1746 		adjustment -= delta;
1747 	}
1748 
1749 	if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_METADATA] > 0) {
1750 		delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_METADATA], adjustment);
1751 		(void) arc_evict(arc_mru, NULL, delta, FALSE,
1752 		    ARC_BUFC_METADATA);
1753 	}
1754 
1755 	/*
1756 	 * Adjust MFU size
1757 	 */
1758 
1759 	adjustment = arc_size - arc_c;
1760 
1761 	if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_DATA] > 0) {
1762 		delta = MIN(adjustment, arc_mfu->arcs_lsize[ARC_BUFC_DATA]);
1763 		(void) arc_evict(arc_mfu, NULL, delta, FALSE, ARC_BUFC_DATA);
1764 		adjustment -= delta;
1765 	}
1766 
1767 	if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_METADATA] > 0) {
1768 		int64_t delta = MIN(adjustment,
1769 		    arc_mfu->arcs_lsize[ARC_BUFC_METADATA]);
1770 		(void) arc_evict(arc_mfu, NULL, delta, FALSE,
1771 		    ARC_BUFC_METADATA);
1772 	}
1773 
1774 	/*
1775 	 * Adjust ghost lists
1776 	 */
1777 
1778 	adjustment = arc_mru->arcs_size + arc_mru_ghost->arcs_size - arc_c;
1779 
1780 	if (adjustment > 0 && arc_mru_ghost->arcs_size > 0) {
1781 		delta = MIN(arc_mru_ghost->arcs_size, adjustment);
1782 		arc_evict_ghost(arc_mru_ghost, NULL, delta);
1783 	}
1784 
1785 	adjustment =
1786 	    arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size - arc_c;
1787 
1788 	if (adjustment > 0 && arc_mfu_ghost->arcs_size > 0) {
1789 		delta = MIN(arc_mfu_ghost->arcs_size, adjustment);
1790 		arc_evict_ghost(arc_mfu_ghost, NULL, delta);
1791 	}
1792 }
1793 
1794 static void
1795 arc_do_user_evicts(void)
1796 {
1797 	mutex_enter(&arc_eviction_mtx);
1798 	while (arc_eviction_list != NULL) {
1799 		arc_buf_t *buf = arc_eviction_list;
1800 		arc_eviction_list = buf->b_next;
1801 		rw_enter(&buf->b_lock, RW_WRITER);
1802 		buf->b_hdr = NULL;
1803 		rw_exit(&buf->b_lock);
1804 		mutex_exit(&arc_eviction_mtx);
1805 
1806 		if (buf->b_efunc != NULL)
1807 			VERIFY(buf->b_efunc(buf) == 0);
1808 
1809 		buf->b_efunc = NULL;
1810 		buf->b_private = NULL;
1811 		kmem_cache_free(buf_cache, buf);
1812 		mutex_enter(&arc_eviction_mtx);
1813 	}
1814 	mutex_exit(&arc_eviction_mtx);
1815 }
1816 
1817 /*
1818  * Flush all *evictable* data from the cache for the given spa.
1819  * NOTE: this will not touch "active" (i.e. referenced) data.
1820  */
1821 void
1822 arc_flush(spa_t *spa)
1823 {
1824 	uint64_t guid = 0;
1825 
1826 	if (spa)
1827 		guid = spa_guid(spa);
1828 
1829 	while (list_head(&arc_mru->arcs_list[ARC_BUFC_DATA])) {
1830 		(void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_DATA);
1831 		if (spa)
1832 			break;
1833 	}
1834 	while (list_head(&arc_mru->arcs_list[ARC_BUFC_METADATA])) {
1835 		(void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_METADATA);
1836 		if (spa)
1837 			break;
1838 	}
1839 	while (list_head(&arc_mfu->arcs_list[ARC_BUFC_DATA])) {
1840 		(void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_DATA);
1841 		if (spa)
1842 			break;
1843 	}
1844 	while (list_head(&arc_mfu->arcs_list[ARC_BUFC_METADATA])) {
1845 		(void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_METADATA);
1846 		if (spa)
1847 			break;
1848 	}
1849 
1850 	arc_evict_ghost(arc_mru_ghost, guid, -1);
1851 	arc_evict_ghost(arc_mfu_ghost, guid, -1);
1852 
1853 	mutex_enter(&arc_reclaim_thr_lock);
1854 	arc_do_user_evicts();
1855 	mutex_exit(&arc_reclaim_thr_lock);
1856 	ASSERT(spa || arc_eviction_list == NULL);
1857 }
1858 
1859 void
1860 arc_shrink(void)
1861 {
1862 	if (arc_c > arc_c_min) {
1863 		uint64_t to_free;
1864 
1865 #ifdef _KERNEL
1866 		to_free = MAX(arc_c >> arc_shrink_shift, ptob(needfree));
1867 #else
1868 		to_free = arc_c >> arc_shrink_shift;
1869 #endif
1870 		if (arc_c > arc_c_min + to_free)
1871 			atomic_add_64(&arc_c, -to_free);
1872 		else
1873 			arc_c = arc_c_min;
1874 
1875 		atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
1876 		if (arc_c > arc_size)
1877 			arc_c = MAX(arc_size, arc_c_min);
1878 		if (arc_p > arc_c)
1879 			arc_p = (arc_c >> 1);
1880 		ASSERT(arc_c >= arc_c_min);
1881 		ASSERT((int64_t)arc_p >= 0);
1882 	}
1883 
1884 	if (arc_size > arc_c)
1885 		arc_adjust();
1886 }
1887 
1888 static int
1889 arc_reclaim_needed(void)
1890 {
1891 	uint64_t extra;
1892 
1893 #ifdef _KERNEL
1894 
1895 	if (needfree)
1896 		return (1);
1897 
1898 	/*
1899 	 * take 'desfree' extra pages, so we reclaim sooner, rather than later
1900 	 */
1901 	extra = desfree;
1902 
1903 	/*
1904 	 * check that we're out of range of the pageout scanner.  It starts to
1905 	 * schedule paging if freemem is less than lotsfree and needfree.
1906 	 * lotsfree is the high-water mark for pageout, and needfree is the
1907 	 * number of needed free pages.  We add extra pages here to make sure
1908 	 * the scanner doesn't start up while we're freeing memory.
1909 	 */
1910 	if (freemem < lotsfree + needfree + extra)
1911 		return (1);
1912 
1913 	/*
1914 	 * check to make sure that swapfs has enough space so that anon
1915 	 * reservations can still succeed. anon_resvmem() checks that the
1916 	 * availrmem is greater than swapfs_minfree, and the number of reserved
1917 	 * swap pages.  We also add a bit of extra here just to prevent
1918 	 * circumstances from getting really dire.
1919 	 */
1920 	if (availrmem < swapfs_minfree + swapfs_reserve + extra)
1921 		return (1);
1922 
1923 #if defined(__i386)
1924 	/*
1925 	 * If we're on an i386 platform, it's possible that we'll exhaust the
1926 	 * kernel heap space before we ever run out of available physical
1927 	 * memory.  Most checks of the size of the heap_area compare against
1928 	 * tune.t_minarmem, which is the minimum available real memory that we
1929 	 * can have in the system.  However, this is generally fixed at 25 pages
1930 	 * which is so low that it's useless.  In this comparison, we seek to
1931 	 * calculate the total heap-size, and reclaim if more than 3/4ths of the
1932 	 * heap is allocated.  (Or, in the calculation, if less than 1/4th is
1933 	 * free)
1934 	 */
1935 	if (btop(vmem_size(heap_arena, VMEM_FREE)) <
1936 	    (btop(vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC)) >> 2))
1937 		return (1);
1938 #endif
1939 
1940 #else
1941 	if (spa_get_random(100) == 0)
1942 		return (1);
1943 #endif
1944 	return (0);
1945 }
1946 
1947 static void
1948 arc_kmem_reap_now(arc_reclaim_strategy_t strat)
1949 {
1950 	size_t			i;
1951 	kmem_cache_t		*prev_cache = NULL;
1952 	kmem_cache_t		*prev_data_cache = NULL;
1953 	extern kmem_cache_t	*zio_buf_cache[];
1954 	extern kmem_cache_t	*zio_data_buf_cache[];
1955 
1956 #ifdef _KERNEL
1957 	if (arc_meta_used >= arc_meta_limit) {
1958 		/*
1959 		 * We are exceeding our meta-data cache limit.
1960 		 * Purge some DNLC entries to release holds on meta-data.
1961 		 */
1962 		dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent);
1963 	}
1964 #if defined(__i386)
1965 	/*
1966 	 * Reclaim unused memory from all kmem caches.
1967 	 */
1968 	kmem_reap();
1969 #endif
1970 #endif
1971 
1972 	/*
1973 	 * An aggressive reclamation will shrink the cache size as well as
1974 	 * reap free buffers from the arc kmem caches.
1975 	 */
1976 	if (strat == ARC_RECLAIM_AGGR)
1977 		arc_shrink();
1978 
1979 	for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
1980 		if (zio_buf_cache[i] != prev_cache) {
1981 			prev_cache = zio_buf_cache[i];
1982 			kmem_cache_reap_now(zio_buf_cache[i]);
1983 		}
1984 		if (zio_data_buf_cache[i] != prev_data_cache) {
1985 			prev_data_cache = zio_data_buf_cache[i];
1986 			kmem_cache_reap_now(zio_data_buf_cache[i]);
1987 		}
1988 	}
1989 	kmem_cache_reap_now(buf_cache);
1990 	kmem_cache_reap_now(hdr_cache);
1991 }
1992 
1993 static void
1994 arc_reclaim_thread(void)
1995 {
1996 	clock_t			growtime = 0;
1997 	arc_reclaim_strategy_t	last_reclaim = ARC_RECLAIM_CONS;
1998 	callb_cpr_t		cpr;
1999 
2000 	CALLB_CPR_INIT(&cpr, &arc_reclaim_thr_lock, callb_generic_cpr, FTAG);
2001 
2002 	mutex_enter(&arc_reclaim_thr_lock);
2003 	while (arc_thread_exit == 0) {
2004 		if (arc_reclaim_needed()) {
2005 
2006 			if (arc_no_grow) {
2007 				if (last_reclaim == ARC_RECLAIM_CONS) {
2008 					last_reclaim = ARC_RECLAIM_AGGR;
2009 				} else {
2010 					last_reclaim = ARC_RECLAIM_CONS;
2011 				}
2012 			} else {
2013 				arc_no_grow = TRUE;
2014 				last_reclaim = ARC_RECLAIM_AGGR;
2015 				membar_producer();
2016 			}
2017 
2018 			/* reset the growth delay for every reclaim */
2019 			growtime = lbolt + (arc_grow_retry * hz);
2020 
2021 			arc_kmem_reap_now(last_reclaim);
2022 			arc_warm = B_TRUE;
2023 
2024 		} else if (arc_no_grow && lbolt >= growtime) {
2025 			arc_no_grow = FALSE;
2026 		}
2027 
2028 		if (2 * arc_c < arc_size +
2029 		    arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size)
2030 			arc_adjust();
2031 
2032 		if (arc_eviction_list != NULL)
2033 			arc_do_user_evicts();
2034 
2035 		/* block until needed, or one second, whichever is shorter */
2036 		CALLB_CPR_SAFE_BEGIN(&cpr);
2037 		(void) cv_timedwait(&arc_reclaim_thr_cv,
2038 		    &arc_reclaim_thr_lock, (lbolt + hz));
2039 		CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_thr_lock);
2040 	}
2041 
2042 	arc_thread_exit = 0;
2043 	cv_broadcast(&arc_reclaim_thr_cv);
2044 	CALLB_CPR_EXIT(&cpr);		/* drops arc_reclaim_thr_lock */
2045 	thread_exit();
2046 }
2047 
2048 /*
2049  * Adapt arc info given the number of bytes we are trying to add and
2050  * the state that we are comming from.  This function is only called
2051  * when we are adding new content to the cache.
2052  */
2053 static void
2054 arc_adapt(int bytes, arc_state_t *state)
2055 {
2056 	int mult;
2057 	uint64_t arc_p_min = (arc_c >> arc_p_min_shift);
2058 
2059 	if (state == arc_l2c_only)
2060 		return;
2061 
2062 	ASSERT(bytes > 0);
2063 	/*
2064 	 * Adapt the target size of the MRU list:
2065 	 *	- if we just hit in the MRU ghost list, then increase
2066 	 *	  the target size of the MRU list.
2067 	 *	- if we just hit in the MFU ghost list, then increase
2068 	 *	  the target size of the MFU list by decreasing the
2069 	 *	  target size of the MRU list.
2070 	 */
2071 	if (state == arc_mru_ghost) {
2072 		mult = ((arc_mru_ghost->arcs_size >= arc_mfu_ghost->arcs_size) ?
2073 		    1 : (arc_mfu_ghost->arcs_size/arc_mru_ghost->arcs_size));
2074 
2075 		arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult);
2076 	} else if (state == arc_mfu_ghost) {
2077 		uint64_t delta;
2078 
2079 		mult = ((arc_mfu_ghost->arcs_size >= arc_mru_ghost->arcs_size) ?
2080 		    1 : (arc_mru_ghost->arcs_size/arc_mfu_ghost->arcs_size));
2081 
2082 		delta = MIN(bytes * mult, arc_p);
2083 		arc_p = MAX(arc_p_min, arc_p - delta);
2084 	}
2085 	ASSERT((int64_t)arc_p >= 0);
2086 
2087 	if (arc_reclaim_needed()) {
2088 		cv_signal(&arc_reclaim_thr_cv);
2089 		return;
2090 	}
2091 
2092 	if (arc_no_grow)
2093 		return;
2094 
2095 	if (arc_c >= arc_c_max)
2096 		return;
2097 
2098 	/*
2099 	 * If we're within (2 * maxblocksize) bytes of the target
2100 	 * cache size, increment the target cache size
2101 	 */
2102 	if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
2103 		atomic_add_64(&arc_c, (int64_t)bytes);
2104 		if (arc_c > arc_c_max)
2105 			arc_c = arc_c_max;
2106 		else if (state == arc_anon)
2107 			atomic_add_64(&arc_p, (int64_t)bytes);
2108 		if (arc_p > arc_c)
2109 			arc_p = arc_c;
2110 	}
2111 	ASSERT((int64_t)arc_p >= 0);
2112 }
2113 
2114 /*
2115  * Check if the cache has reached its limits and eviction is required
2116  * prior to insert.
2117  */
2118 static int
2119 arc_evict_needed(arc_buf_contents_t type)
2120 {
2121 	if (type == ARC_BUFC_METADATA && arc_meta_used >= arc_meta_limit)
2122 		return (1);
2123 
2124 #ifdef _KERNEL
2125 	/*
2126 	 * If zio data pages are being allocated out of a separate heap segment,
2127 	 * then enforce that the size of available vmem for this area remains
2128 	 * above about 1/32nd free.
2129 	 */
2130 	if (type == ARC_BUFC_DATA && zio_arena != NULL &&
2131 	    vmem_size(zio_arena, VMEM_FREE) <
2132 	    (vmem_size(zio_arena, VMEM_ALLOC) >> 5))
2133 		return (1);
2134 #endif
2135 
2136 	if (arc_reclaim_needed())
2137 		return (1);
2138 
2139 	return (arc_size > arc_c);
2140 }
2141 
2142 /*
2143  * The buffer, supplied as the first argument, needs a data block.
2144  * So, if we are at cache max, determine which cache should be victimized.
2145  * We have the following cases:
2146  *
2147  * 1. Insert for MRU, p > sizeof(arc_anon + arc_mru) ->
2148  * In this situation if we're out of space, but the resident size of the MFU is
2149  * under the limit, victimize the MFU cache to satisfy this insertion request.
2150  *
2151  * 2. Insert for MRU, p <= sizeof(arc_anon + arc_mru) ->
2152  * Here, we've used up all of the available space for the MRU, so we need to
2153  * evict from our own cache instead.  Evict from the set of resident MRU
2154  * entries.
2155  *
2156  * 3. Insert for MFU (c - p) > sizeof(arc_mfu) ->
2157  * c minus p represents the MFU space in the cache, since p is the size of the
2158  * cache that is dedicated to the MRU.  In this situation there's still space on
2159  * the MFU side, so the MRU side needs to be victimized.
2160  *
2161  * 4. Insert for MFU (c - p) < sizeof(arc_mfu) ->
2162  * MFU's resident set is consuming more space than it has been allotted.  In
2163  * this situation, we must victimize our own cache, the MFU, for this insertion.
2164  */
2165 static void
2166 arc_get_data_buf(arc_buf_t *buf)
2167 {
2168 	arc_state_t		*state = buf->b_hdr->b_state;
2169 	uint64_t		size = buf->b_hdr->b_size;
2170 	arc_buf_contents_t	type = buf->b_hdr->b_type;
2171 
2172 	arc_adapt(size, state);
2173 
2174 	/*
2175 	 * We have not yet reached cache maximum size,
2176 	 * just allocate a new buffer.
2177 	 */
2178 	if (!arc_evict_needed(type)) {
2179 		if (type == ARC_BUFC_METADATA) {
2180 			buf->b_data = zio_buf_alloc(size);
2181 			arc_space_consume(size, ARC_SPACE_DATA);
2182 		} else {
2183 			ASSERT(type == ARC_BUFC_DATA);
2184 			buf->b_data = zio_data_buf_alloc(size);
2185 			ARCSTAT_INCR(arcstat_data_size, size);
2186 			atomic_add_64(&arc_size, size);
2187 		}
2188 		goto out;
2189 	}
2190 
2191 	/*
2192 	 * If we are prefetching from the mfu ghost list, this buffer
2193 	 * will end up on the mru list; so steal space from there.
2194 	 */
2195 	if (state == arc_mfu_ghost)
2196 		state = buf->b_hdr->b_flags & ARC_PREFETCH ? arc_mru : arc_mfu;
2197 	else if (state == arc_mru_ghost)
2198 		state = arc_mru;
2199 
2200 	if (state == arc_mru || state == arc_anon) {
2201 		uint64_t mru_used = arc_anon->arcs_size + arc_mru->arcs_size;
2202 		state = (arc_mfu->arcs_lsize[type] >= size &&
2203 		    arc_p > mru_used) ? arc_mfu : arc_mru;
2204 	} else {
2205 		/* MFU cases */
2206 		uint64_t mfu_space = arc_c - arc_p;
2207 		state =  (arc_mru->arcs_lsize[type] >= size &&
2208 		    mfu_space > arc_mfu->arcs_size) ? arc_mru : arc_mfu;
2209 	}
2210 	if ((buf->b_data = arc_evict(state, NULL, size, TRUE, type)) == NULL) {
2211 		if (type == ARC_BUFC_METADATA) {
2212 			buf->b_data = zio_buf_alloc(size);
2213 			arc_space_consume(size, ARC_SPACE_DATA);
2214 		} else {
2215 			ASSERT(type == ARC_BUFC_DATA);
2216 			buf->b_data = zio_data_buf_alloc(size);
2217 			ARCSTAT_INCR(arcstat_data_size, size);
2218 			atomic_add_64(&arc_size, size);
2219 		}
2220 		ARCSTAT_BUMP(arcstat_recycle_miss);
2221 	}
2222 	ASSERT(buf->b_data != NULL);
2223 out:
2224 	/*
2225 	 * Update the state size.  Note that ghost states have a
2226 	 * "ghost size" and so don't need to be updated.
2227 	 */
2228 	if (!GHOST_STATE(buf->b_hdr->b_state)) {
2229 		arc_buf_hdr_t *hdr = buf->b_hdr;
2230 
2231 		atomic_add_64(&hdr->b_state->arcs_size, size);
2232 		if (list_link_active(&hdr->b_arc_node)) {
2233 			ASSERT(refcount_is_zero(&hdr->b_refcnt));
2234 			atomic_add_64(&hdr->b_state->arcs_lsize[type], size);
2235 		}
2236 		/*
2237 		 * If we are growing the cache, and we are adding anonymous
2238 		 * data, and we have outgrown arc_p, update arc_p
2239 		 */
2240 		if (arc_size < arc_c && hdr->b_state == arc_anon &&
2241 		    arc_anon->arcs_size + arc_mru->arcs_size > arc_p)
2242 			arc_p = MIN(arc_c, arc_p + size);
2243 	}
2244 }
2245 
2246 /*
2247  * This routine is called whenever a buffer is accessed.
2248  * NOTE: the hash lock is dropped in this function.
2249  */
2250 static void
2251 arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock)
2252 {
2253 	ASSERT(MUTEX_HELD(hash_lock));
2254 
2255 	if (buf->b_state == arc_anon) {
2256 		/*
2257 		 * This buffer is not in the cache, and does not
2258 		 * appear in our "ghost" list.  Add the new buffer
2259 		 * to the MRU state.
2260 		 */
2261 
2262 		ASSERT(buf->b_arc_access == 0);
2263 		buf->b_arc_access = lbolt;
2264 		DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
2265 		arc_change_state(arc_mru, buf, hash_lock);
2266 
2267 	} else if (buf->b_state == arc_mru) {
2268 		/*
2269 		 * If this buffer is here because of a prefetch, then either:
2270 		 * - clear the flag if this is a "referencing" read
2271 		 *   (any subsequent access will bump this into the MFU state).
2272 		 * or
2273 		 * - move the buffer to the head of the list if this is
2274 		 *   another prefetch (to make it less likely to be evicted).
2275 		 */
2276 		if ((buf->b_flags & ARC_PREFETCH) != 0) {
2277 			if (refcount_count(&buf->b_refcnt) == 0) {
2278 				ASSERT(list_link_active(&buf->b_arc_node));
2279 			} else {
2280 				buf->b_flags &= ~ARC_PREFETCH;
2281 				ARCSTAT_BUMP(arcstat_mru_hits);
2282 			}
2283 			buf->b_arc_access = lbolt;
2284 			return;
2285 		}
2286 
2287 		/*
2288 		 * This buffer has been "accessed" only once so far,
2289 		 * but it is still in the cache. Move it to the MFU
2290 		 * state.
2291 		 */
2292 		if (lbolt > buf->b_arc_access + ARC_MINTIME) {
2293 			/*
2294 			 * More than 125ms have passed since we
2295 			 * instantiated this buffer.  Move it to the
2296 			 * most frequently used state.
2297 			 */
2298 			buf->b_arc_access = lbolt;
2299 			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2300 			arc_change_state(arc_mfu, buf, hash_lock);
2301 		}
2302 		ARCSTAT_BUMP(arcstat_mru_hits);
2303 	} else if (buf->b_state == arc_mru_ghost) {
2304 		arc_state_t	*new_state;
2305 		/*
2306 		 * This buffer has been "accessed" recently, but
2307 		 * was evicted from the cache.  Move it to the
2308 		 * MFU state.
2309 		 */
2310 
2311 		if (buf->b_flags & ARC_PREFETCH) {
2312 			new_state = arc_mru;
2313 			if (refcount_count(&buf->b_refcnt) > 0)
2314 				buf->b_flags &= ~ARC_PREFETCH;
2315 			DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
2316 		} else {
2317 			new_state = arc_mfu;
2318 			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2319 		}
2320 
2321 		buf->b_arc_access = lbolt;
2322 		arc_change_state(new_state, buf, hash_lock);
2323 
2324 		ARCSTAT_BUMP(arcstat_mru_ghost_hits);
2325 	} else if (buf->b_state == arc_mfu) {
2326 		/*
2327 		 * This buffer has been accessed more than once and is
2328 		 * still in the cache.  Keep it in the MFU state.
2329 		 *
2330 		 * NOTE: an add_reference() that occurred when we did
2331 		 * the arc_read() will have kicked this off the list.
2332 		 * If it was a prefetch, we will explicitly move it to
2333 		 * the head of the list now.
2334 		 */
2335 		if ((buf->b_flags & ARC_PREFETCH) != 0) {
2336 			ASSERT(refcount_count(&buf->b_refcnt) == 0);
2337 			ASSERT(list_link_active(&buf->b_arc_node));
2338 		}
2339 		ARCSTAT_BUMP(arcstat_mfu_hits);
2340 		buf->b_arc_access = lbolt;
2341 	} else if (buf->b_state == arc_mfu_ghost) {
2342 		arc_state_t	*new_state = arc_mfu;
2343 		/*
2344 		 * This buffer has been accessed more than once but has
2345 		 * been evicted from the cache.  Move it back to the
2346 		 * MFU state.
2347 		 */
2348 
2349 		if (buf->b_flags & ARC_PREFETCH) {
2350 			/*
2351 			 * This is a prefetch access...
2352 			 * move this block back to the MRU state.
2353 			 */
2354 			ASSERT3U(refcount_count(&buf->b_refcnt), ==, 0);
2355 			new_state = arc_mru;
2356 		}
2357 
2358 		buf->b_arc_access = lbolt;
2359 		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2360 		arc_change_state(new_state, buf, hash_lock);
2361 
2362 		ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
2363 	} else if (buf->b_state == arc_l2c_only) {
2364 		/*
2365 		 * This buffer is on the 2nd Level ARC.
2366 		 */
2367 
2368 		buf->b_arc_access = lbolt;
2369 		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2370 		arc_change_state(arc_mfu, buf, hash_lock);
2371 	} else {
2372 		ASSERT(!"invalid arc state");
2373 	}
2374 }
2375 
2376 /* a generic arc_done_func_t which you can use */
2377 /* ARGSUSED */
2378 void
2379 arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)
2380 {
2381 	bcopy(buf->b_data, arg, buf->b_hdr->b_size);
2382 	VERIFY(arc_buf_remove_ref(buf, arg) == 1);
2383 }
2384 
2385 /* a generic arc_done_func_t */
2386 void
2387 arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg)
2388 {
2389 	arc_buf_t **bufp = arg;
2390 	if (zio && zio->io_error) {
2391 		VERIFY(arc_buf_remove_ref(buf, arg) == 1);
2392 		*bufp = NULL;
2393 	} else {
2394 		*bufp = buf;
2395 	}
2396 }
2397 
2398 static void
2399 arc_read_done(zio_t *zio)
2400 {
2401 	arc_buf_hdr_t	*hdr, *found;
2402 	arc_buf_t	*buf;
2403 	arc_buf_t	*abuf;	/* buffer we're assigning to callback */
2404 	kmutex_t	*hash_lock;
2405 	arc_callback_t	*callback_list, *acb;
2406 	int		freeable = FALSE;
2407 
2408 	buf = zio->io_private;
2409 	hdr = buf->b_hdr;
2410 
2411 	/*
2412 	 * The hdr was inserted into hash-table and removed from lists
2413 	 * prior to starting I/O.  We should find this header, since
2414 	 * it's in the hash table, and it should be legit since it's
2415 	 * not possible to evict it during the I/O.  The only possible
2416 	 * reason for it not to be found is if we were freed during the
2417 	 * read.
2418 	 */
2419 	found = buf_hash_find(hdr->b_spa, &hdr->b_dva, hdr->b_birth,
2420 	    &hash_lock);
2421 
2422 	ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) && hash_lock == NULL) ||
2423 	    (found == hdr && DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
2424 	    (found == hdr && HDR_L2_READING(hdr)));
2425 
2426 	hdr->b_flags &= ~ARC_L2_EVICTED;
2427 	if (l2arc_noprefetch && (hdr->b_flags & ARC_PREFETCH))
2428 		hdr->b_flags &= ~ARC_L2CACHE;
2429 
2430 	/* byteswap if necessary */
2431 	callback_list = hdr->b_acb;
2432 	ASSERT(callback_list != NULL);
2433 	if (BP_SHOULD_BYTESWAP(zio->io_bp)) {
2434 		arc_byteswap_func_t *func = BP_GET_LEVEL(zio->io_bp) > 0 ?
2435 		    byteswap_uint64_array :
2436 		    dmu_ot[BP_GET_TYPE(zio->io_bp)].ot_byteswap;
2437 		func(buf->b_data, hdr->b_size);
2438 	}
2439 
2440 	arc_cksum_compute(buf, B_FALSE);
2441 
2442 	/* create copies of the data buffer for the callers */
2443 	abuf = buf;
2444 	for (acb = callback_list; acb; acb = acb->acb_next) {
2445 		if (acb->acb_done) {
2446 			if (abuf == NULL)
2447 				abuf = arc_buf_clone(buf);
2448 			acb->acb_buf = abuf;
2449 			abuf = NULL;
2450 		}
2451 	}
2452 	hdr->b_acb = NULL;
2453 	hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
2454 	ASSERT(!HDR_BUF_AVAILABLE(hdr));
2455 	if (abuf == buf)
2456 		hdr->b_flags |= ARC_BUF_AVAILABLE;
2457 
2458 	ASSERT(refcount_is_zero(&hdr->b_refcnt) || callback_list != NULL);
2459 
2460 	if (zio->io_error != 0) {
2461 		hdr->b_flags |= ARC_IO_ERROR;
2462 		if (hdr->b_state != arc_anon)
2463 			arc_change_state(arc_anon, hdr, hash_lock);
2464 		if (HDR_IN_HASH_TABLE(hdr))
2465 			buf_hash_remove(hdr);
2466 		freeable = refcount_is_zero(&hdr->b_refcnt);
2467 	}
2468 
2469 	/*
2470 	 * Broadcast before we drop the hash_lock to avoid the possibility
2471 	 * that the hdr (and hence the cv) might be freed before we get to
2472 	 * the cv_broadcast().
2473 	 */
2474 	cv_broadcast(&hdr->b_cv);
2475 
2476 	if (hash_lock) {
2477 		/*
2478 		 * Only call arc_access on anonymous buffers.  This is because
2479 		 * if we've issued an I/O for an evicted buffer, we've already
2480 		 * called arc_access (to prevent any simultaneous readers from
2481 		 * getting confused).
2482 		 */
2483 		if (zio->io_error == 0 && hdr->b_state == arc_anon)
2484 			arc_access(hdr, hash_lock);
2485 		mutex_exit(hash_lock);
2486 	} else {
2487 		/*
2488 		 * This block was freed while we waited for the read to
2489 		 * complete.  It has been removed from the hash table and
2490 		 * moved to the anonymous state (so that it won't show up
2491 		 * in the cache).
2492 		 */
2493 		ASSERT3P(hdr->b_state, ==, arc_anon);
2494 		freeable = refcount_is_zero(&hdr->b_refcnt);
2495 	}
2496 
2497 	/* execute each callback and free its structure */
2498 	while ((acb = callback_list) != NULL) {
2499 		if (acb->acb_done)
2500 			acb->acb_done(zio, acb->acb_buf, acb->acb_private);
2501 
2502 		if (acb->acb_zio_dummy != NULL) {
2503 			acb->acb_zio_dummy->io_error = zio->io_error;
2504 			zio_nowait(acb->acb_zio_dummy);
2505 		}
2506 
2507 		callback_list = acb->acb_next;
2508 		kmem_free(acb, sizeof (arc_callback_t));
2509 	}
2510 
2511 	if (freeable)
2512 		arc_hdr_destroy(hdr);
2513 }
2514 
2515 /*
2516  * "Read" the block block at the specified DVA (in bp) via the
2517  * cache.  If the block is found in the cache, invoke the provided
2518  * callback immediately and return.  Note that the `zio' parameter
2519  * in the callback will be NULL in this case, since no IO was
2520  * required.  If the block is not in the cache pass the read request
2521  * on to the spa with a substitute callback function, so that the
2522  * requested block will be added to the cache.
2523  *
2524  * If a read request arrives for a block that has a read in-progress,
2525  * either wait for the in-progress read to complete (and return the
2526  * results); or, if this is a read with a "done" func, add a record
2527  * to the read to invoke the "done" func when the read completes,
2528  * and return; or just return.
2529  *
2530  * arc_read_done() will invoke all the requested "done" functions
2531  * for readers of this block.
2532  *
2533  * Normal callers should use arc_read and pass the arc buffer and offset
2534  * for the bp.  But if you know you don't need locking, you can use
2535  * arc_read_bp.
2536  */
2537 int
2538 arc_read(zio_t *pio, spa_t *spa, blkptr_t *bp, arc_buf_t *pbuf,
2539     arc_done_func_t *done, void *private, int priority, int zio_flags,
2540     uint32_t *arc_flags, const zbookmark_t *zb)
2541 {
2542 	int err;
2543 
2544 	ASSERT(!refcount_is_zero(&pbuf->b_hdr->b_refcnt));
2545 	ASSERT3U((char *)bp - (char *)pbuf->b_data, <, pbuf->b_hdr->b_size);
2546 	rw_enter(&pbuf->b_lock, RW_READER);
2547 
2548 	err = arc_read_nolock(pio, spa, bp, done, private, priority,
2549 	    zio_flags, arc_flags, zb);
2550 	rw_exit(&pbuf->b_lock);
2551 
2552 	return (err);
2553 }
2554 
2555 int
2556 arc_read_nolock(zio_t *pio, spa_t *spa, blkptr_t *bp,
2557     arc_done_func_t *done, void *private, int priority, int zio_flags,
2558     uint32_t *arc_flags, const zbookmark_t *zb)
2559 {
2560 	arc_buf_hdr_t *hdr;
2561 	arc_buf_t *buf;
2562 	kmutex_t *hash_lock;
2563 	zio_t *rzio;
2564 	uint64_t guid = spa_guid(spa);
2565 
2566 top:
2567 	hdr = buf_hash_find(guid, BP_IDENTITY(bp), bp->blk_birth, &hash_lock);
2568 	if (hdr && hdr->b_datacnt > 0) {
2569 
2570 		*arc_flags |= ARC_CACHED;
2571 
2572 		if (HDR_IO_IN_PROGRESS(hdr)) {
2573 
2574 			if (*arc_flags & ARC_WAIT) {
2575 				cv_wait(&hdr->b_cv, hash_lock);
2576 				mutex_exit(hash_lock);
2577 				goto top;
2578 			}
2579 			ASSERT(*arc_flags & ARC_NOWAIT);
2580 
2581 			if (done) {
2582 				arc_callback_t	*acb = NULL;
2583 
2584 				acb = kmem_zalloc(sizeof (arc_callback_t),
2585 				    KM_SLEEP);
2586 				acb->acb_done = done;
2587 				acb->acb_private = private;
2588 				if (pio != NULL)
2589 					acb->acb_zio_dummy = zio_null(pio,
2590 					    spa, NULL, NULL, NULL, zio_flags);
2591 
2592 				ASSERT(acb->acb_done != NULL);
2593 				acb->acb_next = hdr->b_acb;
2594 				hdr->b_acb = acb;
2595 				add_reference(hdr, hash_lock, private);
2596 				mutex_exit(hash_lock);
2597 				return (0);
2598 			}
2599 			mutex_exit(hash_lock);
2600 			return (0);
2601 		}
2602 
2603 		ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
2604 
2605 		if (done) {
2606 			add_reference(hdr, hash_lock, private);
2607 			/*
2608 			 * If this block is already in use, create a new
2609 			 * copy of the data so that we will be guaranteed
2610 			 * that arc_release() will always succeed.
2611 			 */
2612 			buf = hdr->b_buf;
2613 			ASSERT(buf);
2614 			ASSERT(buf->b_data);
2615 			if (HDR_BUF_AVAILABLE(hdr)) {
2616 				ASSERT(buf->b_efunc == NULL);
2617 				hdr->b_flags &= ~ARC_BUF_AVAILABLE;
2618 			} else {
2619 				buf = arc_buf_clone(buf);
2620 			}
2621 		} else if (*arc_flags & ARC_PREFETCH &&
2622 		    refcount_count(&hdr->b_refcnt) == 0) {
2623 			hdr->b_flags |= ARC_PREFETCH;
2624 		}
2625 		DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
2626 		arc_access(hdr, hash_lock);
2627 		if (*arc_flags & ARC_L2CACHE)
2628 			hdr->b_flags |= ARC_L2CACHE;
2629 		mutex_exit(hash_lock);
2630 		ARCSTAT_BUMP(arcstat_hits);
2631 		ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
2632 		    demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
2633 		    data, metadata, hits);
2634 
2635 		if (done)
2636 			done(NULL, buf, private);
2637 	} else {
2638 		uint64_t size = BP_GET_LSIZE(bp);
2639 		arc_callback_t	*acb;
2640 		vdev_t *vd = NULL;
2641 		uint64_t addr;
2642 		boolean_t devw = B_FALSE;
2643 
2644 		if (hdr == NULL) {
2645 			/* this block is not in the cache */
2646 			arc_buf_hdr_t	*exists;
2647 			arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
2648 			buf = arc_buf_alloc(spa, size, private, type);
2649 			hdr = buf->b_hdr;
2650 			hdr->b_dva = *BP_IDENTITY(bp);
2651 			hdr->b_birth = bp->blk_birth;
2652 			hdr->b_cksum0 = bp->blk_cksum.zc_word[0];
2653 			exists = buf_hash_insert(hdr, &hash_lock);
2654 			if (exists) {
2655 				/* somebody beat us to the hash insert */
2656 				mutex_exit(hash_lock);
2657 				bzero(&hdr->b_dva, sizeof (dva_t));
2658 				hdr->b_birth = 0;
2659 				hdr->b_cksum0 = 0;
2660 				(void) arc_buf_remove_ref(buf, private);
2661 				goto top; /* restart the IO request */
2662 			}
2663 			/* if this is a prefetch, we don't have a reference */
2664 			if (*arc_flags & ARC_PREFETCH) {
2665 				(void) remove_reference(hdr, hash_lock,
2666 				    private);
2667 				hdr->b_flags |= ARC_PREFETCH;
2668 			}
2669 			if (*arc_flags & ARC_L2CACHE)
2670 				hdr->b_flags |= ARC_L2CACHE;
2671 			if (BP_GET_LEVEL(bp) > 0)
2672 				hdr->b_flags |= ARC_INDIRECT;
2673 		} else {
2674 			/* this block is in the ghost cache */
2675 			ASSERT(GHOST_STATE(hdr->b_state));
2676 			ASSERT(!HDR_IO_IN_PROGRESS(hdr));
2677 			ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 0);
2678 			ASSERT(hdr->b_buf == NULL);
2679 
2680 			/* if this is a prefetch, we don't have a reference */
2681 			if (*arc_flags & ARC_PREFETCH)
2682 				hdr->b_flags |= ARC_PREFETCH;
2683 			else
2684 				add_reference(hdr, hash_lock, private);
2685 			if (*arc_flags & ARC_L2CACHE)
2686 				hdr->b_flags |= ARC_L2CACHE;
2687 			buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
2688 			buf->b_hdr = hdr;
2689 			buf->b_data = NULL;
2690 			buf->b_efunc = NULL;
2691 			buf->b_private = NULL;
2692 			buf->b_next = NULL;
2693 			hdr->b_buf = buf;
2694 			arc_get_data_buf(buf);
2695 			ASSERT(hdr->b_datacnt == 0);
2696 			hdr->b_datacnt = 1;
2697 
2698 		}
2699 
2700 		acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
2701 		acb->acb_done = done;
2702 		acb->acb_private = private;
2703 
2704 		ASSERT(hdr->b_acb == NULL);
2705 		hdr->b_acb = acb;
2706 		hdr->b_flags |= ARC_IO_IN_PROGRESS;
2707 
2708 		/*
2709 		 * If the buffer has been evicted, migrate it to a present state
2710 		 * before issuing the I/O.  Once we drop the hash-table lock,
2711 		 * the header will be marked as I/O in progress and have an
2712 		 * attached buffer.  At this point, anybody who finds this
2713 		 * buffer ought to notice that it's legit but has a pending I/O.
2714 		 */
2715 
2716 		if (GHOST_STATE(hdr->b_state))
2717 			arc_access(hdr, hash_lock);
2718 
2719 		if (HDR_L2CACHE(hdr) && hdr->b_l2hdr != NULL &&
2720 		    (vd = hdr->b_l2hdr->b_dev->l2ad_vdev) != NULL) {
2721 			devw = hdr->b_l2hdr->b_dev->l2ad_writing;
2722 			addr = hdr->b_l2hdr->b_daddr;
2723 			/*
2724 			 * Lock out device removal.
2725 			 */
2726 			if (vdev_is_dead(vd) ||
2727 			    !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
2728 				vd = NULL;
2729 		}
2730 
2731 		mutex_exit(hash_lock);
2732 
2733 		ASSERT3U(hdr->b_size, ==, size);
2734 		DTRACE_PROBE3(arc__miss, blkptr_t *, bp, uint64_t, size,
2735 		    zbookmark_t *, zb);
2736 		ARCSTAT_BUMP(arcstat_misses);
2737 		ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
2738 		    demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
2739 		    data, metadata, misses);
2740 
2741 		if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
2742 			/*
2743 			 * Read from the L2ARC if the following are true:
2744 			 * 1. The L2ARC vdev was previously cached.
2745 			 * 2. This buffer still has L2ARC metadata.
2746 			 * 3. This buffer isn't currently writing to the L2ARC.
2747 			 * 4. The L2ARC entry wasn't evicted, which may
2748 			 *    also have invalidated the vdev.
2749 			 * 5. This isn't prefetch and l2arc_noprefetch is set.
2750 			 */
2751 			if (hdr->b_l2hdr != NULL &&
2752 			    !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
2753 			    !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
2754 				l2arc_read_callback_t *cb;
2755 
2756 				DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
2757 				ARCSTAT_BUMP(arcstat_l2_hits);
2758 
2759 				cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
2760 				    KM_SLEEP);
2761 				cb->l2rcb_buf = buf;
2762 				cb->l2rcb_spa = spa;
2763 				cb->l2rcb_bp = *bp;
2764 				cb->l2rcb_zb = *zb;
2765 				cb->l2rcb_flags = zio_flags;
2766 
2767 				/*
2768 				 * l2arc read.  The SCL_L2ARC lock will be
2769 				 * released by l2arc_read_done().
2770 				 */
2771 				rzio = zio_read_phys(pio, vd, addr, size,
2772 				    buf->b_data, ZIO_CHECKSUM_OFF,
2773 				    l2arc_read_done, cb, priority, zio_flags |
2774 				    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL |
2775 				    ZIO_FLAG_DONT_PROPAGATE |
2776 				    ZIO_FLAG_DONT_RETRY, B_FALSE);
2777 				DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
2778 				    zio_t *, rzio);
2779 				ARCSTAT_INCR(arcstat_l2_read_bytes, size);
2780 
2781 				if (*arc_flags & ARC_NOWAIT) {
2782 					zio_nowait(rzio);
2783 					return (0);
2784 				}
2785 
2786 				ASSERT(*arc_flags & ARC_WAIT);
2787 				if (zio_wait(rzio) == 0)
2788 					return (0);
2789 
2790 				/* l2arc read error; goto zio_read() */
2791 			} else {
2792 				DTRACE_PROBE1(l2arc__miss,
2793 				    arc_buf_hdr_t *, hdr);
2794 				ARCSTAT_BUMP(arcstat_l2_misses);
2795 				if (HDR_L2_WRITING(hdr))
2796 					ARCSTAT_BUMP(arcstat_l2_rw_clash);
2797 				spa_config_exit(spa, SCL_L2ARC, vd);
2798 			}
2799 		} else {
2800 			if (vd != NULL)
2801 				spa_config_exit(spa, SCL_L2ARC, vd);
2802 			if (l2arc_ndev != 0) {
2803 				DTRACE_PROBE1(l2arc__miss,
2804 				    arc_buf_hdr_t *, hdr);
2805 				ARCSTAT_BUMP(arcstat_l2_misses);
2806 			}
2807 		}
2808 
2809 		rzio = zio_read(pio, spa, bp, buf->b_data, size,
2810 		    arc_read_done, buf, priority, zio_flags, zb);
2811 
2812 		if (*arc_flags & ARC_WAIT)
2813 			return (zio_wait(rzio));
2814 
2815 		ASSERT(*arc_flags & ARC_NOWAIT);
2816 		zio_nowait(rzio);
2817 	}
2818 	return (0);
2819 }
2820 
2821 /*
2822  * arc_read() variant to support pool traversal.  If the block is already
2823  * in the ARC, make a copy of it; otherwise, the caller will do the I/O.
2824  * The idea is that we don't want pool traversal filling up memory, but
2825  * if the ARC already has the data anyway, we shouldn't pay for the I/O.
2826  */
2827 int
2828 arc_tryread(spa_t *spa, blkptr_t *bp, void *data)
2829 {
2830 	arc_buf_hdr_t *hdr;
2831 	kmutex_t *hash_mtx;
2832 	uint64_t guid = spa_guid(spa);
2833 	int rc = 0;
2834 
2835 	hdr = buf_hash_find(guid, BP_IDENTITY(bp), bp->blk_birth, &hash_mtx);
2836 
2837 	if (hdr && hdr->b_datacnt > 0 && !HDR_IO_IN_PROGRESS(hdr)) {
2838 		arc_buf_t *buf = hdr->b_buf;
2839 
2840 		ASSERT(buf);
2841 		while (buf->b_data == NULL) {
2842 			buf = buf->b_next;
2843 			ASSERT(buf);
2844 		}
2845 		bcopy(buf->b_data, data, hdr->b_size);
2846 	} else {
2847 		rc = ENOENT;
2848 	}
2849 
2850 	if (hash_mtx)
2851 		mutex_exit(hash_mtx);
2852 
2853 	return (rc);
2854 }
2855 
2856 void
2857 arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private)
2858 {
2859 	ASSERT(buf->b_hdr != NULL);
2860 	ASSERT(buf->b_hdr->b_state != arc_anon);
2861 	ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt) || func == NULL);
2862 	buf->b_efunc = func;
2863 	buf->b_private = private;
2864 }
2865 
2866 /*
2867  * This is used by the DMU to let the ARC know that a buffer is
2868  * being evicted, so the ARC should clean up.  If this arc buf
2869  * is not yet in the evicted state, it will be put there.
2870  */
2871 int
2872 arc_buf_evict(arc_buf_t *buf)
2873 {
2874 	arc_buf_hdr_t *hdr;
2875 	kmutex_t *hash_lock;
2876 	arc_buf_t **bufp;
2877 
2878 	rw_enter(&buf->b_lock, RW_WRITER);
2879 	hdr = buf->b_hdr;
2880 	if (hdr == NULL) {
2881 		/*
2882 		 * We are in arc_do_user_evicts().
2883 		 */
2884 		ASSERT(buf->b_data == NULL);
2885 		rw_exit(&buf->b_lock);
2886 		return (0);
2887 	} else if (buf->b_data == NULL) {
2888 		arc_buf_t copy = *buf; /* structure assignment */
2889 		/*
2890 		 * We are on the eviction list; process this buffer now
2891 		 * but let arc_do_user_evicts() do the reaping.
2892 		 */
2893 		buf->b_efunc = NULL;
2894 		rw_exit(&buf->b_lock);
2895 		VERIFY(copy.b_efunc(&copy) == 0);
2896 		return (1);
2897 	}
2898 	hash_lock = HDR_LOCK(hdr);
2899 	mutex_enter(hash_lock);
2900 
2901 	ASSERT(buf->b_hdr == hdr);
2902 	ASSERT3U(refcount_count(&hdr->b_refcnt), <, hdr->b_datacnt);
2903 	ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
2904 
2905 	/*
2906 	 * Pull this buffer off of the hdr
2907 	 */
2908 	bufp = &hdr->b_buf;
2909 	while (*bufp != buf)
2910 		bufp = &(*bufp)->b_next;
2911 	*bufp = buf->b_next;
2912 
2913 	ASSERT(buf->b_data != NULL);
2914 	arc_buf_destroy(buf, FALSE, FALSE);
2915 
2916 	if (hdr->b_datacnt == 0) {
2917 		arc_state_t *old_state = hdr->b_state;
2918 		arc_state_t *evicted_state;
2919 
2920 		ASSERT(refcount_is_zero(&hdr->b_refcnt));
2921 
2922 		evicted_state =
2923 		    (old_state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
2924 
2925 		mutex_enter(&old_state->arcs_mtx);
2926 		mutex_enter(&evicted_state->arcs_mtx);
2927 
2928 		arc_change_state(evicted_state, hdr, hash_lock);
2929 		ASSERT(HDR_IN_HASH_TABLE(hdr));
2930 		hdr->b_flags |= ARC_IN_HASH_TABLE;
2931 		hdr->b_flags &= ~ARC_BUF_AVAILABLE;
2932 
2933 		mutex_exit(&evicted_state->arcs_mtx);
2934 		mutex_exit(&old_state->arcs_mtx);
2935 	}
2936 	mutex_exit(hash_lock);
2937 	rw_exit(&buf->b_lock);
2938 
2939 	VERIFY(buf->b_efunc(buf) == 0);
2940 	buf->b_efunc = NULL;
2941 	buf->b_private = NULL;
2942 	buf->b_hdr = NULL;
2943 	kmem_cache_free(buf_cache, buf);
2944 	return (1);
2945 }
2946 
2947 /*
2948  * Release this buffer from the cache.  This must be done
2949  * after a read and prior to modifying the buffer contents.
2950  * If the buffer has more than one reference, we must make
2951  * a new hdr for the buffer.
2952  */
2953 void
2954 arc_release(arc_buf_t *buf, void *tag)
2955 {
2956 	arc_buf_hdr_t *hdr;
2957 	kmutex_t *hash_lock;
2958 	l2arc_buf_hdr_t *l2hdr;
2959 	uint64_t buf_size;
2960 	boolean_t released = B_FALSE;
2961 
2962 	rw_enter(&buf->b_lock, RW_WRITER);
2963 	hdr = buf->b_hdr;
2964 
2965 	/* this buffer is not on any list */
2966 	ASSERT(refcount_count(&hdr->b_refcnt) > 0);
2967 	ASSERT(!(hdr->b_flags & ARC_STORED));
2968 
2969 	if (hdr->b_state == arc_anon) {
2970 		/* this buffer is already released */
2971 		ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 1);
2972 		ASSERT(BUF_EMPTY(hdr));
2973 		ASSERT(buf->b_efunc == NULL);
2974 		arc_buf_thaw(buf);
2975 		rw_exit(&buf->b_lock);
2976 		released = B_TRUE;
2977 	} else {
2978 		hash_lock = HDR_LOCK(hdr);
2979 		mutex_enter(hash_lock);
2980 	}
2981 
2982 	l2hdr = hdr->b_l2hdr;
2983 	if (l2hdr) {
2984 		mutex_enter(&l2arc_buflist_mtx);
2985 		hdr->b_l2hdr = NULL;
2986 		buf_size = hdr->b_size;
2987 	}
2988 
2989 	if (released)
2990 		goto out;
2991 
2992 	/*
2993 	 * Do we have more than one buf?
2994 	 */
2995 	if (hdr->b_datacnt > 1) {
2996 		arc_buf_hdr_t *nhdr;
2997 		arc_buf_t **bufp;
2998 		uint64_t blksz = hdr->b_size;
2999 		uint64_t spa = hdr->b_spa;
3000 		arc_buf_contents_t type = hdr->b_type;
3001 		uint32_t flags = hdr->b_flags;
3002 
3003 		ASSERT(hdr->b_buf != buf || buf->b_next != NULL);
3004 		/*
3005 		 * Pull the data off of this buf and attach it to
3006 		 * a new anonymous buf.
3007 		 */
3008 		(void) remove_reference(hdr, hash_lock, tag);
3009 		bufp = &hdr->b_buf;
3010 		while (*bufp != buf)
3011 			bufp = &(*bufp)->b_next;
3012 		*bufp = (*bufp)->b_next;
3013 		buf->b_next = NULL;
3014 
3015 		ASSERT3U(hdr->b_state->arcs_size, >=, hdr->b_size);
3016 		atomic_add_64(&hdr->b_state->arcs_size, -hdr->b_size);
3017 		if (refcount_is_zero(&hdr->b_refcnt)) {
3018 			uint64_t *size = &hdr->b_state->arcs_lsize[hdr->b_type];
3019 			ASSERT3U(*size, >=, hdr->b_size);
3020 			atomic_add_64(size, -hdr->b_size);
3021 		}
3022 		hdr->b_datacnt -= 1;
3023 		arc_cksum_verify(buf);
3024 
3025 		mutex_exit(hash_lock);
3026 
3027 		nhdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
3028 		nhdr->b_size = blksz;
3029 		nhdr->b_spa = spa;
3030 		nhdr->b_type = type;
3031 		nhdr->b_buf = buf;
3032 		nhdr->b_state = arc_anon;
3033 		nhdr->b_arc_access = 0;
3034 		nhdr->b_flags = flags & ARC_L2_WRITING;
3035 		nhdr->b_l2hdr = NULL;
3036 		nhdr->b_datacnt = 1;
3037 		nhdr->b_freeze_cksum = NULL;
3038 		(void) refcount_add(&nhdr->b_refcnt, tag);
3039 		buf->b_hdr = nhdr;
3040 		rw_exit(&buf->b_lock);
3041 		atomic_add_64(&arc_anon->arcs_size, blksz);
3042 	} else {
3043 		rw_exit(&buf->b_lock);
3044 		ASSERT(refcount_count(&hdr->b_refcnt) == 1);
3045 		ASSERT(!list_link_active(&hdr->b_arc_node));
3046 		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3047 		arc_change_state(arc_anon, hdr, hash_lock);
3048 		hdr->b_arc_access = 0;
3049 		mutex_exit(hash_lock);
3050 
3051 		bzero(&hdr->b_dva, sizeof (dva_t));
3052 		hdr->b_birth = 0;
3053 		hdr->b_cksum0 = 0;
3054 		arc_buf_thaw(buf);
3055 	}
3056 	buf->b_efunc = NULL;
3057 	buf->b_private = NULL;
3058 
3059 out:
3060 	if (l2hdr) {
3061 		list_remove(l2hdr->b_dev->l2ad_buflist, hdr);
3062 		kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t));
3063 		ARCSTAT_INCR(arcstat_l2_size, -buf_size);
3064 		mutex_exit(&l2arc_buflist_mtx);
3065 	}
3066 }
3067 
3068 int
3069 arc_released(arc_buf_t *buf)
3070 {
3071 	int released;
3072 
3073 	rw_enter(&buf->b_lock, RW_READER);
3074 	released = (buf->b_data != NULL && buf->b_hdr->b_state == arc_anon);
3075 	rw_exit(&buf->b_lock);
3076 	return (released);
3077 }
3078 
3079 int
3080 arc_has_callback(arc_buf_t *buf)
3081 {
3082 	int callback;
3083 
3084 	rw_enter(&buf->b_lock, RW_READER);
3085 	callback = (buf->b_efunc != NULL);
3086 	rw_exit(&buf->b_lock);
3087 	return (callback);
3088 }
3089 
3090 #ifdef ZFS_DEBUG
3091 int
3092 arc_referenced(arc_buf_t *buf)
3093 {
3094 	int referenced;
3095 
3096 	rw_enter(&buf->b_lock, RW_READER);
3097 	referenced = (refcount_count(&buf->b_hdr->b_refcnt));
3098 	rw_exit(&buf->b_lock);
3099 	return (referenced);
3100 }
3101 #endif
3102 
3103 static void
3104 arc_write_ready(zio_t *zio)
3105 {
3106 	arc_write_callback_t *callback = zio->io_private;
3107 	arc_buf_t *buf = callback->awcb_buf;
3108 	arc_buf_hdr_t *hdr = buf->b_hdr;
3109 
3110 	ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt));
3111 	callback->awcb_ready(zio, buf, callback->awcb_private);
3112 
3113 	/*
3114 	 * If the IO is already in progress, then this is a re-write
3115 	 * attempt, so we need to thaw and re-compute the cksum.
3116 	 * It is the responsibility of the callback to handle the
3117 	 * accounting for any re-write attempt.
3118 	 */
3119 	if (HDR_IO_IN_PROGRESS(hdr)) {
3120 		mutex_enter(&hdr->b_freeze_lock);
3121 		if (hdr->b_freeze_cksum != NULL) {
3122 			kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
3123 			hdr->b_freeze_cksum = NULL;
3124 		}
3125 		mutex_exit(&hdr->b_freeze_lock);
3126 	}
3127 	arc_cksum_compute(buf, B_FALSE);
3128 	hdr->b_flags |= ARC_IO_IN_PROGRESS;
3129 }
3130 
3131 static void
3132 arc_write_done(zio_t *zio)
3133 {
3134 	arc_write_callback_t *callback = zio->io_private;
3135 	arc_buf_t *buf = callback->awcb_buf;
3136 	arc_buf_hdr_t *hdr = buf->b_hdr;
3137 
3138 	hdr->b_acb = NULL;
3139 
3140 	hdr->b_dva = *BP_IDENTITY(zio->io_bp);
3141 	hdr->b_birth = zio->io_bp->blk_birth;
3142 	hdr->b_cksum0 = zio->io_bp->blk_cksum.zc_word[0];
3143 	/*
3144 	 * If the block to be written was all-zero, we may have
3145 	 * compressed it away.  In this case no write was performed
3146 	 * so there will be no dva/birth-date/checksum.  The buffer
3147 	 * must therefor remain anonymous (and uncached).
3148 	 */
3149 	if (!BUF_EMPTY(hdr)) {
3150 		arc_buf_hdr_t *exists;
3151 		kmutex_t *hash_lock;
3152 
3153 		arc_cksum_verify(buf);
3154 
3155 		exists = buf_hash_insert(hdr, &hash_lock);
3156 		if (exists) {
3157 			/*
3158 			 * This can only happen if we overwrite for
3159 			 * sync-to-convergence, because we remove
3160 			 * buffers from the hash table when we arc_free().
3161 			 */
3162 			ASSERT(zio->io_flags & ZIO_FLAG_IO_REWRITE);
3163 			ASSERT(DVA_EQUAL(BP_IDENTITY(&zio->io_bp_orig),
3164 			    BP_IDENTITY(zio->io_bp)));
3165 			ASSERT3U(zio->io_bp_orig.blk_birth, ==,
3166 			    zio->io_bp->blk_birth);
3167 
3168 			ASSERT(refcount_is_zero(&exists->b_refcnt));
3169 			arc_change_state(arc_anon, exists, hash_lock);
3170 			mutex_exit(hash_lock);
3171 			arc_hdr_destroy(exists);
3172 			exists = buf_hash_insert(hdr, &hash_lock);
3173 			ASSERT3P(exists, ==, NULL);
3174 		}
3175 		hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
3176 		/* if it's not anon, we are doing a scrub */
3177 		if (hdr->b_state == arc_anon)
3178 			arc_access(hdr, hash_lock);
3179 		mutex_exit(hash_lock);
3180 	} else if (callback->awcb_done == NULL) {
3181 		int destroy_hdr;
3182 		/*
3183 		 * This is an anonymous buffer with no user callback,
3184 		 * destroy it if there are no active references.
3185 		 */
3186 		mutex_enter(&arc_eviction_mtx);
3187 		destroy_hdr = refcount_is_zero(&hdr->b_refcnt);
3188 		hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
3189 		mutex_exit(&arc_eviction_mtx);
3190 		if (destroy_hdr)
3191 			arc_hdr_destroy(hdr);
3192 	} else {
3193 		hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
3194 	}
3195 	hdr->b_flags &= ~ARC_STORED;
3196 
3197 	if (callback->awcb_done) {
3198 		ASSERT(!refcount_is_zero(&hdr->b_refcnt));
3199 		callback->awcb_done(zio, buf, callback->awcb_private);
3200 	}
3201 
3202 	kmem_free(callback, sizeof (arc_write_callback_t));
3203 }
3204 
3205 void
3206 write_policy(spa_t *spa, const writeprops_t *wp, zio_prop_t *zp)
3207 {
3208 	boolean_t ismd = (wp->wp_level > 0 || dmu_ot[wp->wp_type].ot_metadata);
3209 
3210 	/* Determine checksum setting */
3211 	if (ismd) {
3212 		/*
3213 		 * Metadata always gets checksummed.  If the data
3214 		 * checksum is multi-bit correctable, and it's not a
3215 		 * ZBT-style checksum, then it's suitable for metadata
3216 		 * as well.  Otherwise, the metadata checksum defaults
3217 		 * to fletcher4.
3218 		 */
3219 		if (zio_checksum_table[wp->wp_oschecksum].ci_correctable &&
3220 		    !zio_checksum_table[wp->wp_oschecksum].ci_zbt)
3221 			zp->zp_checksum = wp->wp_oschecksum;
3222 		else
3223 			zp->zp_checksum = ZIO_CHECKSUM_FLETCHER_4;
3224 	} else {
3225 		zp->zp_checksum = zio_checksum_select(wp->wp_dnchecksum,
3226 		    wp->wp_oschecksum);
3227 	}
3228 
3229 	/* Determine compression setting */
3230 	if (ismd) {
3231 		/*
3232 		 * XXX -- we should design a compression algorithm
3233 		 * that specializes in arrays of bps.
3234 		 */
3235 		zp->zp_compress = zfs_mdcomp_disable ? ZIO_COMPRESS_EMPTY :
3236 		    ZIO_COMPRESS_LZJB;
3237 	} else {
3238 		zp->zp_compress = zio_compress_select(wp->wp_dncompress,
3239 		    wp->wp_oscompress);
3240 	}
3241 
3242 	zp->zp_type = wp->wp_type;
3243 	zp->zp_level = wp->wp_level;
3244 	zp->zp_ndvas = MIN(wp->wp_copies + ismd, spa_max_replication(spa));
3245 }
3246 
3247 zio_t *
3248 arc_write(zio_t *pio, spa_t *spa, const writeprops_t *wp,
3249     boolean_t l2arc, uint64_t txg, blkptr_t *bp, arc_buf_t *buf,
3250     arc_done_func_t *ready, arc_done_func_t *done, void *private, int priority,
3251     int zio_flags, const zbookmark_t *zb)
3252 {
3253 	arc_buf_hdr_t *hdr = buf->b_hdr;
3254 	arc_write_callback_t *callback;
3255 	zio_t *zio;
3256 	zio_prop_t zp;
3257 
3258 	ASSERT(ready != NULL);
3259 	ASSERT(!HDR_IO_ERROR(hdr));
3260 	ASSERT((hdr->b_flags & ARC_IO_IN_PROGRESS) == 0);
3261 	ASSERT(hdr->b_acb == 0);
3262 	if (l2arc)
3263 		hdr->b_flags |= ARC_L2CACHE;
3264 	callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
3265 	callback->awcb_ready = ready;
3266 	callback->awcb_done = done;
3267 	callback->awcb_private = private;
3268 	callback->awcb_buf = buf;
3269 
3270 	write_policy(spa, wp, &zp);
3271 	zio = zio_write(pio, spa, txg, bp, buf->b_data, hdr->b_size, &zp,
3272 	    arc_write_ready, arc_write_done, callback, priority, zio_flags, zb);
3273 
3274 	return (zio);
3275 }
3276 
3277 int
3278 arc_free(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
3279     zio_done_func_t *done, void *private, uint32_t arc_flags)
3280 {
3281 	arc_buf_hdr_t *ab;
3282 	kmutex_t *hash_lock;
3283 	zio_t	*zio;
3284 	uint64_t guid = spa_guid(spa);
3285 
3286 	/*
3287 	 * If this buffer is in the cache, release it, so it
3288 	 * can be re-used.
3289 	 */
3290 	ab = buf_hash_find(guid, BP_IDENTITY(bp), bp->blk_birth, &hash_lock);
3291 	if (ab != NULL) {
3292 		/*
3293 		 * The checksum of blocks to free is not always
3294 		 * preserved (eg. on the deadlist).  However, if it is
3295 		 * nonzero, it should match what we have in the cache.
3296 		 */
3297 		ASSERT(bp->blk_cksum.zc_word[0] == 0 ||
3298 		    bp->blk_cksum.zc_word[0] == ab->b_cksum0 ||
3299 		    bp->blk_fill == BLK_FILL_ALREADY_FREED);
3300 
3301 		if (ab->b_state != arc_anon)
3302 			arc_change_state(arc_anon, ab, hash_lock);
3303 		if (HDR_IO_IN_PROGRESS(ab)) {
3304 			/*
3305 			 * This should only happen when we prefetch.
3306 			 */
3307 			ASSERT(ab->b_flags & ARC_PREFETCH);
3308 			ASSERT3U(ab->b_datacnt, ==, 1);
3309 			ab->b_flags |= ARC_FREED_IN_READ;
3310 			if (HDR_IN_HASH_TABLE(ab))
3311 				buf_hash_remove(ab);
3312 			ab->b_arc_access = 0;
3313 			bzero(&ab->b_dva, sizeof (dva_t));
3314 			ab->b_birth = 0;
3315 			ab->b_cksum0 = 0;
3316 			ab->b_buf->b_efunc = NULL;
3317 			ab->b_buf->b_private = NULL;
3318 			mutex_exit(hash_lock);
3319 		} else if (refcount_is_zero(&ab->b_refcnt)) {
3320 			ab->b_flags |= ARC_FREE_IN_PROGRESS;
3321 			mutex_exit(hash_lock);
3322 			arc_hdr_destroy(ab);
3323 			ARCSTAT_BUMP(arcstat_deleted);
3324 		} else {
3325 			/*
3326 			 * We still have an active reference on this
3327 			 * buffer.  This can happen, e.g., from
3328 			 * dbuf_unoverride().
3329 			 */
3330 			ASSERT(!HDR_IN_HASH_TABLE(ab));
3331 			ab->b_arc_access = 0;
3332 			bzero(&ab->b_dva, sizeof (dva_t));
3333 			ab->b_birth = 0;
3334 			ab->b_cksum0 = 0;
3335 			ab->b_buf->b_efunc = NULL;
3336 			ab->b_buf->b_private = NULL;
3337 			mutex_exit(hash_lock);
3338 		}
3339 	}
3340 
3341 	zio = zio_free(pio, spa, txg, bp, done, private, ZIO_FLAG_MUSTSUCCEED);
3342 
3343 	if (arc_flags & ARC_WAIT)
3344 		return (zio_wait(zio));
3345 
3346 	ASSERT(arc_flags & ARC_NOWAIT);
3347 	zio_nowait(zio);
3348 
3349 	return (0);
3350 }
3351 
3352 static int
3353 arc_memory_throttle(uint64_t reserve, uint64_t inflight_data, uint64_t txg)
3354 {
3355 #ifdef _KERNEL
3356 	uint64_t available_memory = ptob(freemem);
3357 	static uint64_t page_load = 0;
3358 	static uint64_t last_txg = 0;
3359 
3360 #if defined(__i386)
3361 	available_memory =
3362 	    MIN(available_memory, vmem_size(heap_arena, VMEM_FREE));
3363 #endif
3364 	if (available_memory >= zfs_write_limit_max)
3365 		return (0);
3366 
3367 	if (txg > last_txg) {
3368 		last_txg = txg;
3369 		page_load = 0;
3370 	}
3371 	/*
3372 	 * If we are in pageout, we know that memory is already tight,
3373 	 * the arc is already going to be evicting, so we just want to
3374 	 * continue to let page writes occur as quickly as possible.
3375 	 */
3376 	if (curproc == proc_pageout) {
3377 		if (page_load > MAX(ptob(minfree), available_memory) / 4)
3378 			return (ERESTART);
3379 		/* Note: reserve is inflated, so we deflate */
3380 		page_load += reserve / 8;
3381 		return (0);
3382 	} else if (page_load > 0 && arc_reclaim_needed()) {
3383 		/* memory is low, delay before restarting */
3384 		ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
3385 		return (EAGAIN);
3386 	}
3387 	page_load = 0;
3388 
3389 	if (arc_size > arc_c_min) {
3390 		uint64_t evictable_memory =
3391 		    arc_mru->arcs_lsize[ARC_BUFC_DATA] +
3392 		    arc_mru->arcs_lsize[ARC_BUFC_METADATA] +
3393 		    arc_mfu->arcs_lsize[ARC_BUFC_DATA] +
3394 		    arc_mfu->arcs_lsize[ARC_BUFC_METADATA];
3395 		available_memory += MIN(evictable_memory, arc_size - arc_c_min);
3396 	}
3397 
3398 	if (inflight_data > available_memory / 4) {
3399 		ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
3400 		return (ERESTART);
3401 	}
3402 #endif
3403 	return (0);
3404 }
3405 
3406 void
3407 arc_tempreserve_clear(uint64_t reserve)
3408 {
3409 	atomic_add_64(&arc_tempreserve, -reserve);
3410 	ASSERT((int64_t)arc_tempreserve >= 0);
3411 }
3412 
3413 int
3414 arc_tempreserve_space(uint64_t reserve, uint64_t txg)
3415 {
3416 	int error;
3417 	uint64_t anon_size;
3418 
3419 #ifdef ZFS_DEBUG
3420 	/*
3421 	 * Once in a while, fail for no reason.  Everything should cope.
3422 	 */
3423 	if (spa_get_random(10000) == 0) {
3424 		dprintf("forcing random failure\n");
3425 		return (ERESTART);
3426 	}
3427 #endif
3428 	if (reserve > arc_c/4 && !arc_no_grow)
3429 		arc_c = MIN(arc_c_max, reserve * 4);
3430 	if (reserve > arc_c)
3431 		return (ENOMEM);
3432 
3433 	/*
3434 	 * Don't count loaned bufs as in flight dirty data to prevent long
3435 	 * network delays from blocking transactions that are ready to be
3436 	 * assigned to a txg.
3437 	 */
3438 	anon_size = MAX((int64_t)(arc_anon->arcs_size - arc_loaned_bytes), 0);
3439 
3440 	/*
3441 	 * Writes will, almost always, require additional memory allocations
3442 	 * in order to compress/encrypt/etc the data.  We therefor need to
3443 	 * make sure that there is sufficient available memory for this.
3444 	 */
3445 	if (error = arc_memory_throttle(reserve, anon_size, txg))
3446 		return (error);
3447 
3448 	/*
3449 	 * Throttle writes when the amount of dirty data in the cache
3450 	 * gets too large.  We try to keep the cache less than half full
3451 	 * of dirty blocks so that our sync times don't grow too large.
3452 	 * Note: if two requests come in concurrently, we might let them
3453 	 * both succeed, when one of them should fail.  Not a huge deal.
3454 	 */
3455 
3456 	if (reserve + arc_tempreserve + anon_size > arc_c / 2 &&
3457 	    anon_size > arc_c / 4) {
3458 		dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
3459 		    "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
3460 		    arc_tempreserve>>10,
3461 		    arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10,
3462 		    arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10,
3463 		    reserve>>10, arc_c>>10);
3464 		return (ERESTART);
3465 	}
3466 	atomic_add_64(&arc_tempreserve, reserve);
3467 	return (0);
3468 }
3469 
3470 void
3471 arc_init(void)
3472 {
3473 	mutex_init(&arc_reclaim_thr_lock, NULL, MUTEX_DEFAULT, NULL);
3474 	cv_init(&arc_reclaim_thr_cv, NULL, CV_DEFAULT, NULL);
3475 
3476 	/* Convert seconds to clock ticks */
3477 	arc_min_prefetch_lifespan = 1 * hz;
3478 
3479 	/* Start out with 1/8 of all memory */
3480 	arc_c = physmem * PAGESIZE / 8;
3481 
3482 #ifdef _KERNEL
3483 	/*
3484 	 * On architectures where the physical memory can be larger
3485 	 * than the addressable space (intel in 32-bit mode), we may
3486 	 * need to limit the cache to 1/8 of VM size.
3487 	 */
3488 	arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8);
3489 #endif
3490 
3491 	/* set min cache to 1/32 of all memory, or 64MB, whichever is more */
3492 	arc_c_min = MAX(arc_c / 4, 64<<20);
3493 	/* set max to 3/4 of all memory, or all but 1GB, whichever is more */
3494 	if (arc_c * 8 >= 1<<30)
3495 		arc_c_max = (arc_c * 8) - (1<<30);
3496 	else
3497 		arc_c_max = arc_c_min;
3498 	arc_c_max = MAX(arc_c * 6, arc_c_max);
3499 
3500 	/*
3501 	 * Allow the tunables to override our calculations if they are
3502 	 * reasonable (ie. over 64MB)
3503 	 */
3504 	if (zfs_arc_max > 64<<20 && zfs_arc_max < physmem * PAGESIZE)
3505 		arc_c_max = zfs_arc_max;
3506 	if (zfs_arc_min > 64<<20 && zfs_arc_min <= arc_c_max)
3507 		arc_c_min = zfs_arc_min;
3508 
3509 	arc_c = arc_c_max;
3510 	arc_p = (arc_c >> 1);
3511 
3512 	/* limit meta-data to 1/4 of the arc capacity */
3513 	arc_meta_limit = arc_c_max / 4;
3514 
3515 	/* Allow the tunable to override if it is reasonable */
3516 	if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max)
3517 		arc_meta_limit = zfs_arc_meta_limit;
3518 
3519 	if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0)
3520 		arc_c_min = arc_meta_limit / 2;
3521 
3522 	if (zfs_arc_grow_retry > 0)
3523 		arc_grow_retry = zfs_arc_grow_retry;
3524 
3525 	if (zfs_arc_shrink_shift > 0)
3526 		arc_shrink_shift = zfs_arc_shrink_shift;
3527 
3528 	if (zfs_arc_p_min_shift > 0)
3529 		arc_p_min_shift = zfs_arc_p_min_shift;
3530 
3531 	/* if kmem_flags are set, lets try to use less memory */
3532 	if (kmem_debugging())
3533 		arc_c = arc_c / 2;
3534 	if (arc_c < arc_c_min)
3535 		arc_c = arc_c_min;
3536 
3537 	arc_anon = &ARC_anon;
3538 	arc_mru = &ARC_mru;
3539 	arc_mru_ghost = &ARC_mru_ghost;
3540 	arc_mfu = &ARC_mfu;
3541 	arc_mfu_ghost = &ARC_mfu_ghost;
3542 	arc_l2c_only = &ARC_l2c_only;
3543 	arc_size = 0;
3544 
3545 	mutex_init(&arc_anon->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3546 	mutex_init(&arc_mru->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3547 	mutex_init(&arc_mru_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3548 	mutex_init(&arc_mfu->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3549 	mutex_init(&arc_mfu_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3550 	mutex_init(&arc_l2c_only->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3551 
3552 	list_create(&arc_mru->arcs_list[ARC_BUFC_METADATA],
3553 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3554 	list_create(&arc_mru->arcs_list[ARC_BUFC_DATA],
3555 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3556 	list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA],
3557 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3558 	list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA],
3559 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3560 	list_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA],
3561 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3562 	list_create(&arc_mfu->arcs_list[ARC_BUFC_DATA],
3563 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3564 	list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA],
3565 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3566 	list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA],
3567 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3568 	list_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA],
3569 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3570 	list_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA],
3571 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3572 
3573 	buf_init();
3574 
3575 	arc_thread_exit = 0;
3576 	arc_eviction_list = NULL;
3577 	mutex_init(&arc_eviction_mtx, NULL, MUTEX_DEFAULT, NULL);
3578 	bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t));
3579 
3580 	arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
3581 	    sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
3582 
3583 	if (arc_ksp != NULL) {
3584 		arc_ksp->ks_data = &arc_stats;
3585 		kstat_install(arc_ksp);
3586 	}
3587 
3588 	(void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0,
3589 	    TS_RUN, minclsyspri);
3590 
3591 	arc_dead = FALSE;
3592 	arc_warm = B_FALSE;
3593 
3594 	if (zfs_write_limit_max == 0)
3595 		zfs_write_limit_max = ptob(physmem) >> zfs_write_limit_shift;
3596 	else
3597 		zfs_write_limit_shift = 0;
3598 	mutex_init(&zfs_write_limit_lock, NULL, MUTEX_DEFAULT, NULL);
3599 }
3600 
3601 void
3602 arc_fini(void)
3603 {
3604 	mutex_enter(&arc_reclaim_thr_lock);
3605 	arc_thread_exit = 1;
3606 	while (arc_thread_exit != 0)
3607 		cv_wait(&arc_reclaim_thr_cv, &arc_reclaim_thr_lock);
3608 	mutex_exit(&arc_reclaim_thr_lock);
3609 
3610 	arc_flush(NULL);
3611 
3612 	arc_dead = TRUE;
3613 
3614 	if (arc_ksp != NULL) {
3615 		kstat_delete(arc_ksp);
3616 		arc_ksp = NULL;
3617 	}
3618 
3619 	mutex_destroy(&arc_eviction_mtx);
3620 	mutex_destroy(&arc_reclaim_thr_lock);
3621 	cv_destroy(&arc_reclaim_thr_cv);
3622 
3623 	list_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]);
3624 	list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
3625 	list_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]);
3626 	list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
3627 	list_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]);
3628 	list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
3629 	list_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]);
3630 	list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
3631 
3632 	mutex_destroy(&arc_anon->arcs_mtx);
3633 	mutex_destroy(&arc_mru->arcs_mtx);
3634 	mutex_destroy(&arc_mru_ghost->arcs_mtx);
3635 	mutex_destroy(&arc_mfu->arcs_mtx);
3636 	mutex_destroy(&arc_mfu_ghost->arcs_mtx);
3637 	mutex_destroy(&arc_l2c_only->arcs_mtx);
3638 
3639 	mutex_destroy(&zfs_write_limit_lock);
3640 
3641 	buf_fini();
3642 
3643 	ASSERT(arc_loaned_bytes == 0);
3644 }
3645 
3646 /*
3647  * Level 2 ARC
3648  *
3649  * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
3650  * It uses dedicated storage devices to hold cached data, which are populated
3651  * using large infrequent writes.  The main role of this cache is to boost
3652  * the performance of random read workloads.  The intended L2ARC devices
3653  * include short-stroked disks, solid state disks, and other media with
3654  * substantially faster read latency than disk.
3655  *
3656  *                 +-----------------------+
3657  *                 |         ARC           |
3658  *                 +-----------------------+
3659  *                    |         ^     ^
3660  *                    |         |     |
3661  *      l2arc_feed_thread()    arc_read()
3662  *                    |         |     |
3663  *                    |  l2arc read   |
3664  *                    V         |     |
3665  *               +---------------+    |
3666  *               |     L2ARC     |    |
3667  *               +---------------+    |
3668  *                   |    ^           |
3669  *          l2arc_write() |           |
3670  *                   |    |           |
3671  *                   V    |           |
3672  *                 +-------+      +-------+
3673  *                 | vdev  |      | vdev  |
3674  *                 | cache |      | cache |
3675  *                 +-------+      +-------+
3676  *                 +=========+     .-----.
3677  *                 :  L2ARC  :    |-_____-|
3678  *                 : devices :    | Disks |
3679  *                 +=========+    `-_____-'
3680  *
3681  * Read requests are satisfied from the following sources, in order:
3682  *
3683  *	1) ARC
3684  *	2) vdev cache of L2ARC devices
3685  *	3) L2ARC devices
3686  *	4) vdev cache of disks
3687  *	5) disks
3688  *
3689  * Some L2ARC device types exhibit extremely slow write performance.
3690  * To accommodate for this there are some significant differences between
3691  * the L2ARC and traditional cache design:
3692  *
3693  * 1. There is no eviction path from the ARC to the L2ARC.  Evictions from
3694  * the ARC behave as usual, freeing buffers and placing headers on ghost
3695  * lists.  The ARC does not send buffers to the L2ARC during eviction as
3696  * this would add inflated write latencies for all ARC memory pressure.
3697  *
3698  * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
3699  * It does this by periodically scanning buffers from the eviction-end of
3700  * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
3701  * not already there.  It scans until a headroom of buffers is satisfied,
3702  * which itself is a buffer for ARC eviction.  The thread that does this is
3703  * l2arc_feed_thread(), illustrated below; example sizes are included to
3704  * provide a better sense of ratio than this diagram:
3705  *
3706  *	       head -->                        tail
3707  *	        +---------------------+----------+
3708  *	ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->.   # already on L2ARC
3709  *	        +---------------------+----------+   |   o L2ARC eligible
3710  *	ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->|   : ARC buffer
3711  *	        +---------------------+----------+   |
3712  *	             15.9 Gbytes      ^ 32 Mbytes    |
3713  *	                           headroom          |
3714  *	                                      l2arc_feed_thread()
3715  *	                                             |
3716  *	                 l2arc write hand <--[oooo]--'
3717  *	                         |           8 Mbyte
3718  *	                         |          write max
3719  *	                         V
3720  *		  +==============================+
3721  *	L2ARC dev |####|#|###|###|    |####| ... |
3722  *	          +==============================+
3723  *	                     32 Gbytes
3724  *
3725  * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
3726  * evicted, then the L2ARC has cached a buffer much sooner than it probably
3727  * needed to, potentially wasting L2ARC device bandwidth and storage.  It is
3728  * safe to say that this is an uncommon case, since buffers at the end of
3729  * the ARC lists have moved there due to inactivity.
3730  *
3731  * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
3732  * then the L2ARC simply misses copying some buffers.  This serves as a
3733  * pressure valve to prevent heavy read workloads from both stalling the ARC
3734  * with waits and clogging the L2ARC with writes.  This also helps prevent
3735  * the potential for the L2ARC to churn if it attempts to cache content too
3736  * quickly, such as during backups of the entire pool.
3737  *
3738  * 5. After system boot and before the ARC has filled main memory, there are
3739  * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
3740  * lists can remain mostly static.  Instead of searching from tail of these
3741  * lists as pictured, the l2arc_feed_thread() will search from the list heads
3742  * for eligible buffers, greatly increasing its chance of finding them.
3743  *
3744  * The L2ARC device write speed is also boosted during this time so that
3745  * the L2ARC warms up faster.  Since there have been no ARC evictions yet,
3746  * there are no L2ARC reads, and no fear of degrading read performance
3747  * through increased writes.
3748  *
3749  * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
3750  * the vdev queue can aggregate them into larger and fewer writes.  Each
3751  * device is written to in a rotor fashion, sweeping writes through
3752  * available space then repeating.
3753  *
3754  * 7. The L2ARC does not store dirty content.  It never needs to flush
3755  * write buffers back to disk based storage.
3756  *
3757  * 8. If an ARC buffer is written (and dirtied) which also exists in the
3758  * L2ARC, the now stale L2ARC buffer is immediately dropped.
3759  *
3760  * The performance of the L2ARC can be tweaked by a number of tunables, which
3761  * may be necessary for different workloads:
3762  *
3763  *	l2arc_write_max		max write bytes per interval
3764  *	l2arc_write_boost	extra write bytes during device warmup
3765  *	l2arc_noprefetch	skip caching prefetched buffers
3766  *	l2arc_headroom		number of max device writes to precache
3767  *	l2arc_feed_secs		seconds between L2ARC writing
3768  *
3769  * Tunables may be removed or added as future performance improvements are
3770  * integrated, and also may become zpool properties.
3771  *
3772  * There are three key functions that control how the L2ARC warms up:
3773  *
3774  *	l2arc_write_eligible()	check if a buffer is eligible to cache
3775  *	l2arc_write_size()	calculate how much to write
3776  *	l2arc_write_interval()	calculate sleep delay between writes
3777  *
3778  * These three functions determine what to write, how much, and how quickly
3779  * to send writes.
3780  */
3781 
3782 static boolean_t
3783 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab)
3784 {
3785 	/*
3786 	 * A buffer is *not* eligible for the L2ARC if it:
3787 	 * 1. belongs to a different spa.
3788 	 * 2. has no attached buffer.
3789 	 * 3. is already cached on the L2ARC.
3790 	 * 4. has an I/O in progress (it may be an incomplete read).
3791 	 * 5. is flagged not eligible (zfs property).
3792 	 */
3793 	if (ab->b_spa != spa_guid || ab->b_buf == NULL || ab->b_l2hdr != NULL ||
3794 	    HDR_IO_IN_PROGRESS(ab) || !HDR_L2CACHE(ab))
3795 		return (B_FALSE);
3796 
3797 	return (B_TRUE);
3798 }
3799 
3800 static uint64_t
3801 l2arc_write_size(l2arc_dev_t *dev)
3802 {
3803 	uint64_t size;
3804 
3805 	size = dev->l2ad_write;
3806 
3807 	if (arc_warm == B_FALSE)
3808 		size += dev->l2ad_boost;
3809 
3810 	return (size);
3811 
3812 }
3813 
3814 static clock_t
3815 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
3816 {
3817 	clock_t interval, next;
3818 
3819 	/*
3820 	 * If the ARC lists are busy, increase our write rate; if the
3821 	 * lists are stale, idle back.  This is achieved by checking
3822 	 * how much we previously wrote - if it was more than half of
3823 	 * what we wanted, schedule the next write much sooner.
3824 	 */
3825 	if (l2arc_feed_again && wrote > (wanted / 2))
3826 		interval = (hz * l2arc_feed_min_ms) / 1000;
3827 	else
3828 		interval = hz * l2arc_feed_secs;
3829 
3830 	next = MAX(lbolt, MIN(lbolt + interval, began + interval));
3831 
3832 	return (next);
3833 }
3834 
3835 static void
3836 l2arc_hdr_stat_add(void)
3837 {
3838 	ARCSTAT_INCR(arcstat_l2_hdr_size, HDR_SIZE + L2HDR_SIZE);
3839 	ARCSTAT_INCR(arcstat_hdr_size, -HDR_SIZE);
3840 }
3841 
3842 static void
3843 l2arc_hdr_stat_remove(void)
3844 {
3845 	ARCSTAT_INCR(arcstat_l2_hdr_size, -(HDR_SIZE + L2HDR_SIZE));
3846 	ARCSTAT_INCR(arcstat_hdr_size, HDR_SIZE);
3847 }
3848 
3849 /*
3850  * Cycle through L2ARC devices.  This is how L2ARC load balances.
3851  * If a device is returned, this also returns holding the spa config lock.
3852  */
3853 static l2arc_dev_t *
3854 l2arc_dev_get_next(void)
3855 {
3856 	l2arc_dev_t *first, *next = NULL;
3857 
3858 	/*
3859 	 * Lock out the removal of spas (spa_namespace_lock), then removal
3860 	 * of cache devices (l2arc_dev_mtx).  Once a device has been selected,
3861 	 * both locks will be dropped and a spa config lock held instead.
3862 	 */
3863 	mutex_enter(&spa_namespace_lock);
3864 	mutex_enter(&l2arc_dev_mtx);
3865 
3866 	/* if there are no vdevs, there is nothing to do */
3867 	if (l2arc_ndev == 0)
3868 		goto out;
3869 
3870 	first = NULL;
3871 	next = l2arc_dev_last;
3872 	do {
3873 		/* loop around the list looking for a non-faulted vdev */
3874 		if (next == NULL) {
3875 			next = list_head(l2arc_dev_list);
3876 		} else {
3877 			next = list_next(l2arc_dev_list, next);
3878 			if (next == NULL)
3879 				next = list_head(l2arc_dev_list);
3880 		}
3881 
3882 		/* if we have come back to the start, bail out */
3883 		if (first == NULL)
3884 			first = next;
3885 		else if (next == first)
3886 			break;
3887 
3888 	} while (vdev_is_dead(next->l2ad_vdev));
3889 
3890 	/* if we were unable to find any usable vdevs, return NULL */
3891 	if (vdev_is_dead(next->l2ad_vdev))
3892 		next = NULL;
3893 
3894 	l2arc_dev_last = next;
3895 
3896 out:
3897 	mutex_exit(&l2arc_dev_mtx);
3898 
3899 	/*
3900 	 * Grab the config lock to prevent the 'next' device from being
3901 	 * removed while we are writing to it.
3902 	 */
3903 	if (next != NULL)
3904 		spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
3905 	mutex_exit(&spa_namespace_lock);
3906 
3907 	return (next);
3908 }
3909 
3910 /*
3911  * Free buffers that were tagged for destruction.
3912  */
3913 static void
3914 l2arc_do_free_on_write()
3915 {
3916 	list_t *buflist;
3917 	l2arc_data_free_t *df, *df_prev;
3918 
3919 	mutex_enter(&l2arc_free_on_write_mtx);
3920 	buflist = l2arc_free_on_write;
3921 
3922 	for (df = list_tail(buflist); df; df = df_prev) {
3923 		df_prev = list_prev(buflist, df);
3924 		ASSERT(df->l2df_data != NULL);
3925 		ASSERT(df->l2df_func != NULL);
3926 		df->l2df_func(df->l2df_data, df->l2df_size);
3927 		list_remove(buflist, df);
3928 		kmem_free(df, sizeof (l2arc_data_free_t));
3929 	}
3930 
3931 	mutex_exit(&l2arc_free_on_write_mtx);
3932 }
3933 
3934 /*
3935  * A write to a cache device has completed.  Update all headers to allow
3936  * reads from these buffers to begin.
3937  */
3938 static void
3939 l2arc_write_done(zio_t *zio)
3940 {
3941 	l2arc_write_callback_t *cb;
3942 	l2arc_dev_t *dev;
3943 	list_t *buflist;
3944 	arc_buf_hdr_t *head, *ab, *ab_prev;
3945 	l2arc_buf_hdr_t *abl2;
3946 	kmutex_t *hash_lock;
3947 
3948 	cb = zio->io_private;
3949 	ASSERT(cb != NULL);
3950 	dev = cb->l2wcb_dev;
3951 	ASSERT(dev != NULL);
3952 	head = cb->l2wcb_head;
3953 	ASSERT(head != NULL);
3954 	buflist = dev->l2ad_buflist;
3955 	ASSERT(buflist != NULL);
3956 	DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
3957 	    l2arc_write_callback_t *, cb);
3958 
3959 	if (zio->io_error != 0)
3960 		ARCSTAT_BUMP(arcstat_l2_writes_error);
3961 
3962 	mutex_enter(&l2arc_buflist_mtx);
3963 
3964 	/*
3965 	 * All writes completed, or an error was hit.
3966 	 */
3967 	for (ab = list_prev(buflist, head); ab; ab = ab_prev) {
3968 		ab_prev = list_prev(buflist, ab);
3969 
3970 		hash_lock = HDR_LOCK(ab);
3971 		if (!mutex_tryenter(hash_lock)) {
3972 			/*
3973 			 * This buffer misses out.  It may be in a stage
3974 			 * of eviction.  Its ARC_L2_WRITING flag will be
3975 			 * left set, denying reads to this buffer.
3976 			 */
3977 			ARCSTAT_BUMP(arcstat_l2_writes_hdr_miss);
3978 			continue;
3979 		}
3980 
3981 		if (zio->io_error != 0) {
3982 			/*
3983 			 * Error - drop L2ARC entry.
3984 			 */
3985 			list_remove(buflist, ab);
3986 			abl2 = ab->b_l2hdr;
3987 			ab->b_l2hdr = NULL;
3988 			kmem_free(abl2, sizeof (l2arc_buf_hdr_t));
3989 			ARCSTAT_INCR(arcstat_l2_size, -ab->b_size);
3990 		}
3991 
3992 		/*
3993 		 * Allow ARC to begin reads to this L2ARC entry.
3994 		 */
3995 		ab->b_flags &= ~ARC_L2_WRITING;
3996 
3997 		mutex_exit(hash_lock);
3998 	}
3999 
4000 	atomic_inc_64(&l2arc_writes_done);
4001 	list_remove(buflist, head);
4002 	kmem_cache_free(hdr_cache, head);
4003 	mutex_exit(&l2arc_buflist_mtx);
4004 
4005 	l2arc_do_free_on_write();
4006 
4007 	kmem_free(cb, sizeof (l2arc_write_callback_t));
4008 }
4009 
4010 /*
4011  * A read to a cache device completed.  Validate buffer contents before
4012  * handing over to the regular ARC routines.
4013  */
4014 static void
4015 l2arc_read_done(zio_t *zio)
4016 {
4017 	l2arc_read_callback_t *cb;
4018 	arc_buf_hdr_t *hdr;
4019 	arc_buf_t *buf;
4020 	kmutex_t *hash_lock;
4021 	int equal;
4022 
4023 	ASSERT(zio->io_vd != NULL);
4024 	ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
4025 
4026 	spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
4027 
4028 	cb = zio->io_private;
4029 	ASSERT(cb != NULL);
4030 	buf = cb->l2rcb_buf;
4031 	ASSERT(buf != NULL);
4032 	hdr = buf->b_hdr;
4033 	ASSERT(hdr != NULL);
4034 
4035 	hash_lock = HDR_LOCK(hdr);
4036 	mutex_enter(hash_lock);
4037 
4038 	/*
4039 	 * Check this survived the L2ARC journey.
4040 	 */
4041 	equal = arc_cksum_equal(buf);
4042 	if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) {
4043 		mutex_exit(hash_lock);
4044 		zio->io_private = buf;
4045 		zio->io_bp_copy = cb->l2rcb_bp;	/* XXX fix in L2ARC 2.0	*/
4046 		zio->io_bp = &zio->io_bp_copy;	/* XXX fix in L2ARC 2.0	*/
4047 		arc_read_done(zio);
4048 	} else {
4049 		mutex_exit(hash_lock);
4050 		/*
4051 		 * Buffer didn't survive caching.  Increment stats and
4052 		 * reissue to the original storage device.
4053 		 */
4054 		if (zio->io_error != 0) {
4055 			ARCSTAT_BUMP(arcstat_l2_io_error);
4056 		} else {
4057 			zio->io_error = EIO;
4058 		}
4059 		if (!equal)
4060 			ARCSTAT_BUMP(arcstat_l2_cksum_bad);
4061 
4062 		/*
4063 		 * If there's no waiter, issue an async i/o to the primary
4064 		 * storage now.  If there *is* a waiter, the caller must
4065 		 * issue the i/o in a context where it's OK to block.
4066 		 */
4067 		if (zio->io_waiter == NULL) {
4068 			zio_t *pio = zio_unique_parent(zio);
4069 
4070 			ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
4071 
4072 			zio_nowait(zio_read(pio, cb->l2rcb_spa, &cb->l2rcb_bp,
4073 			    buf->b_data, zio->io_size, arc_read_done, buf,
4074 			    zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb));
4075 		}
4076 	}
4077 
4078 	kmem_free(cb, sizeof (l2arc_read_callback_t));
4079 }
4080 
4081 /*
4082  * This is the list priority from which the L2ARC will search for pages to
4083  * cache.  This is used within loops (0..3) to cycle through lists in the
4084  * desired order.  This order can have a significant effect on cache
4085  * performance.
4086  *
4087  * Currently the metadata lists are hit first, MFU then MRU, followed by
4088  * the data lists.  This function returns a locked list, and also returns
4089  * the lock pointer.
4090  */
4091 static list_t *
4092 l2arc_list_locked(int list_num, kmutex_t **lock)
4093 {
4094 	list_t *list;
4095 
4096 	ASSERT(list_num >= 0 && list_num <= 3);
4097 
4098 	switch (list_num) {
4099 	case 0:
4100 		list = &arc_mfu->arcs_list[ARC_BUFC_METADATA];
4101 		*lock = &arc_mfu->arcs_mtx;
4102 		break;
4103 	case 1:
4104 		list = &arc_mru->arcs_list[ARC_BUFC_METADATA];
4105 		*lock = &arc_mru->arcs_mtx;
4106 		break;
4107 	case 2:
4108 		list = &arc_mfu->arcs_list[ARC_BUFC_DATA];
4109 		*lock = &arc_mfu->arcs_mtx;
4110 		break;
4111 	case 3:
4112 		list = &arc_mru->arcs_list[ARC_BUFC_DATA];
4113 		*lock = &arc_mru->arcs_mtx;
4114 		break;
4115 	}
4116 
4117 	ASSERT(!(MUTEX_HELD(*lock)));
4118 	mutex_enter(*lock);
4119 	return (list);
4120 }
4121 
4122 /*
4123  * Evict buffers from the device write hand to the distance specified in
4124  * bytes.  This distance may span populated buffers, it may span nothing.
4125  * This is clearing a region on the L2ARC device ready for writing.
4126  * If the 'all' boolean is set, every buffer is evicted.
4127  */
4128 static void
4129 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
4130 {
4131 	list_t *buflist;
4132 	l2arc_buf_hdr_t *abl2;
4133 	arc_buf_hdr_t *ab, *ab_prev;
4134 	kmutex_t *hash_lock;
4135 	uint64_t taddr;
4136 
4137 	buflist = dev->l2ad_buflist;
4138 
4139 	if (buflist == NULL)
4140 		return;
4141 
4142 	if (!all && dev->l2ad_first) {
4143 		/*
4144 		 * This is the first sweep through the device.  There is
4145 		 * nothing to evict.
4146 		 */
4147 		return;
4148 	}
4149 
4150 	if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) {
4151 		/*
4152 		 * When nearing the end of the device, evict to the end
4153 		 * before the device write hand jumps to the start.
4154 		 */
4155 		taddr = dev->l2ad_end;
4156 	} else {
4157 		taddr = dev->l2ad_hand + distance;
4158 	}
4159 	DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
4160 	    uint64_t, taddr, boolean_t, all);
4161 
4162 top:
4163 	mutex_enter(&l2arc_buflist_mtx);
4164 	for (ab = list_tail(buflist); ab; ab = ab_prev) {
4165 		ab_prev = list_prev(buflist, ab);
4166 
4167 		hash_lock = HDR_LOCK(ab);
4168 		if (!mutex_tryenter(hash_lock)) {
4169 			/*
4170 			 * Missed the hash lock.  Retry.
4171 			 */
4172 			ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
4173 			mutex_exit(&l2arc_buflist_mtx);
4174 			mutex_enter(hash_lock);
4175 			mutex_exit(hash_lock);
4176 			goto top;
4177 		}
4178 
4179 		if (HDR_L2_WRITE_HEAD(ab)) {
4180 			/*
4181 			 * We hit a write head node.  Leave it for
4182 			 * l2arc_write_done().
4183 			 */
4184 			list_remove(buflist, ab);
4185 			mutex_exit(hash_lock);
4186 			continue;
4187 		}
4188 
4189 		if (!all && ab->b_l2hdr != NULL &&
4190 		    (ab->b_l2hdr->b_daddr > taddr ||
4191 		    ab->b_l2hdr->b_daddr < dev->l2ad_hand)) {
4192 			/*
4193 			 * We've evicted to the target address,
4194 			 * or the end of the device.
4195 			 */
4196 			mutex_exit(hash_lock);
4197 			break;
4198 		}
4199 
4200 		if (HDR_FREE_IN_PROGRESS(ab)) {
4201 			/*
4202 			 * Already on the path to destruction.
4203 			 */
4204 			mutex_exit(hash_lock);
4205 			continue;
4206 		}
4207 
4208 		if (ab->b_state == arc_l2c_only) {
4209 			ASSERT(!HDR_L2_READING(ab));
4210 			/*
4211 			 * This doesn't exist in the ARC.  Destroy.
4212 			 * arc_hdr_destroy() will call list_remove()
4213 			 * and decrement arcstat_l2_size.
4214 			 */
4215 			arc_change_state(arc_anon, ab, hash_lock);
4216 			arc_hdr_destroy(ab);
4217 		} else {
4218 			/*
4219 			 * Invalidate issued or about to be issued
4220 			 * reads, since we may be about to write
4221 			 * over this location.
4222 			 */
4223 			if (HDR_L2_READING(ab)) {
4224 				ARCSTAT_BUMP(arcstat_l2_evict_reading);
4225 				ab->b_flags |= ARC_L2_EVICTED;
4226 			}
4227 
4228 			/*
4229 			 * Tell ARC this no longer exists in L2ARC.
4230 			 */
4231 			if (ab->b_l2hdr != NULL) {
4232 				abl2 = ab->b_l2hdr;
4233 				ab->b_l2hdr = NULL;
4234 				kmem_free(abl2, sizeof (l2arc_buf_hdr_t));
4235 				ARCSTAT_INCR(arcstat_l2_size, -ab->b_size);
4236 			}
4237 			list_remove(buflist, ab);
4238 
4239 			/*
4240 			 * This may have been leftover after a
4241 			 * failed write.
4242 			 */
4243 			ab->b_flags &= ~ARC_L2_WRITING;
4244 		}
4245 		mutex_exit(hash_lock);
4246 	}
4247 	mutex_exit(&l2arc_buflist_mtx);
4248 
4249 	spa_l2cache_space_update(dev->l2ad_vdev, 0, -(taddr - dev->l2ad_evict));
4250 	dev->l2ad_evict = taddr;
4251 }
4252 
4253 /*
4254  * Find and write ARC buffers to the L2ARC device.
4255  *
4256  * An ARC_L2_WRITING flag is set so that the L2ARC buffers are not valid
4257  * for reading until they have completed writing.
4258  */
4259 static uint64_t
4260 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz)
4261 {
4262 	arc_buf_hdr_t *ab, *ab_prev, *head;
4263 	l2arc_buf_hdr_t *hdrl2;
4264 	list_t *list;
4265 	uint64_t passed_sz, write_sz, buf_sz, headroom;
4266 	void *buf_data;
4267 	kmutex_t *hash_lock, *list_lock;
4268 	boolean_t have_lock, full;
4269 	l2arc_write_callback_t *cb;
4270 	zio_t *pio, *wzio;
4271 	uint64_t guid = spa_guid(spa);
4272 
4273 	ASSERT(dev->l2ad_vdev != NULL);
4274 
4275 	pio = NULL;
4276 	write_sz = 0;
4277 	full = B_FALSE;
4278 	head = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
4279 	head->b_flags |= ARC_L2_WRITE_HEAD;
4280 
4281 	/*
4282 	 * Copy buffers for L2ARC writing.
4283 	 */
4284 	mutex_enter(&l2arc_buflist_mtx);
4285 	for (int try = 0; try <= 3; try++) {
4286 		list = l2arc_list_locked(try, &list_lock);
4287 		passed_sz = 0;
4288 
4289 		/*
4290 		 * L2ARC fast warmup.
4291 		 *
4292 		 * Until the ARC is warm and starts to evict, read from the
4293 		 * head of the ARC lists rather than the tail.
4294 		 */
4295 		headroom = target_sz * l2arc_headroom;
4296 		if (arc_warm == B_FALSE)
4297 			ab = list_head(list);
4298 		else
4299 			ab = list_tail(list);
4300 
4301 		for (; ab; ab = ab_prev) {
4302 			if (arc_warm == B_FALSE)
4303 				ab_prev = list_next(list, ab);
4304 			else
4305 				ab_prev = list_prev(list, ab);
4306 
4307 			hash_lock = HDR_LOCK(ab);
4308 			have_lock = MUTEX_HELD(hash_lock);
4309 			if (!have_lock && !mutex_tryenter(hash_lock)) {
4310 				/*
4311 				 * Skip this buffer rather than waiting.
4312 				 */
4313 				continue;
4314 			}
4315 
4316 			passed_sz += ab->b_size;
4317 			if (passed_sz > headroom) {
4318 				/*
4319 				 * Searched too far.
4320 				 */
4321 				mutex_exit(hash_lock);
4322 				break;
4323 			}
4324 
4325 			if (!l2arc_write_eligible(guid, ab)) {
4326 				mutex_exit(hash_lock);
4327 				continue;
4328 			}
4329 
4330 			if ((write_sz + ab->b_size) > target_sz) {
4331 				full = B_TRUE;
4332 				mutex_exit(hash_lock);
4333 				break;
4334 			}
4335 
4336 			if (pio == NULL) {
4337 				/*
4338 				 * Insert a dummy header on the buflist so
4339 				 * l2arc_write_done() can find where the
4340 				 * write buffers begin without searching.
4341 				 */
4342 				list_insert_head(dev->l2ad_buflist, head);
4343 
4344 				cb = kmem_alloc(
4345 				    sizeof (l2arc_write_callback_t), KM_SLEEP);
4346 				cb->l2wcb_dev = dev;
4347 				cb->l2wcb_head = head;
4348 				pio = zio_root(spa, l2arc_write_done, cb,
4349 				    ZIO_FLAG_CANFAIL);
4350 			}
4351 
4352 			/*
4353 			 * Create and add a new L2ARC header.
4354 			 */
4355 			hdrl2 = kmem_zalloc(sizeof (l2arc_buf_hdr_t), KM_SLEEP);
4356 			hdrl2->b_dev = dev;
4357 			hdrl2->b_daddr = dev->l2ad_hand;
4358 
4359 			ab->b_flags |= ARC_L2_WRITING;
4360 			ab->b_l2hdr = hdrl2;
4361 			list_insert_head(dev->l2ad_buflist, ab);
4362 			buf_data = ab->b_buf->b_data;
4363 			buf_sz = ab->b_size;
4364 
4365 			/*
4366 			 * Compute and store the buffer cksum before
4367 			 * writing.  On debug the cksum is verified first.
4368 			 */
4369 			arc_cksum_verify(ab->b_buf);
4370 			arc_cksum_compute(ab->b_buf, B_TRUE);
4371 
4372 			mutex_exit(hash_lock);
4373 
4374 			wzio = zio_write_phys(pio, dev->l2ad_vdev,
4375 			    dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF,
4376 			    NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE,
4377 			    ZIO_FLAG_CANFAIL, B_FALSE);
4378 
4379 			DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
4380 			    zio_t *, wzio);
4381 			(void) zio_nowait(wzio);
4382 
4383 			/*
4384 			 * Keep the clock hand suitably device-aligned.
4385 			 */
4386 			buf_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz);
4387 
4388 			write_sz += buf_sz;
4389 			dev->l2ad_hand += buf_sz;
4390 		}
4391 
4392 		mutex_exit(list_lock);
4393 
4394 		if (full == B_TRUE)
4395 			break;
4396 	}
4397 	mutex_exit(&l2arc_buflist_mtx);
4398 
4399 	if (pio == NULL) {
4400 		ASSERT3U(write_sz, ==, 0);
4401 		kmem_cache_free(hdr_cache, head);
4402 		return (0);
4403 	}
4404 
4405 	ASSERT3U(write_sz, <=, target_sz);
4406 	ARCSTAT_BUMP(arcstat_l2_writes_sent);
4407 	ARCSTAT_INCR(arcstat_l2_write_bytes, write_sz);
4408 	ARCSTAT_INCR(arcstat_l2_size, write_sz);
4409 	spa_l2cache_space_update(dev->l2ad_vdev, 0, write_sz);
4410 
4411 	/*
4412 	 * Bump device hand to the device start if it is approaching the end.
4413 	 * l2arc_evict() will already have evicted ahead for this case.
4414 	 */
4415 	if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) {
4416 		spa_l2cache_space_update(dev->l2ad_vdev, 0,
4417 		    dev->l2ad_end - dev->l2ad_hand);
4418 		dev->l2ad_hand = dev->l2ad_start;
4419 		dev->l2ad_evict = dev->l2ad_start;
4420 		dev->l2ad_first = B_FALSE;
4421 	}
4422 
4423 	dev->l2ad_writing = B_TRUE;
4424 	(void) zio_wait(pio);
4425 	dev->l2ad_writing = B_FALSE;
4426 
4427 	return (write_sz);
4428 }
4429 
4430 /*
4431  * This thread feeds the L2ARC at regular intervals.  This is the beating
4432  * heart of the L2ARC.
4433  */
4434 static void
4435 l2arc_feed_thread(void)
4436 {
4437 	callb_cpr_t cpr;
4438 	l2arc_dev_t *dev;
4439 	spa_t *spa;
4440 	uint64_t size, wrote;
4441 	clock_t begin, next = lbolt;
4442 
4443 	CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
4444 
4445 	mutex_enter(&l2arc_feed_thr_lock);
4446 
4447 	while (l2arc_thread_exit == 0) {
4448 		CALLB_CPR_SAFE_BEGIN(&cpr);
4449 		(void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock,
4450 		    next);
4451 		CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
4452 		next = lbolt + hz;
4453 
4454 		/*
4455 		 * Quick check for L2ARC devices.
4456 		 */
4457 		mutex_enter(&l2arc_dev_mtx);
4458 		if (l2arc_ndev == 0) {
4459 			mutex_exit(&l2arc_dev_mtx);
4460 			continue;
4461 		}
4462 		mutex_exit(&l2arc_dev_mtx);
4463 		begin = lbolt;
4464 
4465 		/*
4466 		 * This selects the next l2arc device to write to, and in
4467 		 * doing so the next spa to feed from: dev->l2ad_spa.   This
4468 		 * will return NULL if there are now no l2arc devices or if
4469 		 * they are all faulted.
4470 		 *
4471 		 * If a device is returned, its spa's config lock is also
4472 		 * held to prevent device removal.  l2arc_dev_get_next()
4473 		 * will grab and release l2arc_dev_mtx.
4474 		 */
4475 		if ((dev = l2arc_dev_get_next()) == NULL)
4476 			continue;
4477 
4478 		spa = dev->l2ad_spa;
4479 		ASSERT(spa != NULL);
4480 
4481 		/*
4482 		 * Avoid contributing to memory pressure.
4483 		 */
4484 		if (arc_reclaim_needed()) {
4485 			ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
4486 			spa_config_exit(spa, SCL_L2ARC, dev);
4487 			continue;
4488 		}
4489 
4490 		ARCSTAT_BUMP(arcstat_l2_feeds);
4491 
4492 		size = l2arc_write_size(dev);
4493 
4494 		/*
4495 		 * Evict L2ARC buffers that will be overwritten.
4496 		 */
4497 		l2arc_evict(dev, size, B_FALSE);
4498 
4499 		/*
4500 		 * Write ARC buffers.
4501 		 */
4502 		wrote = l2arc_write_buffers(spa, dev, size);
4503 
4504 		/*
4505 		 * Calculate interval between writes.
4506 		 */
4507 		next = l2arc_write_interval(begin, size, wrote);
4508 		spa_config_exit(spa, SCL_L2ARC, dev);
4509 	}
4510 
4511 	l2arc_thread_exit = 0;
4512 	cv_broadcast(&l2arc_feed_thr_cv);
4513 	CALLB_CPR_EXIT(&cpr);		/* drops l2arc_feed_thr_lock */
4514 	thread_exit();
4515 }
4516 
4517 boolean_t
4518 l2arc_vdev_present(vdev_t *vd)
4519 {
4520 	l2arc_dev_t *dev;
4521 
4522 	mutex_enter(&l2arc_dev_mtx);
4523 	for (dev = list_head(l2arc_dev_list); dev != NULL;
4524 	    dev = list_next(l2arc_dev_list, dev)) {
4525 		if (dev->l2ad_vdev == vd)
4526 			break;
4527 	}
4528 	mutex_exit(&l2arc_dev_mtx);
4529 
4530 	return (dev != NULL);
4531 }
4532 
4533 /*
4534  * Add a vdev for use by the L2ARC.  By this point the spa has already
4535  * validated the vdev and opened it.
4536  */
4537 void
4538 l2arc_add_vdev(spa_t *spa, vdev_t *vd, uint64_t start, uint64_t end)
4539 {
4540 	l2arc_dev_t *adddev;
4541 
4542 	ASSERT(!l2arc_vdev_present(vd));
4543 
4544 	/*
4545 	 * Create a new l2arc device entry.
4546 	 */
4547 	adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
4548 	adddev->l2ad_spa = spa;
4549 	adddev->l2ad_vdev = vd;
4550 	adddev->l2ad_write = l2arc_write_max;
4551 	adddev->l2ad_boost = l2arc_write_boost;
4552 	adddev->l2ad_start = start;
4553 	adddev->l2ad_end = end;
4554 	adddev->l2ad_hand = adddev->l2ad_start;
4555 	adddev->l2ad_evict = adddev->l2ad_start;
4556 	adddev->l2ad_first = B_TRUE;
4557 	adddev->l2ad_writing = B_FALSE;
4558 	ASSERT3U(adddev->l2ad_write, >, 0);
4559 
4560 	/*
4561 	 * This is a list of all ARC buffers that are still valid on the
4562 	 * device.
4563 	 */
4564 	adddev->l2ad_buflist = kmem_zalloc(sizeof (list_t), KM_SLEEP);
4565 	list_create(adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
4566 	    offsetof(arc_buf_hdr_t, b_l2node));
4567 
4568 	spa_l2cache_space_update(vd, adddev->l2ad_end - adddev->l2ad_hand, 0);
4569 
4570 	/*
4571 	 * Add device to global list
4572 	 */
4573 	mutex_enter(&l2arc_dev_mtx);
4574 	list_insert_head(l2arc_dev_list, adddev);
4575 	atomic_inc_64(&l2arc_ndev);
4576 	mutex_exit(&l2arc_dev_mtx);
4577 }
4578 
4579 /*
4580  * Remove a vdev from the L2ARC.
4581  */
4582 void
4583 l2arc_remove_vdev(vdev_t *vd)
4584 {
4585 	l2arc_dev_t *dev, *nextdev, *remdev = NULL;
4586 
4587 	/*
4588 	 * Find the device by vdev
4589 	 */
4590 	mutex_enter(&l2arc_dev_mtx);
4591 	for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
4592 		nextdev = list_next(l2arc_dev_list, dev);
4593 		if (vd == dev->l2ad_vdev) {
4594 			remdev = dev;
4595 			break;
4596 		}
4597 	}
4598 	ASSERT(remdev != NULL);
4599 
4600 	/*
4601 	 * Remove device from global list
4602 	 */
4603 	list_remove(l2arc_dev_list, remdev);
4604 	l2arc_dev_last = NULL;		/* may have been invalidated */
4605 	atomic_dec_64(&l2arc_ndev);
4606 	mutex_exit(&l2arc_dev_mtx);
4607 
4608 	/*
4609 	 * Clear all buflists and ARC references.  L2ARC device flush.
4610 	 */
4611 	l2arc_evict(remdev, 0, B_TRUE);
4612 	list_destroy(remdev->l2ad_buflist);
4613 	kmem_free(remdev->l2ad_buflist, sizeof (list_t));
4614 	kmem_free(remdev, sizeof (l2arc_dev_t));
4615 }
4616 
4617 void
4618 l2arc_init(void)
4619 {
4620 	l2arc_thread_exit = 0;
4621 	l2arc_ndev = 0;
4622 	l2arc_writes_sent = 0;
4623 	l2arc_writes_done = 0;
4624 
4625 	mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
4626 	cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
4627 	mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
4628 	mutex_init(&l2arc_buflist_mtx, NULL, MUTEX_DEFAULT, NULL);
4629 	mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
4630 
4631 	l2arc_dev_list = &L2ARC_dev_list;
4632 	l2arc_free_on_write = &L2ARC_free_on_write;
4633 	list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
4634 	    offsetof(l2arc_dev_t, l2ad_node));
4635 	list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
4636 	    offsetof(l2arc_data_free_t, l2df_list_node));
4637 }
4638 
4639 void
4640 l2arc_fini(void)
4641 {
4642 	/*
4643 	 * This is called from dmu_fini(), which is called from spa_fini();
4644 	 * Because of this, we can assume that all l2arc devices have
4645 	 * already been removed when the pools themselves were removed.
4646 	 */
4647 
4648 	l2arc_do_free_on_write();
4649 
4650 	mutex_destroy(&l2arc_feed_thr_lock);
4651 	cv_destroy(&l2arc_feed_thr_cv);
4652 	mutex_destroy(&l2arc_dev_mtx);
4653 	mutex_destroy(&l2arc_buflist_mtx);
4654 	mutex_destroy(&l2arc_free_on_write_mtx);
4655 
4656 	list_destroy(l2arc_dev_list);
4657 	list_destroy(l2arc_free_on_write);
4658 }
4659 
4660 void
4661 l2arc_start(void)
4662 {
4663 	if (!(spa_mode_global & FWRITE))
4664 		return;
4665 
4666 	(void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
4667 	    TS_RUN, minclsyspri);
4668 }
4669 
4670 void
4671 l2arc_stop(void)
4672 {
4673 	if (!(spa_mode_global & FWRITE))
4674 		return;
4675 
4676 	mutex_enter(&l2arc_feed_thr_lock);
4677 	cv_signal(&l2arc_feed_thr_cv);	/* kick thread out of startup */
4678 	l2arc_thread_exit = 1;
4679 	while (l2arc_thread_exit != 0)
4680 		cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
4681 	mutex_exit(&l2arc_feed_thr_lock);
4682 }
4683