1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 /* 29 * DVA-based Adjustable Replacement Cache 30 * 31 * While much of the theory of operation used here is 32 * based on the self-tuning, low overhead replacement cache 33 * presented by Megiddo and Modha at FAST 2003, there are some 34 * significant differences: 35 * 36 * 1. The Megiddo and Modha model assumes any page is evictable. 37 * Pages in its cache cannot be "locked" into memory. This makes 38 * the eviction algorithm simple: evict the last page in the list. 39 * This also make the performance characteristics easy to reason 40 * about. Our cache is not so simple. At any given moment, some 41 * subset of the blocks in the cache are un-evictable because we 42 * have handed out a reference to them. Blocks are only evictable 43 * when there are no external references active. This makes 44 * eviction far more problematic: we choose to evict the evictable 45 * blocks that are the "lowest" in the list. 46 * 47 * There are times when it is not possible to evict the requested 48 * space. In these circumstances we are unable to adjust the cache 49 * size. To prevent the cache growing unbounded at these times we 50 * implement a "cache throttle" that slows the flow of new data 51 * into the cache until we can make space available. 52 * 53 * 2. The Megiddo and Modha model assumes a fixed cache size. 54 * Pages are evicted when the cache is full and there is a cache 55 * miss. Our model has a variable sized cache. It grows with 56 * high use, but also tries to react to memory pressure from the 57 * operating system: decreasing its size when system memory is 58 * tight. 59 * 60 * 3. The Megiddo and Modha model assumes a fixed page size. All 61 * elements of the cache are therefor exactly the same size. So 62 * when adjusting the cache size following a cache miss, its simply 63 * a matter of choosing a single page to evict. In our model, we 64 * have variable sized cache blocks (rangeing from 512 bytes to 65 * 128K bytes). We therefor choose a set of blocks to evict to make 66 * space for a cache miss that approximates as closely as possible 67 * the space used by the new block. 68 * 69 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache" 70 * by N. Megiddo & D. Modha, FAST 2003 71 */ 72 73 /* 74 * The locking model: 75 * 76 * A new reference to a cache buffer can be obtained in two 77 * ways: 1) via a hash table lookup using the DVA as a key, 78 * or 2) via one of the ARC lists. The arc_read() interface 79 * uses method 1, while the internal arc algorithms for 80 * adjusting the cache use method 2. We therefor provide two 81 * types of locks: 1) the hash table lock array, and 2) the 82 * arc list locks. 83 * 84 * Buffers do not have their own mutexs, rather they rely on the 85 * hash table mutexs for the bulk of their protection (i.e. most 86 * fields in the arc_buf_hdr_t are protected by these mutexs). 87 * 88 * buf_hash_find() returns the appropriate mutex (held) when it 89 * locates the requested buffer in the hash table. It returns 90 * NULL for the mutex if the buffer was not in the table. 91 * 92 * buf_hash_remove() expects the appropriate hash mutex to be 93 * already held before it is invoked. 94 * 95 * Each arc state also has a mutex which is used to protect the 96 * buffer list associated with the state. When attempting to 97 * obtain a hash table lock while holding an arc list lock you 98 * must use: mutex_tryenter() to avoid deadlock. Also note that 99 * the active state mutex must be held before the ghost state mutex. 100 * 101 * Arc buffers may have an associated eviction callback function. 102 * This function will be invoked prior to removing the buffer (e.g. 103 * in arc_do_user_evicts()). Note however that the data associated 104 * with the buffer may be evicted prior to the callback. The callback 105 * must be made with *no locks held* (to prevent deadlock). Additionally, 106 * the users of callbacks must ensure that their private data is 107 * protected from simultaneous callbacks from arc_buf_evict() 108 * and arc_do_user_evicts(). 109 * 110 * Note that the majority of the performance stats are manipulated 111 * with atomic operations. 112 * 113 * The L2ARC uses the l2arc_buflist_mtx global mutex for the following: 114 * 115 * - L2ARC buflist creation 116 * - L2ARC buflist eviction 117 * - L2ARC write completion, which walks L2ARC buflists 118 * - ARC header destruction, as it removes from L2ARC buflists 119 * - ARC header release, as it removes from L2ARC buflists 120 */ 121 122 #include <sys/spa.h> 123 #include <sys/zio.h> 124 #include <sys/zio_checksum.h> 125 #include <sys/zfs_context.h> 126 #include <sys/arc.h> 127 #include <sys/refcount.h> 128 #ifdef _KERNEL 129 #include <sys/vmsystm.h> 130 #include <vm/anon.h> 131 #include <sys/fs/swapnode.h> 132 #include <sys/dnlc.h> 133 #endif 134 #include <sys/callb.h> 135 #include <sys/kstat.h> 136 137 static kmutex_t arc_reclaim_thr_lock; 138 static kcondvar_t arc_reclaim_thr_cv; /* used to signal reclaim thr */ 139 static uint8_t arc_thread_exit; 140 141 #define ARC_REDUCE_DNLC_PERCENT 3 142 uint_t arc_reduce_dnlc_percent = ARC_REDUCE_DNLC_PERCENT; 143 144 typedef enum arc_reclaim_strategy { 145 ARC_RECLAIM_AGGR, /* Aggressive reclaim strategy */ 146 ARC_RECLAIM_CONS /* Conservative reclaim strategy */ 147 } arc_reclaim_strategy_t; 148 149 /* number of seconds before growing cache again */ 150 static int arc_grow_retry = 60; 151 152 /* 153 * minimum lifespan of a prefetch block in clock ticks 154 * (initialized in arc_init()) 155 */ 156 static int arc_min_prefetch_lifespan; 157 158 static int arc_dead; 159 160 /* 161 * These tunables are for performance analysis. 162 */ 163 uint64_t zfs_arc_max; 164 uint64_t zfs_arc_min; 165 uint64_t zfs_arc_meta_limit = 0; 166 167 /* 168 * Note that buffers can be in one of 6 states: 169 * ARC_anon - anonymous (discussed below) 170 * ARC_mru - recently used, currently cached 171 * ARC_mru_ghost - recentely used, no longer in cache 172 * ARC_mfu - frequently used, currently cached 173 * ARC_mfu_ghost - frequently used, no longer in cache 174 * ARC_l2c_only - exists in L2ARC but not other states 175 * When there are no active references to the buffer, they are 176 * are linked onto a list in one of these arc states. These are 177 * the only buffers that can be evicted or deleted. Within each 178 * state there are multiple lists, one for meta-data and one for 179 * non-meta-data. Meta-data (indirect blocks, blocks of dnodes, 180 * etc.) is tracked separately so that it can be managed more 181 * explicitly: favored over data, limited explicitly. 182 * 183 * Anonymous buffers are buffers that are not associated with 184 * a DVA. These are buffers that hold dirty block copies 185 * before they are written to stable storage. By definition, 186 * they are "ref'd" and are considered part of arc_mru 187 * that cannot be freed. Generally, they will aquire a DVA 188 * as they are written and migrate onto the arc_mru list. 189 * 190 * The ARC_l2c_only state is for buffers that are in the second 191 * level ARC but no longer in any of the ARC_m* lists. The second 192 * level ARC itself may also contain buffers that are in any of 193 * the ARC_m* states - meaning that a buffer can exist in two 194 * places. The reason for the ARC_l2c_only state is to keep the 195 * buffer header in the hash table, so that reads that hit the 196 * second level ARC benefit from these fast lookups. 197 */ 198 199 typedef struct arc_state { 200 list_t arcs_list[ARC_BUFC_NUMTYPES]; /* list of evictable buffers */ 201 uint64_t arcs_lsize[ARC_BUFC_NUMTYPES]; /* amount of evictable data */ 202 uint64_t arcs_size; /* total amount of data in this state */ 203 kmutex_t arcs_mtx; 204 } arc_state_t; 205 206 /* The 6 states: */ 207 static arc_state_t ARC_anon; 208 static arc_state_t ARC_mru; 209 static arc_state_t ARC_mru_ghost; 210 static arc_state_t ARC_mfu; 211 static arc_state_t ARC_mfu_ghost; 212 static arc_state_t ARC_l2c_only; 213 214 typedef struct arc_stats { 215 kstat_named_t arcstat_hits; 216 kstat_named_t arcstat_misses; 217 kstat_named_t arcstat_demand_data_hits; 218 kstat_named_t arcstat_demand_data_misses; 219 kstat_named_t arcstat_demand_metadata_hits; 220 kstat_named_t arcstat_demand_metadata_misses; 221 kstat_named_t arcstat_prefetch_data_hits; 222 kstat_named_t arcstat_prefetch_data_misses; 223 kstat_named_t arcstat_prefetch_metadata_hits; 224 kstat_named_t arcstat_prefetch_metadata_misses; 225 kstat_named_t arcstat_mru_hits; 226 kstat_named_t arcstat_mru_ghost_hits; 227 kstat_named_t arcstat_mfu_hits; 228 kstat_named_t arcstat_mfu_ghost_hits; 229 kstat_named_t arcstat_deleted; 230 kstat_named_t arcstat_recycle_miss; 231 kstat_named_t arcstat_mutex_miss; 232 kstat_named_t arcstat_evict_skip; 233 kstat_named_t arcstat_hash_elements; 234 kstat_named_t arcstat_hash_elements_max; 235 kstat_named_t arcstat_hash_collisions; 236 kstat_named_t arcstat_hash_chains; 237 kstat_named_t arcstat_hash_chain_max; 238 kstat_named_t arcstat_p; 239 kstat_named_t arcstat_c; 240 kstat_named_t arcstat_c_min; 241 kstat_named_t arcstat_c_max; 242 kstat_named_t arcstat_size; 243 kstat_named_t arcstat_hdr_size; 244 kstat_named_t arcstat_l2_hits; 245 kstat_named_t arcstat_l2_misses; 246 kstat_named_t arcstat_l2_feeds; 247 kstat_named_t arcstat_l2_rw_clash; 248 kstat_named_t arcstat_l2_writes_sent; 249 kstat_named_t arcstat_l2_writes_done; 250 kstat_named_t arcstat_l2_writes_error; 251 kstat_named_t arcstat_l2_writes_hdr_miss; 252 kstat_named_t arcstat_l2_evict_lock_retry; 253 kstat_named_t arcstat_l2_evict_reading; 254 kstat_named_t arcstat_l2_free_on_write; 255 kstat_named_t arcstat_l2_abort_lowmem; 256 kstat_named_t arcstat_l2_cksum_bad; 257 kstat_named_t arcstat_l2_io_error; 258 kstat_named_t arcstat_l2_size; 259 kstat_named_t arcstat_l2_hdr_size; 260 } arc_stats_t; 261 262 static arc_stats_t arc_stats = { 263 { "hits", KSTAT_DATA_UINT64 }, 264 { "misses", KSTAT_DATA_UINT64 }, 265 { "demand_data_hits", KSTAT_DATA_UINT64 }, 266 { "demand_data_misses", KSTAT_DATA_UINT64 }, 267 { "demand_metadata_hits", KSTAT_DATA_UINT64 }, 268 { "demand_metadata_misses", KSTAT_DATA_UINT64 }, 269 { "prefetch_data_hits", KSTAT_DATA_UINT64 }, 270 { "prefetch_data_misses", KSTAT_DATA_UINT64 }, 271 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 }, 272 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 }, 273 { "mru_hits", KSTAT_DATA_UINT64 }, 274 { "mru_ghost_hits", KSTAT_DATA_UINT64 }, 275 { "mfu_hits", KSTAT_DATA_UINT64 }, 276 { "mfu_ghost_hits", KSTAT_DATA_UINT64 }, 277 { "deleted", KSTAT_DATA_UINT64 }, 278 { "recycle_miss", KSTAT_DATA_UINT64 }, 279 { "mutex_miss", KSTAT_DATA_UINT64 }, 280 { "evict_skip", KSTAT_DATA_UINT64 }, 281 { "hash_elements", KSTAT_DATA_UINT64 }, 282 { "hash_elements_max", KSTAT_DATA_UINT64 }, 283 { "hash_collisions", KSTAT_DATA_UINT64 }, 284 { "hash_chains", KSTAT_DATA_UINT64 }, 285 { "hash_chain_max", KSTAT_DATA_UINT64 }, 286 { "p", KSTAT_DATA_UINT64 }, 287 { "c", KSTAT_DATA_UINT64 }, 288 { "c_min", KSTAT_DATA_UINT64 }, 289 { "c_max", KSTAT_DATA_UINT64 }, 290 { "size", KSTAT_DATA_UINT64 }, 291 { "hdr_size", KSTAT_DATA_UINT64 }, 292 { "l2_hits", KSTAT_DATA_UINT64 }, 293 { "l2_misses", KSTAT_DATA_UINT64 }, 294 { "l2_feeds", KSTAT_DATA_UINT64 }, 295 { "l2_rw_clash", KSTAT_DATA_UINT64 }, 296 { "l2_writes_sent", KSTAT_DATA_UINT64 }, 297 { "l2_writes_done", KSTAT_DATA_UINT64 }, 298 { "l2_writes_error", KSTAT_DATA_UINT64 }, 299 { "l2_writes_hdr_miss", KSTAT_DATA_UINT64 }, 300 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 }, 301 { "l2_evict_reading", KSTAT_DATA_UINT64 }, 302 { "l2_free_on_write", KSTAT_DATA_UINT64 }, 303 { "l2_abort_lowmem", KSTAT_DATA_UINT64 }, 304 { "l2_cksum_bad", KSTAT_DATA_UINT64 }, 305 { "l2_io_error", KSTAT_DATA_UINT64 }, 306 { "l2_size", KSTAT_DATA_UINT64 }, 307 { "l2_hdr_size", KSTAT_DATA_UINT64 } 308 }; 309 310 #define ARCSTAT(stat) (arc_stats.stat.value.ui64) 311 312 #define ARCSTAT_INCR(stat, val) \ 313 atomic_add_64(&arc_stats.stat.value.ui64, (val)); 314 315 #define ARCSTAT_BUMP(stat) ARCSTAT_INCR(stat, 1) 316 #define ARCSTAT_BUMPDOWN(stat) ARCSTAT_INCR(stat, -1) 317 318 #define ARCSTAT_MAX(stat, val) { \ 319 uint64_t m; \ 320 while ((val) > (m = arc_stats.stat.value.ui64) && \ 321 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \ 322 continue; \ 323 } 324 325 #define ARCSTAT_MAXSTAT(stat) \ 326 ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64) 327 328 /* 329 * We define a macro to allow ARC hits/misses to be easily broken down by 330 * two separate conditions, giving a total of four different subtypes for 331 * each of hits and misses (so eight statistics total). 332 */ 333 #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \ 334 if (cond1) { \ 335 if (cond2) { \ 336 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \ 337 } else { \ 338 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \ 339 } \ 340 } else { \ 341 if (cond2) { \ 342 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \ 343 } else { \ 344 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\ 345 } \ 346 } 347 348 kstat_t *arc_ksp; 349 static arc_state_t *arc_anon; 350 static arc_state_t *arc_mru; 351 static arc_state_t *arc_mru_ghost; 352 static arc_state_t *arc_mfu; 353 static arc_state_t *arc_mfu_ghost; 354 static arc_state_t *arc_l2c_only; 355 356 /* 357 * There are several ARC variables that are critical to export as kstats -- 358 * but we don't want to have to grovel around in the kstat whenever we wish to 359 * manipulate them. For these variables, we therefore define them to be in 360 * terms of the statistic variable. This assures that we are not introducing 361 * the possibility of inconsistency by having shadow copies of the variables, 362 * while still allowing the code to be readable. 363 */ 364 #define arc_size ARCSTAT(arcstat_size) /* actual total arc size */ 365 #define arc_p ARCSTAT(arcstat_p) /* target size of MRU */ 366 #define arc_c ARCSTAT(arcstat_c) /* target size of cache */ 367 #define arc_c_min ARCSTAT(arcstat_c_min) /* min target cache size */ 368 #define arc_c_max ARCSTAT(arcstat_c_max) /* max target cache size */ 369 370 static int arc_no_grow; /* Don't try to grow cache size */ 371 static uint64_t arc_tempreserve; 372 static uint64_t arc_meta_used; 373 static uint64_t arc_meta_limit; 374 static uint64_t arc_meta_max = 0; 375 376 typedef struct l2arc_buf_hdr l2arc_buf_hdr_t; 377 378 typedef struct arc_callback arc_callback_t; 379 380 struct arc_callback { 381 void *acb_private; 382 arc_done_func_t *acb_done; 383 arc_byteswap_func_t *acb_byteswap; 384 arc_buf_t *acb_buf; 385 zio_t *acb_zio_dummy; 386 arc_callback_t *acb_next; 387 }; 388 389 typedef struct arc_write_callback arc_write_callback_t; 390 391 struct arc_write_callback { 392 void *awcb_private; 393 arc_done_func_t *awcb_ready; 394 arc_done_func_t *awcb_done; 395 arc_buf_t *awcb_buf; 396 }; 397 398 struct arc_buf_hdr { 399 /* protected by hash lock */ 400 dva_t b_dva; 401 uint64_t b_birth; 402 uint64_t b_cksum0; 403 404 kmutex_t b_freeze_lock; 405 zio_cksum_t *b_freeze_cksum; 406 407 arc_buf_hdr_t *b_hash_next; 408 arc_buf_t *b_buf; 409 uint32_t b_flags; 410 uint32_t b_datacnt; 411 412 arc_callback_t *b_acb; 413 kcondvar_t b_cv; 414 415 /* immutable */ 416 arc_buf_contents_t b_type; 417 uint64_t b_size; 418 spa_t *b_spa; 419 420 /* protected by arc state mutex */ 421 arc_state_t *b_state; 422 list_node_t b_arc_node; 423 424 /* updated atomically */ 425 clock_t b_arc_access; 426 427 /* self protecting */ 428 refcount_t b_refcnt; 429 430 l2arc_buf_hdr_t *b_l2hdr; 431 list_node_t b_l2node; 432 }; 433 434 static arc_buf_t *arc_eviction_list; 435 static kmutex_t arc_eviction_mtx; 436 static arc_buf_hdr_t arc_eviction_hdr; 437 static void arc_get_data_buf(arc_buf_t *buf); 438 static void arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock); 439 static int arc_evict_needed(arc_buf_contents_t type); 440 static void arc_evict_ghost(arc_state_t *state, int64_t bytes); 441 442 #define GHOST_STATE(state) \ 443 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \ 444 (state) == arc_l2c_only) 445 446 /* 447 * Private ARC flags. These flags are private ARC only flags that will show up 448 * in b_flags in the arc_hdr_buf_t. Some flags are publicly declared, and can 449 * be passed in as arc_flags in things like arc_read. However, these flags 450 * should never be passed and should only be set by ARC code. When adding new 451 * public flags, make sure not to smash the private ones. 452 */ 453 454 #define ARC_IN_HASH_TABLE (1 << 9) /* this buffer is hashed */ 455 #define ARC_IO_IN_PROGRESS (1 << 10) /* I/O in progress for buf */ 456 #define ARC_IO_ERROR (1 << 11) /* I/O failed for buf */ 457 #define ARC_FREED_IN_READ (1 << 12) /* buf freed while in read */ 458 #define ARC_BUF_AVAILABLE (1 << 13) /* block not in active use */ 459 #define ARC_INDIRECT (1 << 14) /* this is an indirect block */ 460 #define ARC_FREE_IN_PROGRESS (1 << 15) /* hdr about to be freed */ 461 #define ARC_DONT_L2CACHE (1 << 16) /* originated by prefetch */ 462 #define ARC_L2_READING (1 << 17) /* L2ARC read in progress */ 463 #define ARC_L2_WRITING (1 << 18) /* L2ARC write in progress */ 464 #define ARC_L2_EVICTED (1 << 19) /* evicted during I/O */ 465 #define ARC_L2_WRITE_HEAD (1 << 20) /* head of write list */ 466 467 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_IN_HASH_TABLE) 468 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_IO_IN_PROGRESS) 469 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_IO_ERROR) 470 #define HDR_FREED_IN_READ(hdr) ((hdr)->b_flags & ARC_FREED_IN_READ) 471 #define HDR_BUF_AVAILABLE(hdr) ((hdr)->b_flags & ARC_BUF_AVAILABLE) 472 #define HDR_FREE_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FREE_IN_PROGRESS) 473 #define HDR_DONT_L2CACHE(hdr) ((hdr)->b_flags & ARC_DONT_L2CACHE) 474 #define HDR_L2_READING(hdr) ((hdr)->b_flags & ARC_L2_READING) 475 #define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_L2_WRITING) 476 #define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_L2_EVICTED) 477 #define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_L2_WRITE_HEAD) 478 479 /* 480 * Hash table routines 481 */ 482 483 #define HT_LOCK_PAD 64 484 485 struct ht_lock { 486 kmutex_t ht_lock; 487 #ifdef _KERNEL 488 unsigned char pad[(HT_LOCK_PAD - sizeof (kmutex_t))]; 489 #endif 490 }; 491 492 #define BUF_LOCKS 256 493 typedef struct buf_hash_table { 494 uint64_t ht_mask; 495 arc_buf_hdr_t **ht_table; 496 struct ht_lock ht_locks[BUF_LOCKS]; 497 } buf_hash_table_t; 498 499 static buf_hash_table_t buf_hash_table; 500 501 #define BUF_HASH_INDEX(spa, dva, birth) \ 502 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask) 503 #define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)]) 504 #define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock)) 505 #define HDR_LOCK(buf) \ 506 (BUF_HASH_LOCK(BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth))) 507 508 uint64_t zfs_crc64_table[256]; 509 510 /* 511 * Level 2 ARC 512 */ 513 514 #define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */ 515 #define L2ARC_HEADROOM 4 /* num of writes */ 516 #define L2ARC_FEED_DELAY 180 /* starting grace */ 517 #define L2ARC_FEED_SECS 1 /* caching interval */ 518 519 #define l2arc_writes_sent ARCSTAT(arcstat_l2_writes_sent) 520 #define l2arc_writes_done ARCSTAT(arcstat_l2_writes_done) 521 522 /* 523 * L2ARC Performance Tunables 524 */ 525 uint64_t l2arc_write_max = L2ARC_WRITE_SIZE; /* default max write size */ 526 uint64_t l2arc_headroom = L2ARC_HEADROOM; /* number of dev writes */ 527 uint64_t l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */ 528 boolean_t l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */ 529 530 /* 531 * L2ARC Internals 532 */ 533 typedef struct l2arc_dev { 534 vdev_t *l2ad_vdev; /* vdev */ 535 spa_t *l2ad_spa; /* spa */ 536 uint64_t l2ad_hand; /* next write location */ 537 uint64_t l2ad_write; /* desired write size, bytes */ 538 uint64_t l2ad_start; /* first addr on device */ 539 uint64_t l2ad_end; /* last addr on device */ 540 uint64_t l2ad_evict; /* last addr eviction reached */ 541 boolean_t l2ad_first; /* first sweep through */ 542 list_t *l2ad_buflist; /* buffer list */ 543 list_node_t l2ad_node; /* device list node */ 544 } l2arc_dev_t; 545 546 static list_t L2ARC_dev_list; /* device list */ 547 static list_t *l2arc_dev_list; /* device list pointer */ 548 static kmutex_t l2arc_dev_mtx; /* device list mutex */ 549 static l2arc_dev_t *l2arc_dev_last; /* last device used */ 550 static kmutex_t l2arc_buflist_mtx; /* mutex for all buflists */ 551 static list_t L2ARC_free_on_write; /* free after write buf list */ 552 static list_t *l2arc_free_on_write; /* free after write list ptr */ 553 static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */ 554 static uint64_t l2arc_ndev; /* number of devices */ 555 556 typedef struct l2arc_read_callback { 557 arc_buf_t *l2rcb_buf; /* read buffer */ 558 spa_t *l2rcb_spa; /* spa */ 559 blkptr_t l2rcb_bp; /* original blkptr */ 560 zbookmark_t l2rcb_zb; /* original bookmark */ 561 int l2rcb_flags; /* original flags */ 562 } l2arc_read_callback_t; 563 564 typedef struct l2arc_write_callback { 565 l2arc_dev_t *l2wcb_dev; /* device info */ 566 arc_buf_hdr_t *l2wcb_head; /* head of write buflist */ 567 } l2arc_write_callback_t; 568 569 struct l2arc_buf_hdr { 570 /* protected by arc_buf_hdr mutex */ 571 l2arc_dev_t *b_dev; /* L2ARC device */ 572 daddr_t b_daddr; /* disk address, offset byte */ 573 }; 574 575 typedef struct l2arc_data_free { 576 /* protected by l2arc_free_on_write_mtx */ 577 void *l2df_data; 578 size_t l2df_size; 579 void (*l2df_func)(void *, size_t); 580 list_node_t l2df_list_node; 581 } l2arc_data_free_t; 582 583 static kmutex_t l2arc_feed_thr_lock; 584 static kcondvar_t l2arc_feed_thr_cv; 585 static uint8_t l2arc_thread_exit; 586 587 static void l2arc_read_done(zio_t *zio); 588 static void l2arc_hdr_stat_add(void); 589 static void l2arc_hdr_stat_remove(void); 590 591 static uint64_t 592 buf_hash(spa_t *spa, dva_t *dva, uint64_t birth) 593 { 594 uintptr_t spav = (uintptr_t)spa; 595 uint8_t *vdva = (uint8_t *)dva; 596 uint64_t crc = -1ULL; 597 int i; 598 599 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY); 600 601 for (i = 0; i < sizeof (dva_t); i++) 602 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF]; 603 604 crc ^= (spav>>8) ^ birth; 605 606 return (crc); 607 } 608 609 #define BUF_EMPTY(buf) \ 610 ((buf)->b_dva.dva_word[0] == 0 && \ 611 (buf)->b_dva.dva_word[1] == 0 && \ 612 (buf)->b_birth == 0) 613 614 #define BUF_EQUAL(spa, dva, birth, buf) \ 615 ((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \ 616 ((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \ 617 ((buf)->b_birth == birth) && ((buf)->b_spa == spa) 618 619 static arc_buf_hdr_t * 620 buf_hash_find(spa_t *spa, dva_t *dva, uint64_t birth, kmutex_t **lockp) 621 { 622 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth); 623 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 624 arc_buf_hdr_t *buf; 625 626 mutex_enter(hash_lock); 627 for (buf = buf_hash_table.ht_table[idx]; buf != NULL; 628 buf = buf->b_hash_next) { 629 if (BUF_EQUAL(spa, dva, birth, buf)) { 630 *lockp = hash_lock; 631 return (buf); 632 } 633 } 634 mutex_exit(hash_lock); 635 *lockp = NULL; 636 return (NULL); 637 } 638 639 /* 640 * Insert an entry into the hash table. If there is already an element 641 * equal to elem in the hash table, then the already existing element 642 * will be returned and the new element will not be inserted. 643 * Otherwise returns NULL. 644 */ 645 static arc_buf_hdr_t * 646 buf_hash_insert(arc_buf_hdr_t *buf, kmutex_t **lockp) 647 { 648 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth); 649 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 650 arc_buf_hdr_t *fbuf; 651 uint32_t i; 652 653 ASSERT(!HDR_IN_HASH_TABLE(buf)); 654 *lockp = hash_lock; 655 mutex_enter(hash_lock); 656 for (fbuf = buf_hash_table.ht_table[idx], i = 0; fbuf != NULL; 657 fbuf = fbuf->b_hash_next, i++) { 658 if (BUF_EQUAL(buf->b_spa, &buf->b_dva, buf->b_birth, fbuf)) 659 return (fbuf); 660 } 661 662 buf->b_hash_next = buf_hash_table.ht_table[idx]; 663 buf_hash_table.ht_table[idx] = buf; 664 buf->b_flags |= ARC_IN_HASH_TABLE; 665 666 /* collect some hash table performance data */ 667 if (i > 0) { 668 ARCSTAT_BUMP(arcstat_hash_collisions); 669 if (i == 1) 670 ARCSTAT_BUMP(arcstat_hash_chains); 671 672 ARCSTAT_MAX(arcstat_hash_chain_max, i); 673 } 674 675 ARCSTAT_BUMP(arcstat_hash_elements); 676 ARCSTAT_MAXSTAT(arcstat_hash_elements); 677 678 return (NULL); 679 } 680 681 static void 682 buf_hash_remove(arc_buf_hdr_t *buf) 683 { 684 arc_buf_hdr_t *fbuf, **bufp; 685 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth); 686 687 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx))); 688 ASSERT(HDR_IN_HASH_TABLE(buf)); 689 690 bufp = &buf_hash_table.ht_table[idx]; 691 while ((fbuf = *bufp) != buf) { 692 ASSERT(fbuf != NULL); 693 bufp = &fbuf->b_hash_next; 694 } 695 *bufp = buf->b_hash_next; 696 buf->b_hash_next = NULL; 697 buf->b_flags &= ~ARC_IN_HASH_TABLE; 698 699 /* collect some hash table performance data */ 700 ARCSTAT_BUMPDOWN(arcstat_hash_elements); 701 702 if (buf_hash_table.ht_table[idx] && 703 buf_hash_table.ht_table[idx]->b_hash_next == NULL) 704 ARCSTAT_BUMPDOWN(arcstat_hash_chains); 705 } 706 707 /* 708 * Global data structures and functions for the buf kmem cache. 709 */ 710 static kmem_cache_t *hdr_cache; 711 static kmem_cache_t *buf_cache; 712 713 static void 714 buf_fini(void) 715 { 716 int i; 717 718 kmem_free(buf_hash_table.ht_table, 719 (buf_hash_table.ht_mask + 1) * sizeof (void *)); 720 for (i = 0; i < BUF_LOCKS; i++) 721 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock); 722 kmem_cache_destroy(hdr_cache); 723 kmem_cache_destroy(buf_cache); 724 } 725 726 /* 727 * Constructor callback - called when the cache is empty 728 * and a new buf is requested. 729 */ 730 /* ARGSUSED */ 731 static int 732 hdr_cons(void *vbuf, void *unused, int kmflag) 733 { 734 arc_buf_hdr_t *buf = vbuf; 735 736 bzero(buf, sizeof (arc_buf_hdr_t)); 737 refcount_create(&buf->b_refcnt); 738 cv_init(&buf->b_cv, NULL, CV_DEFAULT, NULL); 739 mutex_init(&buf->b_freeze_lock, NULL, MUTEX_DEFAULT, NULL); 740 741 ARCSTAT_INCR(arcstat_hdr_size, sizeof (arc_buf_hdr_t)); 742 return (0); 743 } 744 745 /* 746 * Destructor callback - called when a cached buf is 747 * no longer required. 748 */ 749 /* ARGSUSED */ 750 static void 751 hdr_dest(void *vbuf, void *unused) 752 { 753 arc_buf_hdr_t *buf = vbuf; 754 755 refcount_destroy(&buf->b_refcnt); 756 cv_destroy(&buf->b_cv); 757 mutex_destroy(&buf->b_freeze_lock); 758 759 ARCSTAT_INCR(arcstat_hdr_size, -sizeof (arc_buf_hdr_t)); 760 } 761 762 /* 763 * Reclaim callback -- invoked when memory is low. 764 */ 765 /* ARGSUSED */ 766 static void 767 hdr_recl(void *unused) 768 { 769 dprintf("hdr_recl called\n"); 770 /* 771 * umem calls the reclaim func when we destroy the buf cache, 772 * which is after we do arc_fini(). 773 */ 774 if (!arc_dead) 775 cv_signal(&arc_reclaim_thr_cv); 776 } 777 778 static void 779 buf_init(void) 780 { 781 uint64_t *ct; 782 uint64_t hsize = 1ULL << 12; 783 int i, j; 784 785 /* 786 * The hash table is big enough to fill all of physical memory 787 * with an average 64K block size. The table will take up 788 * totalmem*sizeof(void*)/64K (eg. 128KB/GB with 8-byte pointers). 789 */ 790 while (hsize * 65536 < physmem * PAGESIZE) 791 hsize <<= 1; 792 retry: 793 buf_hash_table.ht_mask = hsize - 1; 794 buf_hash_table.ht_table = 795 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP); 796 if (buf_hash_table.ht_table == NULL) { 797 ASSERT(hsize > (1ULL << 8)); 798 hsize >>= 1; 799 goto retry; 800 } 801 802 hdr_cache = kmem_cache_create("arc_buf_hdr_t", sizeof (arc_buf_hdr_t), 803 0, hdr_cons, hdr_dest, hdr_recl, NULL, NULL, 0); 804 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t), 805 0, NULL, NULL, NULL, NULL, NULL, 0); 806 807 for (i = 0; i < 256; i++) 808 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--) 809 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY); 810 811 for (i = 0; i < BUF_LOCKS; i++) { 812 mutex_init(&buf_hash_table.ht_locks[i].ht_lock, 813 NULL, MUTEX_DEFAULT, NULL); 814 } 815 } 816 817 #define ARC_MINTIME (hz>>4) /* 62 ms */ 818 819 static void 820 arc_cksum_verify(arc_buf_t *buf) 821 { 822 zio_cksum_t zc; 823 824 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 825 return; 826 827 mutex_enter(&buf->b_hdr->b_freeze_lock); 828 if (buf->b_hdr->b_freeze_cksum == NULL || 829 (buf->b_hdr->b_flags & ARC_IO_ERROR)) { 830 mutex_exit(&buf->b_hdr->b_freeze_lock); 831 return; 832 } 833 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc); 834 if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc)) 835 panic("buffer modified while frozen!"); 836 mutex_exit(&buf->b_hdr->b_freeze_lock); 837 } 838 839 static int 840 arc_cksum_equal(arc_buf_t *buf) 841 { 842 zio_cksum_t zc; 843 int equal; 844 845 mutex_enter(&buf->b_hdr->b_freeze_lock); 846 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc); 847 equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc); 848 mutex_exit(&buf->b_hdr->b_freeze_lock); 849 850 return (equal); 851 } 852 853 static void 854 arc_cksum_compute(arc_buf_t *buf, boolean_t force) 855 { 856 if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY)) 857 return; 858 859 mutex_enter(&buf->b_hdr->b_freeze_lock); 860 if (buf->b_hdr->b_freeze_cksum != NULL) { 861 mutex_exit(&buf->b_hdr->b_freeze_lock); 862 return; 863 } 864 buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP); 865 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, 866 buf->b_hdr->b_freeze_cksum); 867 mutex_exit(&buf->b_hdr->b_freeze_lock); 868 } 869 870 void 871 arc_buf_thaw(arc_buf_t *buf) 872 { 873 if (zfs_flags & ZFS_DEBUG_MODIFY) { 874 if (buf->b_hdr->b_state != arc_anon) 875 panic("modifying non-anon buffer!"); 876 if (buf->b_hdr->b_flags & ARC_IO_IN_PROGRESS) 877 panic("modifying buffer while i/o in progress!"); 878 arc_cksum_verify(buf); 879 } 880 881 mutex_enter(&buf->b_hdr->b_freeze_lock); 882 if (buf->b_hdr->b_freeze_cksum != NULL) { 883 kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t)); 884 buf->b_hdr->b_freeze_cksum = NULL; 885 } 886 mutex_exit(&buf->b_hdr->b_freeze_lock); 887 } 888 889 void 890 arc_buf_freeze(arc_buf_t *buf) 891 { 892 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 893 return; 894 895 ASSERT(buf->b_hdr->b_freeze_cksum != NULL || 896 buf->b_hdr->b_state == arc_anon); 897 arc_cksum_compute(buf, B_FALSE); 898 } 899 900 static void 901 add_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag) 902 { 903 ASSERT(MUTEX_HELD(hash_lock)); 904 905 if ((refcount_add(&ab->b_refcnt, tag) == 1) && 906 (ab->b_state != arc_anon)) { 907 uint64_t delta = ab->b_size * ab->b_datacnt; 908 list_t *list = &ab->b_state->arcs_list[ab->b_type]; 909 uint64_t *size = &ab->b_state->arcs_lsize[ab->b_type]; 910 911 ASSERT(!MUTEX_HELD(&ab->b_state->arcs_mtx)); 912 mutex_enter(&ab->b_state->arcs_mtx); 913 ASSERT(list_link_active(&ab->b_arc_node)); 914 list_remove(list, ab); 915 if (GHOST_STATE(ab->b_state)) { 916 ASSERT3U(ab->b_datacnt, ==, 0); 917 ASSERT3P(ab->b_buf, ==, NULL); 918 delta = ab->b_size; 919 } 920 ASSERT(delta > 0); 921 ASSERT3U(*size, >=, delta); 922 atomic_add_64(size, -delta); 923 mutex_exit(&ab->b_state->arcs_mtx); 924 /* remove the prefetch flag is we get a reference */ 925 if (ab->b_flags & ARC_PREFETCH) 926 ab->b_flags &= ~ARC_PREFETCH; 927 } 928 } 929 930 static int 931 remove_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag) 932 { 933 int cnt; 934 arc_state_t *state = ab->b_state; 935 936 ASSERT(state == arc_anon || MUTEX_HELD(hash_lock)); 937 ASSERT(!GHOST_STATE(state)); 938 939 if (((cnt = refcount_remove(&ab->b_refcnt, tag)) == 0) && 940 (state != arc_anon)) { 941 uint64_t *size = &state->arcs_lsize[ab->b_type]; 942 943 ASSERT(!MUTEX_HELD(&state->arcs_mtx)); 944 mutex_enter(&state->arcs_mtx); 945 ASSERT(!list_link_active(&ab->b_arc_node)); 946 list_insert_head(&state->arcs_list[ab->b_type], ab); 947 ASSERT(ab->b_datacnt > 0); 948 atomic_add_64(size, ab->b_size * ab->b_datacnt); 949 mutex_exit(&state->arcs_mtx); 950 } 951 return (cnt); 952 } 953 954 /* 955 * Move the supplied buffer to the indicated state. The mutex 956 * for the buffer must be held by the caller. 957 */ 958 static void 959 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *ab, kmutex_t *hash_lock) 960 { 961 arc_state_t *old_state = ab->b_state; 962 int64_t refcnt = refcount_count(&ab->b_refcnt); 963 uint64_t from_delta, to_delta; 964 965 ASSERT(MUTEX_HELD(hash_lock)); 966 ASSERT(new_state != old_state); 967 ASSERT(refcnt == 0 || ab->b_datacnt > 0); 968 ASSERT(ab->b_datacnt == 0 || !GHOST_STATE(new_state)); 969 970 from_delta = to_delta = ab->b_datacnt * ab->b_size; 971 972 /* 973 * If this buffer is evictable, transfer it from the 974 * old state list to the new state list. 975 */ 976 if (refcnt == 0) { 977 if (old_state != arc_anon) { 978 int use_mutex = !MUTEX_HELD(&old_state->arcs_mtx); 979 uint64_t *size = &old_state->arcs_lsize[ab->b_type]; 980 981 if (use_mutex) 982 mutex_enter(&old_state->arcs_mtx); 983 984 ASSERT(list_link_active(&ab->b_arc_node)); 985 list_remove(&old_state->arcs_list[ab->b_type], ab); 986 987 /* 988 * If prefetching out of the ghost cache, 989 * we will have a non-null datacnt. 990 */ 991 if (GHOST_STATE(old_state) && ab->b_datacnt == 0) { 992 /* ghost elements have a ghost size */ 993 ASSERT(ab->b_buf == NULL); 994 from_delta = ab->b_size; 995 } 996 ASSERT3U(*size, >=, from_delta); 997 atomic_add_64(size, -from_delta); 998 999 if (use_mutex) 1000 mutex_exit(&old_state->arcs_mtx); 1001 } 1002 if (new_state != arc_anon) { 1003 int use_mutex = !MUTEX_HELD(&new_state->arcs_mtx); 1004 uint64_t *size = &new_state->arcs_lsize[ab->b_type]; 1005 1006 if (use_mutex) 1007 mutex_enter(&new_state->arcs_mtx); 1008 1009 list_insert_head(&new_state->arcs_list[ab->b_type], ab); 1010 1011 /* ghost elements have a ghost size */ 1012 if (GHOST_STATE(new_state)) { 1013 ASSERT(ab->b_datacnt == 0); 1014 ASSERT(ab->b_buf == NULL); 1015 to_delta = ab->b_size; 1016 } 1017 atomic_add_64(size, to_delta); 1018 1019 if (use_mutex) 1020 mutex_exit(&new_state->arcs_mtx); 1021 } 1022 } 1023 1024 ASSERT(!BUF_EMPTY(ab)); 1025 if (new_state == arc_anon) { 1026 buf_hash_remove(ab); 1027 } 1028 1029 /* adjust state sizes */ 1030 if (to_delta) 1031 atomic_add_64(&new_state->arcs_size, to_delta); 1032 if (from_delta) { 1033 ASSERT3U(old_state->arcs_size, >=, from_delta); 1034 atomic_add_64(&old_state->arcs_size, -from_delta); 1035 } 1036 ab->b_state = new_state; 1037 1038 /* adjust l2arc hdr stats */ 1039 if (new_state == arc_l2c_only) 1040 l2arc_hdr_stat_add(); 1041 else if (old_state == arc_l2c_only) 1042 l2arc_hdr_stat_remove(); 1043 } 1044 1045 void 1046 arc_space_consume(uint64_t space) 1047 { 1048 atomic_add_64(&arc_meta_used, space); 1049 atomic_add_64(&arc_size, space); 1050 } 1051 1052 void 1053 arc_space_return(uint64_t space) 1054 { 1055 ASSERT(arc_meta_used >= space); 1056 if (arc_meta_max < arc_meta_used) 1057 arc_meta_max = arc_meta_used; 1058 atomic_add_64(&arc_meta_used, -space); 1059 ASSERT(arc_size >= space); 1060 atomic_add_64(&arc_size, -space); 1061 } 1062 1063 void * 1064 arc_data_buf_alloc(uint64_t size) 1065 { 1066 if (arc_evict_needed(ARC_BUFC_DATA)) 1067 cv_signal(&arc_reclaim_thr_cv); 1068 atomic_add_64(&arc_size, size); 1069 return (zio_data_buf_alloc(size)); 1070 } 1071 1072 void 1073 arc_data_buf_free(void *buf, uint64_t size) 1074 { 1075 zio_data_buf_free(buf, size); 1076 ASSERT(arc_size >= size); 1077 atomic_add_64(&arc_size, -size); 1078 } 1079 1080 arc_buf_t * 1081 arc_buf_alloc(spa_t *spa, int size, void *tag, arc_buf_contents_t type) 1082 { 1083 arc_buf_hdr_t *hdr; 1084 arc_buf_t *buf; 1085 1086 ASSERT3U(size, >, 0); 1087 hdr = kmem_cache_alloc(hdr_cache, KM_SLEEP); 1088 ASSERT(BUF_EMPTY(hdr)); 1089 hdr->b_size = size; 1090 hdr->b_type = type; 1091 hdr->b_spa = spa; 1092 hdr->b_state = arc_anon; 1093 hdr->b_arc_access = 0; 1094 buf = kmem_cache_alloc(buf_cache, KM_SLEEP); 1095 buf->b_hdr = hdr; 1096 buf->b_data = NULL; 1097 buf->b_efunc = NULL; 1098 buf->b_private = NULL; 1099 buf->b_next = NULL; 1100 hdr->b_buf = buf; 1101 arc_get_data_buf(buf); 1102 hdr->b_datacnt = 1; 1103 hdr->b_flags = 0; 1104 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 1105 (void) refcount_add(&hdr->b_refcnt, tag); 1106 1107 return (buf); 1108 } 1109 1110 static arc_buf_t * 1111 arc_buf_clone(arc_buf_t *from) 1112 { 1113 arc_buf_t *buf; 1114 arc_buf_hdr_t *hdr = from->b_hdr; 1115 uint64_t size = hdr->b_size; 1116 1117 buf = kmem_cache_alloc(buf_cache, KM_SLEEP); 1118 buf->b_hdr = hdr; 1119 buf->b_data = NULL; 1120 buf->b_efunc = NULL; 1121 buf->b_private = NULL; 1122 buf->b_next = hdr->b_buf; 1123 hdr->b_buf = buf; 1124 arc_get_data_buf(buf); 1125 bcopy(from->b_data, buf->b_data, size); 1126 hdr->b_datacnt += 1; 1127 return (buf); 1128 } 1129 1130 void 1131 arc_buf_add_ref(arc_buf_t *buf, void* tag) 1132 { 1133 arc_buf_hdr_t *hdr; 1134 kmutex_t *hash_lock; 1135 1136 /* 1137 * Check to see if this buffer is currently being evicted via 1138 * arc_do_user_evicts(). 1139 */ 1140 mutex_enter(&arc_eviction_mtx); 1141 hdr = buf->b_hdr; 1142 if (hdr == NULL) { 1143 mutex_exit(&arc_eviction_mtx); 1144 return; 1145 } 1146 hash_lock = HDR_LOCK(hdr); 1147 mutex_exit(&arc_eviction_mtx); 1148 1149 mutex_enter(hash_lock); 1150 if (buf->b_data == NULL) { 1151 /* 1152 * This buffer is evicted. 1153 */ 1154 mutex_exit(hash_lock); 1155 return; 1156 } 1157 1158 ASSERT(buf->b_hdr == hdr); 1159 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu); 1160 add_reference(hdr, hash_lock, tag); 1161 arc_access(hdr, hash_lock); 1162 mutex_exit(hash_lock); 1163 ARCSTAT_BUMP(arcstat_hits); 1164 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH), 1165 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA, 1166 data, metadata, hits); 1167 } 1168 1169 /* 1170 * Free the arc data buffer. If it is an l2arc write in progress, 1171 * the buffer is placed on l2arc_free_on_write to be freed later. 1172 */ 1173 static void 1174 arc_buf_data_free(arc_buf_hdr_t *hdr, void (*free_func)(void *, size_t), 1175 void *data, size_t size) 1176 { 1177 if (HDR_L2_WRITING(hdr)) { 1178 l2arc_data_free_t *df; 1179 df = kmem_alloc(sizeof (l2arc_data_free_t), KM_SLEEP); 1180 df->l2df_data = data; 1181 df->l2df_size = size; 1182 df->l2df_func = free_func; 1183 mutex_enter(&l2arc_free_on_write_mtx); 1184 list_insert_head(l2arc_free_on_write, df); 1185 mutex_exit(&l2arc_free_on_write_mtx); 1186 ARCSTAT_BUMP(arcstat_l2_free_on_write); 1187 } else { 1188 free_func(data, size); 1189 } 1190 } 1191 1192 static void 1193 arc_buf_destroy(arc_buf_t *buf, boolean_t recycle, boolean_t all) 1194 { 1195 arc_buf_t **bufp; 1196 1197 /* free up data associated with the buf */ 1198 if (buf->b_data) { 1199 arc_state_t *state = buf->b_hdr->b_state; 1200 uint64_t size = buf->b_hdr->b_size; 1201 arc_buf_contents_t type = buf->b_hdr->b_type; 1202 1203 arc_cksum_verify(buf); 1204 if (!recycle) { 1205 if (type == ARC_BUFC_METADATA) { 1206 arc_buf_data_free(buf->b_hdr, zio_buf_free, 1207 buf->b_data, size); 1208 arc_space_return(size); 1209 } else { 1210 ASSERT(type == ARC_BUFC_DATA); 1211 arc_buf_data_free(buf->b_hdr, 1212 zio_data_buf_free, buf->b_data, size); 1213 atomic_add_64(&arc_size, -size); 1214 } 1215 } 1216 if (list_link_active(&buf->b_hdr->b_arc_node)) { 1217 uint64_t *cnt = &state->arcs_lsize[type]; 1218 1219 ASSERT(refcount_is_zero(&buf->b_hdr->b_refcnt)); 1220 ASSERT(state != arc_anon); 1221 1222 ASSERT3U(*cnt, >=, size); 1223 atomic_add_64(cnt, -size); 1224 } 1225 ASSERT3U(state->arcs_size, >=, size); 1226 atomic_add_64(&state->arcs_size, -size); 1227 buf->b_data = NULL; 1228 ASSERT(buf->b_hdr->b_datacnt > 0); 1229 buf->b_hdr->b_datacnt -= 1; 1230 } 1231 1232 /* only remove the buf if requested */ 1233 if (!all) 1234 return; 1235 1236 /* remove the buf from the hdr list */ 1237 for (bufp = &buf->b_hdr->b_buf; *bufp != buf; bufp = &(*bufp)->b_next) 1238 continue; 1239 *bufp = buf->b_next; 1240 1241 ASSERT(buf->b_efunc == NULL); 1242 1243 /* clean up the buf */ 1244 buf->b_hdr = NULL; 1245 kmem_cache_free(buf_cache, buf); 1246 } 1247 1248 static void 1249 arc_hdr_destroy(arc_buf_hdr_t *hdr) 1250 { 1251 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 1252 ASSERT3P(hdr->b_state, ==, arc_anon); 1253 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 1254 1255 if (hdr->b_l2hdr != NULL) { 1256 if (!MUTEX_HELD(&l2arc_buflist_mtx)) { 1257 /* 1258 * To prevent arc_free() and l2arc_evict() from 1259 * attempting to free the same buffer at the same time, 1260 * a FREE_IN_PROGRESS flag is given to arc_free() to 1261 * give it priority. l2arc_evict() can't destroy this 1262 * header while we are waiting on l2arc_buflist_mtx. 1263 */ 1264 mutex_enter(&l2arc_buflist_mtx); 1265 ASSERT(hdr->b_l2hdr != NULL); 1266 1267 list_remove(hdr->b_l2hdr->b_dev->l2ad_buflist, hdr); 1268 mutex_exit(&l2arc_buflist_mtx); 1269 } else { 1270 list_remove(hdr->b_l2hdr->b_dev->l2ad_buflist, hdr); 1271 } 1272 ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size); 1273 kmem_free(hdr->b_l2hdr, sizeof (l2arc_buf_hdr_t)); 1274 if (hdr->b_state == arc_l2c_only) 1275 l2arc_hdr_stat_remove(); 1276 hdr->b_l2hdr = NULL; 1277 } 1278 1279 if (!BUF_EMPTY(hdr)) { 1280 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 1281 bzero(&hdr->b_dva, sizeof (dva_t)); 1282 hdr->b_birth = 0; 1283 hdr->b_cksum0 = 0; 1284 } 1285 while (hdr->b_buf) { 1286 arc_buf_t *buf = hdr->b_buf; 1287 1288 if (buf->b_efunc) { 1289 mutex_enter(&arc_eviction_mtx); 1290 ASSERT(buf->b_hdr != NULL); 1291 arc_buf_destroy(hdr->b_buf, FALSE, FALSE); 1292 hdr->b_buf = buf->b_next; 1293 buf->b_hdr = &arc_eviction_hdr; 1294 buf->b_next = arc_eviction_list; 1295 arc_eviction_list = buf; 1296 mutex_exit(&arc_eviction_mtx); 1297 } else { 1298 arc_buf_destroy(hdr->b_buf, FALSE, TRUE); 1299 } 1300 } 1301 if (hdr->b_freeze_cksum != NULL) { 1302 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t)); 1303 hdr->b_freeze_cksum = NULL; 1304 } 1305 1306 ASSERT(!list_link_active(&hdr->b_arc_node)); 1307 ASSERT3P(hdr->b_hash_next, ==, NULL); 1308 ASSERT3P(hdr->b_acb, ==, NULL); 1309 kmem_cache_free(hdr_cache, hdr); 1310 } 1311 1312 void 1313 arc_buf_free(arc_buf_t *buf, void *tag) 1314 { 1315 arc_buf_hdr_t *hdr = buf->b_hdr; 1316 int hashed = hdr->b_state != arc_anon; 1317 1318 ASSERT(buf->b_efunc == NULL); 1319 ASSERT(buf->b_data != NULL); 1320 1321 if (hashed) { 1322 kmutex_t *hash_lock = HDR_LOCK(hdr); 1323 1324 mutex_enter(hash_lock); 1325 (void) remove_reference(hdr, hash_lock, tag); 1326 if (hdr->b_datacnt > 1) 1327 arc_buf_destroy(buf, FALSE, TRUE); 1328 else 1329 hdr->b_flags |= ARC_BUF_AVAILABLE; 1330 mutex_exit(hash_lock); 1331 } else if (HDR_IO_IN_PROGRESS(hdr)) { 1332 int destroy_hdr; 1333 /* 1334 * We are in the middle of an async write. Don't destroy 1335 * this buffer unless the write completes before we finish 1336 * decrementing the reference count. 1337 */ 1338 mutex_enter(&arc_eviction_mtx); 1339 (void) remove_reference(hdr, NULL, tag); 1340 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 1341 destroy_hdr = !HDR_IO_IN_PROGRESS(hdr); 1342 mutex_exit(&arc_eviction_mtx); 1343 if (destroy_hdr) 1344 arc_hdr_destroy(hdr); 1345 } else { 1346 if (remove_reference(hdr, NULL, tag) > 0) { 1347 ASSERT(HDR_IO_ERROR(hdr)); 1348 arc_buf_destroy(buf, FALSE, TRUE); 1349 } else { 1350 arc_hdr_destroy(hdr); 1351 } 1352 } 1353 } 1354 1355 int 1356 arc_buf_remove_ref(arc_buf_t *buf, void* tag) 1357 { 1358 arc_buf_hdr_t *hdr = buf->b_hdr; 1359 kmutex_t *hash_lock = HDR_LOCK(hdr); 1360 int no_callback = (buf->b_efunc == NULL); 1361 1362 if (hdr->b_state == arc_anon) { 1363 arc_buf_free(buf, tag); 1364 return (no_callback); 1365 } 1366 1367 mutex_enter(hash_lock); 1368 ASSERT(hdr->b_state != arc_anon); 1369 ASSERT(buf->b_data != NULL); 1370 1371 (void) remove_reference(hdr, hash_lock, tag); 1372 if (hdr->b_datacnt > 1) { 1373 if (no_callback) 1374 arc_buf_destroy(buf, FALSE, TRUE); 1375 } else if (no_callback) { 1376 ASSERT(hdr->b_buf == buf && buf->b_next == NULL); 1377 hdr->b_flags |= ARC_BUF_AVAILABLE; 1378 } 1379 ASSERT(no_callback || hdr->b_datacnt > 1 || 1380 refcount_is_zero(&hdr->b_refcnt)); 1381 mutex_exit(hash_lock); 1382 return (no_callback); 1383 } 1384 1385 int 1386 arc_buf_size(arc_buf_t *buf) 1387 { 1388 return (buf->b_hdr->b_size); 1389 } 1390 1391 /* 1392 * Evict buffers from list until we've removed the specified number of 1393 * bytes. Move the removed buffers to the appropriate evict state. 1394 * If the recycle flag is set, then attempt to "recycle" a buffer: 1395 * - look for a buffer to evict that is `bytes' long. 1396 * - return the data block from this buffer rather than freeing it. 1397 * This flag is used by callers that are trying to make space for a 1398 * new buffer in a full arc cache. 1399 */ 1400 static void * 1401 arc_evict(arc_state_t *state, int64_t bytes, boolean_t recycle, 1402 arc_buf_contents_t type) 1403 { 1404 arc_state_t *evicted_state; 1405 uint64_t bytes_evicted = 0, skipped = 0, missed = 0; 1406 arc_buf_hdr_t *ab, *ab_prev = NULL; 1407 list_t *list = &state->arcs_list[type]; 1408 kmutex_t *hash_lock; 1409 boolean_t have_lock; 1410 void *stolen = NULL; 1411 1412 ASSERT(state == arc_mru || state == arc_mfu); 1413 1414 evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost; 1415 1416 mutex_enter(&state->arcs_mtx); 1417 mutex_enter(&evicted_state->arcs_mtx); 1418 1419 for (ab = list_tail(list); ab; ab = ab_prev) { 1420 ab_prev = list_prev(list, ab); 1421 /* prefetch buffers have a minimum lifespan */ 1422 if (HDR_IO_IN_PROGRESS(ab) || 1423 (ab->b_flags & (ARC_PREFETCH|ARC_INDIRECT) && 1424 lbolt - ab->b_arc_access < arc_min_prefetch_lifespan)) { 1425 skipped++; 1426 continue; 1427 } 1428 /* "lookahead" for better eviction candidate */ 1429 if (recycle && ab->b_size != bytes && 1430 ab_prev && ab_prev->b_size == bytes) 1431 continue; 1432 hash_lock = HDR_LOCK(ab); 1433 have_lock = MUTEX_HELD(hash_lock); 1434 if (have_lock || mutex_tryenter(hash_lock)) { 1435 ASSERT3U(refcount_count(&ab->b_refcnt), ==, 0); 1436 ASSERT(ab->b_datacnt > 0); 1437 while (ab->b_buf) { 1438 arc_buf_t *buf = ab->b_buf; 1439 if (buf->b_data) { 1440 bytes_evicted += ab->b_size; 1441 if (recycle && ab->b_type == type && 1442 ab->b_size == bytes && 1443 !HDR_L2_WRITING(ab)) { 1444 stolen = buf->b_data; 1445 recycle = FALSE; 1446 } 1447 } 1448 if (buf->b_efunc) { 1449 mutex_enter(&arc_eviction_mtx); 1450 arc_buf_destroy(buf, 1451 buf->b_data == stolen, FALSE); 1452 ab->b_buf = buf->b_next; 1453 buf->b_hdr = &arc_eviction_hdr; 1454 buf->b_next = arc_eviction_list; 1455 arc_eviction_list = buf; 1456 mutex_exit(&arc_eviction_mtx); 1457 } else { 1458 arc_buf_destroy(buf, 1459 buf->b_data == stolen, TRUE); 1460 } 1461 } 1462 ASSERT(ab->b_datacnt == 0); 1463 arc_change_state(evicted_state, ab, hash_lock); 1464 ASSERT(HDR_IN_HASH_TABLE(ab)); 1465 ab->b_flags |= ARC_IN_HASH_TABLE; 1466 ab->b_flags &= ~ARC_BUF_AVAILABLE; 1467 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, ab); 1468 if (!have_lock) 1469 mutex_exit(hash_lock); 1470 if (bytes >= 0 && bytes_evicted >= bytes) 1471 break; 1472 } else { 1473 missed += 1; 1474 } 1475 } 1476 1477 mutex_exit(&evicted_state->arcs_mtx); 1478 mutex_exit(&state->arcs_mtx); 1479 1480 if (bytes_evicted < bytes) 1481 dprintf("only evicted %lld bytes from %x", 1482 (longlong_t)bytes_evicted, state); 1483 1484 if (skipped) 1485 ARCSTAT_INCR(arcstat_evict_skip, skipped); 1486 1487 if (missed) 1488 ARCSTAT_INCR(arcstat_mutex_miss, missed); 1489 1490 /* 1491 * We have just evicted some date into the ghost state, make 1492 * sure we also adjust the ghost state size if necessary. 1493 */ 1494 if (arc_no_grow && 1495 arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size > arc_c) { 1496 int64_t mru_over = arc_anon->arcs_size + arc_mru->arcs_size + 1497 arc_mru_ghost->arcs_size - arc_c; 1498 1499 if (mru_over > 0 && arc_mru_ghost->arcs_lsize[type] > 0) { 1500 int64_t todelete = 1501 MIN(arc_mru_ghost->arcs_lsize[type], mru_over); 1502 arc_evict_ghost(arc_mru_ghost, todelete); 1503 } else if (arc_mfu_ghost->arcs_lsize[type] > 0) { 1504 int64_t todelete = MIN(arc_mfu_ghost->arcs_lsize[type], 1505 arc_mru_ghost->arcs_size + 1506 arc_mfu_ghost->arcs_size - arc_c); 1507 arc_evict_ghost(arc_mfu_ghost, todelete); 1508 } 1509 } 1510 1511 return (stolen); 1512 } 1513 1514 /* 1515 * Remove buffers from list until we've removed the specified number of 1516 * bytes. Destroy the buffers that are removed. 1517 */ 1518 static void 1519 arc_evict_ghost(arc_state_t *state, int64_t bytes) 1520 { 1521 arc_buf_hdr_t *ab, *ab_prev; 1522 list_t *list = &state->arcs_list[ARC_BUFC_DATA]; 1523 kmutex_t *hash_lock; 1524 uint64_t bytes_deleted = 0; 1525 uint64_t bufs_skipped = 0; 1526 1527 ASSERT(GHOST_STATE(state)); 1528 top: 1529 mutex_enter(&state->arcs_mtx); 1530 for (ab = list_tail(list); ab; ab = ab_prev) { 1531 ab_prev = list_prev(list, ab); 1532 hash_lock = HDR_LOCK(ab); 1533 if (mutex_tryenter(hash_lock)) { 1534 ASSERT(!HDR_IO_IN_PROGRESS(ab)); 1535 ASSERT(ab->b_buf == NULL); 1536 ARCSTAT_BUMP(arcstat_deleted); 1537 bytes_deleted += ab->b_size; 1538 1539 if (ab->b_l2hdr != NULL) { 1540 /* 1541 * This buffer is cached on the 2nd Level ARC; 1542 * don't destroy the header. 1543 */ 1544 arc_change_state(arc_l2c_only, ab, hash_lock); 1545 mutex_exit(hash_lock); 1546 } else { 1547 arc_change_state(arc_anon, ab, hash_lock); 1548 mutex_exit(hash_lock); 1549 arc_hdr_destroy(ab); 1550 } 1551 1552 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, ab); 1553 if (bytes >= 0 && bytes_deleted >= bytes) 1554 break; 1555 } else { 1556 if (bytes < 0) { 1557 mutex_exit(&state->arcs_mtx); 1558 mutex_enter(hash_lock); 1559 mutex_exit(hash_lock); 1560 goto top; 1561 } 1562 bufs_skipped += 1; 1563 } 1564 } 1565 mutex_exit(&state->arcs_mtx); 1566 1567 if (list == &state->arcs_list[ARC_BUFC_DATA] && 1568 (bytes < 0 || bytes_deleted < bytes)) { 1569 list = &state->arcs_list[ARC_BUFC_METADATA]; 1570 goto top; 1571 } 1572 1573 if (bufs_skipped) { 1574 ARCSTAT_INCR(arcstat_mutex_miss, bufs_skipped); 1575 ASSERT(bytes >= 0); 1576 } 1577 1578 if (bytes_deleted < bytes) 1579 dprintf("only deleted %lld bytes from %p", 1580 (longlong_t)bytes_deleted, state); 1581 } 1582 1583 static void 1584 arc_adjust(void) 1585 { 1586 int64_t top_sz, mru_over, arc_over, todelete; 1587 1588 top_sz = arc_anon->arcs_size + arc_mru->arcs_size; 1589 1590 if (top_sz > arc_p && arc_mru->arcs_lsize[ARC_BUFC_DATA] > 0) { 1591 int64_t toevict = 1592 MIN(arc_mru->arcs_lsize[ARC_BUFC_DATA], top_sz - arc_p); 1593 (void) arc_evict(arc_mru, toevict, FALSE, ARC_BUFC_DATA); 1594 top_sz = arc_anon->arcs_size + arc_mru->arcs_size; 1595 } 1596 1597 if (top_sz > arc_p && arc_mru->arcs_lsize[ARC_BUFC_METADATA] > 0) { 1598 int64_t toevict = 1599 MIN(arc_mru->arcs_lsize[ARC_BUFC_METADATA], top_sz - arc_p); 1600 (void) arc_evict(arc_mru, toevict, FALSE, ARC_BUFC_METADATA); 1601 top_sz = arc_anon->arcs_size + arc_mru->arcs_size; 1602 } 1603 1604 mru_over = top_sz + arc_mru_ghost->arcs_size - arc_c; 1605 1606 if (mru_over > 0) { 1607 if (arc_mru_ghost->arcs_size > 0) { 1608 todelete = MIN(arc_mru_ghost->arcs_size, mru_over); 1609 arc_evict_ghost(arc_mru_ghost, todelete); 1610 } 1611 } 1612 1613 if ((arc_over = arc_size - arc_c) > 0) { 1614 int64_t tbl_over; 1615 1616 if (arc_mfu->arcs_lsize[ARC_BUFC_DATA] > 0) { 1617 int64_t toevict = 1618 MIN(arc_mfu->arcs_lsize[ARC_BUFC_DATA], arc_over); 1619 (void) arc_evict(arc_mfu, toevict, FALSE, 1620 ARC_BUFC_DATA); 1621 arc_over = arc_size - arc_c; 1622 } 1623 1624 if (arc_over > 0 && 1625 arc_mfu->arcs_lsize[ARC_BUFC_METADATA] > 0) { 1626 int64_t toevict = 1627 MIN(arc_mfu->arcs_lsize[ARC_BUFC_METADATA], 1628 arc_over); 1629 (void) arc_evict(arc_mfu, toevict, FALSE, 1630 ARC_BUFC_METADATA); 1631 } 1632 1633 tbl_over = arc_size + arc_mru_ghost->arcs_size + 1634 arc_mfu_ghost->arcs_size - arc_c * 2; 1635 1636 if (tbl_over > 0 && arc_mfu_ghost->arcs_size > 0) { 1637 todelete = MIN(arc_mfu_ghost->arcs_size, tbl_over); 1638 arc_evict_ghost(arc_mfu_ghost, todelete); 1639 } 1640 } 1641 } 1642 1643 static void 1644 arc_do_user_evicts(void) 1645 { 1646 mutex_enter(&arc_eviction_mtx); 1647 while (arc_eviction_list != NULL) { 1648 arc_buf_t *buf = arc_eviction_list; 1649 arc_eviction_list = buf->b_next; 1650 buf->b_hdr = NULL; 1651 mutex_exit(&arc_eviction_mtx); 1652 1653 if (buf->b_efunc != NULL) 1654 VERIFY(buf->b_efunc(buf) == 0); 1655 1656 buf->b_efunc = NULL; 1657 buf->b_private = NULL; 1658 kmem_cache_free(buf_cache, buf); 1659 mutex_enter(&arc_eviction_mtx); 1660 } 1661 mutex_exit(&arc_eviction_mtx); 1662 } 1663 1664 /* 1665 * Flush all *evictable* data from the cache. 1666 * NOTE: this will not touch "active" (i.e. referenced) data. 1667 */ 1668 void 1669 arc_flush(void) 1670 { 1671 while (list_head(&arc_mru->arcs_list[ARC_BUFC_DATA])) 1672 (void) arc_evict(arc_mru, -1, FALSE, ARC_BUFC_DATA); 1673 while (list_head(&arc_mru->arcs_list[ARC_BUFC_METADATA])) 1674 (void) arc_evict(arc_mru, -1, FALSE, ARC_BUFC_METADATA); 1675 while (list_head(&arc_mfu->arcs_list[ARC_BUFC_DATA])) 1676 (void) arc_evict(arc_mfu, -1, FALSE, ARC_BUFC_DATA); 1677 while (list_head(&arc_mfu->arcs_list[ARC_BUFC_METADATA])) 1678 (void) arc_evict(arc_mfu, -1, FALSE, ARC_BUFC_METADATA); 1679 1680 arc_evict_ghost(arc_mru_ghost, -1); 1681 arc_evict_ghost(arc_mfu_ghost, -1); 1682 1683 mutex_enter(&arc_reclaim_thr_lock); 1684 arc_do_user_evicts(); 1685 mutex_exit(&arc_reclaim_thr_lock); 1686 ASSERT(arc_eviction_list == NULL); 1687 } 1688 1689 int arc_shrink_shift = 5; /* log2(fraction of arc to reclaim) */ 1690 1691 void 1692 arc_shrink(void) 1693 { 1694 if (arc_c > arc_c_min) { 1695 uint64_t to_free; 1696 1697 #ifdef _KERNEL 1698 to_free = MAX(arc_c >> arc_shrink_shift, ptob(needfree)); 1699 #else 1700 to_free = arc_c >> arc_shrink_shift; 1701 #endif 1702 if (arc_c > arc_c_min + to_free) 1703 atomic_add_64(&arc_c, -to_free); 1704 else 1705 arc_c = arc_c_min; 1706 1707 atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift)); 1708 if (arc_c > arc_size) 1709 arc_c = MAX(arc_size, arc_c_min); 1710 if (arc_p > arc_c) 1711 arc_p = (arc_c >> 1); 1712 ASSERT(arc_c >= arc_c_min); 1713 ASSERT((int64_t)arc_p >= 0); 1714 } 1715 1716 if (arc_size > arc_c) 1717 arc_adjust(); 1718 } 1719 1720 static int 1721 arc_reclaim_needed(void) 1722 { 1723 uint64_t extra; 1724 1725 #ifdef _KERNEL 1726 1727 if (needfree) 1728 return (1); 1729 1730 /* 1731 * take 'desfree' extra pages, so we reclaim sooner, rather than later 1732 */ 1733 extra = desfree; 1734 1735 /* 1736 * check that we're out of range of the pageout scanner. It starts to 1737 * schedule paging if freemem is less than lotsfree and needfree. 1738 * lotsfree is the high-water mark for pageout, and needfree is the 1739 * number of needed free pages. We add extra pages here to make sure 1740 * the scanner doesn't start up while we're freeing memory. 1741 */ 1742 if (freemem < lotsfree + needfree + extra) 1743 return (1); 1744 1745 /* 1746 * check to make sure that swapfs has enough space so that anon 1747 * reservations can still succeed. anon_resvmem() checks that the 1748 * availrmem is greater than swapfs_minfree, and the number of reserved 1749 * swap pages. We also add a bit of extra here just to prevent 1750 * circumstances from getting really dire. 1751 */ 1752 if (availrmem < swapfs_minfree + swapfs_reserve + extra) 1753 return (1); 1754 1755 #if defined(__i386) 1756 /* 1757 * If we're on an i386 platform, it's possible that we'll exhaust the 1758 * kernel heap space before we ever run out of available physical 1759 * memory. Most checks of the size of the heap_area compare against 1760 * tune.t_minarmem, which is the minimum available real memory that we 1761 * can have in the system. However, this is generally fixed at 25 pages 1762 * which is so low that it's useless. In this comparison, we seek to 1763 * calculate the total heap-size, and reclaim if more than 3/4ths of the 1764 * heap is allocated. (Or, in the calculation, if less than 1/4th is 1765 * free) 1766 */ 1767 if (btop(vmem_size(heap_arena, VMEM_FREE)) < 1768 (btop(vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC)) >> 2)) 1769 return (1); 1770 #endif 1771 1772 #else 1773 if (spa_get_random(100) == 0) 1774 return (1); 1775 #endif 1776 return (0); 1777 } 1778 1779 static void 1780 arc_kmem_reap_now(arc_reclaim_strategy_t strat) 1781 { 1782 size_t i; 1783 kmem_cache_t *prev_cache = NULL; 1784 kmem_cache_t *prev_data_cache = NULL; 1785 extern kmem_cache_t *zio_buf_cache[]; 1786 extern kmem_cache_t *zio_data_buf_cache[]; 1787 1788 #ifdef _KERNEL 1789 if (arc_meta_used >= arc_meta_limit) { 1790 /* 1791 * We are exceeding our meta-data cache limit. 1792 * Purge some DNLC entries to release holds on meta-data. 1793 */ 1794 dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent); 1795 } 1796 #if defined(__i386) 1797 /* 1798 * Reclaim unused memory from all kmem caches. 1799 */ 1800 kmem_reap(); 1801 #endif 1802 #endif 1803 1804 /* 1805 * An aggressive reclamation will shrink the cache size as well as 1806 * reap free buffers from the arc kmem caches. 1807 */ 1808 if (strat == ARC_RECLAIM_AGGR) 1809 arc_shrink(); 1810 1811 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) { 1812 if (zio_buf_cache[i] != prev_cache) { 1813 prev_cache = zio_buf_cache[i]; 1814 kmem_cache_reap_now(zio_buf_cache[i]); 1815 } 1816 if (zio_data_buf_cache[i] != prev_data_cache) { 1817 prev_data_cache = zio_data_buf_cache[i]; 1818 kmem_cache_reap_now(zio_data_buf_cache[i]); 1819 } 1820 } 1821 kmem_cache_reap_now(buf_cache); 1822 kmem_cache_reap_now(hdr_cache); 1823 } 1824 1825 static void 1826 arc_reclaim_thread(void) 1827 { 1828 clock_t growtime = 0; 1829 arc_reclaim_strategy_t last_reclaim = ARC_RECLAIM_CONS; 1830 callb_cpr_t cpr; 1831 1832 CALLB_CPR_INIT(&cpr, &arc_reclaim_thr_lock, callb_generic_cpr, FTAG); 1833 1834 mutex_enter(&arc_reclaim_thr_lock); 1835 while (arc_thread_exit == 0) { 1836 if (arc_reclaim_needed()) { 1837 1838 if (arc_no_grow) { 1839 if (last_reclaim == ARC_RECLAIM_CONS) { 1840 last_reclaim = ARC_RECLAIM_AGGR; 1841 } else { 1842 last_reclaim = ARC_RECLAIM_CONS; 1843 } 1844 } else { 1845 arc_no_grow = TRUE; 1846 last_reclaim = ARC_RECLAIM_AGGR; 1847 membar_producer(); 1848 } 1849 1850 /* reset the growth delay for every reclaim */ 1851 growtime = lbolt + (arc_grow_retry * hz); 1852 1853 arc_kmem_reap_now(last_reclaim); 1854 1855 } else if (arc_no_grow && lbolt >= growtime) { 1856 arc_no_grow = FALSE; 1857 } 1858 1859 if (2 * arc_c < arc_size + 1860 arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size) 1861 arc_adjust(); 1862 1863 if (arc_eviction_list != NULL) 1864 arc_do_user_evicts(); 1865 1866 /* block until needed, or one second, whichever is shorter */ 1867 CALLB_CPR_SAFE_BEGIN(&cpr); 1868 (void) cv_timedwait(&arc_reclaim_thr_cv, 1869 &arc_reclaim_thr_lock, (lbolt + hz)); 1870 CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_thr_lock); 1871 } 1872 1873 arc_thread_exit = 0; 1874 cv_broadcast(&arc_reclaim_thr_cv); 1875 CALLB_CPR_EXIT(&cpr); /* drops arc_reclaim_thr_lock */ 1876 thread_exit(); 1877 } 1878 1879 /* 1880 * Adapt arc info given the number of bytes we are trying to add and 1881 * the state that we are comming from. This function is only called 1882 * when we are adding new content to the cache. 1883 */ 1884 static void 1885 arc_adapt(int bytes, arc_state_t *state) 1886 { 1887 int mult; 1888 1889 if (state == arc_l2c_only) 1890 return; 1891 1892 ASSERT(bytes > 0); 1893 /* 1894 * Adapt the target size of the MRU list: 1895 * - if we just hit in the MRU ghost list, then increase 1896 * the target size of the MRU list. 1897 * - if we just hit in the MFU ghost list, then increase 1898 * the target size of the MFU list by decreasing the 1899 * target size of the MRU list. 1900 */ 1901 if (state == arc_mru_ghost) { 1902 mult = ((arc_mru_ghost->arcs_size >= arc_mfu_ghost->arcs_size) ? 1903 1 : (arc_mfu_ghost->arcs_size/arc_mru_ghost->arcs_size)); 1904 1905 arc_p = MIN(arc_c, arc_p + bytes * mult); 1906 } else if (state == arc_mfu_ghost) { 1907 mult = ((arc_mfu_ghost->arcs_size >= arc_mru_ghost->arcs_size) ? 1908 1 : (arc_mru_ghost->arcs_size/arc_mfu_ghost->arcs_size)); 1909 1910 arc_p = MAX(0, (int64_t)arc_p - bytes * mult); 1911 } 1912 ASSERT((int64_t)arc_p >= 0); 1913 1914 if (arc_reclaim_needed()) { 1915 cv_signal(&arc_reclaim_thr_cv); 1916 return; 1917 } 1918 1919 if (arc_no_grow) 1920 return; 1921 1922 if (arc_c >= arc_c_max) 1923 return; 1924 1925 /* 1926 * If we're within (2 * maxblocksize) bytes of the target 1927 * cache size, increment the target cache size 1928 */ 1929 if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) { 1930 atomic_add_64(&arc_c, (int64_t)bytes); 1931 if (arc_c > arc_c_max) 1932 arc_c = arc_c_max; 1933 else if (state == arc_anon) 1934 atomic_add_64(&arc_p, (int64_t)bytes); 1935 if (arc_p > arc_c) 1936 arc_p = arc_c; 1937 } 1938 ASSERT((int64_t)arc_p >= 0); 1939 } 1940 1941 /* 1942 * Check if the cache has reached its limits and eviction is required 1943 * prior to insert. 1944 */ 1945 static int 1946 arc_evict_needed(arc_buf_contents_t type) 1947 { 1948 if (type == ARC_BUFC_METADATA && arc_meta_used >= arc_meta_limit) 1949 return (1); 1950 1951 #ifdef _KERNEL 1952 /* 1953 * If zio data pages are being allocated out of a separate heap segment, 1954 * then enforce that the size of available vmem for this area remains 1955 * above about 1/32nd free. 1956 */ 1957 if (type == ARC_BUFC_DATA && zio_arena != NULL && 1958 vmem_size(zio_arena, VMEM_FREE) < 1959 (vmem_size(zio_arena, VMEM_ALLOC) >> 5)) 1960 return (1); 1961 #endif 1962 1963 if (arc_reclaim_needed()) 1964 return (1); 1965 1966 return (arc_size > arc_c); 1967 } 1968 1969 /* 1970 * The buffer, supplied as the first argument, needs a data block. 1971 * So, if we are at cache max, determine which cache should be victimized. 1972 * We have the following cases: 1973 * 1974 * 1. Insert for MRU, p > sizeof(arc_anon + arc_mru) -> 1975 * In this situation if we're out of space, but the resident size of the MFU is 1976 * under the limit, victimize the MFU cache to satisfy this insertion request. 1977 * 1978 * 2. Insert for MRU, p <= sizeof(arc_anon + arc_mru) -> 1979 * Here, we've used up all of the available space for the MRU, so we need to 1980 * evict from our own cache instead. Evict from the set of resident MRU 1981 * entries. 1982 * 1983 * 3. Insert for MFU (c - p) > sizeof(arc_mfu) -> 1984 * c minus p represents the MFU space in the cache, since p is the size of the 1985 * cache that is dedicated to the MRU. In this situation there's still space on 1986 * the MFU side, so the MRU side needs to be victimized. 1987 * 1988 * 4. Insert for MFU (c - p) < sizeof(arc_mfu) -> 1989 * MFU's resident set is consuming more space than it has been allotted. In 1990 * this situation, we must victimize our own cache, the MFU, for this insertion. 1991 */ 1992 static void 1993 arc_get_data_buf(arc_buf_t *buf) 1994 { 1995 arc_state_t *state = buf->b_hdr->b_state; 1996 uint64_t size = buf->b_hdr->b_size; 1997 arc_buf_contents_t type = buf->b_hdr->b_type; 1998 1999 arc_adapt(size, state); 2000 2001 /* 2002 * We have not yet reached cache maximum size, 2003 * just allocate a new buffer. 2004 */ 2005 if (!arc_evict_needed(type)) { 2006 if (type == ARC_BUFC_METADATA) { 2007 buf->b_data = zio_buf_alloc(size); 2008 arc_space_consume(size); 2009 } else { 2010 ASSERT(type == ARC_BUFC_DATA); 2011 buf->b_data = zio_data_buf_alloc(size); 2012 atomic_add_64(&arc_size, size); 2013 } 2014 goto out; 2015 } 2016 2017 /* 2018 * If we are prefetching from the mfu ghost list, this buffer 2019 * will end up on the mru list; so steal space from there. 2020 */ 2021 if (state == arc_mfu_ghost) 2022 state = buf->b_hdr->b_flags & ARC_PREFETCH ? arc_mru : arc_mfu; 2023 else if (state == arc_mru_ghost) 2024 state = arc_mru; 2025 2026 if (state == arc_mru || state == arc_anon) { 2027 uint64_t mru_used = arc_anon->arcs_size + arc_mru->arcs_size; 2028 state = (arc_mfu->arcs_lsize[type] > 0 && 2029 arc_p > mru_used) ? arc_mfu : arc_mru; 2030 } else { 2031 /* MFU cases */ 2032 uint64_t mfu_space = arc_c - arc_p; 2033 state = (arc_mru->arcs_lsize[type] > 0 && 2034 mfu_space > arc_mfu->arcs_size) ? arc_mru : arc_mfu; 2035 } 2036 if ((buf->b_data = arc_evict(state, size, TRUE, type)) == NULL) { 2037 if (type == ARC_BUFC_METADATA) { 2038 buf->b_data = zio_buf_alloc(size); 2039 arc_space_consume(size); 2040 } else { 2041 ASSERT(type == ARC_BUFC_DATA); 2042 buf->b_data = zio_data_buf_alloc(size); 2043 atomic_add_64(&arc_size, size); 2044 } 2045 ARCSTAT_BUMP(arcstat_recycle_miss); 2046 } 2047 ASSERT(buf->b_data != NULL); 2048 out: 2049 /* 2050 * Update the state size. Note that ghost states have a 2051 * "ghost size" and so don't need to be updated. 2052 */ 2053 if (!GHOST_STATE(buf->b_hdr->b_state)) { 2054 arc_buf_hdr_t *hdr = buf->b_hdr; 2055 2056 atomic_add_64(&hdr->b_state->arcs_size, size); 2057 if (list_link_active(&hdr->b_arc_node)) { 2058 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 2059 atomic_add_64(&hdr->b_state->arcs_lsize[type], size); 2060 } 2061 /* 2062 * If we are growing the cache, and we are adding anonymous 2063 * data, and we have outgrown arc_p, update arc_p 2064 */ 2065 if (arc_size < arc_c && hdr->b_state == arc_anon && 2066 arc_anon->arcs_size + arc_mru->arcs_size > arc_p) 2067 arc_p = MIN(arc_c, arc_p + size); 2068 } 2069 } 2070 2071 /* 2072 * This routine is called whenever a buffer is accessed. 2073 * NOTE: the hash lock is dropped in this function. 2074 */ 2075 static void 2076 arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock) 2077 { 2078 ASSERT(MUTEX_HELD(hash_lock)); 2079 2080 if (buf->b_state == arc_anon) { 2081 /* 2082 * This buffer is not in the cache, and does not 2083 * appear in our "ghost" list. Add the new buffer 2084 * to the MRU state. 2085 */ 2086 2087 ASSERT(buf->b_arc_access == 0); 2088 buf->b_arc_access = lbolt; 2089 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf); 2090 arc_change_state(arc_mru, buf, hash_lock); 2091 2092 } else if (buf->b_state == arc_mru) { 2093 /* 2094 * If this buffer is here because of a prefetch, then either: 2095 * - clear the flag if this is a "referencing" read 2096 * (any subsequent access will bump this into the MFU state). 2097 * or 2098 * - move the buffer to the head of the list if this is 2099 * another prefetch (to make it less likely to be evicted). 2100 */ 2101 if ((buf->b_flags & ARC_PREFETCH) != 0) { 2102 if (refcount_count(&buf->b_refcnt) == 0) { 2103 ASSERT(list_link_active(&buf->b_arc_node)); 2104 } else { 2105 buf->b_flags &= ~ARC_PREFETCH; 2106 ARCSTAT_BUMP(arcstat_mru_hits); 2107 } 2108 buf->b_arc_access = lbolt; 2109 return; 2110 } 2111 2112 /* 2113 * This buffer has been "accessed" only once so far, 2114 * but it is still in the cache. Move it to the MFU 2115 * state. 2116 */ 2117 if (lbolt > buf->b_arc_access + ARC_MINTIME) { 2118 /* 2119 * More than 125ms have passed since we 2120 * instantiated this buffer. Move it to the 2121 * most frequently used state. 2122 */ 2123 buf->b_arc_access = lbolt; 2124 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2125 arc_change_state(arc_mfu, buf, hash_lock); 2126 } 2127 ARCSTAT_BUMP(arcstat_mru_hits); 2128 } else if (buf->b_state == arc_mru_ghost) { 2129 arc_state_t *new_state; 2130 /* 2131 * This buffer has been "accessed" recently, but 2132 * was evicted from the cache. Move it to the 2133 * MFU state. 2134 */ 2135 2136 if (buf->b_flags & ARC_PREFETCH) { 2137 new_state = arc_mru; 2138 if (refcount_count(&buf->b_refcnt) > 0) 2139 buf->b_flags &= ~ARC_PREFETCH; 2140 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf); 2141 } else { 2142 new_state = arc_mfu; 2143 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2144 } 2145 2146 buf->b_arc_access = lbolt; 2147 arc_change_state(new_state, buf, hash_lock); 2148 2149 ARCSTAT_BUMP(arcstat_mru_ghost_hits); 2150 } else if (buf->b_state == arc_mfu) { 2151 /* 2152 * This buffer has been accessed more than once and is 2153 * still in the cache. Keep it in the MFU state. 2154 * 2155 * NOTE: an add_reference() that occurred when we did 2156 * the arc_read() will have kicked this off the list. 2157 * If it was a prefetch, we will explicitly move it to 2158 * the head of the list now. 2159 */ 2160 if ((buf->b_flags & ARC_PREFETCH) != 0) { 2161 ASSERT(refcount_count(&buf->b_refcnt) == 0); 2162 ASSERT(list_link_active(&buf->b_arc_node)); 2163 } 2164 ARCSTAT_BUMP(arcstat_mfu_hits); 2165 buf->b_arc_access = lbolt; 2166 } else if (buf->b_state == arc_mfu_ghost) { 2167 arc_state_t *new_state = arc_mfu; 2168 /* 2169 * This buffer has been accessed more than once but has 2170 * been evicted from the cache. Move it back to the 2171 * MFU state. 2172 */ 2173 2174 if (buf->b_flags & ARC_PREFETCH) { 2175 /* 2176 * This is a prefetch access... 2177 * move this block back to the MRU state. 2178 */ 2179 ASSERT3U(refcount_count(&buf->b_refcnt), ==, 0); 2180 new_state = arc_mru; 2181 } 2182 2183 buf->b_arc_access = lbolt; 2184 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2185 arc_change_state(new_state, buf, hash_lock); 2186 2187 ARCSTAT_BUMP(arcstat_mfu_ghost_hits); 2188 } else if (buf->b_state == arc_l2c_only) { 2189 /* 2190 * This buffer is on the 2nd Level ARC. 2191 */ 2192 2193 buf->b_arc_access = lbolt; 2194 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2195 arc_change_state(arc_mfu, buf, hash_lock); 2196 } else { 2197 ASSERT(!"invalid arc state"); 2198 } 2199 } 2200 2201 /* a generic arc_done_func_t which you can use */ 2202 /* ARGSUSED */ 2203 void 2204 arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg) 2205 { 2206 bcopy(buf->b_data, arg, buf->b_hdr->b_size); 2207 VERIFY(arc_buf_remove_ref(buf, arg) == 1); 2208 } 2209 2210 /* a generic arc_done_func_t */ 2211 void 2212 arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg) 2213 { 2214 arc_buf_t **bufp = arg; 2215 if (zio && zio->io_error) { 2216 VERIFY(arc_buf_remove_ref(buf, arg) == 1); 2217 *bufp = NULL; 2218 } else { 2219 *bufp = buf; 2220 } 2221 } 2222 2223 static void 2224 arc_read_done(zio_t *zio) 2225 { 2226 arc_buf_hdr_t *hdr, *found; 2227 arc_buf_t *buf; 2228 arc_buf_t *abuf; /* buffer we're assigning to callback */ 2229 kmutex_t *hash_lock; 2230 arc_callback_t *callback_list, *acb; 2231 int freeable = FALSE; 2232 2233 buf = zio->io_private; 2234 hdr = buf->b_hdr; 2235 2236 /* 2237 * The hdr was inserted into hash-table and removed from lists 2238 * prior to starting I/O. We should find this header, since 2239 * it's in the hash table, and it should be legit since it's 2240 * not possible to evict it during the I/O. The only possible 2241 * reason for it not to be found is if we were freed during the 2242 * read. 2243 */ 2244 found = buf_hash_find(zio->io_spa, &hdr->b_dva, hdr->b_birth, 2245 &hash_lock); 2246 2247 ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) && hash_lock == NULL) || 2248 (found == hdr && DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) || 2249 (found == hdr && HDR_L2_READING(hdr))); 2250 2251 hdr->b_flags &= ~(ARC_L2_READING|ARC_L2_EVICTED); 2252 if (l2arc_noprefetch && (hdr->b_flags & ARC_PREFETCH)) 2253 hdr->b_flags |= ARC_DONT_L2CACHE; 2254 2255 /* byteswap if necessary */ 2256 callback_list = hdr->b_acb; 2257 ASSERT(callback_list != NULL); 2258 if (BP_SHOULD_BYTESWAP(zio->io_bp) && callback_list->acb_byteswap) 2259 callback_list->acb_byteswap(buf->b_data, hdr->b_size); 2260 2261 arc_cksum_compute(buf, B_FALSE); 2262 2263 /* create copies of the data buffer for the callers */ 2264 abuf = buf; 2265 for (acb = callback_list; acb; acb = acb->acb_next) { 2266 if (acb->acb_done) { 2267 if (abuf == NULL) 2268 abuf = arc_buf_clone(buf); 2269 acb->acb_buf = abuf; 2270 abuf = NULL; 2271 } 2272 } 2273 hdr->b_acb = NULL; 2274 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 2275 ASSERT(!HDR_BUF_AVAILABLE(hdr)); 2276 if (abuf == buf) 2277 hdr->b_flags |= ARC_BUF_AVAILABLE; 2278 2279 ASSERT(refcount_is_zero(&hdr->b_refcnt) || callback_list != NULL); 2280 2281 if (zio->io_error != 0) { 2282 hdr->b_flags |= ARC_IO_ERROR; 2283 if (hdr->b_state != arc_anon) 2284 arc_change_state(arc_anon, hdr, hash_lock); 2285 if (HDR_IN_HASH_TABLE(hdr)) 2286 buf_hash_remove(hdr); 2287 freeable = refcount_is_zero(&hdr->b_refcnt); 2288 /* convert checksum errors into IO errors */ 2289 if (zio->io_error == ECKSUM) 2290 zio->io_error = EIO; 2291 } 2292 2293 /* 2294 * Broadcast before we drop the hash_lock to avoid the possibility 2295 * that the hdr (and hence the cv) might be freed before we get to 2296 * the cv_broadcast(). 2297 */ 2298 cv_broadcast(&hdr->b_cv); 2299 2300 if (hash_lock) { 2301 /* 2302 * Only call arc_access on anonymous buffers. This is because 2303 * if we've issued an I/O for an evicted buffer, we've already 2304 * called arc_access (to prevent any simultaneous readers from 2305 * getting confused). 2306 */ 2307 if (zio->io_error == 0 && hdr->b_state == arc_anon) 2308 arc_access(hdr, hash_lock); 2309 mutex_exit(hash_lock); 2310 } else { 2311 /* 2312 * This block was freed while we waited for the read to 2313 * complete. It has been removed from the hash table and 2314 * moved to the anonymous state (so that it won't show up 2315 * in the cache). 2316 */ 2317 ASSERT3P(hdr->b_state, ==, arc_anon); 2318 freeable = refcount_is_zero(&hdr->b_refcnt); 2319 } 2320 2321 /* execute each callback and free its structure */ 2322 while ((acb = callback_list) != NULL) { 2323 if (acb->acb_done) 2324 acb->acb_done(zio, acb->acb_buf, acb->acb_private); 2325 2326 if (acb->acb_zio_dummy != NULL) { 2327 acb->acb_zio_dummy->io_error = zio->io_error; 2328 zio_nowait(acb->acb_zio_dummy); 2329 } 2330 2331 callback_list = acb->acb_next; 2332 kmem_free(acb, sizeof (arc_callback_t)); 2333 } 2334 2335 if (freeable) 2336 arc_hdr_destroy(hdr); 2337 } 2338 2339 /* 2340 * "Read" the block block at the specified DVA (in bp) via the 2341 * cache. If the block is found in the cache, invoke the provided 2342 * callback immediately and return. Note that the `zio' parameter 2343 * in the callback will be NULL in this case, since no IO was 2344 * required. If the block is not in the cache pass the read request 2345 * on to the spa with a substitute callback function, so that the 2346 * requested block will be added to the cache. 2347 * 2348 * If a read request arrives for a block that has a read in-progress, 2349 * either wait for the in-progress read to complete (and return the 2350 * results); or, if this is a read with a "done" func, add a record 2351 * to the read to invoke the "done" func when the read completes, 2352 * and return; or just return. 2353 * 2354 * arc_read_done() will invoke all the requested "done" functions 2355 * for readers of this block. 2356 */ 2357 int 2358 arc_read(zio_t *pio, spa_t *spa, blkptr_t *bp, arc_byteswap_func_t *swap, 2359 arc_done_func_t *done, void *private, int priority, int flags, 2360 uint32_t *arc_flags, zbookmark_t *zb) 2361 { 2362 arc_buf_hdr_t *hdr; 2363 arc_buf_t *buf; 2364 kmutex_t *hash_lock; 2365 zio_t *rzio; 2366 2367 top: 2368 hdr = buf_hash_find(spa, BP_IDENTITY(bp), bp->blk_birth, &hash_lock); 2369 if (hdr && hdr->b_datacnt > 0) { 2370 2371 *arc_flags |= ARC_CACHED; 2372 2373 if (HDR_IO_IN_PROGRESS(hdr)) { 2374 2375 if (*arc_flags & ARC_WAIT) { 2376 cv_wait(&hdr->b_cv, hash_lock); 2377 mutex_exit(hash_lock); 2378 goto top; 2379 } 2380 ASSERT(*arc_flags & ARC_NOWAIT); 2381 2382 if (done) { 2383 arc_callback_t *acb = NULL; 2384 2385 acb = kmem_zalloc(sizeof (arc_callback_t), 2386 KM_SLEEP); 2387 acb->acb_done = done; 2388 acb->acb_private = private; 2389 acb->acb_byteswap = swap; 2390 if (pio != NULL) 2391 acb->acb_zio_dummy = zio_null(pio, 2392 spa, NULL, NULL, flags); 2393 2394 ASSERT(acb->acb_done != NULL); 2395 acb->acb_next = hdr->b_acb; 2396 hdr->b_acb = acb; 2397 add_reference(hdr, hash_lock, private); 2398 mutex_exit(hash_lock); 2399 return (0); 2400 } 2401 mutex_exit(hash_lock); 2402 return (0); 2403 } 2404 2405 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu); 2406 2407 if (done) { 2408 add_reference(hdr, hash_lock, private); 2409 /* 2410 * If this block is already in use, create a new 2411 * copy of the data so that we will be guaranteed 2412 * that arc_release() will always succeed. 2413 */ 2414 buf = hdr->b_buf; 2415 ASSERT(buf); 2416 ASSERT(buf->b_data); 2417 if (HDR_BUF_AVAILABLE(hdr)) { 2418 ASSERT(buf->b_efunc == NULL); 2419 hdr->b_flags &= ~ARC_BUF_AVAILABLE; 2420 } else { 2421 buf = arc_buf_clone(buf); 2422 } 2423 } else if (*arc_flags & ARC_PREFETCH && 2424 refcount_count(&hdr->b_refcnt) == 0) { 2425 hdr->b_flags |= ARC_PREFETCH; 2426 } 2427 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 2428 arc_access(hdr, hash_lock); 2429 mutex_exit(hash_lock); 2430 ARCSTAT_BUMP(arcstat_hits); 2431 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH), 2432 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA, 2433 data, metadata, hits); 2434 2435 if (done) 2436 done(NULL, buf, private); 2437 } else { 2438 uint64_t size = BP_GET_LSIZE(bp); 2439 arc_callback_t *acb; 2440 2441 if (hdr == NULL) { 2442 /* this block is not in the cache */ 2443 arc_buf_hdr_t *exists; 2444 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp); 2445 buf = arc_buf_alloc(spa, size, private, type); 2446 hdr = buf->b_hdr; 2447 hdr->b_dva = *BP_IDENTITY(bp); 2448 hdr->b_birth = bp->blk_birth; 2449 hdr->b_cksum0 = bp->blk_cksum.zc_word[0]; 2450 exists = buf_hash_insert(hdr, &hash_lock); 2451 if (exists) { 2452 /* somebody beat us to the hash insert */ 2453 mutex_exit(hash_lock); 2454 bzero(&hdr->b_dva, sizeof (dva_t)); 2455 hdr->b_birth = 0; 2456 hdr->b_cksum0 = 0; 2457 (void) arc_buf_remove_ref(buf, private); 2458 goto top; /* restart the IO request */ 2459 } 2460 /* if this is a prefetch, we don't have a reference */ 2461 if (*arc_flags & ARC_PREFETCH) { 2462 (void) remove_reference(hdr, hash_lock, 2463 private); 2464 hdr->b_flags |= ARC_PREFETCH; 2465 } 2466 if (BP_GET_LEVEL(bp) > 0) 2467 hdr->b_flags |= ARC_INDIRECT; 2468 } else { 2469 /* this block is in the ghost cache */ 2470 ASSERT(GHOST_STATE(hdr->b_state)); 2471 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 2472 ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 0); 2473 ASSERT(hdr->b_buf == NULL); 2474 2475 /* if this is a prefetch, we don't have a reference */ 2476 if (*arc_flags & ARC_PREFETCH) 2477 hdr->b_flags |= ARC_PREFETCH; 2478 else 2479 add_reference(hdr, hash_lock, private); 2480 buf = kmem_cache_alloc(buf_cache, KM_SLEEP); 2481 buf->b_hdr = hdr; 2482 buf->b_data = NULL; 2483 buf->b_efunc = NULL; 2484 buf->b_private = NULL; 2485 buf->b_next = NULL; 2486 hdr->b_buf = buf; 2487 arc_get_data_buf(buf); 2488 ASSERT(hdr->b_datacnt == 0); 2489 hdr->b_datacnt = 1; 2490 2491 } 2492 2493 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP); 2494 acb->acb_done = done; 2495 acb->acb_private = private; 2496 acb->acb_byteswap = swap; 2497 2498 ASSERT(hdr->b_acb == NULL); 2499 hdr->b_acb = acb; 2500 hdr->b_flags |= ARC_IO_IN_PROGRESS; 2501 2502 /* 2503 * If the buffer has been evicted, migrate it to a present state 2504 * before issuing the I/O. Once we drop the hash-table lock, 2505 * the header will be marked as I/O in progress and have an 2506 * attached buffer. At this point, anybody who finds this 2507 * buffer ought to notice that it's legit but has a pending I/O. 2508 */ 2509 2510 if (GHOST_STATE(hdr->b_state)) 2511 arc_access(hdr, hash_lock); 2512 2513 ASSERT3U(hdr->b_size, ==, size); 2514 DTRACE_PROBE3(arc__miss, blkptr_t *, bp, uint64_t, size, 2515 zbookmark_t *, zb); 2516 ARCSTAT_BUMP(arcstat_misses); 2517 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH), 2518 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA, 2519 data, metadata, misses); 2520 2521 if (l2arc_ndev != 0) { 2522 /* 2523 * Read from the L2ARC if the following are true: 2524 * 1. This buffer has L2ARC metadata. 2525 * 2. This buffer isn't currently writing to the L2ARC. 2526 */ 2527 if (hdr->b_l2hdr != NULL && !HDR_L2_WRITING(hdr)) { 2528 vdev_t *vd = hdr->b_l2hdr->b_dev->l2ad_vdev; 2529 daddr_t addr = hdr->b_l2hdr->b_daddr; 2530 l2arc_read_callback_t *cb; 2531 2532 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr); 2533 ARCSTAT_BUMP(arcstat_l2_hits); 2534 2535 hdr->b_flags |= ARC_L2_READING; 2536 mutex_exit(hash_lock); 2537 2538 cb = kmem_zalloc(sizeof (l2arc_read_callback_t), 2539 KM_SLEEP); 2540 cb->l2rcb_buf = buf; 2541 cb->l2rcb_spa = spa; 2542 cb->l2rcb_bp = *bp; 2543 cb->l2rcb_zb = *zb; 2544 cb->l2rcb_flags = flags; 2545 2546 /* 2547 * l2arc read. 2548 */ 2549 rzio = zio_read_phys(pio, vd, addr, size, 2550 buf->b_data, ZIO_CHECKSUM_OFF, 2551 l2arc_read_done, cb, priority, 2552 flags | ZIO_FLAG_DONT_CACHE, B_FALSE); 2553 DTRACE_PROBE2(l2arc__read, vdev_t *, vd, 2554 zio_t *, rzio); 2555 2556 if (*arc_flags & ARC_WAIT) 2557 return (zio_wait(rzio)); 2558 2559 ASSERT(*arc_flags & ARC_NOWAIT); 2560 zio_nowait(rzio); 2561 return (0); 2562 } else { 2563 DTRACE_PROBE1(l2arc__miss, 2564 arc_buf_hdr_t *, hdr); 2565 ARCSTAT_BUMP(arcstat_l2_misses); 2566 if (HDR_L2_WRITING(hdr)) 2567 ARCSTAT_BUMP(arcstat_l2_rw_clash); 2568 } 2569 } 2570 mutex_exit(hash_lock); 2571 2572 rzio = zio_read(pio, spa, bp, buf->b_data, size, 2573 arc_read_done, buf, priority, flags, zb); 2574 2575 if (*arc_flags & ARC_WAIT) 2576 return (zio_wait(rzio)); 2577 2578 ASSERT(*arc_flags & ARC_NOWAIT); 2579 zio_nowait(rzio); 2580 } 2581 return (0); 2582 } 2583 2584 /* 2585 * arc_read() variant to support pool traversal. If the block is already 2586 * in the ARC, make a copy of it; otherwise, the caller will do the I/O. 2587 * The idea is that we don't want pool traversal filling up memory, but 2588 * if the ARC already has the data anyway, we shouldn't pay for the I/O. 2589 */ 2590 int 2591 arc_tryread(spa_t *spa, blkptr_t *bp, void *data) 2592 { 2593 arc_buf_hdr_t *hdr; 2594 kmutex_t *hash_mtx; 2595 int rc = 0; 2596 2597 hdr = buf_hash_find(spa, BP_IDENTITY(bp), bp->blk_birth, &hash_mtx); 2598 2599 if (hdr && hdr->b_datacnt > 0 && !HDR_IO_IN_PROGRESS(hdr)) { 2600 arc_buf_t *buf = hdr->b_buf; 2601 2602 ASSERT(buf); 2603 while (buf->b_data == NULL) { 2604 buf = buf->b_next; 2605 ASSERT(buf); 2606 } 2607 bcopy(buf->b_data, data, hdr->b_size); 2608 } else { 2609 rc = ENOENT; 2610 } 2611 2612 if (hash_mtx) 2613 mutex_exit(hash_mtx); 2614 2615 return (rc); 2616 } 2617 2618 void 2619 arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private) 2620 { 2621 ASSERT(buf->b_hdr != NULL); 2622 ASSERT(buf->b_hdr->b_state != arc_anon); 2623 ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt) || func == NULL); 2624 buf->b_efunc = func; 2625 buf->b_private = private; 2626 } 2627 2628 /* 2629 * This is used by the DMU to let the ARC know that a buffer is 2630 * being evicted, so the ARC should clean up. If this arc buf 2631 * is not yet in the evicted state, it will be put there. 2632 */ 2633 int 2634 arc_buf_evict(arc_buf_t *buf) 2635 { 2636 arc_buf_hdr_t *hdr; 2637 kmutex_t *hash_lock; 2638 arc_buf_t **bufp; 2639 2640 mutex_enter(&arc_eviction_mtx); 2641 hdr = buf->b_hdr; 2642 if (hdr == NULL) { 2643 /* 2644 * We are in arc_do_user_evicts(). 2645 */ 2646 ASSERT(buf->b_data == NULL); 2647 mutex_exit(&arc_eviction_mtx); 2648 return (0); 2649 } 2650 hash_lock = HDR_LOCK(hdr); 2651 mutex_exit(&arc_eviction_mtx); 2652 2653 mutex_enter(hash_lock); 2654 2655 if (buf->b_data == NULL) { 2656 /* 2657 * We are on the eviction list. 2658 */ 2659 mutex_exit(hash_lock); 2660 mutex_enter(&arc_eviction_mtx); 2661 if (buf->b_hdr == NULL) { 2662 /* 2663 * We are already in arc_do_user_evicts(). 2664 */ 2665 mutex_exit(&arc_eviction_mtx); 2666 return (0); 2667 } else { 2668 arc_buf_t copy = *buf; /* structure assignment */ 2669 /* 2670 * Process this buffer now 2671 * but let arc_do_user_evicts() do the reaping. 2672 */ 2673 buf->b_efunc = NULL; 2674 mutex_exit(&arc_eviction_mtx); 2675 VERIFY(copy.b_efunc(©) == 0); 2676 return (1); 2677 } 2678 } 2679 2680 ASSERT(buf->b_hdr == hdr); 2681 ASSERT3U(refcount_count(&hdr->b_refcnt), <, hdr->b_datacnt); 2682 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu); 2683 2684 /* 2685 * Pull this buffer off of the hdr 2686 */ 2687 bufp = &hdr->b_buf; 2688 while (*bufp != buf) 2689 bufp = &(*bufp)->b_next; 2690 *bufp = buf->b_next; 2691 2692 ASSERT(buf->b_data != NULL); 2693 arc_buf_destroy(buf, FALSE, FALSE); 2694 2695 if (hdr->b_datacnt == 0) { 2696 arc_state_t *old_state = hdr->b_state; 2697 arc_state_t *evicted_state; 2698 2699 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 2700 2701 evicted_state = 2702 (old_state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost; 2703 2704 mutex_enter(&old_state->arcs_mtx); 2705 mutex_enter(&evicted_state->arcs_mtx); 2706 2707 arc_change_state(evicted_state, hdr, hash_lock); 2708 ASSERT(HDR_IN_HASH_TABLE(hdr)); 2709 hdr->b_flags |= ARC_IN_HASH_TABLE; 2710 hdr->b_flags &= ~ARC_BUF_AVAILABLE; 2711 2712 mutex_exit(&evicted_state->arcs_mtx); 2713 mutex_exit(&old_state->arcs_mtx); 2714 } 2715 mutex_exit(hash_lock); 2716 2717 VERIFY(buf->b_efunc(buf) == 0); 2718 buf->b_efunc = NULL; 2719 buf->b_private = NULL; 2720 buf->b_hdr = NULL; 2721 kmem_cache_free(buf_cache, buf); 2722 return (1); 2723 } 2724 2725 /* 2726 * Release this buffer from the cache. This must be done 2727 * after a read and prior to modifying the buffer contents. 2728 * If the buffer has more than one reference, we must make 2729 * make a new hdr for the buffer. 2730 */ 2731 void 2732 arc_release(arc_buf_t *buf, void *tag) 2733 { 2734 arc_buf_hdr_t *hdr = buf->b_hdr; 2735 kmutex_t *hash_lock = HDR_LOCK(hdr); 2736 l2arc_buf_hdr_t *l2hdr = NULL; 2737 uint64_t buf_size; 2738 2739 /* this buffer is not on any list */ 2740 ASSERT(refcount_count(&hdr->b_refcnt) > 0); 2741 2742 if (hdr->b_state == arc_anon) { 2743 /* this buffer is already released */ 2744 ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 1); 2745 ASSERT(BUF_EMPTY(hdr)); 2746 ASSERT(buf->b_efunc == NULL); 2747 arc_buf_thaw(buf); 2748 return; 2749 } 2750 2751 mutex_enter(hash_lock); 2752 2753 /* 2754 * Do we have more than one buf? 2755 */ 2756 if (hdr->b_buf != buf || buf->b_next != NULL) { 2757 arc_buf_hdr_t *nhdr; 2758 arc_buf_t **bufp; 2759 uint64_t blksz = hdr->b_size; 2760 spa_t *spa = hdr->b_spa; 2761 arc_buf_contents_t type = hdr->b_type; 2762 uint32_t flags = hdr->b_flags; 2763 2764 ASSERT(hdr->b_datacnt > 1); 2765 /* 2766 * Pull the data off of this buf and attach it to 2767 * a new anonymous buf. 2768 */ 2769 (void) remove_reference(hdr, hash_lock, tag); 2770 bufp = &hdr->b_buf; 2771 while (*bufp != buf) 2772 bufp = &(*bufp)->b_next; 2773 *bufp = (*bufp)->b_next; 2774 buf->b_next = NULL; 2775 2776 ASSERT3U(hdr->b_state->arcs_size, >=, hdr->b_size); 2777 atomic_add_64(&hdr->b_state->arcs_size, -hdr->b_size); 2778 if (refcount_is_zero(&hdr->b_refcnt)) { 2779 uint64_t *size = &hdr->b_state->arcs_lsize[hdr->b_type]; 2780 ASSERT3U(*size, >=, hdr->b_size); 2781 atomic_add_64(size, -hdr->b_size); 2782 } 2783 hdr->b_datacnt -= 1; 2784 if (hdr->b_l2hdr != NULL) { 2785 mutex_enter(&l2arc_buflist_mtx); 2786 l2hdr = hdr->b_l2hdr; 2787 hdr->b_l2hdr = NULL; 2788 buf_size = hdr->b_size; 2789 } 2790 arc_cksum_verify(buf); 2791 2792 mutex_exit(hash_lock); 2793 2794 nhdr = kmem_cache_alloc(hdr_cache, KM_SLEEP); 2795 nhdr->b_size = blksz; 2796 nhdr->b_spa = spa; 2797 nhdr->b_type = type; 2798 nhdr->b_buf = buf; 2799 nhdr->b_state = arc_anon; 2800 nhdr->b_arc_access = 0; 2801 nhdr->b_flags = flags & ARC_L2_WRITING; 2802 nhdr->b_l2hdr = NULL; 2803 nhdr->b_datacnt = 1; 2804 nhdr->b_freeze_cksum = NULL; 2805 (void) refcount_add(&nhdr->b_refcnt, tag); 2806 buf->b_hdr = nhdr; 2807 atomic_add_64(&arc_anon->arcs_size, blksz); 2808 } else { 2809 ASSERT(refcount_count(&hdr->b_refcnt) == 1); 2810 ASSERT(!list_link_active(&hdr->b_arc_node)); 2811 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 2812 arc_change_state(arc_anon, hdr, hash_lock); 2813 hdr->b_arc_access = 0; 2814 if (hdr->b_l2hdr != NULL) { 2815 mutex_enter(&l2arc_buflist_mtx); 2816 l2hdr = hdr->b_l2hdr; 2817 hdr->b_l2hdr = NULL; 2818 buf_size = hdr->b_size; 2819 } 2820 mutex_exit(hash_lock); 2821 2822 bzero(&hdr->b_dva, sizeof (dva_t)); 2823 hdr->b_birth = 0; 2824 hdr->b_cksum0 = 0; 2825 arc_buf_thaw(buf); 2826 } 2827 buf->b_efunc = NULL; 2828 buf->b_private = NULL; 2829 2830 if (l2hdr) { 2831 list_remove(l2hdr->b_dev->l2ad_buflist, hdr); 2832 kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t)); 2833 ARCSTAT_INCR(arcstat_l2_size, -buf_size); 2834 } 2835 if (MUTEX_HELD(&l2arc_buflist_mtx)) 2836 mutex_exit(&l2arc_buflist_mtx); 2837 } 2838 2839 int 2840 arc_released(arc_buf_t *buf) 2841 { 2842 return (buf->b_data != NULL && buf->b_hdr->b_state == arc_anon); 2843 } 2844 2845 int 2846 arc_has_callback(arc_buf_t *buf) 2847 { 2848 return (buf->b_efunc != NULL); 2849 } 2850 2851 #ifdef ZFS_DEBUG 2852 int 2853 arc_referenced(arc_buf_t *buf) 2854 { 2855 return (refcount_count(&buf->b_hdr->b_refcnt)); 2856 } 2857 #endif 2858 2859 static void 2860 arc_write_ready(zio_t *zio) 2861 { 2862 arc_write_callback_t *callback = zio->io_private; 2863 arc_buf_t *buf = callback->awcb_buf; 2864 arc_buf_hdr_t *hdr = buf->b_hdr; 2865 2866 if (zio->io_error == 0 && callback->awcb_ready) { 2867 ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt)); 2868 callback->awcb_ready(zio, buf, callback->awcb_private); 2869 } 2870 /* 2871 * If the IO is already in progress, then this is a re-write 2872 * attempt, so we need to thaw and re-compute the cksum. It is 2873 * the responsibility of the callback to handle the freeing 2874 * and accounting for any re-write attempt. If we don't have a 2875 * callback registered then simply free the block here. 2876 */ 2877 if (HDR_IO_IN_PROGRESS(hdr)) { 2878 if (!BP_IS_HOLE(&zio->io_bp_orig) && 2879 callback->awcb_ready == NULL) { 2880 zio_nowait(zio_free(zio, zio->io_spa, zio->io_txg, 2881 &zio->io_bp_orig, NULL, NULL)); 2882 } 2883 mutex_enter(&hdr->b_freeze_lock); 2884 if (hdr->b_freeze_cksum != NULL) { 2885 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t)); 2886 hdr->b_freeze_cksum = NULL; 2887 } 2888 mutex_exit(&hdr->b_freeze_lock); 2889 } 2890 arc_cksum_compute(buf, B_FALSE); 2891 hdr->b_flags |= ARC_IO_IN_PROGRESS; 2892 } 2893 2894 static void 2895 arc_write_done(zio_t *zio) 2896 { 2897 arc_write_callback_t *callback = zio->io_private; 2898 arc_buf_t *buf = callback->awcb_buf; 2899 arc_buf_hdr_t *hdr = buf->b_hdr; 2900 2901 hdr->b_acb = NULL; 2902 2903 /* this buffer is on no lists and is not in the hash table */ 2904 ASSERT3P(hdr->b_state, ==, arc_anon); 2905 2906 hdr->b_dva = *BP_IDENTITY(zio->io_bp); 2907 hdr->b_birth = zio->io_bp->blk_birth; 2908 hdr->b_cksum0 = zio->io_bp->blk_cksum.zc_word[0]; 2909 /* 2910 * If the block to be written was all-zero, we may have 2911 * compressed it away. In this case no write was performed 2912 * so there will be no dva/birth-date/checksum. The buffer 2913 * must therefor remain anonymous (and uncached). 2914 */ 2915 if (!BUF_EMPTY(hdr)) { 2916 arc_buf_hdr_t *exists; 2917 kmutex_t *hash_lock; 2918 2919 arc_cksum_verify(buf); 2920 2921 exists = buf_hash_insert(hdr, &hash_lock); 2922 if (exists) { 2923 /* 2924 * This can only happen if we overwrite for 2925 * sync-to-convergence, because we remove 2926 * buffers from the hash table when we arc_free(). 2927 */ 2928 ASSERT(DVA_EQUAL(BP_IDENTITY(&zio->io_bp_orig), 2929 BP_IDENTITY(zio->io_bp))); 2930 ASSERT3U(zio->io_bp_orig.blk_birth, ==, 2931 zio->io_bp->blk_birth); 2932 2933 ASSERT(refcount_is_zero(&exists->b_refcnt)); 2934 arc_change_state(arc_anon, exists, hash_lock); 2935 mutex_exit(hash_lock); 2936 arc_hdr_destroy(exists); 2937 exists = buf_hash_insert(hdr, &hash_lock); 2938 ASSERT3P(exists, ==, NULL); 2939 } 2940 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 2941 arc_access(hdr, hash_lock); 2942 mutex_exit(hash_lock); 2943 } else if (callback->awcb_done == NULL) { 2944 int destroy_hdr; 2945 /* 2946 * This is an anonymous buffer with no user callback, 2947 * destroy it if there are no active references. 2948 */ 2949 mutex_enter(&arc_eviction_mtx); 2950 destroy_hdr = refcount_is_zero(&hdr->b_refcnt); 2951 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 2952 mutex_exit(&arc_eviction_mtx); 2953 if (destroy_hdr) 2954 arc_hdr_destroy(hdr); 2955 } else { 2956 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 2957 } 2958 2959 if (callback->awcb_done) { 2960 ASSERT(!refcount_is_zero(&hdr->b_refcnt)); 2961 callback->awcb_done(zio, buf, callback->awcb_private); 2962 } 2963 2964 kmem_free(callback, sizeof (arc_write_callback_t)); 2965 } 2966 2967 zio_t * 2968 arc_write(zio_t *pio, spa_t *spa, int checksum, int compress, int ncopies, 2969 uint64_t txg, blkptr_t *bp, arc_buf_t *buf, 2970 arc_done_func_t *ready, arc_done_func_t *done, void *private, int priority, 2971 int flags, zbookmark_t *zb) 2972 { 2973 arc_buf_hdr_t *hdr = buf->b_hdr; 2974 arc_write_callback_t *callback; 2975 zio_t *zio; 2976 2977 /* this is a private buffer - no locking required */ 2978 ASSERT3P(hdr->b_state, ==, arc_anon); 2979 ASSERT(BUF_EMPTY(hdr)); 2980 ASSERT(!HDR_IO_ERROR(hdr)); 2981 ASSERT((hdr->b_flags & ARC_IO_IN_PROGRESS) == 0); 2982 ASSERT(hdr->b_acb == 0); 2983 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP); 2984 callback->awcb_ready = ready; 2985 callback->awcb_done = done; 2986 callback->awcb_private = private; 2987 callback->awcb_buf = buf; 2988 zio = zio_write(pio, spa, checksum, compress, ncopies, txg, bp, 2989 buf->b_data, hdr->b_size, arc_write_ready, arc_write_done, callback, 2990 priority, flags, zb); 2991 2992 return (zio); 2993 } 2994 2995 int 2996 arc_free(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, 2997 zio_done_func_t *done, void *private, uint32_t arc_flags) 2998 { 2999 arc_buf_hdr_t *ab; 3000 kmutex_t *hash_lock; 3001 zio_t *zio; 3002 3003 /* 3004 * If this buffer is in the cache, release it, so it 3005 * can be re-used. 3006 */ 3007 ab = buf_hash_find(spa, BP_IDENTITY(bp), bp->blk_birth, &hash_lock); 3008 if (ab != NULL) { 3009 /* 3010 * The checksum of blocks to free is not always 3011 * preserved (eg. on the deadlist). However, if it is 3012 * nonzero, it should match what we have in the cache. 3013 */ 3014 ASSERT(bp->blk_cksum.zc_word[0] == 0 || 3015 ab->b_cksum0 == bp->blk_cksum.zc_word[0]); 3016 if (ab->b_state != arc_anon) 3017 arc_change_state(arc_anon, ab, hash_lock); 3018 if (HDR_IO_IN_PROGRESS(ab)) { 3019 /* 3020 * This should only happen when we prefetch. 3021 */ 3022 ASSERT(ab->b_flags & ARC_PREFETCH); 3023 ASSERT3U(ab->b_datacnt, ==, 1); 3024 ab->b_flags |= ARC_FREED_IN_READ; 3025 if (HDR_IN_HASH_TABLE(ab)) 3026 buf_hash_remove(ab); 3027 ab->b_arc_access = 0; 3028 bzero(&ab->b_dva, sizeof (dva_t)); 3029 ab->b_birth = 0; 3030 ab->b_cksum0 = 0; 3031 ab->b_buf->b_efunc = NULL; 3032 ab->b_buf->b_private = NULL; 3033 mutex_exit(hash_lock); 3034 } else if (refcount_is_zero(&ab->b_refcnt)) { 3035 ab->b_flags |= ARC_FREE_IN_PROGRESS; 3036 mutex_exit(hash_lock); 3037 arc_hdr_destroy(ab); 3038 ARCSTAT_BUMP(arcstat_deleted); 3039 } else { 3040 /* 3041 * We still have an active reference on this 3042 * buffer. This can happen, e.g., from 3043 * dbuf_unoverride(). 3044 */ 3045 ASSERT(!HDR_IN_HASH_TABLE(ab)); 3046 ab->b_arc_access = 0; 3047 bzero(&ab->b_dva, sizeof (dva_t)); 3048 ab->b_birth = 0; 3049 ab->b_cksum0 = 0; 3050 ab->b_buf->b_efunc = NULL; 3051 ab->b_buf->b_private = NULL; 3052 mutex_exit(hash_lock); 3053 } 3054 } 3055 3056 zio = zio_free(pio, spa, txg, bp, done, private); 3057 3058 if (arc_flags & ARC_WAIT) 3059 return (zio_wait(zio)); 3060 3061 ASSERT(arc_flags & ARC_NOWAIT); 3062 zio_nowait(zio); 3063 3064 return (0); 3065 } 3066 3067 void 3068 arc_tempreserve_clear(uint64_t tempreserve) 3069 { 3070 atomic_add_64(&arc_tempreserve, -tempreserve); 3071 ASSERT((int64_t)arc_tempreserve >= 0); 3072 } 3073 3074 int 3075 arc_tempreserve_space(uint64_t tempreserve) 3076 { 3077 #ifdef ZFS_DEBUG 3078 /* 3079 * Once in a while, fail for no reason. Everything should cope. 3080 */ 3081 if (spa_get_random(10000) == 0) { 3082 dprintf("forcing random failure\n"); 3083 return (ERESTART); 3084 } 3085 #endif 3086 if (tempreserve > arc_c/4 && !arc_no_grow) 3087 arc_c = MIN(arc_c_max, tempreserve * 4); 3088 if (tempreserve > arc_c) 3089 return (ENOMEM); 3090 3091 /* 3092 * Throttle writes when the amount of dirty data in the cache 3093 * gets too large. We try to keep the cache less than half full 3094 * of dirty blocks so that our sync times don't grow too large. 3095 * Note: if two requests come in concurrently, we might let them 3096 * both succeed, when one of them should fail. Not a huge deal. 3097 * 3098 * XXX The limit should be adjusted dynamically to keep the time 3099 * to sync a dataset fixed (around 1-5 seconds?). 3100 */ 3101 3102 if (tempreserve + arc_tempreserve + arc_anon->arcs_size > arc_c / 2 && 3103 arc_tempreserve + arc_anon->arcs_size > arc_c / 4) { 3104 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK " 3105 "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n", 3106 arc_tempreserve>>10, 3107 arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10, 3108 arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10, 3109 tempreserve>>10, arc_c>>10); 3110 return (ERESTART); 3111 } 3112 atomic_add_64(&arc_tempreserve, tempreserve); 3113 return (0); 3114 } 3115 3116 void 3117 arc_init(void) 3118 { 3119 mutex_init(&arc_reclaim_thr_lock, NULL, MUTEX_DEFAULT, NULL); 3120 cv_init(&arc_reclaim_thr_cv, NULL, CV_DEFAULT, NULL); 3121 3122 /* Convert seconds to clock ticks */ 3123 arc_min_prefetch_lifespan = 1 * hz; 3124 3125 /* Start out with 1/8 of all memory */ 3126 arc_c = physmem * PAGESIZE / 8; 3127 3128 #ifdef _KERNEL 3129 /* 3130 * On architectures where the physical memory can be larger 3131 * than the addressable space (intel in 32-bit mode), we may 3132 * need to limit the cache to 1/8 of VM size. 3133 */ 3134 arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8); 3135 #endif 3136 3137 /* set min cache to 1/32 of all memory, or 64MB, whichever is more */ 3138 arc_c_min = MAX(arc_c / 4, 64<<20); 3139 /* set max to 3/4 of all memory, or all but 1GB, whichever is more */ 3140 if (arc_c * 8 >= 1<<30) 3141 arc_c_max = (arc_c * 8) - (1<<30); 3142 else 3143 arc_c_max = arc_c_min; 3144 arc_c_max = MAX(arc_c * 6, arc_c_max); 3145 3146 /* 3147 * Allow the tunables to override our calculations if they are 3148 * reasonable (ie. over 64MB) 3149 */ 3150 if (zfs_arc_max > 64<<20 && zfs_arc_max < physmem * PAGESIZE) 3151 arc_c_max = zfs_arc_max; 3152 if (zfs_arc_min > 64<<20 && zfs_arc_min <= arc_c_max) 3153 arc_c_min = zfs_arc_min; 3154 3155 arc_c = arc_c_max; 3156 arc_p = (arc_c >> 1); 3157 3158 /* limit meta-data to 1/4 of the arc capacity */ 3159 arc_meta_limit = arc_c_max / 4; 3160 3161 /* Allow the tunable to override if it is reasonable */ 3162 if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max) 3163 arc_meta_limit = zfs_arc_meta_limit; 3164 3165 if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0) 3166 arc_c_min = arc_meta_limit / 2; 3167 3168 /* if kmem_flags are set, lets try to use less memory */ 3169 if (kmem_debugging()) 3170 arc_c = arc_c / 2; 3171 if (arc_c < arc_c_min) 3172 arc_c = arc_c_min; 3173 3174 arc_anon = &ARC_anon; 3175 arc_mru = &ARC_mru; 3176 arc_mru_ghost = &ARC_mru_ghost; 3177 arc_mfu = &ARC_mfu; 3178 arc_mfu_ghost = &ARC_mfu_ghost; 3179 arc_l2c_only = &ARC_l2c_only; 3180 arc_size = 0; 3181 3182 mutex_init(&arc_anon->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3183 mutex_init(&arc_mru->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3184 mutex_init(&arc_mru_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3185 mutex_init(&arc_mfu->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3186 mutex_init(&arc_mfu_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3187 mutex_init(&arc_l2c_only->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3188 3189 list_create(&arc_mru->arcs_list[ARC_BUFC_METADATA], 3190 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3191 list_create(&arc_mru->arcs_list[ARC_BUFC_DATA], 3192 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3193 list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA], 3194 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3195 list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA], 3196 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3197 list_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA], 3198 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3199 list_create(&arc_mfu->arcs_list[ARC_BUFC_DATA], 3200 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3201 list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA], 3202 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3203 list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA], 3204 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3205 list_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA], 3206 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3207 list_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA], 3208 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3209 3210 buf_init(); 3211 3212 arc_thread_exit = 0; 3213 arc_eviction_list = NULL; 3214 mutex_init(&arc_eviction_mtx, NULL, MUTEX_DEFAULT, NULL); 3215 bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t)); 3216 3217 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED, 3218 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); 3219 3220 if (arc_ksp != NULL) { 3221 arc_ksp->ks_data = &arc_stats; 3222 kstat_install(arc_ksp); 3223 } 3224 3225 (void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0, 3226 TS_RUN, minclsyspri); 3227 3228 arc_dead = FALSE; 3229 } 3230 3231 void 3232 arc_fini(void) 3233 { 3234 mutex_enter(&arc_reclaim_thr_lock); 3235 arc_thread_exit = 1; 3236 while (arc_thread_exit != 0) 3237 cv_wait(&arc_reclaim_thr_cv, &arc_reclaim_thr_lock); 3238 mutex_exit(&arc_reclaim_thr_lock); 3239 3240 arc_flush(); 3241 3242 arc_dead = TRUE; 3243 3244 if (arc_ksp != NULL) { 3245 kstat_delete(arc_ksp); 3246 arc_ksp = NULL; 3247 } 3248 3249 mutex_destroy(&arc_eviction_mtx); 3250 mutex_destroy(&arc_reclaim_thr_lock); 3251 cv_destroy(&arc_reclaim_thr_cv); 3252 3253 list_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]); 3254 list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]); 3255 list_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]); 3256 list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]); 3257 list_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]); 3258 list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]); 3259 list_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]); 3260 list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]); 3261 3262 mutex_destroy(&arc_anon->arcs_mtx); 3263 mutex_destroy(&arc_mru->arcs_mtx); 3264 mutex_destroy(&arc_mru_ghost->arcs_mtx); 3265 mutex_destroy(&arc_mfu->arcs_mtx); 3266 mutex_destroy(&arc_mfu_ghost->arcs_mtx); 3267 3268 buf_fini(); 3269 } 3270 3271 /* 3272 * Level 2 ARC 3273 * 3274 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk. 3275 * It uses dedicated storage devices to hold cached data, which are populated 3276 * using large infrequent writes. The main role of this cache is to boost 3277 * the performance of random read workloads. The intended L2ARC devices 3278 * include short-stroked disks, solid state disks, and other media with 3279 * substantially faster read latency than disk. 3280 * 3281 * +-----------------------+ 3282 * | ARC | 3283 * +-----------------------+ 3284 * | ^ ^ 3285 * | | | 3286 * l2arc_feed_thread() arc_read() 3287 * | | | 3288 * | l2arc read | 3289 * V | | 3290 * +---------------+ | 3291 * | L2ARC | | 3292 * +---------------+ | 3293 * | ^ | 3294 * l2arc_write() | | 3295 * | | | 3296 * V | | 3297 * +-------+ +-------+ 3298 * | vdev | | vdev | 3299 * | cache | | cache | 3300 * +-------+ +-------+ 3301 * +=========+ .-----. 3302 * : L2ARC : |-_____-| 3303 * : devices : | Disks | 3304 * +=========+ `-_____-' 3305 * 3306 * Read requests are satisfied from the following sources, in order: 3307 * 3308 * 1) ARC 3309 * 2) vdev cache of L2ARC devices 3310 * 3) L2ARC devices 3311 * 4) vdev cache of disks 3312 * 5) disks 3313 * 3314 * Some L2ARC device types exhibit extremely slow write performance. 3315 * To accommodate for this there are some significant differences between 3316 * the L2ARC and traditional cache design: 3317 * 3318 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from 3319 * the ARC behave as usual, freeing buffers and placing headers on ghost 3320 * lists. The ARC does not send buffers to the L2ARC during eviction as 3321 * this would add inflated write latencies for all ARC memory pressure. 3322 * 3323 * 2. The L2ARC attempts to cache data from the ARC before it is evicted. 3324 * It does this by periodically scanning buffers from the eviction-end of 3325 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are 3326 * not already there. It scans until a headroom of buffers is satisfied, 3327 * which itself is a buffer for ARC eviction. The thread that does this is 3328 * l2arc_feed_thread(), illustrated below; example sizes are included to 3329 * provide a better sense of ratio than this diagram: 3330 * 3331 * head --> tail 3332 * +---------------------+----------+ 3333 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC 3334 * +---------------------+----------+ | o L2ARC eligible 3335 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer 3336 * +---------------------+----------+ | 3337 * 15.9 Gbytes ^ 32 Mbytes | 3338 * headroom | 3339 * l2arc_feed_thread() 3340 * | 3341 * l2arc write hand <--[oooo]--' 3342 * | 8 Mbyte 3343 * | write max 3344 * V 3345 * +==============================+ 3346 * L2ARC dev |####|#|###|###| |####| ... | 3347 * +==============================+ 3348 * 32 Gbytes 3349 * 3350 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of 3351 * evicted, then the L2ARC has cached a buffer much sooner than it probably 3352 * needed to, potentially wasting L2ARC device bandwidth and storage. It is 3353 * safe to say that this is an uncommon case, since buffers at the end of 3354 * the ARC lists have moved there due to inactivity. 3355 * 3356 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom, 3357 * then the L2ARC simply misses copying some buffers. This serves as a 3358 * pressure valve to prevent heavy read workloads from both stalling the ARC 3359 * with waits and clogging the L2ARC with writes. This also helps prevent 3360 * the potential for the L2ARC to churn if it attempts to cache content too 3361 * quickly, such as during backups of the entire pool. 3362 * 3363 * 5. Writes to the L2ARC devices are grouped and sent in-sequence, so that 3364 * the vdev queue can aggregate them into larger and fewer writes. Each 3365 * device is written to in a rotor fashion, sweeping writes through 3366 * available space then repeating. 3367 * 3368 * 6. The L2ARC does not store dirty content. It never needs to flush 3369 * write buffers back to disk based storage. 3370 * 3371 * 7. If an ARC buffer is written (and dirtied) which also exists in the 3372 * L2ARC, the now stale L2ARC buffer is immediately dropped. 3373 * 3374 * The performance of the L2ARC can be tweaked by a number of tunables, which 3375 * may be necessary for different workloads: 3376 * 3377 * l2arc_write_max max write bytes per interval 3378 * l2arc_noprefetch skip caching prefetched buffers 3379 * l2arc_headroom number of max device writes to precache 3380 * l2arc_feed_secs seconds between L2ARC writing 3381 * 3382 * Tunables may be removed or added as future performance improvements are 3383 * integrated, and also may become zpool properties. 3384 */ 3385 3386 static void 3387 l2arc_hdr_stat_add(void) 3388 { 3389 ARCSTAT_INCR(arcstat_l2_hdr_size, sizeof (arc_buf_hdr_t) + 3390 sizeof (l2arc_buf_hdr_t)); 3391 ARCSTAT_INCR(arcstat_hdr_size, -sizeof (arc_buf_hdr_t)); 3392 } 3393 3394 static void 3395 l2arc_hdr_stat_remove(void) 3396 { 3397 ARCSTAT_INCR(arcstat_l2_hdr_size, -sizeof (arc_buf_hdr_t) - 3398 sizeof (l2arc_buf_hdr_t)); 3399 ARCSTAT_INCR(arcstat_hdr_size, sizeof (arc_buf_hdr_t)); 3400 } 3401 3402 /* 3403 * Cycle through L2ARC devices. This is how L2ARC load balances. 3404 * This is called with l2arc_dev_mtx held, which also locks out spa removal. 3405 */ 3406 static l2arc_dev_t * 3407 l2arc_dev_get_next(void) 3408 { 3409 l2arc_dev_t *next; 3410 3411 if (l2arc_dev_last == NULL) { 3412 next = list_head(l2arc_dev_list); 3413 } else { 3414 next = list_next(l2arc_dev_list, l2arc_dev_last); 3415 if (next == NULL) 3416 next = list_head(l2arc_dev_list); 3417 } 3418 3419 l2arc_dev_last = next; 3420 3421 return (next); 3422 } 3423 3424 /* 3425 * A write to a cache device has completed. Update all headers to allow 3426 * reads from these buffers to begin. 3427 */ 3428 static void 3429 l2arc_write_done(zio_t *zio) 3430 { 3431 l2arc_write_callback_t *cb; 3432 l2arc_dev_t *dev; 3433 list_t *buflist; 3434 l2arc_data_free_t *df, *df_prev; 3435 arc_buf_hdr_t *head, *ab, *ab_prev; 3436 kmutex_t *hash_lock; 3437 3438 cb = zio->io_private; 3439 ASSERT(cb != NULL); 3440 dev = cb->l2wcb_dev; 3441 ASSERT(dev != NULL); 3442 head = cb->l2wcb_head; 3443 ASSERT(head != NULL); 3444 buflist = dev->l2ad_buflist; 3445 ASSERT(buflist != NULL); 3446 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio, 3447 l2arc_write_callback_t *, cb); 3448 3449 if (zio->io_error != 0) 3450 ARCSTAT_BUMP(arcstat_l2_writes_error); 3451 3452 mutex_enter(&l2arc_buflist_mtx); 3453 3454 /* 3455 * All writes completed, or an error was hit. 3456 */ 3457 for (ab = list_prev(buflist, head); ab; ab = ab_prev) { 3458 ab_prev = list_prev(buflist, ab); 3459 3460 hash_lock = HDR_LOCK(ab); 3461 if (!mutex_tryenter(hash_lock)) { 3462 /* 3463 * This buffer misses out. It may be in a stage 3464 * of eviction. Its ARC_L2_WRITING flag will be 3465 * left set, denying reads to this buffer. 3466 */ 3467 ARCSTAT_BUMP(arcstat_l2_writes_hdr_miss); 3468 continue; 3469 } 3470 3471 if (zio->io_error != 0) { 3472 /* 3473 * Error - invalidate L2ARC entry. 3474 */ 3475 ab->b_l2hdr = NULL; 3476 } 3477 3478 /* 3479 * Allow ARC to begin reads to this L2ARC entry. 3480 */ 3481 ab->b_flags &= ~ARC_L2_WRITING; 3482 3483 mutex_exit(hash_lock); 3484 } 3485 3486 atomic_inc_64(&l2arc_writes_done); 3487 list_remove(buflist, head); 3488 kmem_cache_free(hdr_cache, head); 3489 mutex_exit(&l2arc_buflist_mtx); 3490 3491 /* 3492 * Free buffers that were tagged for destruction. 3493 */ 3494 mutex_enter(&l2arc_free_on_write_mtx); 3495 buflist = l2arc_free_on_write; 3496 for (df = list_tail(buflist); df; df = df_prev) { 3497 df_prev = list_prev(buflist, df); 3498 ASSERT(df->l2df_data != NULL); 3499 ASSERT(df->l2df_func != NULL); 3500 df->l2df_func(df->l2df_data, df->l2df_size); 3501 list_remove(buflist, df); 3502 kmem_free(df, sizeof (l2arc_data_free_t)); 3503 } 3504 mutex_exit(&l2arc_free_on_write_mtx); 3505 3506 kmem_free(cb, sizeof (l2arc_write_callback_t)); 3507 } 3508 3509 /* 3510 * A read to a cache device completed. Validate buffer contents before 3511 * handing over to the regular ARC routines. 3512 */ 3513 static void 3514 l2arc_read_done(zio_t *zio) 3515 { 3516 l2arc_read_callback_t *cb; 3517 arc_buf_hdr_t *hdr; 3518 arc_buf_t *buf; 3519 zio_t *rzio; 3520 kmutex_t *hash_lock; 3521 int equal, err = 0; 3522 3523 cb = zio->io_private; 3524 ASSERT(cb != NULL); 3525 buf = cb->l2rcb_buf; 3526 ASSERT(buf != NULL); 3527 hdr = buf->b_hdr; 3528 ASSERT(hdr != NULL); 3529 3530 hash_lock = HDR_LOCK(hdr); 3531 mutex_enter(hash_lock); 3532 3533 /* 3534 * Check this survived the L2ARC journey. 3535 */ 3536 equal = arc_cksum_equal(buf); 3537 if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) { 3538 mutex_exit(hash_lock); 3539 zio->io_private = buf; 3540 arc_read_done(zio); 3541 } else { 3542 mutex_exit(hash_lock); 3543 /* 3544 * Buffer didn't survive caching. Increment stats and 3545 * reissue to the original storage device. 3546 */ 3547 if (zio->io_error != 0) 3548 ARCSTAT_BUMP(arcstat_l2_io_error); 3549 if (!equal) 3550 ARCSTAT_BUMP(arcstat_l2_cksum_bad); 3551 3552 zio->io_flags &= ~ZIO_FLAG_DONT_CACHE; 3553 rzio = zio_read(NULL, cb->l2rcb_spa, &cb->l2rcb_bp, 3554 buf->b_data, zio->io_size, arc_read_done, buf, 3555 zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb); 3556 3557 /* 3558 * Since this is a seperate thread, we can wait on this 3559 * I/O whether there is an io_waiter or not. 3560 */ 3561 err = zio_wait(rzio); 3562 3563 /* 3564 * Let the resent I/O call arc_read_done() instead. 3565 * io_error is set to the reissued I/O error status. 3566 */ 3567 zio->io_done = NULL; 3568 zio->io_waiter = NULL; 3569 zio->io_error = err; 3570 } 3571 3572 kmem_free(cb, sizeof (l2arc_read_callback_t)); 3573 } 3574 3575 /* 3576 * This is the list priority from which the L2ARC will search for pages to 3577 * cache. This is used within loops (0..3) to cycle through lists in the 3578 * desired order. This order can have a significant effect on cache 3579 * performance. 3580 * 3581 * Currently the metadata lists are hit first, MFU then MRU, followed by 3582 * the data lists. This function returns a locked list, and also returns 3583 * the lock pointer. 3584 */ 3585 static list_t * 3586 l2arc_list_locked(int list_num, kmutex_t **lock) 3587 { 3588 list_t *list; 3589 3590 ASSERT(list_num >= 0 && list_num <= 3); 3591 3592 switch (list_num) { 3593 case 0: 3594 list = &arc_mfu->arcs_list[ARC_BUFC_METADATA]; 3595 *lock = &arc_mfu->arcs_mtx; 3596 break; 3597 case 1: 3598 list = &arc_mru->arcs_list[ARC_BUFC_METADATA]; 3599 *lock = &arc_mru->arcs_mtx; 3600 break; 3601 case 2: 3602 list = &arc_mfu->arcs_list[ARC_BUFC_DATA]; 3603 *lock = &arc_mfu->arcs_mtx; 3604 break; 3605 case 3: 3606 list = &arc_mru->arcs_list[ARC_BUFC_DATA]; 3607 *lock = &arc_mru->arcs_mtx; 3608 break; 3609 } 3610 3611 ASSERT(!(MUTEX_HELD(*lock))); 3612 mutex_enter(*lock); 3613 return (list); 3614 } 3615 3616 /* 3617 * Evict buffers from the device write hand to the distance specified in 3618 * bytes. This distance may span populated buffers, it may span nothing. 3619 * This is clearing a region on the L2ARC device ready for writing. 3620 * If the 'all' boolean is set, every buffer is evicted. 3621 */ 3622 static void 3623 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all) 3624 { 3625 list_t *buflist; 3626 l2arc_buf_hdr_t *abl2; 3627 arc_buf_hdr_t *ab, *ab_prev; 3628 kmutex_t *hash_lock; 3629 uint64_t taddr; 3630 3631 ASSERT(MUTEX_HELD(&l2arc_dev_mtx)); 3632 3633 buflist = dev->l2ad_buflist; 3634 3635 if (buflist == NULL) 3636 return; 3637 3638 if (!all && dev->l2ad_first) { 3639 /* 3640 * This is the first sweep through the device. There is 3641 * nothing to evict. 3642 */ 3643 return; 3644 } 3645 3646 if (dev->l2ad_hand >= (dev->l2ad_end - (2 * dev->l2ad_write))) { 3647 /* 3648 * When nearing the end of the device, evict to the end 3649 * before the device write hand jumps to the start. 3650 */ 3651 taddr = dev->l2ad_end; 3652 } else { 3653 taddr = dev->l2ad_hand + distance; 3654 } 3655 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist, 3656 uint64_t, taddr, boolean_t, all); 3657 3658 top: 3659 mutex_enter(&l2arc_buflist_mtx); 3660 for (ab = list_tail(buflist); ab; ab = ab_prev) { 3661 ab_prev = list_prev(buflist, ab); 3662 3663 hash_lock = HDR_LOCK(ab); 3664 if (!mutex_tryenter(hash_lock)) { 3665 /* 3666 * Missed the hash lock. Retry. 3667 */ 3668 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry); 3669 mutex_exit(&l2arc_buflist_mtx); 3670 mutex_enter(hash_lock); 3671 mutex_exit(hash_lock); 3672 goto top; 3673 } 3674 3675 if (HDR_L2_WRITE_HEAD(ab)) { 3676 /* 3677 * We hit a write head node. Leave it for 3678 * l2arc_write_done(). 3679 */ 3680 list_remove(buflist, ab); 3681 mutex_exit(hash_lock); 3682 continue; 3683 } 3684 3685 if (!all && ab->b_l2hdr != NULL && 3686 (ab->b_l2hdr->b_daddr > taddr || 3687 ab->b_l2hdr->b_daddr < dev->l2ad_hand)) { 3688 /* 3689 * We've evicted to the target address, 3690 * or the end of the device. 3691 */ 3692 mutex_exit(hash_lock); 3693 break; 3694 } 3695 3696 if (HDR_FREE_IN_PROGRESS(ab)) { 3697 /* 3698 * Already on the path to destruction. 3699 */ 3700 mutex_exit(hash_lock); 3701 continue; 3702 } 3703 3704 if (ab->b_state == arc_l2c_only) { 3705 ASSERT(!HDR_L2_READING(ab)); 3706 /* 3707 * This doesn't exist in the ARC. Destroy. 3708 * arc_hdr_destroy() will call list_remove() 3709 * and decrement arcstat_l2_size. 3710 */ 3711 arc_change_state(arc_anon, ab, hash_lock); 3712 arc_hdr_destroy(ab); 3713 } else { 3714 /* 3715 * Tell ARC this no longer exists in L2ARC. 3716 */ 3717 if (ab->b_l2hdr != NULL) { 3718 abl2 = ab->b_l2hdr; 3719 ab->b_l2hdr = NULL; 3720 kmem_free(abl2, sizeof (l2arc_buf_hdr_t)); 3721 ARCSTAT_INCR(arcstat_l2_size, -ab->b_size); 3722 } 3723 list_remove(buflist, ab); 3724 3725 /* 3726 * This may have been leftover after a 3727 * failed write. 3728 */ 3729 ab->b_flags &= ~ARC_L2_WRITING; 3730 3731 /* 3732 * Invalidate issued or about to be issued 3733 * reads, since we may be about to write 3734 * over this location. 3735 */ 3736 if (HDR_L2_READING(ab)) { 3737 ARCSTAT_BUMP(arcstat_l2_evict_reading); 3738 ab->b_flags |= ARC_L2_EVICTED; 3739 } 3740 } 3741 mutex_exit(hash_lock); 3742 } 3743 mutex_exit(&l2arc_buflist_mtx); 3744 3745 spa_l2cache_space_update(dev->l2ad_vdev, 0, -(taddr - dev->l2ad_evict)); 3746 dev->l2ad_evict = taddr; 3747 } 3748 3749 /* 3750 * Find and write ARC buffers to the L2ARC device. 3751 * 3752 * An ARC_L2_WRITING flag is set so that the L2ARC buffers are not valid 3753 * for reading until they have completed writing. 3754 */ 3755 static void 3756 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev) 3757 { 3758 arc_buf_hdr_t *ab, *ab_prev, *head; 3759 l2arc_buf_hdr_t *hdrl2; 3760 list_t *list; 3761 uint64_t passed_sz, write_sz, buf_sz; 3762 uint64_t target_sz = dev->l2ad_write; 3763 uint64_t headroom = dev->l2ad_write * l2arc_headroom; 3764 void *buf_data; 3765 kmutex_t *hash_lock, *list_lock; 3766 boolean_t have_lock, full; 3767 l2arc_write_callback_t *cb; 3768 zio_t *pio, *wzio; 3769 3770 ASSERT(MUTEX_HELD(&l2arc_dev_mtx)); 3771 ASSERT(dev->l2ad_vdev != NULL); 3772 3773 pio = NULL; 3774 write_sz = 0; 3775 full = B_FALSE; 3776 head = kmem_cache_alloc(hdr_cache, KM_SLEEP); 3777 head->b_flags |= ARC_L2_WRITE_HEAD; 3778 3779 /* 3780 * Copy buffers for L2ARC writing. 3781 */ 3782 mutex_enter(&l2arc_buflist_mtx); 3783 for (int try = 0; try <= 3; try++) { 3784 list = l2arc_list_locked(try, &list_lock); 3785 passed_sz = 0; 3786 3787 for (ab = list_tail(list); ab; ab = ab_prev) { 3788 ab_prev = list_prev(list, ab); 3789 3790 hash_lock = HDR_LOCK(ab); 3791 have_lock = MUTEX_HELD(hash_lock); 3792 if (!have_lock && !mutex_tryenter(hash_lock)) { 3793 /* 3794 * Skip this buffer rather than waiting. 3795 */ 3796 continue; 3797 } 3798 3799 passed_sz += ab->b_size; 3800 if (passed_sz > headroom) { 3801 /* 3802 * Searched too far. 3803 */ 3804 mutex_exit(hash_lock); 3805 break; 3806 } 3807 3808 if (ab->b_spa != spa) { 3809 mutex_exit(hash_lock); 3810 continue; 3811 } 3812 3813 if (ab->b_l2hdr != NULL) { 3814 /* 3815 * Already in L2ARC. 3816 */ 3817 mutex_exit(hash_lock); 3818 continue; 3819 } 3820 3821 if (HDR_IO_IN_PROGRESS(ab) || HDR_DONT_L2CACHE(ab)) { 3822 mutex_exit(hash_lock); 3823 continue; 3824 } 3825 3826 if ((write_sz + ab->b_size) > target_sz) { 3827 full = B_TRUE; 3828 mutex_exit(hash_lock); 3829 break; 3830 } 3831 3832 if (ab->b_buf == NULL) { 3833 DTRACE_PROBE1(l2arc__buf__null, void *, ab); 3834 mutex_exit(hash_lock); 3835 continue; 3836 } 3837 3838 if (pio == NULL) { 3839 /* 3840 * Insert a dummy header on the buflist so 3841 * l2arc_write_done() can find where the 3842 * write buffers begin without searching. 3843 */ 3844 list_insert_head(dev->l2ad_buflist, head); 3845 3846 cb = kmem_alloc( 3847 sizeof (l2arc_write_callback_t), KM_SLEEP); 3848 cb->l2wcb_dev = dev; 3849 cb->l2wcb_head = head; 3850 pio = zio_root(spa, l2arc_write_done, cb, 3851 ZIO_FLAG_CANFAIL); 3852 } 3853 3854 /* 3855 * Create and add a new L2ARC header. 3856 */ 3857 hdrl2 = kmem_zalloc(sizeof (l2arc_buf_hdr_t), KM_SLEEP); 3858 hdrl2->b_dev = dev; 3859 hdrl2->b_daddr = dev->l2ad_hand; 3860 3861 ab->b_flags |= ARC_L2_WRITING; 3862 ab->b_l2hdr = hdrl2; 3863 list_insert_head(dev->l2ad_buflist, ab); 3864 buf_data = ab->b_buf->b_data; 3865 buf_sz = ab->b_size; 3866 3867 /* 3868 * Compute and store the buffer cksum before 3869 * writing. On debug the cksum is verified first. 3870 */ 3871 arc_cksum_verify(ab->b_buf); 3872 arc_cksum_compute(ab->b_buf, B_TRUE); 3873 3874 mutex_exit(hash_lock); 3875 3876 wzio = zio_write_phys(pio, dev->l2ad_vdev, 3877 dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF, 3878 NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE, 3879 ZIO_FLAG_CANFAIL, B_FALSE); 3880 3881 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, 3882 zio_t *, wzio); 3883 (void) zio_nowait(wzio); 3884 3885 write_sz += buf_sz; 3886 dev->l2ad_hand += buf_sz; 3887 } 3888 3889 mutex_exit(list_lock); 3890 3891 if (full == B_TRUE) 3892 break; 3893 } 3894 mutex_exit(&l2arc_buflist_mtx); 3895 3896 if (pio == NULL) { 3897 ASSERT3U(write_sz, ==, 0); 3898 kmem_cache_free(hdr_cache, head); 3899 return; 3900 } 3901 3902 ASSERT3U(write_sz, <=, target_sz); 3903 ARCSTAT_BUMP(arcstat_l2_writes_sent); 3904 ARCSTAT_INCR(arcstat_l2_size, write_sz); 3905 spa_l2cache_space_update(dev->l2ad_vdev, 0, write_sz); 3906 3907 /* 3908 * Bump device hand to the device start if it is approaching the end. 3909 * l2arc_evict() will already have evicted ahead for this case. 3910 */ 3911 if (dev->l2ad_hand >= (dev->l2ad_end - dev->l2ad_write)) { 3912 spa_l2cache_space_update(dev->l2ad_vdev, 0, 3913 dev->l2ad_end - dev->l2ad_hand); 3914 dev->l2ad_hand = dev->l2ad_start; 3915 dev->l2ad_evict = dev->l2ad_start; 3916 dev->l2ad_first = B_FALSE; 3917 } 3918 3919 (void) zio_wait(pio); 3920 } 3921 3922 /* 3923 * This thread feeds the L2ARC at regular intervals. This is the beating 3924 * heart of the L2ARC. 3925 */ 3926 static void 3927 l2arc_feed_thread(void) 3928 { 3929 callb_cpr_t cpr; 3930 l2arc_dev_t *dev; 3931 spa_t *spa; 3932 int interval; 3933 boolean_t startup = B_TRUE; 3934 3935 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG); 3936 3937 mutex_enter(&l2arc_feed_thr_lock); 3938 3939 while (l2arc_thread_exit == 0) { 3940 /* 3941 * Initially pause for L2ARC_FEED_DELAY seconds as a grace 3942 * interval during boot, followed by l2arc_feed_secs seconds 3943 * thereafter. 3944 */ 3945 CALLB_CPR_SAFE_BEGIN(&cpr); 3946 if (startup) { 3947 interval = L2ARC_FEED_DELAY; 3948 startup = B_FALSE; 3949 } else { 3950 interval = l2arc_feed_secs; 3951 } 3952 (void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock, 3953 lbolt + (hz * interval)); 3954 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock); 3955 3956 /* 3957 * Do nothing until L2ARC devices exist. 3958 */ 3959 mutex_enter(&l2arc_dev_mtx); 3960 if (l2arc_ndev == 0) { 3961 mutex_exit(&l2arc_dev_mtx); 3962 continue; 3963 } 3964 3965 /* 3966 * Avoid contributing to memory pressure. 3967 */ 3968 if (arc_reclaim_needed()) { 3969 ARCSTAT_BUMP(arcstat_l2_abort_lowmem); 3970 mutex_exit(&l2arc_dev_mtx); 3971 continue; 3972 } 3973 3974 /* 3975 * This selects the next l2arc device to write to, and in 3976 * doing so the next spa to feed from: dev->l2ad_spa. 3977 */ 3978 if ((dev = l2arc_dev_get_next()) == NULL) { 3979 mutex_exit(&l2arc_dev_mtx); 3980 continue; 3981 } 3982 spa = dev->l2ad_spa; 3983 ASSERT(spa != NULL); 3984 ARCSTAT_BUMP(arcstat_l2_feeds); 3985 3986 /* 3987 * Evict L2ARC buffers that will be overwritten. 3988 */ 3989 l2arc_evict(dev, dev->l2ad_write, B_FALSE); 3990 3991 /* 3992 * Write ARC buffers. 3993 */ 3994 l2arc_write_buffers(spa, dev); 3995 mutex_exit(&l2arc_dev_mtx); 3996 } 3997 3998 l2arc_thread_exit = 0; 3999 cv_broadcast(&l2arc_feed_thr_cv); 4000 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */ 4001 thread_exit(); 4002 } 4003 4004 /* 4005 * Add a vdev for use by the L2ARC. By this point the spa has already 4006 * validated the vdev and opened it. 4007 */ 4008 void 4009 l2arc_add_vdev(spa_t *spa, vdev_t *vd, uint64_t start, uint64_t end) 4010 { 4011 l2arc_dev_t *adddev; 4012 4013 /* 4014 * Create a new l2arc device entry. 4015 */ 4016 adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP); 4017 adddev->l2ad_spa = spa; 4018 adddev->l2ad_vdev = vd; 4019 adddev->l2ad_write = l2arc_write_max; 4020 adddev->l2ad_start = start; 4021 adddev->l2ad_end = end; 4022 adddev->l2ad_hand = adddev->l2ad_start; 4023 adddev->l2ad_evict = adddev->l2ad_start; 4024 adddev->l2ad_first = B_TRUE; 4025 ASSERT3U(adddev->l2ad_write, >, 0); 4026 4027 /* 4028 * This is a list of all ARC buffers that are still valid on the 4029 * device. 4030 */ 4031 adddev->l2ad_buflist = kmem_zalloc(sizeof (list_t), KM_SLEEP); 4032 list_create(adddev->l2ad_buflist, sizeof (arc_buf_hdr_t), 4033 offsetof(arc_buf_hdr_t, b_l2node)); 4034 4035 spa_l2cache_space_update(vd, adddev->l2ad_end - adddev->l2ad_hand, 0); 4036 4037 /* 4038 * Add device to global list 4039 */ 4040 mutex_enter(&l2arc_dev_mtx); 4041 list_insert_head(l2arc_dev_list, adddev); 4042 atomic_inc_64(&l2arc_ndev); 4043 mutex_exit(&l2arc_dev_mtx); 4044 } 4045 4046 /* 4047 * Remove a vdev from the L2ARC. 4048 */ 4049 void 4050 l2arc_remove_vdev(vdev_t *vd) 4051 { 4052 l2arc_dev_t *dev, *nextdev, *remdev = NULL; 4053 4054 /* 4055 * We can only grab the spa config lock when cache device writes 4056 * complete. 4057 */ 4058 ASSERT3U(l2arc_writes_sent, ==, l2arc_writes_done); 4059 4060 /* 4061 * Find the device by vdev 4062 */ 4063 mutex_enter(&l2arc_dev_mtx); 4064 for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) { 4065 nextdev = list_next(l2arc_dev_list, dev); 4066 if (vd == dev->l2ad_vdev) { 4067 remdev = dev; 4068 break; 4069 } 4070 } 4071 ASSERT(remdev != NULL); 4072 4073 /* 4074 * Remove device from global list 4075 */ 4076 list_remove(l2arc_dev_list, remdev); 4077 l2arc_dev_last = NULL; /* may have been invalidated */ 4078 4079 /* 4080 * Clear all buflists and ARC references. L2ARC device flush. 4081 */ 4082 l2arc_evict(remdev, 0, B_TRUE); 4083 list_destroy(remdev->l2ad_buflist); 4084 kmem_free(remdev->l2ad_buflist, sizeof (list_t)); 4085 kmem_free(remdev, sizeof (l2arc_dev_t)); 4086 4087 atomic_dec_64(&l2arc_ndev); 4088 mutex_exit(&l2arc_dev_mtx); 4089 } 4090 4091 void 4092 l2arc_init() 4093 { 4094 l2arc_thread_exit = 0; 4095 l2arc_ndev = 0; 4096 l2arc_writes_sent = 0; 4097 l2arc_writes_done = 0; 4098 4099 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL); 4100 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL); 4101 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL); 4102 mutex_init(&l2arc_buflist_mtx, NULL, MUTEX_DEFAULT, NULL); 4103 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL); 4104 4105 l2arc_dev_list = &L2ARC_dev_list; 4106 l2arc_free_on_write = &L2ARC_free_on_write; 4107 list_create(l2arc_dev_list, sizeof (l2arc_dev_t), 4108 offsetof(l2arc_dev_t, l2ad_node)); 4109 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t), 4110 offsetof(l2arc_data_free_t, l2df_list_node)); 4111 4112 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0, 4113 TS_RUN, minclsyspri); 4114 } 4115 4116 void 4117 l2arc_fini() 4118 { 4119 mutex_enter(&l2arc_feed_thr_lock); 4120 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */ 4121 l2arc_thread_exit = 1; 4122 while (l2arc_thread_exit != 0) 4123 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock); 4124 mutex_exit(&l2arc_feed_thr_lock); 4125 4126 mutex_destroy(&l2arc_feed_thr_lock); 4127 cv_destroy(&l2arc_feed_thr_cv); 4128 mutex_destroy(&l2arc_dev_mtx); 4129 mutex_destroy(&l2arc_buflist_mtx); 4130 mutex_destroy(&l2arc_free_on_write_mtx); 4131 4132 list_destroy(l2arc_dev_list); 4133 list_destroy(l2arc_free_on_write); 4134 } 4135