1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * DVA-based Adjustable Replacement Cache 28 * 29 * While much of the theory of operation used here is 30 * based on the self-tuning, low overhead replacement cache 31 * presented by Megiddo and Modha at FAST 2003, there are some 32 * significant differences: 33 * 34 * 1. The Megiddo and Modha model assumes any page is evictable. 35 * Pages in its cache cannot be "locked" into memory. This makes 36 * the eviction algorithm simple: evict the last page in the list. 37 * This also make the performance characteristics easy to reason 38 * about. Our cache is not so simple. At any given moment, some 39 * subset of the blocks in the cache are un-evictable because we 40 * have handed out a reference to them. Blocks are only evictable 41 * when there are no external references active. This makes 42 * eviction far more problematic: we choose to evict the evictable 43 * blocks that are the "lowest" in the list. 44 * 45 * There are times when it is not possible to evict the requested 46 * space. In these circumstances we are unable to adjust the cache 47 * size. To prevent the cache growing unbounded at these times we 48 * implement a "cache throttle" that slows the flow of new data 49 * into the cache until we can make space available. 50 * 51 * 2. The Megiddo and Modha model assumes a fixed cache size. 52 * Pages are evicted when the cache is full and there is a cache 53 * miss. Our model has a variable sized cache. It grows with 54 * high use, but also tries to react to memory pressure from the 55 * operating system: decreasing its size when system memory is 56 * tight. 57 * 58 * 3. The Megiddo and Modha model assumes a fixed page size. All 59 * elements of the cache are therefor exactly the same size. So 60 * when adjusting the cache size following a cache miss, its simply 61 * a matter of choosing a single page to evict. In our model, we 62 * have variable sized cache blocks (rangeing from 512 bytes to 63 * 128K bytes). We therefor choose a set of blocks to evict to make 64 * space for a cache miss that approximates as closely as possible 65 * the space used by the new block. 66 * 67 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache" 68 * by N. Megiddo & D. Modha, FAST 2003 69 */ 70 71 /* 72 * The locking model: 73 * 74 * A new reference to a cache buffer can be obtained in two 75 * ways: 1) via a hash table lookup using the DVA as a key, 76 * or 2) via one of the ARC lists. The arc_read() interface 77 * uses method 1, while the internal arc algorithms for 78 * adjusting the cache use method 2. We therefor provide two 79 * types of locks: 1) the hash table lock array, and 2) the 80 * arc list locks. 81 * 82 * Buffers do not have their own mutexs, rather they rely on the 83 * hash table mutexs for the bulk of their protection (i.e. most 84 * fields in the arc_buf_hdr_t are protected by these mutexs). 85 * 86 * buf_hash_find() returns the appropriate mutex (held) when it 87 * locates the requested buffer in the hash table. It returns 88 * NULL for the mutex if the buffer was not in the table. 89 * 90 * buf_hash_remove() expects the appropriate hash mutex to be 91 * already held before it is invoked. 92 * 93 * Each arc state also has a mutex which is used to protect the 94 * buffer list associated with the state. When attempting to 95 * obtain a hash table lock while holding an arc list lock you 96 * must use: mutex_tryenter() to avoid deadlock. Also note that 97 * the active state mutex must be held before the ghost state mutex. 98 * 99 * Arc buffers may have an associated eviction callback function. 100 * This function will be invoked prior to removing the buffer (e.g. 101 * in arc_do_user_evicts()). Note however that the data associated 102 * with the buffer may be evicted prior to the callback. The callback 103 * must be made with *no locks held* (to prevent deadlock). Additionally, 104 * the users of callbacks must ensure that their private data is 105 * protected from simultaneous callbacks from arc_buf_evict() 106 * and arc_do_user_evicts(). 107 * 108 * Note that the majority of the performance stats are manipulated 109 * with atomic operations. 110 * 111 * The L2ARC uses the l2arc_buflist_mtx global mutex for the following: 112 * 113 * - L2ARC buflist creation 114 * - L2ARC buflist eviction 115 * - L2ARC write completion, which walks L2ARC buflists 116 * - ARC header destruction, as it removes from L2ARC buflists 117 * - ARC header release, as it removes from L2ARC buflists 118 */ 119 120 #include <sys/spa.h> 121 #include <sys/zio.h> 122 #include <sys/zio_checksum.h> 123 #include <sys/zfs_context.h> 124 #include <sys/arc.h> 125 #include <sys/refcount.h> 126 #include <sys/vdev.h> 127 #ifdef _KERNEL 128 #include <sys/vmsystm.h> 129 #include <vm/anon.h> 130 #include <sys/fs/swapnode.h> 131 #include <sys/dnlc.h> 132 #endif 133 #include <sys/callb.h> 134 #include <sys/kstat.h> 135 136 static kmutex_t arc_reclaim_thr_lock; 137 static kcondvar_t arc_reclaim_thr_cv; /* used to signal reclaim thr */ 138 static uint8_t arc_thread_exit; 139 140 extern int zfs_write_limit_shift; 141 extern uint64_t zfs_write_limit_max; 142 extern kmutex_t zfs_write_limit_lock; 143 144 #define ARC_REDUCE_DNLC_PERCENT 3 145 uint_t arc_reduce_dnlc_percent = ARC_REDUCE_DNLC_PERCENT; 146 147 typedef enum arc_reclaim_strategy { 148 ARC_RECLAIM_AGGR, /* Aggressive reclaim strategy */ 149 ARC_RECLAIM_CONS /* Conservative reclaim strategy */ 150 } arc_reclaim_strategy_t; 151 152 /* number of seconds before growing cache again */ 153 static int arc_grow_retry = 60; 154 155 /* shift of arc_c for calculating both min and max arc_p */ 156 static int arc_p_min_shift = 4; 157 158 /* log2(fraction of arc to reclaim) */ 159 static int arc_shrink_shift = 5; 160 161 /* 162 * minimum lifespan of a prefetch block in clock ticks 163 * (initialized in arc_init()) 164 */ 165 static int arc_min_prefetch_lifespan; 166 167 static int arc_dead; 168 169 /* 170 * The arc has filled available memory and has now warmed up. 171 */ 172 static boolean_t arc_warm; 173 174 /* 175 * These tunables are for performance analysis. 176 */ 177 uint64_t zfs_arc_max; 178 uint64_t zfs_arc_min; 179 uint64_t zfs_arc_meta_limit = 0; 180 int zfs_mdcomp_disable = 0; 181 int zfs_arc_grow_retry = 0; 182 int zfs_arc_shrink_shift = 0; 183 int zfs_arc_p_min_shift = 0; 184 185 /* 186 * Note that buffers can be in one of 6 states: 187 * ARC_anon - anonymous (discussed below) 188 * ARC_mru - recently used, currently cached 189 * ARC_mru_ghost - recentely used, no longer in cache 190 * ARC_mfu - frequently used, currently cached 191 * ARC_mfu_ghost - frequently used, no longer in cache 192 * ARC_l2c_only - exists in L2ARC but not other states 193 * When there are no active references to the buffer, they are 194 * are linked onto a list in one of these arc states. These are 195 * the only buffers that can be evicted or deleted. Within each 196 * state there are multiple lists, one for meta-data and one for 197 * non-meta-data. Meta-data (indirect blocks, blocks of dnodes, 198 * etc.) is tracked separately so that it can be managed more 199 * explicitly: favored over data, limited explicitly. 200 * 201 * Anonymous buffers are buffers that are not associated with 202 * a DVA. These are buffers that hold dirty block copies 203 * before they are written to stable storage. By definition, 204 * they are "ref'd" and are considered part of arc_mru 205 * that cannot be freed. Generally, they will aquire a DVA 206 * as they are written and migrate onto the arc_mru list. 207 * 208 * The ARC_l2c_only state is for buffers that are in the second 209 * level ARC but no longer in any of the ARC_m* lists. The second 210 * level ARC itself may also contain buffers that are in any of 211 * the ARC_m* states - meaning that a buffer can exist in two 212 * places. The reason for the ARC_l2c_only state is to keep the 213 * buffer header in the hash table, so that reads that hit the 214 * second level ARC benefit from these fast lookups. 215 */ 216 217 typedef struct arc_state { 218 list_t arcs_list[ARC_BUFC_NUMTYPES]; /* list of evictable buffers */ 219 uint64_t arcs_lsize[ARC_BUFC_NUMTYPES]; /* amount of evictable data */ 220 uint64_t arcs_size; /* total amount of data in this state */ 221 kmutex_t arcs_mtx; 222 } arc_state_t; 223 224 /* The 6 states: */ 225 static arc_state_t ARC_anon; 226 static arc_state_t ARC_mru; 227 static arc_state_t ARC_mru_ghost; 228 static arc_state_t ARC_mfu; 229 static arc_state_t ARC_mfu_ghost; 230 static arc_state_t ARC_l2c_only; 231 232 typedef struct arc_stats { 233 kstat_named_t arcstat_hits; 234 kstat_named_t arcstat_misses; 235 kstat_named_t arcstat_demand_data_hits; 236 kstat_named_t arcstat_demand_data_misses; 237 kstat_named_t arcstat_demand_metadata_hits; 238 kstat_named_t arcstat_demand_metadata_misses; 239 kstat_named_t arcstat_prefetch_data_hits; 240 kstat_named_t arcstat_prefetch_data_misses; 241 kstat_named_t arcstat_prefetch_metadata_hits; 242 kstat_named_t arcstat_prefetch_metadata_misses; 243 kstat_named_t arcstat_mru_hits; 244 kstat_named_t arcstat_mru_ghost_hits; 245 kstat_named_t arcstat_mfu_hits; 246 kstat_named_t arcstat_mfu_ghost_hits; 247 kstat_named_t arcstat_deleted; 248 kstat_named_t arcstat_recycle_miss; 249 kstat_named_t arcstat_mutex_miss; 250 kstat_named_t arcstat_evict_skip; 251 kstat_named_t arcstat_hash_elements; 252 kstat_named_t arcstat_hash_elements_max; 253 kstat_named_t arcstat_hash_collisions; 254 kstat_named_t arcstat_hash_chains; 255 kstat_named_t arcstat_hash_chain_max; 256 kstat_named_t arcstat_p; 257 kstat_named_t arcstat_c; 258 kstat_named_t arcstat_c_min; 259 kstat_named_t arcstat_c_max; 260 kstat_named_t arcstat_size; 261 kstat_named_t arcstat_hdr_size; 262 kstat_named_t arcstat_data_size; 263 kstat_named_t arcstat_other_size; 264 kstat_named_t arcstat_l2_hits; 265 kstat_named_t arcstat_l2_misses; 266 kstat_named_t arcstat_l2_feeds; 267 kstat_named_t arcstat_l2_rw_clash; 268 kstat_named_t arcstat_l2_read_bytes; 269 kstat_named_t arcstat_l2_write_bytes; 270 kstat_named_t arcstat_l2_writes_sent; 271 kstat_named_t arcstat_l2_writes_done; 272 kstat_named_t arcstat_l2_writes_error; 273 kstat_named_t arcstat_l2_writes_hdr_miss; 274 kstat_named_t arcstat_l2_evict_lock_retry; 275 kstat_named_t arcstat_l2_evict_reading; 276 kstat_named_t arcstat_l2_free_on_write; 277 kstat_named_t arcstat_l2_abort_lowmem; 278 kstat_named_t arcstat_l2_cksum_bad; 279 kstat_named_t arcstat_l2_io_error; 280 kstat_named_t arcstat_l2_size; 281 kstat_named_t arcstat_l2_hdr_size; 282 kstat_named_t arcstat_memory_throttle_count; 283 } arc_stats_t; 284 285 static arc_stats_t arc_stats = { 286 { "hits", KSTAT_DATA_UINT64 }, 287 { "misses", KSTAT_DATA_UINT64 }, 288 { "demand_data_hits", KSTAT_DATA_UINT64 }, 289 { "demand_data_misses", KSTAT_DATA_UINT64 }, 290 { "demand_metadata_hits", KSTAT_DATA_UINT64 }, 291 { "demand_metadata_misses", KSTAT_DATA_UINT64 }, 292 { "prefetch_data_hits", KSTAT_DATA_UINT64 }, 293 { "prefetch_data_misses", KSTAT_DATA_UINT64 }, 294 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 }, 295 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 }, 296 { "mru_hits", KSTAT_DATA_UINT64 }, 297 { "mru_ghost_hits", KSTAT_DATA_UINT64 }, 298 { "mfu_hits", KSTAT_DATA_UINT64 }, 299 { "mfu_ghost_hits", KSTAT_DATA_UINT64 }, 300 { "deleted", KSTAT_DATA_UINT64 }, 301 { "recycle_miss", KSTAT_DATA_UINT64 }, 302 { "mutex_miss", KSTAT_DATA_UINT64 }, 303 { "evict_skip", KSTAT_DATA_UINT64 }, 304 { "hash_elements", KSTAT_DATA_UINT64 }, 305 { "hash_elements_max", KSTAT_DATA_UINT64 }, 306 { "hash_collisions", KSTAT_DATA_UINT64 }, 307 { "hash_chains", KSTAT_DATA_UINT64 }, 308 { "hash_chain_max", KSTAT_DATA_UINT64 }, 309 { "p", KSTAT_DATA_UINT64 }, 310 { "c", KSTAT_DATA_UINT64 }, 311 { "c_min", KSTAT_DATA_UINT64 }, 312 { "c_max", KSTAT_DATA_UINT64 }, 313 { "size", KSTAT_DATA_UINT64 }, 314 { "hdr_size", KSTAT_DATA_UINT64 }, 315 { "data_size", KSTAT_DATA_UINT64 }, 316 { "other_size", KSTAT_DATA_UINT64 }, 317 { "l2_hits", KSTAT_DATA_UINT64 }, 318 { "l2_misses", KSTAT_DATA_UINT64 }, 319 { "l2_feeds", KSTAT_DATA_UINT64 }, 320 { "l2_rw_clash", KSTAT_DATA_UINT64 }, 321 { "l2_read_bytes", KSTAT_DATA_UINT64 }, 322 { "l2_write_bytes", KSTAT_DATA_UINT64 }, 323 { "l2_writes_sent", KSTAT_DATA_UINT64 }, 324 { "l2_writes_done", KSTAT_DATA_UINT64 }, 325 { "l2_writes_error", KSTAT_DATA_UINT64 }, 326 { "l2_writes_hdr_miss", KSTAT_DATA_UINT64 }, 327 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 }, 328 { "l2_evict_reading", KSTAT_DATA_UINT64 }, 329 { "l2_free_on_write", KSTAT_DATA_UINT64 }, 330 { "l2_abort_lowmem", KSTAT_DATA_UINT64 }, 331 { "l2_cksum_bad", KSTAT_DATA_UINT64 }, 332 { "l2_io_error", KSTAT_DATA_UINT64 }, 333 { "l2_size", KSTAT_DATA_UINT64 }, 334 { "l2_hdr_size", KSTAT_DATA_UINT64 }, 335 { "memory_throttle_count", KSTAT_DATA_UINT64 } 336 }; 337 338 #define ARCSTAT(stat) (arc_stats.stat.value.ui64) 339 340 #define ARCSTAT_INCR(stat, val) \ 341 atomic_add_64(&arc_stats.stat.value.ui64, (val)); 342 343 #define ARCSTAT_BUMP(stat) ARCSTAT_INCR(stat, 1) 344 #define ARCSTAT_BUMPDOWN(stat) ARCSTAT_INCR(stat, -1) 345 346 #define ARCSTAT_MAX(stat, val) { \ 347 uint64_t m; \ 348 while ((val) > (m = arc_stats.stat.value.ui64) && \ 349 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \ 350 continue; \ 351 } 352 353 #define ARCSTAT_MAXSTAT(stat) \ 354 ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64) 355 356 /* 357 * We define a macro to allow ARC hits/misses to be easily broken down by 358 * two separate conditions, giving a total of four different subtypes for 359 * each of hits and misses (so eight statistics total). 360 */ 361 #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \ 362 if (cond1) { \ 363 if (cond2) { \ 364 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \ 365 } else { \ 366 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \ 367 } \ 368 } else { \ 369 if (cond2) { \ 370 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \ 371 } else { \ 372 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\ 373 } \ 374 } 375 376 kstat_t *arc_ksp; 377 static arc_state_t *arc_anon; 378 static arc_state_t *arc_mru; 379 static arc_state_t *arc_mru_ghost; 380 static arc_state_t *arc_mfu; 381 static arc_state_t *arc_mfu_ghost; 382 static arc_state_t *arc_l2c_only; 383 384 /* 385 * There are several ARC variables that are critical to export as kstats -- 386 * but we don't want to have to grovel around in the kstat whenever we wish to 387 * manipulate them. For these variables, we therefore define them to be in 388 * terms of the statistic variable. This assures that we are not introducing 389 * the possibility of inconsistency by having shadow copies of the variables, 390 * while still allowing the code to be readable. 391 */ 392 #define arc_size ARCSTAT(arcstat_size) /* actual total arc size */ 393 #define arc_p ARCSTAT(arcstat_p) /* target size of MRU */ 394 #define arc_c ARCSTAT(arcstat_c) /* target size of cache */ 395 #define arc_c_min ARCSTAT(arcstat_c_min) /* min target cache size */ 396 #define arc_c_max ARCSTAT(arcstat_c_max) /* max target cache size */ 397 398 static int arc_no_grow; /* Don't try to grow cache size */ 399 static uint64_t arc_tempreserve; 400 static uint64_t arc_meta_used; 401 static uint64_t arc_meta_limit; 402 static uint64_t arc_meta_max = 0; 403 404 typedef struct l2arc_buf_hdr l2arc_buf_hdr_t; 405 406 typedef struct arc_callback arc_callback_t; 407 408 struct arc_callback { 409 void *acb_private; 410 arc_done_func_t *acb_done; 411 arc_buf_t *acb_buf; 412 zio_t *acb_zio_dummy; 413 arc_callback_t *acb_next; 414 }; 415 416 typedef struct arc_write_callback arc_write_callback_t; 417 418 struct arc_write_callback { 419 void *awcb_private; 420 arc_done_func_t *awcb_ready; 421 arc_done_func_t *awcb_done; 422 arc_buf_t *awcb_buf; 423 }; 424 425 struct arc_buf_hdr { 426 /* protected by hash lock */ 427 dva_t b_dva; 428 uint64_t b_birth; 429 uint64_t b_cksum0; 430 431 kmutex_t b_freeze_lock; 432 zio_cksum_t *b_freeze_cksum; 433 434 arc_buf_hdr_t *b_hash_next; 435 arc_buf_t *b_buf; 436 uint32_t b_flags; 437 uint32_t b_datacnt; 438 439 arc_callback_t *b_acb; 440 kcondvar_t b_cv; 441 442 /* immutable */ 443 arc_buf_contents_t b_type; 444 uint64_t b_size; 445 spa_t *b_spa; 446 447 /* protected by arc state mutex */ 448 arc_state_t *b_state; 449 list_node_t b_arc_node; 450 451 /* updated atomically */ 452 clock_t b_arc_access; 453 454 /* self protecting */ 455 refcount_t b_refcnt; 456 457 l2arc_buf_hdr_t *b_l2hdr; 458 list_node_t b_l2node; 459 }; 460 461 static arc_buf_t *arc_eviction_list; 462 static kmutex_t arc_eviction_mtx; 463 static arc_buf_hdr_t arc_eviction_hdr; 464 static void arc_get_data_buf(arc_buf_t *buf); 465 static void arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock); 466 static int arc_evict_needed(arc_buf_contents_t type); 467 static void arc_evict_ghost(arc_state_t *state, spa_t *spa, int64_t bytes); 468 469 #define GHOST_STATE(state) \ 470 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \ 471 (state) == arc_l2c_only) 472 473 /* 474 * Private ARC flags. These flags are private ARC only flags that will show up 475 * in b_flags in the arc_hdr_buf_t. Some flags are publicly declared, and can 476 * be passed in as arc_flags in things like arc_read. However, these flags 477 * should never be passed and should only be set by ARC code. When adding new 478 * public flags, make sure not to smash the private ones. 479 */ 480 481 #define ARC_IN_HASH_TABLE (1 << 9) /* this buffer is hashed */ 482 #define ARC_IO_IN_PROGRESS (1 << 10) /* I/O in progress for buf */ 483 #define ARC_IO_ERROR (1 << 11) /* I/O failed for buf */ 484 #define ARC_FREED_IN_READ (1 << 12) /* buf freed while in read */ 485 #define ARC_BUF_AVAILABLE (1 << 13) /* block not in active use */ 486 #define ARC_INDIRECT (1 << 14) /* this is an indirect block */ 487 #define ARC_FREE_IN_PROGRESS (1 << 15) /* hdr about to be freed */ 488 #define ARC_L2_WRITING (1 << 16) /* L2ARC write in progress */ 489 #define ARC_L2_EVICTED (1 << 17) /* evicted during I/O */ 490 #define ARC_L2_WRITE_HEAD (1 << 18) /* head of write list */ 491 #define ARC_STORED (1 << 19) /* has been store()d to */ 492 493 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_IN_HASH_TABLE) 494 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_IO_IN_PROGRESS) 495 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_IO_ERROR) 496 #define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_PREFETCH) 497 #define HDR_FREED_IN_READ(hdr) ((hdr)->b_flags & ARC_FREED_IN_READ) 498 #define HDR_BUF_AVAILABLE(hdr) ((hdr)->b_flags & ARC_BUF_AVAILABLE) 499 #define HDR_FREE_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FREE_IN_PROGRESS) 500 #define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_L2CACHE) 501 #define HDR_L2_READING(hdr) ((hdr)->b_flags & ARC_IO_IN_PROGRESS && \ 502 (hdr)->b_l2hdr != NULL) 503 #define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_L2_WRITING) 504 #define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_L2_EVICTED) 505 #define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_L2_WRITE_HEAD) 506 507 /* 508 * Other sizes 509 */ 510 511 #define HDR_SIZE ((int64_t)sizeof (arc_buf_hdr_t)) 512 #define L2HDR_SIZE ((int64_t)sizeof (l2arc_buf_hdr_t)) 513 514 /* 515 * Hash table routines 516 */ 517 518 #define HT_LOCK_PAD 64 519 520 struct ht_lock { 521 kmutex_t ht_lock; 522 #ifdef _KERNEL 523 unsigned char pad[(HT_LOCK_PAD - sizeof (kmutex_t))]; 524 #endif 525 }; 526 527 #define BUF_LOCKS 256 528 typedef struct buf_hash_table { 529 uint64_t ht_mask; 530 arc_buf_hdr_t **ht_table; 531 struct ht_lock ht_locks[BUF_LOCKS]; 532 } buf_hash_table_t; 533 534 static buf_hash_table_t buf_hash_table; 535 536 #define BUF_HASH_INDEX(spa, dva, birth) \ 537 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask) 538 #define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)]) 539 #define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock)) 540 #define HDR_LOCK(buf) \ 541 (BUF_HASH_LOCK(BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth))) 542 543 uint64_t zfs_crc64_table[256]; 544 545 /* 546 * Level 2 ARC 547 */ 548 549 #define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */ 550 #define L2ARC_HEADROOM 2 /* num of writes */ 551 #define L2ARC_FEED_SECS 1 /* caching interval secs */ 552 #define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */ 553 554 #define l2arc_writes_sent ARCSTAT(arcstat_l2_writes_sent) 555 #define l2arc_writes_done ARCSTAT(arcstat_l2_writes_done) 556 557 /* 558 * L2ARC Performance Tunables 559 */ 560 uint64_t l2arc_write_max = L2ARC_WRITE_SIZE; /* default max write size */ 561 uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra write during warmup */ 562 uint64_t l2arc_headroom = L2ARC_HEADROOM; /* number of dev writes */ 563 uint64_t l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */ 564 uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval milliseconds */ 565 boolean_t l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */ 566 boolean_t l2arc_feed_again = B_TRUE; /* turbo warmup */ 567 boolean_t l2arc_norw = B_TRUE; /* no reads during writes */ 568 569 /* 570 * L2ARC Internals 571 */ 572 typedef struct l2arc_dev { 573 vdev_t *l2ad_vdev; /* vdev */ 574 spa_t *l2ad_spa; /* spa */ 575 uint64_t l2ad_hand; /* next write location */ 576 uint64_t l2ad_write; /* desired write size, bytes */ 577 uint64_t l2ad_boost; /* warmup write boost, bytes */ 578 uint64_t l2ad_start; /* first addr on device */ 579 uint64_t l2ad_end; /* last addr on device */ 580 uint64_t l2ad_evict; /* last addr eviction reached */ 581 boolean_t l2ad_first; /* first sweep through */ 582 boolean_t l2ad_writing; /* currently writing */ 583 list_t *l2ad_buflist; /* buffer list */ 584 list_node_t l2ad_node; /* device list node */ 585 } l2arc_dev_t; 586 587 static list_t L2ARC_dev_list; /* device list */ 588 static list_t *l2arc_dev_list; /* device list pointer */ 589 static kmutex_t l2arc_dev_mtx; /* device list mutex */ 590 static l2arc_dev_t *l2arc_dev_last; /* last device used */ 591 static kmutex_t l2arc_buflist_mtx; /* mutex for all buflists */ 592 static list_t L2ARC_free_on_write; /* free after write buf list */ 593 static list_t *l2arc_free_on_write; /* free after write list ptr */ 594 static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */ 595 static uint64_t l2arc_ndev; /* number of devices */ 596 597 typedef struct l2arc_read_callback { 598 arc_buf_t *l2rcb_buf; /* read buffer */ 599 spa_t *l2rcb_spa; /* spa */ 600 blkptr_t l2rcb_bp; /* original blkptr */ 601 zbookmark_t l2rcb_zb; /* original bookmark */ 602 int l2rcb_flags; /* original flags */ 603 } l2arc_read_callback_t; 604 605 typedef struct l2arc_write_callback { 606 l2arc_dev_t *l2wcb_dev; /* device info */ 607 arc_buf_hdr_t *l2wcb_head; /* head of write buflist */ 608 } l2arc_write_callback_t; 609 610 struct l2arc_buf_hdr { 611 /* protected by arc_buf_hdr mutex */ 612 l2arc_dev_t *b_dev; /* L2ARC device */ 613 daddr_t b_daddr; /* disk address, offset byte */ 614 }; 615 616 typedef struct l2arc_data_free { 617 /* protected by l2arc_free_on_write_mtx */ 618 void *l2df_data; 619 size_t l2df_size; 620 void (*l2df_func)(void *, size_t); 621 list_node_t l2df_list_node; 622 } l2arc_data_free_t; 623 624 static kmutex_t l2arc_feed_thr_lock; 625 static kcondvar_t l2arc_feed_thr_cv; 626 static uint8_t l2arc_thread_exit; 627 628 static void l2arc_read_done(zio_t *zio); 629 static void l2arc_hdr_stat_add(void); 630 static void l2arc_hdr_stat_remove(void); 631 632 static uint64_t 633 buf_hash(spa_t *spa, const dva_t *dva, uint64_t birth) 634 { 635 uintptr_t spav = (uintptr_t)spa; 636 uint8_t *vdva = (uint8_t *)dva; 637 uint64_t crc = -1ULL; 638 int i; 639 640 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY); 641 642 for (i = 0; i < sizeof (dva_t); i++) 643 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF]; 644 645 crc ^= (spav>>8) ^ birth; 646 647 return (crc); 648 } 649 650 #define BUF_EMPTY(buf) \ 651 ((buf)->b_dva.dva_word[0] == 0 && \ 652 (buf)->b_dva.dva_word[1] == 0 && \ 653 (buf)->b_birth == 0) 654 655 #define BUF_EQUAL(spa, dva, birth, buf) \ 656 ((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \ 657 ((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \ 658 ((buf)->b_birth == birth) && ((buf)->b_spa == spa) 659 660 static arc_buf_hdr_t * 661 buf_hash_find(spa_t *spa, const dva_t *dva, uint64_t birth, kmutex_t **lockp) 662 { 663 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth); 664 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 665 arc_buf_hdr_t *buf; 666 667 mutex_enter(hash_lock); 668 for (buf = buf_hash_table.ht_table[idx]; buf != NULL; 669 buf = buf->b_hash_next) { 670 if (BUF_EQUAL(spa, dva, birth, buf)) { 671 *lockp = hash_lock; 672 return (buf); 673 } 674 } 675 mutex_exit(hash_lock); 676 *lockp = NULL; 677 return (NULL); 678 } 679 680 /* 681 * Insert an entry into the hash table. If there is already an element 682 * equal to elem in the hash table, then the already existing element 683 * will be returned and the new element will not be inserted. 684 * Otherwise returns NULL. 685 */ 686 static arc_buf_hdr_t * 687 buf_hash_insert(arc_buf_hdr_t *buf, kmutex_t **lockp) 688 { 689 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth); 690 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 691 arc_buf_hdr_t *fbuf; 692 uint32_t i; 693 694 ASSERT(!HDR_IN_HASH_TABLE(buf)); 695 *lockp = hash_lock; 696 mutex_enter(hash_lock); 697 for (fbuf = buf_hash_table.ht_table[idx], i = 0; fbuf != NULL; 698 fbuf = fbuf->b_hash_next, i++) { 699 if (BUF_EQUAL(buf->b_spa, &buf->b_dva, buf->b_birth, fbuf)) 700 return (fbuf); 701 } 702 703 buf->b_hash_next = buf_hash_table.ht_table[idx]; 704 buf_hash_table.ht_table[idx] = buf; 705 buf->b_flags |= ARC_IN_HASH_TABLE; 706 707 /* collect some hash table performance data */ 708 if (i > 0) { 709 ARCSTAT_BUMP(arcstat_hash_collisions); 710 if (i == 1) 711 ARCSTAT_BUMP(arcstat_hash_chains); 712 713 ARCSTAT_MAX(arcstat_hash_chain_max, i); 714 } 715 716 ARCSTAT_BUMP(arcstat_hash_elements); 717 ARCSTAT_MAXSTAT(arcstat_hash_elements); 718 719 return (NULL); 720 } 721 722 static void 723 buf_hash_remove(arc_buf_hdr_t *buf) 724 { 725 arc_buf_hdr_t *fbuf, **bufp; 726 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth); 727 728 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx))); 729 ASSERT(HDR_IN_HASH_TABLE(buf)); 730 731 bufp = &buf_hash_table.ht_table[idx]; 732 while ((fbuf = *bufp) != buf) { 733 ASSERT(fbuf != NULL); 734 bufp = &fbuf->b_hash_next; 735 } 736 *bufp = buf->b_hash_next; 737 buf->b_hash_next = NULL; 738 buf->b_flags &= ~ARC_IN_HASH_TABLE; 739 740 /* collect some hash table performance data */ 741 ARCSTAT_BUMPDOWN(arcstat_hash_elements); 742 743 if (buf_hash_table.ht_table[idx] && 744 buf_hash_table.ht_table[idx]->b_hash_next == NULL) 745 ARCSTAT_BUMPDOWN(arcstat_hash_chains); 746 } 747 748 /* 749 * Global data structures and functions for the buf kmem cache. 750 */ 751 static kmem_cache_t *hdr_cache; 752 static kmem_cache_t *buf_cache; 753 754 static void 755 buf_fini(void) 756 { 757 int i; 758 759 kmem_free(buf_hash_table.ht_table, 760 (buf_hash_table.ht_mask + 1) * sizeof (void *)); 761 for (i = 0; i < BUF_LOCKS; i++) 762 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock); 763 kmem_cache_destroy(hdr_cache); 764 kmem_cache_destroy(buf_cache); 765 } 766 767 /* 768 * Constructor callback - called when the cache is empty 769 * and a new buf is requested. 770 */ 771 /* ARGSUSED */ 772 static int 773 hdr_cons(void *vbuf, void *unused, int kmflag) 774 { 775 arc_buf_hdr_t *buf = vbuf; 776 777 bzero(buf, sizeof (arc_buf_hdr_t)); 778 refcount_create(&buf->b_refcnt); 779 cv_init(&buf->b_cv, NULL, CV_DEFAULT, NULL); 780 mutex_init(&buf->b_freeze_lock, NULL, MUTEX_DEFAULT, NULL); 781 arc_space_consume(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS); 782 783 return (0); 784 } 785 786 /* ARGSUSED */ 787 static int 788 buf_cons(void *vbuf, void *unused, int kmflag) 789 { 790 arc_buf_t *buf = vbuf; 791 792 bzero(buf, sizeof (arc_buf_t)); 793 rw_init(&buf->b_lock, NULL, RW_DEFAULT, NULL); 794 arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS); 795 796 return (0); 797 } 798 799 /* 800 * Destructor callback - called when a cached buf is 801 * no longer required. 802 */ 803 /* ARGSUSED */ 804 static void 805 hdr_dest(void *vbuf, void *unused) 806 { 807 arc_buf_hdr_t *buf = vbuf; 808 809 refcount_destroy(&buf->b_refcnt); 810 cv_destroy(&buf->b_cv); 811 mutex_destroy(&buf->b_freeze_lock); 812 arc_space_return(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS); 813 } 814 815 /* ARGSUSED */ 816 static void 817 buf_dest(void *vbuf, void *unused) 818 { 819 arc_buf_t *buf = vbuf; 820 821 rw_destroy(&buf->b_lock); 822 arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS); 823 } 824 825 /* 826 * Reclaim callback -- invoked when memory is low. 827 */ 828 /* ARGSUSED */ 829 static void 830 hdr_recl(void *unused) 831 { 832 dprintf("hdr_recl called\n"); 833 /* 834 * umem calls the reclaim func when we destroy the buf cache, 835 * which is after we do arc_fini(). 836 */ 837 if (!arc_dead) 838 cv_signal(&arc_reclaim_thr_cv); 839 } 840 841 static void 842 buf_init(void) 843 { 844 uint64_t *ct; 845 uint64_t hsize = 1ULL << 12; 846 int i, j; 847 848 /* 849 * The hash table is big enough to fill all of physical memory 850 * with an average 64K block size. The table will take up 851 * totalmem*sizeof(void*)/64K (eg. 128KB/GB with 8-byte pointers). 852 */ 853 while (hsize * 65536 < physmem * PAGESIZE) 854 hsize <<= 1; 855 retry: 856 buf_hash_table.ht_mask = hsize - 1; 857 buf_hash_table.ht_table = 858 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP); 859 if (buf_hash_table.ht_table == NULL) { 860 ASSERT(hsize > (1ULL << 8)); 861 hsize >>= 1; 862 goto retry; 863 } 864 865 hdr_cache = kmem_cache_create("arc_buf_hdr_t", sizeof (arc_buf_hdr_t), 866 0, hdr_cons, hdr_dest, hdr_recl, NULL, NULL, 0); 867 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t), 868 0, buf_cons, buf_dest, NULL, NULL, NULL, 0); 869 870 for (i = 0; i < 256; i++) 871 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--) 872 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY); 873 874 for (i = 0; i < BUF_LOCKS; i++) { 875 mutex_init(&buf_hash_table.ht_locks[i].ht_lock, 876 NULL, MUTEX_DEFAULT, NULL); 877 } 878 } 879 880 #define ARC_MINTIME (hz>>4) /* 62 ms */ 881 882 static void 883 arc_cksum_verify(arc_buf_t *buf) 884 { 885 zio_cksum_t zc; 886 887 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 888 return; 889 890 mutex_enter(&buf->b_hdr->b_freeze_lock); 891 if (buf->b_hdr->b_freeze_cksum == NULL || 892 (buf->b_hdr->b_flags & ARC_IO_ERROR)) { 893 mutex_exit(&buf->b_hdr->b_freeze_lock); 894 return; 895 } 896 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc); 897 if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc)) 898 panic("buffer modified while frozen!"); 899 mutex_exit(&buf->b_hdr->b_freeze_lock); 900 } 901 902 static int 903 arc_cksum_equal(arc_buf_t *buf) 904 { 905 zio_cksum_t zc; 906 int equal; 907 908 mutex_enter(&buf->b_hdr->b_freeze_lock); 909 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc); 910 equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc); 911 mutex_exit(&buf->b_hdr->b_freeze_lock); 912 913 return (equal); 914 } 915 916 static void 917 arc_cksum_compute(arc_buf_t *buf, boolean_t force) 918 { 919 if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY)) 920 return; 921 922 mutex_enter(&buf->b_hdr->b_freeze_lock); 923 if (buf->b_hdr->b_freeze_cksum != NULL) { 924 mutex_exit(&buf->b_hdr->b_freeze_lock); 925 return; 926 } 927 buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP); 928 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, 929 buf->b_hdr->b_freeze_cksum); 930 mutex_exit(&buf->b_hdr->b_freeze_lock); 931 } 932 933 void 934 arc_buf_thaw(arc_buf_t *buf) 935 { 936 if (zfs_flags & ZFS_DEBUG_MODIFY) { 937 if (buf->b_hdr->b_state != arc_anon) 938 panic("modifying non-anon buffer!"); 939 if (buf->b_hdr->b_flags & ARC_IO_IN_PROGRESS) 940 panic("modifying buffer while i/o in progress!"); 941 arc_cksum_verify(buf); 942 } 943 944 mutex_enter(&buf->b_hdr->b_freeze_lock); 945 if (buf->b_hdr->b_freeze_cksum != NULL) { 946 kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t)); 947 buf->b_hdr->b_freeze_cksum = NULL; 948 } 949 mutex_exit(&buf->b_hdr->b_freeze_lock); 950 } 951 952 void 953 arc_buf_freeze(arc_buf_t *buf) 954 { 955 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 956 return; 957 958 ASSERT(buf->b_hdr->b_freeze_cksum != NULL || 959 buf->b_hdr->b_state == arc_anon); 960 arc_cksum_compute(buf, B_FALSE); 961 } 962 963 static void 964 add_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag) 965 { 966 ASSERT(MUTEX_HELD(hash_lock)); 967 968 if ((refcount_add(&ab->b_refcnt, tag) == 1) && 969 (ab->b_state != arc_anon)) { 970 uint64_t delta = ab->b_size * ab->b_datacnt; 971 list_t *list = &ab->b_state->arcs_list[ab->b_type]; 972 uint64_t *size = &ab->b_state->arcs_lsize[ab->b_type]; 973 974 ASSERT(!MUTEX_HELD(&ab->b_state->arcs_mtx)); 975 mutex_enter(&ab->b_state->arcs_mtx); 976 ASSERT(list_link_active(&ab->b_arc_node)); 977 list_remove(list, ab); 978 if (GHOST_STATE(ab->b_state)) { 979 ASSERT3U(ab->b_datacnt, ==, 0); 980 ASSERT3P(ab->b_buf, ==, NULL); 981 delta = ab->b_size; 982 } 983 ASSERT(delta > 0); 984 ASSERT3U(*size, >=, delta); 985 atomic_add_64(size, -delta); 986 mutex_exit(&ab->b_state->arcs_mtx); 987 /* remove the prefetch flag if we get a reference */ 988 if (ab->b_flags & ARC_PREFETCH) 989 ab->b_flags &= ~ARC_PREFETCH; 990 } 991 } 992 993 static int 994 remove_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag) 995 { 996 int cnt; 997 arc_state_t *state = ab->b_state; 998 999 ASSERT(state == arc_anon || MUTEX_HELD(hash_lock)); 1000 ASSERT(!GHOST_STATE(state)); 1001 1002 if (((cnt = refcount_remove(&ab->b_refcnt, tag)) == 0) && 1003 (state != arc_anon)) { 1004 uint64_t *size = &state->arcs_lsize[ab->b_type]; 1005 1006 ASSERT(!MUTEX_HELD(&state->arcs_mtx)); 1007 mutex_enter(&state->arcs_mtx); 1008 ASSERT(!list_link_active(&ab->b_arc_node)); 1009 list_insert_head(&state->arcs_list[ab->b_type], ab); 1010 ASSERT(ab->b_datacnt > 0); 1011 atomic_add_64(size, ab->b_size * ab->b_datacnt); 1012 mutex_exit(&state->arcs_mtx); 1013 } 1014 return (cnt); 1015 } 1016 1017 /* 1018 * Move the supplied buffer to the indicated state. The mutex 1019 * for the buffer must be held by the caller. 1020 */ 1021 static void 1022 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *ab, kmutex_t *hash_lock) 1023 { 1024 arc_state_t *old_state = ab->b_state; 1025 int64_t refcnt = refcount_count(&ab->b_refcnt); 1026 uint64_t from_delta, to_delta; 1027 1028 ASSERT(MUTEX_HELD(hash_lock)); 1029 ASSERT(new_state != old_state); 1030 ASSERT(refcnt == 0 || ab->b_datacnt > 0); 1031 ASSERT(ab->b_datacnt == 0 || !GHOST_STATE(new_state)); 1032 1033 from_delta = to_delta = ab->b_datacnt * ab->b_size; 1034 1035 /* 1036 * If this buffer is evictable, transfer it from the 1037 * old state list to the new state list. 1038 */ 1039 if (refcnt == 0) { 1040 if (old_state != arc_anon) { 1041 int use_mutex = !MUTEX_HELD(&old_state->arcs_mtx); 1042 uint64_t *size = &old_state->arcs_lsize[ab->b_type]; 1043 1044 if (use_mutex) 1045 mutex_enter(&old_state->arcs_mtx); 1046 1047 ASSERT(list_link_active(&ab->b_arc_node)); 1048 list_remove(&old_state->arcs_list[ab->b_type], ab); 1049 1050 /* 1051 * If prefetching out of the ghost cache, 1052 * we will have a non-null datacnt. 1053 */ 1054 if (GHOST_STATE(old_state) && ab->b_datacnt == 0) { 1055 /* ghost elements have a ghost size */ 1056 ASSERT(ab->b_buf == NULL); 1057 from_delta = ab->b_size; 1058 } 1059 ASSERT3U(*size, >=, from_delta); 1060 atomic_add_64(size, -from_delta); 1061 1062 if (use_mutex) 1063 mutex_exit(&old_state->arcs_mtx); 1064 } 1065 if (new_state != arc_anon) { 1066 int use_mutex = !MUTEX_HELD(&new_state->arcs_mtx); 1067 uint64_t *size = &new_state->arcs_lsize[ab->b_type]; 1068 1069 if (use_mutex) 1070 mutex_enter(&new_state->arcs_mtx); 1071 1072 list_insert_head(&new_state->arcs_list[ab->b_type], ab); 1073 1074 /* ghost elements have a ghost size */ 1075 if (GHOST_STATE(new_state)) { 1076 ASSERT(ab->b_datacnt == 0); 1077 ASSERT(ab->b_buf == NULL); 1078 to_delta = ab->b_size; 1079 } 1080 atomic_add_64(size, to_delta); 1081 1082 if (use_mutex) 1083 mutex_exit(&new_state->arcs_mtx); 1084 } 1085 } 1086 1087 ASSERT(!BUF_EMPTY(ab)); 1088 if (new_state == arc_anon) { 1089 buf_hash_remove(ab); 1090 } 1091 1092 /* adjust state sizes */ 1093 if (to_delta) 1094 atomic_add_64(&new_state->arcs_size, to_delta); 1095 if (from_delta) { 1096 ASSERT3U(old_state->arcs_size, >=, from_delta); 1097 atomic_add_64(&old_state->arcs_size, -from_delta); 1098 } 1099 ab->b_state = new_state; 1100 1101 /* adjust l2arc hdr stats */ 1102 if (new_state == arc_l2c_only) 1103 l2arc_hdr_stat_add(); 1104 else if (old_state == arc_l2c_only) 1105 l2arc_hdr_stat_remove(); 1106 } 1107 1108 void 1109 arc_space_consume(uint64_t space, arc_space_type_t type) 1110 { 1111 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 1112 1113 switch (type) { 1114 case ARC_SPACE_DATA: 1115 ARCSTAT_INCR(arcstat_data_size, space); 1116 break; 1117 case ARC_SPACE_OTHER: 1118 ARCSTAT_INCR(arcstat_other_size, space); 1119 break; 1120 case ARC_SPACE_HDRS: 1121 ARCSTAT_INCR(arcstat_hdr_size, space); 1122 break; 1123 case ARC_SPACE_L2HDRS: 1124 ARCSTAT_INCR(arcstat_l2_hdr_size, space); 1125 break; 1126 } 1127 1128 atomic_add_64(&arc_meta_used, space); 1129 atomic_add_64(&arc_size, space); 1130 } 1131 1132 void 1133 arc_space_return(uint64_t space, arc_space_type_t type) 1134 { 1135 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 1136 1137 switch (type) { 1138 case ARC_SPACE_DATA: 1139 ARCSTAT_INCR(arcstat_data_size, -space); 1140 break; 1141 case ARC_SPACE_OTHER: 1142 ARCSTAT_INCR(arcstat_other_size, -space); 1143 break; 1144 case ARC_SPACE_HDRS: 1145 ARCSTAT_INCR(arcstat_hdr_size, -space); 1146 break; 1147 case ARC_SPACE_L2HDRS: 1148 ARCSTAT_INCR(arcstat_l2_hdr_size, -space); 1149 break; 1150 } 1151 1152 ASSERT(arc_meta_used >= space); 1153 if (arc_meta_max < arc_meta_used) 1154 arc_meta_max = arc_meta_used; 1155 atomic_add_64(&arc_meta_used, -space); 1156 ASSERT(arc_size >= space); 1157 atomic_add_64(&arc_size, -space); 1158 } 1159 1160 void * 1161 arc_data_buf_alloc(uint64_t size) 1162 { 1163 if (arc_evict_needed(ARC_BUFC_DATA)) 1164 cv_signal(&arc_reclaim_thr_cv); 1165 atomic_add_64(&arc_size, size); 1166 return (zio_data_buf_alloc(size)); 1167 } 1168 1169 void 1170 arc_data_buf_free(void *buf, uint64_t size) 1171 { 1172 zio_data_buf_free(buf, size); 1173 ASSERT(arc_size >= size); 1174 atomic_add_64(&arc_size, -size); 1175 } 1176 1177 arc_buf_t * 1178 arc_buf_alloc(spa_t *spa, int size, void *tag, arc_buf_contents_t type) 1179 { 1180 arc_buf_hdr_t *hdr; 1181 arc_buf_t *buf; 1182 1183 ASSERT3U(size, >, 0); 1184 hdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE); 1185 ASSERT(BUF_EMPTY(hdr)); 1186 hdr->b_size = size; 1187 hdr->b_type = type; 1188 hdr->b_spa = spa; 1189 hdr->b_state = arc_anon; 1190 hdr->b_arc_access = 0; 1191 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 1192 buf->b_hdr = hdr; 1193 buf->b_data = NULL; 1194 buf->b_efunc = NULL; 1195 buf->b_private = NULL; 1196 buf->b_next = NULL; 1197 hdr->b_buf = buf; 1198 arc_get_data_buf(buf); 1199 hdr->b_datacnt = 1; 1200 hdr->b_flags = 0; 1201 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 1202 (void) refcount_add(&hdr->b_refcnt, tag); 1203 1204 return (buf); 1205 } 1206 1207 static arc_buf_t * 1208 arc_buf_clone(arc_buf_t *from) 1209 { 1210 arc_buf_t *buf; 1211 arc_buf_hdr_t *hdr = from->b_hdr; 1212 uint64_t size = hdr->b_size; 1213 1214 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 1215 buf->b_hdr = hdr; 1216 buf->b_data = NULL; 1217 buf->b_efunc = NULL; 1218 buf->b_private = NULL; 1219 buf->b_next = hdr->b_buf; 1220 hdr->b_buf = buf; 1221 arc_get_data_buf(buf); 1222 bcopy(from->b_data, buf->b_data, size); 1223 hdr->b_datacnt += 1; 1224 return (buf); 1225 } 1226 1227 void 1228 arc_buf_add_ref(arc_buf_t *buf, void* tag) 1229 { 1230 arc_buf_hdr_t *hdr; 1231 kmutex_t *hash_lock; 1232 1233 /* 1234 * Check to see if this buffer is evicted. Callers 1235 * must verify b_data != NULL to know if the add_ref 1236 * was successful. 1237 */ 1238 rw_enter(&buf->b_lock, RW_READER); 1239 if (buf->b_data == NULL) { 1240 rw_exit(&buf->b_lock); 1241 return; 1242 } 1243 hdr = buf->b_hdr; 1244 ASSERT(hdr != NULL); 1245 hash_lock = HDR_LOCK(hdr); 1246 mutex_enter(hash_lock); 1247 rw_exit(&buf->b_lock); 1248 1249 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu); 1250 add_reference(hdr, hash_lock, tag); 1251 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 1252 arc_access(hdr, hash_lock); 1253 mutex_exit(hash_lock); 1254 ARCSTAT_BUMP(arcstat_hits); 1255 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH), 1256 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA, 1257 data, metadata, hits); 1258 } 1259 1260 /* 1261 * Free the arc data buffer. If it is an l2arc write in progress, 1262 * the buffer is placed on l2arc_free_on_write to be freed later. 1263 */ 1264 static void 1265 arc_buf_data_free(arc_buf_hdr_t *hdr, void (*free_func)(void *, size_t), 1266 void *data, size_t size) 1267 { 1268 if (HDR_L2_WRITING(hdr)) { 1269 l2arc_data_free_t *df; 1270 df = kmem_alloc(sizeof (l2arc_data_free_t), KM_SLEEP); 1271 df->l2df_data = data; 1272 df->l2df_size = size; 1273 df->l2df_func = free_func; 1274 mutex_enter(&l2arc_free_on_write_mtx); 1275 list_insert_head(l2arc_free_on_write, df); 1276 mutex_exit(&l2arc_free_on_write_mtx); 1277 ARCSTAT_BUMP(arcstat_l2_free_on_write); 1278 } else { 1279 free_func(data, size); 1280 } 1281 } 1282 1283 static void 1284 arc_buf_destroy(arc_buf_t *buf, boolean_t recycle, boolean_t all) 1285 { 1286 arc_buf_t **bufp; 1287 1288 /* free up data associated with the buf */ 1289 if (buf->b_data) { 1290 arc_state_t *state = buf->b_hdr->b_state; 1291 uint64_t size = buf->b_hdr->b_size; 1292 arc_buf_contents_t type = buf->b_hdr->b_type; 1293 1294 arc_cksum_verify(buf); 1295 if (!recycle) { 1296 if (type == ARC_BUFC_METADATA) { 1297 arc_buf_data_free(buf->b_hdr, zio_buf_free, 1298 buf->b_data, size); 1299 arc_space_return(size, ARC_SPACE_DATA); 1300 } else { 1301 ASSERT(type == ARC_BUFC_DATA); 1302 arc_buf_data_free(buf->b_hdr, 1303 zio_data_buf_free, buf->b_data, size); 1304 ARCSTAT_INCR(arcstat_data_size, -size); 1305 atomic_add_64(&arc_size, -size); 1306 } 1307 } 1308 if (list_link_active(&buf->b_hdr->b_arc_node)) { 1309 uint64_t *cnt = &state->arcs_lsize[type]; 1310 1311 ASSERT(refcount_is_zero(&buf->b_hdr->b_refcnt)); 1312 ASSERT(state != arc_anon); 1313 1314 ASSERT3U(*cnt, >=, size); 1315 atomic_add_64(cnt, -size); 1316 } 1317 ASSERT3U(state->arcs_size, >=, size); 1318 atomic_add_64(&state->arcs_size, -size); 1319 buf->b_data = NULL; 1320 ASSERT(buf->b_hdr->b_datacnt > 0); 1321 buf->b_hdr->b_datacnt -= 1; 1322 } 1323 1324 /* only remove the buf if requested */ 1325 if (!all) 1326 return; 1327 1328 /* remove the buf from the hdr list */ 1329 for (bufp = &buf->b_hdr->b_buf; *bufp != buf; bufp = &(*bufp)->b_next) 1330 continue; 1331 *bufp = buf->b_next; 1332 1333 ASSERT(buf->b_efunc == NULL); 1334 1335 /* clean up the buf */ 1336 buf->b_hdr = NULL; 1337 kmem_cache_free(buf_cache, buf); 1338 } 1339 1340 static void 1341 arc_hdr_destroy(arc_buf_hdr_t *hdr) 1342 { 1343 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 1344 ASSERT3P(hdr->b_state, ==, arc_anon); 1345 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 1346 ASSERT(!(hdr->b_flags & ARC_STORED)); 1347 1348 if (hdr->b_l2hdr != NULL) { 1349 if (!MUTEX_HELD(&l2arc_buflist_mtx)) { 1350 /* 1351 * To prevent arc_free() and l2arc_evict() from 1352 * attempting to free the same buffer at the same time, 1353 * a FREE_IN_PROGRESS flag is given to arc_free() to 1354 * give it priority. l2arc_evict() can't destroy this 1355 * header while we are waiting on l2arc_buflist_mtx. 1356 * 1357 * The hdr may be removed from l2ad_buflist before we 1358 * grab l2arc_buflist_mtx, so b_l2hdr is rechecked. 1359 */ 1360 mutex_enter(&l2arc_buflist_mtx); 1361 if (hdr->b_l2hdr != NULL) { 1362 list_remove(hdr->b_l2hdr->b_dev->l2ad_buflist, 1363 hdr); 1364 } 1365 mutex_exit(&l2arc_buflist_mtx); 1366 } else { 1367 list_remove(hdr->b_l2hdr->b_dev->l2ad_buflist, hdr); 1368 } 1369 ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size); 1370 kmem_free(hdr->b_l2hdr, sizeof (l2arc_buf_hdr_t)); 1371 if (hdr->b_state == arc_l2c_only) 1372 l2arc_hdr_stat_remove(); 1373 hdr->b_l2hdr = NULL; 1374 } 1375 1376 if (!BUF_EMPTY(hdr)) { 1377 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 1378 bzero(&hdr->b_dva, sizeof (dva_t)); 1379 hdr->b_birth = 0; 1380 hdr->b_cksum0 = 0; 1381 } 1382 while (hdr->b_buf) { 1383 arc_buf_t *buf = hdr->b_buf; 1384 1385 if (buf->b_efunc) { 1386 mutex_enter(&arc_eviction_mtx); 1387 rw_enter(&buf->b_lock, RW_WRITER); 1388 ASSERT(buf->b_hdr != NULL); 1389 arc_buf_destroy(hdr->b_buf, FALSE, FALSE); 1390 hdr->b_buf = buf->b_next; 1391 buf->b_hdr = &arc_eviction_hdr; 1392 buf->b_next = arc_eviction_list; 1393 arc_eviction_list = buf; 1394 rw_exit(&buf->b_lock); 1395 mutex_exit(&arc_eviction_mtx); 1396 } else { 1397 arc_buf_destroy(hdr->b_buf, FALSE, TRUE); 1398 } 1399 } 1400 if (hdr->b_freeze_cksum != NULL) { 1401 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t)); 1402 hdr->b_freeze_cksum = NULL; 1403 } 1404 1405 ASSERT(!list_link_active(&hdr->b_arc_node)); 1406 ASSERT3P(hdr->b_hash_next, ==, NULL); 1407 ASSERT3P(hdr->b_acb, ==, NULL); 1408 kmem_cache_free(hdr_cache, hdr); 1409 } 1410 1411 void 1412 arc_buf_free(arc_buf_t *buf, void *tag) 1413 { 1414 arc_buf_hdr_t *hdr = buf->b_hdr; 1415 int hashed = hdr->b_state != arc_anon; 1416 1417 ASSERT(buf->b_efunc == NULL); 1418 ASSERT(buf->b_data != NULL); 1419 1420 if (hashed) { 1421 kmutex_t *hash_lock = HDR_LOCK(hdr); 1422 1423 mutex_enter(hash_lock); 1424 (void) remove_reference(hdr, hash_lock, tag); 1425 if (hdr->b_datacnt > 1) 1426 arc_buf_destroy(buf, FALSE, TRUE); 1427 else 1428 hdr->b_flags |= ARC_BUF_AVAILABLE; 1429 mutex_exit(hash_lock); 1430 } else if (HDR_IO_IN_PROGRESS(hdr)) { 1431 int destroy_hdr; 1432 /* 1433 * We are in the middle of an async write. Don't destroy 1434 * this buffer unless the write completes before we finish 1435 * decrementing the reference count. 1436 */ 1437 mutex_enter(&arc_eviction_mtx); 1438 (void) remove_reference(hdr, NULL, tag); 1439 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 1440 destroy_hdr = !HDR_IO_IN_PROGRESS(hdr); 1441 mutex_exit(&arc_eviction_mtx); 1442 if (destroy_hdr) 1443 arc_hdr_destroy(hdr); 1444 } else { 1445 if (remove_reference(hdr, NULL, tag) > 0) { 1446 ASSERT(HDR_IO_ERROR(hdr)); 1447 arc_buf_destroy(buf, FALSE, TRUE); 1448 } else { 1449 arc_hdr_destroy(hdr); 1450 } 1451 } 1452 } 1453 1454 int 1455 arc_buf_remove_ref(arc_buf_t *buf, void* tag) 1456 { 1457 arc_buf_hdr_t *hdr = buf->b_hdr; 1458 kmutex_t *hash_lock = HDR_LOCK(hdr); 1459 int no_callback = (buf->b_efunc == NULL); 1460 1461 if (hdr->b_state == arc_anon) { 1462 arc_buf_free(buf, tag); 1463 return (no_callback); 1464 } 1465 1466 mutex_enter(hash_lock); 1467 ASSERT(hdr->b_state != arc_anon); 1468 ASSERT(buf->b_data != NULL); 1469 1470 (void) remove_reference(hdr, hash_lock, tag); 1471 if (hdr->b_datacnt > 1) { 1472 if (no_callback) 1473 arc_buf_destroy(buf, FALSE, TRUE); 1474 } else if (no_callback) { 1475 ASSERT(hdr->b_buf == buf && buf->b_next == NULL); 1476 hdr->b_flags |= ARC_BUF_AVAILABLE; 1477 } 1478 ASSERT(no_callback || hdr->b_datacnt > 1 || 1479 refcount_is_zero(&hdr->b_refcnt)); 1480 mutex_exit(hash_lock); 1481 return (no_callback); 1482 } 1483 1484 int 1485 arc_buf_size(arc_buf_t *buf) 1486 { 1487 return (buf->b_hdr->b_size); 1488 } 1489 1490 /* 1491 * Evict buffers from list until we've removed the specified number of 1492 * bytes. Move the removed buffers to the appropriate evict state. 1493 * If the recycle flag is set, then attempt to "recycle" a buffer: 1494 * - look for a buffer to evict that is `bytes' long. 1495 * - return the data block from this buffer rather than freeing it. 1496 * This flag is used by callers that are trying to make space for a 1497 * new buffer in a full arc cache. 1498 * 1499 * This function makes a "best effort". It skips over any buffers 1500 * it can't get a hash_lock on, and so may not catch all candidates. 1501 * It may also return without evicting as much space as requested. 1502 */ 1503 static void * 1504 arc_evict(arc_state_t *state, spa_t *spa, int64_t bytes, boolean_t recycle, 1505 arc_buf_contents_t type) 1506 { 1507 arc_state_t *evicted_state; 1508 uint64_t bytes_evicted = 0, skipped = 0, missed = 0; 1509 arc_buf_hdr_t *ab, *ab_prev = NULL; 1510 list_t *list = &state->arcs_list[type]; 1511 kmutex_t *hash_lock; 1512 boolean_t have_lock; 1513 void *stolen = NULL; 1514 1515 ASSERT(state == arc_mru || state == arc_mfu); 1516 1517 evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost; 1518 1519 mutex_enter(&state->arcs_mtx); 1520 mutex_enter(&evicted_state->arcs_mtx); 1521 1522 for (ab = list_tail(list); ab; ab = ab_prev) { 1523 ab_prev = list_prev(list, ab); 1524 /* prefetch buffers have a minimum lifespan */ 1525 if (HDR_IO_IN_PROGRESS(ab) || 1526 (spa && ab->b_spa != spa) || 1527 (ab->b_flags & (ARC_PREFETCH|ARC_INDIRECT) && 1528 lbolt - ab->b_arc_access < arc_min_prefetch_lifespan)) { 1529 skipped++; 1530 continue; 1531 } 1532 /* "lookahead" for better eviction candidate */ 1533 if (recycle && ab->b_size != bytes && 1534 ab_prev && ab_prev->b_size == bytes) 1535 continue; 1536 hash_lock = HDR_LOCK(ab); 1537 have_lock = MUTEX_HELD(hash_lock); 1538 if (have_lock || mutex_tryenter(hash_lock)) { 1539 ASSERT3U(refcount_count(&ab->b_refcnt), ==, 0); 1540 ASSERT(ab->b_datacnt > 0); 1541 while (ab->b_buf) { 1542 arc_buf_t *buf = ab->b_buf; 1543 if (!rw_tryenter(&buf->b_lock, RW_WRITER)) { 1544 missed += 1; 1545 break; 1546 } 1547 if (buf->b_data) { 1548 bytes_evicted += ab->b_size; 1549 if (recycle && ab->b_type == type && 1550 ab->b_size == bytes && 1551 !HDR_L2_WRITING(ab)) { 1552 stolen = buf->b_data; 1553 recycle = FALSE; 1554 } 1555 } 1556 if (buf->b_efunc) { 1557 mutex_enter(&arc_eviction_mtx); 1558 arc_buf_destroy(buf, 1559 buf->b_data == stolen, FALSE); 1560 ab->b_buf = buf->b_next; 1561 buf->b_hdr = &arc_eviction_hdr; 1562 buf->b_next = arc_eviction_list; 1563 arc_eviction_list = buf; 1564 mutex_exit(&arc_eviction_mtx); 1565 rw_exit(&buf->b_lock); 1566 } else { 1567 rw_exit(&buf->b_lock); 1568 arc_buf_destroy(buf, 1569 buf->b_data == stolen, TRUE); 1570 } 1571 } 1572 if (ab->b_datacnt == 0) { 1573 arc_change_state(evicted_state, ab, hash_lock); 1574 ASSERT(HDR_IN_HASH_TABLE(ab)); 1575 ab->b_flags |= ARC_IN_HASH_TABLE; 1576 ab->b_flags &= ~ARC_BUF_AVAILABLE; 1577 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, ab); 1578 } 1579 if (!have_lock) 1580 mutex_exit(hash_lock); 1581 if (bytes >= 0 && bytes_evicted >= bytes) 1582 break; 1583 } else { 1584 missed += 1; 1585 } 1586 } 1587 1588 mutex_exit(&evicted_state->arcs_mtx); 1589 mutex_exit(&state->arcs_mtx); 1590 1591 if (bytes_evicted < bytes) 1592 dprintf("only evicted %lld bytes from %x", 1593 (longlong_t)bytes_evicted, state); 1594 1595 if (skipped) 1596 ARCSTAT_INCR(arcstat_evict_skip, skipped); 1597 1598 if (missed) 1599 ARCSTAT_INCR(arcstat_mutex_miss, missed); 1600 1601 /* 1602 * We have just evicted some date into the ghost state, make 1603 * sure we also adjust the ghost state size if necessary. 1604 */ 1605 if (arc_no_grow && 1606 arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size > arc_c) { 1607 int64_t mru_over = arc_anon->arcs_size + arc_mru->arcs_size + 1608 arc_mru_ghost->arcs_size - arc_c; 1609 1610 if (mru_over > 0 && arc_mru_ghost->arcs_lsize[type] > 0) { 1611 int64_t todelete = 1612 MIN(arc_mru_ghost->arcs_lsize[type], mru_over); 1613 arc_evict_ghost(arc_mru_ghost, NULL, todelete); 1614 } else if (arc_mfu_ghost->arcs_lsize[type] > 0) { 1615 int64_t todelete = MIN(arc_mfu_ghost->arcs_lsize[type], 1616 arc_mru_ghost->arcs_size + 1617 arc_mfu_ghost->arcs_size - arc_c); 1618 arc_evict_ghost(arc_mfu_ghost, NULL, todelete); 1619 } 1620 } 1621 1622 return (stolen); 1623 } 1624 1625 /* 1626 * Remove buffers from list until we've removed the specified number of 1627 * bytes. Destroy the buffers that are removed. 1628 */ 1629 static void 1630 arc_evict_ghost(arc_state_t *state, spa_t *spa, int64_t bytes) 1631 { 1632 arc_buf_hdr_t *ab, *ab_prev; 1633 list_t *list = &state->arcs_list[ARC_BUFC_DATA]; 1634 kmutex_t *hash_lock; 1635 uint64_t bytes_deleted = 0; 1636 uint64_t bufs_skipped = 0; 1637 1638 ASSERT(GHOST_STATE(state)); 1639 top: 1640 mutex_enter(&state->arcs_mtx); 1641 for (ab = list_tail(list); ab; ab = ab_prev) { 1642 ab_prev = list_prev(list, ab); 1643 if (spa && ab->b_spa != spa) 1644 continue; 1645 hash_lock = HDR_LOCK(ab); 1646 if (mutex_tryenter(hash_lock)) { 1647 ASSERT(!HDR_IO_IN_PROGRESS(ab)); 1648 ASSERT(ab->b_buf == NULL); 1649 ARCSTAT_BUMP(arcstat_deleted); 1650 bytes_deleted += ab->b_size; 1651 1652 if (ab->b_l2hdr != NULL) { 1653 /* 1654 * This buffer is cached on the 2nd Level ARC; 1655 * don't destroy the header. 1656 */ 1657 arc_change_state(arc_l2c_only, ab, hash_lock); 1658 mutex_exit(hash_lock); 1659 } else { 1660 arc_change_state(arc_anon, ab, hash_lock); 1661 mutex_exit(hash_lock); 1662 arc_hdr_destroy(ab); 1663 } 1664 1665 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, ab); 1666 if (bytes >= 0 && bytes_deleted >= bytes) 1667 break; 1668 } else { 1669 if (bytes < 0) { 1670 mutex_exit(&state->arcs_mtx); 1671 mutex_enter(hash_lock); 1672 mutex_exit(hash_lock); 1673 goto top; 1674 } 1675 bufs_skipped += 1; 1676 } 1677 } 1678 mutex_exit(&state->arcs_mtx); 1679 1680 if (list == &state->arcs_list[ARC_BUFC_DATA] && 1681 (bytes < 0 || bytes_deleted < bytes)) { 1682 list = &state->arcs_list[ARC_BUFC_METADATA]; 1683 goto top; 1684 } 1685 1686 if (bufs_skipped) { 1687 ARCSTAT_INCR(arcstat_mutex_miss, bufs_skipped); 1688 ASSERT(bytes >= 0); 1689 } 1690 1691 if (bytes_deleted < bytes) 1692 dprintf("only deleted %lld bytes from %p", 1693 (longlong_t)bytes_deleted, state); 1694 } 1695 1696 static void 1697 arc_adjust(void) 1698 { 1699 int64_t adjustment, delta; 1700 1701 /* 1702 * Adjust MRU size 1703 */ 1704 1705 adjustment = MIN(arc_size - arc_c, 1706 arc_anon->arcs_size + arc_mru->arcs_size + arc_meta_used - arc_p); 1707 1708 if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_DATA] > 0) { 1709 delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_DATA], adjustment); 1710 (void) arc_evict(arc_mru, NULL, delta, FALSE, ARC_BUFC_DATA); 1711 adjustment -= delta; 1712 } 1713 1714 if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_METADATA] > 0) { 1715 delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_METADATA], adjustment); 1716 (void) arc_evict(arc_mru, NULL, delta, FALSE, 1717 ARC_BUFC_METADATA); 1718 } 1719 1720 /* 1721 * Adjust MFU size 1722 */ 1723 1724 adjustment = arc_size - arc_c; 1725 1726 if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_DATA] > 0) { 1727 delta = MIN(adjustment, arc_mfu->arcs_lsize[ARC_BUFC_DATA]); 1728 (void) arc_evict(arc_mfu, NULL, delta, FALSE, ARC_BUFC_DATA); 1729 adjustment -= delta; 1730 } 1731 1732 if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_METADATA] > 0) { 1733 int64_t delta = MIN(adjustment, 1734 arc_mfu->arcs_lsize[ARC_BUFC_METADATA]); 1735 (void) arc_evict(arc_mfu, NULL, delta, FALSE, 1736 ARC_BUFC_METADATA); 1737 } 1738 1739 /* 1740 * Adjust ghost lists 1741 */ 1742 1743 adjustment = arc_mru->arcs_size + arc_mru_ghost->arcs_size - arc_c; 1744 1745 if (adjustment > 0 && arc_mru_ghost->arcs_size > 0) { 1746 delta = MIN(arc_mru_ghost->arcs_size, adjustment); 1747 arc_evict_ghost(arc_mru_ghost, NULL, delta); 1748 } 1749 1750 adjustment = 1751 arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size - arc_c; 1752 1753 if (adjustment > 0 && arc_mfu_ghost->arcs_size > 0) { 1754 delta = MIN(arc_mfu_ghost->arcs_size, adjustment); 1755 arc_evict_ghost(arc_mfu_ghost, NULL, delta); 1756 } 1757 } 1758 1759 static void 1760 arc_do_user_evicts(void) 1761 { 1762 mutex_enter(&arc_eviction_mtx); 1763 while (arc_eviction_list != NULL) { 1764 arc_buf_t *buf = arc_eviction_list; 1765 arc_eviction_list = buf->b_next; 1766 rw_enter(&buf->b_lock, RW_WRITER); 1767 buf->b_hdr = NULL; 1768 rw_exit(&buf->b_lock); 1769 mutex_exit(&arc_eviction_mtx); 1770 1771 if (buf->b_efunc != NULL) 1772 VERIFY(buf->b_efunc(buf) == 0); 1773 1774 buf->b_efunc = NULL; 1775 buf->b_private = NULL; 1776 kmem_cache_free(buf_cache, buf); 1777 mutex_enter(&arc_eviction_mtx); 1778 } 1779 mutex_exit(&arc_eviction_mtx); 1780 } 1781 1782 /* 1783 * Flush all *evictable* data from the cache for the given spa. 1784 * NOTE: this will not touch "active" (i.e. referenced) data. 1785 */ 1786 void 1787 arc_flush(spa_t *spa) 1788 { 1789 while (list_head(&arc_mru->arcs_list[ARC_BUFC_DATA])) { 1790 (void) arc_evict(arc_mru, spa, -1, FALSE, ARC_BUFC_DATA); 1791 if (spa) 1792 break; 1793 } 1794 while (list_head(&arc_mru->arcs_list[ARC_BUFC_METADATA])) { 1795 (void) arc_evict(arc_mru, spa, -1, FALSE, ARC_BUFC_METADATA); 1796 if (spa) 1797 break; 1798 } 1799 while (list_head(&arc_mfu->arcs_list[ARC_BUFC_DATA])) { 1800 (void) arc_evict(arc_mfu, spa, -1, FALSE, ARC_BUFC_DATA); 1801 if (spa) 1802 break; 1803 } 1804 while (list_head(&arc_mfu->arcs_list[ARC_BUFC_METADATA])) { 1805 (void) arc_evict(arc_mfu, spa, -1, FALSE, ARC_BUFC_METADATA); 1806 if (spa) 1807 break; 1808 } 1809 1810 arc_evict_ghost(arc_mru_ghost, spa, -1); 1811 arc_evict_ghost(arc_mfu_ghost, spa, -1); 1812 1813 mutex_enter(&arc_reclaim_thr_lock); 1814 arc_do_user_evicts(); 1815 mutex_exit(&arc_reclaim_thr_lock); 1816 ASSERT(spa || arc_eviction_list == NULL); 1817 } 1818 1819 void 1820 arc_shrink(void) 1821 { 1822 if (arc_c > arc_c_min) { 1823 uint64_t to_free; 1824 1825 #ifdef _KERNEL 1826 to_free = MAX(arc_c >> arc_shrink_shift, ptob(needfree)); 1827 #else 1828 to_free = arc_c >> arc_shrink_shift; 1829 #endif 1830 if (arc_c > arc_c_min + to_free) 1831 atomic_add_64(&arc_c, -to_free); 1832 else 1833 arc_c = arc_c_min; 1834 1835 atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift)); 1836 if (arc_c > arc_size) 1837 arc_c = MAX(arc_size, arc_c_min); 1838 if (arc_p > arc_c) 1839 arc_p = (arc_c >> 1); 1840 ASSERT(arc_c >= arc_c_min); 1841 ASSERT((int64_t)arc_p >= 0); 1842 } 1843 1844 if (arc_size > arc_c) 1845 arc_adjust(); 1846 } 1847 1848 static int 1849 arc_reclaim_needed(void) 1850 { 1851 uint64_t extra; 1852 1853 #ifdef _KERNEL 1854 1855 if (needfree) 1856 return (1); 1857 1858 /* 1859 * take 'desfree' extra pages, so we reclaim sooner, rather than later 1860 */ 1861 extra = desfree; 1862 1863 /* 1864 * check that we're out of range of the pageout scanner. It starts to 1865 * schedule paging if freemem is less than lotsfree and needfree. 1866 * lotsfree is the high-water mark for pageout, and needfree is the 1867 * number of needed free pages. We add extra pages here to make sure 1868 * the scanner doesn't start up while we're freeing memory. 1869 */ 1870 if (freemem < lotsfree + needfree + extra) 1871 return (1); 1872 1873 /* 1874 * check to make sure that swapfs has enough space so that anon 1875 * reservations can still succeed. anon_resvmem() checks that the 1876 * availrmem is greater than swapfs_minfree, and the number of reserved 1877 * swap pages. We also add a bit of extra here just to prevent 1878 * circumstances from getting really dire. 1879 */ 1880 if (availrmem < swapfs_minfree + swapfs_reserve + extra) 1881 return (1); 1882 1883 #if defined(__i386) 1884 /* 1885 * If we're on an i386 platform, it's possible that we'll exhaust the 1886 * kernel heap space before we ever run out of available physical 1887 * memory. Most checks of the size of the heap_area compare against 1888 * tune.t_minarmem, which is the minimum available real memory that we 1889 * can have in the system. However, this is generally fixed at 25 pages 1890 * which is so low that it's useless. In this comparison, we seek to 1891 * calculate the total heap-size, and reclaim if more than 3/4ths of the 1892 * heap is allocated. (Or, in the calculation, if less than 1/4th is 1893 * free) 1894 */ 1895 if (btop(vmem_size(heap_arena, VMEM_FREE)) < 1896 (btop(vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC)) >> 2)) 1897 return (1); 1898 #endif 1899 1900 #else 1901 if (spa_get_random(100) == 0) 1902 return (1); 1903 #endif 1904 return (0); 1905 } 1906 1907 static void 1908 arc_kmem_reap_now(arc_reclaim_strategy_t strat) 1909 { 1910 size_t i; 1911 kmem_cache_t *prev_cache = NULL; 1912 kmem_cache_t *prev_data_cache = NULL; 1913 extern kmem_cache_t *zio_buf_cache[]; 1914 extern kmem_cache_t *zio_data_buf_cache[]; 1915 1916 #ifdef _KERNEL 1917 if (arc_meta_used >= arc_meta_limit) { 1918 /* 1919 * We are exceeding our meta-data cache limit. 1920 * Purge some DNLC entries to release holds on meta-data. 1921 */ 1922 dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent); 1923 } 1924 #if defined(__i386) 1925 /* 1926 * Reclaim unused memory from all kmem caches. 1927 */ 1928 kmem_reap(); 1929 #endif 1930 #endif 1931 1932 /* 1933 * An aggressive reclamation will shrink the cache size as well as 1934 * reap free buffers from the arc kmem caches. 1935 */ 1936 if (strat == ARC_RECLAIM_AGGR) 1937 arc_shrink(); 1938 1939 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) { 1940 if (zio_buf_cache[i] != prev_cache) { 1941 prev_cache = zio_buf_cache[i]; 1942 kmem_cache_reap_now(zio_buf_cache[i]); 1943 } 1944 if (zio_data_buf_cache[i] != prev_data_cache) { 1945 prev_data_cache = zio_data_buf_cache[i]; 1946 kmem_cache_reap_now(zio_data_buf_cache[i]); 1947 } 1948 } 1949 kmem_cache_reap_now(buf_cache); 1950 kmem_cache_reap_now(hdr_cache); 1951 } 1952 1953 static void 1954 arc_reclaim_thread(void) 1955 { 1956 clock_t growtime = 0; 1957 arc_reclaim_strategy_t last_reclaim = ARC_RECLAIM_CONS; 1958 callb_cpr_t cpr; 1959 1960 CALLB_CPR_INIT(&cpr, &arc_reclaim_thr_lock, callb_generic_cpr, FTAG); 1961 1962 mutex_enter(&arc_reclaim_thr_lock); 1963 while (arc_thread_exit == 0) { 1964 if (arc_reclaim_needed()) { 1965 1966 if (arc_no_grow) { 1967 if (last_reclaim == ARC_RECLAIM_CONS) { 1968 last_reclaim = ARC_RECLAIM_AGGR; 1969 } else { 1970 last_reclaim = ARC_RECLAIM_CONS; 1971 } 1972 } else { 1973 arc_no_grow = TRUE; 1974 last_reclaim = ARC_RECLAIM_AGGR; 1975 membar_producer(); 1976 } 1977 1978 /* reset the growth delay for every reclaim */ 1979 growtime = lbolt + (arc_grow_retry * hz); 1980 1981 arc_kmem_reap_now(last_reclaim); 1982 arc_warm = B_TRUE; 1983 1984 } else if (arc_no_grow && lbolt >= growtime) { 1985 arc_no_grow = FALSE; 1986 } 1987 1988 if (2 * arc_c < arc_size + 1989 arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size) 1990 arc_adjust(); 1991 1992 if (arc_eviction_list != NULL) 1993 arc_do_user_evicts(); 1994 1995 /* block until needed, or one second, whichever is shorter */ 1996 CALLB_CPR_SAFE_BEGIN(&cpr); 1997 (void) cv_timedwait(&arc_reclaim_thr_cv, 1998 &arc_reclaim_thr_lock, (lbolt + hz)); 1999 CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_thr_lock); 2000 } 2001 2002 arc_thread_exit = 0; 2003 cv_broadcast(&arc_reclaim_thr_cv); 2004 CALLB_CPR_EXIT(&cpr); /* drops arc_reclaim_thr_lock */ 2005 thread_exit(); 2006 } 2007 2008 /* 2009 * Adapt arc info given the number of bytes we are trying to add and 2010 * the state that we are comming from. This function is only called 2011 * when we are adding new content to the cache. 2012 */ 2013 static void 2014 arc_adapt(int bytes, arc_state_t *state) 2015 { 2016 int mult; 2017 uint64_t arc_p_min = (arc_c >> arc_p_min_shift); 2018 2019 if (state == arc_l2c_only) 2020 return; 2021 2022 ASSERT(bytes > 0); 2023 /* 2024 * Adapt the target size of the MRU list: 2025 * - if we just hit in the MRU ghost list, then increase 2026 * the target size of the MRU list. 2027 * - if we just hit in the MFU ghost list, then increase 2028 * the target size of the MFU list by decreasing the 2029 * target size of the MRU list. 2030 */ 2031 if (state == arc_mru_ghost) { 2032 mult = ((arc_mru_ghost->arcs_size >= arc_mfu_ghost->arcs_size) ? 2033 1 : (arc_mfu_ghost->arcs_size/arc_mru_ghost->arcs_size)); 2034 2035 arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult); 2036 } else if (state == arc_mfu_ghost) { 2037 uint64_t delta; 2038 2039 mult = ((arc_mfu_ghost->arcs_size >= arc_mru_ghost->arcs_size) ? 2040 1 : (arc_mru_ghost->arcs_size/arc_mfu_ghost->arcs_size)); 2041 2042 delta = MIN(bytes * mult, arc_p); 2043 arc_p = MAX(arc_p_min, arc_p - delta); 2044 } 2045 ASSERT((int64_t)arc_p >= 0); 2046 2047 if (arc_reclaim_needed()) { 2048 cv_signal(&arc_reclaim_thr_cv); 2049 return; 2050 } 2051 2052 if (arc_no_grow) 2053 return; 2054 2055 if (arc_c >= arc_c_max) 2056 return; 2057 2058 /* 2059 * If we're within (2 * maxblocksize) bytes of the target 2060 * cache size, increment the target cache size 2061 */ 2062 if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) { 2063 atomic_add_64(&arc_c, (int64_t)bytes); 2064 if (arc_c > arc_c_max) 2065 arc_c = arc_c_max; 2066 else if (state == arc_anon) 2067 atomic_add_64(&arc_p, (int64_t)bytes); 2068 if (arc_p > arc_c) 2069 arc_p = arc_c; 2070 } 2071 ASSERT((int64_t)arc_p >= 0); 2072 } 2073 2074 /* 2075 * Check if the cache has reached its limits and eviction is required 2076 * prior to insert. 2077 */ 2078 static int 2079 arc_evict_needed(arc_buf_contents_t type) 2080 { 2081 if (type == ARC_BUFC_METADATA && arc_meta_used >= arc_meta_limit) 2082 return (1); 2083 2084 #ifdef _KERNEL 2085 /* 2086 * If zio data pages are being allocated out of a separate heap segment, 2087 * then enforce that the size of available vmem for this area remains 2088 * above about 1/32nd free. 2089 */ 2090 if (type == ARC_BUFC_DATA && zio_arena != NULL && 2091 vmem_size(zio_arena, VMEM_FREE) < 2092 (vmem_size(zio_arena, VMEM_ALLOC) >> 5)) 2093 return (1); 2094 #endif 2095 2096 if (arc_reclaim_needed()) 2097 return (1); 2098 2099 return (arc_size > arc_c); 2100 } 2101 2102 /* 2103 * The buffer, supplied as the first argument, needs a data block. 2104 * So, if we are at cache max, determine which cache should be victimized. 2105 * We have the following cases: 2106 * 2107 * 1. Insert for MRU, p > sizeof(arc_anon + arc_mru) -> 2108 * In this situation if we're out of space, but the resident size of the MFU is 2109 * under the limit, victimize the MFU cache to satisfy this insertion request. 2110 * 2111 * 2. Insert for MRU, p <= sizeof(arc_anon + arc_mru) -> 2112 * Here, we've used up all of the available space for the MRU, so we need to 2113 * evict from our own cache instead. Evict from the set of resident MRU 2114 * entries. 2115 * 2116 * 3. Insert for MFU (c - p) > sizeof(arc_mfu) -> 2117 * c minus p represents the MFU space in the cache, since p is the size of the 2118 * cache that is dedicated to the MRU. In this situation there's still space on 2119 * the MFU side, so the MRU side needs to be victimized. 2120 * 2121 * 4. Insert for MFU (c - p) < sizeof(arc_mfu) -> 2122 * MFU's resident set is consuming more space than it has been allotted. In 2123 * this situation, we must victimize our own cache, the MFU, for this insertion. 2124 */ 2125 static void 2126 arc_get_data_buf(arc_buf_t *buf) 2127 { 2128 arc_state_t *state = buf->b_hdr->b_state; 2129 uint64_t size = buf->b_hdr->b_size; 2130 arc_buf_contents_t type = buf->b_hdr->b_type; 2131 2132 arc_adapt(size, state); 2133 2134 /* 2135 * We have not yet reached cache maximum size, 2136 * just allocate a new buffer. 2137 */ 2138 if (!arc_evict_needed(type)) { 2139 if (type == ARC_BUFC_METADATA) { 2140 buf->b_data = zio_buf_alloc(size); 2141 arc_space_consume(size, ARC_SPACE_DATA); 2142 } else { 2143 ASSERT(type == ARC_BUFC_DATA); 2144 buf->b_data = zio_data_buf_alloc(size); 2145 ARCSTAT_INCR(arcstat_data_size, size); 2146 atomic_add_64(&arc_size, size); 2147 } 2148 goto out; 2149 } 2150 2151 /* 2152 * If we are prefetching from the mfu ghost list, this buffer 2153 * will end up on the mru list; so steal space from there. 2154 */ 2155 if (state == arc_mfu_ghost) 2156 state = buf->b_hdr->b_flags & ARC_PREFETCH ? arc_mru : arc_mfu; 2157 else if (state == arc_mru_ghost) 2158 state = arc_mru; 2159 2160 if (state == arc_mru || state == arc_anon) { 2161 uint64_t mru_used = arc_anon->arcs_size + arc_mru->arcs_size; 2162 state = (arc_mfu->arcs_lsize[type] >= size && 2163 arc_p > mru_used) ? arc_mfu : arc_mru; 2164 } else { 2165 /* MFU cases */ 2166 uint64_t mfu_space = arc_c - arc_p; 2167 state = (arc_mru->arcs_lsize[type] >= size && 2168 mfu_space > arc_mfu->arcs_size) ? arc_mru : arc_mfu; 2169 } 2170 if ((buf->b_data = arc_evict(state, NULL, size, TRUE, type)) == NULL) { 2171 if (type == ARC_BUFC_METADATA) { 2172 buf->b_data = zio_buf_alloc(size); 2173 arc_space_consume(size, ARC_SPACE_DATA); 2174 } else { 2175 ASSERT(type == ARC_BUFC_DATA); 2176 buf->b_data = zio_data_buf_alloc(size); 2177 ARCSTAT_INCR(arcstat_data_size, size); 2178 atomic_add_64(&arc_size, size); 2179 } 2180 ARCSTAT_BUMP(arcstat_recycle_miss); 2181 } 2182 ASSERT(buf->b_data != NULL); 2183 out: 2184 /* 2185 * Update the state size. Note that ghost states have a 2186 * "ghost size" and so don't need to be updated. 2187 */ 2188 if (!GHOST_STATE(buf->b_hdr->b_state)) { 2189 arc_buf_hdr_t *hdr = buf->b_hdr; 2190 2191 atomic_add_64(&hdr->b_state->arcs_size, size); 2192 if (list_link_active(&hdr->b_arc_node)) { 2193 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 2194 atomic_add_64(&hdr->b_state->arcs_lsize[type], size); 2195 } 2196 /* 2197 * If we are growing the cache, and we are adding anonymous 2198 * data, and we have outgrown arc_p, update arc_p 2199 */ 2200 if (arc_size < arc_c && hdr->b_state == arc_anon && 2201 arc_anon->arcs_size + arc_mru->arcs_size > arc_p) 2202 arc_p = MIN(arc_c, arc_p + size); 2203 } 2204 } 2205 2206 /* 2207 * This routine is called whenever a buffer is accessed. 2208 * NOTE: the hash lock is dropped in this function. 2209 */ 2210 static void 2211 arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock) 2212 { 2213 ASSERT(MUTEX_HELD(hash_lock)); 2214 2215 if (buf->b_state == arc_anon) { 2216 /* 2217 * This buffer is not in the cache, and does not 2218 * appear in our "ghost" list. Add the new buffer 2219 * to the MRU state. 2220 */ 2221 2222 ASSERT(buf->b_arc_access == 0); 2223 buf->b_arc_access = lbolt; 2224 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf); 2225 arc_change_state(arc_mru, buf, hash_lock); 2226 2227 } else if (buf->b_state == arc_mru) { 2228 /* 2229 * If this buffer is here because of a prefetch, then either: 2230 * - clear the flag if this is a "referencing" read 2231 * (any subsequent access will bump this into the MFU state). 2232 * or 2233 * - move the buffer to the head of the list if this is 2234 * another prefetch (to make it less likely to be evicted). 2235 */ 2236 if ((buf->b_flags & ARC_PREFETCH) != 0) { 2237 if (refcount_count(&buf->b_refcnt) == 0) { 2238 ASSERT(list_link_active(&buf->b_arc_node)); 2239 } else { 2240 buf->b_flags &= ~ARC_PREFETCH; 2241 ARCSTAT_BUMP(arcstat_mru_hits); 2242 } 2243 buf->b_arc_access = lbolt; 2244 return; 2245 } 2246 2247 /* 2248 * This buffer has been "accessed" only once so far, 2249 * but it is still in the cache. Move it to the MFU 2250 * state. 2251 */ 2252 if (lbolt > buf->b_arc_access + ARC_MINTIME) { 2253 /* 2254 * More than 125ms have passed since we 2255 * instantiated this buffer. Move it to the 2256 * most frequently used state. 2257 */ 2258 buf->b_arc_access = lbolt; 2259 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2260 arc_change_state(arc_mfu, buf, hash_lock); 2261 } 2262 ARCSTAT_BUMP(arcstat_mru_hits); 2263 } else if (buf->b_state == arc_mru_ghost) { 2264 arc_state_t *new_state; 2265 /* 2266 * This buffer has been "accessed" recently, but 2267 * was evicted from the cache. Move it to the 2268 * MFU state. 2269 */ 2270 2271 if (buf->b_flags & ARC_PREFETCH) { 2272 new_state = arc_mru; 2273 if (refcount_count(&buf->b_refcnt) > 0) 2274 buf->b_flags &= ~ARC_PREFETCH; 2275 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf); 2276 } else { 2277 new_state = arc_mfu; 2278 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2279 } 2280 2281 buf->b_arc_access = lbolt; 2282 arc_change_state(new_state, buf, hash_lock); 2283 2284 ARCSTAT_BUMP(arcstat_mru_ghost_hits); 2285 } else if (buf->b_state == arc_mfu) { 2286 /* 2287 * This buffer has been accessed more than once and is 2288 * still in the cache. Keep it in the MFU state. 2289 * 2290 * NOTE: an add_reference() that occurred when we did 2291 * the arc_read() will have kicked this off the list. 2292 * If it was a prefetch, we will explicitly move it to 2293 * the head of the list now. 2294 */ 2295 if ((buf->b_flags & ARC_PREFETCH) != 0) { 2296 ASSERT(refcount_count(&buf->b_refcnt) == 0); 2297 ASSERT(list_link_active(&buf->b_arc_node)); 2298 } 2299 ARCSTAT_BUMP(arcstat_mfu_hits); 2300 buf->b_arc_access = lbolt; 2301 } else if (buf->b_state == arc_mfu_ghost) { 2302 arc_state_t *new_state = arc_mfu; 2303 /* 2304 * This buffer has been accessed more than once but has 2305 * been evicted from the cache. Move it back to the 2306 * MFU state. 2307 */ 2308 2309 if (buf->b_flags & ARC_PREFETCH) { 2310 /* 2311 * This is a prefetch access... 2312 * move this block back to the MRU state. 2313 */ 2314 ASSERT3U(refcount_count(&buf->b_refcnt), ==, 0); 2315 new_state = arc_mru; 2316 } 2317 2318 buf->b_arc_access = lbolt; 2319 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2320 arc_change_state(new_state, buf, hash_lock); 2321 2322 ARCSTAT_BUMP(arcstat_mfu_ghost_hits); 2323 } else if (buf->b_state == arc_l2c_only) { 2324 /* 2325 * This buffer is on the 2nd Level ARC. 2326 */ 2327 2328 buf->b_arc_access = lbolt; 2329 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2330 arc_change_state(arc_mfu, buf, hash_lock); 2331 } else { 2332 ASSERT(!"invalid arc state"); 2333 } 2334 } 2335 2336 /* a generic arc_done_func_t which you can use */ 2337 /* ARGSUSED */ 2338 void 2339 arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg) 2340 { 2341 bcopy(buf->b_data, arg, buf->b_hdr->b_size); 2342 VERIFY(arc_buf_remove_ref(buf, arg) == 1); 2343 } 2344 2345 /* a generic arc_done_func_t */ 2346 void 2347 arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg) 2348 { 2349 arc_buf_t **bufp = arg; 2350 if (zio && zio->io_error) { 2351 VERIFY(arc_buf_remove_ref(buf, arg) == 1); 2352 *bufp = NULL; 2353 } else { 2354 *bufp = buf; 2355 } 2356 } 2357 2358 static void 2359 arc_read_done(zio_t *zio) 2360 { 2361 arc_buf_hdr_t *hdr, *found; 2362 arc_buf_t *buf; 2363 arc_buf_t *abuf; /* buffer we're assigning to callback */ 2364 kmutex_t *hash_lock; 2365 arc_callback_t *callback_list, *acb; 2366 int freeable = FALSE; 2367 2368 buf = zio->io_private; 2369 hdr = buf->b_hdr; 2370 2371 /* 2372 * The hdr was inserted into hash-table and removed from lists 2373 * prior to starting I/O. We should find this header, since 2374 * it's in the hash table, and it should be legit since it's 2375 * not possible to evict it during the I/O. The only possible 2376 * reason for it not to be found is if we were freed during the 2377 * read. 2378 */ 2379 found = buf_hash_find(zio->io_spa, &hdr->b_dva, hdr->b_birth, 2380 &hash_lock); 2381 2382 ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) && hash_lock == NULL) || 2383 (found == hdr && DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) || 2384 (found == hdr && HDR_L2_READING(hdr))); 2385 2386 hdr->b_flags &= ~ARC_L2_EVICTED; 2387 if (l2arc_noprefetch && (hdr->b_flags & ARC_PREFETCH)) 2388 hdr->b_flags &= ~ARC_L2CACHE; 2389 2390 /* byteswap if necessary */ 2391 callback_list = hdr->b_acb; 2392 ASSERT(callback_list != NULL); 2393 if (BP_SHOULD_BYTESWAP(zio->io_bp)) { 2394 arc_byteswap_func_t *func = BP_GET_LEVEL(zio->io_bp) > 0 ? 2395 byteswap_uint64_array : 2396 dmu_ot[BP_GET_TYPE(zio->io_bp)].ot_byteswap; 2397 func(buf->b_data, hdr->b_size); 2398 } 2399 2400 arc_cksum_compute(buf, B_FALSE); 2401 2402 /* create copies of the data buffer for the callers */ 2403 abuf = buf; 2404 for (acb = callback_list; acb; acb = acb->acb_next) { 2405 if (acb->acb_done) { 2406 if (abuf == NULL) 2407 abuf = arc_buf_clone(buf); 2408 acb->acb_buf = abuf; 2409 abuf = NULL; 2410 } 2411 } 2412 hdr->b_acb = NULL; 2413 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 2414 ASSERT(!HDR_BUF_AVAILABLE(hdr)); 2415 if (abuf == buf) 2416 hdr->b_flags |= ARC_BUF_AVAILABLE; 2417 2418 ASSERT(refcount_is_zero(&hdr->b_refcnt) || callback_list != NULL); 2419 2420 if (zio->io_error != 0) { 2421 hdr->b_flags |= ARC_IO_ERROR; 2422 if (hdr->b_state != arc_anon) 2423 arc_change_state(arc_anon, hdr, hash_lock); 2424 if (HDR_IN_HASH_TABLE(hdr)) 2425 buf_hash_remove(hdr); 2426 freeable = refcount_is_zero(&hdr->b_refcnt); 2427 } 2428 2429 /* 2430 * Broadcast before we drop the hash_lock to avoid the possibility 2431 * that the hdr (and hence the cv) might be freed before we get to 2432 * the cv_broadcast(). 2433 */ 2434 cv_broadcast(&hdr->b_cv); 2435 2436 if (hash_lock) { 2437 /* 2438 * Only call arc_access on anonymous buffers. This is because 2439 * if we've issued an I/O for an evicted buffer, we've already 2440 * called arc_access (to prevent any simultaneous readers from 2441 * getting confused). 2442 */ 2443 if (zio->io_error == 0 && hdr->b_state == arc_anon) 2444 arc_access(hdr, hash_lock); 2445 mutex_exit(hash_lock); 2446 } else { 2447 /* 2448 * This block was freed while we waited for the read to 2449 * complete. It has been removed from the hash table and 2450 * moved to the anonymous state (so that it won't show up 2451 * in the cache). 2452 */ 2453 ASSERT3P(hdr->b_state, ==, arc_anon); 2454 freeable = refcount_is_zero(&hdr->b_refcnt); 2455 } 2456 2457 /* execute each callback and free its structure */ 2458 while ((acb = callback_list) != NULL) { 2459 if (acb->acb_done) 2460 acb->acb_done(zio, acb->acb_buf, acb->acb_private); 2461 2462 if (acb->acb_zio_dummy != NULL) { 2463 acb->acb_zio_dummy->io_error = zio->io_error; 2464 zio_nowait(acb->acb_zio_dummy); 2465 } 2466 2467 callback_list = acb->acb_next; 2468 kmem_free(acb, sizeof (arc_callback_t)); 2469 } 2470 2471 if (freeable) 2472 arc_hdr_destroy(hdr); 2473 } 2474 2475 /* 2476 * "Read" the block block at the specified DVA (in bp) via the 2477 * cache. If the block is found in the cache, invoke the provided 2478 * callback immediately and return. Note that the `zio' parameter 2479 * in the callback will be NULL in this case, since no IO was 2480 * required. If the block is not in the cache pass the read request 2481 * on to the spa with a substitute callback function, so that the 2482 * requested block will be added to the cache. 2483 * 2484 * If a read request arrives for a block that has a read in-progress, 2485 * either wait for the in-progress read to complete (and return the 2486 * results); or, if this is a read with a "done" func, add a record 2487 * to the read to invoke the "done" func when the read completes, 2488 * and return; or just return. 2489 * 2490 * arc_read_done() will invoke all the requested "done" functions 2491 * for readers of this block. 2492 * 2493 * Normal callers should use arc_read and pass the arc buffer and offset 2494 * for the bp. But if you know you don't need locking, you can use 2495 * arc_read_bp. 2496 */ 2497 int 2498 arc_read(zio_t *pio, spa_t *spa, blkptr_t *bp, arc_buf_t *pbuf, 2499 arc_done_func_t *done, void *private, int priority, int zio_flags, 2500 uint32_t *arc_flags, const zbookmark_t *zb) 2501 { 2502 int err; 2503 arc_buf_hdr_t *hdr = pbuf->b_hdr; 2504 2505 ASSERT(!refcount_is_zero(&pbuf->b_hdr->b_refcnt)); 2506 ASSERT3U((char *)bp - (char *)pbuf->b_data, <, pbuf->b_hdr->b_size); 2507 rw_enter(&pbuf->b_lock, RW_READER); 2508 2509 err = arc_read_nolock(pio, spa, bp, done, private, priority, 2510 zio_flags, arc_flags, zb); 2511 2512 ASSERT3P(hdr, ==, pbuf->b_hdr); 2513 rw_exit(&pbuf->b_lock); 2514 return (err); 2515 } 2516 2517 int 2518 arc_read_nolock(zio_t *pio, spa_t *spa, blkptr_t *bp, 2519 arc_done_func_t *done, void *private, int priority, int zio_flags, 2520 uint32_t *arc_flags, const zbookmark_t *zb) 2521 { 2522 arc_buf_hdr_t *hdr; 2523 arc_buf_t *buf; 2524 kmutex_t *hash_lock; 2525 zio_t *rzio; 2526 2527 top: 2528 hdr = buf_hash_find(spa, BP_IDENTITY(bp), bp->blk_birth, &hash_lock); 2529 if (hdr && hdr->b_datacnt > 0) { 2530 2531 *arc_flags |= ARC_CACHED; 2532 2533 if (HDR_IO_IN_PROGRESS(hdr)) { 2534 2535 if (*arc_flags & ARC_WAIT) { 2536 cv_wait(&hdr->b_cv, hash_lock); 2537 mutex_exit(hash_lock); 2538 goto top; 2539 } 2540 ASSERT(*arc_flags & ARC_NOWAIT); 2541 2542 if (done) { 2543 arc_callback_t *acb = NULL; 2544 2545 acb = kmem_zalloc(sizeof (arc_callback_t), 2546 KM_SLEEP); 2547 acb->acb_done = done; 2548 acb->acb_private = private; 2549 if (pio != NULL) 2550 acb->acb_zio_dummy = zio_null(pio, 2551 spa, NULL, NULL, zio_flags); 2552 2553 ASSERT(acb->acb_done != NULL); 2554 acb->acb_next = hdr->b_acb; 2555 hdr->b_acb = acb; 2556 add_reference(hdr, hash_lock, private); 2557 mutex_exit(hash_lock); 2558 return (0); 2559 } 2560 mutex_exit(hash_lock); 2561 return (0); 2562 } 2563 2564 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu); 2565 2566 if (done) { 2567 add_reference(hdr, hash_lock, private); 2568 /* 2569 * If this block is already in use, create a new 2570 * copy of the data so that we will be guaranteed 2571 * that arc_release() will always succeed. 2572 */ 2573 buf = hdr->b_buf; 2574 ASSERT(buf); 2575 ASSERT(buf->b_data); 2576 if (HDR_BUF_AVAILABLE(hdr)) { 2577 ASSERT(buf->b_efunc == NULL); 2578 hdr->b_flags &= ~ARC_BUF_AVAILABLE; 2579 } else { 2580 buf = arc_buf_clone(buf); 2581 } 2582 } else if (*arc_flags & ARC_PREFETCH && 2583 refcount_count(&hdr->b_refcnt) == 0) { 2584 hdr->b_flags |= ARC_PREFETCH; 2585 } 2586 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 2587 arc_access(hdr, hash_lock); 2588 if (*arc_flags & ARC_L2CACHE) 2589 hdr->b_flags |= ARC_L2CACHE; 2590 mutex_exit(hash_lock); 2591 ARCSTAT_BUMP(arcstat_hits); 2592 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH), 2593 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA, 2594 data, metadata, hits); 2595 2596 if (done) 2597 done(NULL, buf, private); 2598 } else { 2599 uint64_t size = BP_GET_LSIZE(bp); 2600 arc_callback_t *acb; 2601 vdev_t *vd = NULL; 2602 daddr_t addr; 2603 boolean_t devw = B_FALSE; 2604 2605 if (hdr == NULL) { 2606 /* this block is not in the cache */ 2607 arc_buf_hdr_t *exists; 2608 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp); 2609 buf = arc_buf_alloc(spa, size, private, type); 2610 hdr = buf->b_hdr; 2611 hdr->b_dva = *BP_IDENTITY(bp); 2612 hdr->b_birth = bp->blk_birth; 2613 hdr->b_cksum0 = bp->blk_cksum.zc_word[0]; 2614 exists = buf_hash_insert(hdr, &hash_lock); 2615 if (exists) { 2616 /* somebody beat us to the hash insert */ 2617 mutex_exit(hash_lock); 2618 bzero(&hdr->b_dva, sizeof (dva_t)); 2619 hdr->b_birth = 0; 2620 hdr->b_cksum0 = 0; 2621 (void) arc_buf_remove_ref(buf, private); 2622 goto top; /* restart the IO request */ 2623 } 2624 /* if this is a prefetch, we don't have a reference */ 2625 if (*arc_flags & ARC_PREFETCH) { 2626 (void) remove_reference(hdr, hash_lock, 2627 private); 2628 hdr->b_flags |= ARC_PREFETCH; 2629 } 2630 if (*arc_flags & ARC_L2CACHE) 2631 hdr->b_flags |= ARC_L2CACHE; 2632 if (BP_GET_LEVEL(bp) > 0) 2633 hdr->b_flags |= ARC_INDIRECT; 2634 } else { 2635 /* this block is in the ghost cache */ 2636 ASSERT(GHOST_STATE(hdr->b_state)); 2637 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 2638 ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 0); 2639 ASSERT(hdr->b_buf == NULL); 2640 2641 /* if this is a prefetch, we don't have a reference */ 2642 if (*arc_flags & ARC_PREFETCH) 2643 hdr->b_flags |= ARC_PREFETCH; 2644 else 2645 add_reference(hdr, hash_lock, private); 2646 if (*arc_flags & ARC_L2CACHE) 2647 hdr->b_flags |= ARC_L2CACHE; 2648 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 2649 buf->b_hdr = hdr; 2650 buf->b_data = NULL; 2651 buf->b_efunc = NULL; 2652 buf->b_private = NULL; 2653 buf->b_next = NULL; 2654 hdr->b_buf = buf; 2655 arc_get_data_buf(buf); 2656 ASSERT(hdr->b_datacnt == 0); 2657 hdr->b_datacnt = 1; 2658 2659 } 2660 2661 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP); 2662 acb->acb_done = done; 2663 acb->acb_private = private; 2664 2665 ASSERT(hdr->b_acb == NULL); 2666 hdr->b_acb = acb; 2667 hdr->b_flags |= ARC_IO_IN_PROGRESS; 2668 2669 /* 2670 * If the buffer has been evicted, migrate it to a present state 2671 * before issuing the I/O. Once we drop the hash-table lock, 2672 * the header will be marked as I/O in progress and have an 2673 * attached buffer. At this point, anybody who finds this 2674 * buffer ought to notice that it's legit but has a pending I/O. 2675 */ 2676 2677 if (GHOST_STATE(hdr->b_state)) 2678 arc_access(hdr, hash_lock); 2679 2680 if (HDR_L2CACHE(hdr) && hdr->b_l2hdr != NULL && 2681 (vd = hdr->b_l2hdr->b_dev->l2ad_vdev) != NULL) { 2682 devw = hdr->b_l2hdr->b_dev->l2ad_writing; 2683 addr = hdr->b_l2hdr->b_daddr; 2684 /* 2685 * Lock out device removal. 2686 */ 2687 if (vdev_is_dead(vd) || 2688 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER)) 2689 vd = NULL; 2690 } 2691 2692 mutex_exit(hash_lock); 2693 2694 ASSERT3U(hdr->b_size, ==, size); 2695 DTRACE_PROBE3(arc__miss, blkptr_t *, bp, uint64_t, size, 2696 zbookmark_t *, zb); 2697 ARCSTAT_BUMP(arcstat_misses); 2698 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH), 2699 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA, 2700 data, metadata, misses); 2701 2702 if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) { 2703 /* 2704 * Read from the L2ARC if the following are true: 2705 * 1. The L2ARC vdev was previously cached. 2706 * 2. This buffer still has L2ARC metadata. 2707 * 3. This buffer isn't currently writing to the L2ARC. 2708 * 4. The L2ARC entry wasn't evicted, which may 2709 * also have invalidated the vdev. 2710 * 5. This isn't prefetch and l2arc_noprefetch is set. 2711 */ 2712 if (hdr->b_l2hdr != NULL && 2713 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) && 2714 !(l2arc_noprefetch && HDR_PREFETCH(hdr))) { 2715 l2arc_read_callback_t *cb; 2716 2717 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr); 2718 ARCSTAT_BUMP(arcstat_l2_hits); 2719 2720 cb = kmem_zalloc(sizeof (l2arc_read_callback_t), 2721 KM_SLEEP); 2722 cb->l2rcb_buf = buf; 2723 cb->l2rcb_spa = spa; 2724 cb->l2rcb_bp = *bp; 2725 cb->l2rcb_zb = *zb; 2726 cb->l2rcb_flags = zio_flags; 2727 2728 /* 2729 * l2arc read. The SCL_L2ARC lock will be 2730 * released by l2arc_read_done(). 2731 */ 2732 rzio = zio_read_phys(pio, vd, addr, size, 2733 buf->b_data, ZIO_CHECKSUM_OFF, 2734 l2arc_read_done, cb, priority, zio_flags | 2735 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL | 2736 ZIO_FLAG_DONT_PROPAGATE | 2737 ZIO_FLAG_DONT_RETRY, B_FALSE); 2738 DTRACE_PROBE2(l2arc__read, vdev_t *, vd, 2739 zio_t *, rzio); 2740 ARCSTAT_INCR(arcstat_l2_read_bytes, size); 2741 2742 if (*arc_flags & ARC_NOWAIT) { 2743 zio_nowait(rzio); 2744 return (0); 2745 } 2746 2747 ASSERT(*arc_flags & ARC_WAIT); 2748 if (zio_wait(rzio) == 0) 2749 return (0); 2750 2751 /* l2arc read error; goto zio_read() */ 2752 } else { 2753 DTRACE_PROBE1(l2arc__miss, 2754 arc_buf_hdr_t *, hdr); 2755 ARCSTAT_BUMP(arcstat_l2_misses); 2756 if (HDR_L2_WRITING(hdr)) 2757 ARCSTAT_BUMP(arcstat_l2_rw_clash); 2758 spa_config_exit(spa, SCL_L2ARC, vd); 2759 } 2760 } else { 2761 if (vd != NULL) 2762 spa_config_exit(spa, SCL_L2ARC, vd); 2763 if (l2arc_ndev != 0) { 2764 DTRACE_PROBE1(l2arc__miss, 2765 arc_buf_hdr_t *, hdr); 2766 ARCSTAT_BUMP(arcstat_l2_misses); 2767 } 2768 } 2769 2770 rzio = zio_read(pio, spa, bp, buf->b_data, size, 2771 arc_read_done, buf, priority, zio_flags, zb); 2772 2773 if (*arc_flags & ARC_WAIT) 2774 return (zio_wait(rzio)); 2775 2776 ASSERT(*arc_flags & ARC_NOWAIT); 2777 zio_nowait(rzio); 2778 } 2779 return (0); 2780 } 2781 2782 /* 2783 * arc_read() variant to support pool traversal. If the block is already 2784 * in the ARC, make a copy of it; otherwise, the caller will do the I/O. 2785 * The idea is that we don't want pool traversal filling up memory, but 2786 * if the ARC already has the data anyway, we shouldn't pay for the I/O. 2787 */ 2788 int 2789 arc_tryread(spa_t *spa, blkptr_t *bp, void *data) 2790 { 2791 arc_buf_hdr_t *hdr; 2792 kmutex_t *hash_mtx; 2793 int rc = 0; 2794 2795 hdr = buf_hash_find(spa, BP_IDENTITY(bp), bp->blk_birth, &hash_mtx); 2796 2797 if (hdr && hdr->b_datacnt > 0 && !HDR_IO_IN_PROGRESS(hdr)) { 2798 arc_buf_t *buf = hdr->b_buf; 2799 2800 ASSERT(buf); 2801 while (buf->b_data == NULL) { 2802 buf = buf->b_next; 2803 ASSERT(buf); 2804 } 2805 bcopy(buf->b_data, data, hdr->b_size); 2806 } else { 2807 rc = ENOENT; 2808 } 2809 2810 if (hash_mtx) 2811 mutex_exit(hash_mtx); 2812 2813 return (rc); 2814 } 2815 2816 void 2817 arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private) 2818 { 2819 ASSERT(buf->b_hdr != NULL); 2820 ASSERT(buf->b_hdr->b_state != arc_anon); 2821 ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt) || func == NULL); 2822 buf->b_efunc = func; 2823 buf->b_private = private; 2824 } 2825 2826 /* 2827 * This is used by the DMU to let the ARC know that a buffer is 2828 * being evicted, so the ARC should clean up. If this arc buf 2829 * is not yet in the evicted state, it will be put there. 2830 */ 2831 int 2832 arc_buf_evict(arc_buf_t *buf) 2833 { 2834 arc_buf_hdr_t *hdr; 2835 kmutex_t *hash_lock; 2836 arc_buf_t **bufp; 2837 2838 rw_enter(&buf->b_lock, RW_WRITER); 2839 hdr = buf->b_hdr; 2840 if (hdr == NULL) { 2841 /* 2842 * We are in arc_do_user_evicts(). 2843 */ 2844 ASSERT(buf->b_data == NULL); 2845 rw_exit(&buf->b_lock); 2846 return (0); 2847 } else if (buf->b_data == NULL) { 2848 arc_buf_t copy = *buf; /* structure assignment */ 2849 /* 2850 * We are on the eviction list; process this buffer now 2851 * but let arc_do_user_evicts() do the reaping. 2852 */ 2853 buf->b_efunc = NULL; 2854 rw_exit(&buf->b_lock); 2855 VERIFY(copy.b_efunc(©) == 0); 2856 return (1); 2857 } 2858 hash_lock = HDR_LOCK(hdr); 2859 mutex_enter(hash_lock); 2860 2861 ASSERT(buf->b_hdr == hdr); 2862 ASSERT3U(refcount_count(&hdr->b_refcnt), <, hdr->b_datacnt); 2863 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu); 2864 2865 /* 2866 * Pull this buffer off of the hdr 2867 */ 2868 bufp = &hdr->b_buf; 2869 while (*bufp != buf) 2870 bufp = &(*bufp)->b_next; 2871 *bufp = buf->b_next; 2872 2873 ASSERT(buf->b_data != NULL); 2874 arc_buf_destroy(buf, FALSE, FALSE); 2875 2876 if (hdr->b_datacnt == 0) { 2877 arc_state_t *old_state = hdr->b_state; 2878 arc_state_t *evicted_state; 2879 2880 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 2881 2882 evicted_state = 2883 (old_state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost; 2884 2885 mutex_enter(&old_state->arcs_mtx); 2886 mutex_enter(&evicted_state->arcs_mtx); 2887 2888 arc_change_state(evicted_state, hdr, hash_lock); 2889 ASSERT(HDR_IN_HASH_TABLE(hdr)); 2890 hdr->b_flags |= ARC_IN_HASH_TABLE; 2891 hdr->b_flags &= ~ARC_BUF_AVAILABLE; 2892 2893 mutex_exit(&evicted_state->arcs_mtx); 2894 mutex_exit(&old_state->arcs_mtx); 2895 } 2896 mutex_exit(hash_lock); 2897 rw_exit(&buf->b_lock); 2898 2899 VERIFY(buf->b_efunc(buf) == 0); 2900 buf->b_efunc = NULL; 2901 buf->b_private = NULL; 2902 buf->b_hdr = NULL; 2903 kmem_cache_free(buf_cache, buf); 2904 return (1); 2905 } 2906 2907 /* 2908 * Release this buffer from the cache. This must be done 2909 * after a read and prior to modifying the buffer contents. 2910 * If the buffer has more than one reference, we must make 2911 * a new hdr for the buffer. 2912 */ 2913 void 2914 arc_release(arc_buf_t *buf, void *tag) 2915 { 2916 arc_buf_hdr_t *hdr; 2917 kmutex_t *hash_lock; 2918 l2arc_buf_hdr_t *l2hdr; 2919 uint64_t buf_size; 2920 2921 rw_enter(&buf->b_lock, RW_WRITER); 2922 hdr = buf->b_hdr; 2923 2924 /* this buffer is not on any list */ 2925 ASSERT(refcount_count(&hdr->b_refcnt) > 0); 2926 ASSERT(!(hdr->b_flags & ARC_STORED)); 2927 2928 if (hdr->b_state == arc_anon) { 2929 /* this buffer is already released */ 2930 ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 1); 2931 ASSERT(BUF_EMPTY(hdr)); 2932 ASSERT(buf->b_efunc == NULL); 2933 arc_buf_thaw(buf); 2934 rw_exit(&buf->b_lock); 2935 return; 2936 } 2937 2938 hash_lock = HDR_LOCK(hdr); 2939 mutex_enter(hash_lock); 2940 2941 l2hdr = hdr->b_l2hdr; 2942 if (l2hdr) { 2943 mutex_enter(&l2arc_buflist_mtx); 2944 hdr->b_l2hdr = NULL; 2945 buf_size = hdr->b_size; 2946 } 2947 2948 /* 2949 * Do we have more than one buf? 2950 */ 2951 if (hdr->b_datacnt > 1) { 2952 arc_buf_hdr_t *nhdr; 2953 arc_buf_t **bufp; 2954 uint64_t blksz = hdr->b_size; 2955 spa_t *spa = hdr->b_spa; 2956 arc_buf_contents_t type = hdr->b_type; 2957 uint32_t flags = hdr->b_flags; 2958 2959 ASSERT(hdr->b_buf != buf || buf->b_next != NULL); 2960 /* 2961 * Pull the data off of this buf and attach it to 2962 * a new anonymous buf. 2963 */ 2964 (void) remove_reference(hdr, hash_lock, tag); 2965 bufp = &hdr->b_buf; 2966 while (*bufp != buf) 2967 bufp = &(*bufp)->b_next; 2968 *bufp = (*bufp)->b_next; 2969 buf->b_next = NULL; 2970 2971 ASSERT3U(hdr->b_state->arcs_size, >=, hdr->b_size); 2972 atomic_add_64(&hdr->b_state->arcs_size, -hdr->b_size); 2973 if (refcount_is_zero(&hdr->b_refcnt)) { 2974 uint64_t *size = &hdr->b_state->arcs_lsize[hdr->b_type]; 2975 ASSERT3U(*size, >=, hdr->b_size); 2976 atomic_add_64(size, -hdr->b_size); 2977 } 2978 hdr->b_datacnt -= 1; 2979 arc_cksum_verify(buf); 2980 2981 mutex_exit(hash_lock); 2982 2983 nhdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE); 2984 nhdr->b_size = blksz; 2985 nhdr->b_spa = spa; 2986 nhdr->b_type = type; 2987 nhdr->b_buf = buf; 2988 nhdr->b_state = arc_anon; 2989 nhdr->b_arc_access = 0; 2990 nhdr->b_flags = flags & ARC_L2_WRITING; 2991 nhdr->b_l2hdr = NULL; 2992 nhdr->b_datacnt = 1; 2993 nhdr->b_freeze_cksum = NULL; 2994 (void) refcount_add(&nhdr->b_refcnt, tag); 2995 buf->b_hdr = nhdr; 2996 rw_exit(&buf->b_lock); 2997 atomic_add_64(&arc_anon->arcs_size, blksz); 2998 } else { 2999 rw_exit(&buf->b_lock); 3000 ASSERT(refcount_count(&hdr->b_refcnt) == 1); 3001 ASSERT(!list_link_active(&hdr->b_arc_node)); 3002 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3003 arc_change_state(arc_anon, hdr, hash_lock); 3004 hdr->b_arc_access = 0; 3005 mutex_exit(hash_lock); 3006 3007 bzero(&hdr->b_dva, sizeof (dva_t)); 3008 hdr->b_birth = 0; 3009 hdr->b_cksum0 = 0; 3010 arc_buf_thaw(buf); 3011 } 3012 buf->b_efunc = NULL; 3013 buf->b_private = NULL; 3014 3015 if (l2hdr) { 3016 list_remove(l2hdr->b_dev->l2ad_buflist, hdr); 3017 kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t)); 3018 ARCSTAT_INCR(arcstat_l2_size, -buf_size); 3019 mutex_exit(&l2arc_buflist_mtx); 3020 } 3021 } 3022 3023 int 3024 arc_released(arc_buf_t *buf) 3025 { 3026 int released; 3027 3028 rw_enter(&buf->b_lock, RW_READER); 3029 released = (buf->b_data != NULL && buf->b_hdr->b_state == arc_anon); 3030 rw_exit(&buf->b_lock); 3031 return (released); 3032 } 3033 3034 int 3035 arc_has_callback(arc_buf_t *buf) 3036 { 3037 int callback; 3038 3039 rw_enter(&buf->b_lock, RW_READER); 3040 callback = (buf->b_efunc != NULL); 3041 rw_exit(&buf->b_lock); 3042 return (callback); 3043 } 3044 3045 #ifdef ZFS_DEBUG 3046 int 3047 arc_referenced(arc_buf_t *buf) 3048 { 3049 int referenced; 3050 3051 rw_enter(&buf->b_lock, RW_READER); 3052 referenced = (refcount_count(&buf->b_hdr->b_refcnt)); 3053 rw_exit(&buf->b_lock); 3054 return (referenced); 3055 } 3056 #endif 3057 3058 static void 3059 arc_write_ready(zio_t *zio) 3060 { 3061 arc_write_callback_t *callback = zio->io_private; 3062 arc_buf_t *buf = callback->awcb_buf; 3063 arc_buf_hdr_t *hdr = buf->b_hdr; 3064 3065 ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt)); 3066 callback->awcb_ready(zio, buf, callback->awcb_private); 3067 3068 /* 3069 * If the IO is already in progress, then this is a re-write 3070 * attempt, so we need to thaw and re-compute the cksum. 3071 * It is the responsibility of the callback to handle the 3072 * accounting for any re-write attempt. 3073 */ 3074 if (HDR_IO_IN_PROGRESS(hdr)) { 3075 mutex_enter(&hdr->b_freeze_lock); 3076 if (hdr->b_freeze_cksum != NULL) { 3077 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t)); 3078 hdr->b_freeze_cksum = NULL; 3079 } 3080 mutex_exit(&hdr->b_freeze_lock); 3081 } 3082 arc_cksum_compute(buf, B_FALSE); 3083 hdr->b_flags |= ARC_IO_IN_PROGRESS; 3084 } 3085 3086 static void 3087 arc_write_done(zio_t *zio) 3088 { 3089 arc_write_callback_t *callback = zio->io_private; 3090 arc_buf_t *buf = callback->awcb_buf; 3091 arc_buf_hdr_t *hdr = buf->b_hdr; 3092 3093 hdr->b_acb = NULL; 3094 3095 hdr->b_dva = *BP_IDENTITY(zio->io_bp); 3096 hdr->b_birth = zio->io_bp->blk_birth; 3097 hdr->b_cksum0 = zio->io_bp->blk_cksum.zc_word[0]; 3098 /* 3099 * If the block to be written was all-zero, we may have 3100 * compressed it away. In this case no write was performed 3101 * so there will be no dva/birth-date/checksum. The buffer 3102 * must therefor remain anonymous (and uncached). 3103 */ 3104 if (!BUF_EMPTY(hdr)) { 3105 arc_buf_hdr_t *exists; 3106 kmutex_t *hash_lock; 3107 3108 arc_cksum_verify(buf); 3109 3110 exists = buf_hash_insert(hdr, &hash_lock); 3111 if (exists) { 3112 /* 3113 * This can only happen if we overwrite for 3114 * sync-to-convergence, because we remove 3115 * buffers from the hash table when we arc_free(). 3116 */ 3117 ASSERT(zio->io_flags & ZIO_FLAG_IO_REWRITE); 3118 ASSERT(DVA_EQUAL(BP_IDENTITY(&zio->io_bp_orig), 3119 BP_IDENTITY(zio->io_bp))); 3120 ASSERT3U(zio->io_bp_orig.blk_birth, ==, 3121 zio->io_bp->blk_birth); 3122 3123 ASSERT(refcount_is_zero(&exists->b_refcnt)); 3124 arc_change_state(arc_anon, exists, hash_lock); 3125 mutex_exit(hash_lock); 3126 arc_hdr_destroy(exists); 3127 exists = buf_hash_insert(hdr, &hash_lock); 3128 ASSERT3P(exists, ==, NULL); 3129 } 3130 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 3131 /* if it's not anon, we are doing a scrub */ 3132 if (hdr->b_state == arc_anon) 3133 arc_access(hdr, hash_lock); 3134 mutex_exit(hash_lock); 3135 } else if (callback->awcb_done == NULL) { 3136 int destroy_hdr; 3137 /* 3138 * This is an anonymous buffer with no user callback, 3139 * destroy it if there are no active references. 3140 */ 3141 mutex_enter(&arc_eviction_mtx); 3142 destroy_hdr = refcount_is_zero(&hdr->b_refcnt); 3143 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 3144 mutex_exit(&arc_eviction_mtx); 3145 if (destroy_hdr) 3146 arc_hdr_destroy(hdr); 3147 } else { 3148 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 3149 } 3150 hdr->b_flags &= ~ARC_STORED; 3151 3152 if (callback->awcb_done) { 3153 ASSERT(!refcount_is_zero(&hdr->b_refcnt)); 3154 callback->awcb_done(zio, buf, callback->awcb_private); 3155 } 3156 3157 kmem_free(callback, sizeof (arc_write_callback_t)); 3158 } 3159 3160 void 3161 write_policy(spa_t *spa, const writeprops_t *wp, zio_prop_t *zp) 3162 { 3163 boolean_t ismd = (wp->wp_level > 0 || dmu_ot[wp->wp_type].ot_metadata); 3164 3165 /* Determine checksum setting */ 3166 if (ismd) { 3167 /* 3168 * Metadata always gets checksummed. If the data 3169 * checksum is multi-bit correctable, and it's not a 3170 * ZBT-style checksum, then it's suitable for metadata 3171 * as well. Otherwise, the metadata checksum defaults 3172 * to fletcher4. 3173 */ 3174 if (zio_checksum_table[wp->wp_oschecksum].ci_correctable && 3175 !zio_checksum_table[wp->wp_oschecksum].ci_zbt) 3176 zp->zp_checksum = wp->wp_oschecksum; 3177 else 3178 zp->zp_checksum = ZIO_CHECKSUM_FLETCHER_4; 3179 } else { 3180 zp->zp_checksum = zio_checksum_select(wp->wp_dnchecksum, 3181 wp->wp_oschecksum); 3182 } 3183 3184 /* Determine compression setting */ 3185 if (ismd) { 3186 /* 3187 * XXX -- we should design a compression algorithm 3188 * that specializes in arrays of bps. 3189 */ 3190 zp->zp_compress = zfs_mdcomp_disable ? ZIO_COMPRESS_EMPTY : 3191 ZIO_COMPRESS_LZJB; 3192 } else { 3193 zp->zp_compress = zio_compress_select(wp->wp_dncompress, 3194 wp->wp_oscompress); 3195 } 3196 3197 zp->zp_type = wp->wp_type; 3198 zp->zp_level = wp->wp_level; 3199 zp->zp_ndvas = MIN(wp->wp_copies + ismd, spa_max_replication(spa)); 3200 } 3201 3202 zio_t * 3203 arc_write(zio_t *pio, spa_t *spa, const writeprops_t *wp, 3204 boolean_t l2arc, uint64_t txg, blkptr_t *bp, arc_buf_t *buf, 3205 arc_done_func_t *ready, arc_done_func_t *done, void *private, int priority, 3206 int zio_flags, const zbookmark_t *zb) 3207 { 3208 arc_buf_hdr_t *hdr = buf->b_hdr; 3209 arc_write_callback_t *callback; 3210 zio_t *zio; 3211 zio_prop_t zp; 3212 3213 ASSERT(ready != NULL); 3214 ASSERT(!HDR_IO_ERROR(hdr)); 3215 ASSERT((hdr->b_flags & ARC_IO_IN_PROGRESS) == 0); 3216 ASSERT(hdr->b_acb == 0); 3217 if (l2arc) 3218 hdr->b_flags |= ARC_L2CACHE; 3219 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP); 3220 callback->awcb_ready = ready; 3221 callback->awcb_done = done; 3222 callback->awcb_private = private; 3223 callback->awcb_buf = buf; 3224 3225 write_policy(spa, wp, &zp); 3226 zio = zio_write(pio, spa, txg, bp, buf->b_data, hdr->b_size, &zp, 3227 arc_write_ready, arc_write_done, callback, priority, zio_flags, zb); 3228 3229 return (zio); 3230 } 3231 3232 int 3233 arc_free(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, 3234 zio_done_func_t *done, void *private, uint32_t arc_flags) 3235 { 3236 arc_buf_hdr_t *ab; 3237 kmutex_t *hash_lock; 3238 zio_t *zio; 3239 3240 /* 3241 * If this buffer is in the cache, release it, so it 3242 * can be re-used. 3243 */ 3244 ab = buf_hash_find(spa, BP_IDENTITY(bp), bp->blk_birth, &hash_lock); 3245 if (ab != NULL) { 3246 /* 3247 * The checksum of blocks to free is not always 3248 * preserved (eg. on the deadlist). However, if it is 3249 * nonzero, it should match what we have in the cache. 3250 */ 3251 ASSERT(bp->blk_cksum.zc_word[0] == 0 || 3252 bp->blk_cksum.zc_word[0] == ab->b_cksum0 || 3253 bp->blk_fill == BLK_FILL_ALREADY_FREED); 3254 3255 if (ab->b_state != arc_anon) 3256 arc_change_state(arc_anon, ab, hash_lock); 3257 if (HDR_IO_IN_PROGRESS(ab)) { 3258 /* 3259 * This should only happen when we prefetch. 3260 */ 3261 ASSERT(ab->b_flags & ARC_PREFETCH); 3262 ASSERT3U(ab->b_datacnt, ==, 1); 3263 ab->b_flags |= ARC_FREED_IN_READ; 3264 if (HDR_IN_HASH_TABLE(ab)) 3265 buf_hash_remove(ab); 3266 ab->b_arc_access = 0; 3267 bzero(&ab->b_dva, sizeof (dva_t)); 3268 ab->b_birth = 0; 3269 ab->b_cksum0 = 0; 3270 ab->b_buf->b_efunc = NULL; 3271 ab->b_buf->b_private = NULL; 3272 mutex_exit(hash_lock); 3273 } else if (refcount_is_zero(&ab->b_refcnt)) { 3274 ab->b_flags |= ARC_FREE_IN_PROGRESS; 3275 mutex_exit(hash_lock); 3276 arc_hdr_destroy(ab); 3277 ARCSTAT_BUMP(arcstat_deleted); 3278 } else { 3279 /* 3280 * We still have an active reference on this 3281 * buffer. This can happen, e.g., from 3282 * dbuf_unoverride(). 3283 */ 3284 ASSERT(!HDR_IN_HASH_TABLE(ab)); 3285 ab->b_arc_access = 0; 3286 bzero(&ab->b_dva, sizeof (dva_t)); 3287 ab->b_birth = 0; 3288 ab->b_cksum0 = 0; 3289 ab->b_buf->b_efunc = NULL; 3290 ab->b_buf->b_private = NULL; 3291 mutex_exit(hash_lock); 3292 } 3293 } 3294 3295 zio = zio_free(pio, spa, txg, bp, done, private, ZIO_FLAG_MUSTSUCCEED); 3296 3297 if (arc_flags & ARC_WAIT) 3298 return (zio_wait(zio)); 3299 3300 ASSERT(arc_flags & ARC_NOWAIT); 3301 zio_nowait(zio); 3302 3303 return (0); 3304 } 3305 3306 static int 3307 arc_memory_throttle(uint64_t reserve, uint64_t txg) 3308 { 3309 #ifdef _KERNEL 3310 uint64_t inflight_data = arc_anon->arcs_size; 3311 uint64_t available_memory = ptob(freemem); 3312 static uint64_t page_load = 0; 3313 static uint64_t last_txg = 0; 3314 3315 #if defined(__i386) 3316 available_memory = 3317 MIN(available_memory, vmem_size(heap_arena, VMEM_FREE)); 3318 #endif 3319 if (available_memory >= zfs_write_limit_max) 3320 return (0); 3321 3322 if (txg > last_txg) { 3323 last_txg = txg; 3324 page_load = 0; 3325 } 3326 /* 3327 * If we are in pageout, we know that memory is already tight, 3328 * the arc is already going to be evicting, so we just want to 3329 * continue to let page writes occur as quickly as possible. 3330 */ 3331 if (curproc == proc_pageout) { 3332 if (page_load > MAX(ptob(minfree), available_memory) / 4) 3333 return (ERESTART); 3334 /* Note: reserve is inflated, so we deflate */ 3335 page_load += reserve / 8; 3336 return (0); 3337 } else if (page_load > 0 && arc_reclaim_needed()) { 3338 /* memory is low, delay before restarting */ 3339 ARCSTAT_INCR(arcstat_memory_throttle_count, 1); 3340 return (EAGAIN); 3341 } 3342 page_load = 0; 3343 3344 if (arc_size > arc_c_min) { 3345 uint64_t evictable_memory = 3346 arc_mru->arcs_lsize[ARC_BUFC_DATA] + 3347 arc_mru->arcs_lsize[ARC_BUFC_METADATA] + 3348 arc_mfu->arcs_lsize[ARC_BUFC_DATA] + 3349 arc_mfu->arcs_lsize[ARC_BUFC_METADATA]; 3350 available_memory += MIN(evictable_memory, arc_size - arc_c_min); 3351 } 3352 3353 if (inflight_data > available_memory / 4) { 3354 ARCSTAT_INCR(arcstat_memory_throttle_count, 1); 3355 return (ERESTART); 3356 } 3357 #endif 3358 return (0); 3359 } 3360 3361 void 3362 arc_tempreserve_clear(uint64_t reserve) 3363 { 3364 atomic_add_64(&arc_tempreserve, -reserve); 3365 ASSERT((int64_t)arc_tempreserve >= 0); 3366 } 3367 3368 int 3369 arc_tempreserve_space(uint64_t reserve, uint64_t txg) 3370 { 3371 int error; 3372 3373 #ifdef ZFS_DEBUG 3374 /* 3375 * Once in a while, fail for no reason. Everything should cope. 3376 */ 3377 if (spa_get_random(10000) == 0) { 3378 dprintf("forcing random failure\n"); 3379 return (ERESTART); 3380 } 3381 #endif 3382 if (reserve > arc_c/4 && !arc_no_grow) 3383 arc_c = MIN(arc_c_max, reserve * 4); 3384 if (reserve > arc_c) 3385 return (ENOMEM); 3386 3387 /* 3388 * Writes will, almost always, require additional memory allocations 3389 * in order to compress/encrypt/etc the data. We therefor need to 3390 * make sure that there is sufficient available memory for this. 3391 */ 3392 if (error = arc_memory_throttle(reserve, txg)) 3393 return (error); 3394 3395 /* 3396 * Throttle writes when the amount of dirty data in the cache 3397 * gets too large. We try to keep the cache less than half full 3398 * of dirty blocks so that our sync times don't grow too large. 3399 * Note: if two requests come in concurrently, we might let them 3400 * both succeed, when one of them should fail. Not a huge deal. 3401 */ 3402 if (reserve + arc_tempreserve + arc_anon->arcs_size > arc_c / 2 && 3403 arc_anon->arcs_size > arc_c / 4) { 3404 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK " 3405 "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n", 3406 arc_tempreserve>>10, 3407 arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10, 3408 arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10, 3409 reserve>>10, arc_c>>10); 3410 return (ERESTART); 3411 } 3412 atomic_add_64(&arc_tempreserve, reserve); 3413 return (0); 3414 } 3415 3416 void 3417 arc_init(void) 3418 { 3419 mutex_init(&arc_reclaim_thr_lock, NULL, MUTEX_DEFAULT, NULL); 3420 cv_init(&arc_reclaim_thr_cv, NULL, CV_DEFAULT, NULL); 3421 3422 /* Convert seconds to clock ticks */ 3423 arc_min_prefetch_lifespan = 1 * hz; 3424 3425 /* Start out with 1/8 of all memory */ 3426 arc_c = physmem * PAGESIZE / 8; 3427 3428 #ifdef _KERNEL 3429 /* 3430 * On architectures where the physical memory can be larger 3431 * than the addressable space (intel in 32-bit mode), we may 3432 * need to limit the cache to 1/8 of VM size. 3433 */ 3434 arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8); 3435 #endif 3436 3437 /* set min cache to 1/32 of all memory, or 64MB, whichever is more */ 3438 arc_c_min = MAX(arc_c / 4, 64<<20); 3439 /* set max to 3/4 of all memory, or all but 1GB, whichever is more */ 3440 if (arc_c * 8 >= 1<<30) 3441 arc_c_max = (arc_c * 8) - (1<<30); 3442 else 3443 arc_c_max = arc_c_min; 3444 arc_c_max = MAX(arc_c * 6, arc_c_max); 3445 3446 /* 3447 * Allow the tunables to override our calculations if they are 3448 * reasonable (ie. over 64MB) 3449 */ 3450 if (zfs_arc_max > 64<<20 && zfs_arc_max < physmem * PAGESIZE) 3451 arc_c_max = zfs_arc_max; 3452 if (zfs_arc_min > 64<<20 && zfs_arc_min <= arc_c_max) 3453 arc_c_min = zfs_arc_min; 3454 3455 arc_c = arc_c_max; 3456 arc_p = (arc_c >> 1); 3457 3458 /* limit meta-data to 1/4 of the arc capacity */ 3459 arc_meta_limit = arc_c_max / 4; 3460 3461 /* Allow the tunable to override if it is reasonable */ 3462 if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max) 3463 arc_meta_limit = zfs_arc_meta_limit; 3464 3465 if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0) 3466 arc_c_min = arc_meta_limit / 2; 3467 3468 if (zfs_arc_grow_retry > 0) 3469 arc_grow_retry = zfs_arc_grow_retry; 3470 3471 if (zfs_arc_shrink_shift > 0) 3472 arc_shrink_shift = zfs_arc_shrink_shift; 3473 3474 if (zfs_arc_p_min_shift > 0) 3475 arc_p_min_shift = zfs_arc_p_min_shift; 3476 3477 /* if kmem_flags are set, lets try to use less memory */ 3478 if (kmem_debugging()) 3479 arc_c = arc_c / 2; 3480 if (arc_c < arc_c_min) 3481 arc_c = arc_c_min; 3482 3483 arc_anon = &ARC_anon; 3484 arc_mru = &ARC_mru; 3485 arc_mru_ghost = &ARC_mru_ghost; 3486 arc_mfu = &ARC_mfu; 3487 arc_mfu_ghost = &ARC_mfu_ghost; 3488 arc_l2c_only = &ARC_l2c_only; 3489 arc_size = 0; 3490 3491 mutex_init(&arc_anon->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3492 mutex_init(&arc_mru->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3493 mutex_init(&arc_mru_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3494 mutex_init(&arc_mfu->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3495 mutex_init(&arc_mfu_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3496 mutex_init(&arc_l2c_only->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3497 3498 list_create(&arc_mru->arcs_list[ARC_BUFC_METADATA], 3499 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3500 list_create(&arc_mru->arcs_list[ARC_BUFC_DATA], 3501 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3502 list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA], 3503 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3504 list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA], 3505 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3506 list_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA], 3507 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3508 list_create(&arc_mfu->arcs_list[ARC_BUFC_DATA], 3509 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3510 list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA], 3511 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3512 list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA], 3513 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3514 list_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA], 3515 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3516 list_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA], 3517 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3518 3519 buf_init(); 3520 3521 arc_thread_exit = 0; 3522 arc_eviction_list = NULL; 3523 mutex_init(&arc_eviction_mtx, NULL, MUTEX_DEFAULT, NULL); 3524 bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t)); 3525 3526 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED, 3527 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); 3528 3529 if (arc_ksp != NULL) { 3530 arc_ksp->ks_data = &arc_stats; 3531 kstat_install(arc_ksp); 3532 } 3533 3534 (void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0, 3535 TS_RUN, minclsyspri); 3536 3537 arc_dead = FALSE; 3538 arc_warm = B_FALSE; 3539 3540 if (zfs_write_limit_max == 0) 3541 zfs_write_limit_max = ptob(physmem) >> zfs_write_limit_shift; 3542 else 3543 zfs_write_limit_shift = 0; 3544 mutex_init(&zfs_write_limit_lock, NULL, MUTEX_DEFAULT, NULL); 3545 } 3546 3547 void 3548 arc_fini(void) 3549 { 3550 mutex_enter(&arc_reclaim_thr_lock); 3551 arc_thread_exit = 1; 3552 while (arc_thread_exit != 0) 3553 cv_wait(&arc_reclaim_thr_cv, &arc_reclaim_thr_lock); 3554 mutex_exit(&arc_reclaim_thr_lock); 3555 3556 arc_flush(NULL); 3557 3558 arc_dead = TRUE; 3559 3560 if (arc_ksp != NULL) { 3561 kstat_delete(arc_ksp); 3562 arc_ksp = NULL; 3563 } 3564 3565 mutex_destroy(&arc_eviction_mtx); 3566 mutex_destroy(&arc_reclaim_thr_lock); 3567 cv_destroy(&arc_reclaim_thr_cv); 3568 3569 list_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]); 3570 list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]); 3571 list_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]); 3572 list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]); 3573 list_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]); 3574 list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]); 3575 list_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]); 3576 list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]); 3577 3578 mutex_destroy(&arc_anon->arcs_mtx); 3579 mutex_destroy(&arc_mru->arcs_mtx); 3580 mutex_destroy(&arc_mru_ghost->arcs_mtx); 3581 mutex_destroy(&arc_mfu->arcs_mtx); 3582 mutex_destroy(&arc_mfu_ghost->arcs_mtx); 3583 mutex_destroy(&arc_l2c_only->arcs_mtx); 3584 3585 mutex_destroy(&zfs_write_limit_lock); 3586 3587 buf_fini(); 3588 } 3589 3590 /* 3591 * Level 2 ARC 3592 * 3593 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk. 3594 * It uses dedicated storage devices to hold cached data, which are populated 3595 * using large infrequent writes. The main role of this cache is to boost 3596 * the performance of random read workloads. The intended L2ARC devices 3597 * include short-stroked disks, solid state disks, and other media with 3598 * substantially faster read latency than disk. 3599 * 3600 * +-----------------------+ 3601 * | ARC | 3602 * +-----------------------+ 3603 * | ^ ^ 3604 * | | | 3605 * l2arc_feed_thread() arc_read() 3606 * | | | 3607 * | l2arc read | 3608 * V | | 3609 * +---------------+ | 3610 * | L2ARC | | 3611 * +---------------+ | 3612 * | ^ | 3613 * l2arc_write() | | 3614 * | | | 3615 * V | | 3616 * +-------+ +-------+ 3617 * | vdev | | vdev | 3618 * | cache | | cache | 3619 * +-------+ +-------+ 3620 * +=========+ .-----. 3621 * : L2ARC : |-_____-| 3622 * : devices : | Disks | 3623 * +=========+ `-_____-' 3624 * 3625 * Read requests are satisfied from the following sources, in order: 3626 * 3627 * 1) ARC 3628 * 2) vdev cache of L2ARC devices 3629 * 3) L2ARC devices 3630 * 4) vdev cache of disks 3631 * 5) disks 3632 * 3633 * Some L2ARC device types exhibit extremely slow write performance. 3634 * To accommodate for this there are some significant differences between 3635 * the L2ARC and traditional cache design: 3636 * 3637 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from 3638 * the ARC behave as usual, freeing buffers and placing headers on ghost 3639 * lists. The ARC does not send buffers to the L2ARC during eviction as 3640 * this would add inflated write latencies for all ARC memory pressure. 3641 * 3642 * 2. The L2ARC attempts to cache data from the ARC before it is evicted. 3643 * It does this by periodically scanning buffers from the eviction-end of 3644 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are 3645 * not already there. It scans until a headroom of buffers is satisfied, 3646 * which itself is a buffer for ARC eviction. The thread that does this is 3647 * l2arc_feed_thread(), illustrated below; example sizes are included to 3648 * provide a better sense of ratio than this diagram: 3649 * 3650 * head --> tail 3651 * +---------------------+----------+ 3652 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC 3653 * +---------------------+----------+ | o L2ARC eligible 3654 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer 3655 * +---------------------+----------+ | 3656 * 15.9 Gbytes ^ 32 Mbytes | 3657 * headroom | 3658 * l2arc_feed_thread() 3659 * | 3660 * l2arc write hand <--[oooo]--' 3661 * | 8 Mbyte 3662 * | write max 3663 * V 3664 * +==============================+ 3665 * L2ARC dev |####|#|###|###| |####| ... | 3666 * +==============================+ 3667 * 32 Gbytes 3668 * 3669 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of 3670 * evicted, then the L2ARC has cached a buffer much sooner than it probably 3671 * needed to, potentially wasting L2ARC device bandwidth and storage. It is 3672 * safe to say that this is an uncommon case, since buffers at the end of 3673 * the ARC lists have moved there due to inactivity. 3674 * 3675 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom, 3676 * then the L2ARC simply misses copying some buffers. This serves as a 3677 * pressure valve to prevent heavy read workloads from both stalling the ARC 3678 * with waits and clogging the L2ARC with writes. This also helps prevent 3679 * the potential for the L2ARC to churn if it attempts to cache content too 3680 * quickly, such as during backups of the entire pool. 3681 * 3682 * 5. After system boot and before the ARC has filled main memory, there are 3683 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru 3684 * lists can remain mostly static. Instead of searching from tail of these 3685 * lists as pictured, the l2arc_feed_thread() will search from the list heads 3686 * for eligible buffers, greatly increasing its chance of finding them. 3687 * 3688 * The L2ARC device write speed is also boosted during this time so that 3689 * the L2ARC warms up faster. Since there have been no ARC evictions yet, 3690 * there are no L2ARC reads, and no fear of degrading read performance 3691 * through increased writes. 3692 * 3693 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that 3694 * the vdev queue can aggregate them into larger and fewer writes. Each 3695 * device is written to in a rotor fashion, sweeping writes through 3696 * available space then repeating. 3697 * 3698 * 7. The L2ARC does not store dirty content. It never needs to flush 3699 * write buffers back to disk based storage. 3700 * 3701 * 8. If an ARC buffer is written (and dirtied) which also exists in the 3702 * L2ARC, the now stale L2ARC buffer is immediately dropped. 3703 * 3704 * The performance of the L2ARC can be tweaked by a number of tunables, which 3705 * may be necessary for different workloads: 3706 * 3707 * l2arc_write_max max write bytes per interval 3708 * l2arc_write_boost extra write bytes during device warmup 3709 * l2arc_noprefetch skip caching prefetched buffers 3710 * l2arc_headroom number of max device writes to precache 3711 * l2arc_feed_secs seconds between L2ARC writing 3712 * 3713 * Tunables may be removed or added as future performance improvements are 3714 * integrated, and also may become zpool properties. 3715 * 3716 * There are three key functions that control how the L2ARC warms up: 3717 * 3718 * l2arc_write_eligible() check if a buffer is eligible to cache 3719 * l2arc_write_size() calculate how much to write 3720 * l2arc_write_interval() calculate sleep delay between writes 3721 * 3722 * These three functions determine what to write, how much, and how quickly 3723 * to send writes. 3724 */ 3725 3726 static boolean_t 3727 l2arc_write_eligible(spa_t *spa, arc_buf_hdr_t *ab) 3728 { 3729 /* 3730 * A buffer is *not* eligible for the L2ARC if it: 3731 * 1. belongs to a different spa. 3732 * 2. has no attached buffer. 3733 * 3. is already cached on the L2ARC. 3734 * 4. has an I/O in progress (it may be an incomplete read). 3735 * 5. is flagged not eligible (zfs property). 3736 */ 3737 if (ab->b_spa != spa || ab->b_buf == NULL || ab->b_l2hdr != NULL || 3738 HDR_IO_IN_PROGRESS(ab) || !HDR_L2CACHE(ab)) 3739 return (B_FALSE); 3740 3741 return (B_TRUE); 3742 } 3743 3744 static uint64_t 3745 l2arc_write_size(l2arc_dev_t *dev) 3746 { 3747 uint64_t size; 3748 3749 size = dev->l2ad_write; 3750 3751 if (arc_warm == B_FALSE) 3752 size += dev->l2ad_boost; 3753 3754 return (size); 3755 3756 } 3757 3758 static clock_t 3759 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote) 3760 { 3761 clock_t interval, next; 3762 3763 /* 3764 * If the ARC lists are busy, increase our write rate; if the 3765 * lists are stale, idle back. This is achieved by checking 3766 * how much we previously wrote - if it was more than half of 3767 * what we wanted, schedule the next write much sooner. 3768 */ 3769 if (l2arc_feed_again && wrote > (wanted / 2)) 3770 interval = (hz * l2arc_feed_min_ms) / 1000; 3771 else 3772 interval = hz * l2arc_feed_secs; 3773 3774 next = MAX(lbolt, MIN(lbolt + interval, began + interval)); 3775 3776 return (next); 3777 } 3778 3779 static void 3780 l2arc_hdr_stat_add(void) 3781 { 3782 ARCSTAT_INCR(arcstat_l2_hdr_size, HDR_SIZE + L2HDR_SIZE); 3783 ARCSTAT_INCR(arcstat_hdr_size, -HDR_SIZE); 3784 } 3785 3786 static void 3787 l2arc_hdr_stat_remove(void) 3788 { 3789 ARCSTAT_INCR(arcstat_l2_hdr_size, -(HDR_SIZE + L2HDR_SIZE)); 3790 ARCSTAT_INCR(arcstat_hdr_size, HDR_SIZE); 3791 } 3792 3793 /* 3794 * Cycle through L2ARC devices. This is how L2ARC load balances. 3795 * If a device is returned, this also returns holding the spa config lock. 3796 */ 3797 static l2arc_dev_t * 3798 l2arc_dev_get_next(void) 3799 { 3800 l2arc_dev_t *first, *next = NULL; 3801 3802 /* 3803 * Lock out the removal of spas (spa_namespace_lock), then removal 3804 * of cache devices (l2arc_dev_mtx). Once a device has been selected, 3805 * both locks will be dropped and a spa config lock held instead. 3806 */ 3807 mutex_enter(&spa_namespace_lock); 3808 mutex_enter(&l2arc_dev_mtx); 3809 3810 /* if there are no vdevs, there is nothing to do */ 3811 if (l2arc_ndev == 0) 3812 goto out; 3813 3814 first = NULL; 3815 next = l2arc_dev_last; 3816 do { 3817 /* loop around the list looking for a non-faulted vdev */ 3818 if (next == NULL) { 3819 next = list_head(l2arc_dev_list); 3820 } else { 3821 next = list_next(l2arc_dev_list, next); 3822 if (next == NULL) 3823 next = list_head(l2arc_dev_list); 3824 } 3825 3826 /* if we have come back to the start, bail out */ 3827 if (first == NULL) 3828 first = next; 3829 else if (next == first) 3830 break; 3831 3832 } while (vdev_is_dead(next->l2ad_vdev)); 3833 3834 /* if we were unable to find any usable vdevs, return NULL */ 3835 if (vdev_is_dead(next->l2ad_vdev)) 3836 next = NULL; 3837 3838 l2arc_dev_last = next; 3839 3840 out: 3841 mutex_exit(&l2arc_dev_mtx); 3842 3843 /* 3844 * Grab the config lock to prevent the 'next' device from being 3845 * removed while we are writing to it. 3846 */ 3847 if (next != NULL) 3848 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER); 3849 mutex_exit(&spa_namespace_lock); 3850 3851 return (next); 3852 } 3853 3854 /* 3855 * Free buffers that were tagged for destruction. 3856 */ 3857 static void 3858 l2arc_do_free_on_write() 3859 { 3860 list_t *buflist; 3861 l2arc_data_free_t *df, *df_prev; 3862 3863 mutex_enter(&l2arc_free_on_write_mtx); 3864 buflist = l2arc_free_on_write; 3865 3866 for (df = list_tail(buflist); df; df = df_prev) { 3867 df_prev = list_prev(buflist, df); 3868 ASSERT(df->l2df_data != NULL); 3869 ASSERT(df->l2df_func != NULL); 3870 df->l2df_func(df->l2df_data, df->l2df_size); 3871 list_remove(buflist, df); 3872 kmem_free(df, sizeof (l2arc_data_free_t)); 3873 } 3874 3875 mutex_exit(&l2arc_free_on_write_mtx); 3876 } 3877 3878 /* 3879 * A write to a cache device has completed. Update all headers to allow 3880 * reads from these buffers to begin. 3881 */ 3882 static void 3883 l2arc_write_done(zio_t *zio) 3884 { 3885 l2arc_write_callback_t *cb; 3886 l2arc_dev_t *dev; 3887 list_t *buflist; 3888 arc_buf_hdr_t *head, *ab, *ab_prev; 3889 l2arc_buf_hdr_t *abl2; 3890 kmutex_t *hash_lock; 3891 3892 cb = zio->io_private; 3893 ASSERT(cb != NULL); 3894 dev = cb->l2wcb_dev; 3895 ASSERT(dev != NULL); 3896 head = cb->l2wcb_head; 3897 ASSERT(head != NULL); 3898 buflist = dev->l2ad_buflist; 3899 ASSERT(buflist != NULL); 3900 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio, 3901 l2arc_write_callback_t *, cb); 3902 3903 if (zio->io_error != 0) 3904 ARCSTAT_BUMP(arcstat_l2_writes_error); 3905 3906 mutex_enter(&l2arc_buflist_mtx); 3907 3908 /* 3909 * All writes completed, or an error was hit. 3910 */ 3911 for (ab = list_prev(buflist, head); ab; ab = ab_prev) { 3912 ab_prev = list_prev(buflist, ab); 3913 3914 hash_lock = HDR_LOCK(ab); 3915 if (!mutex_tryenter(hash_lock)) { 3916 /* 3917 * This buffer misses out. It may be in a stage 3918 * of eviction. Its ARC_L2_WRITING flag will be 3919 * left set, denying reads to this buffer. 3920 */ 3921 ARCSTAT_BUMP(arcstat_l2_writes_hdr_miss); 3922 continue; 3923 } 3924 3925 if (zio->io_error != 0) { 3926 /* 3927 * Error - drop L2ARC entry. 3928 */ 3929 list_remove(buflist, ab); 3930 abl2 = ab->b_l2hdr; 3931 ab->b_l2hdr = NULL; 3932 kmem_free(abl2, sizeof (l2arc_buf_hdr_t)); 3933 ARCSTAT_INCR(arcstat_l2_size, -ab->b_size); 3934 } 3935 3936 /* 3937 * Allow ARC to begin reads to this L2ARC entry. 3938 */ 3939 ab->b_flags &= ~ARC_L2_WRITING; 3940 3941 mutex_exit(hash_lock); 3942 } 3943 3944 atomic_inc_64(&l2arc_writes_done); 3945 list_remove(buflist, head); 3946 kmem_cache_free(hdr_cache, head); 3947 mutex_exit(&l2arc_buflist_mtx); 3948 3949 l2arc_do_free_on_write(); 3950 3951 kmem_free(cb, sizeof (l2arc_write_callback_t)); 3952 } 3953 3954 /* 3955 * A read to a cache device completed. Validate buffer contents before 3956 * handing over to the regular ARC routines. 3957 */ 3958 static void 3959 l2arc_read_done(zio_t *zio) 3960 { 3961 l2arc_read_callback_t *cb; 3962 arc_buf_hdr_t *hdr; 3963 arc_buf_t *buf; 3964 kmutex_t *hash_lock; 3965 int equal; 3966 3967 ASSERT(zio->io_vd != NULL); 3968 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE); 3969 3970 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd); 3971 3972 cb = zio->io_private; 3973 ASSERT(cb != NULL); 3974 buf = cb->l2rcb_buf; 3975 ASSERT(buf != NULL); 3976 hdr = buf->b_hdr; 3977 ASSERT(hdr != NULL); 3978 3979 hash_lock = HDR_LOCK(hdr); 3980 mutex_enter(hash_lock); 3981 3982 /* 3983 * Check this survived the L2ARC journey. 3984 */ 3985 equal = arc_cksum_equal(buf); 3986 if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) { 3987 mutex_exit(hash_lock); 3988 zio->io_private = buf; 3989 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */ 3990 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */ 3991 arc_read_done(zio); 3992 } else { 3993 mutex_exit(hash_lock); 3994 /* 3995 * Buffer didn't survive caching. Increment stats and 3996 * reissue to the original storage device. 3997 */ 3998 if (zio->io_error != 0) { 3999 ARCSTAT_BUMP(arcstat_l2_io_error); 4000 } else { 4001 zio->io_error = EIO; 4002 } 4003 if (!equal) 4004 ARCSTAT_BUMP(arcstat_l2_cksum_bad); 4005 4006 /* 4007 * If there's no waiter, issue an async i/o to the primary 4008 * storage now. If there *is* a waiter, the caller must 4009 * issue the i/o in a context where it's OK to block. 4010 */ 4011 if (zio->io_waiter == NULL) 4012 zio_nowait(zio_read(zio->io_parent, 4013 cb->l2rcb_spa, &cb->l2rcb_bp, 4014 buf->b_data, zio->io_size, arc_read_done, buf, 4015 zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb)); 4016 } 4017 4018 kmem_free(cb, sizeof (l2arc_read_callback_t)); 4019 } 4020 4021 /* 4022 * This is the list priority from which the L2ARC will search for pages to 4023 * cache. This is used within loops (0..3) to cycle through lists in the 4024 * desired order. This order can have a significant effect on cache 4025 * performance. 4026 * 4027 * Currently the metadata lists are hit first, MFU then MRU, followed by 4028 * the data lists. This function returns a locked list, and also returns 4029 * the lock pointer. 4030 */ 4031 static list_t * 4032 l2arc_list_locked(int list_num, kmutex_t **lock) 4033 { 4034 list_t *list; 4035 4036 ASSERT(list_num >= 0 && list_num <= 3); 4037 4038 switch (list_num) { 4039 case 0: 4040 list = &arc_mfu->arcs_list[ARC_BUFC_METADATA]; 4041 *lock = &arc_mfu->arcs_mtx; 4042 break; 4043 case 1: 4044 list = &arc_mru->arcs_list[ARC_BUFC_METADATA]; 4045 *lock = &arc_mru->arcs_mtx; 4046 break; 4047 case 2: 4048 list = &arc_mfu->arcs_list[ARC_BUFC_DATA]; 4049 *lock = &arc_mfu->arcs_mtx; 4050 break; 4051 case 3: 4052 list = &arc_mru->arcs_list[ARC_BUFC_DATA]; 4053 *lock = &arc_mru->arcs_mtx; 4054 break; 4055 } 4056 4057 ASSERT(!(MUTEX_HELD(*lock))); 4058 mutex_enter(*lock); 4059 return (list); 4060 } 4061 4062 /* 4063 * Evict buffers from the device write hand to the distance specified in 4064 * bytes. This distance may span populated buffers, it may span nothing. 4065 * This is clearing a region on the L2ARC device ready for writing. 4066 * If the 'all' boolean is set, every buffer is evicted. 4067 */ 4068 static void 4069 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all) 4070 { 4071 list_t *buflist; 4072 l2arc_buf_hdr_t *abl2; 4073 arc_buf_hdr_t *ab, *ab_prev; 4074 kmutex_t *hash_lock; 4075 uint64_t taddr; 4076 4077 buflist = dev->l2ad_buflist; 4078 4079 if (buflist == NULL) 4080 return; 4081 4082 if (!all && dev->l2ad_first) { 4083 /* 4084 * This is the first sweep through the device. There is 4085 * nothing to evict. 4086 */ 4087 return; 4088 } 4089 4090 if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) { 4091 /* 4092 * When nearing the end of the device, evict to the end 4093 * before the device write hand jumps to the start. 4094 */ 4095 taddr = dev->l2ad_end; 4096 } else { 4097 taddr = dev->l2ad_hand + distance; 4098 } 4099 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist, 4100 uint64_t, taddr, boolean_t, all); 4101 4102 top: 4103 mutex_enter(&l2arc_buflist_mtx); 4104 for (ab = list_tail(buflist); ab; ab = ab_prev) { 4105 ab_prev = list_prev(buflist, ab); 4106 4107 hash_lock = HDR_LOCK(ab); 4108 if (!mutex_tryenter(hash_lock)) { 4109 /* 4110 * Missed the hash lock. Retry. 4111 */ 4112 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry); 4113 mutex_exit(&l2arc_buflist_mtx); 4114 mutex_enter(hash_lock); 4115 mutex_exit(hash_lock); 4116 goto top; 4117 } 4118 4119 if (HDR_L2_WRITE_HEAD(ab)) { 4120 /* 4121 * We hit a write head node. Leave it for 4122 * l2arc_write_done(). 4123 */ 4124 list_remove(buflist, ab); 4125 mutex_exit(hash_lock); 4126 continue; 4127 } 4128 4129 if (!all && ab->b_l2hdr != NULL && 4130 (ab->b_l2hdr->b_daddr > taddr || 4131 ab->b_l2hdr->b_daddr < dev->l2ad_hand)) { 4132 /* 4133 * We've evicted to the target address, 4134 * or the end of the device. 4135 */ 4136 mutex_exit(hash_lock); 4137 break; 4138 } 4139 4140 if (HDR_FREE_IN_PROGRESS(ab)) { 4141 /* 4142 * Already on the path to destruction. 4143 */ 4144 mutex_exit(hash_lock); 4145 continue; 4146 } 4147 4148 if (ab->b_state == arc_l2c_only) { 4149 ASSERT(!HDR_L2_READING(ab)); 4150 /* 4151 * This doesn't exist in the ARC. Destroy. 4152 * arc_hdr_destroy() will call list_remove() 4153 * and decrement arcstat_l2_size. 4154 */ 4155 arc_change_state(arc_anon, ab, hash_lock); 4156 arc_hdr_destroy(ab); 4157 } else { 4158 /* 4159 * Invalidate issued or about to be issued 4160 * reads, since we may be about to write 4161 * over this location. 4162 */ 4163 if (HDR_L2_READING(ab)) { 4164 ARCSTAT_BUMP(arcstat_l2_evict_reading); 4165 ab->b_flags |= ARC_L2_EVICTED; 4166 } 4167 4168 /* 4169 * Tell ARC this no longer exists in L2ARC. 4170 */ 4171 if (ab->b_l2hdr != NULL) { 4172 abl2 = ab->b_l2hdr; 4173 ab->b_l2hdr = NULL; 4174 kmem_free(abl2, sizeof (l2arc_buf_hdr_t)); 4175 ARCSTAT_INCR(arcstat_l2_size, -ab->b_size); 4176 } 4177 list_remove(buflist, ab); 4178 4179 /* 4180 * This may have been leftover after a 4181 * failed write. 4182 */ 4183 ab->b_flags &= ~ARC_L2_WRITING; 4184 } 4185 mutex_exit(hash_lock); 4186 } 4187 mutex_exit(&l2arc_buflist_mtx); 4188 4189 spa_l2cache_space_update(dev->l2ad_vdev, 0, -(taddr - dev->l2ad_evict)); 4190 dev->l2ad_evict = taddr; 4191 } 4192 4193 /* 4194 * Find and write ARC buffers to the L2ARC device. 4195 * 4196 * An ARC_L2_WRITING flag is set so that the L2ARC buffers are not valid 4197 * for reading until they have completed writing. 4198 */ 4199 static uint64_t 4200 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz) 4201 { 4202 arc_buf_hdr_t *ab, *ab_prev, *head; 4203 l2arc_buf_hdr_t *hdrl2; 4204 list_t *list; 4205 uint64_t passed_sz, write_sz, buf_sz, headroom; 4206 void *buf_data; 4207 kmutex_t *hash_lock, *list_lock; 4208 boolean_t have_lock, full; 4209 l2arc_write_callback_t *cb; 4210 zio_t *pio, *wzio; 4211 4212 ASSERT(dev->l2ad_vdev != NULL); 4213 4214 pio = NULL; 4215 write_sz = 0; 4216 full = B_FALSE; 4217 head = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE); 4218 head->b_flags |= ARC_L2_WRITE_HEAD; 4219 4220 /* 4221 * Copy buffers for L2ARC writing. 4222 */ 4223 mutex_enter(&l2arc_buflist_mtx); 4224 for (int try = 0; try <= 3; try++) { 4225 list = l2arc_list_locked(try, &list_lock); 4226 passed_sz = 0; 4227 4228 /* 4229 * L2ARC fast warmup. 4230 * 4231 * Until the ARC is warm and starts to evict, read from the 4232 * head of the ARC lists rather than the tail. 4233 */ 4234 headroom = target_sz * l2arc_headroom; 4235 if (arc_warm == B_FALSE) 4236 ab = list_head(list); 4237 else 4238 ab = list_tail(list); 4239 4240 for (; ab; ab = ab_prev) { 4241 if (arc_warm == B_FALSE) 4242 ab_prev = list_next(list, ab); 4243 else 4244 ab_prev = list_prev(list, ab); 4245 4246 hash_lock = HDR_LOCK(ab); 4247 have_lock = MUTEX_HELD(hash_lock); 4248 if (!have_lock && !mutex_tryenter(hash_lock)) { 4249 /* 4250 * Skip this buffer rather than waiting. 4251 */ 4252 continue; 4253 } 4254 4255 passed_sz += ab->b_size; 4256 if (passed_sz > headroom) { 4257 /* 4258 * Searched too far. 4259 */ 4260 mutex_exit(hash_lock); 4261 break; 4262 } 4263 4264 if (!l2arc_write_eligible(spa, ab)) { 4265 mutex_exit(hash_lock); 4266 continue; 4267 } 4268 4269 if ((write_sz + ab->b_size) > target_sz) { 4270 full = B_TRUE; 4271 mutex_exit(hash_lock); 4272 break; 4273 } 4274 4275 if (pio == NULL) { 4276 /* 4277 * Insert a dummy header on the buflist so 4278 * l2arc_write_done() can find where the 4279 * write buffers begin without searching. 4280 */ 4281 list_insert_head(dev->l2ad_buflist, head); 4282 4283 cb = kmem_alloc( 4284 sizeof (l2arc_write_callback_t), KM_SLEEP); 4285 cb->l2wcb_dev = dev; 4286 cb->l2wcb_head = head; 4287 pio = zio_root(spa, l2arc_write_done, cb, 4288 ZIO_FLAG_CANFAIL); 4289 } 4290 4291 /* 4292 * Create and add a new L2ARC header. 4293 */ 4294 hdrl2 = kmem_zalloc(sizeof (l2arc_buf_hdr_t), KM_SLEEP); 4295 hdrl2->b_dev = dev; 4296 hdrl2->b_daddr = dev->l2ad_hand; 4297 4298 ab->b_flags |= ARC_L2_WRITING; 4299 ab->b_l2hdr = hdrl2; 4300 list_insert_head(dev->l2ad_buflist, ab); 4301 buf_data = ab->b_buf->b_data; 4302 buf_sz = ab->b_size; 4303 4304 /* 4305 * Compute and store the buffer cksum before 4306 * writing. On debug the cksum is verified first. 4307 */ 4308 arc_cksum_verify(ab->b_buf); 4309 arc_cksum_compute(ab->b_buf, B_TRUE); 4310 4311 mutex_exit(hash_lock); 4312 4313 wzio = zio_write_phys(pio, dev->l2ad_vdev, 4314 dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF, 4315 NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE, 4316 ZIO_FLAG_CANFAIL, B_FALSE); 4317 4318 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, 4319 zio_t *, wzio); 4320 (void) zio_nowait(wzio); 4321 4322 /* 4323 * Keep the clock hand suitably device-aligned. 4324 */ 4325 buf_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz); 4326 4327 write_sz += buf_sz; 4328 dev->l2ad_hand += buf_sz; 4329 } 4330 4331 mutex_exit(list_lock); 4332 4333 if (full == B_TRUE) 4334 break; 4335 } 4336 mutex_exit(&l2arc_buflist_mtx); 4337 4338 if (pio == NULL) { 4339 ASSERT3U(write_sz, ==, 0); 4340 kmem_cache_free(hdr_cache, head); 4341 return (0); 4342 } 4343 4344 ASSERT3U(write_sz, <=, target_sz); 4345 ARCSTAT_BUMP(arcstat_l2_writes_sent); 4346 ARCSTAT_INCR(arcstat_l2_write_bytes, write_sz); 4347 ARCSTAT_INCR(arcstat_l2_size, write_sz); 4348 spa_l2cache_space_update(dev->l2ad_vdev, 0, write_sz); 4349 4350 /* 4351 * Bump device hand to the device start if it is approaching the end. 4352 * l2arc_evict() will already have evicted ahead for this case. 4353 */ 4354 if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) { 4355 spa_l2cache_space_update(dev->l2ad_vdev, 0, 4356 dev->l2ad_end - dev->l2ad_hand); 4357 dev->l2ad_hand = dev->l2ad_start; 4358 dev->l2ad_evict = dev->l2ad_start; 4359 dev->l2ad_first = B_FALSE; 4360 } 4361 4362 dev->l2ad_writing = B_TRUE; 4363 (void) zio_wait(pio); 4364 dev->l2ad_writing = B_FALSE; 4365 4366 return (write_sz); 4367 } 4368 4369 /* 4370 * This thread feeds the L2ARC at regular intervals. This is the beating 4371 * heart of the L2ARC. 4372 */ 4373 static void 4374 l2arc_feed_thread(void) 4375 { 4376 callb_cpr_t cpr; 4377 l2arc_dev_t *dev; 4378 spa_t *spa; 4379 uint64_t size, wrote; 4380 clock_t begin, next = lbolt; 4381 4382 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG); 4383 4384 mutex_enter(&l2arc_feed_thr_lock); 4385 4386 while (l2arc_thread_exit == 0) { 4387 CALLB_CPR_SAFE_BEGIN(&cpr); 4388 (void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock, 4389 next); 4390 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock); 4391 next = lbolt + hz; 4392 4393 /* 4394 * Quick check for L2ARC devices. 4395 */ 4396 mutex_enter(&l2arc_dev_mtx); 4397 if (l2arc_ndev == 0) { 4398 mutex_exit(&l2arc_dev_mtx); 4399 continue; 4400 } 4401 mutex_exit(&l2arc_dev_mtx); 4402 begin = lbolt; 4403 4404 /* 4405 * This selects the next l2arc device to write to, and in 4406 * doing so the next spa to feed from: dev->l2ad_spa. This 4407 * will return NULL if there are now no l2arc devices or if 4408 * they are all faulted. 4409 * 4410 * If a device is returned, its spa's config lock is also 4411 * held to prevent device removal. l2arc_dev_get_next() 4412 * will grab and release l2arc_dev_mtx. 4413 */ 4414 if ((dev = l2arc_dev_get_next()) == NULL) 4415 continue; 4416 4417 spa = dev->l2ad_spa; 4418 ASSERT(spa != NULL); 4419 4420 /* 4421 * Avoid contributing to memory pressure. 4422 */ 4423 if (arc_reclaim_needed()) { 4424 ARCSTAT_BUMP(arcstat_l2_abort_lowmem); 4425 spa_config_exit(spa, SCL_L2ARC, dev); 4426 continue; 4427 } 4428 4429 ARCSTAT_BUMP(arcstat_l2_feeds); 4430 4431 size = l2arc_write_size(dev); 4432 4433 /* 4434 * Evict L2ARC buffers that will be overwritten. 4435 */ 4436 l2arc_evict(dev, size, B_FALSE); 4437 4438 /* 4439 * Write ARC buffers. 4440 */ 4441 wrote = l2arc_write_buffers(spa, dev, size); 4442 4443 /* 4444 * Calculate interval between writes. 4445 */ 4446 next = l2arc_write_interval(begin, size, wrote); 4447 spa_config_exit(spa, SCL_L2ARC, dev); 4448 } 4449 4450 l2arc_thread_exit = 0; 4451 cv_broadcast(&l2arc_feed_thr_cv); 4452 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */ 4453 thread_exit(); 4454 } 4455 4456 boolean_t 4457 l2arc_vdev_present(vdev_t *vd) 4458 { 4459 l2arc_dev_t *dev; 4460 4461 mutex_enter(&l2arc_dev_mtx); 4462 for (dev = list_head(l2arc_dev_list); dev != NULL; 4463 dev = list_next(l2arc_dev_list, dev)) { 4464 if (dev->l2ad_vdev == vd) 4465 break; 4466 } 4467 mutex_exit(&l2arc_dev_mtx); 4468 4469 return (dev != NULL); 4470 } 4471 4472 /* 4473 * Add a vdev for use by the L2ARC. By this point the spa has already 4474 * validated the vdev and opened it. 4475 */ 4476 void 4477 l2arc_add_vdev(spa_t *spa, vdev_t *vd, uint64_t start, uint64_t end) 4478 { 4479 l2arc_dev_t *adddev; 4480 4481 ASSERT(!l2arc_vdev_present(vd)); 4482 4483 /* 4484 * Create a new l2arc device entry. 4485 */ 4486 adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP); 4487 adddev->l2ad_spa = spa; 4488 adddev->l2ad_vdev = vd; 4489 adddev->l2ad_write = l2arc_write_max; 4490 adddev->l2ad_boost = l2arc_write_boost; 4491 adddev->l2ad_start = start; 4492 adddev->l2ad_end = end; 4493 adddev->l2ad_hand = adddev->l2ad_start; 4494 adddev->l2ad_evict = adddev->l2ad_start; 4495 adddev->l2ad_first = B_TRUE; 4496 adddev->l2ad_writing = B_FALSE; 4497 ASSERT3U(adddev->l2ad_write, >, 0); 4498 4499 /* 4500 * This is a list of all ARC buffers that are still valid on the 4501 * device. 4502 */ 4503 adddev->l2ad_buflist = kmem_zalloc(sizeof (list_t), KM_SLEEP); 4504 list_create(adddev->l2ad_buflist, sizeof (arc_buf_hdr_t), 4505 offsetof(arc_buf_hdr_t, b_l2node)); 4506 4507 spa_l2cache_space_update(vd, adddev->l2ad_end - adddev->l2ad_hand, 0); 4508 4509 /* 4510 * Add device to global list 4511 */ 4512 mutex_enter(&l2arc_dev_mtx); 4513 list_insert_head(l2arc_dev_list, adddev); 4514 atomic_inc_64(&l2arc_ndev); 4515 mutex_exit(&l2arc_dev_mtx); 4516 } 4517 4518 /* 4519 * Remove a vdev from the L2ARC. 4520 */ 4521 void 4522 l2arc_remove_vdev(vdev_t *vd) 4523 { 4524 l2arc_dev_t *dev, *nextdev, *remdev = NULL; 4525 4526 /* 4527 * Find the device by vdev 4528 */ 4529 mutex_enter(&l2arc_dev_mtx); 4530 for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) { 4531 nextdev = list_next(l2arc_dev_list, dev); 4532 if (vd == dev->l2ad_vdev) { 4533 remdev = dev; 4534 break; 4535 } 4536 } 4537 ASSERT(remdev != NULL); 4538 4539 /* 4540 * Remove device from global list 4541 */ 4542 list_remove(l2arc_dev_list, remdev); 4543 l2arc_dev_last = NULL; /* may have been invalidated */ 4544 atomic_dec_64(&l2arc_ndev); 4545 mutex_exit(&l2arc_dev_mtx); 4546 4547 /* 4548 * Clear all buflists and ARC references. L2ARC device flush. 4549 */ 4550 l2arc_evict(remdev, 0, B_TRUE); 4551 list_destroy(remdev->l2ad_buflist); 4552 kmem_free(remdev->l2ad_buflist, sizeof (list_t)); 4553 kmem_free(remdev, sizeof (l2arc_dev_t)); 4554 } 4555 4556 void 4557 l2arc_init(void) 4558 { 4559 l2arc_thread_exit = 0; 4560 l2arc_ndev = 0; 4561 l2arc_writes_sent = 0; 4562 l2arc_writes_done = 0; 4563 4564 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL); 4565 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL); 4566 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL); 4567 mutex_init(&l2arc_buflist_mtx, NULL, MUTEX_DEFAULT, NULL); 4568 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL); 4569 4570 l2arc_dev_list = &L2ARC_dev_list; 4571 l2arc_free_on_write = &L2ARC_free_on_write; 4572 list_create(l2arc_dev_list, sizeof (l2arc_dev_t), 4573 offsetof(l2arc_dev_t, l2ad_node)); 4574 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t), 4575 offsetof(l2arc_data_free_t, l2df_list_node)); 4576 } 4577 4578 void 4579 l2arc_fini(void) 4580 { 4581 /* 4582 * This is called from dmu_fini(), which is called from spa_fini(); 4583 * Because of this, we can assume that all l2arc devices have 4584 * already been removed when the pools themselves were removed. 4585 */ 4586 4587 l2arc_do_free_on_write(); 4588 4589 mutex_destroy(&l2arc_feed_thr_lock); 4590 cv_destroy(&l2arc_feed_thr_cv); 4591 mutex_destroy(&l2arc_dev_mtx); 4592 mutex_destroy(&l2arc_buflist_mtx); 4593 mutex_destroy(&l2arc_free_on_write_mtx); 4594 4595 list_destroy(l2arc_dev_list); 4596 list_destroy(l2arc_free_on_write); 4597 } 4598 4599 void 4600 l2arc_start(void) 4601 { 4602 if (!(spa_mode_global & FWRITE)) 4603 return; 4604 4605 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0, 4606 TS_RUN, minclsyspri); 4607 } 4608 4609 void 4610 l2arc_stop(void) 4611 { 4612 if (!(spa_mode_global & FWRITE)) 4613 return; 4614 4615 mutex_enter(&l2arc_feed_thr_lock); 4616 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */ 4617 l2arc_thread_exit = 1; 4618 while (l2arc_thread_exit != 0) 4619 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock); 4620 mutex_exit(&l2arc_feed_thr_lock); 4621 } 4622