1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * DVA-based Adjustable Replacement Cache 28 * 29 * While much of the theory of operation used here is 30 * based on the self-tuning, low overhead replacement cache 31 * presented by Megiddo and Modha at FAST 2003, there are some 32 * significant differences: 33 * 34 * 1. The Megiddo and Modha model assumes any page is evictable. 35 * Pages in its cache cannot be "locked" into memory. This makes 36 * the eviction algorithm simple: evict the last page in the list. 37 * This also make the performance characteristics easy to reason 38 * about. Our cache is not so simple. At any given moment, some 39 * subset of the blocks in the cache are un-evictable because we 40 * have handed out a reference to them. Blocks are only evictable 41 * when there are no external references active. This makes 42 * eviction far more problematic: we choose to evict the evictable 43 * blocks that are the "lowest" in the list. 44 * 45 * There are times when it is not possible to evict the requested 46 * space. In these circumstances we are unable to adjust the cache 47 * size. To prevent the cache growing unbounded at these times we 48 * implement a "cache throttle" that slows the flow of new data 49 * into the cache until we can make space available. 50 * 51 * 2. The Megiddo and Modha model assumes a fixed cache size. 52 * Pages are evicted when the cache is full and there is a cache 53 * miss. Our model has a variable sized cache. It grows with 54 * high use, but also tries to react to memory pressure from the 55 * operating system: decreasing its size when system memory is 56 * tight. 57 * 58 * 3. The Megiddo and Modha model assumes a fixed page size. All 59 * elements of the cache are therefor exactly the same size. So 60 * when adjusting the cache size following a cache miss, its simply 61 * a matter of choosing a single page to evict. In our model, we 62 * have variable sized cache blocks (rangeing from 512 bytes to 63 * 128K bytes). We therefor choose a set of blocks to evict to make 64 * space for a cache miss that approximates as closely as possible 65 * the space used by the new block. 66 * 67 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache" 68 * by N. Megiddo & D. Modha, FAST 2003 69 */ 70 71 /* 72 * The locking model: 73 * 74 * A new reference to a cache buffer can be obtained in two 75 * ways: 1) via a hash table lookup using the DVA as a key, 76 * or 2) via one of the ARC lists. The arc_read() interface 77 * uses method 1, while the internal arc algorithms for 78 * adjusting the cache use method 2. We therefor provide two 79 * types of locks: 1) the hash table lock array, and 2) the 80 * arc list locks. 81 * 82 * Buffers do not have their own mutexs, rather they rely on the 83 * hash table mutexs for the bulk of their protection (i.e. most 84 * fields in the arc_buf_hdr_t are protected by these mutexs). 85 * 86 * buf_hash_find() returns the appropriate mutex (held) when it 87 * locates the requested buffer in the hash table. It returns 88 * NULL for the mutex if the buffer was not in the table. 89 * 90 * buf_hash_remove() expects the appropriate hash mutex to be 91 * already held before it is invoked. 92 * 93 * Each arc state also has a mutex which is used to protect the 94 * buffer list associated with the state. When attempting to 95 * obtain a hash table lock while holding an arc list lock you 96 * must use: mutex_tryenter() to avoid deadlock. Also note that 97 * the active state mutex must be held before the ghost state mutex. 98 * 99 * Arc buffers may have an associated eviction callback function. 100 * This function will be invoked prior to removing the buffer (e.g. 101 * in arc_do_user_evicts()). Note however that the data associated 102 * with the buffer may be evicted prior to the callback. The callback 103 * must be made with *no locks held* (to prevent deadlock). Additionally, 104 * the users of callbacks must ensure that their private data is 105 * protected from simultaneous callbacks from arc_buf_evict() 106 * and arc_do_user_evicts(). 107 * 108 * Note that the majority of the performance stats are manipulated 109 * with atomic operations. 110 * 111 * The L2ARC uses the l2arc_buflist_mtx global mutex for the following: 112 * 113 * - L2ARC buflist creation 114 * - L2ARC buflist eviction 115 * - L2ARC write completion, which walks L2ARC buflists 116 * - ARC header destruction, as it removes from L2ARC buflists 117 * - ARC header release, as it removes from L2ARC buflists 118 */ 119 120 #include <sys/spa.h> 121 #include <sys/zio.h> 122 #include <sys/zio_checksum.h> 123 #include <sys/zfs_context.h> 124 #include <sys/arc.h> 125 #include <sys/refcount.h> 126 #include <sys/vdev.h> 127 #include <sys/vdev_impl.h> 128 #ifdef _KERNEL 129 #include <sys/vmsystm.h> 130 #include <vm/anon.h> 131 #include <sys/fs/swapnode.h> 132 #include <sys/dnlc.h> 133 #endif 134 #include <sys/callb.h> 135 #include <sys/kstat.h> 136 137 static kmutex_t arc_reclaim_thr_lock; 138 static kcondvar_t arc_reclaim_thr_cv; /* used to signal reclaim thr */ 139 static uint8_t arc_thread_exit; 140 141 extern int zfs_write_limit_shift; 142 extern uint64_t zfs_write_limit_max; 143 extern kmutex_t zfs_write_limit_lock; 144 145 #define ARC_REDUCE_DNLC_PERCENT 3 146 uint_t arc_reduce_dnlc_percent = ARC_REDUCE_DNLC_PERCENT; 147 148 typedef enum arc_reclaim_strategy { 149 ARC_RECLAIM_AGGR, /* Aggressive reclaim strategy */ 150 ARC_RECLAIM_CONS /* Conservative reclaim strategy */ 151 } arc_reclaim_strategy_t; 152 153 /* number of seconds before growing cache again */ 154 static int arc_grow_retry = 60; 155 156 /* shift of arc_c for calculating both min and max arc_p */ 157 static int arc_p_min_shift = 4; 158 159 /* log2(fraction of arc to reclaim) */ 160 static int arc_shrink_shift = 5; 161 162 /* 163 * minimum lifespan of a prefetch block in clock ticks 164 * (initialized in arc_init()) 165 */ 166 static int arc_min_prefetch_lifespan; 167 168 static int arc_dead; 169 170 /* 171 * The arc has filled available memory and has now warmed up. 172 */ 173 static boolean_t arc_warm; 174 175 /* 176 * These tunables are for performance analysis. 177 */ 178 uint64_t zfs_arc_max; 179 uint64_t zfs_arc_min; 180 uint64_t zfs_arc_meta_limit = 0; 181 int zfs_mdcomp_disable = 0; 182 int zfs_arc_grow_retry = 0; 183 int zfs_arc_shrink_shift = 0; 184 int zfs_arc_p_min_shift = 0; 185 186 /* 187 * Note that buffers can be in one of 6 states: 188 * ARC_anon - anonymous (discussed below) 189 * ARC_mru - recently used, currently cached 190 * ARC_mru_ghost - recentely used, no longer in cache 191 * ARC_mfu - frequently used, currently cached 192 * ARC_mfu_ghost - frequently used, no longer in cache 193 * ARC_l2c_only - exists in L2ARC but not other states 194 * When there are no active references to the buffer, they are 195 * are linked onto a list in one of these arc states. These are 196 * the only buffers that can be evicted or deleted. Within each 197 * state there are multiple lists, one for meta-data and one for 198 * non-meta-data. Meta-data (indirect blocks, blocks of dnodes, 199 * etc.) is tracked separately so that it can be managed more 200 * explicitly: favored over data, limited explicitly. 201 * 202 * Anonymous buffers are buffers that are not associated with 203 * a DVA. These are buffers that hold dirty block copies 204 * before they are written to stable storage. By definition, 205 * they are "ref'd" and are considered part of arc_mru 206 * that cannot be freed. Generally, they will aquire a DVA 207 * as they are written and migrate onto the arc_mru list. 208 * 209 * The ARC_l2c_only state is for buffers that are in the second 210 * level ARC but no longer in any of the ARC_m* lists. The second 211 * level ARC itself may also contain buffers that are in any of 212 * the ARC_m* states - meaning that a buffer can exist in two 213 * places. The reason for the ARC_l2c_only state is to keep the 214 * buffer header in the hash table, so that reads that hit the 215 * second level ARC benefit from these fast lookups. 216 */ 217 218 typedef struct arc_state { 219 list_t arcs_list[ARC_BUFC_NUMTYPES]; /* list of evictable buffers */ 220 uint64_t arcs_lsize[ARC_BUFC_NUMTYPES]; /* amount of evictable data */ 221 uint64_t arcs_size; /* total amount of data in this state */ 222 kmutex_t arcs_mtx; 223 } arc_state_t; 224 225 /* The 6 states: */ 226 static arc_state_t ARC_anon; 227 static arc_state_t ARC_mru; 228 static arc_state_t ARC_mru_ghost; 229 static arc_state_t ARC_mfu; 230 static arc_state_t ARC_mfu_ghost; 231 static arc_state_t ARC_l2c_only; 232 233 typedef struct arc_stats { 234 kstat_named_t arcstat_hits; 235 kstat_named_t arcstat_misses; 236 kstat_named_t arcstat_demand_data_hits; 237 kstat_named_t arcstat_demand_data_misses; 238 kstat_named_t arcstat_demand_metadata_hits; 239 kstat_named_t arcstat_demand_metadata_misses; 240 kstat_named_t arcstat_prefetch_data_hits; 241 kstat_named_t arcstat_prefetch_data_misses; 242 kstat_named_t arcstat_prefetch_metadata_hits; 243 kstat_named_t arcstat_prefetch_metadata_misses; 244 kstat_named_t arcstat_mru_hits; 245 kstat_named_t arcstat_mru_ghost_hits; 246 kstat_named_t arcstat_mfu_hits; 247 kstat_named_t arcstat_mfu_ghost_hits; 248 kstat_named_t arcstat_deleted; 249 kstat_named_t arcstat_recycle_miss; 250 kstat_named_t arcstat_mutex_miss; 251 kstat_named_t arcstat_evict_skip; 252 kstat_named_t arcstat_evict_l2_cached; 253 kstat_named_t arcstat_evict_l2_eligible; 254 kstat_named_t arcstat_evict_l2_ineligible; 255 kstat_named_t arcstat_hash_elements; 256 kstat_named_t arcstat_hash_elements_max; 257 kstat_named_t arcstat_hash_collisions; 258 kstat_named_t arcstat_hash_chains; 259 kstat_named_t arcstat_hash_chain_max; 260 kstat_named_t arcstat_p; 261 kstat_named_t arcstat_c; 262 kstat_named_t arcstat_c_min; 263 kstat_named_t arcstat_c_max; 264 kstat_named_t arcstat_size; 265 kstat_named_t arcstat_hdr_size; 266 kstat_named_t arcstat_data_size; 267 kstat_named_t arcstat_other_size; 268 kstat_named_t arcstat_l2_hits; 269 kstat_named_t arcstat_l2_misses; 270 kstat_named_t arcstat_l2_feeds; 271 kstat_named_t arcstat_l2_rw_clash; 272 kstat_named_t arcstat_l2_read_bytes; 273 kstat_named_t arcstat_l2_write_bytes; 274 kstat_named_t arcstat_l2_writes_sent; 275 kstat_named_t arcstat_l2_writes_done; 276 kstat_named_t arcstat_l2_writes_error; 277 kstat_named_t arcstat_l2_writes_hdr_miss; 278 kstat_named_t arcstat_l2_evict_lock_retry; 279 kstat_named_t arcstat_l2_evict_reading; 280 kstat_named_t arcstat_l2_free_on_write; 281 kstat_named_t arcstat_l2_abort_lowmem; 282 kstat_named_t arcstat_l2_cksum_bad; 283 kstat_named_t arcstat_l2_io_error; 284 kstat_named_t arcstat_l2_size; 285 kstat_named_t arcstat_l2_hdr_size; 286 kstat_named_t arcstat_memory_throttle_count; 287 } arc_stats_t; 288 289 static arc_stats_t arc_stats = { 290 { "hits", KSTAT_DATA_UINT64 }, 291 { "misses", KSTAT_DATA_UINT64 }, 292 { "demand_data_hits", KSTAT_DATA_UINT64 }, 293 { "demand_data_misses", KSTAT_DATA_UINT64 }, 294 { "demand_metadata_hits", KSTAT_DATA_UINT64 }, 295 { "demand_metadata_misses", KSTAT_DATA_UINT64 }, 296 { "prefetch_data_hits", KSTAT_DATA_UINT64 }, 297 { "prefetch_data_misses", KSTAT_DATA_UINT64 }, 298 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 }, 299 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 }, 300 { "mru_hits", KSTAT_DATA_UINT64 }, 301 { "mru_ghost_hits", KSTAT_DATA_UINT64 }, 302 { "mfu_hits", KSTAT_DATA_UINT64 }, 303 { "mfu_ghost_hits", KSTAT_DATA_UINT64 }, 304 { "deleted", KSTAT_DATA_UINT64 }, 305 { "recycle_miss", KSTAT_DATA_UINT64 }, 306 { "mutex_miss", KSTAT_DATA_UINT64 }, 307 { "evict_skip", KSTAT_DATA_UINT64 }, 308 { "evict_l2_cached", KSTAT_DATA_UINT64 }, 309 { "evict_l2_eligible", KSTAT_DATA_UINT64 }, 310 { "evict_l2_ineligible", KSTAT_DATA_UINT64 }, 311 { "hash_elements", KSTAT_DATA_UINT64 }, 312 { "hash_elements_max", KSTAT_DATA_UINT64 }, 313 { "hash_collisions", KSTAT_DATA_UINT64 }, 314 { "hash_chains", KSTAT_DATA_UINT64 }, 315 { "hash_chain_max", KSTAT_DATA_UINT64 }, 316 { "p", KSTAT_DATA_UINT64 }, 317 { "c", KSTAT_DATA_UINT64 }, 318 { "c_min", KSTAT_DATA_UINT64 }, 319 { "c_max", KSTAT_DATA_UINT64 }, 320 { "size", KSTAT_DATA_UINT64 }, 321 { "hdr_size", KSTAT_DATA_UINT64 }, 322 { "data_size", KSTAT_DATA_UINT64 }, 323 { "other_size", KSTAT_DATA_UINT64 }, 324 { "l2_hits", KSTAT_DATA_UINT64 }, 325 { "l2_misses", KSTAT_DATA_UINT64 }, 326 { "l2_feeds", KSTAT_DATA_UINT64 }, 327 { "l2_rw_clash", KSTAT_DATA_UINT64 }, 328 { "l2_read_bytes", KSTAT_DATA_UINT64 }, 329 { "l2_write_bytes", KSTAT_DATA_UINT64 }, 330 { "l2_writes_sent", KSTAT_DATA_UINT64 }, 331 { "l2_writes_done", KSTAT_DATA_UINT64 }, 332 { "l2_writes_error", KSTAT_DATA_UINT64 }, 333 { "l2_writes_hdr_miss", KSTAT_DATA_UINT64 }, 334 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 }, 335 { "l2_evict_reading", KSTAT_DATA_UINT64 }, 336 { "l2_free_on_write", KSTAT_DATA_UINT64 }, 337 { "l2_abort_lowmem", KSTAT_DATA_UINT64 }, 338 { "l2_cksum_bad", KSTAT_DATA_UINT64 }, 339 { "l2_io_error", KSTAT_DATA_UINT64 }, 340 { "l2_size", KSTAT_DATA_UINT64 }, 341 { "l2_hdr_size", KSTAT_DATA_UINT64 }, 342 { "memory_throttle_count", KSTAT_DATA_UINT64 } 343 }; 344 345 #define ARCSTAT(stat) (arc_stats.stat.value.ui64) 346 347 #define ARCSTAT_INCR(stat, val) \ 348 atomic_add_64(&arc_stats.stat.value.ui64, (val)); 349 350 #define ARCSTAT_BUMP(stat) ARCSTAT_INCR(stat, 1) 351 #define ARCSTAT_BUMPDOWN(stat) ARCSTAT_INCR(stat, -1) 352 353 #define ARCSTAT_MAX(stat, val) { \ 354 uint64_t m; \ 355 while ((val) > (m = arc_stats.stat.value.ui64) && \ 356 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \ 357 continue; \ 358 } 359 360 #define ARCSTAT_MAXSTAT(stat) \ 361 ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64) 362 363 /* 364 * We define a macro to allow ARC hits/misses to be easily broken down by 365 * two separate conditions, giving a total of four different subtypes for 366 * each of hits and misses (so eight statistics total). 367 */ 368 #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \ 369 if (cond1) { \ 370 if (cond2) { \ 371 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \ 372 } else { \ 373 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \ 374 } \ 375 } else { \ 376 if (cond2) { \ 377 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \ 378 } else { \ 379 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\ 380 } \ 381 } 382 383 kstat_t *arc_ksp; 384 static arc_state_t *arc_anon; 385 static arc_state_t *arc_mru; 386 static arc_state_t *arc_mru_ghost; 387 static arc_state_t *arc_mfu; 388 static arc_state_t *arc_mfu_ghost; 389 static arc_state_t *arc_l2c_only; 390 391 /* 392 * There are several ARC variables that are critical to export as kstats -- 393 * but we don't want to have to grovel around in the kstat whenever we wish to 394 * manipulate them. For these variables, we therefore define them to be in 395 * terms of the statistic variable. This assures that we are not introducing 396 * the possibility of inconsistency by having shadow copies of the variables, 397 * while still allowing the code to be readable. 398 */ 399 #define arc_size ARCSTAT(arcstat_size) /* actual total arc size */ 400 #define arc_p ARCSTAT(arcstat_p) /* target size of MRU */ 401 #define arc_c ARCSTAT(arcstat_c) /* target size of cache */ 402 #define arc_c_min ARCSTAT(arcstat_c_min) /* min target cache size */ 403 #define arc_c_max ARCSTAT(arcstat_c_max) /* max target cache size */ 404 405 static int arc_no_grow; /* Don't try to grow cache size */ 406 static uint64_t arc_tempreserve; 407 static uint64_t arc_loaned_bytes; 408 static uint64_t arc_meta_used; 409 static uint64_t arc_meta_limit; 410 static uint64_t arc_meta_max = 0; 411 412 typedef struct l2arc_buf_hdr l2arc_buf_hdr_t; 413 414 typedef struct arc_callback arc_callback_t; 415 416 struct arc_callback { 417 void *acb_private; 418 arc_done_func_t *acb_done; 419 arc_buf_t *acb_buf; 420 zio_t *acb_zio_dummy; 421 arc_callback_t *acb_next; 422 }; 423 424 typedef struct arc_write_callback arc_write_callback_t; 425 426 struct arc_write_callback { 427 void *awcb_private; 428 arc_done_func_t *awcb_ready; 429 arc_done_func_t *awcb_done; 430 arc_buf_t *awcb_buf; 431 }; 432 433 struct arc_buf_hdr { 434 /* protected by hash lock */ 435 dva_t b_dva; 436 uint64_t b_birth; 437 uint64_t b_cksum0; 438 439 kmutex_t b_freeze_lock; 440 zio_cksum_t *b_freeze_cksum; 441 442 arc_buf_hdr_t *b_hash_next; 443 arc_buf_t *b_buf; 444 uint32_t b_flags; 445 uint32_t b_datacnt; 446 447 arc_callback_t *b_acb; 448 kcondvar_t b_cv; 449 450 /* immutable */ 451 arc_buf_contents_t b_type; 452 uint64_t b_size; 453 uint64_t b_spa; 454 455 /* protected by arc state mutex */ 456 arc_state_t *b_state; 457 list_node_t b_arc_node; 458 459 /* updated atomically */ 460 clock_t b_arc_access; 461 462 /* self protecting */ 463 refcount_t b_refcnt; 464 465 l2arc_buf_hdr_t *b_l2hdr; 466 list_node_t b_l2node; 467 }; 468 469 static arc_buf_t *arc_eviction_list; 470 static kmutex_t arc_eviction_mtx; 471 static arc_buf_hdr_t arc_eviction_hdr; 472 static void arc_get_data_buf(arc_buf_t *buf); 473 static void arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock); 474 static int arc_evict_needed(arc_buf_contents_t type); 475 static void arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes); 476 477 static boolean_t l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab); 478 479 #define GHOST_STATE(state) \ 480 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \ 481 (state) == arc_l2c_only) 482 483 /* 484 * Private ARC flags. These flags are private ARC only flags that will show up 485 * in b_flags in the arc_hdr_buf_t. Some flags are publicly declared, and can 486 * be passed in as arc_flags in things like arc_read. However, these flags 487 * should never be passed and should only be set by ARC code. When adding new 488 * public flags, make sure not to smash the private ones. 489 */ 490 491 #define ARC_IN_HASH_TABLE (1 << 9) /* this buffer is hashed */ 492 #define ARC_IO_IN_PROGRESS (1 << 10) /* I/O in progress for buf */ 493 #define ARC_IO_ERROR (1 << 11) /* I/O failed for buf */ 494 #define ARC_FREED_IN_READ (1 << 12) /* buf freed while in read */ 495 #define ARC_BUF_AVAILABLE (1 << 13) /* block not in active use */ 496 #define ARC_INDIRECT (1 << 14) /* this is an indirect block */ 497 #define ARC_FREE_IN_PROGRESS (1 << 15) /* hdr about to be freed */ 498 #define ARC_L2_WRITING (1 << 16) /* L2ARC write in progress */ 499 #define ARC_L2_EVICTED (1 << 17) /* evicted during I/O */ 500 #define ARC_L2_WRITE_HEAD (1 << 18) /* head of write list */ 501 #define ARC_STORED (1 << 19) /* has been store()d to */ 502 503 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_IN_HASH_TABLE) 504 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_IO_IN_PROGRESS) 505 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_IO_ERROR) 506 #define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_PREFETCH) 507 #define HDR_FREED_IN_READ(hdr) ((hdr)->b_flags & ARC_FREED_IN_READ) 508 #define HDR_BUF_AVAILABLE(hdr) ((hdr)->b_flags & ARC_BUF_AVAILABLE) 509 #define HDR_FREE_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FREE_IN_PROGRESS) 510 #define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_L2CACHE) 511 #define HDR_L2_READING(hdr) ((hdr)->b_flags & ARC_IO_IN_PROGRESS && \ 512 (hdr)->b_l2hdr != NULL) 513 #define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_L2_WRITING) 514 #define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_L2_EVICTED) 515 #define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_L2_WRITE_HEAD) 516 517 /* 518 * Other sizes 519 */ 520 521 #define HDR_SIZE ((int64_t)sizeof (arc_buf_hdr_t)) 522 #define L2HDR_SIZE ((int64_t)sizeof (l2arc_buf_hdr_t)) 523 524 /* 525 * Hash table routines 526 */ 527 528 #define HT_LOCK_PAD 64 529 530 struct ht_lock { 531 kmutex_t ht_lock; 532 #ifdef _KERNEL 533 unsigned char pad[(HT_LOCK_PAD - sizeof (kmutex_t))]; 534 #endif 535 }; 536 537 #define BUF_LOCKS 256 538 typedef struct buf_hash_table { 539 uint64_t ht_mask; 540 arc_buf_hdr_t **ht_table; 541 struct ht_lock ht_locks[BUF_LOCKS]; 542 } buf_hash_table_t; 543 544 static buf_hash_table_t buf_hash_table; 545 546 #define BUF_HASH_INDEX(spa, dva, birth) \ 547 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask) 548 #define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)]) 549 #define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock)) 550 #define HDR_LOCK(buf) \ 551 (BUF_HASH_LOCK(BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth))) 552 553 uint64_t zfs_crc64_table[256]; 554 555 /* 556 * Level 2 ARC 557 */ 558 559 #define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */ 560 #define L2ARC_HEADROOM 2 /* num of writes */ 561 #define L2ARC_FEED_SECS 1 /* caching interval secs */ 562 #define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */ 563 564 #define l2arc_writes_sent ARCSTAT(arcstat_l2_writes_sent) 565 #define l2arc_writes_done ARCSTAT(arcstat_l2_writes_done) 566 567 /* 568 * L2ARC Performance Tunables 569 */ 570 uint64_t l2arc_write_max = L2ARC_WRITE_SIZE; /* default max write size */ 571 uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra write during warmup */ 572 uint64_t l2arc_headroom = L2ARC_HEADROOM; /* number of dev writes */ 573 uint64_t l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */ 574 uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval milliseconds */ 575 boolean_t l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */ 576 boolean_t l2arc_feed_again = B_TRUE; /* turbo warmup */ 577 boolean_t l2arc_norw = B_TRUE; /* no reads during writes */ 578 579 /* 580 * L2ARC Internals 581 */ 582 typedef struct l2arc_dev { 583 vdev_t *l2ad_vdev; /* vdev */ 584 spa_t *l2ad_spa; /* spa */ 585 uint64_t l2ad_hand; /* next write location */ 586 uint64_t l2ad_write; /* desired write size, bytes */ 587 uint64_t l2ad_boost; /* warmup write boost, bytes */ 588 uint64_t l2ad_start; /* first addr on device */ 589 uint64_t l2ad_end; /* last addr on device */ 590 uint64_t l2ad_evict; /* last addr eviction reached */ 591 boolean_t l2ad_first; /* first sweep through */ 592 boolean_t l2ad_writing; /* currently writing */ 593 list_t *l2ad_buflist; /* buffer list */ 594 list_node_t l2ad_node; /* device list node */ 595 } l2arc_dev_t; 596 597 static list_t L2ARC_dev_list; /* device list */ 598 static list_t *l2arc_dev_list; /* device list pointer */ 599 static kmutex_t l2arc_dev_mtx; /* device list mutex */ 600 static l2arc_dev_t *l2arc_dev_last; /* last device used */ 601 static kmutex_t l2arc_buflist_mtx; /* mutex for all buflists */ 602 static list_t L2ARC_free_on_write; /* free after write buf list */ 603 static list_t *l2arc_free_on_write; /* free after write list ptr */ 604 static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */ 605 static uint64_t l2arc_ndev; /* number of devices */ 606 607 typedef struct l2arc_read_callback { 608 arc_buf_t *l2rcb_buf; /* read buffer */ 609 spa_t *l2rcb_spa; /* spa */ 610 blkptr_t l2rcb_bp; /* original blkptr */ 611 zbookmark_t l2rcb_zb; /* original bookmark */ 612 int l2rcb_flags; /* original flags */ 613 } l2arc_read_callback_t; 614 615 typedef struct l2arc_write_callback { 616 l2arc_dev_t *l2wcb_dev; /* device info */ 617 arc_buf_hdr_t *l2wcb_head; /* head of write buflist */ 618 } l2arc_write_callback_t; 619 620 struct l2arc_buf_hdr { 621 /* protected by arc_buf_hdr mutex */ 622 l2arc_dev_t *b_dev; /* L2ARC device */ 623 uint64_t b_daddr; /* disk address, offset byte */ 624 }; 625 626 typedef struct l2arc_data_free { 627 /* protected by l2arc_free_on_write_mtx */ 628 void *l2df_data; 629 size_t l2df_size; 630 void (*l2df_func)(void *, size_t); 631 list_node_t l2df_list_node; 632 } l2arc_data_free_t; 633 634 static kmutex_t l2arc_feed_thr_lock; 635 static kcondvar_t l2arc_feed_thr_cv; 636 static uint8_t l2arc_thread_exit; 637 638 static void l2arc_read_done(zio_t *zio); 639 static void l2arc_hdr_stat_add(void); 640 static void l2arc_hdr_stat_remove(void); 641 642 static uint64_t 643 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth) 644 { 645 uint8_t *vdva = (uint8_t *)dva; 646 uint64_t crc = -1ULL; 647 int i; 648 649 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY); 650 651 for (i = 0; i < sizeof (dva_t); i++) 652 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF]; 653 654 crc ^= (spa>>8) ^ birth; 655 656 return (crc); 657 } 658 659 #define BUF_EMPTY(buf) \ 660 ((buf)->b_dva.dva_word[0] == 0 && \ 661 (buf)->b_dva.dva_word[1] == 0 && \ 662 (buf)->b_birth == 0) 663 664 #define BUF_EQUAL(spa, dva, birth, buf) \ 665 ((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \ 666 ((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \ 667 ((buf)->b_birth == birth) && ((buf)->b_spa == spa) 668 669 static arc_buf_hdr_t * 670 buf_hash_find(uint64_t spa, const dva_t *dva, uint64_t birth, kmutex_t **lockp) 671 { 672 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth); 673 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 674 arc_buf_hdr_t *buf; 675 676 mutex_enter(hash_lock); 677 for (buf = buf_hash_table.ht_table[idx]; buf != NULL; 678 buf = buf->b_hash_next) { 679 if (BUF_EQUAL(spa, dva, birth, buf)) { 680 *lockp = hash_lock; 681 return (buf); 682 } 683 } 684 mutex_exit(hash_lock); 685 *lockp = NULL; 686 return (NULL); 687 } 688 689 /* 690 * Insert an entry into the hash table. If there is already an element 691 * equal to elem in the hash table, then the already existing element 692 * will be returned and the new element will not be inserted. 693 * Otherwise returns NULL. 694 */ 695 static arc_buf_hdr_t * 696 buf_hash_insert(arc_buf_hdr_t *buf, kmutex_t **lockp) 697 { 698 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth); 699 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 700 arc_buf_hdr_t *fbuf; 701 uint32_t i; 702 703 ASSERT(!HDR_IN_HASH_TABLE(buf)); 704 *lockp = hash_lock; 705 mutex_enter(hash_lock); 706 for (fbuf = buf_hash_table.ht_table[idx], i = 0; fbuf != NULL; 707 fbuf = fbuf->b_hash_next, i++) { 708 if (BUF_EQUAL(buf->b_spa, &buf->b_dva, buf->b_birth, fbuf)) 709 return (fbuf); 710 } 711 712 buf->b_hash_next = buf_hash_table.ht_table[idx]; 713 buf_hash_table.ht_table[idx] = buf; 714 buf->b_flags |= ARC_IN_HASH_TABLE; 715 716 /* collect some hash table performance data */ 717 if (i > 0) { 718 ARCSTAT_BUMP(arcstat_hash_collisions); 719 if (i == 1) 720 ARCSTAT_BUMP(arcstat_hash_chains); 721 722 ARCSTAT_MAX(arcstat_hash_chain_max, i); 723 } 724 725 ARCSTAT_BUMP(arcstat_hash_elements); 726 ARCSTAT_MAXSTAT(arcstat_hash_elements); 727 728 return (NULL); 729 } 730 731 static void 732 buf_hash_remove(arc_buf_hdr_t *buf) 733 { 734 arc_buf_hdr_t *fbuf, **bufp; 735 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth); 736 737 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx))); 738 ASSERT(HDR_IN_HASH_TABLE(buf)); 739 740 bufp = &buf_hash_table.ht_table[idx]; 741 while ((fbuf = *bufp) != buf) { 742 ASSERT(fbuf != NULL); 743 bufp = &fbuf->b_hash_next; 744 } 745 *bufp = buf->b_hash_next; 746 buf->b_hash_next = NULL; 747 buf->b_flags &= ~ARC_IN_HASH_TABLE; 748 749 /* collect some hash table performance data */ 750 ARCSTAT_BUMPDOWN(arcstat_hash_elements); 751 752 if (buf_hash_table.ht_table[idx] && 753 buf_hash_table.ht_table[idx]->b_hash_next == NULL) 754 ARCSTAT_BUMPDOWN(arcstat_hash_chains); 755 } 756 757 /* 758 * Global data structures and functions for the buf kmem cache. 759 */ 760 static kmem_cache_t *hdr_cache; 761 static kmem_cache_t *buf_cache; 762 763 static void 764 buf_fini(void) 765 { 766 int i; 767 768 kmem_free(buf_hash_table.ht_table, 769 (buf_hash_table.ht_mask + 1) * sizeof (void *)); 770 for (i = 0; i < BUF_LOCKS; i++) 771 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock); 772 kmem_cache_destroy(hdr_cache); 773 kmem_cache_destroy(buf_cache); 774 } 775 776 /* 777 * Constructor callback - called when the cache is empty 778 * and a new buf is requested. 779 */ 780 /* ARGSUSED */ 781 static int 782 hdr_cons(void *vbuf, void *unused, int kmflag) 783 { 784 arc_buf_hdr_t *buf = vbuf; 785 786 bzero(buf, sizeof (arc_buf_hdr_t)); 787 refcount_create(&buf->b_refcnt); 788 cv_init(&buf->b_cv, NULL, CV_DEFAULT, NULL); 789 mutex_init(&buf->b_freeze_lock, NULL, MUTEX_DEFAULT, NULL); 790 arc_space_consume(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS); 791 792 return (0); 793 } 794 795 /* ARGSUSED */ 796 static int 797 buf_cons(void *vbuf, void *unused, int kmflag) 798 { 799 arc_buf_t *buf = vbuf; 800 801 bzero(buf, sizeof (arc_buf_t)); 802 rw_init(&buf->b_lock, NULL, RW_DEFAULT, NULL); 803 arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS); 804 805 return (0); 806 } 807 808 /* 809 * Destructor callback - called when a cached buf is 810 * no longer required. 811 */ 812 /* ARGSUSED */ 813 static void 814 hdr_dest(void *vbuf, void *unused) 815 { 816 arc_buf_hdr_t *buf = vbuf; 817 818 refcount_destroy(&buf->b_refcnt); 819 cv_destroy(&buf->b_cv); 820 mutex_destroy(&buf->b_freeze_lock); 821 arc_space_return(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS); 822 } 823 824 /* ARGSUSED */ 825 static void 826 buf_dest(void *vbuf, void *unused) 827 { 828 arc_buf_t *buf = vbuf; 829 830 rw_destroy(&buf->b_lock); 831 arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS); 832 } 833 834 /* 835 * Reclaim callback -- invoked when memory is low. 836 */ 837 /* ARGSUSED */ 838 static void 839 hdr_recl(void *unused) 840 { 841 dprintf("hdr_recl called\n"); 842 /* 843 * umem calls the reclaim func when we destroy the buf cache, 844 * which is after we do arc_fini(). 845 */ 846 if (!arc_dead) 847 cv_signal(&arc_reclaim_thr_cv); 848 } 849 850 static void 851 buf_init(void) 852 { 853 uint64_t *ct; 854 uint64_t hsize = 1ULL << 12; 855 int i, j; 856 857 /* 858 * The hash table is big enough to fill all of physical memory 859 * with an average 64K block size. The table will take up 860 * totalmem*sizeof(void*)/64K (eg. 128KB/GB with 8-byte pointers). 861 */ 862 while (hsize * 65536 < physmem * PAGESIZE) 863 hsize <<= 1; 864 retry: 865 buf_hash_table.ht_mask = hsize - 1; 866 buf_hash_table.ht_table = 867 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP); 868 if (buf_hash_table.ht_table == NULL) { 869 ASSERT(hsize > (1ULL << 8)); 870 hsize >>= 1; 871 goto retry; 872 } 873 874 hdr_cache = kmem_cache_create("arc_buf_hdr_t", sizeof (arc_buf_hdr_t), 875 0, hdr_cons, hdr_dest, hdr_recl, NULL, NULL, 0); 876 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t), 877 0, buf_cons, buf_dest, NULL, NULL, NULL, 0); 878 879 for (i = 0; i < 256; i++) 880 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--) 881 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY); 882 883 for (i = 0; i < BUF_LOCKS; i++) { 884 mutex_init(&buf_hash_table.ht_locks[i].ht_lock, 885 NULL, MUTEX_DEFAULT, NULL); 886 } 887 } 888 889 #define ARC_MINTIME (hz>>4) /* 62 ms */ 890 891 static void 892 arc_cksum_verify(arc_buf_t *buf) 893 { 894 zio_cksum_t zc; 895 896 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 897 return; 898 899 mutex_enter(&buf->b_hdr->b_freeze_lock); 900 if (buf->b_hdr->b_freeze_cksum == NULL || 901 (buf->b_hdr->b_flags & ARC_IO_ERROR)) { 902 mutex_exit(&buf->b_hdr->b_freeze_lock); 903 return; 904 } 905 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc); 906 if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc)) 907 panic("buffer modified while frozen!"); 908 mutex_exit(&buf->b_hdr->b_freeze_lock); 909 } 910 911 static int 912 arc_cksum_equal(arc_buf_t *buf) 913 { 914 zio_cksum_t zc; 915 int equal; 916 917 mutex_enter(&buf->b_hdr->b_freeze_lock); 918 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc); 919 equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc); 920 mutex_exit(&buf->b_hdr->b_freeze_lock); 921 922 return (equal); 923 } 924 925 static void 926 arc_cksum_compute(arc_buf_t *buf, boolean_t force) 927 { 928 if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY)) 929 return; 930 931 mutex_enter(&buf->b_hdr->b_freeze_lock); 932 if (buf->b_hdr->b_freeze_cksum != NULL) { 933 mutex_exit(&buf->b_hdr->b_freeze_lock); 934 return; 935 } 936 buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP); 937 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, 938 buf->b_hdr->b_freeze_cksum); 939 mutex_exit(&buf->b_hdr->b_freeze_lock); 940 } 941 942 void 943 arc_buf_thaw(arc_buf_t *buf) 944 { 945 if (zfs_flags & ZFS_DEBUG_MODIFY) { 946 if (buf->b_hdr->b_state != arc_anon) 947 panic("modifying non-anon buffer!"); 948 if (buf->b_hdr->b_flags & ARC_IO_IN_PROGRESS) 949 panic("modifying buffer while i/o in progress!"); 950 arc_cksum_verify(buf); 951 } 952 953 mutex_enter(&buf->b_hdr->b_freeze_lock); 954 if (buf->b_hdr->b_freeze_cksum != NULL) { 955 kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t)); 956 buf->b_hdr->b_freeze_cksum = NULL; 957 } 958 mutex_exit(&buf->b_hdr->b_freeze_lock); 959 } 960 961 void 962 arc_buf_freeze(arc_buf_t *buf) 963 { 964 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 965 return; 966 967 ASSERT(buf->b_hdr->b_freeze_cksum != NULL || 968 buf->b_hdr->b_state == arc_anon); 969 arc_cksum_compute(buf, B_FALSE); 970 } 971 972 static void 973 add_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag) 974 { 975 ASSERT(MUTEX_HELD(hash_lock)); 976 977 if ((refcount_add(&ab->b_refcnt, tag) == 1) && 978 (ab->b_state != arc_anon)) { 979 uint64_t delta = ab->b_size * ab->b_datacnt; 980 list_t *list = &ab->b_state->arcs_list[ab->b_type]; 981 uint64_t *size = &ab->b_state->arcs_lsize[ab->b_type]; 982 983 ASSERT(!MUTEX_HELD(&ab->b_state->arcs_mtx)); 984 mutex_enter(&ab->b_state->arcs_mtx); 985 ASSERT(list_link_active(&ab->b_arc_node)); 986 list_remove(list, ab); 987 if (GHOST_STATE(ab->b_state)) { 988 ASSERT3U(ab->b_datacnt, ==, 0); 989 ASSERT3P(ab->b_buf, ==, NULL); 990 delta = ab->b_size; 991 } 992 ASSERT(delta > 0); 993 ASSERT3U(*size, >=, delta); 994 atomic_add_64(size, -delta); 995 mutex_exit(&ab->b_state->arcs_mtx); 996 /* remove the prefetch flag if we get a reference */ 997 if (ab->b_flags & ARC_PREFETCH) 998 ab->b_flags &= ~ARC_PREFETCH; 999 } 1000 } 1001 1002 static int 1003 remove_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag) 1004 { 1005 int cnt; 1006 arc_state_t *state = ab->b_state; 1007 1008 ASSERT(state == arc_anon || MUTEX_HELD(hash_lock)); 1009 ASSERT(!GHOST_STATE(state)); 1010 1011 if (((cnt = refcount_remove(&ab->b_refcnt, tag)) == 0) && 1012 (state != arc_anon)) { 1013 uint64_t *size = &state->arcs_lsize[ab->b_type]; 1014 1015 ASSERT(!MUTEX_HELD(&state->arcs_mtx)); 1016 mutex_enter(&state->arcs_mtx); 1017 ASSERT(!list_link_active(&ab->b_arc_node)); 1018 list_insert_head(&state->arcs_list[ab->b_type], ab); 1019 ASSERT(ab->b_datacnt > 0); 1020 atomic_add_64(size, ab->b_size * ab->b_datacnt); 1021 mutex_exit(&state->arcs_mtx); 1022 } 1023 return (cnt); 1024 } 1025 1026 /* 1027 * Move the supplied buffer to the indicated state. The mutex 1028 * for the buffer must be held by the caller. 1029 */ 1030 static void 1031 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *ab, kmutex_t *hash_lock) 1032 { 1033 arc_state_t *old_state = ab->b_state; 1034 int64_t refcnt = refcount_count(&ab->b_refcnt); 1035 uint64_t from_delta, to_delta; 1036 1037 ASSERT(MUTEX_HELD(hash_lock)); 1038 ASSERT(new_state != old_state); 1039 ASSERT(refcnt == 0 || ab->b_datacnt > 0); 1040 ASSERT(ab->b_datacnt == 0 || !GHOST_STATE(new_state)); 1041 1042 from_delta = to_delta = ab->b_datacnt * ab->b_size; 1043 1044 /* 1045 * If this buffer is evictable, transfer it from the 1046 * old state list to the new state list. 1047 */ 1048 if (refcnt == 0) { 1049 if (old_state != arc_anon) { 1050 int use_mutex = !MUTEX_HELD(&old_state->arcs_mtx); 1051 uint64_t *size = &old_state->arcs_lsize[ab->b_type]; 1052 1053 if (use_mutex) 1054 mutex_enter(&old_state->arcs_mtx); 1055 1056 ASSERT(list_link_active(&ab->b_arc_node)); 1057 list_remove(&old_state->arcs_list[ab->b_type], ab); 1058 1059 /* 1060 * If prefetching out of the ghost cache, 1061 * we will have a non-null datacnt. 1062 */ 1063 if (GHOST_STATE(old_state) && ab->b_datacnt == 0) { 1064 /* ghost elements have a ghost size */ 1065 ASSERT(ab->b_buf == NULL); 1066 from_delta = ab->b_size; 1067 } 1068 ASSERT3U(*size, >=, from_delta); 1069 atomic_add_64(size, -from_delta); 1070 1071 if (use_mutex) 1072 mutex_exit(&old_state->arcs_mtx); 1073 } 1074 if (new_state != arc_anon) { 1075 int use_mutex = !MUTEX_HELD(&new_state->arcs_mtx); 1076 uint64_t *size = &new_state->arcs_lsize[ab->b_type]; 1077 1078 if (use_mutex) 1079 mutex_enter(&new_state->arcs_mtx); 1080 1081 list_insert_head(&new_state->arcs_list[ab->b_type], ab); 1082 1083 /* ghost elements have a ghost size */ 1084 if (GHOST_STATE(new_state)) { 1085 ASSERT(ab->b_datacnt == 0); 1086 ASSERT(ab->b_buf == NULL); 1087 to_delta = ab->b_size; 1088 } 1089 atomic_add_64(size, to_delta); 1090 1091 if (use_mutex) 1092 mutex_exit(&new_state->arcs_mtx); 1093 } 1094 } 1095 1096 ASSERT(!BUF_EMPTY(ab)); 1097 if (new_state == arc_anon) { 1098 buf_hash_remove(ab); 1099 } 1100 1101 /* adjust state sizes */ 1102 if (to_delta) 1103 atomic_add_64(&new_state->arcs_size, to_delta); 1104 if (from_delta) { 1105 ASSERT3U(old_state->arcs_size, >=, from_delta); 1106 atomic_add_64(&old_state->arcs_size, -from_delta); 1107 } 1108 ab->b_state = new_state; 1109 1110 /* adjust l2arc hdr stats */ 1111 if (new_state == arc_l2c_only) 1112 l2arc_hdr_stat_add(); 1113 else if (old_state == arc_l2c_only) 1114 l2arc_hdr_stat_remove(); 1115 } 1116 1117 void 1118 arc_space_consume(uint64_t space, arc_space_type_t type) 1119 { 1120 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 1121 1122 switch (type) { 1123 case ARC_SPACE_DATA: 1124 ARCSTAT_INCR(arcstat_data_size, space); 1125 break; 1126 case ARC_SPACE_OTHER: 1127 ARCSTAT_INCR(arcstat_other_size, space); 1128 break; 1129 case ARC_SPACE_HDRS: 1130 ARCSTAT_INCR(arcstat_hdr_size, space); 1131 break; 1132 case ARC_SPACE_L2HDRS: 1133 ARCSTAT_INCR(arcstat_l2_hdr_size, space); 1134 break; 1135 } 1136 1137 atomic_add_64(&arc_meta_used, space); 1138 atomic_add_64(&arc_size, space); 1139 } 1140 1141 void 1142 arc_space_return(uint64_t space, arc_space_type_t type) 1143 { 1144 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 1145 1146 switch (type) { 1147 case ARC_SPACE_DATA: 1148 ARCSTAT_INCR(arcstat_data_size, -space); 1149 break; 1150 case ARC_SPACE_OTHER: 1151 ARCSTAT_INCR(arcstat_other_size, -space); 1152 break; 1153 case ARC_SPACE_HDRS: 1154 ARCSTAT_INCR(arcstat_hdr_size, -space); 1155 break; 1156 case ARC_SPACE_L2HDRS: 1157 ARCSTAT_INCR(arcstat_l2_hdr_size, -space); 1158 break; 1159 } 1160 1161 ASSERT(arc_meta_used >= space); 1162 if (arc_meta_max < arc_meta_used) 1163 arc_meta_max = arc_meta_used; 1164 atomic_add_64(&arc_meta_used, -space); 1165 ASSERT(arc_size >= space); 1166 atomic_add_64(&arc_size, -space); 1167 } 1168 1169 void * 1170 arc_data_buf_alloc(uint64_t size) 1171 { 1172 if (arc_evict_needed(ARC_BUFC_DATA)) 1173 cv_signal(&arc_reclaim_thr_cv); 1174 atomic_add_64(&arc_size, size); 1175 return (zio_data_buf_alloc(size)); 1176 } 1177 1178 void 1179 arc_data_buf_free(void *buf, uint64_t size) 1180 { 1181 zio_data_buf_free(buf, size); 1182 ASSERT(arc_size >= size); 1183 atomic_add_64(&arc_size, -size); 1184 } 1185 1186 arc_buf_t * 1187 arc_buf_alloc(spa_t *spa, int size, void *tag, arc_buf_contents_t type) 1188 { 1189 arc_buf_hdr_t *hdr; 1190 arc_buf_t *buf; 1191 1192 ASSERT3U(size, >, 0); 1193 hdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE); 1194 ASSERT(BUF_EMPTY(hdr)); 1195 hdr->b_size = size; 1196 hdr->b_type = type; 1197 hdr->b_spa = spa_guid(spa); 1198 hdr->b_state = arc_anon; 1199 hdr->b_arc_access = 0; 1200 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 1201 buf->b_hdr = hdr; 1202 buf->b_data = NULL; 1203 buf->b_efunc = NULL; 1204 buf->b_private = NULL; 1205 buf->b_next = NULL; 1206 hdr->b_buf = buf; 1207 arc_get_data_buf(buf); 1208 hdr->b_datacnt = 1; 1209 hdr->b_flags = 0; 1210 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 1211 (void) refcount_add(&hdr->b_refcnt, tag); 1212 1213 return (buf); 1214 } 1215 1216 static char *arc_onloan_tag = "onloan"; 1217 1218 /* 1219 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in 1220 * flight data by arc_tempreserve_space() until they are "returned". Loaned 1221 * buffers must be returned to the arc before they can be used by the DMU or 1222 * freed. 1223 */ 1224 arc_buf_t * 1225 arc_loan_buf(spa_t *spa, int size) 1226 { 1227 arc_buf_t *buf; 1228 1229 buf = arc_buf_alloc(spa, size, arc_onloan_tag, ARC_BUFC_DATA); 1230 1231 atomic_add_64(&arc_loaned_bytes, size); 1232 return (buf); 1233 } 1234 1235 /* 1236 * Return a loaned arc buffer to the arc. 1237 */ 1238 void 1239 arc_return_buf(arc_buf_t *buf, void *tag) 1240 { 1241 arc_buf_hdr_t *hdr = buf->b_hdr; 1242 1243 ASSERT(hdr->b_state == arc_anon); 1244 ASSERT(buf->b_data != NULL); 1245 VERIFY(refcount_remove(&hdr->b_refcnt, arc_onloan_tag) == 0); 1246 VERIFY(refcount_add(&hdr->b_refcnt, tag) == 1); 1247 1248 atomic_add_64(&arc_loaned_bytes, -hdr->b_size); 1249 } 1250 1251 static arc_buf_t * 1252 arc_buf_clone(arc_buf_t *from) 1253 { 1254 arc_buf_t *buf; 1255 arc_buf_hdr_t *hdr = from->b_hdr; 1256 uint64_t size = hdr->b_size; 1257 1258 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 1259 buf->b_hdr = hdr; 1260 buf->b_data = NULL; 1261 buf->b_efunc = NULL; 1262 buf->b_private = NULL; 1263 buf->b_next = hdr->b_buf; 1264 hdr->b_buf = buf; 1265 arc_get_data_buf(buf); 1266 bcopy(from->b_data, buf->b_data, size); 1267 hdr->b_datacnt += 1; 1268 return (buf); 1269 } 1270 1271 void 1272 arc_buf_add_ref(arc_buf_t *buf, void* tag) 1273 { 1274 arc_buf_hdr_t *hdr; 1275 kmutex_t *hash_lock; 1276 1277 /* 1278 * Check to see if this buffer is evicted. Callers 1279 * must verify b_data != NULL to know if the add_ref 1280 * was successful. 1281 */ 1282 rw_enter(&buf->b_lock, RW_READER); 1283 if (buf->b_data == NULL) { 1284 rw_exit(&buf->b_lock); 1285 return; 1286 } 1287 hdr = buf->b_hdr; 1288 ASSERT(hdr != NULL); 1289 hash_lock = HDR_LOCK(hdr); 1290 mutex_enter(hash_lock); 1291 rw_exit(&buf->b_lock); 1292 1293 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu); 1294 add_reference(hdr, hash_lock, tag); 1295 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 1296 arc_access(hdr, hash_lock); 1297 mutex_exit(hash_lock); 1298 ARCSTAT_BUMP(arcstat_hits); 1299 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH), 1300 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA, 1301 data, metadata, hits); 1302 } 1303 1304 /* 1305 * Free the arc data buffer. If it is an l2arc write in progress, 1306 * the buffer is placed on l2arc_free_on_write to be freed later. 1307 */ 1308 static void 1309 arc_buf_data_free(arc_buf_hdr_t *hdr, void (*free_func)(void *, size_t), 1310 void *data, size_t size) 1311 { 1312 if (HDR_L2_WRITING(hdr)) { 1313 l2arc_data_free_t *df; 1314 df = kmem_alloc(sizeof (l2arc_data_free_t), KM_SLEEP); 1315 df->l2df_data = data; 1316 df->l2df_size = size; 1317 df->l2df_func = free_func; 1318 mutex_enter(&l2arc_free_on_write_mtx); 1319 list_insert_head(l2arc_free_on_write, df); 1320 mutex_exit(&l2arc_free_on_write_mtx); 1321 ARCSTAT_BUMP(arcstat_l2_free_on_write); 1322 } else { 1323 free_func(data, size); 1324 } 1325 } 1326 1327 static void 1328 arc_buf_destroy(arc_buf_t *buf, boolean_t recycle, boolean_t all) 1329 { 1330 arc_buf_t **bufp; 1331 1332 /* free up data associated with the buf */ 1333 if (buf->b_data) { 1334 arc_state_t *state = buf->b_hdr->b_state; 1335 uint64_t size = buf->b_hdr->b_size; 1336 arc_buf_contents_t type = buf->b_hdr->b_type; 1337 1338 arc_cksum_verify(buf); 1339 if (!recycle) { 1340 if (type == ARC_BUFC_METADATA) { 1341 arc_buf_data_free(buf->b_hdr, zio_buf_free, 1342 buf->b_data, size); 1343 arc_space_return(size, ARC_SPACE_DATA); 1344 } else { 1345 ASSERT(type == ARC_BUFC_DATA); 1346 arc_buf_data_free(buf->b_hdr, 1347 zio_data_buf_free, buf->b_data, size); 1348 ARCSTAT_INCR(arcstat_data_size, -size); 1349 atomic_add_64(&arc_size, -size); 1350 } 1351 } 1352 if (list_link_active(&buf->b_hdr->b_arc_node)) { 1353 uint64_t *cnt = &state->arcs_lsize[type]; 1354 1355 ASSERT(refcount_is_zero(&buf->b_hdr->b_refcnt)); 1356 ASSERT(state != arc_anon); 1357 1358 ASSERT3U(*cnt, >=, size); 1359 atomic_add_64(cnt, -size); 1360 } 1361 ASSERT3U(state->arcs_size, >=, size); 1362 atomic_add_64(&state->arcs_size, -size); 1363 buf->b_data = NULL; 1364 ASSERT(buf->b_hdr->b_datacnt > 0); 1365 buf->b_hdr->b_datacnt -= 1; 1366 } 1367 1368 /* only remove the buf if requested */ 1369 if (!all) 1370 return; 1371 1372 /* remove the buf from the hdr list */ 1373 for (bufp = &buf->b_hdr->b_buf; *bufp != buf; bufp = &(*bufp)->b_next) 1374 continue; 1375 *bufp = buf->b_next; 1376 1377 ASSERT(buf->b_efunc == NULL); 1378 1379 /* clean up the buf */ 1380 buf->b_hdr = NULL; 1381 kmem_cache_free(buf_cache, buf); 1382 } 1383 1384 static void 1385 arc_hdr_destroy(arc_buf_hdr_t *hdr) 1386 { 1387 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 1388 ASSERT3P(hdr->b_state, ==, arc_anon); 1389 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 1390 ASSERT(!(hdr->b_flags & ARC_STORED)); 1391 1392 if (hdr->b_l2hdr != NULL) { 1393 if (!MUTEX_HELD(&l2arc_buflist_mtx)) { 1394 /* 1395 * To prevent arc_free() and l2arc_evict() from 1396 * attempting to free the same buffer at the same time, 1397 * a FREE_IN_PROGRESS flag is given to arc_free() to 1398 * give it priority. l2arc_evict() can't destroy this 1399 * header while we are waiting on l2arc_buflist_mtx. 1400 * 1401 * The hdr may be removed from l2ad_buflist before we 1402 * grab l2arc_buflist_mtx, so b_l2hdr is rechecked. 1403 */ 1404 mutex_enter(&l2arc_buflist_mtx); 1405 if (hdr->b_l2hdr != NULL) { 1406 list_remove(hdr->b_l2hdr->b_dev->l2ad_buflist, 1407 hdr); 1408 } 1409 mutex_exit(&l2arc_buflist_mtx); 1410 } else { 1411 list_remove(hdr->b_l2hdr->b_dev->l2ad_buflist, hdr); 1412 } 1413 ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size); 1414 kmem_free(hdr->b_l2hdr, sizeof (l2arc_buf_hdr_t)); 1415 if (hdr->b_state == arc_l2c_only) 1416 l2arc_hdr_stat_remove(); 1417 hdr->b_l2hdr = NULL; 1418 } 1419 1420 if (!BUF_EMPTY(hdr)) { 1421 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 1422 bzero(&hdr->b_dva, sizeof (dva_t)); 1423 hdr->b_birth = 0; 1424 hdr->b_cksum0 = 0; 1425 } 1426 while (hdr->b_buf) { 1427 arc_buf_t *buf = hdr->b_buf; 1428 1429 if (buf->b_efunc) { 1430 mutex_enter(&arc_eviction_mtx); 1431 rw_enter(&buf->b_lock, RW_WRITER); 1432 ASSERT(buf->b_hdr != NULL); 1433 arc_buf_destroy(hdr->b_buf, FALSE, FALSE); 1434 hdr->b_buf = buf->b_next; 1435 buf->b_hdr = &arc_eviction_hdr; 1436 buf->b_next = arc_eviction_list; 1437 arc_eviction_list = buf; 1438 rw_exit(&buf->b_lock); 1439 mutex_exit(&arc_eviction_mtx); 1440 } else { 1441 arc_buf_destroy(hdr->b_buf, FALSE, TRUE); 1442 } 1443 } 1444 if (hdr->b_freeze_cksum != NULL) { 1445 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t)); 1446 hdr->b_freeze_cksum = NULL; 1447 } 1448 1449 ASSERT(!list_link_active(&hdr->b_arc_node)); 1450 ASSERT3P(hdr->b_hash_next, ==, NULL); 1451 ASSERT3P(hdr->b_acb, ==, NULL); 1452 kmem_cache_free(hdr_cache, hdr); 1453 } 1454 1455 void 1456 arc_buf_free(arc_buf_t *buf, void *tag) 1457 { 1458 arc_buf_hdr_t *hdr = buf->b_hdr; 1459 int hashed = hdr->b_state != arc_anon; 1460 1461 ASSERT(buf->b_efunc == NULL); 1462 ASSERT(buf->b_data != NULL); 1463 1464 if (hashed) { 1465 kmutex_t *hash_lock = HDR_LOCK(hdr); 1466 1467 mutex_enter(hash_lock); 1468 (void) remove_reference(hdr, hash_lock, tag); 1469 if (hdr->b_datacnt > 1) 1470 arc_buf_destroy(buf, FALSE, TRUE); 1471 else 1472 hdr->b_flags |= ARC_BUF_AVAILABLE; 1473 mutex_exit(hash_lock); 1474 } else if (HDR_IO_IN_PROGRESS(hdr)) { 1475 int destroy_hdr; 1476 /* 1477 * We are in the middle of an async write. Don't destroy 1478 * this buffer unless the write completes before we finish 1479 * decrementing the reference count. 1480 */ 1481 mutex_enter(&arc_eviction_mtx); 1482 (void) remove_reference(hdr, NULL, tag); 1483 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 1484 destroy_hdr = !HDR_IO_IN_PROGRESS(hdr); 1485 mutex_exit(&arc_eviction_mtx); 1486 if (destroy_hdr) 1487 arc_hdr_destroy(hdr); 1488 } else { 1489 if (remove_reference(hdr, NULL, tag) > 0) { 1490 ASSERT(HDR_IO_ERROR(hdr)); 1491 arc_buf_destroy(buf, FALSE, TRUE); 1492 } else { 1493 arc_hdr_destroy(hdr); 1494 } 1495 } 1496 } 1497 1498 int 1499 arc_buf_remove_ref(arc_buf_t *buf, void* tag) 1500 { 1501 arc_buf_hdr_t *hdr = buf->b_hdr; 1502 kmutex_t *hash_lock = HDR_LOCK(hdr); 1503 int no_callback = (buf->b_efunc == NULL); 1504 1505 if (hdr->b_state == arc_anon) { 1506 arc_buf_free(buf, tag); 1507 return (no_callback); 1508 } 1509 1510 mutex_enter(hash_lock); 1511 ASSERT(hdr->b_state != arc_anon); 1512 ASSERT(buf->b_data != NULL); 1513 1514 (void) remove_reference(hdr, hash_lock, tag); 1515 if (hdr->b_datacnt > 1) { 1516 if (no_callback) 1517 arc_buf_destroy(buf, FALSE, TRUE); 1518 } else if (no_callback) { 1519 ASSERT(hdr->b_buf == buf && buf->b_next == NULL); 1520 hdr->b_flags |= ARC_BUF_AVAILABLE; 1521 } 1522 ASSERT(no_callback || hdr->b_datacnt > 1 || 1523 refcount_is_zero(&hdr->b_refcnt)); 1524 mutex_exit(hash_lock); 1525 return (no_callback); 1526 } 1527 1528 int 1529 arc_buf_size(arc_buf_t *buf) 1530 { 1531 return (buf->b_hdr->b_size); 1532 } 1533 1534 /* 1535 * Evict buffers from list until we've removed the specified number of 1536 * bytes. Move the removed buffers to the appropriate evict state. 1537 * If the recycle flag is set, then attempt to "recycle" a buffer: 1538 * - look for a buffer to evict that is `bytes' long. 1539 * - return the data block from this buffer rather than freeing it. 1540 * This flag is used by callers that are trying to make space for a 1541 * new buffer in a full arc cache. 1542 * 1543 * This function makes a "best effort". It skips over any buffers 1544 * it can't get a hash_lock on, and so may not catch all candidates. 1545 * It may also return without evicting as much space as requested. 1546 */ 1547 static void * 1548 arc_evict(arc_state_t *state, uint64_t spa, int64_t bytes, boolean_t recycle, 1549 arc_buf_contents_t type) 1550 { 1551 arc_state_t *evicted_state; 1552 uint64_t bytes_evicted = 0, skipped = 0, missed = 0; 1553 arc_buf_hdr_t *ab, *ab_prev = NULL; 1554 list_t *list = &state->arcs_list[type]; 1555 kmutex_t *hash_lock; 1556 boolean_t have_lock; 1557 void *stolen = NULL; 1558 1559 ASSERT(state == arc_mru || state == arc_mfu); 1560 1561 evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost; 1562 1563 mutex_enter(&state->arcs_mtx); 1564 mutex_enter(&evicted_state->arcs_mtx); 1565 1566 for (ab = list_tail(list); ab; ab = ab_prev) { 1567 ab_prev = list_prev(list, ab); 1568 /* prefetch buffers have a minimum lifespan */ 1569 if (HDR_IO_IN_PROGRESS(ab) || 1570 (spa && ab->b_spa != spa) || 1571 (ab->b_flags & (ARC_PREFETCH|ARC_INDIRECT) && 1572 lbolt - ab->b_arc_access < arc_min_prefetch_lifespan)) { 1573 skipped++; 1574 continue; 1575 } 1576 /* "lookahead" for better eviction candidate */ 1577 if (recycle && ab->b_size != bytes && 1578 ab_prev && ab_prev->b_size == bytes) 1579 continue; 1580 hash_lock = HDR_LOCK(ab); 1581 have_lock = MUTEX_HELD(hash_lock); 1582 if (have_lock || mutex_tryenter(hash_lock)) { 1583 ASSERT3U(refcount_count(&ab->b_refcnt), ==, 0); 1584 ASSERT(ab->b_datacnt > 0); 1585 while (ab->b_buf) { 1586 arc_buf_t *buf = ab->b_buf; 1587 if (!rw_tryenter(&buf->b_lock, RW_WRITER)) { 1588 missed += 1; 1589 break; 1590 } 1591 if (buf->b_data) { 1592 bytes_evicted += ab->b_size; 1593 if (recycle && ab->b_type == type && 1594 ab->b_size == bytes && 1595 !HDR_L2_WRITING(ab)) { 1596 stolen = buf->b_data; 1597 recycle = FALSE; 1598 } 1599 } 1600 if (buf->b_efunc) { 1601 mutex_enter(&arc_eviction_mtx); 1602 arc_buf_destroy(buf, 1603 buf->b_data == stolen, FALSE); 1604 ab->b_buf = buf->b_next; 1605 buf->b_hdr = &arc_eviction_hdr; 1606 buf->b_next = arc_eviction_list; 1607 arc_eviction_list = buf; 1608 mutex_exit(&arc_eviction_mtx); 1609 rw_exit(&buf->b_lock); 1610 } else { 1611 rw_exit(&buf->b_lock); 1612 arc_buf_destroy(buf, 1613 buf->b_data == stolen, TRUE); 1614 } 1615 } 1616 1617 if (ab->b_l2hdr) { 1618 ARCSTAT_INCR(arcstat_evict_l2_cached, 1619 ab->b_size); 1620 } else { 1621 if (l2arc_write_eligible(ab->b_spa, ab)) { 1622 ARCSTAT_INCR(arcstat_evict_l2_eligible, 1623 ab->b_size); 1624 } else { 1625 ARCSTAT_INCR( 1626 arcstat_evict_l2_ineligible, 1627 ab->b_size); 1628 } 1629 } 1630 1631 if (ab->b_datacnt == 0) { 1632 arc_change_state(evicted_state, ab, hash_lock); 1633 ASSERT(HDR_IN_HASH_TABLE(ab)); 1634 ab->b_flags |= ARC_IN_HASH_TABLE; 1635 ab->b_flags &= ~ARC_BUF_AVAILABLE; 1636 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, ab); 1637 } 1638 if (!have_lock) 1639 mutex_exit(hash_lock); 1640 if (bytes >= 0 && bytes_evicted >= bytes) 1641 break; 1642 } else { 1643 missed += 1; 1644 } 1645 } 1646 1647 mutex_exit(&evicted_state->arcs_mtx); 1648 mutex_exit(&state->arcs_mtx); 1649 1650 if (bytes_evicted < bytes) 1651 dprintf("only evicted %lld bytes from %x", 1652 (longlong_t)bytes_evicted, state); 1653 1654 if (skipped) 1655 ARCSTAT_INCR(arcstat_evict_skip, skipped); 1656 1657 if (missed) 1658 ARCSTAT_INCR(arcstat_mutex_miss, missed); 1659 1660 /* 1661 * We have just evicted some date into the ghost state, make 1662 * sure we also adjust the ghost state size if necessary. 1663 */ 1664 if (arc_no_grow && 1665 arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size > arc_c) { 1666 int64_t mru_over = arc_anon->arcs_size + arc_mru->arcs_size + 1667 arc_mru_ghost->arcs_size - arc_c; 1668 1669 if (mru_over > 0 && arc_mru_ghost->arcs_lsize[type] > 0) { 1670 int64_t todelete = 1671 MIN(arc_mru_ghost->arcs_lsize[type], mru_over); 1672 arc_evict_ghost(arc_mru_ghost, NULL, todelete); 1673 } else if (arc_mfu_ghost->arcs_lsize[type] > 0) { 1674 int64_t todelete = MIN(arc_mfu_ghost->arcs_lsize[type], 1675 arc_mru_ghost->arcs_size + 1676 arc_mfu_ghost->arcs_size - arc_c); 1677 arc_evict_ghost(arc_mfu_ghost, NULL, todelete); 1678 } 1679 } 1680 1681 return (stolen); 1682 } 1683 1684 /* 1685 * Remove buffers from list until we've removed the specified number of 1686 * bytes. Destroy the buffers that are removed. 1687 */ 1688 static void 1689 arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes) 1690 { 1691 arc_buf_hdr_t *ab, *ab_prev; 1692 list_t *list = &state->arcs_list[ARC_BUFC_DATA]; 1693 kmutex_t *hash_lock; 1694 uint64_t bytes_deleted = 0; 1695 uint64_t bufs_skipped = 0; 1696 1697 ASSERT(GHOST_STATE(state)); 1698 top: 1699 mutex_enter(&state->arcs_mtx); 1700 for (ab = list_tail(list); ab; ab = ab_prev) { 1701 ab_prev = list_prev(list, ab); 1702 if (spa && ab->b_spa != spa) 1703 continue; 1704 hash_lock = HDR_LOCK(ab); 1705 if (mutex_tryenter(hash_lock)) { 1706 ASSERT(!HDR_IO_IN_PROGRESS(ab)); 1707 ASSERT(ab->b_buf == NULL); 1708 ARCSTAT_BUMP(arcstat_deleted); 1709 bytes_deleted += ab->b_size; 1710 1711 if (ab->b_l2hdr != NULL) { 1712 /* 1713 * This buffer is cached on the 2nd Level ARC; 1714 * don't destroy the header. 1715 */ 1716 arc_change_state(arc_l2c_only, ab, hash_lock); 1717 mutex_exit(hash_lock); 1718 } else { 1719 arc_change_state(arc_anon, ab, hash_lock); 1720 mutex_exit(hash_lock); 1721 arc_hdr_destroy(ab); 1722 } 1723 1724 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, ab); 1725 if (bytes >= 0 && bytes_deleted >= bytes) 1726 break; 1727 } else { 1728 if (bytes < 0) { 1729 mutex_exit(&state->arcs_mtx); 1730 mutex_enter(hash_lock); 1731 mutex_exit(hash_lock); 1732 goto top; 1733 } 1734 bufs_skipped += 1; 1735 } 1736 } 1737 mutex_exit(&state->arcs_mtx); 1738 1739 if (list == &state->arcs_list[ARC_BUFC_DATA] && 1740 (bytes < 0 || bytes_deleted < bytes)) { 1741 list = &state->arcs_list[ARC_BUFC_METADATA]; 1742 goto top; 1743 } 1744 1745 if (bufs_skipped) { 1746 ARCSTAT_INCR(arcstat_mutex_miss, bufs_skipped); 1747 ASSERT(bytes >= 0); 1748 } 1749 1750 if (bytes_deleted < bytes) 1751 dprintf("only deleted %lld bytes from %p", 1752 (longlong_t)bytes_deleted, state); 1753 } 1754 1755 static void 1756 arc_adjust(void) 1757 { 1758 int64_t adjustment, delta; 1759 1760 /* 1761 * Adjust MRU size 1762 */ 1763 1764 adjustment = MIN(arc_size - arc_c, 1765 arc_anon->arcs_size + arc_mru->arcs_size + arc_meta_used - arc_p); 1766 1767 if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_DATA] > 0) { 1768 delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_DATA], adjustment); 1769 (void) arc_evict(arc_mru, NULL, delta, FALSE, ARC_BUFC_DATA); 1770 adjustment -= delta; 1771 } 1772 1773 if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_METADATA] > 0) { 1774 delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_METADATA], adjustment); 1775 (void) arc_evict(arc_mru, NULL, delta, FALSE, 1776 ARC_BUFC_METADATA); 1777 } 1778 1779 /* 1780 * Adjust MFU size 1781 */ 1782 1783 adjustment = arc_size - arc_c; 1784 1785 if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_DATA] > 0) { 1786 delta = MIN(adjustment, arc_mfu->arcs_lsize[ARC_BUFC_DATA]); 1787 (void) arc_evict(arc_mfu, NULL, delta, FALSE, ARC_BUFC_DATA); 1788 adjustment -= delta; 1789 } 1790 1791 if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_METADATA] > 0) { 1792 int64_t delta = MIN(adjustment, 1793 arc_mfu->arcs_lsize[ARC_BUFC_METADATA]); 1794 (void) arc_evict(arc_mfu, NULL, delta, FALSE, 1795 ARC_BUFC_METADATA); 1796 } 1797 1798 /* 1799 * Adjust ghost lists 1800 */ 1801 1802 adjustment = arc_mru->arcs_size + arc_mru_ghost->arcs_size - arc_c; 1803 1804 if (adjustment > 0 && arc_mru_ghost->arcs_size > 0) { 1805 delta = MIN(arc_mru_ghost->arcs_size, adjustment); 1806 arc_evict_ghost(arc_mru_ghost, NULL, delta); 1807 } 1808 1809 adjustment = 1810 arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size - arc_c; 1811 1812 if (adjustment > 0 && arc_mfu_ghost->arcs_size > 0) { 1813 delta = MIN(arc_mfu_ghost->arcs_size, adjustment); 1814 arc_evict_ghost(arc_mfu_ghost, NULL, delta); 1815 } 1816 } 1817 1818 static void 1819 arc_do_user_evicts(void) 1820 { 1821 mutex_enter(&arc_eviction_mtx); 1822 while (arc_eviction_list != NULL) { 1823 arc_buf_t *buf = arc_eviction_list; 1824 arc_eviction_list = buf->b_next; 1825 rw_enter(&buf->b_lock, RW_WRITER); 1826 buf->b_hdr = NULL; 1827 rw_exit(&buf->b_lock); 1828 mutex_exit(&arc_eviction_mtx); 1829 1830 if (buf->b_efunc != NULL) 1831 VERIFY(buf->b_efunc(buf) == 0); 1832 1833 buf->b_efunc = NULL; 1834 buf->b_private = NULL; 1835 kmem_cache_free(buf_cache, buf); 1836 mutex_enter(&arc_eviction_mtx); 1837 } 1838 mutex_exit(&arc_eviction_mtx); 1839 } 1840 1841 /* 1842 * Flush all *evictable* data from the cache for the given spa. 1843 * NOTE: this will not touch "active" (i.e. referenced) data. 1844 */ 1845 void 1846 arc_flush(spa_t *spa) 1847 { 1848 uint64_t guid = 0; 1849 1850 if (spa) 1851 guid = spa_guid(spa); 1852 1853 while (list_head(&arc_mru->arcs_list[ARC_BUFC_DATA])) { 1854 (void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_DATA); 1855 if (spa) 1856 break; 1857 } 1858 while (list_head(&arc_mru->arcs_list[ARC_BUFC_METADATA])) { 1859 (void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_METADATA); 1860 if (spa) 1861 break; 1862 } 1863 while (list_head(&arc_mfu->arcs_list[ARC_BUFC_DATA])) { 1864 (void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_DATA); 1865 if (spa) 1866 break; 1867 } 1868 while (list_head(&arc_mfu->arcs_list[ARC_BUFC_METADATA])) { 1869 (void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_METADATA); 1870 if (spa) 1871 break; 1872 } 1873 1874 arc_evict_ghost(arc_mru_ghost, guid, -1); 1875 arc_evict_ghost(arc_mfu_ghost, guid, -1); 1876 1877 mutex_enter(&arc_reclaim_thr_lock); 1878 arc_do_user_evicts(); 1879 mutex_exit(&arc_reclaim_thr_lock); 1880 ASSERT(spa || arc_eviction_list == NULL); 1881 } 1882 1883 void 1884 arc_shrink(void) 1885 { 1886 if (arc_c > arc_c_min) { 1887 uint64_t to_free; 1888 1889 #ifdef _KERNEL 1890 to_free = MAX(arc_c >> arc_shrink_shift, ptob(needfree)); 1891 #else 1892 to_free = arc_c >> arc_shrink_shift; 1893 #endif 1894 if (arc_c > arc_c_min + to_free) 1895 atomic_add_64(&arc_c, -to_free); 1896 else 1897 arc_c = arc_c_min; 1898 1899 atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift)); 1900 if (arc_c > arc_size) 1901 arc_c = MAX(arc_size, arc_c_min); 1902 if (arc_p > arc_c) 1903 arc_p = (arc_c >> 1); 1904 ASSERT(arc_c >= arc_c_min); 1905 ASSERT((int64_t)arc_p >= 0); 1906 } 1907 1908 if (arc_size > arc_c) 1909 arc_adjust(); 1910 } 1911 1912 static int 1913 arc_reclaim_needed(void) 1914 { 1915 uint64_t extra; 1916 1917 #ifdef _KERNEL 1918 1919 if (needfree) 1920 return (1); 1921 1922 /* 1923 * take 'desfree' extra pages, so we reclaim sooner, rather than later 1924 */ 1925 extra = desfree; 1926 1927 /* 1928 * check that we're out of range of the pageout scanner. It starts to 1929 * schedule paging if freemem is less than lotsfree and needfree. 1930 * lotsfree is the high-water mark for pageout, and needfree is the 1931 * number of needed free pages. We add extra pages here to make sure 1932 * the scanner doesn't start up while we're freeing memory. 1933 */ 1934 if (freemem < lotsfree + needfree + extra) 1935 return (1); 1936 1937 /* 1938 * check to make sure that swapfs has enough space so that anon 1939 * reservations can still succeed. anon_resvmem() checks that the 1940 * availrmem is greater than swapfs_minfree, and the number of reserved 1941 * swap pages. We also add a bit of extra here just to prevent 1942 * circumstances from getting really dire. 1943 */ 1944 if (availrmem < swapfs_minfree + swapfs_reserve + extra) 1945 return (1); 1946 1947 #if defined(__i386) 1948 /* 1949 * If we're on an i386 platform, it's possible that we'll exhaust the 1950 * kernel heap space before we ever run out of available physical 1951 * memory. Most checks of the size of the heap_area compare against 1952 * tune.t_minarmem, which is the minimum available real memory that we 1953 * can have in the system. However, this is generally fixed at 25 pages 1954 * which is so low that it's useless. In this comparison, we seek to 1955 * calculate the total heap-size, and reclaim if more than 3/4ths of the 1956 * heap is allocated. (Or, in the calculation, if less than 1/4th is 1957 * free) 1958 */ 1959 if (btop(vmem_size(heap_arena, VMEM_FREE)) < 1960 (btop(vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC)) >> 2)) 1961 return (1); 1962 #endif 1963 1964 #else 1965 if (spa_get_random(100) == 0) 1966 return (1); 1967 #endif 1968 return (0); 1969 } 1970 1971 static void 1972 arc_kmem_reap_now(arc_reclaim_strategy_t strat) 1973 { 1974 size_t i; 1975 kmem_cache_t *prev_cache = NULL; 1976 kmem_cache_t *prev_data_cache = NULL; 1977 extern kmem_cache_t *zio_buf_cache[]; 1978 extern kmem_cache_t *zio_data_buf_cache[]; 1979 1980 #ifdef _KERNEL 1981 if (arc_meta_used >= arc_meta_limit) { 1982 /* 1983 * We are exceeding our meta-data cache limit. 1984 * Purge some DNLC entries to release holds on meta-data. 1985 */ 1986 dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent); 1987 } 1988 #if defined(__i386) 1989 /* 1990 * Reclaim unused memory from all kmem caches. 1991 */ 1992 kmem_reap(); 1993 #endif 1994 #endif 1995 1996 /* 1997 * An aggressive reclamation will shrink the cache size as well as 1998 * reap free buffers from the arc kmem caches. 1999 */ 2000 if (strat == ARC_RECLAIM_AGGR) 2001 arc_shrink(); 2002 2003 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) { 2004 if (zio_buf_cache[i] != prev_cache) { 2005 prev_cache = zio_buf_cache[i]; 2006 kmem_cache_reap_now(zio_buf_cache[i]); 2007 } 2008 if (zio_data_buf_cache[i] != prev_data_cache) { 2009 prev_data_cache = zio_data_buf_cache[i]; 2010 kmem_cache_reap_now(zio_data_buf_cache[i]); 2011 } 2012 } 2013 kmem_cache_reap_now(buf_cache); 2014 kmem_cache_reap_now(hdr_cache); 2015 } 2016 2017 static void 2018 arc_reclaim_thread(void) 2019 { 2020 clock_t growtime = 0; 2021 arc_reclaim_strategy_t last_reclaim = ARC_RECLAIM_CONS; 2022 callb_cpr_t cpr; 2023 2024 CALLB_CPR_INIT(&cpr, &arc_reclaim_thr_lock, callb_generic_cpr, FTAG); 2025 2026 mutex_enter(&arc_reclaim_thr_lock); 2027 while (arc_thread_exit == 0) { 2028 if (arc_reclaim_needed()) { 2029 2030 if (arc_no_grow) { 2031 if (last_reclaim == ARC_RECLAIM_CONS) { 2032 last_reclaim = ARC_RECLAIM_AGGR; 2033 } else { 2034 last_reclaim = ARC_RECLAIM_CONS; 2035 } 2036 } else { 2037 arc_no_grow = TRUE; 2038 last_reclaim = ARC_RECLAIM_AGGR; 2039 membar_producer(); 2040 } 2041 2042 /* reset the growth delay for every reclaim */ 2043 growtime = lbolt + (arc_grow_retry * hz); 2044 2045 arc_kmem_reap_now(last_reclaim); 2046 arc_warm = B_TRUE; 2047 2048 } else if (arc_no_grow && lbolt >= growtime) { 2049 arc_no_grow = FALSE; 2050 } 2051 2052 if (2 * arc_c < arc_size + 2053 arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size) 2054 arc_adjust(); 2055 2056 if (arc_eviction_list != NULL) 2057 arc_do_user_evicts(); 2058 2059 /* block until needed, or one second, whichever is shorter */ 2060 CALLB_CPR_SAFE_BEGIN(&cpr); 2061 (void) cv_timedwait(&arc_reclaim_thr_cv, 2062 &arc_reclaim_thr_lock, (lbolt + hz)); 2063 CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_thr_lock); 2064 } 2065 2066 arc_thread_exit = 0; 2067 cv_broadcast(&arc_reclaim_thr_cv); 2068 CALLB_CPR_EXIT(&cpr); /* drops arc_reclaim_thr_lock */ 2069 thread_exit(); 2070 } 2071 2072 /* 2073 * Adapt arc info given the number of bytes we are trying to add and 2074 * the state that we are comming from. This function is only called 2075 * when we are adding new content to the cache. 2076 */ 2077 static void 2078 arc_adapt(int bytes, arc_state_t *state) 2079 { 2080 int mult; 2081 uint64_t arc_p_min = (arc_c >> arc_p_min_shift); 2082 2083 if (state == arc_l2c_only) 2084 return; 2085 2086 ASSERT(bytes > 0); 2087 /* 2088 * Adapt the target size of the MRU list: 2089 * - if we just hit in the MRU ghost list, then increase 2090 * the target size of the MRU list. 2091 * - if we just hit in the MFU ghost list, then increase 2092 * the target size of the MFU list by decreasing the 2093 * target size of the MRU list. 2094 */ 2095 if (state == arc_mru_ghost) { 2096 mult = ((arc_mru_ghost->arcs_size >= arc_mfu_ghost->arcs_size) ? 2097 1 : (arc_mfu_ghost->arcs_size/arc_mru_ghost->arcs_size)); 2098 2099 arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult); 2100 } else if (state == arc_mfu_ghost) { 2101 uint64_t delta; 2102 2103 mult = ((arc_mfu_ghost->arcs_size >= arc_mru_ghost->arcs_size) ? 2104 1 : (arc_mru_ghost->arcs_size/arc_mfu_ghost->arcs_size)); 2105 2106 delta = MIN(bytes * mult, arc_p); 2107 arc_p = MAX(arc_p_min, arc_p - delta); 2108 } 2109 ASSERT((int64_t)arc_p >= 0); 2110 2111 if (arc_reclaim_needed()) { 2112 cv_signal(&arc_reclaim_thr_cv); 2113 return; 2114 } 2115 2116 if (arc_no_grow) 2117 return; 2118 2119 if (arc_c >= arc_c_max) 2120 return; 2121 2122 /* 2123 * If we're within (2 * maxblocksize) bytes of the target 2124 * cache size, increment the target cache size 2125 */ 2126 if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) { 2127 atomic_add_64(&arc_c, (int64_t)bytes); 2128 if (arc_c > arc_c_max) 2129 arc_c = arc_c_max; 2130 else if (state == arc_anon) 2131 atomic_add_64(&arc_p, (int64_t)bytes); 2132 if (arc_p > arc_c) 2133 arc_p = arc_c; 2134 } 2135 ASSERT((int64_t)arc_p >= 0); 2136 } 2137 2138 /* 2139 * Check if the cache has reached its limits and eviction is required 2140 * prior to insert. 2141 */ 2142 static int 2143 arc_evict_needed(arc_buf_contents_t type) 2144 { 2145 if (type == ARC_BUFC_METADATA && arc_meta_used >= arc_meta_limit) 2146 return (1); 2147 2148 #ifdef _KERNEL 2149 /* 2150 * If zio data pages are being allocated out of a separate heap segment, 2151 * then enforce that the size of available vmem for this area remains 2152 * above about 1/32nd free. 2153 */ 2154 if (type == ARC_BUFC_DATA && zio_arena != NULL && 2155 vmem_size(zio_arena, VMEM_FREE) < 2156 (vmem_size(zio_arena, VMEM_ALLOC) >> 5)) 2157 return (1); 2158 #endif 2159 2160 if (arc_reclaim_needed()) 2161 return (1); 2162 2163 return (arc_size > arc_c); 2164 } 2165 2166 /* 2167 * The buffer, supplied as the first argument, needs a data block. 2168 * So, if we are at cache max, determine which cache should be victimized. 2169 * We have the following cases: 2170 * 2171 * 1. Insert for MRU, p > sizeof(arc_anon + arc_mru) -> 2172 * In this situation if we're out of space, but the resident size of the MFU is 2173 * under the limit, victimize the MFU cache to satisfy this insertion request. 2174 * 2175 * 2. Insert for MRU, p <= sizeof(arc_anon + arc_mru) -> 2176 * Here, we've used up all of the available space for the MRU, so we need to 2177 * evict from our own cache instead. Evict from the set of resident MRU 2178 * entries. 2179 * 2180 * 3. Insert for MFU (c - p) > sizeof(arc_mfu) -> 2181 * c minus p represents the MFU space in the cache, since p is the size of the 2182 * cache that is dedicated to the MRU. In this situation there's still space on 2183 * the MFU side, so the MRU side needs to be victimized. 2184 * 2185 * 4. Insert for MFU (c - p) < sizeof(arc_mfu) -> 2186 * MFU's resident set is consuming more space than it has been allotted. In 2187 * this situation, we must victimize our own cache, the MFU, for this insertion. 2188 */ 2189 static void 2190 arc_get_data_buf(arc_buf_t *buf) 2191 { 2192 arc_state_t *state = buf->b_hdr->b_state; 2193 uint64_t size = buf->b_hdr->b_size; 2194 arc_buf_contents_t type = buf->b_hdr->b_type; 2195 2196 arc_adapt(size, state); 2197 2198 /* 2199 * We have not yet reached cache maximum size, 2200 * just allocate a new buffer. 2201 */ 2202 if (!arc_evict_needed(type)) { 2203 if (type == ARC_BUFC_METADATA) { 2204 buf->b_data = zio_buf_alloc(size); 2205 arc_space_consume(size, ARC_SPACE_DATA); 2206 } else { 2207 ASSERT(type == ARC_BUFC_DATA); 2208 buf->b_data = zio_data_buf_alloc(size); 2209 ARCSTAT_INCR(arcstat_data_size, size); 2210 atomic_add_64(&arc_size, size); 2211 } 2212 goto out; 2213 } 2214 2215 /* 2216 * If we are prefetching from the mfu ghost list, this buffer 2217 * will end up on the mru list; so steal space from there. 2218 */ 2219 if (state == arc_mfu_ghost) 2220 state = buf->b_hdr->b_flags & ARC_PREFETCH ? arc_mru : arc_mfu; 2221 else if (state == arc_mru_ghost) 2222 state = arc_mru; 2223 2224 if (state == arc_mru || state == arc_anon) { 2225 uint64_t mru_used = arc_anon->arcs_size + arc_mru->arcs_size; 2226 state = (arc_mfu->arcs_lsize[type] >= size && 2227 arc_p > mru_used) ? arc_mfu : arc_mru; 2228 } else { 2229 /* MFU cases */ 2230 uint64_t mfu_space = arc_c - arc_p; 2231 state = (arc_mru->arcs_lsize[type] >= size && 2232 mfu_space > arc_mfu->arcs_size) ? arc_mru : arc_mfu; 2233 } 2234 if ((buf->b_data = arc_evict(state, NULL, size, TRUE, type)) == NULL) { 2235 if (type == ARC_BUFC_METADATA) { 2236 buf->b_data = zio_buf_alloc(size); 2237 arc_space_consume(size, ARC_SPACE_DATA); 2238 } else { 2239 ASSERT(type == ARC_BUFC_DATA); 2240 buf->b_data = zio_data_buf_alloc(size); 2241 ARCSTAT_INCR(arcstat_data_size, size); 2242 atomic_add_64(&arc_size, size); 2243 } 2244 ARCSTAT_BUMP(arcstat_recycle_miss); 2245 } 2246 ASSERT(buf->b_data != NULL); 2247 out: 2248 /* 2249 * Update the state size. Note that ghost states have a 2250 * "ghost size" and so don't need to be updated. 2251 */ 2252 if (!GHOST_STATE(buf->b_hdr->b_state)) { 2253 arc_buf_hdr_t *hdr = buf->b_hdr; 2254 2255 atomic_add_64(&hdr->b_state->arcs_size, size); 2256 if (list_link_active(&hdr->b_arc_node)) { 2257 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 2258 atomic_add_64(&hdr->b_state->arcs_lsize[type], size); 2259 } 2260 /* 2261 * If we are growing the cache, and we are adding anonymous 2262 * data, and we have outgrown arc_p, update arc_p 2263 */ 2264 if (arc_size < arc_c && hdr->b_state == arc_anon && 2265 arc_anon->arcs_size + arc_mru->arcs_size > arc_p) 2266 arc_p = MIN(arc_c, arc_p + size); 2267 } 2268 } 2269 2270 /* 2271 * This routine is called whenever a buffer is accessed. 2272 * NOTE: the hash lock is dropped in this function. 2273 */ 2274 static void 2275 arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock) 2276 { 2277 ASSERT(MUTEX_HELD(hash_lock)); 2278 2279 if (buf->b_state == arc_anon) { 2280 /* 2281 * This buffer is not in the cache, and does not 2282 * appear in our "ghost" list. Add the new buffer 2283 * to the MRU state. 2284 */ 2285 2286 ASSERT(buf->b_arc_access == 0); 2287 buf->b_arc_access = lbolt; 2288 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf); 2289 arc_change_state(arc_mru, buf, hash_lock); 2290 2291 } else if (buf->b_state == arc_mru) { 2292 /* 2293 * If this buffer is here because of a prefetch, then either: 2294 * - clear the flag if this is a "referencing" read 2295 * (any subsequent access will bump this into the MFU state). 2296 * or 2297 * - move the buffer to the head of the list if this is 2298 * another prefetch (to make it less likely to be evicted). 2299 */ 2300 if ((buf->b_flags & ARC_PREFETCH) != 0) { 2301 if (refcount_count(&buf->b_refcnt) == 0) { 2302 ASSERT(list_link_active(&buf->b_arc_node)); 2303 } else { 2304 buf->b_flags &= ~ARC_PREFETCH; 2305 ARCSTAT_BUMP(arcstat_mru_hits); 2306 } 2307 buf->b_arc_access = lbolt; 2308 return; 2309 } 2310 2311 /* 2312 * This buffer has been "accessed" only once so far, 2313 * but it is still in the cache. Move it to the MFU 2314 * state. 2315 */ 2316 if (lbolt > buf->b_arc_access + ARC_MINTIME) { 2317 /* 2318 * More than 125ms have passed since we 2319 * instantiated this buffer. Move it to the 2320 * most frequently used state. 2321 */ 2322 buf->b_arc_access = lbolt; 2323 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2324 arc_change_state(arc_mfu, buf, hash_lock); 2325 } 2326 ARCSTAT_BUMP(arcstat_mru_hits); 2327 } else if (buf->b_state == arc_mru_ghost) { 2328 arc_state_t *new_state; 2329 /* 2330 * This buffer has been "accessed" recently, but 2331 * was evicted from the cache. Move it to the 2332 * MFU state. 2333 */ 2334 2335 if (buf->b_flags & ARC_PREFETCH) { 2336 new_state = arc_mru; 2337 if (refcount_count(&buf->b_refcnt) > 0) 2338 buf->b_flags &= ~ARC_PREFETCH; 2339 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf); 2340 } else { 2341 new_state = arc_mfu; 2342 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2343 } 2344 2345 buf->b_arc_access = lbolt; 2346 arc_change_state(new_state, buf, hash_lock); 2347 2348 ARCSTAT_BUMP(arcstat_mru_ghost_hits); 2349 } else if (buf->b_state == arc_mfu) { 2350 /* 2351 * This buffer has been accessed more than once and is 2352 * still in the cache. Keep it in the MFU state. 2353 * 2354 * NOTE: an add_reference() that occurred when we did 2355 * the arc_read() will have kicked this off the list. 2356 * If it was a prefetch, we will explicitly move it to 2357 * the head of the list now. 2358 */ 2359 if ((buf->b_flags & ARC_PREFETCH) != 0) { 2360 ASSERT(refcount_count(&buf->b_refcnt) == 0); 2361 ASSERT(list_link_active(&buf->b_arc_node)); 2362 } 2363 ARCSTAT_BUMP(arcstat_mfu_hits); 2364 buf->b_arc_access = lbolt; 2365 } else if (buf->b_state == arc_mfu_ghost) { 2366 arc_state_t *new_state = arc_mfu; 2367 /* 2368 * This buffer has been accessed more than once but has 2369 * been evicted from the cache. Move it back to the 2370 * MFU state. 2371 */ 2372 2373 if (buf->b_flags & ARC_PREFETCH) { 2374 /* 2375 * This is a prefetch access... 2376 * move this block back to the MRU state. 2377 */ 2378 ASSERT3U(refcount_count(&buf->b_refcnt), ==, 0); 2379 new_state = arc_mru; 2380 } 2381 2382 buf->b_arc_access = lbolt; 2383 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2384 arc_change_state(new_state, buf, hash_lock); 2385 2386 ARCSTAT_BUMP(arcstat_mfu_ghost_hits); 2387 } else if (buf->b_state == arc_l2c_only) { 2388 /* 2389 * This buffer is on the 2nd Level ARC. 2390 */ 2391 2392 buf->b_arc_access = lbolt; 2393 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2394 arc_change_state(arc_mfu, buf, hash_lock); 2395 } else { 2396 ASSERT(!"invalid arc state"); 2397 } 2398 } 2399 2400 /* a generic arc_done_func_t which you can use */ 2401 /* ARGSUSED */ 2402 void 2403 arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg) 2404 { 2405 bcopy(buf->b_data, arg, buf->b_hdr->b_size); 2406 VERIFY(arc_buf_remove_ref(buf, arg) == 1); 2407 } 2408 2409 /* a generic arc_done_func_t */ 2410 void 2411 arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg) 2412 { 2413 arc_buf_t **bufp = arg; 2414 if (zio && zio->io_error) { 2415 VERIFY(arc_buf_remove_ref(buf, arg) == 1); 2416 *bufp = NULL; 2417 } else { 2418 *bufp = buf; 2419 } 2420 } 2421 2422 static void 2423 arc_read_done(zio_t *zio) 2424 { 2425 arc_buf_hdr_t *hdr, *found; 2426 arc_buf_t *buf; 2427 arc_buf_t *abuf; /* buffer we're assigning to callback */ 2428 kmutex_t *hash_lock; 2429 arc_callback_t *callback_list, *acb; 2430 int freeable = FALSE; 2431 2432 buf = zio->io_private; 2433 hdr = buf->b_hdr; 2434 2435 /* 2436 * The hdr was inserted into hash-table and removed from lists 2437 * prior to starting I/O. We should find this header, since 2438 * it's in the hash table, and it should be legit since it's 2439 * not possible to evict it during the I/O. The only possible 2440 * reason for it not to be found is if we were freed during the 2441 * read. 2442 */ 2443 found = buf_hash_find(hdr->b_spa, &hdr->b_dva, hdr->b_birth, 2444 &hash_lock); 2445 2446 ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) && hash_lock == NULL) || 2447 (found == hdr && DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) || 2448 (found == hdr && HDR_L2_READING(hdr))); 2449 2450 hdr->b_flags &= ~ARC_L2_EVICTED; 2451 if (l2arc_noprefetch && (hdr->b_flags & ARC_PREFETCH)) 2452 hdr->b_flags &= ~ARC_L2CACHE; 2453 2454 /* byteswap if necessary */ 2455 callback_list = hdr->b_acb; 2456 ASSERT(callback_list != NULL); 2457 if (BP_SHOULD_BYTESWAP(zio->io_bp) && zio->io_error == 0) { 2458 arc_byteswap_func_t *func = BP_GET_LEVEL(zio->io_bp) > 0 ? 2459 byteswap_uint64_array : 2460 dmu_ot[BP_GET_TYPE(zio->io_bp)].ot_byteswap; 2461 func(buf->b_data, hdr->b_size); 2462 } 2463 2464 arc_cksum_compute(buf, B_FALSE); 2465 2466 /* create copies of the data buffer for the callers */ 2467 abuf = buf; 2468 for (acb = callback_list; acb; acb = acb->acb_next) { 2469 if (acb->acb_done) { 2470 if (abuf == NULL) 2471 abuf = arc_buf_clone(buf); 2472 acb->acb_buf = abuf; 2473 abuf = NULL; 2474 } 2475 } 2476 hdr->b_acb = NULL; 2477 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 2478 ASSERT(!HDR_BUF_AVAILABLE(hdr)); 2479 if (abuf == buf) 2480 hdr->b_flags |= ARC_BUF_AVAILABLE; 2481 2482 ASSERT(refcount_is_zero(&hdr->b_refcnt) || callback_list != NULL); 2483 2484 if (zio->io_error != 0) { 2485 hdr->b_flags |= ARC_IO_ERROR; 2486 if (hdr->b_state != arc_anon) 2487 arc_change_state(arc_anon, hdr, hash_lock); 2488 if (HDR_IN_HASH_TABLE(hdr)) 2489 buf_hash_remove(hdr); 2490 freeable = refcount_is_zero(&hdr->b_refcnt); 2491 } 2492 2493 /* 2494 * Broadcast before we drop the hash_lock to avoid the possibility 2495 * that the hdr (and hence the cv) might be freed before we get to 2496 * the cv_broadcast(). 2497 */ 2498 cv_broadcast(&hdr->b_cv); 2499 2500 if (hash_lock) { 2501 /* 2502 * Only call arc_access on anonymous buffers. This is because 2503 * if we've issued an I/O for an evicted buffer, we've already 2504 * called arc_access (to prevent any simultaneous readers from 2505 * getting confused). 2506 */ 2507 if (zio->io_error == 0 && hdr->b_state == arc_anon) 2508 arc_access(hdr, hash_lock); 2509 mutex_exit(hash_lock); 2510 } else { 2511 /* 2512 * This block was freed while we waited for the read to 2513 * complete. It has been removed from the hash table and 2514 * moved to the anonymous state (so that it won't show up 2515 * in the cache). 2516 */ 2517 ASSERT3P(hdr->b_state, ==, arc_anon); 2518 freeable = refcount_is_zero(&hdr->b_refcnt); 2519 } 2520 2521 /* execute each callback and free its structure */ 2522 while ((acb = callback_list) != NULL) { 2523 if (acb->acb_done) 2524 acb->acb_done(zio, acb->acb_buf, acb->acb_private); 2525 2526 if (acb->acb_zio_dummy != NULL) { 2527 acb->acb_zio_dummy->io_error = zio->io_error; 2528 zio_nowait(acb->acb_zio_dummy); 2529 } 2530 2531 callback_list = acb->acb_next; 2532 kmem_free(acb, sizeof (arc_callback_t)); 2533 } 2534 2535 if (freeable) 2536 arc_hdr_destroy(hdr); 2537 } 2538 2539 /* 2540 * "Read" the block block at the specified DVA (in bp) via the 2541 * cache. If the block is found in the cache, invoke the provided 2542 * callback immediately and return. Note that the `zio' parameter 2543 * in the callback will be NULL in this case, since no IO was 2544 * required. If the block is not in the cache pass the read request 2545 * on to the spa with a substitute callback function, so that the 2546 * requested block will be added to the cache. 2547 * 2548 * If a read request arrives for a block that has a read in-progress, 2549 * either wait for the in-progress read to complete (and return the 2550 * results); or, if this is a read with a "done" func, add a record 2551 * to the read to invoke the "done" func when the read completes, 2552 * and return; or just return. 2553 * 2554 * arc_read_done() will invoke all the requested "done" functions 2555 * for readers of this block. 2556 * 2557 * Normal callers should use arc_read and pass the arc buffer and offset 2558 * for the bp. But if you know you don't need locking, you can use 2559 * arc_read_bp. 2560 */ 2561 int 2562 arc_read(zio_t *pio, spa_t *spa, blkptr_t *bp, arc_buf_t *pbuf, 2563 arc_done_func_t *done, void *private, int priority, int zio_flags, 2564 uint32_t *arc_flags, const zbookmark_t *zb) 2565 { 2566 int err; 2567 2568 ASSERT(!refcount_is_zero(&pbuf->b_hdr->b_refcnt)); 2569 ASSERT3U((char *)bp - (char *)pbuf->b_data, <, pbuf->b_hdr->b_size); 2570 rw_enter(&pbuf->b_lock, RW_READER); 2571 2572 err = arc_read_nolock(pio, spa, bp, done, private, priority, 2573 zio_flags, arc_flags, zb); 2574 rw_exit(&pbuf->b_lock); 2575 2576 return (err); 2577 } 2578 2579 int 2580 arc_read_nolock(zio_t *pio, spa_t *spa, blkptr_t *bp, 2581 arc_done_func_t *done, void *private, int priority, int zio_flags, 2582 uint32_t *arc_flags, const zbookmark_t *zb) 2583 { 2584 arc_buf_hdr_t *hdr; 2585 arc_buf_t *buf; 2586 kmutex_t *hash_lock; 2587 zio_t *rzio; 2588 uint64_t guid = spa_guid(spa); 2589 2590 top: 2591 hdr = buf_hash_find(guid, BP_IDENTITY(bp), bp->blk_birth, &hash_lock); 2592 if (hdr && hdr->b_datacnt > 0) { 2593 2594 *arc_flags |= ARC_CACHED; 2595 2596 if (HDR_IO_IN_PROGRESS(hdr)) { 2597 2598 if (*arc_flags & ARC_WAIT) { 2599 cv_wait(&hdr->b_cv, hash_lock); 2600 mutex_exit(hash_lock); 2601 goto top; 2602 } 2603 ASSERT(*arc_flags & ARC_NOWAIT); 2604 2605 if (done) { 2606 arc_callback_t *acb = NULL; 2607 2608 acb = kmem_zalloc(sizeof (arc_callback_t), 2609 KM_SLEEP); 2610 acb->acb_done = done; 2611 acb->acb_private = private; 2612 if (pio != NULL) 2613 acb->acb_zio_dummy = zio_null(pio, 2614 spa, NULL, NULL, NULL, zio_flags); 2615 2616 ASSERT(acb->acb_done != NULL); 2617 acb->acb_next = hdr->b_acb; 2618 hdr->b_acb = acb; 2619 add_reference(hdr, hash_lock, private); 2620 mutex_exit(hash_lock); 2621 return (0); 2622 } 2623 mutex_exit(hash_lock); 2624 return (0); 2625 } 2626 2627 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu); 2628 2629 if (done) { 2630 add_reference(hdr, hash_lock, private); 2631 /* 2632 * If this block is already in use, create a new 2633 * copy of the data so that we will be guaranteed 2634 * that arc_release() will always succeed. 2635 */ 2636 buf = hdr->b_buf; 2637 ASSERT(buf); 2638 ASSERT(buf->b_data); 2639 if (HDR_BUF_AVAILABLE(hdr)) { 2640 ASSERT(buf->b_efunc == NULL); 2641 hdr->b_flags &= ~ARC_BUF_AVAILABLE; 2642 } else { 2643 buf = arc_buf_clone(buf); 2644 } 2645 } else if (*arc_flags & ARC_PREFETCH && 2646 refcount_count(&hdr->b_refcnt) == 0) { 2647 hdr->b_flags |= ARC_PREFETCH; 2648 } 2649 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 2650 arc_access(hdr, hash_lock); 2651 if (*arc_flags & ARC_L2CACHE) 2652 hdr->b_flags |= ARC_L2CACHE; 2653 mutex_exit(hash_lock); 2654 ARCSTAT_BUMP(arcstat_hits); 2655 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH), 2656 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA, 2657 data, metadata, hits); 2658 2659 if (done) 2660 done(NULL, buf, private); 2661 } else { 2662 uint64_t size = BP_GET_LSIZE(bp); 2663 arc_callback_t *acb; 2664 vdev_t *vd = NULL; 2665 uint64_t addr; 2666 boolean_t devw = B_FALSE; 2667 2668 if (hdr == NULL) { 2669 /* this block is not in the cache */ 2670 arc_buf_hdr_t *exists; 2671 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp); 2672 buf = arc_buf_alloc(spa, size, private, type); 2673 hdr = buf->b_hdr; 2674 hdr->b_dva = *BP_IDENTITY(bp); 2675 hdr->b_birth = bp->blk_birth; 2676 hdr->b_cksum0 = bp->blk_cksum.zc_word[0]; 2677 exists = buf_hash_insert(hdr, &hash_lock); 2678 if (exists) { 2679 /* somebody beat us to the hash insert */ 2680 mutex_exit(hash_lock); 2681 bzero(&hdr->b_dva, sizeof (dva_t)); 2682 hdr->b_birth = 0; 2683 hdr->b_cksum0 = 0; 2684 (void) arc_buf_remove_ref(buf, private); 2685 goto top; /* restart the IO request */ 2686 } 2687 /* if this is a prefetch, we don't have a reference */ 2688 if (*arc_flags & ARC_PREFETCH) { 2689 (void) remove_reference(hdr, hash_lock, 2690 private); 2691 hdr->b_flags |= ARC_PREFETCH; 2692 } 2693 if (*arc_flags & ARC_L2CACHE) 2694 hdr->b_flags |= ARC_L2CACHE; 2695 if (BP_GET_LEVEL(bp) > 0) 2696 hdr->b_flags |= ARC_INDIRECT; 2697 } else { 2698 /* this block is in the ghost cache */ 2699 ASSERT(GHOST_STATE(hdr->b_state)); 2700 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 2701 ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 0); 2702 ASSERT(hdr->b_buf == NULL); 2703 2704 /* if this is a prefetch, we don't have a reference */ 2705 if (*arc_flags & ARC_PREFETCH) 2706 hdr->b_flags |= ARC_PREFETCH; 2707 else 2708 add_reference(hdr, hash_lock, private); 2709 if (*arc_flags & ARC_L2CACHE) 2710 hdr->b_flags |= ARC_L2CACHE; 2711 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 2712 buf->b_hdr = hdr; 2713 buf->b_data = NULL; 2714 buf->b_efunc = NULL; 2715 buf->b_private = NULL; 2716 buf->b_next = NULL; 2717 hdr->b_buf = buf; 2718 arc_get_data_buf(buf); 2719 ASSERT(hdr->b_datacnt == 0); 2720 hdr->b_datacnt = 1; 2721 2722 } 2723 2724 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP); 2725 acb->acb_done = done; 2726 acb->acb_private = private; 2727 2728 ASSERT(hdr->b_acb == NULL); 2729 hdr->b_acb = acb; 2730 hdr->b_flags |= ARC_IO_IN_PROGRESS; 2731 2732 /* 2733 * If the buffer has been evicted, migrate it to a present state 2734 * before issuing the I/O. Once we drop the hash-table lock, 2735 * the header will be marked as I/O in progress and have an 2736 * attached buffer. At this point, anybody who finds this 2737 * buffer ought to notice that it's legit but has a pending I/O. 2738 */ 2739 2740 if (GHOST_STATE(hdr->b_state)) 2741 arc_access(hdr, hash_lock); 2742 2743 if (HDR_L2CACHE(hdr) && hdr->b_l2hdr != NULL && 2744 (vd = hdr->b_l2hdr->b_dev->l2ad_vdev) != NULL) { 2745 devw = hdr->b_l2hdr->b_dev->l2ad_writing; 2746 addr = hdr->b_l2hdr->b_daddr; 2747 /* 2748 * Lock out device removal. 2749 */ 2750 if (vdev_is_dead(vd) || 2751 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER)) 2752 vd = NULL; 2753 } 2754 2755 mutex_exit(hash_lock); 2756 2757 ASSERT3U(hdr->b_size, ==, size); 2758 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp, 2759 uint64_t, size, zbookmark_t *, zb); 2760 ARCSTAT_BUMP(arcstat_misses); 2761 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH), 2762 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA, 2763 data, metadata, misses); 2764 2765 if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) { 2766 /* 2767 * Read from the L2ARC if the following are true: 2768 * 1. The L2ARC vdev was previously cached. 2769 * 2. This buffer still has L2ARC metadata. 2770 * 3. This buffer isn't currently writing to the L2ARC. 2771 * 4. The L2ARC entry wasn't evicted, which may 2772 * also have invalidated the vdev. 2773 * 5. This isn't prefetch and l2arc_noprefetch is set. 2774 */ 2775 if (hdr->b_l2hdr != NULL && 2776 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) && 2777 !(l2arc_noprefetch && HDR_PREFETCH(hdr))) { 2778 l2arc_read_callback_t *cb; 2779 2780 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr); 2781 ARCSTAT_BUMP(arcstat_l2_hits); 2782 2783 cb = kmem_zalloc(sizeof (l2arc_read_callback_t), 2784 KM_SLEEP); 2785 cb->l2rcb_buf = buf; 2786 cb->l2rcb_spa = spa; 2787 cb->l2rcb_bp = *bp; 2788 cb->l2rcb_zb = *zb; 2789 cb->l2rcb_flags = zio_flags; 2790 2791 /* 2792 * l2arc read. The SCL_L2ARC lock will be 2793 * released by l2arc_read_done(). 2794 */ 2795 rzio = zio_read_phys(pio, vd, addr, size, 2796 buf->b_data, ZIO_CHECKSUM_OFF, 2797 l2arc_read_done, cb, priority, zio_flags | 2798 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL | 2799 ZIO_FLAG_DONT_PROPAGATE | 2800 ZIO_FLAG_DONT_RETRY, B_FALSE); 2801 DTRACE_PROBE2(l2arc__read, vdev_t *, vd, 2802 zio_t *, rzio); 2803 ARCSTAT_INCR(arcstat_l2_read_bytes, size); 2804 2805 if (*arc_flags & ARC_NOWAIT) { 2806 zio_nowait(rzio); 2807 return (0); 2808 } 2809 2810 ASSERT(*arc_flags & ARC_WAIT); 2811 if (zio_wait(rzio) == 0) 2812 return (0); 2813 2814 /* l2arc read error; goto zio_read() */ 2815 } else { 2816 DTRACE_PROBE1(l2arc__miss, 2817 arc_buf_hdr_t *, hdr); 2818 ARCSTAT_BUMP(arcstat_l2_misses); 2819 if (HDR_L2_WRITING(hdr)) 2820 ARCSTAT_BUMP(arcstat_l2_rw_clash); 2821 spa_config_exit(spa, SCL_L2ARC, vd); 2822 } 2823 } else { 2824 if (vd != NULL) 2825 spa_config_exit(spa, SCL_L2ARC, vd); 2826 if (l2arc_ndev != 0) { 2827 DTRACE_PROBE1(l2arc__miss, 2828 arc_buf_hdr_t *, hdr); 2829 ARCSTAT_BUMP(arcstat_l2_misses); 2830 } 2831 } 2832 2833 rzio = zio_read(pio, spa, bp, buf->b_data, size, 2834 arc_read_done, buf, priority, zio_flags, zb); 2835 2836 if (*arc_flags & ARC_WAIT) 2837 return (zio_wait(rzio)); 2838 2839 ASSERT(*arc_flags & ARC_NOWAIT); 2840 zio_nowait(rzio); 2841 } 2842 return (0); 2843 } 2844 2845 void 2846 arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private) 2847 { 2848 ASSERT(buf->b_hdr != NULL); 2849 ASSERT(buf->b_hdr->b_state != arc_anon); 2850 ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt) || func == NULL); 2851 buf->b_efunc = func; 2852 buf->b_private = private; 2853 } 2854 2855 /* 2856 * This is used by the DMU to let the ARC know that a buffer is 2857 * being evicted, so the ARC should clean up. If this arc buf 2858 * is not yet in the evicted state, it will be put there. 2859 */ 2860 int 2861 arc_buf_evict(arc_buf_t *buf) 2862 { 2863 arc_buf_hdr_t *hdr; 2864 kmutex_t *hash_lock; 2865 arc_buf_t **bufp; 2866 2867 rw_enter(&buf->b_lock, RW_WRITER); 2868 hdr = buf->b_hdr; 2869 if (hdr == NULL) { 2870 /* 2871 * We are in arc_do_user_evicts(). 2872 */ 2873 ASSERT(buf->b_data == NULL); 2874 rw_exit(&buf->b_lock); 2875 return (0); 2876 } else if (buf->b_data == NULL) { 2877 arc_buf_t copy = *buf; /* structure assignment */ 2878 /* 2879 * We are on the eviction list; process this buffer now 2880 * but let arc_do_user_evicts() do the reaping. 2881 */ 2882 buf->b_efunc = NULL; 2883 rw_exit(&buf->b_lock); 2884 VERIFY(copy.b_efunc(©) == 0); 2885 return (1); 2886 } 2887 hash_lock = HDR_LOCK(hdr); 2888 mutex_enter(hash_lock); 2889 2890 ASSERT(buf->b_hdr == hdr); 2891 ASSERT3U(refcount_count(&hdr->b_refcnt), <, hdr->b_datacnt); 2892 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu); 2893 2894 /* 2895 * Pull this buffer off of the hdr 2896 */ 2897 bufp = &hdr->b_buf; 2898 while (*bufp != buf) 2899 bufp = &(*bufp)->b_next; 2900 *bufp = buf->b_next; 2901 2902 ASSERT(buf->b_data != NULL); 2903 arc_buf_destroy(buf, FALSE, FALSE); 2904 2905 if (hdr->b_datacnt == 0) { 2906 arc_state_t *old_state = hdr->b_state; 2907 arc_state_t *evicted_state; 2908 2909 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 2910 2911 evicted_state = 2912 (old_state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost; 2913 2914 mutex_enter(&old_state->arcs_mtx); 2915 mutex_enter(&evicted_state->arcs_mtx); 2916 2917 arc_change_state(evicted_state, hdr, hash_lock); 2918 ASSERT(HDR_IN_HASH_TABLE(hdr)); 2919 hdr->b_flags |= ARC_IN_HASH_TABLE; 2920 hdr->b_flags &= ~ARC_BUF_AVAILABLE; 2921 2922 mutex_exit(&evicted_state->arcs_mtx); 2923 mutex_exit(&old_state->arcs_mtx); 2924 } 2925 mutex_exit(hash_lock); 2926 rw_exit(&buf->b_lock); 2927 2928 VERIFY(buf->b_efunc(buf) == 0); 2929 buf->b_efunc = NULL; 2930 buf->b_private = NULL; 2931 buf->b_hdr = NULL; 2932 kmem_cache_free(buf_cache, buf); 2933 return (1); 2934 } 2935 2936 /* 2937 * Release this buffer from the cache. This must be done 2938 * after a read and prior to modifying the buffer contents. 2939 * If the buffer has more than one reference, we must make 2940 * a new hdr for the buffer. 2941 */ 2942 void 2943 arc_release(arc_buf_t *buf, void *tag) 2944 { 2945 arc_buf_hdr_t *hdr; 2946 kmutex_t *hash_lock; 2947 l2arc_buf_hdr_t *l2hdr; 2948 uint64_t buf_size; 2949 boolean_t released = B_FALSE; 2950 2951 rw_enter(&buf->b_lock, RW_WRITER); 2952 hdr = buf->b_hdr; 2953 2954 /* this buffer is not on any list */ 2955 ASSERT(refcount_count(&hdr->b_refcnt) > 0); 2956 ASSERT(!(hdr->b_flags & ARC_STORED)); 2957 2958 if (hdr->b_state == arc_anon) { 2959 /* this buffer is already released */ 2960 ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 1); 2961 ASSERT(BUF_EMPTY(hdr)); 2962 ASSERT(buf->b_efunc == NULL); 2963 arc_buf_thaw(buf); 2964 rw_exit(&buf->b_lock); 2965 released = B_TRUE; 2966 } else { 2967 hash_lock = HDR_LOCK(hdr); 2968 mutex_enter(hash_lock); 2969 } 2970 2971 l2hdr = hdr->b_l2hdr; 2972 if (l2hdr) { 2973 mutex_enter(&l2arc_buflist_mtx); 2974 hdr->b_l2hdr = NULL; 2975 buf_size = hdr->b_size; 2976 } 2977 2978 if (released) 2979 goto out; 2980 2981 /* 2982 * Do we have more than one buf? 2983 */ 2984 if (hdr->b_datacnt > 1) { 2985 arc_buf_hdr_t *nhdr; 2986 arc_buf_t **bufp; 2987 uint64_t blksz = hdr->b_size; 2988 uint64_t spa = hdr->b_spa; 2989 arc_buf_contents_t type = hdr->b_type; 2990 uint32_t flags = hdr->b_flags; 2991 2992 ASSERT(hdr->b_buf != buf || buf->b_next != NULL); 2993 /* 2994 * Pull the data off of this buf and attach it to 2995 * a new anonymous buf. 2996 */ 2997 (void) remove_reference(hdr, hash_lock, tag); 2998 bufp = &hdr->b_buf; 2999 while (*bufp != buf) 3000 bufp = &(*bufp)->b_next; 3001 *bufp = (*bufp)->b_next; 3002 buf->b_next = NULL; 3003 3004 ASSERT3U(hdr->b_state->arcs_size, >=, hdr->b_size); 3005 atomic_add_64(&hdr->b_state->arcs_size, -hdr->b_size); 3006 if (refcount_is_zero(&hdr->b_refcnt)) { 3007 uint64_t *size = &hdr->b_state->arcs_lsize[hdr->b_type]; 3008 ASSERT3U(*size, >=, hdr->b_size); 3009 atomic_add_64(size, -hdr->b_size); 3010 } 3011 hdr->b_datacnt -= 1; 3012 arc_cksum_verify(buf); 3013 3014 mutex_exit(hash_lock); 3015 3016 nhdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE); 3017 nhdr->b_size = blksz; 3018 nhdr->b_spa = spa; 3019 nhdr->b_type = type; 3020 nhdr->b_buf = buf; 3021 nhdr->b_state = arc_anon; 3022 nhdr->b_arc_access = 0; 3023 nhdr->b_flags = flags & ARC_L2_WRITING; 3024 nhdr->b_l2hdr = NULL; 3025 nhdr->b_datacnt = 1; 3026 nhdr->b_freeze_cksum = NULL; 3027 (void) refcount_add(&nhdr->b_refcnt, tag); 3028 buf->b_hdr = nhdr; 3029 rw_exit(&buf->b_lock); 3030 atomic_add_64(&arc_anon->arcs_size, blksz); 3031 } else { 3032 rw_exit(&buf->b_lock); 3033 ASSERT(refcount_count(&hdr->b_refcnt) == 1); 3034 ASSERT(!list_link_active(&hdr->b_arc_node)); 3035 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3036 arc_change_state(arc_anon, hdr, hash_lock); 3037 hdr->b_arc_access = 0; 3038 mutex_exit(hash_lock); 3039 3040 bzero(&hdr->b_dva, sizeof (dva_t)); 3041 hdr->b_birth = 0; 3042 hdr->b_cksum0 = 0; 3043 arc_buf_thaw(buf); 3044 } 3045 buf->b_efunc = NULL; 3046 buf->b_private = NULL; 3047 3048 out: 3049 if (l2hdr) { 3050 list_remove(l2hdr->b_dev->l2ad_buflist, hdr); 3051 kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t)); 3052 ARCSTAT_INCR(arcstat_l2_size, -buf_size); 3053 mutex_exit(&l2arc_buflist_mtx); 3054 } 3055 } 3056 3057 int 3058 arc_released(arc_buf_t *buf) 3059 { 3060 int released; 3061 3062 rw_enter(&buf->b_lock, RW_READER); 3063 released = (buf->b_data != NULL && buf->b_hdr->b_state == arc_anon); 3064 rw_exit(&buf->b_lock); 3065 return (released); 3066 } 3067 3068 int 3069 arc_has_callback(arc_buf_t *buf) 3070 { 3071 int callback; 3072 3073 rw_enter(&buf->b_lock, RW_READER); 3074 callback = (buf->b_efunc != NULL); 3075 rw_exit(&buf->b_lock); 3076 return (callback); 3077 } 3078 3079 #ifdef ZFS_DEBUG 3080 int 3081 arc_referenced(arc_buf_t *buf) 3082 { 3083 int referenced; 3084 3085 rw_enter(&buf->b_lock, RW_READER); 3086 referenced = (refcount_count(&buf->b_hdr->b_refcnt)); 3087 rw_exit(&buf->b_lock); 3088 return (referenced); 3089 } 3090 #endif 3091 3092 static void 3093 arc_write_ready(zio_t *zio) 3094 { 3095 arc_write_callback_t *callback = zio->io_private; 3096 arc_buf_t *buf = callback->awcb_buf; 3097 arc_buf_hdr_t *hdr = buf->b_hdr; 3098 3099 ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt)); 3100 callback->awcb_ready(zio, buf, callback->awcb_private); 3101 3102 /* 3103 * If the IO is already in progress, then this is a re-write 3104 * attempt, so we need to thaw and re-compute the cksum. 3105 * It is the responsibility of the callback to handle the 3106 * accounting for any re-write attempt. 3107 */ 3108 if (HDR_IO_IN_PROGRESS(hdr)) { 3109 mutex_enter(&hdr->b_freeze_lock); 3110 if (hdr->b_freeze_cksum != NULL) { 3111 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t)); 3112 hdr->b_freeze_cksum = NULL; 3113 } 3114 mutex_exit(&hdr->b_freeze_lock); 3115 } 3116 arc_cksum_compute(buf, B_FALSE); 3117 hdr->b_flags |= ARC_IO_IN_PROGRESS; 3118 } 3119 3120 static void 3121 arc_write_done(zio_t *zio) 3122 { 3123 arc_write_callback_t *callback = zio->io_private; 3124 arc_buf_t *buf = callback->awcb_buf; 3125 arc_buf_hdr_t *hdr = buf->b_hdr; 3126 3127 hdr->b_acb = NULL; 3128 3129 hdr->b_dva = *BP_IDENTITY(zio->io_bp); 3130 hdr->b_birth = zio->io_bp->blk_birth; 3131 hdr->b_cksum0 = zio->io_bp->blk_cksum.zc_word[0]; 3132 /* 3133 * If the block to be written was all-zero, we may have 3134 * compressed it away. In this case no write was performed 3135 * so there will be no dva/birth-date/checksum. The buffer 3136 * must therefor remain anonymous (and uncached). 3137 */ 3138 if (!BUF_EMPTY(hdr)) { 3139 arc_buf_hdr_t *exists; 3140 kmutex_t *hash_lock; 3141 3142 arc_cksum_verify(buf); 3143 3144 exists = buf_hash_insert(hdr, &hash_lock); 3145 if (exists) { 3146 /* 3147 * This can only happen if we overwrite for 3148 * sync-to-convergence, because we remove 3149 * buffers from the hash table when we arc_free(). 3150 */ 3151 if (!(zio->io_flags & ZIO_FLAG_IO_REWRITE) || 3152 !DVA_EQUAL(BP_IDENTITY(&zio->io_bp_orig), 3153 BP_IDENTITY(zio->io_bp)) || 3154 zio->io_bp_orig.blk_birth != 3155 zio->io_bp->blk_birth) { 3156 panic("bad overwrite, hdr=%p exists=%p", 3157 (void *)hdr, (void *)exists); 3158 } 3159 3160 ASSERT(refcount_is_zero(&exists->b_refcnt)); 3161 arc_change_state(arc_anon, exists, hash_lock); 3162 mutex_exit(hash_lock); 3163 arc_hdr_destroy(exists); 3164 exists = buf_hash_insert(hdr, &hash_lock); 3165 ASSERT3P(exists, ==, NULL); 3166 } 3167 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 3168 /* if it's not anon, we are doing a scrub */ 3169 if (hdr->b_state == arc_anon) 3170 arc_access(hdr, hash_lock); 3171 mutex_exit(hash_lock); 3172 } else if (callback->awcb_done == NULL) { 3173 int destroy_hdr; 3174 /* 3175 * This is an anonymous buffer with no user callback, 3176 * destroy it if there are no active references. 3177 */ 3178 mutex_enter(&arc_eviction_mtx); 3179 destroy_hdr = refcount_is_zero(&hdr->b_refcnt); 3180 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 3181 mutex_exit(&arc_eviction_mtx); 3182 if (destroy_hdr) 3183 arc_hdr_destroy(hdr); 3184 } else { 3185 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 3186 } 3187 hdr->b_flags &= ~ARC_STORED; 3188 3189 if (callback->awcb_done) { 3190 ASSERT(!refcount_is_zero(&hdr->b_refcnt)); 3191 callback->awcb_done(zio, buf, callback->awcb_private); 3192 } 3193 3194 kmem_free(callback, sizeof (arc_write_callback_t)); 3195 } 3196 3197 void 3198 write_policy(spa_t *spa, const writeprops_t *wp, zio_prop_t *zp) 3199 { 3200 boolean_t ismd = (wp->wp_level > 0 || dmu_ot[wp->wp_type].ot_metadata); 3201 3202 /* Determine checksum setting */ 3203 if (ismd) { 3204 /* 3205 * Metadata always gets checksummed. If the data 3206 * checksum is multi-bit correctable, and it's not a 3207 * ZBT-style checksum, then it's suitable for metadata 3208 * as well. Otherwise, the metadata checksum defaults 3209 * to fletcher4. 3210 */ 3211 if (zio_checksum_table[wp->wp_oschecksum].ci_correctable && 3212 !zio_checksum_table[wp->wp_oschecksum].ci_zbt) 3213 zp->zp_checksum = wp->wp_oschecksum; 3214 else 3215 zp->zp_checksum = ZIO_CHECKSUM_FLETCHER_4; 3216 } else { 3217 zp->zp_checksum = zio_checksum_select(wp->wp_dnchecksum, 3218 wp->wp_oschecksum); 3219 } 3220 3221 /* Determine compression setting */ 3222 if (ismd) { 3223 /* 3224 * XXX -- we should design a compression algorithm 3225 * that specializes in arrays of bps. 3226 */ 3227 zp->zp_compress = zfs_mdcomp_disable ? ZIO_COMPRESS_EMPTY : 3228 ZIO_COMPRESS_LZJB; 3229 } else { 3230 zp->zp_compress = zio_compress_select(wp->wp_dncompress, 3231 wp->wp_oscompress); 3232 } 3233 3234 zp->zp_type = wp->wp_type; 3235 zp->zp_level = wp->wp_level; 3236 zp->zp_ndvas = MIN(wp->wp_copies + ismd, spa_max_replication(spa)); 3237 } 3238 3239 zio_t * 3240 arc_write(zio_t *pio, spa_t *spa, const writeprops_t *wp, 3241 boolean_t l2arc, uint64_t txg, blkptr_t *bp, arc_buf_t *buf, 3242 arc_done_func_t *ready, arc_done_func_t *done, void *private, int priority, 3243 int zio_flags, const zbookmark_t *zb) 3244 { 3245 arc_buf_hdr_t *hdr = buf->b_hdr; 3246 arc_write_callback_t *callback; 3247 zio_t *zio; 3248 zio_prop_t zp; 3249 3250 ASSERT(ready != NULL); 3251 ASSERT(!HDR_IO_ERROR(hdr)); 3252 ASSERT((hdr->b_flags & ARC_IO_IN_PROGRESS) == 0); 3253 ASSERT(hdr->b_acb == 0); 3254 if (l2arc) 3255 hdr->b_flags |= ARC_L2CACHE; 3256 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP); 3257 callback->awcb_ready = ready; 3258 callback->awcb_done = done; 3259 callback->awcb_private = private; 3260 callback->awcb_buf = buf; 3261 3262 write_policy(spa, wp, &zp); 3263 zio = zio_write(pio, spa, txg, bp, buf->b_data, hdr->b_size, &zp, 3264 arc_write_ready, arc_write_done, callback, priority, zio_flags, zb); 3265 3266 return (zio); 3267 } 3268 3269 int 3270 arc_free(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, 3271 zio_done_func_t *done, void *private, uint32_t arc_flags) 3272 { 3273 arc_buf_hdr_t *ab; 3274 kmutex_t *hash_lock; 3275 zio_t *zio; 3276 uint64_t guid = spa_guid(spa); 3277 3278 /* 3279 * If this buffer is in the cache, release it, so it 3280 * can be re-used. 3281 */ 3282 ab = buf_hash_find(guid, BP_IDENTITY(bp), bp->blk_birth, &hash_lock); 3283 if (ab != NULL) { 3284 /* 3285 * The checksum of blocks to free is not always 3286 * preserved (eg. on the deadlist). However, if it is 3287 * nonzero, it should match what we have in the cache. 3288 */ 3289 ASSERT(bp->blk_cksum.zc_word[0] == 0 || 3290 bp->blk_cksum.zc_word[0] == ab->b_cksum0 || 3291 bp->blk_fill == BLK_FILL_ALREADY_FREED); 3292 3293 if (ab->b_state != arc_anon) 3294 arc_change_state(arc_anon, ab, hash_lock); 3295 if (HDR_IO_IN_PROGRESS(ab)) { 3296 /* 3297 * This should only happen when we prefetch. 3298 */ 3299 ASSERT(ab->b_flags & ARC_PREFETCH); 3300 ASSERT3U(ab->b_datacnt, ==, 1); 3301 ab->b_flags |= ARC_FREED_IN_READ; 3302 if (HDR_IN_HASH_TABLE(ab)) 3303 buf_hash_remove(ab); 3304 ab->b_arc_access = 0; 3305 bzero(&ab->b_dva, sizeof (dva_t)); 3306 ab->b_birth = 0; 3307 ab->b_cksum0 = 0; 3308 ab->b_buf->b_efunc = NULL; 3309 ab->b_buf->b_private = NULL; 3310 mutex_exit(hash_lock); 3311 } else if (refcount_is_zero(&ab->b_refcnt)) { 3312 ab->b_flags |= ARC_FREE_IN_PROGRESS; 3313 mutex_exit(hash_lock); 3314 arc_hdr_destroy(ab); 3315 ARCSTAT_BUMP(arcstat_deleted); 3316 } else { 3317 /* 3318 * We still have an active reference on this 3319 * buffer. This can happen, e.g., from 3320 * dbuf_unoverride(). 3321 */ 3322 ASSERT(!HDR_IN_HASH_TABLE(ab)); 3323 ab->b_arc_access = 0; 3324 bzero(&ab->b_dva, sizeof (dva_t)); 3325 ab->b_birth = 0; 3326 ab->b_cksum0 = 0; 3327 ab->b_buf->b_efunc = NULL; 3328 ab->b_buf->b_private = NULL; 3329 mutex_exit(hash_lock); 3330 } 3331 } 3332 3333 zio = zio_free(pio, spa, txg, bp, done, private, ZIO_FLAG_MUSTSUCCEED); 3334 3335 if (arc_flags & ARC_WAIT) 3336 return (zio_wait(zio)); 3337 3338 ASSERT(arc_flags & ARC_NOWAIT); 3339 zio_nowait(zio); 3340 3341 return (0); 3342 } 3343 3344 static int 3345 arc_memory_throttle(uint64_t reserve, uint64_t inflight_data, uint64_t txg) 3346 { 3347 #ifdef _KERNEL 3348 uint64_t available_memory = ptob(freemem); 3349 static uint64_t page_load = 0; 3350 static uint64_t last_txg = 0; 3351 3352 #if defined(__i386) 3353 available_memory = 3354 MIN(available_memory, vmem_size(heap_arena, VMEM_FREE)); 3355 #endif 3356 if (available_memory >= zfs_write_limit_max) 3357 return (0); 3358 3359 if (txg > last_txg) { 3360 last_txg = txg; 3361 page_load = 0; 3362 } 3363 /* 3364 * If we are in pageout, we know that memory is already tight, 3365 * the arc is already going to be evicting, so we just want to 3366 * continue to let page writes occur as quickly as possible. 3367 */ 3368 if (curproc == proc_pageout) { 3369 if (page_load > MAX(ptob(minfree), available_memory) / 4) 3370 return (ERESTART); 3371 /* Note: reserve is inflated, so we deflate */ 3372 page_load += reserve / 8; 3373 return (0); 3374 } else if (page_load > 0 && arc_reclaim_needed()) { 3375 /* memory is low, delay before restarting */ 3376 ARCSTAT_INCR(arcstat_memory_throttle_count, 1); 3377 return (EAGAIN); 3378 } 3379 page_load = 0; 3380 3381 if (arc_size > arc_c_min) { 3382 uint64_t evictable_memory = 3383 arc_mru->arcs_lsize[ARC_BUFC_DATA] + 3384 arc_mru->arcs_lsize[ARC_BUFC_METADATA] + 3385 arc_mfu->arcs_lsize[ARC_BUFC_DATA] + 3386 arc_mfu->arcs_lsize[ARC_BUFC_METADATA]; 3387 available_memory += MIN(evictable_memory, arc_size - arc_c_min); 3388 } 3389 3390 if (inflight_data > available_memory / 4) { 3391 ARCSTAT_INCR(arcstat_memory_throttle_count, 1); 3392 return (ERESTART); 3393 } 3394 #endif 3395 return (0); 3396 } 3397 3398 void 3399 arc_tempreserve_clear(uint64_t reserve) 3400 { 3401 atomic_add_64(&arc_tempreserve, -reserve); 3402 ASSERT((int64_t)arc_tempreserve >= 0); 3403 } 3404 3405 int 3406 arc_tempreserve_space(uint64_t reserve, uint64_t txg) 3407 { 3408 int error; 3409 uint64_t anon_size; 3410 3411 #ifdef ZFS_DEBUG 3412 /* 3413 * Once in a while, fail for no reason. Everything should cope. 3414 */ 3415 if (spa_get_random(10000) == 0) { 3416 dprintf("forcing random failure\n"); 3417 return (ERESTART); 3418 } 3419 #endif 3420 if (reserve > arc_c/4 && !arc_no_grow) 3421 arc_c = MIN(arc_c_max, reserve * 4); 3422 if (reserve > arc_c) 3423 return (ENOMEM); 3424 3425 /* 3426 * Don't count loaned bufs as in flight dirty data to prevent long 3427 * network delays from blocking transactions that are ready to be 3428 * assigned to a txg. 3429 */ 3430 anon_size = MAX((int64_t)(arc_anon->arcs_size - arc_loaned_bytes), 0); 3431 3432 /* 3433 * Writes will, almost always, require additional memory allocations 3434 * in order to compress/encrypt/etc the data. We therefor need to 3435 * make sure that there is sufficient available memory for this. 3436 */ 3437 if (error = arc_memory_throttle(reserve, anon_size, txg)) 3438 return (error); 3439 3440 /* 3441 * Throttle writes when the amount of dirty data in the cache 3442 * gets too large. We try to keep the cache less than half full 3443 * of dirty blocks so that our sync times don't grow too large. 3444 * Note: if two requests come in concurrently, we might let them 3445 * both succeed, when one of them should fail. Not a huge deal. 3446 */ 3447 3448 if (reserve + arc_tempreserve + anon_size > arc_c / 2 && 3449 anon_size > arc_c / 4) { 3450 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK " 3451 "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n", 3452 arc_tempreserve>>10, 3453 arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10, 3454 arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10, 3455 reserve>>10, arc_c>>10); 3456 return (ERESTART); 3457 } 3458 atomic_add_64(&arc_tempreserve, reserve); 3459 return (0); 3460 } 3461 3462 void 3463 arc_init(void) 3464 { 3465 mutex_init(&arc_reclaim_thr_lock, NULL, MUTEX_DEFAULT, NULL); 3466 cv_init(&arc_reclaim_thr_cv, NULL, CV_DEFAULT, NULL); 3467 3468 /* Convert seconds to clock ticks */ 3469 arc_min_prefetch_lifespan = 1 * hz; 3470 3471 /* Start out with 1/8 of all memory */ 3472 arc_c = physmem * PAGESIZE / 8; 3473 3474 #ifdef _KERNEL 3475 /* 3476 * On architectures where the physical memory can be larger 3477 * than the addressable space (intel in 32-bit mode), we may 3478 * need to limit the cache to 1/8 of VM size. 3479 */ 3480 arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8); 3481 #endif 3482 3483 /* set min cache to 1/32 of all memory, or 64MB, whichever is more */ 3484 arc_c_min = MAX(arc_c / 4, 64<<20); 3485 /* set max to 3/4 of all memory, or all but 1GB, whichever is more */ 3486 if (arc_c * 8 >= 1<<30) 3487 arc_c_max = (arc_c * 8) - (1<<30); 3488 else 3489 arc_c_max = arc_c_min; 3490 arc_c_max = MAX(arc_c * 6, arc_c_max); 3491 3492 /* 3493 * Allow the tunables to override our calculations if they are 3494 * reasonable (ie. over 64MB) 3495 */ 3496 if (zfs_arc_max > 64<<20 && zfs_arc_max < physmem * PAGESIZE) 3497 arc_c_max = zfs_arc_max; 3498 if (zfs_arc_min > 64<<20 && zfs_arc_min <= arc_c_max) 3499 arc_c_min = zfs_arc_min; 3500 3501 arc_c = arc_c_max; 3502 arc_p = (arc_c >> 1); 3503 3504 /* limit meta-data to 1/4 of the arc capacity */ 3505 arc_meta_limit = arc_c_max / 4; 3506 3507 /* Allow the tunable to override if it is reasonable */ 3508 if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max) 3509 arc_meta_limit = zfs_arc_meta_limit; 3510 3511 if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0) 3512 arc_c_min = arc_meta_limit / 2; 3513 3514 if (zfs_arc_grow_retry > 0) 3515 arc_grow_retry = zfs_arc_grow_retry; 3516 3517 if (zfs_arc_shrink_shift > 0) 3518 arc_shrink_shift = zfs_arc_shrink_shift; 3519 3520 if (zfs_arc_p_min_shift > 0) 3521 arc_p_min_shift = zfs_arc_p_min_shift; 3522 3523 /* if kmem_flags are set, lets try to use less memory */ 3524 if (kmem_debugging()) 3525 arc_c = arc_c / 2; 3526 if (arc_c < arc_c_min) 3527 arc_c = arc_c_min; 3528 3529 arc_anon = &ARC_anon; 3530 arc_mru = &ARC_mru; 3531 arc_mru_ghost = &ARC_mru_ghost; 3532 arc_mfu = &ARC_mfu; 3533 arc_mfu_ghost = &ARC_mfu_ghost; 3534 arc_l2c_only = &ARC_l2c_only; 3535 arc_size = 0; 3536 3537 mutex_init(&arc_anon->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3538 mutex_init(&arc_mru->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3539 mutex_init(&arc_mru_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3540 mutex_init(&arc_mfu->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3541 mutex_init(&arc_mfu_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3542 mutex_init(&arc_l2c_only->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3543 3544 list_create(&arc_mru->arcs_list[ARC_BUFC_METADATA], 3545 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3546 list_create(&arc_mru->arcs_list[ARC_BUFC_DATA], 3547 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3548 list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA], 3549 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3550 list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA], 3551 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3552 list_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA], 3553 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3554 list_create(&arc_mfu->arcs_list[ARC_BUFC_DATA], 3555 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3556 list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA], 3557 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3558 list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA], 3559 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3560 list_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA], 3561 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3562 list_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA], 3563 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3564 3565 buf_init(); 3566 3567 arc_thread_exit = 0; 3568 arc_eviction_list = NULL; 3569 mutex_init(&arc_eviction_mtx, NULL, MUTEX_DEFAULT, NULL); 3570 bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t)); 3571 3572 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED, 3573 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); 3574 3575 if (arc_ksp != NULL) { 3576 arc_ksp->ks_data = &arc_stats; 3577 kstat_install(arc_ksp); 3578 } 3579 3580 (void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0, 3581 TS_RUN, minclsyspri); 3582 3583 arc_dead = FALSE; 3584 arc_warm = B_FALSE; 3585 3586 if (zfs_write_limit_max == 0) 3587 zfs_write_limit_max = ptob(physmem) >> zfs_write_limit_shift; 3588 else 3589 zfs_write_limit_shift = 0; 3590 mutex_init(&zfs_write_limit_lock, NULL, MUTEX_DEFAULT, NULL); 3591 } 3592 3593 void 3594 arc_fini(void) 3595 { 3596 mutex_enter(&arc_reclaim_thr_lock); 3597 arc_thread_exit = 1; 3598 while (arc_thread_exit != 0) 3599 cv_wait(&arc_reclaim_thr_cv, &arc_reclaim_thr_lock); 3600 mutex_exit(&arc_reclaim_thr_lock); 3601 3602 arc_flush(NULL); 3603 3604 arc_dead = TRUE; 3605 3606 if (arc_ksp != NULL) { 3607 kstat_delete(arc_ksp); 3608 arc_ksp = NULL; 3609 } 3610 3611 mutex_destroy(&arc_eviction_mtx); 3612 mutex_destroy(&arc_reclaim_thr_lock); 3613 cv_destroy(&arc_reclaim_thr_cv); 3614 3615 list_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]); 3616 list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]); 3617 list_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]); 3618 list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]); 3619 list_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]); 3620 list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]); 3621 list_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]); 3622 list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]); 3623 3624 mutex_destroy(&arc_anon->arcs_mtx); 3625 mutex_destroy(&arc_mru->arcs_mtx); 3626 mutex_destroy(&arc_mru_ghost->arcs_mtx); 3627 mutex_destroy(&arc_mfu->arcs_mtx); 3628 mutex_destroy(&arc_mfu_ghost->arcs_mtx); 3629 mutex_destroy(&arc_l2c_only->arcs_mtx); 3630 3631 mutex_destroy(&zfs_write_limit_lock); 3632 3633 buf_fini(); 3634 3635 ASSERT(arc_loaned_bytes == 0); 3636 } 3637 3638 /* 3639 * Level 2 ARC 3640 * 3641 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk. 3642 * It uses dedicated storage devices to hold cached data, which are populated 3643 * using large infrequent writes. The main role of this cache is to boost 3644 * the performance of random read workloads. The intended L2ARC devices 3645 * include short-stroked disks, solid state disks, and other media with 3646 * substantially faster read latency than disk. 3647 * 3648 * +-----------------------+ 3649 * | ARC | 3650 * +-----------------------+ 3651 * | ^ ^ 3652 * | | | 3653 * l2arc_feed_thread() arc_read() 3654 * | | | 3655 * | l2arc read | 3656 * V | | 3657 * +---------------+ | 3658 * | L2ARC | | 3659 * +---------------+ | 3660 * | ^ | 3661 * l2arc_write() | | 3662 * | | | 3663 * V | | 3664 * +-------+ +-------+ 3665 * | vdev | | vdev | 3666 * | cache | | cache | 3667 * +-------+ +-------+ 3668 * +=========+ .-----. 3669 * : L2ARC : |-_____-| 3670 * : devices : | Disks | 3671 * +=========+ `-_____-' 3672 * 3673 * Read requests are satisfied from the following sources, in order: 3674 * 3675 * 1) ARC 3676 * 2) vdev cache of L2ARC devices 3677 * 3) L2ARC devices 3678 * 4) vdev cache of disks 3679 * 5) disks 3680 * 3681 * Some L2ARC device types exhibit extremely slow write performance. 3682 * To accommodate for this there are some significant differences between 3683 * the L2ARC and traditional cache design: 3684 * 3685 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from 3686 * the ARC behave as usual, freeing buffers and placing headers on ghost 3687 * lists. The ARC does not send buffers to the L2ARC during eviction as 3688 * this would add inflated write latencies for all ARC memory pressure. 3689 * 3690 * 2. The L2ARC attempts to cache data from the ARC before it is evicted. 3691 * It does this by periodically scanning buffers from the eviction-end of 3692 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are 3693 * not already there. It scans until a headroom of buffers is satisfied, 3694 * which itself is a buffer for ARC eviction. The thread that does this is 3695 * l2arc_feed_thread(), illustrated below; example sizes are included to 3696 * provide a better sense of ratio than this diagram: 3697 * 3698 * head --> tail 3699 * +---------------------+----------+ 3700 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC 3701 * +---------------------+----------+ | o L2ARC eligible 3702 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer 3703 * +---------------------+----------+ | 3704 * 15.9 Gbytes ^ 32 Mbytes | 3705 * headroom | 3706 * l2arc_feed_thread() 3707 * | 3708 * l2arc write hand <--[oooo]--' 3709 * | 8 Mbyte 3710 * | write max 3711 * V 3712 * +==============================+ 3713 * L2ARC dev |####|#|###|###| |####| ... | 3714 * +==============================+ 3715 * 32 Gbytes 3716 * 3717 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of 3718 * evicted, then the L2ARC has cached a buffer much sooner than it probably 3719 * needed to, potentially wasting L2ARC device bandwidth and storage. It is 3720 * safe to say that this is an uncommon case, since buffers at the end of 3721 * the ARC lists have moved there due to inactivity. 3722 * 3723 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom, 3724 * then the L2ARC simply misses copying some buffers. This serves as a 3725 * pressure valve to prevent heavy read workloads from both stalling the ARC 3726 * with waits and clogging the L2ARC with writes. This also helps prevent 3727 * the potential for the L2ARC to churn if it attempts to cache content too 3728 * quickly, such as during backups of the entire pool. 3729 * 3730 * 5. After system boot and before the ARC has filled main memory, there are 3731 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru 3732 * lists can remain mostly static. Instead of searching from tail of these 3733 * lists as pictured, the l2arc_feed_thread() will search from the list heads 3734 * for eligible buffers, greatly increasing its chance of finding them. 3735 * 3736 * The L2ARC device write speed is also boosted during this time so that 3737 * the L2ARC warms up faster. Since there have been no ARC evictions yet, 3738 * there are no L2ARC reads, and no fear of degrading read performance 3739 * through increased writes. 3740 * 3741 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that 3742 * the vdev queue can aggregate them into larger and fewer writes. Each 3743 * device is written to in a rotor fashion, sweeping writes through 3744 * available space then repeating. 3745 * 3746 * 7. The L2ARC does not store dirty content. It never needs to flush 3747 * write buffers back to disk based storage. 3748 * 3749 * 8. If an ARC buffer is written (and dirtied) which also exists in the 3750 * L2ARC, the now stale L2ARC buffer is immediately dropped. 3751 * 3752 * The performance of the L2ARC can be tweaked by a number of tunables, which 3753 * may be necessary for different workloads: 3754 * 3755 * l2arc_write_max max write bytes per interval 3756 * l2arc_write_boost extra write bytes during device warmup 3757 * l2arc_noprefetch skip caching prefetched buffers 3758 * l2arc_headroom number of max device writes to precache 3759 * l2arc_feed_secs seconds between L2ARC writing 3760 * 3761 * Tunables may be removed or added as future performance improvements are 3762 * integrated, and also may become zpool properties. 3763 * 3764 * There are three key functions that control how the L2ARC warms up: 3765 * 3766 * l2arc_write_eligible() check if a buffer is eligible to cache 3767 * l2arc_write_size() calculate how much to write 3768 * l2arc_write_interval() calculate sleep delay between writes 3769 * 3770 * These three functions determine what to write, how much, and how quickly 3771 * to send writes. 3772 */ 3773 3774 static boolean_t 3775 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab) 3776 { 3777 /* 3778 * A buffer is *not* eligible for the L2ARC if it: 3779 * 1. belongs to a different spa. 3780 * 2. is already cached on the L2ARC. 3781 * 3. has an I/O in progress (it may be an incomplete read). 3782 * 4. is flagged not eligible (zfs property). 3783 */ 3784 if (ab->b_spa != spa_guid || ab->b_l2hdr != NULL || 3785 HDR_IO_IN_PROGRESS(ab) || !HDR_L2CACHE(ab)) 3786 return (B_FALSE); 3787 3788 return (B_TRUE); 3789 } 3790 3791 static uint64_t 3792 l2arc_write_size(l2arc_dev_t *dev) 3793 { 3794 uint64_t size; 3795 3796 size = dev->l2ad_write; 3797 3798 if (arc_warm == B_FALSE) 3799 size += dev->l2ad_boost; 3800 3801 return (size); 3802 3803 } 3804 3805 static clock_t 3806 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote) 3807 { 3808 clock_t interval, next; 3809 3810 /* 3811 * If the ARC lists are busy, increase our write rate; if the 3812 * lists are stale, idle back. This is achieved by checking 3813 * how much we previously wrote - if it was more than half of 3814 * what we wanted, schedule the next write much sooner. 3815 */ 3816 if (l2arc_feed_again && wrote > (wanted / 2)) 3817 interval = (hz * l2arc_feed_min_ms) / 1000; 3818 else 3819 interval = hz * l2arc_feed_secs; 3820 3821 next = MAX(lbolt, MIN(lbolt + interval, began + interval)); 3822 3823 return (next); 3824 } 3825 3826 static void 3827 l2arc_hdr_stat_add(void) 3828 { 3829 ARCSTAT_INCR(arcstat_l2_hdr_size, HDR_SIZE + L2HDR_SIZE); 3830 ARCSTAT_INCR(arcstat_hdr_size, -HDR_SIZE); 3831 } 3832 3833 static void 3834 l2arc_hdr_stat_remove(void) 3835 { 3836 ARCSTAT_INCR(arcstat_l2_hdr_size, -(HDR_SIZE + L2HDR_SIZE)); 3837 ARCSTAT_INCR(arcstat_hdr_size, HDR_SIZE); 3838 } 3839 3840 /* 3841 * Cycle through L2ARC devices. This is how L2ARC load balances. 3842 * If a device is returned, this also returns holding the spa config lock. 3843 */ 3844 static l2arc_dev_t * 3845 l2arc_dev_get_next(void) 3846 { 3847 l2arc_dev_t *first, *next = NULL; 3848 3849 /* 3850 * Lock out the removal of spas (spa_namespace_lock), then removal 3851 * of cache devices (l2arc_dev_mtx). Once a device has been selected, 3852 * both locks will be dropped and a spa config lock held instead. 3853 */ 3854 mutex_enter(&spa_namespace_lock); 3855 mutex_enter(&l2arc_dev_mtx); 3856 3857 /* if there are no vdevs, there is nothing to do */ 3858 if (l2arc_ndev == 0) 3859 goto out; 3860 3861 first = NULL; 3862 next = l2arc_dev_last; 3863 do { 3864 /* loop around the list looking for a non-faulted vdev */ 3865 if (next == NULL) { 3866 next = list_head(l2arc_dev_list); 3867 } else { 3868 next = list_next(l2arc_dev_list, next); 3869 if (next == NULL) 3870 next = list_head(l2arc_dev_list); 3871 } 3872 3873 /* if we have come back to the start, bail out */ 3874 if (first == NULL) 3875 first = next; 3876 else if (next == first) 3877 break; 3878 3879 } while (vdev_is_dead(next->l2ad_vdev)); 3880 3881 /* if we were unable to find any usable vdevs, return NULL */ 3882 if (vdev_is_dead(next->l2ad_vdev)) 3883 next = NULL; 3884 3885 l2arc_dev_last = next; 3886 3887 out: 3888 mutex_exit(&l2arc_dev_mtx); 3889 3890 /* 3891 * Grab the config lock to prevent the 'next' device from being 3892 * removed while we are writing to it. 3893 */ 3894 if (next != NULL) 3895 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER); 3896 mutex_exit(&spa_namespace_lock); 3897 3898 return (next); 3899 } 3900 3901 /* 3902 * Free buffers that were tagged for destruction. 3903 */ 3904 static void 3905 l2arc_do_free_on_write() 3906 { 3907 list_t *buflist; 3908 l2arc_data_free_t *df, *df_prev; 3909 3910 mutex_enter(&l2arc_free_on_write_mtx); 3911 buflist = l2arc_free_on_write; 3912 3913 for (df = list_tail(buflist); df; df = df_prev) { 3914 df_prev = list_prev(buflist, df); 3915 ASSERT(df->l2df_data != NULL); 3916 ASSERT(df->l2df_func != NULL); 3917 df->l2df_func(df->l2df_data, df->l2df_size); 3918 list_remove(buflist, df); 3919 kmem_free(df, sizeof (l2arc_data_free_t)); 3920 } 3921 3922 mutex_exit(&l2arc_free_on_write_mtx); 3923 } 3924 3925 /* 3926 * A write to a cache device has completed. Update all headers to allow 3927 * reads from these buffers to begin. 3928 */ 3929 static void 3930 l2arc_write_done(zio_t *zio) 3931 { 3932 l2arc_write_callback_t *cb; 3933 l2arc_dev_t *dev; 3934 list_t *buflist; 3935 arc_buf_hdr_t *head, *ab, *ab_prev; 3936 l2arc_buf_hdr_t *abl2; 3937 kmutex_t *hash_lock; 3938 3939 cb = zio->io_private; 3940 ASSERT(cb != NULL); 3941 dev = cb->l2wcb_dev; 3942 ASSERT(dev != NULL); 3943 head = cb->l2wcb_head; 3944 ASSERT(head != NULL); 3945 buflist = dev->l2ad_buflist; 3946 ASSERT(buflist != NULL); 3947 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio, 3948 l2arc_write_callback_t *, cb); 3949 3950 if (zio->io_error != 0) 3951 ARCSTAT_BUMP(arcstat_l2_writes_error); 3952 3953 mutex_enter(&l2arc_buflist_mtx); 3954 3955 /* 3956 * All writes completed, or an error was hit. 3957 */ 3958 for (ab = list_prev(buflist, head); ab; ab = ab_prev) { 3959 ab_prev = list_prev(buflist, ab); 3960 3961 hash_lock = HDR_LOCK(ab); 3962 if (!mutex_tryenter(hash_lock)) { 3963 /* 3964 * This buffer misses out. It may be in a stage 3965 * of eviction. Its ARC_L2_WRITING flag will be 3966 * left set, denying reads to this buffer. 3967 */ 3968 ARCSTAT_BUMP(arcstat_l2_writes_hdr_miss); 3969 continue; 3970 } 3971 3972 if (zio->io_error != 0) { 3973 /* 3974 * Error - drop L2ARC entry. 3975 */ 3976 list_remove(buflist, ab); 3977 abl2 = ab->b_l2hdr; 3978 ab->b_l2hdr = NULL; 3979 kmem_free(abl2, sizeof (l2arc_buf_hdr_t)); 3980 ARCSTAT_INCR(arcstat_l2_size, -ab->b_size); 3981 } 3982 3983 /* 3984 * Allow ARC to begin reads to this L2ARC entry. 3985 */ 3986 ab->b_flags &= ~ARC_L2_WRITING; 3987 3988 mutex_exit(hash_lock); 3989 } 3990 3991 atomic_inc_64(&l2arc_writes_done); 3992 list_remove(buflist, head); 3993 kmem_cache_free(hdr_cache, head); 3994 mutex_exit(&l2arc_buflist_mtx); 3995 3996 l2arc_do_free_on_write(); 3997 3998 kmem_free(cb, sizeof (l2arc_write_callback_t)); 3999 } 4000 4001 /* 4002 * A read to a cache device completed. Validate buffer contents before 4003 * handing over to the regular ARC routines. 4004 */ 4005 static void 4006 l2arc_read_done(zio_t *zio) 4007 { 4008 l2arc_read_callback_t *cb; 4009 arc_buf_hdr_t *hdr; 4010 arc_buf_t *buf; 4011 kmutex_t *hash_lock; 4012 int equal; 4013 4014 ASSERT(zio->io_vd != NULL); 4015 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE); 4016 4017 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd); 4018 4019 cb = zio->io_private; 4020 ASSERT(cb != NULL); 4021 buf = cb->l2rcb_buf; 4022 ASSERT(buf != NULL); 4023 hdr = buf->b_hdr; 4024 ASSERT(hdr != NULL); 4025 4026 hash_lock = HDR_LOCK(hdr); 4027 mutex_enter(hash_lock); 4028 4029 /* 4030 * Check this survived the L2ARC journey. 4031 */ 4032 equal = arc_cksum_equal(buf); 4033 if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) { 4034 mutex_exit(hash_lock); 4035 zio->io_private = buf; 4036 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */ 4037 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */ 4038 arc_read_done(zio); 4039 } else { 4040 mutex_exit(hash_lock); 4041 /* 4042 * Buffer didn't survive caching. Increment stats and 4043 * reissue to the original storage device. 4044 */ 4045 if (zio->io_error != 0) { 4046 ARCSTAT_BUMP(arcstat_l2_io_error); 4047 } else { 4048 zio->io_error = EIO; 4049 } 4050 if (!equal) 4051 ARCSTAT_BUMP(arcstat_l2_cksum_bad); 4052 4053 /* 4054 * If there's no waiter, issue an async i/o to the primary 4055 * storage now. If there *is* a waiter, the caller must 4056 * issue the i/o in a context where it's OK to block. 4057 */ 4058 if (zio->io_waiter == NULL) { 4059 zio_t *pio = zio_unique_parent(zio); 4060 4061 ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL); 4062 4063 zio_nowait(zio_read(pio, cb->l2rcb_spa, &cb->l2rcb_bp, 4064 buf->b_data, zio->io_size, arc_read_done, buf, 4065 zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb)); 4066 } 4067 } 4068 4069 kmem_free(cb, sizeof (l2arc_read_callback_t)); 4070 } 4071 4072 /* 4073 * This is the list priority from which the L2ARC will search for pages to 4074 * cache. This is used within loops (0..3) to cycle through lists in the 4075 * desired order. This order can have a significant effect on cache 4076 * performance. 4077 * 4078 * Currently the metadata lists are hit first, MFU then MRU, followed by 4079 * the data lists. This function returns a locked list, and also returns 4080 * the lock pointer. 4081 */ 4082 static list_t * 4083 l2arc_list_locked(int list_num, kmutex_t **lock) 4084 { 4085 list_t *list; 4086 4087 ASSERT(list_num >= 0 && list_num <= 3); 4088 4089 switch (list_num) { 4090 case 0: 4091 list = &arc_mfu->arcs_list[ARC_BUFC_METADATA]; 4092 *lock = &arc_mfu->arcs_mtx; 4093 break; 4094 case 1: 4095 list = &arc_mru->arcs_list[ARC_BUFC_METADATA]; 4096 *lock = &arc_mru->arcs_mtx; 4097 break; 4098 case 2: 4099 list = &arc_mfu->arcs_list[ARC_BUFC_DATA]; 4100 *lock = &arc_mfu->arcs_mtx; 4101 break; 4102 case 3: 4103 list = &arc_mru->arcs_list[ARC_BUFC_DATA]; 4104 *lock = &arc_mru->arcs_mtx; 4105 break; 4106 } 4107 4108 ASSERT(!(MUTEX_HELD(*lock))); 4109 mutex_enter(*lock); 4110 return (list); 4111 } 4112 4113 /* 4114 * Evict buffers from the device write hand to the distance specified in 4115 * bytes. This distance may span populated buffers, it may span nothing. 4116 * This is clearing a region on the L2ARC device ready for writing. 4117 * If the 'all' boolean is set, every buffer is evicted. 4118 */ 4119 static void 4120 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all) 4121 { 4122 list_t *buflist; 4123 l2arc_buf_hdr_t *abl2; 4124 arc_buf_hdr_t *ab, *ab_prev; 4125 kmutex_t *hash_lock; 4126 uint64_t taddr; 4127 4128 buflist = dev->l2ad_buflist; 4129 4130 if (buflist == NULL) 4131 return; 4132 4133 if (!all && dev->l2ad_first) { 4134 /* 4135 * This is the first sweep through the device. There is 4136 * nothing to evict. 4137 */ 4138 return; 4139 } 4140 4141 if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) { 4142 /* 4143 * When nearing the end of the device, evict to the end 4144 * before the device write hand jumps to the start. 4145 */ 4146 taddr = dev->l2ad_end; 4147 } else { 4148 taddr = dev->l2ad_hand + distance; 4149 } 4150 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist, 4151 uint64_t, taddr, boolean_t, all); 4152 4153 top: 4154 mutex_enter(&l2arc_buflist_mtx); 4155 for (ab = list_tail(buflist); ab; ab = ab_prev) { 4156 ab_prev = list_prev(buflist, ab); 4157 4158 hash_lock = HDR_LOCK(ab); 4159 if (!mutex_tryenter(hash_lock)) { 4160 /* 4161 * Missed the hash lock. Retry. 4162 */ 4163 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry); 4164 mutex_exit(&l2arc_buflist_mtx); 4165 mutex_enter(hash_lock); 4166 mutex_exit(hash_lock); 4167 goto top; 4168 } 4169 4170 if (HDR_L2_WRITE_HEAD(ab)) { 4171 /* 4172 * We hit a write head node. Leave it for 4173 * l2arc_write_done(). 4174 */ 4175 list_remove(buflist, ab); 4176 mutex_exit(hash_lock); 4177 continue; 4178 } 4179 4180 if (!all && ab->b_l2hdr != NULL && 4181 (ab->b_l2hdr->b_daddr > taddr || 4182 ab->b_l2hdr->b_daddr < dev->l2ad_hand)) { 4183 /* 4184 * We've evicted to the target address, 4185 * or the end of the device. 4186 */ 4187 mutex_exit(hash_lock); 4188 break; 4189 } 4190 4191 if (HDR_FREE_IN_PROGRESS(ab)) { 4192 /* 4193 * Already on the path to destruction. 4194 */ 4195 mutex_exit(hash_lock); 4196 continue; 4197 } 4198 4199 if (ab->b_state == arc_l2c_only) { 4200 ASSERT(!HDR_L2_READING(ab)); 4201 /* 4202 * This doesn't exist in the ARC. Destroy. 4203 * arc_hdr_destroy() will call list_remove() 4204 * and decrement arcstat_l2_size. 4205 */ 4206 arc_change_state(arc_anon, ab, hash_lock); 4207 arc_hdr_destroy(ab); 4208 } else { 4209 /* 4210 * Invalidate issued or about to be issued 4211 * reads, since we may be about to write 4212 * over this location. 4213 */ 4214 if (HDR_L2_READING(ab)) { 4215 ARCSTAT_BUMP(arcstat_l2_evict_reading); 4216 ab->b_flags |= ARC_L2_EVICTED; 4217 } 4218 4219 /* 4220 * Tell ARC this no longer exists in L2ARC. 4221 */ 4222 if (ab->b_l2hdr != NULL) { 4223 abl2 = ab->b_l2hdr; 4224 ab->b_l2hdr = NULL; 4225 kmem_free(abl2, sizeof (l2arc_buf_hdr_t)); 4226 ARCSTAT_INCR(arcstat_l2_size, -ab->b_size); 4227 } 4228 list_remove(buflist, ab); 4229 4230 /* 4231 * This may have been leftover after a 4232 * failed write. 4233 */ 4234 ab->b_flags &= ~ARC_L2_WRITING; 4235 } 4236 mutex_exit(hash_lock); 4237 } 4238 mutex_exit(&l2arc_buflist_mtx); 4239 4240 spa_l2cache_space_update(dev->l2ad_vdev, 0, -(taddr - dev->l2ad_evict)); 4241 dev->l2ad_evict = taddr; 4242 } 4243 4244 /* 4245 * Find and write ARC buffers to the L2ARC device. 4246 * 4247 * An ARC_L2_WRITING flag is set so that the L2ARC buffers are not valid 4248 * for reading until they have completed writing. 4249 */ 4250 static uint64_t 4251 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz) 4252 { 4253 arc_buf_hdr_t *ab, *ab_prev, *head; 4254 l2arc_buf_hdr_t *hdrl2; 4255 list_t *list; 4256 uint64_t passed_sz, write_sz, buf_sz, headroom; 4257 void *buf_data; 4258 kmutex_t *hash_lock, *list_lock; 4259 boolean_t have_lock, full; 4260 l2arc_write_callback_t *cb; 4261 zio_t *pio, *wzio; 4262 uint64_t guid = spa_guid(spa); 4263 4264 ASSERT(dev->l2ad_vdev != NULL); 4265 4266 pio = NULL; 4267 write_sz = 0; 4268 full = B_FALSE; 4269 head = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE); 4270 head->b_flags |= ARC_L2_WRITE_HEAD; 4271 4272 /* 4273 * Copy buffers for L2ARC writing. 4274 */ 4275 mutex_enter(&l2arc_buflist_mtx); 4276 for (int try = 0; try <= 3; try++) { 4277 list = l2arc_list_locked(try, &list_lock); 4278 passed_sz = 0; 4279 4280 /* 4281 * L2ARC fast warmup. 4282 * 4283 * Until the ARC is warm and starts to evict, read from the 4284 * head of the ARC lists rather than the tail. 4285 */ 4286 headroom = target_sz * l2arc_headroom; 4287 if (arc_warm == B_FALSE) 4288 ab = list_head(list); 4289 else 4290 ab = list_tail(list); 4291 4292 for (; ab; ab = ab_prev) { 4293 if (arc_warm == B_FALSE) 4294 ab_prev = list_next(list, ab); 4295 else 4296 ab_prev = list_prev(list, ab); 4297 4298 hash_lock = HDR_LOCK(ab); 4299 have_lock = MUTEX_HELD(hash_lock); 4300 if (!have_lock && !mutex_tryenter(hash_lock)) { 4301 /* 4302 * Skip this buffer rather than waiting. 4303 */ 4304 continue; 4305 } 4306 4307 passed_sz += ab->b_size; 4308 if (passed_sz > headroom) { 4309 /* 4310 * Searched too far. 4311 */ 4312 mutex_exit(hash_lock); 4313 break; 4314 } 4315 4316 if (!l2arc_write_eligible(guid, ab)) { 4317 mutex_exit(hash_lock); 4318 continue; 4319 } 4320 4321 if ((write_sz + ab->b_size) > target_sz) { 4322 full = B_TRUE; 4323 mutex_exit(hash_lock); 4324 break; 4325 } 4326 4327 if (pio == NULL) { 4328 /* 4329 * Insert a dummy header on the buflist so 4330 * l2arc_write_done() can find where the 4331 * write buffers begin without searching. 4332 */ 4333 list_insert_head(dev->l2ad_buflist, head); 4334 4335 cb = kmem_alloc( 4336 sizeof (l2arc_write_callback_t), KM_SLEEP); 4337 cb->l2wcb_dev = dev; 4338 cb->l2wcb_head = head; 4339 pio = zio_root(spa, l2arc_write_done, cb, 4340 ZIO_FLAG_CANFAIL); 4341 } 4342 4343 /* 4344 * Create and add a new L2ARC header. 4345 */ 4346 hdrl2 = kmem_zalloc(sizeof (l2arc_buf_hdr_t), KM_SLEEP); 4347 hdrl2->b_dev = dev; 4348 hdrl2->b_daddr = dev->l2ad_hand; 4349 4350 ab->b_flags |= ARC_L2_WRITING; 4351 ab->b_l2hdr = hdrl2; 4352 list_insert_head(dev->l2ad_buflist, ab); 4353 buf_data = ab->b_buf->b_data; 4354 buf_sz = ab->b_size; 4355 4356 /* 4357 * Compute and store the buffer cksum before 4358 * writing. On debug the cksum is verified first. 4359 */ 4360 arc_cksum_verify(ab->b_buf); 4361 arc_cksum_compute(ab->b_buf, B_TRUE); 4362 4363 mutex_exit(hash_lock); 4364 4365 wzio = zio_write_phys(pio, dev->l2ad_vdev, 4366 dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF, 4367 NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE, 4368 ZIO_FLAG_CANFAIL, B_FALSE); 4369 4370 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, 4371 zio_t *, wzio); 4372 (void) zio_nowait(wzio); 4373 4374 /* 4375 * Keep the clock hand suitably device-aligned. 4376 */ 4377 buf_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz); 4378 4379 write_sz += buf_sz; 4380 dev->l2ad_hand += buf_sz; 4381 } 4382 4383 mutex_exit(list_lock); 4384 4385 if (full == B_TRUE) 4386 break; 4387 } 4388 mutex_exit(&l2arc_buflist_mtx); 4389 4390 if (pio == NULL) { 4391 ASSERT3U(write_sz, ==, 0); 4392 kmem_cache_free(hdr_cache, head); 4393 return (0); 4394 } 4395 4396 ASSERT3U(write_sz, <=, target_sz); 4397 ARCSTAT_BUMP(arcstat_l2_writes_sent); 4398 ARCSTAT_INCR(arcstat_l2_write_bytes, write_sz); 4399 ARCSTAT_INCR(arcstat_l2_size, write_sz); 4400 spa_l2cache_space_update(dev->l2ad_vdev, 0, write_sz); 4401 4402 /* 4403 * Bump device hand to the device start if it is approaching the end. 4404 * l2arc_evict() will already have evicted ahead for this case. 4405 */ 4406 if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) { 4407 spa_l2cache_space_update(dev->l2ad_vdev, 0, 4408 dev->l2ad_end - dev->l2ad_hand); 4409 dev->l2ad_hand = dev->l2ad_start; 4410 dev->l2ad_evict = dev->l2ad_start; 4411 dev->l2ad_first = B_FALSE; 4412 } 4413 4414 dev->l2ad_writing = B_TRUE; 4415 (void) zio_wait(pio); 4416 dev->l2ad_writing = B_FALSE; 4417 4418 return (write_sz); 4419 } 4420 4421 /* 4422 * This thread feeds the L2ARC at regular intervals. This is the beating 4423 * heart of the L2ARC. 4424 */ 4425 static void 4426 l2arc_feed_thread(void) 4427 { 4428 callb_cpr_t cpr; 4429 l2arc_dev_t *dev; 4430 spa_t *spa; 4431 uint64_t size, wrote; 4432 clock_t begin, next = lbolt; 4433 4434 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG); 4435 4436 mutex_enter(&l2arc_feed_thr_lock); 4437 4438 while (l2arc_thread_exit == 0) { 4439 CALLB_CPR_SAFE_BEGIN(&cpr); 4440 (void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock, 4441 next); 4442 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock); 4443 next = lbolt + hz; 4444 4445 /* 4446 * Quick check for L2ARC devices. 4447 */ 4448 mutex_enter(&l2arc_dev_mtx); 4449 if (l2arc_ndev == 0) { 4450 mutex_exit(&l2arc_dev_mtx); 4451 continue; 4452 } 4453 mutex_exit(&l2arc_dev_mtx); 4454 begin = lbolt; 4455 4456 /* 4457 * This selects the next l2arc device to write to, and in 4458 * doing so the next spa to feed from: dev->l2ad_spa. This 4459 * will return NULL if there are now no l2arc devices or if 4460 * they are all faulted. 4461 * 4462 * If a device is returned, its spa's config lock is also 4463 * held to prevent device removal. l2arc_dev_get_next() 4464 * will grab and release l2arc_dev_mtx. 4465 */ 4466 if ((dev = l2arc_dev_get_next()) == NULL) 4467 continue; 4468 4469 spa = dev->l2ad_spa; 4470 ASSERT(spa != NULL); 4471 4472 /* 4473 * Avoid contributing to memory pressure. 4474 */ 4475 if (arc_reclaim_needed()) { 4476 ARCSTAT_BUMP(arcstat_l2_abort_lowmem); 4477 spa_config_exit(spa, SCL_L2ARC, dev); 4478 continue; 4479 } 4480 4481 ARCSTAT_BUMP(arcstat_l2_feeds); 4482 4483 size = l2arc_write_size(dev); 4484 4485 /* 4486 * Evict L2ARC buffers that will be overwritten. 4487 */ 4488 l2arc_evict(dev, size, B_FALSE); 4489 4490 /* 4491 * Write ARC buffers. 4492 */ 4493 wrote = l2arc_write_buffers(spa, dev, size); 4494 4495 /* 4496 * Calculate interval between writes. 4497 */ 4498 next = l2arc_write_interval(begin, size, wrote); 4499 spa_config_exit(spa, SCL_L2ARC, dev); 4500 } 4501 4502 l2arc_thread_exit = 0; 4503 cv_broadcast(&l2arc_feed_thr_cv); 4504 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */ 4505 thread_exit(); 4506 } 4507 4508 boolean_t 4509 l2arc_vdev_present(vdev_t *vd) 4510 { 4511 l2arc_dev_t *dev; 4512 4513 mutex_enter(&l2arc_dev_mtx); 4514 for (dev = list_head(l2arc_dev_list); dev != NULL; 4515 dev = list_next(l2arc_dev_list, dev)) { 4516 if (dev->l2ad_vdev == vd) 4517 break; 4518 } 4519 mutex_exit(&l2arc_dev_mtx); 4520 4521 return (dev != NULL); 4522 } 4523 4524 /* 4525 * Add a vdev for use by the L2ARC. By this point the spa has already 4526 * validated the vdev and opened it. 4527 */ 4528 void 4529 l2arc_add_vdev(spa_t *spa, vdev_t *vd) 4530 { 4531 l2arc_dev_t *adddev; 4532 4533 ASSERT(!l2arc_vdev_present(vd)); 4534 4535 /* 4536 * Create a new l2arc device entry. 4537 */ 4538 adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP); 4539 adddev->l2ad_spa = spa; 4540 adddev->l2ad_vdev = vd; 4541 adddev->l2ad_write = l2arc_write_max; 4542 adddev->l2ad_boost = l2arc_write_boost; 4543 adddev->l2ad_start = VDEV_LABEL_START_SIZE; 4544 adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd); 4545 adddev->l2ad_hand = adddev->l2ad_start; 4546 adddev->l2ad_evict = adddev->l2ad_start; 4547 adddev->l2ad_first = B_TRUE; 4548 adddev->l2ad_writing = B_FALSE; 4549 ASSERT3U(adddev->l2ad_write, >, 0); 4550 4551 /* 4552 * This is a list of all ARC buffers that are still valid on the 4553 * device. 4554 */ 4555 adddev->l2ad_buflist = kmem_zalloc(sizeof (list_t), KM_SLEEP); 4556 list_create(adddev->l2ad_buflist, sizeof (arc_buf_hdr_t), 4557 offsetof(arc_buf_hdr_t, b_l2node)); 4558 4559 spa_l2cache_space_update(vd, adddev->l2ad_end - adddev->l2ad_hand, 0); 4560 4561 /* 4562 * Add device to global list 4563 */ 4564 mutex_enter(&l2arc_dev_mtx); 4565 list_insert_head(l2arc_dev_list, adddev); 4566 atomic_inc_64(&l2arc_ndev); 4567 mutex_exit(&l2arc_dev_mtx); 4568 } 4569 4570 /* 4571 * Remove a vdev from the L2ARC. 4572 */ 4573 void 4574 l2arc_remove_vdev(vdev_t *vd) 4575 { 4576 l2arc_dev_t *dev, *nextdev, *remdev = NULL; 4577 4578 /* 4579 * Find the device by vdev 4580 */ 4581 mutex_enter(&l2arc_dev_mtx); 4582 for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) { 4583 nextdev = list_next(l2arc_dev_list, dev); 4584 if (vd == dev->l2ad_vdev) { 4585 remdev = dev; 4586 break; 4587 } 4588 } 4589 ASSERT(remdev != NULL); 4590 4591 /* 4592 * Remove device from global list 4593 */ 4594 list_remove(l2arc_dev_list, remdev); 4595 l2arc_dev_last = NULL; /* may have been invalidated */ 4596 atomic_dec_64(&l2arc_ndev); 4597 mutex_exit(&l2arc_dev_mtx); 4598 4599 /* 4600 * Clear all buflists and ARC references. L2ARC device flush. 4601 */ 4602 l2arc_evict(remdev, 0, B_TRUE); 4603 list_destroy(remdev->l2ad_buflist); 4604 kmem_free(remdev->l2ad_buflist, sizeof (list_t)); 4605 kmem_free(remdev, sizeof (l2arc_dev_t)); 4606 } 4607 4608 void 4609 l2arc_init(void) 4610 { 4611 l2arc_thread_exit = 0; 4612 l2arc_ndev = 0; 4613 l2arc_writes_sent = 0; 4614 l2arc_writes_done = 0; 4615 4616 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL); 4617 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL); 4618 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL); 4619 mutex_init(&l2arc_buflist_mtx, NULL, MUTEX_DEFAULT, NULL); 4620 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL); 4621 4622 l2arc_dev_list = &L2ARC_dev_list; 4623 l2arc_free_on_write = &L2ARC_free_on_write; 4624 list_create(l2arc_dev_list, sizeof (l2arc_dev_t), 4625 offsetof(l2arc_dev_t, l2ad_node)); 4626 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t), 4627 offsetof(l2arc_data_free_t, l2df_list_node)); 4628 } 4629 4630 void 4631 l2arc_fini(void) 4632 { 4633 /* 4634 * This is called from dmu_fini(), which is called from spa_fini(); 4635 * Because of this, we can assume that all l2arc devices have 4636 * already been removed when the pools themselves were removed. 4637 */ 4638 4639 l2arc_do_free_on_write(); 4640 4641 mutex_destroy(&l2arc_feed_thr_lock); 4642 cv_destroy(&l2arc_feed_thr_cv); 4643 mutex_destroy(&l2arc_dev_mtx); 4644 mutex_destroy(&l2arc_buflist_mtx); 4645 mutex_destroy(&l2arc_free_on_write_mtx); 4646 4647 list_destroy(l2arc_dev_list); 4648 list_destroy(l2arc_free_on_write); 4649 } 4650 4651 void 4652 l2arc_start(void) 4653 { 4654 if (!(spa_mode_global & FWRITE)) 4655 return; 4656 4657 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0, 4658 TS_RUN, minclsyspri); 4659 } 4660 4661 void 4662 l2arc_stop(void) 4663 { 4664 if (!(spa_mode_global & FWRITE)) 4665 return; 4666 4667 mutex_enter(&l2arc_feed_thr_lock); 4668 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */ 4669 l2arc_thread_exit = 1; 4670 while (l2arc_thread_exit != 0) 4671 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock); 4672 mutex_exit(&l2arc_feed_thr_lock); 4673 } 4674