xref: /titanic_51/usr/src/uts/common/fs/zfs/arc.c (revision bbaa8b60dd95d714741fc474adad3cf710ef4efd)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
24  * Copyright (c) 2013 by Delphix. All rights reserved.
25  * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
26  */
27 
28 /*
29  * DVA-based Adjustable Replacement Cache
30  *
31  * While much of the theory of operation used here is
32  * based on the self-tuning, low overhead replacement cache
33  * presented by Megiddo and Modha at FAST 2003, there are some
34  * significant differences:
35  *
36  * 1. The Megiddo and Modha model assumes any page is evictable.
37  * Pages in its cache cannot be "locked" into memory.  This makes
38  * the eviction algorithm simple: evict the last page in the list.
39  * This also make the performance characteristics easy to reason
40  * about.  Our cache is not so simple.  At any given moment, some
41  * subset of the blocks in the cache are un-evictable because we
42  * have handed out a reference to them.  Blocks are only evictable
43  * when there are no external references active.  This makes
44  * eviction far more problematic:  we choose to evict the evictable
45  * blocks that are the "lowest" in the list.
46  *
47  * There are times when it is not possible to evict the requested
48  * space.  In these circumstances we are unable to adjust the cache
49  * size.  To prevent the cache growing unbounded at these times we
50  * implement a "cache throttle" that slows the flow of new data
51  * into the cache until we can make space available.
52  *
53  * 2. The Megiddo and Modha model assumes a fixed cache size.
54  * Pages are evicted when the cache is full and there is a cache
55  * miss.  Our model has a variable sized cache.  It grows with
56  * high use, but also tries to react to memory pressure from the
57  * operating system: decreasing its size when system memory is
58  * tight.
59  *
60  * 3. The Megiddo and Modha model assumes a fixed page size. All
61  * elements of the cache are therefore exactly the same size.  So
62  * when adjusting the cache size following a cache miss, its simply
63  * a matter of choosing a single page to evict.  In our model, we
64  * have variable sized cache blocks (rangeing from 512 bytes to
65  * 128K bytes).  We therefore choose a set of blocks to evict to make
66  * space for a cache miss that approximates as closely as possible
67  * the space used by the new block.
68  *
69  * See also:  "ARC: A Self-Tuning, Low Overhead Replacement Cache"
70  * by N. Megiddo & D. Modha, FAST 2003
71  */
72 
73 /*
74  * The locking model:
75  *
76  * A new reference to a cache buffer can be obtained in two
77  * ways: 1) via a hash table lookup using the DVA as a key,
78  * or 2) via one of the ARC lists.  The arc_read() interface
79  * uses method 1, while the internal arc algorithms for
80  * adjusting the cache use method 2.  We therefore provide two
81  * types of locks: 1) the hash table lock array, and 2) the
82  * arc list locks.
83  *
84  * Buffers do not have their own mutexes, rather they rely on the
85  * hash table mutexes for the bulk of their protection (i.e. most
86  * fields in the arc_buf_hdr_t are protected by these mutexes).
87  *
88  * buf_hash_find() returns the appropriate mutex (held) when it
89  * locates the requested buffer in the hash table.  It returns
90  * NULL for the mutex if the buffer was not in the table.
91  *
92  * buf_hash_remove() expects the appropriate hash mutex to be
93  * already held before it is invoked.
94  *
95  * Each arc state also has a mutex which is used to protect the
96  * buffer list associated with the state.  When attempting to
97  * obtain a hash table lock while holding an arc list lock you
98  * must use: mutex_tryenter() to avoid deadlock.  Also note that
99  * the active state mutex must be held before the ghost state mutex.
100  *
101  * Arc buffers may have an associated eviction callback function.
102  * This function will be invoked prior to removing the buffer (e.g.
103  * in arc_do_user_evicts()).  Note however that the data associated
104  * with the buffer may be evicted prior to the callback.  The callback
105  * must be made with *no locks held* (to prevent deadlock).  Additionally,
106  * the users of callbacks must ensure that their private data is
107  * protected from simultaneous callbacks from arc_buf_evict()
108  * and arc_do_user_evicts().
109  *
110  * Note that the majority of the performance stats are manipulated
111  * with atomic operations.
112  *
113  * The L2ARC uses the l2arc_buflist_mtx global mutex for the following:
114  *
115  *	- L2ARC buflist creation
116  *	- L2ARC buflist eviction
117  *	- L2ARC write completion, which walks L2ARC buflists
118  *	- ARC header destruction, as it removes from L2ARC buflists
119  *	- ARC header release, as it removes from L2ARC buflists
120  */
121 
122 #include <sys/spa.h>
123 #include <sys/zio.h>
124 #include <sys/zio_compress.h>
125 #include <sys/zfs_context.h>
126 #include <sys/arc.h>
127 #include <sys/refcount.h>
128 #include <sys/vdev.h>
129 #include <sys/vdev_impl.h>
130 #include <sys/dsl_pool.h>
131 #ifdef _KERNEL
132 #include <sys/vmsystm.h>
133 #include <vm/anon.h>
134 #include <sys/fs/swapnode.h>
135 #include <sys/dnlc.h>
136 #endif
137 #include <sys/callb.h>
138 #include <sys/kstat.h>
139 #include <zfs_fletcher.h>
140 
141 #ifndef _KERNEL
142 /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
143 boolean_t arc_watch = B_FALSE;
144 int arc_procfd;
145 #endif
146 
147 static kmutex_t		arc_reclaim_thr_lock;
148 static kcondvar_t	arc_reclaim_thr_cv;	/* used to signal reclaim thr */
149 static uint8_t		arc_thread_exit;
150 
151 #define	ARC_REDUCE_DNLC_PERCENT	3
152 uint_t arc_reduce_dnlc_percent = ARC_REDUCE_DNLC_PERCENT;
153 
154 typedef enum arc_reclaim_strategy {
155 	ARC_RECLAIM_AGGR,		/* Aggressive reclaim strategy */
156 	ARC_RECLAIM_CONS		/* Conservative reclaim strategy */
157 } arc_reclaim_strategy_t;
158 
159 /*
160  * The number of iterations through arc_evict_*() before we
161  * drop & reacquire the lock.
162  */
163 int arc_evict_iterations = 100;
164 
165 /* number of seconds before growing cache again */
166 static int		arc_grow_retry = 60;
167 
168 /* shift of arc_c for calculating both min and max arc_p */
169 static int		arc_p_min_shift = 4;
170 
171 /* log2(fraction of arc to reclaim) */
172 static int		arc_shrink_shift = 5;
173 
174 /*
175  * minimum lifespan of a prefetch block in clock ticks
176  * (initialized in arc_init())
177  */
178 static int		arc_min_prefetch_lifespan;
179 
180 /*
181  * If this percent of memory is free, don't throttle.
182  */
183 int arc_lotsfree_percent = 10;
184 
185 static int arc_dead;
186 
187 /*
188  * The arc has filled available memory and has now warmed up.
189  */
190 static boolean_t arc_warm;
191 
192 /*
193  * These tunables are for performance analysis.
194  */
195 uint64_t zfs_arc_max;
196 uint64_t zfs_arc_min;
197 uint64_t zfs_arc_meta_limit = 0;
198 int zfs_arc_grow_retry = 0;
199 int zfs_arc_shrink_shift = 0;
200 int zfs_arc_p_min_shift = 0;
201 int zfs_disable_dup_eviction = 0;
202 
203 /*
204  * Note that buffers can be in one of 6 states:
205  *	ARC_anon	- anonymous (discussed below)
206  *	ARC_mru		- recently used, currently cached
207  *	ARC_mru_ghost	- recentely used, no longer in cache
208  *	ARC_mfu		- frequently used, currently cached
209  *	ARC_mfu_ghost	- frequently used, no longer in cache
210  *	ARC_l2c_only	- exists in L2ARC but not other states
211  * When there are no active references to the buffer, they are
212  * are linked onto a list in one of these arc states.  These are
213  * the only buffers that can be evicted or deleted.  Within each
214  * state there are multiple lists, one for meta-data and one for
215  * non-meta-data.  Meta-data (indirect blocks, blocks of dnodes,
216  * etc.) is tracked separately so that it can be managed more
217  * explicitly: favored over data, limited explicitly.
218  *
219  * Anonymous buffers are buffers that are not associated with
220  * a DVA.  These are buffers that hold dirty block copies
221  * before they are written to stable storage.  By definition,
222  * they are "ref'd" and are considered part of arc_mru
223  * that cannot be freed.  Generally, they will aquire a DVA
224  * as they are written and migrate onto the arc_mru list.
225  *
226  * The ARC_l2c_only state is for buffers that are in the second
227  * level ARC but no longer in any of the ARC_m* lists.  The second
228  * level ARC itself may also contain buffers that are in any of
229  * the ARC_m* states - meaning that a buffer can exist in two
230  * places.  The reason for the ARC_l2c_only state is to keep the
231  * buffer header in the hash table, so that reads that hit the
232  * second level ARC benefit from these fast lookups.
233  */
234 
235 typedef struct arc_state {
236 	list_t	arcs_list[ARC_BUFC_NUMTYPES];	/* list of evictable buffers */
237 	uint64_t arcs_lsize[ARC_BUFC_NUMTYPES];	/* amount of evictable data */
238 	uint64_t arcs_size;	/* total amount of data in this state */
239 	kmutex_t arcs_mtx;
240 } arc_state_t;
241 
242 /* The 6 states: */
243 static arc_state_t ARC_anon;
244 static arc_state_t ARC_mru;
245 static arc_state_t ARC_mru_ghost;
246 static arc_state_t ARC_mfu;
247 static arc_state_t ARC_mfu_ghost;
248 static arc_state_t ARC_l2c_only;
249 
250 typedef struct arc_stats {
251 	kstat_named_t arcstat_hits;
252 	kstat_named_t arcstat_misses;
253 	kstat_named_t arcstat_demand_data_hits;
254 	kstat_named_t arcstat_demand_data_misses;
255 	kstat_named_t arcstat_demand_metadata_hits;
256 	kstat_named_t arcstat_demand_metadata_misses;
257 	kstat_named_t arcstat_prefetch_data_hits;
258 	kstat_named_t arcstat_prefetch_data_misses;
259 	kstat_named_t arcstat_prefetch_metadata_hits;
260 	kstat_named_t arcstat_prefetch_metadata_misses;
261 	kstat_named_t arcstat_mru_hits;
262 	kstat_named_t arcstat_mru_ghost_hits;
263 	kstat_named_t arcstat_mfu_hits;
264 	kstat_named_t arcstat_mfu_ghost_hits;
265 	kstat_named_t arcstat_deleted;
266 	kstat_named_t arcstat_recycle_miss;
267 	/*
268 	 * Number of buffers that could not be evicted because the hash lock
269 	 * was held by another thread.  The lock may not necessarily be held
270 	 * by something using the same buffer, since hash locks are shared
271 	 * by multiple buffers.
272 	 */
273 	kstat_named_t arcstat_mutex_miss;
274 	/*
275 	 * Number of buffers skipped because they have I/O in progress, are
276 	 * indrect prefetch buffers that have not lived long enough, or are
277 	 * not from the spa we're trying to evict from.
278 	 */
279 	kstat_named_t arcstat_evict_skip;
280 	kstat_named_t arcstat_evict_l2_cached;
281 	kstat_named_t arcstat_evict_l2_eligible;
282 	kstat_named_t arcstat_evict_l2_ineligible;
283 	kstat_named_t arcstat_hash_elements;
284 	kstat_named_t arcstat_hash_elements_max;
285 	kstat_named_t arcstat_hash_collisions;
286 	kstat_named_t arcstat_hash_chains;
287 	kstat_named_t arcstat_hash_chain_max;
288 	kstat_named_t arcstat_p;
289 	kstat_named_t arcstat_c;
290 	kstat_named_t arcstat_c_min;
291 	kstat_named_t arcstat_c_max;
292 	kstat_named_t arcstat_size;
293 	kstat_named_t arcstat_hdr_size;
294 	kstat_named_t arcstat_data_size;
295 	kstat_named_t arcstat_other_size;
296 	kstat_named_t arcstat_l2_hits;
297 	kstat_named_t arcstat_l2_misses;
298 	kstat_named_t arcstat_l2_feeds;
299 	kstat_named_t arcstat_l2_rw_clash;
300 	kstat_named_t arcstat_l2_read_bytes;
301 	kstat_named_t arcstat_l2_write_bytes;
302 	kstat_named_t arcstat_l2_writes_sent;
303 	kstat_named_t arcstat_l2_writes_done;
304 	kstat_named_t arcstat_l2_writes_error;
305 	kstat_named_t arcstat_l2_writes_hdr_miss;
306 	kstat_named_t arcstat_l2_evict_lock_retry;
307 	kstat_named_t arcstat_l2_evict_reading;
308 	kstat_named_t arcstat_l2_free_on_write;
309 	kstat_named_t arcstat_l2_abort_lowmem;
310 	kstat_named_t arcstat_l2_cksum_bad;
311 	kstat_named_t arcstat_l2_io_error;
312 	kstat_named_t arcstat_l2_size;
313 	kstat_named_t arcstat_l2_asize;
314 	kstat_named_t arcstat_l2_hdr_size;
315 	kstat_named_t arcstat_l2_compress_successes;
316 	kstat_named_t arcstat_l2_compress_zeros;
317 	kstat_named_t arcstat_l2_compress_failures;
318 	kstat_named_t arcstat_memory_throttle_count;
319 	kstat_named_t arcstat_duplicate_buffers;
320 	kstat_named_t arcstat_duplicate_buffers_size;
321 	kstat_named_t arcstat_duplicate_reads;
322 	kstat_named_t arcstat_meta_used;
323 	kstat_named_t arcstat_meta_limit;
324 	kstat_named_t arcstat_meta_max;
325 } arc_stats_t;
326 
327 static arc_stats_t arc_stats = {
328 	{ "hits",			KSTAT_DATA_UINT64 },
329 	{ "misses",			KSTAT_DATA_UINT64 },
330 	{ "demand_data_hits",		KSTAT_DATA_UINT64 },
331 	{ "demand_data_misses",		KSTAT_DATA_UINT64 },
332 	{ "demand_metadata_hits",	KSTAT_DATA_UINT64 },
333 	{ "demand_metadata_misses",	KSTAT_DATA_UINT64 },
334 	{ "prefetch_data_hits",		KSTAT_DATA_UINT64 },
335 	{ "prefetch_data_misses",	KSTAT_DATA_UINT64 },
336 	{ "prefetch_metadata_hits",	KSTAT_DATA_UINT64 },
337 	{ "prefetch_metadata_misses",	KSTAT_DATA_UINT64 },
338 	{ "mru_hits",			KSTAT_DATA_UINT64 },
339 	{ "mru_ghost_hits",		KSTAT_DATA_UINT64 },
340 	{ "mfu_hits",			KSTAT_DATA_UINT64 },
341 	{ "mfu_ghost_hits",		KSTAT_DATA_UINT64 },
342 	{ "deleted",			KSTAT_DATA_UINT64 },
343 	{ "recycle_miss",		KSTAT_DATA_UINT64 },
344 	{ "mutex_miss",			KSTAT_DATA_UINT64 },
345 	{ "evict_skip",			KSTAT_DATA_UINT64 },
346 	{ "evict_l2_cached",		KSTAT_DATA_UINT64 },
347 	{ "evict_l2_eligible",		KSTAT_DATA_UINT64 },
348 	{ "evict_l2_ineligible",	KSTAT_DATA_UINT64 },
349 	{ "hash_elements",		KSTAT_DATA_UINT64 },
350 	{ "hash_elements_max",		KSTAT_DATA_UINT64 },
351 	{ "hash_collisions",		KSTAT_DATA_UINT64 },
352 	{ "hash_chains",		KSTAT_DATA_UINT64 },
353 	{ "hash_chain_max",		KSTAT_DATA_UINT64 },
354 	{ "p",				KSTAT_DATA_UINT64 },
355 	{ "c",				KSTAT_DATA_UINT64 },
356 	{ "c_min",			KSTAT_DATA_UINT64 },
357 	{ "c_max",			KSTAT_DATA_UINT64 },
358 	{ "size",			KSTAT_DATA_UINT64 },
359 	{ "hdr_size",			KSTAT_DATA_UINT64 },
360 	{ "data_size",			KSTAT_DATA_UINT64 },
361 	{ "other_size",			KSTAT_DATA_UINT64 },
362 	{ "l2_hits",			KSTAT_DATA_UINT64 },
363 	{ "l2_misses",			KSTAT_DATA_UINT64 },
364 	{ "l2_feeds",			KSTAT_DATA_UINT64 },
365 	{ "l2_rw_clash",		KSTAT_DATA_UINT64 },
366 	{ "l2_read_bytes",		KSTAT_DATA_UINT64 },
367 	{ "l2_write_bytes",		KSTAT_DATA_UINT64 },
368 	{ "l2_writes_sent",		KSTAT_DATA_UINT64 },
369 	{ "l2_writes_done",		KSTAT_DATA_UINT64 },
370 	{ "l2_writes_error",		KSTAT_DATA_UINT64 },
371 	{ "l2_writes_hdr_miss",		KSTAT_DATA_UINT64 },
372 	{ "l2_evict_lock_retry",	KSTAT_DATA_UINT64 },
373 	{ "l2_evict_reading",		KSTAT_DATA_UINT64 },
374 	{ "l2_free_on_write",		KSTAT_DATA_UINT64 },
375 	{ "l2_abort_lowmem",		KSTAT_DATA_UINT64 },
376 	{ "l2_cksum_bad",		KSTAT_DATA_UINT64 },
377 	{ "l2_io_error",		KSTAT_DATA_UINT64 },
378 	{ "l2_size",			KSTAT_DATA_UINT64 },
379 	{ "l2_asize",			KSTAT_DATA_UINT64 },
380 	{ "l2_hdr_size",		KSTAT_DATA_UINT64 },
381 	{ "l2_compress_successes",	KSTAT_DATA_UINT64 },
382 	{ "l2_compress_zeros",		KSTAT_DATA_UINT64 },
383 	{ "l2_compress_failures",	KSTAT_DATA_UINT64 },
384 	{ "memory_throttle_count",	KSTAT_DATA_UINT64 },
385 	{ "duplicate_buffers",		KSTAT_DATA_UINT64 },
386 	{ "duplicate_buffers_size",	KSTAT_DATA_UINT64 },
387 	{ "duplicate_reads",		KSTAT_DATA_UINT64 },
388 	{ "arc_meta_used",		KSTAT_DATA_UINT64 },
389 	{ "arc_meta_limit",		KSTAT_DATA_UINT64 },
390 	{ "arc_meta_max",		KSTAT_DATA_UINT64 }
391 };
392 
393 #define	ARCSTAT(stat)	(arc_stats.stat.value.ui64)
394 
395 #define	ARCSTAT_INCR(stat, val) \
396 	atomic_add_64(&arc_stats.stat.value.ui64, (val))
397 
398 #define	ARCSTAT_BUMP(stat)	ARCSTAT_INCR(stat, 1)
399 #define	ARCSTAT_BUMPDOWN(stat)	ARCSTAT_INCR(stat, -1)
400 
401 #define	ARCSTAT_MAX(stat, val) {					\
402 	uint64_t m;							\
403 	while ((val) > (m = arc_stats.stat.value.ui64) &&		\
404 	    (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val))))	\
405 		continue;						\
406 }
407 
408 #define	ARCSTAT_MAXSTAT(stat) \
409 	ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
410 
411 /*
412  * We define a macro to allow ARC hits/misses to be easily broken down by
413  * two separate conditions, giving a total of four different subtypes for
414  * each of hits and misses (so eight statistics total).
415  */
416 #define	ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
417 	if (cond1) {							\
418 		if (cond2) {						\
419 			ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
420 		} else {						\
421 			ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
422 		}							\
423 	} else {							\
424 		if (cond2) {						\
425 			ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
426 		} else {						\
427 			ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
428 		}							\
429 	}
430 
431 kstat_t			*arc_ksp;
432 static arc_state_t	*arc_anon;
433 static arc_state_t	*arc_mru;
434 static arc_state_t	*arc_mru_ghost;
435 static arc_state_t	*arc_mfu;
436 static arc_state_t	*arc_mfu_ghost;
437 static arc_state_t	*arc_l2c_only;
438 
439 /*
440  * There are several ARC variables that are critical to export as kstats --
441  * but we don't want to have to grovel around in the kstat whenever we wish to
442  * manipulate them.  For these variables, we therefore define them to be in
443  * terms of the statistic variable.  This assures that we are not introducing
444  * the possibility of inconsistency by having shadow copies of the variables,
445  * while still allowing the code to be readable.
446  */
447 #define	arc_size	ARCSTAT(arcstat_size)	/* actual total arc size */
448 #define	arc_p		ARCSTAT(arcstat_p)	/* target size of MRU */
449 #define	arc_c		ARCSTAT(arcstat_c)	/* target size of cache */
450 #define	arc_c_min	ARCSTAT(arcstat_c_min)	/* min target cache size */
451 #define	arc_c_max	ARCSTAT(arcstat_c_max)	/* max target cache size */
452 #define	arc_meta_limit	ARCSTAT(arcstat_meta_limit) /* max size for metadata */
453 #define	arc_meta_used	ARCSTAT(arcstat_meta_used) /* size of metadata */
454 #define	arc_meta_max	ARCSTAT(arcstat_meta_max) /* max size of metadata */
455 
456 #define	L2ARC_IS_VALID_COMPRESS(_c_) \
457 	((_c_) == ZIO_COMPRESS_LZ4 || (_c_) == ZIO_COMPRESS_EMPTY)
458 
459 static int		arc_no_grow;	/* Don't try to grow cache size */
460 static uint64_t		arc_tempreserve;
461 static uint64_t		arc_loaned_bytes;
462 
463 typedef struct l2arc_buf_hdr l2arc_buf_hdr_t;
464 
465 typedef struct arc_callback arc_callback_t;
466 
467 struct arc_callback {
468 	void			*acb_private;
469 	arc_done_func_t		*acb_done;
470 	arc_buf_t		*acb_buf;
471 	zio_t			*acb_zio_dummy;
472 	arc_callback_t		*acb_next;
473 };
474 
475 typedef struct arc_write_callback arc_write_callback_t;
476 
477 struct arc_write_callback {
478 	void		*awcb_private;
479 	arc_done_func_t	*awcb_ready;
480 	arc_done_func_t	*awcb_physdone;
481 	arc_done_func_t	*awcb_done;
482 	arc_buf_t	*awcb_buf;
483 };
484 
485 struct arc_buf_hdr {
486 	/* protected by hash lock */
487 	dva_t			b_dva;
488 	uint64_t		b_birth;
489 	uint64_t		b_cksum0;
490 
491 	kmutex_t		b_freeze_lock;
492 	zio_cksum_t		*b_freeze_cksum;
493 	void			*b_thawed;
494 
495 	arc_buf_hdr_t		*b_hash_next;
496 	arc_buf_t		*b_buf;
497 	uint32_t		b_flags;
498 	uint32_t		b_datacnt;
499 
500 	arc_callback_t		*b_acb;
501 	kcondvar_t		b_cv;
502 
503 	/* immutable */
504 	arc_buf_contents_t	b_type;
505 	uint64_t		b_size;
506 	uint64_t		b_spa;
507 
508 	/* protected by arc state mutex */
509 	arc_state_t		*b_state;
510 	list_node_t		b_arc_node;
511 
512 	/* updated atomically */
513 	clock_t			b_arc_access;
514 
515 	/* self protecting */
516 	refcount_t		b_refcnt;
517 
518 	l2arc_buf_hdr_t		*b_l2hdr;
519 	list_node_t		b_l2node;
520 };
521 
522 static arc_buf_t *arc_eviction_list;
523 static kmutex_t arc_eviction_mtx;
524 static arc_buf_hdr_t arc_eviction_hdr;
525 static void arc_get_data_buf(arc_buf_t *buf);
526 static void arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock);
527 static int arc_evict_needed(arc_buf_contents_t type);
528 static void arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes);
529 static void arc_buf_watch(arc_buf_t *buf);
530 
531 static boolean_t l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab);
532 
533 #define	GHOST_STATE(state)	\
534 	((state) == arc_mru_ghost || (state) == arc_mfu_ghost ||	\
535 	(state) == arc_l2c_only)
536 
537 /*
538  * Private ARC flags.  These flags are private ARC only flags that will show up
539  * in b_flags in the arc_hdr_buf_t.  Some flags are publicly declared, and can
540  * be passed in as arc_flags in things like arc_read.  However, these flags
541  * should never be passed and should only be set by ARC code.  When adding new
542  * public flags, make sure not to smash the private ones.
543  */
544 
545 #define	ARC_IN_HASH_TABLE	(1 << 9)	/* this buffer is hashed */
546 #define	ARC_IO_IN_PROGRESS	(1 << 10)	/* I/O in progress for buf */
547 #define	ARC_IO_ERROR		(1 << 11)	/* I/O failed for buf */
548 #define	ARC_FREED_IN_READ	(1 << 12)	/* buf freed while in read */
549 #define	ARC_BUF_AVAILABLE	(1 << 13)	/* block not in active use */
550 #define	ARC_INDIRECT		(1 << 14)	/* this is an indirect block */
551 #define	ARC_FREE_IN_PROGRESS	(1 << 15)	/* hdr about to be freed */
552 #define	ARC_L2_WRITING		(1 << 16)	/* L2ARC write in progress */
553 #define	ARC_L2_EVICTED		(1 << 17)	/* evicted during I/O */
554 #define	ARC_L2_WRITE_HEAD	(1 << 18)	/* head of write list */
555 
556 #define	HDR_IN_HASH_TABLE(hdr)	((hdr)->b_flags & ARC_IN_HASH_TABLE)
557 #define	HDR_IO_IN_PROGRESS(hdr)	((hdr)->b_flags & ARC_IO_IN_PROGRESS)
558 #define	HDR_IO_ERROR(hdr)	((hdr)->b_flags & ARC_IO_ERROR)
559 #define	HDR_PREFETCH(hdr)	((hdr)->b_flags & ARC_PREFETCH)
560 #define	HDR_FREED_IN_READ(hdr)	((hdr)->b_flags & ARC_FREED_IN_READ)
561 #define	HDR_BUF_AVAILABLE(hdr)	((hdr)->b_flags & ARC_BUF_AVAILABLE)
562 #define	HDR_FREE_IN_PROGRESS(hdr)	((hdr)->b_flags & ARC_FREE_IN_PROGRESS)
563 #define	HDR_L2CACHE(hdr)	((hdr)->b_flags & ARC_L2CACHE)
564 #define	HDR_L2_READING(hdr)	((hdr)->b_flags & ARC_IO_IN_PROGRESS &&	\
565 				    (hdr)->b_l2hdr != NULL)
566 #define	HDR_L2_WRITING(hdr)	((hdr)->b_flags & ARC_L2_WRITING)
567 #define	HDR_L2_EVICTED(hdr)	((hdr)->b_flags & ARC_L2_EVICTED)
568 #define	HDR_L2_WRITE_HEAD(hdr)	((hdr)->b_flags & ARC_L2_WRITE_HEAD)
569 
570 /*
571  * Other sizes
572  */
573 
574 #define	HDR_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
575 #define	L2HDR_SIZE ((int64_t)sizeof (l2arc_buf_hdr_t))
576 
577 /*
578  * Hash table routines
579  */
580 
581 #define	HT_LOCK_PAD	64
582 
583 struct ht_lock {
584 	kmutex_t	ht_lock;
585 #ifdef _KERNEL
586 	unsigned char	pad[(HT_LOCK_PAD - sizeof (kmutex_t))];
587 #endif
588 };
589 
590 #define	BUF_LOCKS 256
591 typedef struct buf_hash_table {
592 	uint64_t ht_mask;
593 	arc_buf_hdr_t **ht_table;
594 	struct ht_lock ht_locks[BUF_LOCKS];
595 } buf_hash_table_t;
596 
597 static buf_hash_table_t buf_hash_table;
598 
599 #define	BUF_HASH_INDEX(spa, dva, birth) \
600 	(buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
601 #define	BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
602 #define	BUF_HASH_LOCK(idx)	(&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
603 #define	HDR_LOCK(hdr) \
604 	(BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
605 
606 uint64_t zfs_crc64_table[256];
607 
608 /*
609  * Level 2 ARC
610  */
611 
612 #define	L2ARC_WRITE_SIZE	(8 * 1024 * 1024)	/* initial write max */
613 #define	L2ARC_HEADROOM		2			/* num of writes */
614 /*
615  * If we discover during ARC scan any buffers to be compressed, we boost
616  * our headroom for the next scanning cycle by this percentage multiple.
617  */
618 #define	L2ARC_HEADROOM_BOOST	200
619 #define	L2ARC_FEED_SECS		1		/* caching interval secs */
620 #define	L2ARC_FEED_MIN_MS	200		/* min caching interval ms */
621 
622 #define	l2arc_writes_sent	ARCSTAT(arcstat_l2_writes_sent)
623 #define	l2arc_writes_done	ARCSTAT(arcstat_l2_writes_done)
624 
625 /* L2ARC Performance Tunables */
626 uint64_t l2arc_write_max = L2ARC_WRITE_SIZE;	/* default max write size */
627 uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE;	/* extra write during warmup */
628 uint64_t l2arc_headroom = L2ARC_HEADROOM;	/* number of dev writes */
629 uint64_t l2arc_headroom_boost = L2ARC_HEADROOM_BOOST;
630 uint64_t l2arc_feed_secs = L2ARC_FEED_SECS;	/* interval seconds */
631 uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS;	/* min interval milliseconds */
632 boolean_t l2arc_noprefetch = B_TRUE;		/* don't cache prefetch bufs */
633 boolean_t l2arc_feed_again = B_TRUE;		/* turbo warmup */
634 boolean_t l2arc_norw = B_TRUE;			/* no reads during writes */
635 
636 /*
637  * L2ARC Internals
638  */
639 typedef struct l2arc_dev {
640 	vdev_t			*l2ad_vdev;	/* vdev */
641 	spa_t			*l2ad_spa;	/* spa */
642 	uint64_t		l2ad_hand;	/* next write location */
643 	uint64_t		l2ad_start;	/* first addr on device */
644 	uint64_t		l2ad_end;	/* last addr on device */
645 	uint64_t		l2ad_evict;	/* last addr eviction reached */
646 	boolean_t		l2ad_first;	/* first sweep through */
647 	boolean_t		l2ad_writing;	/* currently writing */
648 	list_t			*l2ad_buflist;	/* buffer list */
649 	list_node_t		l2ad_node;	/* device list node */
650 } l2arc_dev_t;
651 
652 static list_t L2ARC_dev_list;			/* device list */
653 static list_t *l2arc_dev_list;			/* device list pointer */
654 static kmutex_t l2arc_dev_mtx;			/* device list mutex */
655 static l2arc_dev_t *l2arc_dev_last;		/* last device used */
656 static kmutex_t l2arc_buflist_mtx;		/* mutex for all buflists */
657 static list_t L2ARC_free_on_write;		/* free after write buf list */
658 static list_t *l2arc_free_on_write;		/* free after write list ptr */
659 static kmutex_t l2arc_free_on_write_mtx;	/* mutex for list */
660 static uint64_t l2arc_ndev;			/* number of devices */
661 
662 typedef struct l2arc_read_callback {
663 	arc_buf_t		*l2rcb_buf;		/* read buffer */
664 	spa_t			*l2rcb_spa;		/* spa */
665 	blkptr_t		l2rcb_bp;		/* original blkptr */
666 	zbookmark_t		l2rcb_zb;		/* original bookmark */
667 	int			l2rcb_flags;		/* original flags */
668 	enum zio_compress	l2rcb_compress;		/* applied compress */
669 } l2arc_read_callback_t;
670 
671 typedef struct l2arc_write_callback {
672 	l2arc_dev_t	*l2wcb_dev;		/* device info */
673 	arc_buf_hdr_t	*l2wcb_head;		/* head of write buflist */
674 } l2arc_write_callback_t;
675 
676 struct l2arc_buf_hdr {
677 	/* protected by arc_buf_hdr  mutex */
678 	l2arc_dev_t		*b_dev;		/* L2ARC device */
679 	uint64_t		b_daddr;	/* disk address, offset byte */
680 	/* compression applied to buffer data */
681 	enum zio_compress	b_compress;
682 	/* real alloc'd buffer size depending on b_compress applied */
683 	int			b_asize;
684 	/* temporary buffer holder for in-flight compressed data */
685 	void			*b_tmp_cdata;
686 };
687 
688 typedef struct l2arc_data_free {
689 	/* protected by l2arc_free_on_write_mtx */
690 	void		*l2df_data;
691 	size_t		l2df_size;
692 	void		(*l2df_func)(void *, size_t);
693 	list_node_t	l2df_list_node;
694 } l2arc_data_free_t;
695 
696 static kmutex_t l2arc_feed_thr_lock;
697 static kcondvar_t l2arc_feed_thr_cv;
698 static uint8_t l2arc_thread_exit;
699 
700 static void l2arc_read_done(zio_t *zio);
701 static void l2arc_hdr_stat_add(void);
702 static void l2arc_hdr_stat_remove(void);
703 
704 static boolean_t l2arc_compress_buf(l2arc_buf_hdr_t *l2hdr);
705 static void l2arc_decompress_zio(zio_t *zio, arc_buf_hdr_t *hdr,
706     enum zio_compress c);
707 static void l2arc_release_cdata_buf(arc_buf_hdr_t *ab);
708 
709 static uint64_t
710 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
711 {
712 	uint8_t *vdva = (uint8_t *)dva;
713 	uint64_t crc = -1ULL;
714 	int i;
715 
716 	ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
717 
718 	for (i = 0; i < sizeof (dva_t); i++)
719 		crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF];
720 
721 	crc ^= (spa>>8) ^ birth;
722 
723 	return (crc);
724 }
725 
726 #define	BUF_EMPTY(buf)						\
727 	((buf)->b_dva.dva_word[0] == 0 &&			\
728 	(buf)->b_dva.dva_word[1] == 0 &&			\
729 	(buf)->b_birth == 0)
730 
731 #define	BUF_EQUAL(spa, dva, birth, buf)				\
732 	((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) &&	\
733 	((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) &&	\
734 	((buf)->b_birth == birth) && ((buf)->b_spa == spa)
735 
736 static void
737 buf_discard_identity(arc_buf_hdr_t *hdr)
738 {
739 	hdr->b_dva.dva_word[0] = 0;
740 	hdr->b_dva.dva_word[1] = 0;
741 	hdr->b_birth = 0;
742 	hdr->b_cksum0 = 0;
743 }
744 
745 static arc_buf_hdr_t *
746 buf_hash_find(uint64_t spa, const dva_t *dva, uint64_t birth, kmutex_t **lockp)
747 {
748 	uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
749 	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
750 	arc_buf_hdr_t *buf;
751 
752 	mutex_enter(hash_lock);
753 	for (buf = buf_hash_table.ht_table[idx]; buf != NULL;
754 	    buf = buf->b_hash_next) {
755 		if (BUF_EQUAL(spa, dva, birth, buf)) {
756 			*lockp = hash_lock;
757 			return (buf);
758 		}
759 	}
760 	mutex_exit(hash_lock);
761 	*lockp = NULL;
762 	return (NULL);
763 }
764 
765 /*
766  * Insert an entry into the hash table.  If there is already an element
767  * equal to elem in the hash table, then the already existing element
768  * will be returned and the new element will not be inserted.
769  * Otherwise returns NULL.
770  */
771 static arc_buf_hdr_t *
772 buf_hash_insert(arc_buf_hdr_t *buf, kmutex_t **lockp)
773 {
774 	uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
775 	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
776 	arc_buf_hdr_t *fbuf;
777 	uint32_t i;
778 
779 	ASSERT(!HDR_IN_HASH_TABLE(buf));
780 	*lockp = hash_lock;
781 	mutex_enter(hash_lock);
782 	for (fbuf = buf_hash_table.ht_table[idx], i = 0; fbuf != NULL;
783 	    fbuf = fbuf->b_hash_next, i++) {
784 		if (BUF_EQUAL(buf->b_spa, &buf->b_dva, buf->b_birth, fbuf))
785 			return (fbuf);
786 	}
787 
788 	buf->b_hash_next = buf_hash_table.ht_table[idx];
789 	buf_hash_table.ht_table[idx] = buf;
790 	buf->b_flags |= ARC_IN_HASH_TABLE;
791 
792 	/* collect some hash table performance data */
793 	if (i > 0) {
794 		ARCSTAT_BUMP(arcstat_hash_collisions);
795 		if (i == 1)
796 			ARCSTAT_BUMP(arcstat_hash_chains);
797 
798 		ARCSTAT_MAX(arcstat_hash_chain_max, i);
799 	}
800 
801 	ARCSTAT_BUMP(arcstat_hash_elements);
802 	ARCSTAT_MAXSTAT(arcstat_hash_elements);
803 
804 	return (NULL);
805 }
806 
807 static void
808 buf_hash_remove(arc_buf_hdr_t *buf)
809 {
810 	arc_buf_hdr_t *fbuf, **bufp;
811 	uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
812 
813 	ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
814 	ASSERT(HDR_IN_HASH_TABLE(buf));
815 
816 	bufp = &buf_hash_table.ht_table[idx];
817 	while ((fbuf = *bufp) != buf) {
818 		ASSERT(fbuf != NULL);
819 		bufp = &fbuf->b_hash_next;
820 	}
821 	*bufp = buf->b_hash_next;
822 	buf->b_hash_next = NULL;
823 	buf->b_flags &= ~ARC_IN_HASH_TABLE;
824 
825 	/* collect some hash table performance data */
826 	ARCSTAT_BUMPDOWN(arcstat_hash_elements);
827 
828 	if (buf_hash_table.ht_table[idx] &&
829 	    buf_hash_table.ht_table[idx]->b_hash_next == NULL)
830 		ARCSTAT_BUMPDOWN(arcstat_hash_chains);
831 }
832 
833 /*
834  * Global data structures and functions for the buf kmem cache.
835  */
836 static kmem_cache_t *hdr_cache;
837 static kmem_cache_t *buf_cache;
838 
839 static void
840 buf_fini(void)
841 {
842 	int i;
843 
844 	kmem_free(buf_hash_table.ht_table,
845 	    (buf_hash_table.ht_mask + 1) * sizeof (void *));
846 	for (i = 0; i < BUF_LOCKS; i++)
847 		mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
848 	kmem_cache_destroy(hdr_cache);
849 	kmem_cache_destroy(buf_cache);
850 }
851 
852 /*
853  * Constructor callback - called when the cache is empty
854  * and a new buf is requested.
855  */
856 /* ARGSUSED */
857 static int
858 hdr_cons(void *vbuf, void *unused, int kmflag)
859 {
860 	arc_buf_hdr_t *buf = vbuf;
861 
862 	bzero(buf, sizeof (arc_buf_hdr_t));
863 	refcount_create(&buf->b_refcnt);
864 	cv_init(&buf->b_cv, NULL, CV_DEFAULT, NULL);
865 	mutex_init(&buf->b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
866 	arc_space_consume(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS);
867 
868 	return (0);
869 }
870 
871 /* ARGSUSED */
872 static int
873 buf_cons(void *vbuf, void *unused, int kmflag)
874 {
875 	arc_buf_t *buf = vbuf;
876 
877 	bzero(buf, sizeof (arc_buf_t));
878 	mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL);
879 	arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
880 
881 	return (0);
882 }
883 
884 /*
885  * Destructor callback - called when a cached buf is
886  * no longer required.
887  */
888 /* ARGSUSED */
889 static void
890 hdr_dest(void *vbuf, void *unused)
891 {
892 	arc_buf_hdr_t *buf = vbuf;
893 
894 	ASSERT(BUF_EMPTY(buf));
895 	refcount_destroy(&buf->b_refcnt);
896 	cv_destroy(&buf->b_cv);
897 	mutex_destroy(&buf->b_freeze_lock);
898 	arc_space_return(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS);
899 }
900 
901 /* ARGSUSED */
902 static void
903 buf_dest(void *vbuf, void *unused)
904 {
905 	arc_buf_t *buf = vbuf;
906 
907 	mutex_destroy(&buf->b_evict_lock);
908 	arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
909 }
910 
911 /*
912  * Reclaim callback -- invoked when memory is low.
913  */
914 /* ARGSUSED */
915 static void
916 hdr_recl(void *unused)
917 {
918 	dprintf("hdr_recl called\n");
919 	/*
920 	 * umem calls the reclaim func when we destroy the buf cache,
921 	 * which is after we do arc_fini().
922 	 */
923 	if (!arc_dead)
924 		cv_signal(&arc_reclaim_thr_cv);
925 }
926 
927 static void
928 buf_init(void)
929 {
930 	uint64_t *ct;
931 	uint64_t hsize = 1ULL << 12;
932 	int i, j;
933 
934 	/*
935 	 * The hash table is big enough to fill all of physical memory
936 	 * with an average 64K block size.  The table will take up
937 	 * totalmem*sizeof(void*)/64K (eg. 128KB/GB with 8-byte pointers).
938 	 */
939 	while (hsize * 65536 < physmem * PAGESIZE)
940 		hsize <<= 1;
941 retry:
942 	buf_hash_table.ht_mask = hsize - 1;
943 	buf_hash_table.ht_table =
944 	    kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
945 	if (buf_hash_table.ht_table == NULL) {
946 		ASSERT(hsize > (1ULL << 8));
947 		hsize >>= 1;
948 		goto retry;
949 	}
950 
951 	hdr_cache = kmem_cache_create("arc_buf_hdr_t", sizeof (arc_buf_hdr_t),
952 	    0, hdr_cons, hdr_dest, hdr_recl, NULL, NULL, 0);
953 	buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
954 	    0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
955 
956 	for (i = 0; i < 256; i++)
957 		for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
958 			*ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
959 
960 	for (i = 0; i < BUF_LOCKS; i++) {
961 		mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
962 		    NULL, MUTEX_DEFAULT, NULL);
963 	}
964 }
965 
966 #define	ARC_MINTIME	(hz>>4) /* 62 ms */
967 
968 static void
969 arc_cksum_verify(arc_buf_t *buf)
970 {
971 	zio_cksum_t zc;
972 
973 	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
974 		return;
975 
976 	mutex_enter(&buf->b_hdr->b_freeze_lock);
977 	if (buf->b_hdr->b_freeze_cksum == NULL ||
978 	    (buf->b_hdr->b_flags & ARC_IO_ERROR)) {
979 		mutex_exit(&buf->b_hdr->b_freeze_lock);
980 		return;
981 	}
982 	fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
983 	if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc))
984 		panic("buffer modified while frozen!");
985 	mutex_exit(&buf->b_hdr->b_freeze_lock);
986 }
987 
988 static int
989 arc_cksum_equal(arc_buf_t *buf)
990 {
991 	zio_cksum_t zc;
992 	int equal;
993 
994 	mutex_enter(&buf->b_hdr->b_freeze_lock);
995 	fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
996 	equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc);
997 	mutex_exit(&buf->b_hdr->b_freeze_lock);
998 
999 	return (equal);
1000 }
1001 
1002 static void
1003 arc_cksum_compute(arc_buf_t *buf, boolean_t force)
1004 {
1005 	if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY))
1006 		return;
1007 
1008 	mutex_enter(&buf->b_hdr->b_freeze_lock);
1009 	if (buf->b_hdr->b_freeze_cksum != NULL) {
1010 		mutex_exit(&buf->b_hdr->b_freeze_lock);
1011 		return;
1012 	}
1013 	buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP);
1014 	fletcher_2_native(buf->b_data, buf->b_hdr->b_size,
1015 	    buf->b_hdr->b_freeze_cksum);
1016 	mutex_exit(&buf->b_hdr->b_freeze_lock);
1017 	arc_buf_watch(buf);
1018 }
1019 
1020 #ifndef _KERNEL
1021 typedef struct procctl {
1022 	long cmd;
1023 	prwatch_t prwatch;
1024 } procctl_t;
1025 #endif
1026 
1027 /* ARGSUSED */
1028 static void
1029 arc_buf_unwatch(arc_buf_t *buf)
1030 {
1031 #ifndef _KERNEL
1032 	if (arc_watch) {
1033 		int result;
1034 		procctl_t ctl;
1035 		ctl.cmd = PCWATCH;
1036 		ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1037 		ctl.prwatch.pr_size = 0;
1038 		ctl.prwatch.pr_wflags = 0;
1039 		result = write(arc_procfd, &ctl, sizeof (ctl));
1040 		ASSERT3U(result, ==, sizeof (ctl));
1041 	}
1042 #endif
1043 }
1044 
1045 /* ARGSUSED */
1046 static void
1047 arc_buf_watch(arc_buf_t *buf)
1048 {
1049 #ifndef _KERNEL
1050 	if (arc_watch) {
1051 		int result;
1052 		procctl_t ctl;
1053 		ctl.cmd = PCWATCH;
1054 		ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1055 		ctl.prwatch.pr_size = buf->b_hdr->b_size;
1056 		ctl.prwatch.pr_wflags = WA_WRITE;
1057 		result = write(arc_procfd, &ctl, sizeof (ctl));
1058 		ASSERT3U(result, ==, sizeof (ctl));
1059 	}
1060 #endif
1061 }
1062 
1063 void
1064 arc_buf_thaw(arc_buf_t *buf)
1065 {
1066 	if (zfs_flags & ZFS_DEBUG_MODIFY) {
1067 		if (buf->b_hdr->b_state != arc_anon)
1068 			panic("modifying non-anon buffer!");
1069 		if (buf->b_hdr->b_flags & ARC_IO_IN_PROGRESS)
1070 			panic("modifying buffer while i/o in progress!");
1071 		arc_cksum_verify(buf);
1072 	}
1073 
1074 	mutex_enter(&buf->b_hdr->b_freeze_lock);
1075 	if (buf->b_hdr->b_freeze_cksum != NULL) {
1076 		kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1077 		buf->b_hdr->b_freeze_cksum = NULL;
1078 	}
1079 
1080 	if (zfs_flags & ZFS_DEBUG_MODIFY) {
1081 		if (buf->b_hdr->b_thawed)
1082 			kmem_free(buf->b_hdr->b_thawed, 1);
1083 		buf->b_hdr->b_thawed = kmem_alloc(1, KM_SLEEP);
1084 	}
1085 
1086 	mutex_exit(&buf->b_hdr->b_freeze_lock);
1087 
1088 	arc_buf_unwatch(buf);
1089 }
1090 
1091 void
1092 arc_buf_freeze(arc_buf_t *buf)
1093 {
1094 	kmutex_t *hash_lock;
1095 
1096 	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1097 		return;
1098 
1099 	hash_lock = HDR_LOCK(buf->b_hdr);
1100 	mutex_enter(hash_lock);
1101 
1102 	ASSERT(buf->b_hdr->b_freeze_cksum != NULL ||
1103 	    buf->b_hdr->b_state == arc_anon);
1104 	arc_cksum_compute(buf, B_FALSE);
1105 	mutex_exit(hash_lock);
1106 
1107 }
1108 
1109 static void
1110 add_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
1111 {
1112 	ASSERT(MUTEX_HELD(hash_lock));
1113 
1114 	if ((refcount_add(&ab->b_refcnt, tag) == 1) &&
1115 	    (ab->b_state != arc_anon)) {
1116 		uint64_t delta = ab->b_size * ab->b_datacnt;
1117 		list_t *list = &ab->b_state->arcs_list[ab->b_type];
1118 		uint64_t *size = &ab->b_state->arcs_lsize[ab->b_type];
1119 
1120 		ASSERT(!MUTEX_HELD(&ab->b_state->arcs_mtx));
1121 		mutex_enter(&ab->b_state->arcs_mtx);
1122 		ASSERT(list_link_active(&ab->b_arc_node));
1123 		list_remove(list, ab);
1124 		if (GHOST_STATE(ab->b_state)) {
1125 			ASSERT0(ab->b_datacnt);
1126 			ASSERT3P(ab->b_buf, ==, NULL);
1127 			delta = ab->b_size;
1128 		}
1129 		ASSERT(delta > 0);
1130 		ASSERT3U(*size, >=, delta);
1131 		atomic_add_64(size, -delta);
1132 		mutex_exit(&ab->b_state->arcs_mtx);
1133 		/* remove the prefetch flag if we get a reference */
1134 		if (ab->b_flags & ARC_PREFETCH)
1135 			ab->b_flags &= ~ARC_PREFETCH;
1136 	}
1137 }
1138 
1139 static int
1140 remove_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
1141 {
1142 	int cnt;
1143 	arc_state_t *state = ab->b_state;
1144 
1145 	ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
1146 	ASSERT(!GHOST_STATE(state));
1147 
1148 	if (((cnt = refcount_remove(&ab->b_refcnt, tag)) == 0) &&
1149 	    (state != arc_anon)) {
1150 		uint64_t *size = &state->arcs_lsize[ab->b_type];
1151 
1152 		ASSERT(!MUTEX_HELD(&state->arcs_mtx));
1153 		mutex_enter(&state->arcs_mtx);
1154 		ASSERT(!list_link_active(&ab->b_arc_node));
1155 		list_insert_head(&state->arcs_list[ab->b_type], ab);
1156 		ASSERT(ab->b_datacnt > 0);
1157 		atomic_add_64(size, ab->b_size * ab->b_datacnt);
1158 		mutex_exit(&state->arcs_mtx);
1159 	}
1160 	return (cnt);
1161 }
1162 
1163 /*
1164  * Move the supplied buffer to the indicated state.  The mutex
1165  * for the buffer must be held by the caller.
1166  */
1167 static void
1168 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *ab, kmutex_t *hash_lock)
1169 {
1170 	arc_state_t *old_state = ab->b_state;
1171 	int64_t refcnt = refcount_count(&ab->b_refcnt);
1172 	uint64_t from_delta, to_delta;
1173 
1174 	ASSERT(MUTEX_HELD(hash_lock));
1175 	ASSERT3P(new_state, !=, old_state);
1176 	ASSERT(refcnt == 0 || ab->b_datacnt > 0);
1177 	ASSERT(ab->b_datacnt == 0 || !GHOST_STATE(new_state));
1178 	ASSERT(ab->b_datacnt <= 1 || old_state != arc_anon);
1179 
1180 	from_delta = to_delta = ab->b_datacnt * ab->b_size;
1181 
1182 	/*
1183 	 * If this buffer is evictable, transfer it from the
1184 	 * old state list to the new state list.
1185 	 */
1186 	if (refcnt == 0) {
1187 		if (old_state != arc_anon) {
1188 			int use_mutex = !MUTEX_HELD(&old_state->arcs_mtx);
1189 			uint64_t *size = &old_state->arcs_lsize[ab->b_type];
1190 
1191 			if (use_mutex)
1192 				mutex_enter(&old_state->arcs_mtx);
1193 
1194 			ASSERT(list_link_active(&ab->b_arc_node));
1195 			list_remove(&old_state->arcs_list[ab->b_type], ab);
1196 
1197 			/*
1198 			 * If prefetching out of the ghost cache,
1199 			 * we will have a non-zero datacnt.
1200 			 */
1201 			if (GHOST_STATE(old_state) && ab->b_datacnt == 0) {
1202 				/* ghost elements have a ghost size */
1203 				ASSERT(ab->b_buf == NULL);
1204 				from_delta = ab->b_size;
1205 			}
1206 			ASSERT3U(*size, >=, from_delta);
1207 			atomic_add_64(size, -from_delta);
1208 
1209 			if (use_mutex)
1210 				mutex_exit(&old_state->arcs_mtx);
1211 		}
1212 		if (new_state != arc_anon) {
1213 			int use_mutex = !MUTEX_HELD(&new_state->arcs_mtx);
1214 			uint64_t *size = &new_state->arcs_lsize[ab->b_type];
1215 
1216 			if (use_mutex)
1217 				mutex_enter(&new_state->arcs_mtx);
1218 
1219 			list_insert_head(&new_state->arcs_list[ab->b_type], ab);
1220 
1221 			/* ghost elements have a ghost size */
1222 			if (GHOST_STATE(new_state)) {
1223 				ASSERT(ab->b_datacnt == 0);
1224 				ASSERT(ab->b_buf == NULL);
1225 				to_delta = ab->b_size;
1226 			}
1227 			atomic_add_64(size, to_delta);
1228 
1229 			if (use_mutex)
1230 				mutex_exit(&new_state->arcs_mtx);
1231 		}
1232 	}
1233 
1234 	ASSERT(!BUF_EMPTY(ab));
1235 	if (new_state == arc_anon && HDR_IN_HASH_TABLE(ab))
1236 		buf_hash_remove(ab);
1237 
1238 	/* adjust state sizes */
1239 	if (to_delta)
1240 		atomic_add_64(&new_state->arcs_size, to_delta);
1241 	if (from_delta) {
1242 		ASSERT3U(old_state->arcs_size, >=, from_delta);
1243 		atomic_add_64(&old_state->arcs_size, -from_delta);
1244 	}
1245 	ab->b_state = new_state;
1246 
1247 	/* adjust l2arc hdr stats */
1248 	if (new_state == arc_l2c_only)
1249 		l2arc_hdr_stat_add();
1250 	else if (old_state == arc_l2c_only)
1251 		l2arc_hdr_stat_remove();
1252 }
1253 
1254 void
1255 arc_space_consume(uint64_t space, arc_space_type_t type)
1256 {
1257 	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1258 
1259 	switch (type) {
1260 	case ARC_SPACE_DATA:
1261 		ARCSTAT_INCR(arcstat_data_size, space);
1262 		break;
1263 	case ARC_SPACE_OTHER:
1264 		ARCSTAT_INCR(arcstat_other_size, space);
1265 		break;
1266 	case ARC_SPACE_HDRS:
1267 		ARCSTAT_INCR(arcstat_hdr_size, space);
1268 		break;
1269 	case ARC_SPACE_L2HDRS:
1270 		ARCSTAT_INCR(arcstat_l2_hdr_size, space);
1271 		break;
1272 	}
1273 
1274 	ARCSTAT_INCR(arcstat_meta_used, space);
1275 	atomic_add_64(&arc_size, space);
1276 }
1277 
1278 void
1279 arc_space_return(uint64_t space, arc_space_type_t type)
1280 {
1281 	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1282 
1283 	switch (type) {
1284 	case ARC_SPACE_DATA:
1285 		ARCSTAT_INCR(arcstat_data_size, -space);
1286 		break;
1287 	case ARC_SPACE_OTHER:
1288 		ARCSTAT_INCR(arcstat_other_size, -space);
1289 		break;
1290 	case ARC_SPACE_HDRS:
1291 		ARCSTAT_INCR(arcstat_hdr_size, -space);
1292 		break;
1293 	case ARC_SPACE_L2HDRS:
1294 		ARCSTAT_INCR(arcstat_l2_hdr_size, -space);
1295 		break;
1296 	}
1297 
1298 	ASSERT(arc_meta_used >= space);
1299 	if (arc_meta_max < arc_meta_used)
1300 		arc_meta_max = arc_meta_used;
1301 	ARCSTAT_INCR(arcstat_meta_used, -space);
1302 	ASSERT(arc_size >= space);
1303 	atomic_add_64(&arc_size, -space);
1304 }
1305 
1306 void *
1307 arc_data_buf_alloc(uint64_t size)
1308 {
1309 	if (arc_evict_needed(ARC_BUFC_DATA))
1310 		cv_signal(&arc_reclaim_thr_cv);
1311 	atomic_add_64(&arc_size, size);
1312 	return (zio_data_buf_alloc(size));
1313 }
1314 
1315 void
1316 arc_data_buf_free(void *buf, uint64_t size)
1317 {
1318 	zio_data_buf_free(buf, size);
1319 	ASSERT(arc_size >= size);
1320 	atomic_add_64(&arc_size, -size);
1321 }
1322 
1323 arc_buf_t *
1324 arc_buf_alloc(spa_t *spa, int size, void *tag, arc_buf_contents_t type)
1325 {
1326 	arc_buf_hdr_t *hdr;
1327 	arc_buf_t *buf;
1328 
1329 	ASSERT3U(size, >, 0);
1330 	hdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
1331 	ASSERT(BUF_EMPTY(hdr));
1332 	hdr->b_size = size;
1333 	hdr->b_type = type;
1334 	hdr->b_spa = spa_load_guid(spa);
1335 	hdr->b_state = arc_anon;
1336 	hdr->b_arc_access = 0;
1337 	buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1338 	buf->b_hdr = hdr;
1339 	buf->b_data = NULL;
1340 	buf->b_efunc = NULL;
1341 	buf->b_private = NULL;
1342 	buf->b_next = NULL;
1343 	hdr->b_buf = buf;
1344 	arc_get_data_buf(buf);
1345 	hdr->b_datacnt = 1;
1346 	hdr->b_flags = 0;
1347 	ASSERT(refcount_is_zero(&hdr->b_refcnt));
1348 	(void) refcount_add(&hdr->b_refcnt, tag);
1349 
1350 	return (buf);
1351 }
1352 
1353 static char *arc_onloan_tag = "onloan";
1354 
1355 /*
1356  * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
1357  * flight data by arc_tempreserve_space() until they are "returned". Loaned
1358  * buffers must be returned to the arc before they can be used by the DMU or
1359  * freed.
1360  */
1361 arc_buf_t *
1362 arc_loan_buf(spa_t *spa, int size)
1363 {
1364 	arc_buf_t *buf;
1365 
1366 	buf = arc_buf_alloc(spa, size, arc_onloan_tag, ARC_BUFC_DATA);
1367 
1368 	atomic_add_64(&arc_loaned_bytes, size);
1369 	return (buf);
1370 }
1371 
1372 /*
1373  * Return a loaned arc buffer to the arc.
1374  */
1375 void
1376 arc_return_buf(arc_buf_t *buf, void *tag)
1377 {
1378 	arc_buf_hdr_t *hdr = buf->b_hdr;
1379 
1380 	ASSERT(buf->b_data != NULL);
1381 	(void) refcount_add(&hdr->b_refcnt, tag);
1382 	(void) refcount_remove(&hdr->b_refcnt, arc_onloan_tag);
1383 
1384 	atomic_add_64(&arc_loaned_bytes, -hdr->b_size);
1385 }
1386 
1387 /* Detach an arc_buf from a dbuf (tag) */
1388 void
1389 arc_loan_inuse_buf(arc_buf_t *buf, void *tag)
1390 {
1391 	arc_buf_hdr_t *hdr;
1392 
1393 	ASSERT(buf->b_data != NULL);
1394 	hdr = buf->b_hdr;
1395 	(void) refcount_add(&hdr->b_refcnt, arc_onloan_tag);
1396 	(void) refcount_remove(&hdr->b_refcnt, tag);
1397 	buf->b_efunc = NULL;
1398 	buf->b_private = NULL;
1399 
1400 	atomic_add_64(&arc_loaned_bytes, hdr->b_size);
1401 }
1402 
1403 static arc_buf_t *
1404 arc_buf_clone(arc_buf_t *from)
1405 {
1406 	arc_buf_t *buf;
1407 	arc_buf_hdr_t *hdr = from->b_hdr;
1408 	uint64_t size = hdr->b_size;
1409 
1410 	ASSERT(hdr->b_state != arc_anon);
1411 
1412 	buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1413 	buf->b_hdr = hdr;
1414 	buf->b_data = NULL;
1415 	buf->b_efunc = NULL;
1416 	buf->b_private = NULL;
1417 	buf->b_next = hdr->b_buf;
1418 	hdr->b_buf = buf;
1419 	arc_get_data_buf(buf);
1420 	bcopy(from->b_data, buf->b_data, size);
1421 
1422 	/*
1423 	 * This buffer already exists in the arc so create a duplicate
1424 	 * copy for the caller.  If the buffer is associated with user data
1425 	 * then track the size and number of duplicates.  These stats will be
1426 	 * updated as duplicate buffers are created and destroyed.
1427 	 */
1428 	if (hdr->b_type == ARC_BUFC_DATA) {
1429 		ARCSTAT_BUMP(arcstat_duplicate_buffers);
1430 		ARCSTAT_INCR(arcstat_duplicate_buffers_size, size);
1431 	}
1432 	hdr->b_datacnt += 1;
1433 	return (buf);
1434 }
1435 
1436 void
1437 arc_buf_add_ref(arc_buf_t *buf, void* tag)
1438 {
1439 	arc_buf_hdr_t *hdr;
1440 	kmutex_t *hash_lock;
1441 
1442 	/*
1443 	 * Check to see if this buffer is evicted.  Callers
1444 	 * must verify b_data != NULL to know if the add_ref
1445 	 * was successful.
1446 	 */
1447 	mutex_enter(&buf->b_evict_lock);
1448 	if (buf->b_data == NULL) {
1449 		mutex_exit(&buf->b_evict_lock);
1450 		return;
1451 	}
1452 	hash_lock = HDR_LOCK(buf->b_hdr);
1453 	mutex_enter(hash_lock);
1454 	hdr = buf->b_hdr;
1455 	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1456 	mutex_exit(&buf->b_evict_lock);
1457 
1458 	ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
1459 	add_reference(hdr, hash_lock, tag);
1460 	DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
1461 	arc_access(hdr, hash_lock);
1462 	mutex_exit(hash_lock);
1463 	ARCSTAT_BUMP(arcstat_hits);
1464 	ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
1465 	    demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
1466 	    data, metadata, hits);
1467 }
1468 
1469 /*
1470  * Free the arc data buffer.  If it is an l2arc write in progress,
1471  * the buffer is placed on l2arc_free_on_write to be freed later.
1472  */
1473 static void
1474 arc_buf_data_free(arc_buf_t *buf, void (*free_func)(void *, size_t))
1475 {
1476 	arc_buf_hdr_t *hdr = buf->b_hdr;
1477 
1478 	if (HDR_L2_WRITING(hdr)) {
1479 		l2arc_data_free_t *df;
1480 		df = kmem_alloc(sizeof (l2arc_data_free_t), KM_SLEEP);
1481 		df->l2df_data = buf->b_data;
1482 		df->l2df_size = hdr->b_size;
1483 		df->l2df_func = free_func;
1484 		mutex_enter(&l2arc_free_on_write_mtx);
1485 		list_insert_head(l2arc_free_on_write, df);
1486 		mutex_exit(&l2arc_free_on_write_mtx);
1487 		ARCSTAT_BUMP(arcstat_l2_free_on_write);
1488 	} else {
1489 		free_func(buf->b_data, hdr->b_size);
1490 	}
1491 }
1492 
1493 static void
1494 arc_buf_destroy(arc_buf_t *buf, boolean_t recycle, boolean_t all)
1495 {
1496 	arc_buf_t **bufp;
1497 
1498 	/* free up data associated with the buf */
1499 	if (buf->b_data) {
1500 		arc_state_t *state = buf->b_hdr->b_state;
1501 		uint64_t size = buf->b_hdr->b_size;
1502 		arc_buf_contents_t type = buf->b_hdr->b_type;
1503 
1504 		arc_cksum_verify(buf);
1505 		arc_buf_unwatch(buf);
1506 
1507 		if (!recycle) {
1508 			if (type == ARC_BUFC_METADATA) {
1509 				arc_buf_data_free(buf, zio_buf_free);
1510 				arc_space_return(size, ARC_SPACE_DATA);
1511 			} else {
1512 				ASSERT(type == ARC_BUFC_DATA);
1513 				arc_buf_data_free(buf, zio_data_buf_free);
1514 				ARCSTAT_INCR(arcstat_data_size, -size);
1515 				atomic_add_64(&arc_size, -size);
1516 			}
1517 		}
1518 		if (list_link_active(&buf->b_hdr->b_arc_node)) {
1519 			uint64_t *cnt = &state->arcs_lsize[type];
1520 
1521 			ASSERT(refcount_is_zero(&buf->b_hdr->b_refcnt));
1522 			ASSERT(state != arc_anon);
1523 
1524 			ASSERT3U(*cnt, >=, size);
1525 			atomic_add_64(cnt, -size);
1526 		}
1527 		ASSERT3U(state->arcs_size, >=, size);
1528 		atomic_add_64(&state->arcs_size, -size);
1529 		buf->b_data = NULL;
1530 
1531 		/*
1532 		 * If we're destroying a duplicate buffer make sure
1533 		 * that the appropriate statistics are updated.
1534 		 */
1535 		if (buf->b_hdr->b_datacnt > 1 &&
1536 		    buf->b_hdr->b_type == ARC_BUFC_DATA) {
1537 			ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers);
1538 			ARCSTAT_INCR(arcstat_duplicate_buffers_size, -size);
1539 		}
1540 		ASSERT(buf->b_hdr->b_datacnt > 0);
1541 		buf->b_hdr->b_datacnt -= 1;
1542 	}
1543 
1544 	/* only remove the buf if requested */
1545 	if (!all)
1546 		return;
1547 
1548 	/* remove the buf from the hdr list */
1549 	for (bufp = &buf->b_hdr->b_buf; *bufp != buf; bufp = &(*bufp)->b_next)
1550 		continue;
1551 	*bufp = buf->b_next;
1552 	buf->b_next = NULL;
1553 
1554 	ASSERT(buf->b_efunc == NULL);
1555 
1556 	/* clean up the buf */
1557 	buf->b_hdr = NULL;
1558 	kmem_cache_free(buf_cache, buf);
1559 }
1560 
1561 static void
1562 arc_hdr_destroy(arc_buf_hdr_t *hdr)
1563 {
1564 	ASSERT(refcount_is_zero(&hdr->b_refcnt));
1565 	ASSERT3P(hdr->b_state, ==, arc_anon);
1566 	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
1567 	l2arc_buf_hdr_t *l2hdr = hdr->b_l2hdr;
1568 
1569 	if (l2hdr != NULL) {
1570 		boolean_t buflist_held = MUTEX_HELD(&l2arc_buflist_mtx);
1571 		/*
1572 		 * To prevent arc_free() and l2arc_evict() from
1573 		 * attempting to free the same buffer at the same time,
1574 		 * a FREE_IN_PROGRESS flag is given to arc_free() to
1575 		 * give it priority.  l2arc_evict() can't destroy this
1576 		 * header while we are waiting on l2arc_buflist_mtx.
1577 		 *
1578 		 * The hdr may be removed from l2ad_buflist before we
1579 		 * grab l2arc_buflist_mtx, so b_l2hdr is rechecked.
1580 		 */
1581 		if (!buflist_held) {
1582 			mutex_enter(&l2arc_buflist_mtx);
1583 			l2hdr = hdr->b_l2hdr;
1584 		}
1585 
1586 		if (l2hdr != NULL) {
1587 			list_remove(l2hdr->b_dev->l2ad_buflist, hdr);
1588 			ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
1589 			ARCSTAT_INCR(arcstat_l2_asize, -l2hdr->b_asize);
1590 			kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t));
1591 			if (hdr->b_state == arc_l2c_only)
1592 				l2arc_hdr_stat_remove();
1593 			hdr->b_l2hdr = NULL;
1594 		}
1595 
1596 		if (!buflist_held)
1597 			mutex_exit(&l2arc_buflist_mtx);
1598 	}
1599 
1600 	if (!BUF_EMPTY(hdr)) {
1601 		ASSERT(!HDR_IN_HASH_TABLE(hdr));
1602 		buf_discard_identity(hdr);
1603 	}
1604 	while (hdr->b_buf) {
1605 		arc_buf_t *buf = hdr->b_buf;
1606 
1607 		if (buf->b_efunc) {
1608 			mutex_enter(&arc_eviction_mtx);
1609 			mutex_enter(&buf->b_evict_lock);
1610 			ASSERT(buf->b_hdr != NULL);
1611 			arc_buf_destroy(hdr->b_buf, FALSE, FALSE);
1612 			hdr->b_buf = buf->b_next;
1613 			buf->b_hdr = &arc_eviction_hdr;
1614 			buf->b_next = arc_eviction_list;
1615 			arc_eviction_list = buf;
1616 			mutex_exit(&buf->b_evict_lock);
1617 			mutex_exit(&arc_eviction_mtx);
1618 		} else {
1619 			arc_buf_destroy(hdr->b_buf, FALSE, TRUE);
1620 		}
1621 	}
1622 	if (hdr->b_freeze_cksum != NULL) {
1623 		kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1624 		hdr->b_freeze_cksum = NULL;
1625 	}
1626 	if (hdr->b_thawed) {
1627 		kmem_free(hdr->b_thawed, 1);
1628 		hdr->b_thawed = NULL;
1629 	}
1630 
1631 	ASSERT(!list_link_active(&hdr->b_arc_node));
1632 	ASSERT3P(hdr->b_hash_next, ==, NULL);
1633 	ASSERT3P(hdr->b_acb, ==, NULL);
1634 	kmem_cache_free(hdr_cache, hdr);
1635 }
1636 
1637 void
1638 arc_buf_free(arc_buf_t *buf, void *tag)
1639 {
1640 	arc_buf_hdr_t *hdr = buf->b_hdr;
1641 	int hashed = hdr->b_state != arc_anon;
1642 
1643 	ASSERT(buf->b_efunc == NULL);
1644 	ASSERT(buf->b_data != NULL);
1645 
1646 	if (hashed) {
1647 		kmutex_t *hash_lock = HDR_LOCK(hdr);
1648 
1649 		mutex_enter(hash_lock);
1650 		hdr = buf->b_hdr;
1651 		ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1652 
1653 		(void) remove_reference(hdr, hash_lock, tag);
1654 		if (hdr->b_datacnt > 1) {
1655 			arc_buf_destroy(buf, FALSE, TRUE);
1656 		} else {
1657 			ASSERT(buf == hdr->b_buf);
1658 			ASSERT(buf->b_efunc == NULL);
1659 			hdr->b_flags |= ARC_BUF_AVAILABLE;
1660 		}
1661 		mutex_exit(hash_lock);
1662 	} else if (HDR_IO_IN_PROGRESS(hdr)) {
1663 		int destroy_hdr;
1664 		/*
1665 		 * We are in the middle of an async write.  Don't destroy
1666 		 * this buffer unless the write completes before we finish
1667 		 * decrementing the reference count.
1668 		 */
1669 		mutex_enter(&arc_eviction_mtx);
1670 		(void) remove_reference(hdr, NULL, tag);
1671 		ASSERT(refcount_is_zero(&hdr->b_refcnt));
1672 		destroy_hdr = !HDR_IO_IN_PROGRESS(hdr);
1673 		mutex_exit(&arc_eviction_mtx);
1674 		if (destroy_hdr)
1675 			arc_hdr_destroy(hdr);
1676 	} else {
1677 		if (remove_reference(hdr, NULL, tag) > 0)
1678 			arc_buf_destroy(buf, FALSE, TRUE);
1679 		else
1680 			arc_hdr_destroy(hdr);
1681 	}
1682 }
1683 
1684 boolean_t
1685 arc_buf_remove_ref(arc_buf_t *buf, void* tag)
1686 {
1687 	arc_buf_hdr_t *hdr = buf->b_hdr;
1688 	kmutex_t *hash_lock = HDR_LOCK(hdr);
1689 	boolean_t no_callback = (buf->b_efunc == NULL);
1690 
1691 	if (hdr->b_state == arc_anon) {
1692 		ASSERT(hdr->b_datacnt == 1);
1693 		arc_buf_free(buf, tag);
1694 		return (no_callback);
1695 	}
1696 
1697 	mutex_enter(hash_lock);
1698 	hdr = buf->b_hdr;
1699 	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1700 	ASSERT(hdr->b_state != arc_anon);
1701 	ASSERT(buf->b_data != NULL);
1702 
1703 	(void) remove_reference(hdr, hash_lock, tag);
1704 	if (hdr->b_datacnt > 1) {
1705 		if (no_callback)
1706 			arc_buf_destroy(buf, FALSE, TRUE);
1707 	} else if (no_callback) {
1708 		ASSERT(hdr->b_buf == buf && buf->b_next == NULL);
1709 		ASSERT(buf->b_efunc == NULL);
1710 		hdr->b_flags |= ARC_BUF_AVAILABLE;
1711 	}
1712 	ASSERT(no_callback || hdr->b_datacnt > 1 ||
1713 	    refcount_is_zero(&hdr->b_refcnt));
1714 	mutex_exit(hash_lock);
1715 	return (no_callback);
1716 }
1717 
1718 int
1719 arc_buf_size(arc_buf_t *buf)
1720 {
1721 	return (buf->b_hdr->b_size);
1722 }
1723 
1724 /*
1725  * Called from the DMU to determine if the current buffer should be
1726  * evicted. In order to ensure proper locking, the eviction must be initiated
1727  * from the DMU. Return true if the buffer is associated with user data and
1728  * duplicate buffers still exist.
1729  */
1730 boolean_t
1731 arc_buf_eviction_needed(arc_buf_t *buf)
1732 {
1733 	arc_buf_hdr_t *hdr;
1734 	boolean_t evict_needed = B_FALSE;
1735 
1736 	if (zfs_disable_dup_eviction)
1737 		return (B_FALSE);
1738 
1739 	mutex_enter(&buf->b_evict_lock);
1740 	hdr = buf->b_hdr;
1741 	if (hdr == NULL) {
1742 		/*
1743 		 * We are in arc_do_user_evicts(); let that function
1744 		 * perform the eviction.
1745 		 */
1746 		ASSERT(buf->b_data == NULL);
1747 		mutex_exit(&buf->b_evict_lock);
1748 		return (B_FALSE);
1749 	} else if (buf->b_data == NULL) {
1750 		/*
1751 		 * We have already been added to the arc eviction list;
1752 		 * recommend eviction.
1753 		 */
1754 		ASSERT3P(hdr, ==, &arc_eviction_hdr);
1755 		mutex_exit(&buf->b_evict_lock);
1756 		return (B_TRUE);
1757 	}
1758 
1759 	if (hdr->b_datacnt > 1 && hdr->b_type == ARC_BUFC_DATA)
1760 		evict_needed = B_TRUE;
1761 
1762 	mutex_exit(&buf->b_evict_lock);
1763 	return (evict_needed);
1764 }
1765 
1766 /*
1767  * Evict buffers from list until we've removed the specified number of
1768  * bytes.  Move the removed buffers to the appropriate evict state.
1769  * If the recycle flag is set, then attempt to "recycle" a buffer:
1770  * - look for a buffer to evict that is `bytes' long.
1771  * - return the data block from this buffer rather than freeing it.
1772  * This flag is used by callers that are trying to make space for a
1773  * new buffer in a full arc cache.
1774  *
1775  * This function makes a "best effort".  It skips over any buffers
1776  * it can't get a hash_lock on, and so may not catch all candidates.
1777  * It may also return without evicting as much space as requested.
1778  */
1779 static void *
1780 arc_evict(arc_state_t *state, uint64_t spa, int64_t bytes, boolean_t recycle,
1781     arc_buf_contents_t type)
1782 {
1783 	arc_state_t *evicted_state;
1784 	uint64_t bytes_evicted = 0, skipped = 0, missed = 0;
1785 	arc_buf_hdr_t *ab, *ab_prev = NULL;
1786 	list_t *list = &state->arcs_list[type];
1787 	kmutex_t *hash_lock;
1788 	boolean_t have_lock;
1789 	void *stolen = NULL;
1790 	arc_buf_hdr_t marker = { 0 };
1791 	int count = 0;
1792 
1793 	ASSERT(state == arc_mru || state == arc_mfu);
1794 
1795 	evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
1796 
1797 	mutex_enter(&state->arcs_mtx);
1798 	mutex_enter(&evicted_state->arcs_mtx);
1799 
1800 	for (ab = list_tail(list); ab; ab = ab_prev) {
1801 		ab_prev = list_prev(list, ab);
1802 		/* prefetch buffers have a minimum lifespan */
1803 		if (HDR_IO_IN_PROGRESS(ab) ||
1804 		    (spa && ab->b_spa != spa) ||
1805 		    (ab->b_flags & (ARC_PREFETCH|ARC_INDIRECT) &&
1806 		    ddi_get_lbolt() - ab->b_arc_access <
1807 		    arc_min_prefetch_lifespan)) {
1808 			skipped++;
1809 			continue;
1810 		}
1811 		/* "lookahead" for better eviction candidate */
1812 		if (recycle && ab->b_size != bytes &&
1813 		    ab_prev && ab_prev->b_size == bytes)
1814 			continue;
1815 
1816 		/* ignore markers */
1817 		if (ab->b_spa == 0)
1818 			continue;
1819 
1820 		/*
1821 		 * It may take a long time to evict all the bufs requested.
1822 		 * To avoid blocking all arc activity, periodically drop
1823 		 * the arcs_mtx and give other threads a chance to run
1824 		 * before reacquiring the lock.
1825 		 *
1826 		 * If we are looking for a buffer to recycle, we are in
1827 		 * the hot code path, so don't sleep.
1828 		 */
1829 		if (!recycle && count++ > arc_evict_iterations) {
1830 			list_insert_after(list, ab, &marker);
1831 			mutex_exit(&evicted_state->arcs_mtx);
1832 			mutex_exit(&state->arcs_mtx);
1833 			kpreempt(KPREEMPT_SYNC);
1834 			mutex_enter(&state->arcs_mtx);
1835 			mutex_enter(&evicted_state->arcs_mtx);
1836 			ab_prev = list_prev(list, &marker);
1837 			list_remove(list, &marker);
1838 			count = 0;
1839 			continue;
1840 		}
1841 
1842 		hash_lock = HDR_LOCK(ab);
1843 		have_lock = MUTEX_HELD(hash_lock);
1844 		if (have_lock || mutex_tryenter(hash_lock)) {
1845 			ASSERT0(refcount_count(&ab->b_refcnt));
1846 			ASSERT(ab->b_datacnt > 0);
1847 			while (ab->b_buf) {
1848 				arc_buf_t *buf = ab->b_buf;
1849 				if (!mutex_tryenter(&buf->b_evict_lock)) {
1850 					missed += 1;
1851 					break;
1852 				}
1853 				if (buf->b_data) {
1854 					bytes_evicted += ab->b_size;
1855 					if (recycle && ab->b_type == type &&
1856 					    ab->b_size == bytes &&
1857 					    !HDR_L2_WRITING(ab)) {
1858 						stolen = buf->b_data;
1859 						recycle = FALSE;
1860 					}
1861 				}
1862 				if (buf->b_efunc) {
1863 					mutex_enter(&arc_eviction_mtx);
1864 					arc_buf_destroy(buf,
1865 					    buf->b_data == stolen, FALSE);
1866 					ab->b_buf = buf->b_next;
1867 					buf->b_hdr = &arc_eviction_hdr;
1868 					buf->b_next = arc_eviction_list;
1869 					arc_eviction_list = buf;
1870 					mutex_exit(&arc_eviction_mtx);
1871 					mutex_exit(&buf->b_evict_lock);
1872 				} else {
1873 					mutex_exit(&buf->b_evict_lock);
1874 					arc_buf_destroy(buf,
1875 					    buf->b_data == stolen, TRUE);
1876 				}
1877 			}
1878 
1879 			if (ab->b_l2hdr) {
1880 				ARCSTAT_INCR(arcstat_evict_l2_cached,
1881 				    ab->b_size);
1882 			} else {
1883 				if (l2arc_write_eligible(ab->b_spa, ab)) {
1884 					ARCSTAT_INCR(arcstat_evict_l2_eligible,
1885 					    ab->b_size);
1886 				} else {
1887 					ARCSTAT_INCR(
1888 					    arcstat_evict_l2_ineligible,
1889 					    ab->b_size);
1890 				}
1891 			}
1892 
1893 			if (ab->b_datacnt == 0) {
1894 				arc_change_state(evicted_state, ab, hash_lock);
1895 				ASSERT(HDR_IN_HASH_TABLE(ab));
1896 				ab->b_flags |= ARC_IN_HASH_TABLE;
1897 				ab->b_flags &= ~ARC_BUF_AVAILABLE;
1898 				DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, ab);
1899 			}
1900 			if (!have_lock)
1901 				mutex_exit(hash_lock);
1902 			if (bytes >= 0 && bytes_evicted >= bytes)
1903 				break;
1904 		} else {
1905 			missed += 1;
1906 		}
1907 	}
1908 
1909 	mutex_exit(&evicted_state->arcs_mtx);
1910 	mutex_exit(&state->arcs_mtx);
1911 
1912 	if (bytes_evicted < bytes)
1913 		dprintf("only evicted %lld bytes from %x",
1914 		    (longlong_t)bytes_evicted, state);
1915 
1916 	if (skipped)
1917 		ARCSTAT_INCR(arcstat_evict_skip, skipped);
1918 
1919 	if (missed)
1920 		ARCSTAT_INCR(arcstat_mutex_miss, missed);
1921 
1922 	/*
1923 	 * Note: we have just evicted some data into the ghost state,
1924 	 * potentially putting the ghost size over the desired size.  Rather
1925 	 * that evicting from the ghost list in this hot code path, leave
1926 	 * this chore to the arc_reclaim_thread().
1927 	 */
1928 
1929 	return (stolen);
1930 }
1931 
1932 /*
1933  * Remove buffers from list until we've removed the specified number of
1934  * bytes.  Destroy the buffers that are removed.
1935  */
1936 static void
1937 arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes)
1938 {
1939 	arc_buf_hdr_t *ab, *ab_prev;
1940 	arc_buf_hdr_t marker = { 0 };
1941 	list_t *list = &state->arcs_list[ARC_BUFC_DATA];
1942 	kmutex_t *hash_lock;
1943 	uint64_t bytes_deleted = 0;
1944 	uint64_t bufs_skipped = 0;
1945 	int count = 0;
1946 
1947 	ASSERT(GHOST_STATE(state));
1948 top:
1949 	mutex_enter(&state->arcs_mtx);
1950 	for (ab = list_tail(list); ab; ab = ab_prev) {
1951 		ab_prev = list_prev(list, ab);
1952 		if (ab->b_type > ARC_BUFC_NUMTYPES)
1953 			panic("invalid ab=%p", (void *)ab);
1954 		if (spa && ab->b_spa != spa)
1955 			continue;
1956 
1957 		/* ignore markers */
1958 		if (ab->b_spa == 0)
1959 			continue;
1960 
1961 		hash_lock = HDR_LOCK(ab);
1962 		/* caller may be trying to modify this buffer, skip it */
1963 		if (MUTEX_HELD(hash_lock))
1964 			continue;
1965 
1966 		/*
1967 		 * It may take a long time to evict all the bufs requested.
1968 		 * To avoid blocking all arc activity, periodically drop
1969 		 * the arcs_mtx and give other threads a chance to run
1970 		 * before reacquiring the lock.
1971 		 */
1972 		if (count++ > arc_evict_iterations) {
1973 			list_insert_after(list, ab, &marker);
1974 			mutex_exit(&state->arcs_mtx);
1975 			kpreempt(KPREEMPT_SYNC);
1976 			mutex_enter(&state->arcs_mtx);
1977 			ab_prev = list_prev(list, &marker);
1978 			list_remove(list, &marker);
1979 			count = 0;
1980 			continue;
1981 		}
1982 		if (mutex_tryenter(hash_lock)) {
1983 			ASSERT(!HDR_IO_IN_PROGRESS(ab));
1984 			ASSERT(ab->b_buf == NULL);
1985 			ARCSTAT_BUMP(arcstat_deleted);
1986 			bytes_deleted += ab->b_size;
1987 
1988 			if (ab->b_l2hdr != NULL) {
1989 				/*
1990 				 * This buffer is cached on the 2nd Level ARC;
1991 				 * don't destroy the header.
1992 				 */
1993 				arc_change_state(arc_l2c_only, ab, hash_lock);
1994 				mutex_exit(hash_lock);
1995 			} else {
1996 				arc_change_state(arc_anon, ab, hash_lock);
1997 				mutex_exit(hash_lock);
1998 				arc_hdr_destroy(ab);
1999 			}
2000 
2001 			DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, ab);
2002 			if (bytes >= 0 && bytes_deleted >= bytes)
2003 				break;
2004 		} else if (bytes < 0) {
2005 			/*
2006 			 * Insert a list marker and then wait for the
2007 			 * hash lock to become available. Once its
2008 			 * available, restart from where we left off.
2009 			 */
2010 			list_insert_after(list, ab, &marker);
2011 			mutex_exit(&state->arcs_mtx);
2012 			mutex_enter(hash_lock);
2013 			mutex_exit(hash_lock);
2014 			mutex_enter(&state->arcs_mtx);
2015 			ab_prev = list_prev(list, &marker);
2016 			list_remove(list, &marker);
2017 		} else {
2018 			bufs_skipped += 1;
2019 		}
2020 
2021 	}
2022 	mutex_exit(&state->arcs_mtx);
2023 
2024 	if (list == &state->arcs_list[ARC_BUFC_DATA] &&
2025 	    (bytes < 0 || bytes_deleted < bytes)) {
2026 		list = &state->arcs_list[ARC_BUFC_METADATA];
2027 		goto top;
2028 	}
2029 
2030 	if (bufs_skipped) {
2031 		ARCSTAT_INCR(arcstat_mutex_miss, bufs_skipped);
2032 		ASSERT(bytes >= 0);
2033 	}
2034 
2035 	if (bytes_deleted < bytes)
2036 		dprintf("only deleted %lld bytes from %p",
2037 		    (longlong_t)bytes_deleted, state);
2038 }
2039 
2040 static void
2041 arc_adjust(void)
2042 {
2043 	int64_t adjustment, delta;
2044 
2045 	/*
2046 	 * Adjust MRU size
2047 	 */
2048 
2049 	adjustment = MIN((int64_t)(arc_size - arc_c),
2050 	    (int64_t)(arc_anon->arcs_size + arc_mru->arcs_size + arc_meta_used -
2051 	    arc_p));
2052 
2053 	if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_DATA] > 0) {
2054 		delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_DATA], adjustment);
2055 		(void) arc_evict(arc_mru, NULL, delta, FALSE, ARC_BUFC_DATA);
2056 		adjustment -= delta;
2057 	}
2058 
2059 	if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_METADATA] > 0) {
2060 		delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_METADATA], adjustment);
2061 		(void) arc_evict(arc_mru, NULL, delta, FALSE,
2062 		    ARC_BUFC_METADATA);
2063 	}
2064 
2065 	/*
2066 	 * Adjust MFU size
2067 	 */
2068 
2069 	adjustment = arc_size - arc_c;
2070 
2071 	if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_DATA] > 0) {
2072 		delta = MIN(adjustment, arc_mfu->arcs_lsize[ARC_BUFC_DATA]);
2073 		(void) arc_evict(arc_mfu, NULL, delta, FALSE, ARC_BUFC_DATA);
2074 		adjustment -= delta;
2075 	}
2076 
2077 	if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_METADATA] > 0) {
2078 		int64_t delta = MIN(adjustment,
2079 		    arc_mfu->arcs_lsize[ARC_BUFC_METADATA]);
2080 		(void) arc_evict(arc_mfu, NULL, delta, FALSE,
2081 		    ARC_BUFC_METADATA);
2082 	}
2083 
2084 	/*
2085 	 * Adjust ghost lists
2086 	 */
2087 
2088 	adjustment = arc_mru->arcs_size + arc_mru_ghost->arcs_size - arc_c;
2089 
2090 	if (adjustment > 0 && arc_mru_ghost->arcs_size > 0) {
2091 		delta = MIN(arc_mru_ghost->arcs_size, adjustment);
2092 		arc_evict_ghost(arc_mru_ghost, NULL, delta);
2093 	}
2094 
2095 	adjustment =
2096 	    arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size - arc_c;
2097 
2098 	if (adjustment > 0 && arc_mfu_ghost->arcs_size > 0) {
2099 		delta = MIN(arc_mfu_ghost->arcs_size, adjustment);
2100 		arc_evict_ghost(arc_mfu_ghost, NULL, delta);
2101 	}
2102 }
2103 
2104 static void
2105 arc_do_user_evicts(void)
2106 {
2107 	mutex_enter(&arc_eviction_mtx);
2108 	while (arc_eviction_list != NULL) {
2109 		arc_buf_t *buf = arc_eviction_list;
2110 		arc_eviction_list = buf->b_next;
2111 		mutex_enter(&buf->b_evict_lock);
2112 		buf->b_hdr = NULL;
2113 		mutex_exit(&buf->b_evict_lock);
2114 		mutex_exit(&arc_eviction_mtx);
2115 
2116 		if (buf->b_efunc != NULL)
2117 			VERIFY(buf->b_efunc(buf) == 0);
2118 
2119 		buf->b_efunc = NULL;
2120 		buf->b_private = NULL;
2121 		kmem_cache_free(buf_cache, buf);
2122 		mutex_enter(&arc_eviction_mtx);
2123 	}
2124 	mutex_exit(&arc_eviction_mtx);
2125 }
2126 
2127 /*
2128  * Flush all *evictable* data from the cache for the given spa.
2129  * NOTE: this will not touch "active" (i.e. referenced) data.
2130  */
2131 void
2132 arc_flush(spa_t *spa)
2133 {
2134 	uint64_t guid = 0;
2135 
2136 	if (spa)
2137 		guid = spa_load_guid(spa);
2138 
2139 	while (list_head(&arc_mru->arcs_list[ARC_BUFC_DATA])) {
2140 		(void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_DATA);
2141 		if (spa)
2142 			break;
2143 	}
2144 	while (list_head(&arc_mru->arcs_list[ARC_BUFC_METADATA])) {
2145 		(void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_METADATA);
2146 		if (spa)
2147 			break;
2148 	}
2149 	while (list_head(&arc_mfu->arcs_list[ARC_BUFC_DATA])) {
2150 		(void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_DATA);
2151 		if (spa)
2152 			break;
2153 	}
2154 	while (list_head(&arc_mfu->arcs_list[ARC_BUFC_METADATA])) {
2155 		(void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_METADATA);
2156 		if (spa)
2157 			break;
2158 	}
2159 
2160 	arc_evict_ghost(arc_mru_ghost, guid, -1);
2161 	arc_evict_ghost(arc_mfu_ghost, guid, -1);
2162 
2163 	mutex_enter(&arc_reclaim_thr_lock);
2164 	arc_do_user_evicts();
2165 	mutex_exit(&arc_reclaim_thr_lock);
2166 	ASSERT(spa || arc_eviction_list == NULL);
2167 }
2168 
2169 void
2170 arc_shrink(void)
2171 {
2172 	if (arc_c > arc_c_min) {
2173 		uint64_t to_free;
2174 
2175 #ifdef _KERNEL
2176 		to_free = MAX(arc_c >> arc_shrink_shift, ptob(needfree));
2177 #else
2178 		to_free = arc_c >> arc_shrink_shift;
2179 #endif
2180 		if (arc_c > arc_c_min + to_free)
2181 			atomic_add_64(&arc_c, -to_free);
2182 		else
2183 			arc_c = arc_c_min;
2184 
2185 		atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
2186 		if (arc_c > arc_size)
2187 			arc_c = MAX(arc_size, arc_c_min);
2188 		if (arc_p > arc_c)
2189 			arc_p = (arc_c >> 1);
2190 		ASSERT(arc_c >= arc_c_min);
2191 		ASSERT((int64_t)arc_p >= 0);
2192 	}
2193 
2194 	if (arc_size > arc_c)
2195 		arc_adjust();
2196 }
2197 
2198 /*
2199  * Determine if the system is under memory pressure and is asking
2200  * to reclaim memory. A return value of 1 indicates that the system
2201  * is under memory pressure and that the arc should adjust accordingly.
2202  */
2203 static int
2204 arc_reclaim_needed(void)
2205 {
2206 	uint64_t extra;
2207 
2208 #ifdef _KERNEL
2209 
2210 	if (needfree)
2211 		return (1);
2212 
2213 	/*
2214 	 * take 'desfree' extra pages, so we reclaim sooner, rather than later
2215 	 */
2216 	extra = desfree;
2217 
2218 	/*
2219 	 * check that we're out of range of the pageout scanner.  It starts to
2220 	 * schedule paging if freemem is less than lotsfree and needfree.
2221 	 * lotsfree is the high-water mark for pageout, and needfree is the
2222 	 * number of needed free pages.  We add extra pages here to make sure
2223 	 * the scanner doesn't start up while we're freeing memory.
2224 	 */
2225 	if (freemem < lotsfree + needfree + extra)
2226 		return (1);
2227 
2228 	/*
2229 	 * check to make sure that swapfs has enough space so that anon
2230 	 * reservations can still succeed. anon_resvmem() checks that the
2231 	 * availrmem is greater than swapfs_minfree, and the number of reserved
2232 	 * swap pages.  We also add a bit of extra here just to prevent
2233 	 * circumstances from getting really dire.
2234 	 */
2235 	if (availrmem < swapfs_minfree + swapfs_reserve + extra)
2236 		return (1);
2237 
2238 #if defined(__i386)
2239 	/*
2240 	 * If we're on an i386 platform, it's possible that we'll exhaust the
2241 	 * kernel heap space before we ever run out of available physical
2242 	 * memory.  Most checks of the size of the heap_area compare against
2243 	 * tune.t_minarmem, which is the minimum available real memory that we
2244 	 * can have in the system.  However, this is generally fixed at 25 pages
2245 	 * which is so low that it's useless.  In this comparison, we seek to
2246 	 * calculate the total heap-size, and reclaim if more than 3/4ths of the
2247 	 * heap is allocated.  (Or, in the calculation, if less than 1/4th is
2248 	 * free)
2249 	 */
2250 	if (vmem_size(heap_arena, VMEM_FREE) <
2251 	    (vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC) >> 2))
2252 		return (1);
2253 #endif
2254 
2255 	/*
2256 	 * If zio data pages are being allocated out of a separate heap segment,
2257 	 * then enforce that the size of available vmem for this arena remains
2258 	 * above about 1/16th free.
2259 	 *
2260 	 * Note: The 1/16th arena free requirement was put in place
2261 	 * to aggressively evict memory from the arc in order to avoid
2262 	 * memory fragmentation issues.
2263 	 */
2264 	if (zio_arena != NULL &&
2265 	    vmem_size(zio_arena, VMEM_FREE) <
2266 	    (vmem_size(zio_arena, VMEM_ALLOC) >> 4))
2267 		return (1);
2268 #else
2269 	if (spa_get_random(100) == 0)
2270 		return (1);
2271 #endif
2272 	return (0);
2273 }
2274 
2275 static void
2276 arc_kmem_reap_now(arc_reclaim_strategy_t strat)
2277 {
2278 	size_t			i;
2279 	kmem_cache_t		*prev_cache = NULL;
2280 	kmem_cache_t		*prev_data_cache = NULL;
2281 	extern kmem_cache_t	*zio_buf_cache[];
2282 	extern kmem_cache_t	*zio_data_buf_cache[];
2283 
2284 #ifdef _KERNEL
2285 	if (arc_meta_used >= arc_meta_limit) {
2286 		/*
2287 		 * We are exceeding our meta-data cache limit.
2288 		 * Purge some DNLC entries to release holds on meta-data.
2289 		 */
2290 		dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent);
2291 	}
2292 #if defined(__i386)
2293 	/*
2294 	 * Reclaim unused memory from all kmem caches.
2295 	 */
2296 	kmem_reap();
2297 #endif
2298 #endif
2299 
2300 	/*
2301 	 * An aggressive reclamation will shrink the cache size as well as
2302 	 * reap free buffers from the arc kmem caches.
2303 	 */
2304 	if (strat == ARC_RECLAIM_AGGR)
2305 		arc_shrink();
2306 
2307 	for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
2308 		if (zio_buf_cache[i] != prev_cache) {
2309 			prev_cache = zio_buf_cache[i];
2310 			kmem_cache_reap_now(zio_buf_cache[i]);
2311 		}
2312 		if (zio_data_buf_cache[i] != prev_data_cache) {
2313 			prev_data_cache = zio_data_buf_cache[i];
2314 			kmem_cache_reap_now(zio_data_buf_cache[i]);
2315 		}
2316 	}
2317 	kmem_cache_reap_now(buf_cache);
2318 	kmem_cache_reap_now(hdr_cache);
2319 
2320 	/*
2321 	 * Ask the vmem areana to reclaim unused memory from its
2322 	 * quantum caches.
2323 	 */
2324 	if (zio_arena != NULL && strat == ARC_RECLAIM_AGGR)
2325 		vmem_qcache_reap(zio_arena);
2326 }
2327 
2328 static void
2329 arc_reclaim_thread(void)
2330 {
2331 	clock_t			growtime = 0;
2332 	arc_reclaim_strategy_t	last_reclaim = ARC_RECLAIM_CONS;
2333 	callb_cpr_t		cpr;
2334 
2335 	CALLB_CPR_INIT(&cpr, &arc_reclaim_thr_lock, callb_generic_cpr, FTAG);
2336 
2337 	mutex_enter(&arc_reclaim_thr_lock);
2338 	while (arc_thread_exit == 0) {
2339 		if (arc_reclaim_needed()) {
2340 
2341 			if (arc_no_grow) {
2342 				if (last_reclaim == ARC_RECLAIM_CONS) {
2343 					last_reclaim = ARC_RECLAIM_AGGR;
2344 				} else {
2345 					last_reclaim = ARC_RECLAIM_CONS;
2346 				}
2347 			} else {
2348 				arc_no_grow = TRUE;
2349 				last_reclaim = ARC_RECLAIM_AGGR;
2350 				membar_producer();
2351 			}
2352 
2353 			/* reset the growth delay for every reclaim */
2354 			growtime = ddi_get_lbolt() + (arc_grow_retry * hz);
2355 
2356 			arc_kmem_reap_now(last_reclaim);
2357 			arc_warm = B_TRUE;
2358 
2359 		} else if (arc_no_grow && ddi_get_lbolt() >= growtime) {
2360 			arc_no_grow = FALSE;
2361 		}
2362 
2363 		arc_adjust();
2364 
2365 		if (arc_eviction_list != NULL)
2366 			arc_do_user_evicts();
2367 
2368 		/* block until needed, or one second, whichever is shorter */
2369 		CALLB_CPR_SAFE_BEGIN(&cpr);
2370 		(void) cv_timedwait(&arc_reclaim_thr_cv,
2371 		    &arc_reclaim_thr_lock, (ddi_get_lbolt() + hz));
2372 		CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_thr_lock);
2373 	}
2374 
2375 	arc_thread_exit = 0;
2376 	cv_broadcast(&arc_reclaim_thr_cv);
2377 	CALLB_CPR_EXIT(&cpr);		/* drops arc_reclaim_thr_lock */
2378 	thread_exit();
2379 }
2380 
2381 /*
2382  * Adapt arc info given the number of bytes we are trying to add and
2383  * the state that we are comming from.  This function is only called
2384  * when we are adding new content to the cache.
2385  */
2386 static void
2387 arc_adapt(int bytes, arc_state_t *state)
2388 {
2389 	int mult;
2390 	uint64_t arc_p_min = (arc_c >> arc_p_min_shift);
2391 
2392 	if (state == arc_l2c_only)
2393 		return;
2394 
2395 	ASSERT(bytes > 0);
2396 	/*
2397 	 * Adapt the target size of the MRU list:
2398 	 *	- if we just hit in the MRU ghost list, then increase
2399 	 *	  the target size of the MRU list.
2400 	 *	- if we just hit in the MFU ghost list, then increase
2401 	 *	  the target size of the MFU list by decreasing the
2402 	 *	  target size of the MRU list.
2403 	 */
2404 	if (state == arc_mru_ghost) {
2405 		mult = ((arc_mru_ghost->arcs_size >= arc_mfu_ghost->arcs_size) ?
2406 		    1 : (arc_mfu_ghost->arcs_size/arc_mru_ghost->arcs_size));
2407 		mult = MIN(mult, 10); /* avoid wild arc_p adjustment */
2408 
2409 		arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult);
2410 	} else if (state == arc_mfu_ghost) {
2411 		uint64_t delta;
2412 
2413 		mult = ((arc_mfu_ghost->arcs_size >= arc_mru_ghost->arcs_size) ?
2414 		    1 : (arc_mru_ghost->arcs_size/arc_mfu_ghost->arcs_size));
2415 		mult = MIN(mult, 10);
2416 
2417 		delta = MIN(bytes * mult, arc_p);
2418 		arc_p = MAX(arc_p_min, arc_p - delta);
2419 	}
2420 	ASSERT((int64_t)arc_p >= 0);
2421 
2422 	if (arc_reclaim_needed()) {
2423 		cv_signal(&arc_reclaim_thr_cv);
2424 		return;
2425 	}
2426 
2427 	if (arc_no_grow)
2428 		return;
2429 
2430 	if (arc_c >= arc_c_max)
2431 		return;
2432 
2433 	/*
2434 	 * If we're within (2 * maxblocksize) bytes of the target
2435 	 * cache size, increment the target cache size
2436 	 */
2437 	if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
2438 		atomic_add_64(&arc_c, (int64_t)bytes);
2439 		if (arc_c > arc_c_max)
2440 			arc_c = arc_c_max;
2441 		else if (state == arc_anon)
2442 			atomic_add_64(&arc_p, (int64_t)bytes);
2443 		if (arc_p > arc_c)
2444 			arc_p = arc_c;
2445 	}
2446 	ASSERT((int64_t)arc_p >= 0);
2447 }
2448 
2449 /*
2450  * Check if the cache has reached its limits and eviction is required
2451  * prior to insert.
2452  */
2453 static int
2454 arc_evict_needed(arc_buf_contents_t type)
2455 {
2456 	if (type == ARC_BUFC_METADATA && arc_meta_used >= arc_meta_limit)
2457 		return (1);
2458 
2459 	if (arc_reclaim_needed())
2460 		return (1);
2461 
2462 	return (arc_size > arc_c);
2463 }
2464 
2465 /*
2466  * The buffer, supplied as the first argument, needs a data block.
2467  * So, if we are at cache max, determine which cache should be victimized.
2468  * We have the following cases:
2469  *
2470  * 1. Insert for MRU, p > sizeof(arc_anon + arc_mru) ->
2471  * In this situation if we're out of space, but the resident size of the MFU is
2472  * under the limit, victimize the MFU cache to satisfy this insertion request.
2473  *
2474  * 2. Insert for MRU, p <= sizeof(arc_anon + arc_mru) ->
2475  * Here, we've used up all of the available space for the MRU, so we need to
2476  * evict from our own cache instead.  Evict from the set of resident MRU
2477  * entries.
2478  *
2479  * 3. Insert for MFU (c - p) > sizeof(arc_mfu) ->
2480  * c minus p represents the MFU space in the cache, since p is the size of the
2481  * cache that is dedicated to the MRU.  In this situation there's still space on
2482  * the MFU side, so the MRU side needs to be victimized.
2483  *
2484  * 4. Insert for MFU (c - p) < sizeof(arc_mfu) ->
2485  * MFU's resident set is consuming more space than it has been allotted.  In
2486  * this situation, we must victimize our own cache, the MFU, for this insertion.
2487  */
2488 static void
2489 arc_get_data_buf(arc_buf_t *buf)
2490 {
2491 	arc_state_t		*state = buf->b_hdr->b_state;
2492 	uint64_t		size = buf->b_hdr->b_size;
2493 	arc_buf_contents_t	type = buf->b_hdr->b_type;
2494 
2495 	arc_adapt(size, state);
2496 
2497 	/*
2498 	 * We have not yet reached cache maximum size,
2499 	 * just allocate a new buffer.
2500 	 */
2501 	if (!arc_evict_needed(type)) {
2502 		if (type == ARC_BUFC_METADATA) {
2503 			buf->b_data = zio_buf_alloc(size);
2504 			arc_space_consume(size, ARC_SPACE_DATA);
2505 		} else {
2506 			ASSERT(type == ARC_BUFC_DATA);
2507 			buf->b_data = zio_data_buf_alloc(size);
2508 			ARCSTAT_INCR(arcstat_data_size, size);
2509 			atomic_add_64(&arc_size, size);
2510 		}
2511 		goto out;
2512 	}
2513 
2514 	/*
2515 	 * If we are prefetching from the mfu ghost list, this buffer
2516 	 * will end up on the mru list; so steal space from there.
2517 	 */
2518 	if (state == arc_mfu_ghost)
2519 		state = buf->b_hdr->b_flags & ARC_PREFETCH ? arc_mru : arc_mfu;
2520 	else if (state == arc_mru_ghost)
2521 		state = arc_mru;
2522 
2523 	if (state == arc_mru || state == arc_anon) {
2524 		uint64_t mru_used = arc_anon->arcs_size + arc_mru->arcs_size;
2525 		state = (arc_mfu->arcs_lsize[type] >= size &&
2526 		    arc_p > mru_used) ? arc_mfu : arc_mru;
2527 	} else {
2528 		/* MFU cases */
2529 		uint64_t mfu_space = arc_c - arc_p;
2530 		state =  (arc_mru->arcs_lsize[type] >= size &&
2531 		    mfu_space > arc_mfu->arcs_size) ? arc_mru : arc_mfu;
2532 	}
2533 	if ((buf->b_data = arc_evict(state, NULL, size, TRUE, type)) == NULL) {
2534 		if (type == ARC_BUFC_METADATA) {
2535 			buf->b_data = zio_buf_alloc(size);
2536 			arc_space_consume(size, ARC_SPACE_DATA);
2537 		} else {
2538 			ASSERT(type == ARC_BUFC_DATA);
2539 			buf->b_data = zio_data_buf_alloc(size);
2540 			ARCSTAT_INCR(arcstat_data_size, size);
2541 			atomic_add_64(&arc_size, size);
2542 		}
2543 		ARCSTAT_BUMP(arcstat_recycle_miss);
2544 	}
2545 	ASSERT(buf->b_data != NULL);
2546 out:
2547 	/*
2548 	 * Update the state size.  Note that ghost states have a
2549 	 * "ghost size" and so don't need to be updated.
2550 	 */
2551 	if (!GHOST_STATE(buf->b_hdr->b_state)) {
2552 		arc_buf_hdr_t *hdr = buf->b_hdr;
2553 
2554 		atomic_add_64(&hdr->b_state->arcs_size, size);
2555 		if (list_link_active(&hdr->b_arc_node)) {
2556 			ASSERT(refcount_is_zero(&hdr->b_refcnt));
2557 			atomic_add_64(&hdr->b_state->arcs_lsize[type], size);
2558 		}
2559 		/*
2560 		 * If we are growing the cache, and we are adding anonymous
2561 		 * data, and we have outgrown arc_p, update arc_p
2562 		 */
2563 		if (arc_size < arc_c && hdr->b_state == arc_anon &&
2564 		    arc_anon->arcs_size + arc_mru->arcs_size > arc_p)
2565 			arc_p = MIN(arc_c, arc_p + size);
2566 	}
2567 }
2568 
2569 /*
2570  * This routine is called whenever a buffer is accessed.
2571  * NOTE: the hash lock is dropped in this function.
2572  */
2573 static void
2574 arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock)
2575 {
2576 	clock_t now;
2577 
2578 	ASSERT(MUTEX_HELD(hash_lock));
2579 
2580 	if (buf->b_state == arc_anon) {
2581 		/*
2582 		 * This buffer is not in the cache, and does not
2583 		 * appear in our "ghost" list.  Add the new buffer
2584 		 * to the MRU state.
2585 		 */
2586 
2587 		ASSERT(buf->b_arc_access == 0);
2588 		buf->b_arc_access = ddi_get_lbolt();
2589 		DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
2590 		arc_change_state(arc_mru, buf, hash_lock);
2591 
2592 	} else if (buf->b_state == arc_mru) {
2593 		now = ddi_get_lbolt();
2594 
2595 		/*
2596 		 * If this buffer is here because of a prefetch, then either:
2597 		 * - clear the flag if this is a "referencing" read
2598 		 *   (any subsequent access will bump this into the MFU state).
2599 		 * or
2600 		 * - move the buffer to the head of the list if this is
2601 		 *   another prefetch (to make it less likely to be evicted).
2602 		 */
2603 		if ((buf->b_flags & ARC_PREFETCH) != 0) {
2604 			if (refcount_count(&buf->b_refcnt) == 0) {
2605 				ASSERT(list_link_active(&buf->b_arc_node));
2606 			} else {
2607 				buf->b_flags &= ~ARC_PREFETCH;
2608 				ARCSTAT_BUMP(arcstat_mru_hits);
2609 			}
2610 			buf->b_arc_access = now;
2611 			return;
2612 		}
2613 
2614 		/*
2615 		 * This buffer has been "accessed" only once so far,
2616 		 * but it is still in the cache. Move it to the MFU
2617 		 * state.
2618 		 */
2619 		if (now > buf->b_arc_access + ARC_MINTIME) {
2620 			/*
2621 			 * More than 125ms have passed since we
2622 			 * instantiated this buffer.  Move it to the
2623 			 * most frequently used state.
2624 			 */
2625 			buf->b_arc_access = now;
2626 			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2627 			arc_change_state(arc_mfu, buf, hash_lock);
2628 		}
2629 		ARCSTAT_BUMP(arcstat_mru_hits);
2630 	} else if (buf->b_state == arc_mru_ghost) {
2631 		arc_state_t	*new_state;
2632 		/*
2633 		 * This buffer has been "accessed" recently, but
2634 		 * was evicted from the cache.  Move it to the
2635 		 * MFU state.
2636 		 */
2637 
2638 		if (buf->b_flags & ARC_PREFETCH) {
2639 			new_state = arc_mru;
2640 			if (refcount_count(&buf->b_refcnt) > 0)
2641 				buf->b_flags &= ~ARC_PREFETCH;
2642 			DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
2643 		} else {
2644 			new_state = arc_mfu;
2645 			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2646 		}
2647 
2648 		buf->b_arc_access = ddi_get_lbolt();
2649 		arc_change_state(new_state, buf, hash_lock);
2650 
2651 		ARCSTAT_BUMP(arcstat_mru_ghost_hits);
2652 	} else if (buf->b_state == arc_mfu) {
2653 		/*
2654 		 * This buffer has been accessed more than once and is
2655 		 * still in the cache.  Keep it in the MFU state.
2656 		 *
2657 		 * NOTE: an add_reference() that occurred when we did
2658 		 * the arc_read() will have kicked this off the list.
2659 		 * If it was a prefetch, we will explicitly move it to
2660 		 * the head of the list now.
2661 		 */
2662 		if ((buf->b_flags & ARC_PREFETCH) != 0) {
2663 			ASSERT(refcount_count(&buf->b_refcnt) == 0);
2664 			ASSERT(list_link_active(&buf->b_arc_node));
2665 		}
2666 		ARCSTAT_BUMP(arcstat_mfu_hits);
2667 		buf->b_arc_access = ddi_get_lbolt();
2668 	} else if (buf->b_state == arc_mfu_ghost) {
2669 		arc_state_t	*new_state = arc_mfu;
2670 		/*
2671 		 * This buffer has been accessed more than once but has
2672 		 * been evicted from the cache.  Move it back to the
2673 		 * MFU state.
2674 		 */
2675 
2676 		if (buf->b_flags & ARC_PREFETCH) {
2677 			/*
2678 			 * This is a prefetch access...
2679 			 * move this block back to the MRU state.
2680 			 */
2681 			ASSERT0(refcount_count(&buf->b_refcnt));
2682 			new_state = arc_mru;
2683 		}
2684 
2685 		buf->b_arc_access = ddi_get_lbolt();
2686 		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2687 		arc_change_state(new_state, buf, hash_lock);
2688 
2689 		ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
2690 	} else if (buf->b_state == arc_l2c_only) {
2691 		/*
2692 		 * This buffer is on the 2nd Level ARC.
2693 		 */
2694 
2695 		buf->b_arc_access = ddi_get_lbolt();
2696 		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2697 		arc_change_state(arc_mfu, buf, hash_lock);
2698 	} else {
2699 		ASSERT(!"invalid arc state");
2700 	}
2701 }
2702 
2703 /* a generic arc_done_func_t which you can use */
2704 /* ARGSUSED */
2705 void
2706 arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)
2707 {
2708 	if (zio == NULL || zio->io_error == 0)
2709 		bcopy(buf->b_data, arg, buf->b_hdr->b_size);
2710 	VERIFY(arc_buf_remove_ref(buf, arg));
2711 }
2712 
2713 /* a generic arc_done_func_t */
2714 void
2715 arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg)
2716 {
2717 	arc_buf_t **bufp = arg;
2718 	if (zio && zio->io_error) {
2719 		VERIFY(arc_buf_remove_ref(buf, arg));
2720 		*bufp = NULL;
2721 	} else {
2722 		*bufp = buf;
2723 		ASSERT(buf->b_data);
2724 	}
2725 }
2726 
2727 static void
2728 arc_read_done(zio_t *zio)
2729 {
2730 	arc_buf_hdr_t	*hdr, *found;
2731 	arc_buf_t	*buf;
2732 	arc_buf_t	*abuf;	/* buffer we're assigning to callback */
2733 	kmutex_t	*hash_lock;
2734 	arc_callback_t	*callback_list, *acb;
2735 	int		freeable = FALSE;
2736 
2737 	buf = zio->io_private;
2738 	hdr = buf->b_hdr;
2739 
2740 	/*
2741 	 * The hdr was inserted into hash-table and removed from lists
2742 	 * prior to starting I/O.  We should find this header, since
2743 	 * it's in the hash table, and it should be legit since it's
2744 	 * not possible to evict it during the I/O.  The only possible
2745 	 * reason for it not to be found is if we were freed during the
2746 	 * read.
2747 	 */
2748 	found = buf_hash_find(hdr->b_spa, &hdr->b_dva, hdr->b_birth,
2749 	    &hash_lock);
2750 
2751 	ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) && hash_lock == NULL) ||
2752 	    (found == hdr && DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
2753 	    (found == hdr && HDR_L2_READING(hdr)));
2754 
2755 	hdr->b_flags &= ~ARC_L2_EVICTED;
2756 	if (l2arc_noprefetch && (hdr->b_flags & ARC_PREFETCH))
2757 		hdr->b_flags &= ~ARC_L2CACHE;
2758 
2759 	/* byteswap if necessary */
2760 	callback_list = hdr->b_acb;
2761 	ASSERT(callback_list != NULL);
2762 	if (BP_SHOULD_BYTESWAP(zio->io_bp) && zio->io_error == 0) {
2763 		dmu_object_byteswap_t bswap =
2764 		    DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
2765 		arc_byteswap_func_t *func = BP_GET_LEVEL(zio->io_bp) > 0 ?
2766 		    byteswap_uint64_array :
2767 		    dmu_ot_byteswap[bswap].ob_func;
2768 		func(buf->b_data, hdr->b_size);
2769 	}
2770 
2771 	arc_cksum_compute(buf, B_FALSE);
2772 	arc_buf_watch(buf);
2773 
2774 	if (hash_lock && zio->io_error == 0 && hdr->b_state == arc_anon) {
2775 		/*
2776 		 * Only call arc_access on anonymous buffers.  This is because
2777 		 * if we've issued an I/O for an evicted buffer, we've already
2778 		 * called arc_access (to prevent any simultaneous readers from
2779 		 * getting confused).
2780 		 */
2781 		arc_access(hdr, hash_lock);
2782 	}
2783 
2784 	/* create copies of the data buffer for the callers */
2785 	abuf = buf;
2786 	for (acb = callback_list; acb; acb = acb->acb_next) {
2787 		if (acb->acb_done) {
2788 			if (abuf == NULL) {
2789 				ARCSTAT_BUMP(arcstat_duplicate_reads);
2790 				abuf = arc_buf_clone(buf);
2791 			}
2792 			acb->acb_buf = abuf;
2793 			abuf = NULL;
2794 		}
2795 	}
2796 	hdr->b_acb = NULL;
2797 	hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
2798 	ASSERT(!HDR_BUF_AVAILABLE(hdr));
2799 	if (abuf == buf) {
2800 		ASSERT(buf->b_efunc == NULL);
2801 		ASSERT(hdr->b_datacnt == 1);
2802 		hdr->b_flags |= ARC_BUF_AVAILABLE;
2803 	}
2804 
2805 	ASSERT(refcount_is_zero(&hdr->b_refcnt) || callback_list != NULL);
2806 
2807 	if (zio->io_error != 0) {
2808 		hdr->b_flags |= ARC_IO_ERROR;
2809 		if (hdr->b_state != arc_anon)
2810 			arc_change_state(arc_anon, hdr, hash_lock);
2811 		if (HDR_IN_HASH_TABLE(hdr))
2812 			buf_hash_remove(hdr);
2813 		freeable = refcount_is_zero(&hdr->b_refcnt);
2814 	}
2815 
2816 	/*
2817 	 * Broadcast before we drop the hash_lock to avoid the possibility
2818 	 * that the hdr (and hence the cv) might be freed before we get to
2819 	 * the cv_broadcast().
2820 	 */
2821 	cv_broadcast(&hdr->b_cv);
2822 
2823 	if (hash_lock) {
2824 		mutex_exit(hash_lock);
2825 	} else {
2826 		/*
2827 		 * This block was freed while we waited for the read to
2828 		 * complete.  It has been removed from the hash table and
2829 		 * moved to the anonymous state (so that it won't show up
2830 		 * in the cache).
2831 		 */
2832 		ASSERT3P(hdr->b_state, ==, arc_anon);
2833 		freeable = refcount_is_zero(&hdr->b_refcnt);
2834 	}
2835 
2836 	/* execute each callback and free its structure */
2837 	while ((acb = callback_list) != NULL) {
2838 		if (acb->acb_done)
2839 			acb->acb_done(zio, acb->acb_buf, acb->acb_private);
2840 
2841 		if (acb->acb_zio_dummy != NULL) {
2842 			acb->acb_zio_dummy->io_error = zio->io_error;
2843 			zio_nowait(acb->acb_zio_dummy);
2844 		}
2845 
2846 		callback_list = acb->acb_next;
2847 		kmem_free(acb, sizeof (arc_callback_t));
2848 	}
2849 
2850 	if (freeable)
2851 		arc_hdr_destroy(hdr);
2852 }
2853 
2854 /*
2855  * "Read" the block at the specified DVA (in bp) via the
2856  * cache.  If the block is found in the cache, invoke the provided
2857  * callback immediately and return.  Note that the `zio' parameter
2858  * in the callback will be NULL in this case, since no IO was
2859  * required.  If the block is not in the cache pass the read request
2860  * on to the spa with a substitute callback function, so that the
2861  * requested block will be added to the cache.
2862  *
2863  * If a read request arrives for a block that has a read in-progress,
2864  * either wait for the in-progress read to complete (and return the
2865  * results); or, if this is a read with a "done" func, add a record
2866  * to the read to invoke the "done" func when the read completes,
2867  * and return; or just return.
2868  *
2869  * arc_read_done() will invoke all the requested "done" functions
2870  * for readers of this block.
2871  */
2872 int
2873 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_done_func_t *done,
2874     void *private, zio_priority_t priority, int zio_flags, uint32_t *arc_flags,
2875     const zbookmark_t *zb)
2876 {
2877 	arc_buf_hdr_t *hdr;
2878 	arc_buf_t *buf = NULL;
2879 	kmutex_t *hash_lock;
2880 	zio_t *rzio;
2881 	uint64_t guid = spa_load_guid(spa);
2882 
2883 top:
2884 	hdr = buf_hash_find(guid, BP_IDENTITY(bp), BP_PHYSICAL_BIRTH(bp),
2885 	    &hash_lock);
2886 	if (hdr && hdr->b_datacnt > 0) {
2887 
2888 		*arc_flags |= ARC_CACHED;
2889 
2890 		if (HDR_IO_IN_PROGRESS(hdr)) {
2891 
2892 			if (*arc_flags & ARC_WAIT) {
2893 				cv_wait(&hdr->b_cv, hash_lock);
2894 				mutex_exit(hash_lock);
2895 				goto top;
2896 			}
2897 			ASSERT(*arc_flags & ARC_NOWAIT);
2898 
2899 			if (done) {
2900 				arc_callback_t	*acb = NULL;
2901 
2902 				acb = kmem_zalloc(sizeof (arc_callback_t),
2903 				    KM_SLEEP);
2904 				acb->acb_done = done;
2905 				acb->acb_private = private;
2906 				if (pio != NULL)
2907 					acb->acb_zio_dummy = zio_null(pio,
2908 					    spa, NULL, NULL, NULL, zio_flags);
2909 
2910 				ASSERT(acb->acb_done != NULL);
2911 				acb->acb_next = hdr->b_acb;
2912 				hdr->b_acb = acb;
2913 				add_reference(hdr, hash_lock, private);
2914 				mutex_exit(hash_lock);
2915 				return (0);
2916 			}
2917 			mutex_exit(hash_lock);
2918 			return (0);
2919 		}
2920 
2921 		ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
2922 
2923 		if (done) {
2924 			add_reference(hdr, hash_lock, private);
2925 			/*
2926 			 * If this block is already in use, create a new
2927 			 * copy of the data so that we will be guaranteed
2928 			 * that arc_release() will always succeed.
2929 			 */
2930 			buf = hdr->b_buf;
2931 			ASSERT(buf);
2932 			ASSERT(buf->b_data);
2933 			if (HDR_BUF_AVAILABLE(hdr)) {
2934 				ASSERT(buf->b_efunc == NULL);
2935 				hdr->b_flags &= ~ARC_BUF_AVAILABLE;
2936 			} else {
2937 				buf = arc_buf_clone(buf);
2938 			}
2939 
2940 		} else if (*arc_flags & ARC_PREFETCH &&
2941 		    refcount_count(&hdr->b_refcnt) == 0) {
2942 			hdr->b_flags |= ARC_PREFETCH;
2943 		}
2944 		DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
2945 		arc_access(hdr, hash_lock);
2946 		if (*arc_flags & ARC_L2CACHE)
2947 			hdr->b_flags |= ARC_L2CACHE;
2948 		if (*arc_flags & ARC_L2COMPRESS)
2949 			hdr->b_flags |= ARC_L2COMPRESS;
2950 		mutex_exit(hash_lock);
2951 		ARCSTAT_BUMP(arcstat_hits);
2952 		ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
2953 		    demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
2954 		    data, metadata, hits);
2955 
2956 		if (done)
2957 			done(NULL, buf, private);
2958 	} else {
2959 		uint64_t size = BP_GET_LSIZE(bp);
2960 		arc_callback_t	*acb;
2961 		vdev_t *vd = NULL;
2962 		uint64_t addr = 0;
2963 		boolean_t devw = B_FALSE;
2964 
2965 		if (hdr == NULL) {
2966 			/* this block is not in the cache */
2967 			arc_buf_hdr_t	*exists;
2968 			arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
2969 			buf = arc_buf_alloc(spa, size, private, type);
2970 			hdr = buf->b_hdr;
2971 			hdr->b_dva = *BP_IDENTITY(bp);
2972 			hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
2973 			hdr->b_cksum0 = bp->blk_cksum.zc_word[0];
2974 			exists = buf_hash_insert(hdr, &hash_lock);
2975 			if (exists) {
2976 				/* somebody beat us to the hash insert */
2977 				mutex_exit(hash_lock);
2978 				buf_discard_identity(hdr);
2979 				(void) arc_buf_remove_ref(buf, private);
2980 				goto top; /* restart the IO request */
2981 			}
2982 			/* if this is a prefetch, we don't have a reference */
2983 			if (*arc_flags & ARC_PREFETCH) {
2984 				(void) remove_reference(hdr, hash_lock,
2985 				    private);
2986 				hdr->b_flags |= ARC_PREFETCH;
2987 			}
2988 			if (*arc_flags & ARC_L2CACHE)
2989 				hdr->b_flags |= ARC_L2CACHE;
2990 			if (*arc_flags & ARC_L2COMPRESS)
2991 				hdr->b_flags |= ARC_L2COMPRESS;
2992 			if (BP_GET_LEVEL(bp) > 0)
2993 				hdr->b_flags |= ARC_INDIRECT;
2994 		} else {
2995 			/* this block is in the ghost cache */
2996 			ASSERT(GHOST_STATE(hdr->b_state));
2997 			ASSERT(!HDR_IO_IN_PROGRESS(hdr));
2998 			ASSERT0(refcount_count(&hdr->b_refcnt));
2999 			ASSERT(hdr->b_buf == NULL);
3000 
3001 			/* if this is a prefetch, we don't have a reference */
3002 			if (*arc_flags & ARC_PREFETCH)
3003 				hdr->b_flags |= ARC_PREFETCH;
3004 			else
3005 				add_reference(hdr, hash_lock, private);
3006 			if (*arc_flags & ARC_L2CACHE)
3007 				hdr->b_flags |= ARC_L2CACHE;
3008 			if (*arc_flags & ARC_L2COMPRESS)
3009 				hdr->b_flags |= ARC_L2COMPRESS;
3010 			buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
3011 			buf->b_hdr = hdr;
3012 			buf->b_data = NULL;
3013 			buf->b_efunc = NULL;
3014 			buf->b_private = NULL;
3015 			buf->b_next = NULL;
3016 			hdr->b_buf = buf;
3017 			ASSERT(hdr->b_datacnt == 0);
3018 			hdr->b_datacnt = 1;
3019 			arc_get_data_buf(buf);
3020 			arc_access(hdr, hash_lock);
3021 		}
3022 
3023 		ASSERT(!GHOST_STATE(hdr->b_state));
3024 
3025 		acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
3026 		acb->acb_done = done;
3027 		acb->acb_private = private;
3028 
3029 		ASSERT(hdr->b_acb == NULL);
3030 		hdr->b_acb = acb;
3031 		hdr->b_flags |= ARC_IO_IN_PROGRESS;
3032 
3033 		if (HDR_L2CACHE(hdr) && hdr->b_l2hdr != NULL &&
3034 		    (vd = hdr->b_l2hdr->b_dev->l2ad_vdev) != NULL) {
3035 			devw = hdr->b_l2hdr->b_dev->l2ad_writing;
3036 			addr = hdr->b_l2hdr->b_daddr;
3037 			/*
3038 			 * Lock out device removal.
3039 			 */
3040 			if (vdev_is_dead(vd) ||
3041 			    !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
3042 				vd = NULL;
3043 		}
3044 
3045 		mutex_exit(hash_lock);
3046 
3047 		/*
3048 		 * At this point, we have a level 1 cache miss.  Try again in
3049 		 * L2ARC if possible.
3050 		 */
3051 		ASSERT3U(hdr->b_size, ==, size);
3052 		DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp,
3053 		    uint64_t, size, zbookmark_t *, zb);
3054 		ARCSTAT_BUMP(arcstat_misses);
3055 		ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
3056 		    demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
3057 		    data, metadata, misses);
3058 
3059 		if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
3060 			/*
3061 			 * Read from the L2ARC if the following are true:
3062 			 * 1. The L2ARC vdev was previously cached.
3063 			 * 2. This buffer still has L2ARC metadata.
3064 			 * 3. This buffer isn't currently writing to the L2ARC.
3065 			 * 4. The L2ARC entry wasn't evicted, which may
3066 			 *    also have invalidated the vdev.
3067 			 * 5. This isn't prefetch and l2arc_noprefetch is set.
3068 			 */
3069 			if (hdr->b_l2hdr != NULL &&
3070 			    !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
3071 			    !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
3072 				l2arc_read_callback_t *cb;
3073 
3074 				DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
3075 				ARCSTAT_BUMP(arcstat_l2_hits);
3076 
3077 				cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
3078 				    KM_SLEEP);
3079 				cb->l2rcb_buf = buf;
3080 				cb->l2rcb_spa = spa;
3081 				cb->l2rcb_bp = *bp;
3082 				cb->l2rcb_zb = *zb;
3083 				cb->l2rcb_flags = zio_flags;
3084 				cb->l2rcb_compress = hdr->b_l2hdr->b_compress;
3085 
3086 				ASSERT(addr >= VDEV_LABEL_START_SIZE &&
3087 				    addr + size < vd->vdev_psize -
3088 				    VDEV_LABEL_END_SIZE);
3089 
3090 				/*
3091 				 * l2arc read.  The SCL_L2ARC lock will be
3092 				 * released by l2arc_read_done().
3093 				 * Issue a null zio if the underlying buffer
3094 				 * was squashed to zero size by compression.
3095 				 */
3096 				if (hdr->b_l2hdr->b_compress ==
3097 				    ZIO_COMPRESS_EMPTY) {
3098 					rzio = zio_null(pio, spa, vd,
3099 					    l2arc_read_done, cb,
3100 					    zio_flags | ZIO_FLAG_DONT_CACHE |
3101 					    ZIO_FLAG_CANFAIL |
3102 					    ZIO_FLAG_DONT_PROPAGATE |
3103 					    ZIO_FLAG_DONT_RETRY);
3104 				} else {
3105 					rzio = zio_read_phys(pio, vd, addr,
3106 					    hdr->b_l2hdr->b_asize,
3107 					    buf->b_data, ZIO_CHECKSUM_OFF,
3108 					    l2arc_read_done, cb, priority,
3109 					    zio_flags | ZIO_FLAG_DONT_CACHE |
3110 					    ZIO_FLAG_CANFAIL |
3111 					    ZIO_FLAG_DONT_PROPAGATE |
3112 					    ZIO_FLAG_DONT_RETRY, B_FALSE);
3113 				}
3114 				DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
3115 				    zio_t *, rzio);
3116 				ARCSTAT_INCR(arcstat_l2_read_bytes,
3117 				    hdr->b_l2hdr->b_asize);
3118 
3119 				if (*arc_flags & ARC_NOWAIT) {
3120 					zio_nowait(rzio);
3121 					return (0);
3122 				}
3123 
3124 				ASSERT(*arc_flags & ARC_WAIT);
3125 				if (zio_wait(rzio) == 0)
3126 					return (0);
3127 
3128 				/* l2arc read error; goto zio_read() */
3129 			} else {
3130 				DTRACE_PROBE1(l2arc__miss,
3131 				    arc_buf_hdr_t *, hdr);
3132 				ARCSTAT_BUMP(arcstat_l2_misses);
3133 				if (HDR_L2_WRITING(hdr))
3134 					ARCSTAT_BUMP(arcstat_l2_rw_clash);
3135 				spa_config_exit(spa, SCL_L2ARC, vd);
3136 			}
3137 		} else {
3138 			if (vd != NULL)
3139 				spa_config_exit(spa, SCL_L2ARC, vd);
3140 			if (l2arc_ndev != 0) {
3141 				DTRACE_PROBE1(l2arc__miss,
3142 				    arc_buf_hdr_t *, hdr);
3143 				ARCSTAT_BUMP(arcstat_l2_misses);
3144 			}
3145 		}
3146 
3147 		rzio = zio_read(pio, spa, bp, buf->b_data, size,
3148 		    arc_read_done, buf, priority, zio_flags, zb);
3149 
3150 		if (*arc_flags & ARC_WAIT)
3151 			return (zio_wait(rzio));
3152 
3153 		ASSERT(*arc_flags & ARC_NOWAIT);
3154 		zio_nowait(rzio);
3155 	}
3156 	return (0);
3157 }
3158 
3159 void
3160 arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private)
3161 {
3162 	ASSERT(buf->b_hdr != NULL);
3163 	ASSERT(buf->b_hdr->b_state != arc_anon);
3164 	ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt) || func == NULL);
3165 	ASSERT(buf->b_efunc == NULL);
3166 	ASSERT(!HDR_BUF_AVAILABLE(buf->b_hdr));
3167 
3168 	buf->b_efunc = func;
3169 	buf->b_private = private;
3170 }
3171 
3172 /*
3173  * Notify the arc that a block was freed, and thus will never be used again.
3174  */
3175 void
3176 arc_freed(spa_t *spa, const blkptr_t *bp)
3177 {
3178 	arc_buf_hdr_t *hdr;
3179 	kmutex_t *hash_lock;
3180 	uint64_t guid = spa_load_guid(spa);
3181 
3182 	hdr = buf_hash_find(guid, BP_IDENTITY(bp), BP_PHYSICAL_BIRTH(bp),
3183 	    &hash_lock);
3184 	if (hdr == NULL)
3185 		return;
3186 	if (HDR_BUF_AVAILABLE(hdr)) {
3187 		arc_buf_t *buf = hdr->b_buf;
3188 		add_reference(hdr, hash_lock, FTAG);
3189 		hdr->b_flags &= ~ARC_BUF_AVAILABLE;
3190 		mutex_exit(hash_lock);
3191 
3192 		arc_release(buf, FTAG);
3193 		(void) arc_buf_remove_ref(buf, FTAG);
3194 	} else {
3195 		mutex_exit(hash_lock);
3196 	}
3197 
3198 }
3199 
3200 /*
3201  * This is used by the DMU to let the ARC know that a buffer is
3202  * being evicted, so the ARC should clean up.  If this arc buf
3203  * is not yet in the evicted state, it will be put there.
3204  */
3205 int
3206 arc_buf_evict(arc_buf_t *buf)
3207 {
3208 	arc_buf_hdr_t *hdr;
3209 	kmutex_t *hash_lock;
3210 	arc_buf_t **bufp;
3211 
3212 	mutex_enter(&buf->b_evict_lock);
3213 	hdr = buf->b_hdr;
3214 	if (hdr == NULL) {
3215 		/*
3216 		 * We are in arc_do_user_evicts().
3217 		 */
3218 		ASSERT(buf->b_data == NULL);
3219 		mutex_exit(&buf->b_evict_lock);
3220 		return (0);
3221 	} else if (buf->b_data == NULL) {
3222 		arc_buf_t copy = *buf; /* structure assignment */
3223 		/*
3224 		 * We are on the eviction list; process this buffer now
3225 		 * but let arc_do_user_evicts() do the reaping.
3226 		 */
3227 		buf->b_efunc = NULL;
3228 		mutex_exit(&buf->b_evict_lock);
3229 		VERIFY(copy.b_efunc(&copy) == 0);
3230 		return (1);
3231 	}
3232 	hash_lock = HDR_LOCK(hdr);
3233 	mutex_enter(hash_lock);
3234 	hdr = buf->b_hdr;
3235 	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
3236 
3237 	ASSERT3U(refcount_count(&hdr->b_refcnt), <, hdr->b_datacnt);
3238 	ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
3239 
3240 	/*
3241 	 * Pull this buffer off of the hdr
3242 	 */
3243 	bufp = &hdr->b_buf;
3244 	while (*bufp != buf)
3245 		bufp = &(*bufp)->b_next;
3246 	*bufp = buf->b_next;
3247 
3248 	ASSERT(buf->b_data != NULL);
3249 	arc_buf_destroy(buf, FALSE, FALSE);
3250 
3251 	if (hdr->b_datacnt == 0) {
3252 		arc_state_t *old_state = hdr->b_state;
3253 		arc_state_t *evicted_state;
3254 
3255 		ASSERT(hdr->b_buf == NULL);
3256 		ASSERT(refcount_is_zero(&hdr->b_refcnt));
3257 
3258 		evicted_state =
3259 		    (old_state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
3260 
3261 		mutex_enter(&old_state->arcs_mtx);
3262 		mutex_enter(&evicted_state->arcs_mtx);
3263 
3264 		arc_change_state(evicted_state, hdr, hash_lock);
3265 		ASSERT(HDR_IN_HASH_TABLE(hdr));
3266 		hdr->b_flags |= ARC_IN_HASH_TABLE;
3267 		hdr->b_flags &= ~ARC_BUF_AVAILABLE;
3268 
3269 		mutex_exit(&evicted_state->arcs_mtx);
3270 		mutex_exit(&old_state->arcs_mtx);
3271 	}
3272 	mutex_exit(hash_lock);
3273 	mutex_exit(&buf->b_evict_lock);
3274 
3275 	VERIFY(buf->b_efunc(buf) == 0);
3276 	buf->b_efunc = NULL;
3277 	buf->b_private = NULL;
3278 	buf->b_hdr = NULL;
3279 	buf->b_next = NULL;
3280 	kmem_cache_free(buf_cache, buf);
3281 	return (1);
3282 }
3283 
3284 /*
3285  * Release this buffer from the cache, making it an anonymous buffer.  This
3286  * must be done after a read and prior to modifying the buffer contents.
3287  * If the buffer has more than one reference, we must make
3288  * a new hdr for the buffer.
3289  */
3290 void
3291 arc_release(arc_buf_t *buf, void *tag)
3292 {
3293 	arc_buf_hdr_t *hdr;
3294 	kmutex_t *hash_lock = NULL;
3295 	l2arc_buf_hdr_t *l2hdr;
3296 	uint64_t buf_size;
3297 
3298 	/*
3299 	 * It would be nice to assert that if it's DMU metadata (level >
3300 	 * 0 || it's the dnode file), then it must be syncing context.
3301 	 * But we don't know that information at this level.
3302 	 */
3303 
3304 	mutex_enter(&buf->b_evict_lock);
3305 	hdr = buf->b_hdr;
3306 
3307 	/* this buffer is not on any list */
3308 	ASSERT(refcount_count(&hdr->b_refcnt) > 0);
3309 
3310 	if (hdr->b_state == arc_anon) {
3311 		/* this buffer is already released */
3312 		ASSERT(buf->b_efunc == NULL);
3313 	} else {
3314 		hash_lock = HDR_LOCK(hdr);
3315 		mutex_enter(hash_lock);
3316 		hdr = buf->b_hdr;
3317 		ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
3318 	}
3319 
3320 	l2hdr = hdr->b_l2hdr;
3321 	if (l2hdr) {
3322 		mutex_enter(&l2arc_buflist_mtx);
3323 		hdr->b_l2hdr = NULL;
3324 	}
3325 	buf_size = hdr->b_size;
3326 
3327 	/*
3328 	 * Do we have more than one buf?
3329 	 */
3330 	if (hdr->b_datacnt > 1) {
3331 		arc_buf_hdr_t *nhdr;
3332 		arc_buf_t **bufp;
3333 		uint64_t blksz = hdr->b_size;
3334 		uint64_t spa = hdr->b_spa;
3335 		arc_buf_contents_t type = hdr->b_type;
3336 		uint32_t flags = hdr->b_flags;
3337 
3338 		ASSERT(hdr->b_buf != buf || buf->b_next != NULL);
3339 		/*
3340 		 * Pull the data off of this hdr and attach it to
3341 		 * a new anonymous hdr.
3342 		 */
3343 		(void) remove_reference(hdr, hash_lock, tag);
3344 		bufp = &hdr->b_buf;
3345 		while (*bufp != buf)
3346 			bufp = &(*bufp)->b_next;
3347 		*bufp = buf->b_next;
3348 		buf->b_next = NULL;
3349 
3350 		ASSERT3U(hdr->b_state->arcs_size, >=, hdr->b_size);
3351 		atomic_add_64(&hdr->b_state->arcs_size, -hdr->b_size);
3352 		if (refcount_is_zero(&hdr->b_refcnt)) {
3353 			uint64_t *size = &hdr->b_state->arcs_lsize[hdr->b_type];
3354 			ASSERT3U(*size, >=, hdr->b_size);
3355 			atomic_add_64(size, -hdr->b_size);
3356 		}
3357 
3358 		/*
3359 		 * We're releasing a duplicate user data buffer, update
3360 		 * our statistics accordingly.
3361 		 */
3362 		if (hdr->b_type == ARC_BUFC_DATA) {
3363 			ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers);
3364 			ARCSTAT_INCR(arcstat_duplicate_buffers_size,
3365 			    -hdr->b_size);
3366 		}
3367 		hdr->b_datacnt -= 1;
3368 		arc_cksum_verify(buf);
3369 		arc_buf_unwatch(buf);
3370 
3371 		mutex_exit(hash_lock);
3372 
3373 		nhdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
3374 		nhdr->b_size = blksz;
3375 		nhdr->b_spa = spa;
3376 		nhdr->b_type = type;
3377 		nhdr->b_buf = buf;
3378 		nhdr->b_state = arc_anon;
3379 		nhdr->b_arc_access = 0;
3380 		nhdr->b_flags = flags & ARC_L2_WRITING;
3381 		nhdr->b_l2hdr = NULL;
3382 		nhdr->b_datacnt = 1;
3383 		nhdr->b_freeze_cksum = NULL;
3384 		(void) refcount_add(&nhdr->b_refcnt, tag);
3385 		buf->b_hdr = nhdr;
3386 		mutex_exit(&buf->b_evict_lock);
3387 		atomic_add_64(&arc_anon->arcs_size, blksz);
3388 	} else {
3389 		mutex_exit(&buf->b_evict_lock);
3390 		ASSERT(refcount_count(&hdr->b_refcnt) == 1);
3391 		ASSERT(!list_link_active(&hdr->b_arc_node));
3392 		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3393 		if (hdr->b_state != arc_anon)
3394 			arc_change_state(arc_anon, hdr, hash_lock);
3395 		hdr->b_arc_access = 0;
3396 		if (hash_lock)
3397 			mutex_exit(hash_lock);
3398 
3399 		buf_discard_identity(hdr);
3400 		arc_buf_thaw(buf);
3401 	}
3402 	buf->b_efunc = NULL;
3403 	buf->b_private = NULL;
3404 
3405 	if (l2hdr) {
3406 		ARCSTAT_INCR(arcstat_l2_asize, -l2hdr->b_asize);
3407 		list_remove(l2hdr->b_dev->l2ad_buflist, hdr);
3408 		kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t));
3409 		ARCSTAT_INCR(arcstat_l2_size, -buf_size);
3410 		mutex_exit(&l2arc_buflist_mtx);
3411 	}
3412 }
3413 
3414 int
3415 arc_released(arc_buf_t *buf)
3416 {
3417 	int released;
3418 
3419 	mutex_enter(&buf->b_evict_lock);
3420 	released = (buf->b_data != NULL && buf->b_hdr->b_state == arc_anon);
3421 	mutex_exit(&buf->b_evict_lock);
3422 	return (released);
3423 }
3424 
3425 int
3426 arc_has_callback(arc_buf_t *buf)
3427 {
3428 	int callback;
3429 
3430 	mutex_enter(&buf->b_evict_lock);
3431 	callback = (buf->b_efunc != NULL);
3432 	mutex_exit(&buf->b_evict_lock);
3433 	return (callback);
3434 }
3435 
3436 #ifdef ZFS_DEBUG
3437 int
3438 arc_referenced(arc_buf_t *buf)
3439 {
3440 	int referenced;
3441 
3442 	mutex_enter(&buf->b_evict_lock);
3443 	referenced = (refcount_count(&buf->b_hdr->b_refcnt));
3444 	mutex_exit(&buf->b_evict_lock);
3445 	return (referenced);
3446 }
3447 #endif
3448 
3449 static void
3450 arc_write_ready(zio_t *zio)
3451 {
3452 	arc_write_callback_t *callback = zio->io_private;
3453 	arc_buf_t *buf = callback->awcb_buf;
3454 	arc_buf_hdr_t *hdr = buf->b_hdr;
3455 
3456 	ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt));
3457 	callback->awcb_ready(zio, buf, callback->awcb_private);
3458 
3459 	/*
3460 	 * If the IO is already in progress, then this is a re-write
3461 	 * attempt, so we need to thaw and re-compute the cksum.
3462 	 * It is the responsibility of the callback to handle the
3463 	 * accounting for any re-write attempt.
3464 	 */
3465 	if (HDR_IO_IN_PROGRESS(hdr)) {
3466 		mutex_enter(&hdr->b_freeze_lock);
3467 		if (hdr->b_freeze_cksum != NULL) {
3468 			kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
3469 			hdr->b_freeze_cksum = NULL;
3470 		}
3471 		mutex_exit(&hdr->b_freeze_lock);
3472 	}
3473 	arc_cksum_compute(buf, B_FALSE);
3474 	hdr->b_flags |= ARC_IO_IN_PROGRESS;
3475 }
3476 
3477 /*
3478  * The SPA calls this callback for each physical write that happens on behalf
3479  * of a logical write.  See the comment in dbuf_write_physdone() for details.
3480  */
3481 static void
3482 arc_write_physdone(zio_t *zio)
3483 {
3484 	arc_write_callback_t *cb = zio->io_private;
3485 	if (cb->awcb_physdone != NULL)
3486 		cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private);
3487 }
3488 
3489 static void
3490 arc_write_done(zio_t *zio)
3491 {
3492 	arc_write_callback_t *callback = zio->io_private;
3493 	arc_buf_t *buf = callback->awcb_buf;
3494 	arc_buf_hdr_t *hdr = buf->b_hdr;
3495 
3496 	ASSERT(hdr->b_acb == NULL);
3497 
3498 	if (zio->io_error == 0) {
3499 		hdr->b_dva = *BP_IDENTITY(zio->io_bp);
3500 		hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
3501 		hdr->b_cksum0 = zio->io_bp->blk_cksum.zc_word[0];
3502 	} else {
3503 		ASSERT(BUF_EMPTY(hdr));
3504 	}
3505 
3506 	/*
3507 	 * If the block to be written was all-zero, we may have
3508 	 * compressed it away.  In this case no write was performed
3509 	 * so there will be no dva/birth/checksum.  The buffer must
3510 	 * therefore remain anonymous (and uncached).
3511 	 */
3512 	if (!BUF_EMPTY(hdr)) {
3513 		arc_buf_hdr_t *exists;
3514 		kmutex_t *hash_lock;
3515 
3516 		ASSERT(zio->io_error == 0);
3517 
3518 		arc_cksum_verify(buf);
3519 
3520 		exists = buf_hash_insert(hdr, &hash_lock);
3521 		if (exists) {
3522 			/*
3523 			 * This can only happen if we overwrite for
3524 			 * sync-to-convergence, because we remove
3525 			 * buffers from the hash table when we arc_free().
3526 			 */
3527 			if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
3528 				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
3529 					panic("bad overwrite, hdr=%p exists=%p",
3530 					    (void *)hdr, (void *)exists);
3531 				ASSERT(refcount_is_zero(&exists->b_refcnt));
3532 				arc_change_state(arc_anon, exists, hash_lock);
3533 				mutex_exit(hash_lock);
3534 				arc_hdr_destroy(exists);
3535 				exists = buf_hash_insert(hdr, &hash_lock);
3536 				ASSERT3P(exists, ==, NULL);
3537 			} else if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
3538 				/* nopwrite */
3539 				ASSERT(zio->io_prop.zp_nopwrite);
3540 				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
3541 					panic("bad nopwrite, hdr=%p exists=%p",
3542 					    (void *)hdr, (void *)exists);
3543 			} else {
3544 				/* Dedup */
3545 				ASSERT(hdr->b_datacnt == 1);
3546 				ASSERT(hdr->b_state == arc_anon);
3547 				ASSERT(BP_GET_DEDUP(zio->io_bp));
3548 				ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
3549 			}
3550 		}
3551 		hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
3552 		/* if it's not anon, we are doing a scrub */
3553 		if (!exists && hdr->b_state == arc_anon)
3554 			arc_access(hdr, hash_lock);
3555 		mutex_exit(hash_lock);
3556 	} else {
3557 		hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
3558 	}
3559 
3560 	ASSERT(!refcount_is_zero(&hdr->b_refcnt));
3561 	callback->awcb_done(zio, buf, callback->awcb_private);
3562 
3563 	kmem_free(callback, sizeof (arc_write_callback_t));
3564 }
3565 
3566 zio_t *
3567 arc_write(zio_t *pio, spa_t *spa, uint64_t txg,
3568     blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, boolean_t l2arc_compress,
3569     const zio_prop_t *zp, arc_done_func_t *ready, arc_done_func_t *physdone,
3570     arc_done_func_t *done, void *private, zio_priority_t priority,
3571     int zio_flags, const zbookmark_t *zb)
3572 {
3573 	arc_buf_hdr_t *hdr = buf->b_hdr;
3574 	arc_write_callback_t *callback;
3575 	zio_t *zio;
3576 
3577 	ASSERT(ready != NULL);
3578 	ASSERT(done != NULL);
3579 	ASSERT(!HDR_IO_ERROR(hdr));
3580 	ASSERT((hdr->b_flags & ARC_IO_IN_PROGRESS) == 0);
3581 	ASSERT(hdr->b_acb == NULL);
3582 	if (l2arc)
3583 		hdr->b_flags |= ARC_L2CACHE;
3584 	if (l2arc_compress)
3585 		hdr->b_flags |= ARC_L2COMPRESS;
3586 	callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
3587 	callback->awcb_ready = ready;
3588 	callback->awcb_physdone = physdone;
3589 	callback->awcb_done = done;
3590 	callback->awcb_private = private;
3591 	callback->awcb_buf = buf;
3592 
3593 	zio = zio_write(pio, spa, txg, bp, buf->b_data, hdr->b_size, zp,
3594 	    arc_write_ready, arc_write_physdone, arc_write_done, callback,
3595 	    priority, zio_flags, zb);
3596 
3597 	return (zio);
3598 }
3599 
3600 static int
3601 arc_memory_throttle(uint64_t reserve, uint64_t txg)
3602 {
3603 #ifdef _KERNEL
3604 	uint64_t available_memory = ptob(freemem);
3605 	static uint64_t page_load = 0;
3606 	static uint64_t last_txg = 0;
3607 
3608 #if defined(__i386)
3609 	available_memory =
3610 	    MIN(available_memory, vmem_size(heap_arena, VMEM_FREE));
3611 #endif
3612 
3613 	if (freemem > physmem * arc_lotsfree_percent / 100)
3614 		return (0);
3615 
3616 	if (txg > last_txg) {
3617 		last_txg = txg;
3618 		page_load = 0;
3619 	}
3620 	/*
3621 	 * If we are in pageout, we know that memory is already tight,
3622 	 * the arc is already going to be evicting, so we just want to
3623 	 * continue to let page writes occur as quickly as possible.
3624 	 */
3625 	if (curproc == proc_pageout) {
3626 		if (page_load > MAX(ptob(minfree), available_memory) / 4)
3627 			return (SET_ERROR(ERESTART));
3628 		/* Note: reserve is inflated, so we deflate */
3629 		page_load += reserve / 8;
3630 		return (0);
3631 	} else if (page_load > 0 && arc_reclaim_needed()) {
3632 		/* memory is low, delay before restarting */
3633 		ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
3634 		return (SET_ERROR(EAGAIN));
3635 	}
3636 	page_load = 0;
3637 #endif
3638 	return (0);
3639 }
3640 
3641 void
3642 arc_tempreserve_clear(uint64_t reserve)
3643 {
3644 	atomic_add_64(&arc_tempreserve, -reserve);
3645 	ASSERT((int64_t)arc_tempreserve >= 0);
3646 }
3647 
3648 int
3649 arc_tempreserve_space(uint64_t reserve, uint64_t txg)
3650 {
3651 	int error;
3652 	uint64_t anon_size;
3653 
3654 	if (reserve > arc_c/4 && !arc_no_grow)
3655 		arc_c = MIN(arc_c_max, reserve * 4);
3656 	if (reserve > arc_c)
3657 		return (SET_ERROR(ENOMEM));
3658 
3659 	/*
3660 	 * Don't count loaned bufs as in flight dirty data to prevent long
3661 	 * network delays from blocking transactions that are ready to be
3662 	 * assigned to a txg.
3663 	 */
3664 	anon_size = MAX((int64_t)(arc_anon->arcs_size - arc_loaned_bytes), 0);
3665 
3666 	/*
3667 	 * Writes will, almost always, require additional memory allocations
3668 	 * in order to compress/encrypt/etc the data.  We therefore need to
3669 	 * make sure that there is sufficient available memory for this.
3670 	 */
3671 	error = arc_memory_throttle(reserve, txg);
3672 	if (error != 0)
3673 		return (error);
3674 
3675 	/*
3676 	 * Throttle writes when the amount of dirty data in the cache
3677 	 * gets too large.  We try to keep the cache less than half full
3678 	 * of dirty blocks so that our sync times don't grow too large.
3679 	 * Note: if two requests come in concurrently, we might let them
3680 	 * both succeed, when one of them should fail.  Not a huge deal.
3681 	 */
3682 
3683 	if (reserve + arc_tempreserve + anon_size > arc_c / 2 &&
3684 	    anon_size > arc_c / 4) {
3685 		dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
3686 		    "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
3687 		    arc_tempreserve>>10,
3688 		    arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10,
3689 		    arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10,
3690 		    reserve>>10, arc_c>>10);
3691 		return (SET_ERROR(ERESTART));
3692 	}
3693 	atomic_add_64(&arc_tempreserve, reserve);
3694 	return (0);
3695 }
3696 
3697 void
3698 arc_init(void)
3699 {
3700 	mutex_init(&arc_reclaim_thr_lock, NULL, MUTEX_DEFAULT, NULL);
3701 	cv_init(&arc_reclaim_thr_cv, NULL, CV_DEFAULT, NULL);
3702 
3703 	/* Convert seconds to clock ticks */
3704 	arc_min_prefetch_lifespan = 1 * hz;
3705 
3706 	/* Start out with 1/8 of all memory */
3707 	arc_c = physmem * PAGESIZE / 8;
3708 
3709 #ifdef _KERNEL
3710 	/*
3711 	 * On architectures where the physical memory can be larger
3712 	 * than the addressable space (intel in 32-bit mode), we may
3713 	 * need to limit the cache to 1/8 of VM size.
3714 	 */
3715 	arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8);
3716 #endif
3717 
3718 	/* set min cache to 1/32 of all memory, or 64MB, whichever is more */
3719 	arc_c_min = MAX(arc_c / 4, 64<<20);
3720 	/* set max to 3/4 of all memory, or all but 1GB, whichever is more */
3721 	if (arc_c * 8 >= 1<<30)
3722 		arc_c_max = (arc_c * 8) - (1<<30);
3723 	else
3724 		arc_c_max = arc_c_min;
3725 	arc_c_max = MAX(arc_c * 6, arc_c_max);
3726 
3727 	/*
3728 	 * Allow the tunables to override our calculations if they are
3729 	 * reasonable (ie. over 64MB)
3730 	 */
3731 	if (zfs_arc_max > 64<<20 && zfs_arc_max < physmem * PAGESIZE)
3732 		arc_c_max = zfs_arc_max;
3733 	if (zfs_arc_min > 64<<20 && zfs_arc_min <= arc_c_max)
3734 		arc_c_min = zfs_arc_min;
3735 
3736 	arc_c = arc_c_max;
3737 	arc_p = (arc_c >> 1);
3738 
3739 	/* limit meta-data to 1/4 of the arc capacity */
3740 	arc_meta_limit = arc_c_max / 4;
3741 
3742 	/* Allow the tunable to override if it is reasonable */
3743 	if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max)
3744 		arc_meta_limit = zfs_arc_meta_limit;
3745 
3746 	if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0)
3747 		arc_c_min = arc_meta_limit / 2;
3748 
3749 	if (zfs_arc_grow_retry > 0)
3750 		arc_grow_retry = zfs_arc_grow_retry;
3751 
3752 	if (zfs_arc_shrink_shift > 0)
3753 		arc_shrink_shift = zfs_arc_shrink_shift;
3754 
3755 	if (zfs_arc_p_min_shift > 0)
3756 		arc_p_min_shift = zfs_arc_p_min_shift;
3757 
3758 	/* if kmem_flags are set, lets try to use less memory */
3759 	if (kmem_debugging())
3760 		arc_c = arc_c / 2;
3761 	if (arc_c < arc_c_min)
3762 		arc_c = arc_c_min;
3763 
3764 	arc_anon = &ARC_anon;
3765 	arc_mru = &ARC_mru;
3766 	arc_mru_ghost = &ARC_mru_ghost;
3767 	arc_mfu = &ARC_mfu;
3768 	arc_mfu_ghost = &ARC_mfu_ghost;
3769 	arc_l2c_only = &ARC_l2c_only;
3770 	arc_size = 0;
3771 
3772 	mutex_init(&arc_anon->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3773 	mutex_init(&arc_mru->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3774 	mutex_init(&arc_mru_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3775 	mutex_init(&arc_mfu->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3776 	mutex_init(&arc_mfu_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3777 	mutex_init(&arc_l2c_only->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3778 
3779 	list_create(&arc_mru->arcs_list[ARC_BUFC_METADATA],
3780 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3781 	list_create(&arc_mru->arcs_list[ARC_BUFC_DATA],
3782 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3783 	list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA],
3784 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3785 	list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA],
3786 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3787 	list_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA],
3788 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3789 	list_create(&arc_mfu->arcs_list[ARC_BUFC_DATA],
3790 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3791 	list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA],
3792 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3793 	list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA],
3794 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3795 	list_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA],
3796 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3797 	list_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA],
3798 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3799 
3800 	buf_init();
3801 
3802 	arc_thread_exit = 0;
3803 	arc_eviction_list = NULL;
3804 	mutex_init(&arc_eviction_mtx, NULL, MUTEX_DEFAULT, NULL);
3805 	bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t));
3806 
3807 	arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
3808 	    sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
3809 
3810 	if (arc_ksp != NULL) {
3811 		arc_ksp->ks_data = &arc_stats;
3812 		kstat_install(arc_ksp);
3813 	}
3814 
3815 	(void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0,
3816 	    TS_RUN, minclsyspri);
3817 
3818 	arc_dead = FALSE;
3819 	arc_warm = B_FALSE;
3820 
3821 	/*
3822 	 * Calculate maximum amount of dirty data per pool.
3823 	 *
3824 	 * If it has been set by /etc/system, take that.
3825 	 * Otherwise, use a percentage of physical memory defined by
3826 	 * zfs_dirty_data_max_percent (default 10%) with a cap at
3827 	 * zfs_dirty_data_max_max (default 4GB).
3828 	 */
3829 	if (zfs_dirty_data_max == 0) {
3830 		zfs_dirty_data_max = physmem * PAGESIZE *
3831 		    zfs_dirty_data_max_percent / 100;
3832 		zfs_dirty_data_max = MIN(zfs_dirty_data_max,
3833 		    zfs_dirty_data_max_max);
3834 	}
3835 }
3836 
3837 void
3838 arc_fini(void)
3839 {
3840 	mutex_enter(&arc_reclaim_thr_lock);
3841 	arc_thread_exit = 1;
3842 	while (arc_thread_exit != 0)
3843 		cv_wait(&arc_reclaim_thr_cv, &arc_reclaim_thr_lock);
3844 	mutex_exit(&arc_reclaim_thr_lock);
3845 
3846 	arc_flush(NULL);
3847 
3848 	arc_dead = TRUE;
3849 
3850 	if (arc_ksp != NULL) {
3851 		kstat_delete(arc_ksp);
3852 		arc_ksp = NULL;
3853 	}
3854 
3855 	mutex_destroy(&arc_eviction_mtx);
3856 	mutex_destroy(&arc_reclaim_thr_lock);
3857 	cv_destroy(&arc_reclaim_thr_cv);
3858 
3859 	list_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]);
3860 	list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
3861 	list_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]);
3862 	list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
3863 	list_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]);
3864 	list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
3865 	list_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]);
3866 	list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
3867 
3868 	mutex_destroy(&arc_anon->arcs_mtx);
3869 	mutex_destroy(&arc_mru->arcs_mtx);
3870 	mutex_destroy(&arc_mru_ghost->arcs_mtx);
3871 	mutex_destroy(&arc_mfu->arcs_mtx);
3872 	mutex_destroy(&arc_mfu_ghost->arcs_mtx);
3873 	mutex_destroy(&arc_l2c_only->arcs_mtx);
3874 
3875 	buf_fini();
3876 
3877 	ASSERT(arc_loaned_bytes == 0);
3878 }
3879 
3880 /*
3881  * Level 2 ARC
3882  *
3883  * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
3884  * It uses dedicated storage devices to hold cached data, which are populated
3885  * using large infrequent writes.  The main role of this cache is to boost
3886  * the performance of random read workloads.  The intended L2ARC devices
3887  * include short-stroked disks, solid state disks, and other media with
3888  * substantially faster read latency than disk.
3889  *
3890  *                 +-----------------------+
3891  *                 |         ARC           |
3892  *                 +-----------------------+
3893  *                    |         ^     ^
3894  *                    |         |     |
3895  *      l2arc_feed_thread()    arc_read()
3896  *                    |         |     |
3897  *                    |  l2arc read   |
3898  *                    V         |     |
3899  *               +---------------+    |
3900  *               |     L2ARC     |    |
3901  *               +---------------+    |
3902  *                   |    ^           |
3903  *          l2arc_write() |           |
3904  *                   |    |           |
3905  *                   V    |           |
3906  *                 +-------+      +-------+
3907  *                 | vdev  |      | vdev  |
3908  *                 | cache |      | cache |
3909  *                 +-------+      +-------+
3910  *                 +=========+     .-----.
3911  *                 :  L2ARC  :    |-_____-|
3912  *                 : devices :    | Disks |
3913  *                 +=========+    `-_____-'
3914  *
3915  * Read requests are satisfied from the following sources, in order:
3916  *
3917  *	1) ARC
3918  *	2) vdev cache of L2ARC devices
3919  *	3) L2ARC devices
3920  *	4) vdev cache of disks
3921  *	5) disks
3922  *
3923  * Some L2ARC device types exhibit extremely slow write performance.
3924  * To accommodate for this there are some significant differences between
3925  * the L2ARC and traditional cache design:
3926  *
3927  * 1. There is no eviction path from the ARC to the L2ARC.  Evictions from
3928  * the ARC behave as usual, freeing buffers and placing headers on ghost
3929  * lists.  The ARC does not send buffers to the L2ARC during eviction as
3930  * this would add inflated write latencies for all ARC memory pressure.
3931  *
3932  * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
3933  * It does this by periodically scanning buffers from the eviction-end of
3934  * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
3935  * not already there. It scans until a headroom of buffers is satisfied,
3936  * which itself is a buffer for ARC eviction. If a compressible buffer is
3937  * found during scanning and selected for writing to an L2ARC device, we
3938  * temporarily boost scanning headroom during the next scan cycle to make
3939  * sure we adapt to compression effects (which might significantly reduce
3940  * the data volume we write to L2ARC). The thread that does this is
3941  * l2arc_feed_thread(), illustrated below; example sizes are included to
3942  * provide a better sense of ratio than this diagram:
3943  *
3944  *	       head -->                        tail
3945  *	        +---------------------+----------+
3946  *	ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->.   # already on L2ARC
3947  *	        +---------------------+----------+   |   o L2ARC eligible
3948  *	ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->|   : ARC buffer
3949  *	        +---------------------+----------+   |
3950  *	             15.9 Gbytes      ^ 32 Mbytes    |
3951  *	                           headroom          |
3952  *	                                      l2arc_feed_thread()
3953  *	                                             |
3954  *	                 l2arc write hand <--[oooo]--'
3955  *	                         |           8 Mbyte
3956  *	                         |          write max
3957  *	                         V
3958  *		  +==============================+
3959  *	L2ARC dev |####|#|###|###|    |####| ... |
3960  *	          +==============================+
3961  *	                     32 Gbytes
3962  *
3963  * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
3964  * evicted, then the L2ARC has cached a buffer much sooner than it probably
3965  * needed to, potentially wasting L2ARC device bandwidth and storage.  It is
3966  * safe to say that this is an uncommon case, since buffers at the end of
3967  * the ARC lists have moved there due to inactivity.
3968  *
3969  * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
3970  * then the L2ARC simply misses copying some buffers.  This serves as a
3971  * pressure valve to prevent heavy read workloads from both stalling the ARC
3972  * with waits and clogging the L2ARC with writes.  This also helps prevent
3973  * the potential for the L2ARC to churn if it attempts to cache content too
3974  * quickly, such as during backups of the entire pool.
3975  *
3976  * 5. After system boot and before the ARC has filled main memory, there are
3977  * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
3978  * lists can remain mostly static.  Instead of searching from tail of these
3979  * lists as pictured, the l2arc_feed_thread() will search from the list heads
3980  * for eligible buffers, greatly increasing its chance of finding them.
3981  *
3982  * The L2ARC device write speed is also boosted during this time so that
3983  * the L2ARC warms up faster.  Since there have been no ARC evictions yet,
3984  * there are no L2ARC reads, and no fear of degrading read performance
3985  * through increased writes.
3986  *
3987  * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
3988  * the vdev queue can aggregate them into larger and fewer writes.  Each
3989  * device is written to in a rotor fashion, sweeping writes through
3990  * available space then repeating.
3991  *
3992  * 7. The L2ARC does not store dirty content.  It never needs to flush
3993  * write buffers back to disk based storage.
3994  *
3995  * 8. If an ARC buffer is written (and dirtied) which also exists in the
3996  * L2ARC, the now stale L2ARC buffer is immediately dropped.
3997  *
3998  * The performance of the L2ARC can be tweaked by a number of tunables, which
3999  * may be necessary for different workloads:
4000  *
4001  *	l2arc_write_max		max write bytes per interval
4002  *	l2arc_write_boost	extra write bytes during device warmup
4003  *	l2arc_noprefetch	skip caching prefetched buffers
4004  *	l2arc_headroom		number of max device writes to precache
4005  *	l2arc_headroom_boost	when we find compressed buffers during ARC
4006  *				scanning, we multiply headroom by this
4007  *				percentage factor for the next scan cycle,
4008  *				since more compressed buffers are likely to
4009  *				be present
4010  *	l2arc_feed_secs		seconds between L2ARC writing
4011  *
4012  * Tunables may be removed or added as future performance improvements are
4013  * integrated, and also may become zpool properties.
4014  *
4015  * There are three key functions that control how the L2ARC warms up:
4016  *
4017  *	l2arc_write_eligible()	check if a buffer is eligible to cache
4018  *	l2arc_write_size()	calculate how much to write
4019  *	l2arc_write_interval()	calculate sleep delay between writes
4020  *
4021  * These three functions determine what to write, how much, and how quickly
4022  * to send writes.
4023  */
4024 
4025 static boolean_t
4026 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab)
4027 {
4028 	/*
4029 	 * A buffer is *not* eligible for the L2ARC if it:
4030 	 * 1. belongs to a different spa.
4031 	 * 2. is already cached on the L2ARC.
4032 	 * 3. has an I/O in progress (it may be an incomplete read).
4033 	 * 4. is flagged not eligible (zfs property).
4034 	 */
4035 	if (ab->b_spa != spa_guid || ab->b_l2hdr != NULL ||
4036 	    HDR_IO_IN_PROGRESS(ab) || !HDR_L2CACHE(ab))
4037 		return (B_FALSE);
4038 
4039 	return (B_TRUE);
4040 }
4041 
4042 static uint64_t
4043 l2arc_write_size(void)
4044 {
4045 	uint64_t size;
4046 
4047 	/*
4048 	 * Make sure our globals have meaningful values in case the user
4049 	 * altered them.
4050 	 */
4051 	size = l2arc_write_max;
4052 	if (size == 0) {
4053 		cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must "
4054 		    "be greater than zero, resetting it to the default (%d)",
4055 		    L2ARC_WRITE_SIZE);
4056 		size = l2arc_write_max = L2ARC_WRITE_SIZE;
4057 	}
4058 
4059 	if (arc_warm == B_FALSE)
4060 		size += l2arc_write_boost;
4061 
4062 	return (size);
4063 
4064 }
4065 
4066 static clock_t
4067 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
4068 {
4069 	clock_t interval, next, now;
4070 
4071 	/*
4072 	 * If the ARC lists are busy, increase our write rate; if the
4073 	 * lists are stale, idle back.  This is achieved by checking
4074 	 * how much we previously wrote - if it was more than half of
4075 	 * what we wanted, schedule the next write much sooner.
4076 	 */
4077 	if (l2arc_feed_again && wrote > (wanted / 2))
4078 		interval = (hz * l2arc_feed_min_ms) / 1000;
4079 	else
4080 		interval = hz * l2arc_feed_secs;
4081 
4082 	now = ddi_get_lbolt();
4083 	next = MAX(now, MIN(now + interval, began + interval));
4084 
4085 	return (next);
4086 }
4087 
4088 static void
4089 l2arc_hdr_stat_add(void)
4090 {
4091 	ARCSTAT_INCR(arcstat_l2_hdr_size, HDR_SIZE + L2HDR_SIZE);
4092 	ARCSTAT_INCR(arcstat_hdr_size, -HDR_SIZE);
4093 }
4094 
4095 static void
4096 l2arc_hdr_stat_remove(void)
4097 {
4098 	ARCSTAT_INCR(arcstat_l2_hdr_size, -(HDR_SIZE + L2HDR_SIZE));
4099 	ARCSTAT_INCR(arcstat_hdr_size, HDR_SIZE);
4100 }
4101 
4102 /*
4103  * Cycle through L2ARC devices.  This is how L2ARC load balances.
4104  * If a device is returned, this also returns holding the spa config lock.
4105  */
4106 static l2arc_dev_t *
4107 l2arc_dev_get_next(void)
4108 {
4109 	l2arc_dev_t *first, *next = NULL;
4110 
4111 	/*
4112 	 * Lock out the removal of spas (spa_namespace_lock), then removal
4113 	 * of cache devices (l2arc_dev_mtx).  Once a device has been selected,
4114 	 * both locks will be dropped and a spa config lock held instead.
4115 	 */
4116 	mutex_enter(&spa_namespace_lock);
4117 	mutex_enter(&l2arc_dev_mtx);
4118 
4119 	/* if there are no vdevs, there is nothing to do */
4120 	if (l2arc_ndev == 0)
4121 		goto out;
4122 
4123 	first = NULL;
4124 	next = l2arc_dev_last;
4125 	do {
4126 		/* loop around the list looking for a non-faulted vdev */
4127 		if (next == NULL) {
4128 			next = list_head(l2arc_dev_list);
4129 		} else {
4130 			next = list_next(l2arc_dev_list, next);
4131 			if (next == NULL)
4132 				next = list_head(l2arc_dev_list);
4133 		}
4134 
4135 		/* if we have come back to the start, bail out */
4136 		if (first == NULL)
4137 			first = next;
4138 		else if (next == first)
4139 			break;
4140 
4141 	} while (vdev_is_dead(next->l2ad_vdev));
4142 
4143 	/* if we were unable to find any usable vdevs, return NULL */
4144 	if (vdev_is_dead(next->l2ad_vdev))
4145 		next = NULL;
4146 
4147 	l2arc_dev_last = next;
4148 
4149 out:
4150 	mutex_exit(&l2arc_dev_mtx);
4151 
4152 	/*
4153 	 * Grab the config lock to prevent the 'next' device from being
4154 	 * removed while we are writing to it.
4155 	 */
4156 	if (next != NULL)
4157 		spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
4158 	mutex_exit(&spa_namespace_lock);
4159 
4160 	return (next);
4161 }
4162 
4163 /*
4164  * Free buffers that were tagged for destruction.
4165  */
4166 static void
4167 l2arc_do_free_on_write()
4168 {
4169 	list_t *buflist;
4170 	l2arc_data_free_t *df, *df_prev;
4171 
4172 	mutex_enter(&l2arc_free_on_write_mtx);
4173 	buflist = l2arc_free_on_write;
4174 
4175 	for (df = list_tail(buflist); df; df = df_prev) {
4176 		df_prev = list_prev(buflist, df);
4177 		ASSERT(df->l2df_data != NULL);
4178 		ASSERT(df->l2df_func != NULL);
4179 		df->l2df_func(df->l2df_data, df->l2df_size);
4180 		list_remove(buflist, df);
4181 		kmem_free(df, sizeof (l2arc_data_free_t));
4182 	}
4183 
4184 	mutex_exit(&l2arc_free_on_write_mtx);
4185 }
4186 
4187 /*
4188  * A write to a cache device has completed.  Update all headers to allow
4189  * reads from these buffers to begin.
4190  */
4191 static void
4192 l2arc_write_done(zio_t *zio)
4193 {
4194 	l2arc_write_callback_t *cb;
4195 	l2arc_dev_t *dev;
4196 	list_t *buflist;
4197 	arc_buf_hdr_t *head, *ab, *ab_prev;
4198 	l2arc_buf_hdr_t *abl2;
4199 	kmutex_t *hash_lock;
4200 
4201 	cb = zio->io_private;
4202 	ASSERT(cb != NULL);
4203 	dev = cb->l2wcb_dev;
4204 	ASSERT(dev != NULL);
4205 	head = cb->l2wcb_head;
4206 	ASSERT(head != NULL);
4207 	buflist = dev->l2ad_buflist;
4208 	ASSERT(buflist != NULL);
4209 	DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
4210 	    l2arc_write_callback_t *, cb);
4211 
4212 	if (zio->io_error != 0)
4213 		ARCSTAT_BUMP(arcstat_l2_writes_error);
4214 
4215 	mutex_enter(&l2arc_buflist_mtx);
4216 
4217 	/*
4218 	 * All writes completed, or an error was hit.
4219 	 */
4220 	for (ab = list_prev(buflist, head); ab; ab = ab_prev) {
4221 		ab_prev = list_prev(buflist, ab);
4222 
4223 		hash_lock = HDR_LOCK(ab);
4224 		if (!mutex_tryenter(hash_lock)) {
4225 			/*
4226 			 * This buffer misses out.  It may be in a stage
4227 			 * of eviction.  Its ARC_L2_WRITING flag will be
4228 			 * left set, denying reads to this buffer.
4229 			 */
4230 			ARCSTAT_BUMP(arcstat_l2_writes_hdr_miss);
4231 			continue;
4232 		}
4233 
4234 		abl2 = ab->b_l2hdr;
4235 
4236 		/*
4237 		 * Release the temporary compressed buffer as soon as possible.
4238 		 */
4239 		if (abl2->b_compress != ZIO_COMPRESS_OFF)
4240 			l2arc_release_cdata_buf(ab);
4241 
4242 		if (zio->io_error != 0) {
4243 			/*
4244 			 * Error - drop L2ARC entry.
4245 			 */
4246 			list_remove(buflist, ab);
4247 			ARCSTAT_INCR(arcstat_l2_asize, -abl2->b_asize);
4248 			ab->b_l2hdr = NULL;
4249 			kmem_free(abl2, sizeof (l2arc_buf_hdr_t));
4250 			ARCSTAT_INCR(arcstat_l2_size, -ab->b_size);
4251 		}
4252 
4253 		/*
4254 		 * Allow ARC to begin reads to this L2ARC entry.
4255 		 */
4256 		ab->b_flags &= ~ARC_L2_WRITING;
4257 
4258 		mutex_exit(hash_lock);
4259 	}
4260 
4261 	atomic_inc_64(&l2arc_writes_done);
4262 	list_remove(buflist, head);
4263 	kmem_cache_free(hdr_cache, head);
4264 	mutex_exit(&l2arc_buflist_mtx);
4265 
4266 	l2arc_do_free_on_write();
4267 
4268 	kmem_free(cb, sizeof (l2arc_write_callback_t));
4269 }
4270 
4271 /*
4272  * A read to a cache device completed.  Validate buffer contents before
4273  * handing over to the regular ARC routines.
4274  */
4275 static void
4276 l2arc_read_done(zio_t *zio)
4277 {
4278 	l2arc_read_callback_t *cb;
4279 	arc_buf_hdr_t *hdr;
4280 	arc_buf_t *buf;
4281 	kmutex_t *hash_lock;
4282 	int equal;
4283 
4284 	ASSERT(zio->io_vd != NULL);
4285 	ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
4286 
4287 	spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
4288 
4289 	cb = zio->io_private;
4290 	ASSERT(cb != NULL);
4291 	buf = cb->l2rcb_buf;
4292 	ASSERT(buf != NULL);
4293 
4294 	hash_lock = HDR_LOCK(buf->b_hdr);
4295 	mutex_enter(hash_lock);
4296 	hdr = buf->b_hdr;
4297 	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
4298 
4299 	/*
4300 	 * If the buffer was compressed, decompress it first.
4301 	 */
4302 	if (cb->l2rcb_compress != ZIO_COMPRESS_OFF)
4303 		l2arc_decompress_zio(zio, hdr, cb->l2rcb_compress);
4304 	ASSERT(zio->io_data != NULL);
4305 
4306 	/*
4307 	 * Check this survived the L2ARC journey.
4308 	 */
4309 	equal = arc_cksum_equal(buf);
4310 	if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) {
4311 		mutex_exit(hash_lock);
4312 		zio->io_private = buf;
4313 		zio->io_bp_copy = cb->l2rcb_bp;	/* XXX fix in L2ARC 2.0	*/
4314 		zio->io_bp = &zio->io_bp_copy;	/* XXX fix in L2ARC 2.0	*/
4315 		arc_read_done(zio);
4316 	} else {
4317 		mutex_exit(hash_lock);
4318 		/*
4319 		 * Buffer didn't survive caching.  Increment stats and
4320 		 * reissue to the original storage device.
4321 		 */
4322 		if (zio->io_error != 0) {
4323 			ARCSTAT_BUMP(arcstat_l2_io_error);
4324 		} else {
4325 			zio->io_error = SET_ERROR(EIO);
4326 		}
4327 		if (!equal)
4328 			ARCSTAT_BUMP(arcstat_l2_cksum_bad);
4329 
4330 		/*
4331 		 * If there's no waiter, issue an async i/o to the primary
4332 		 * storage now.  If there *is* a waiter, the caller must
4333 		 * issue the i/o in a context where it's OK to block.
4334 		 */
4335 		if (zio->io_waiter == NULL) {
4336 			zio_t *pio = zio_unique_parent(zio);
4337 
4338 			ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
4339 
4340 			zio_nowait(zio_read(pio, cb->l2rcb_spa, &cb->l2rcb_bp,
4341 			    buf->b_data, zio->io_size, arc_read_done, buf,
4342 			    zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb));
4343 		}
4344 	}
4345 
4346 	kmem_free(cb, sizeof (l2arc_read_callback_t));
4347 }
4348 
4349 /*
4350  * This is the list priority from which the L2ARC will search for pages to
4351  * cache.  This is used within loops (0..3) to cycle through lists in the
4352  * desired order.  This order can have a significant effect on cache
4353  * performance.
4354  *
4355  * Currently the metadata lists are hit first, MFU then MRU, followed by
4356  * the data lists.  This function returns a locked list, and also returns
4357  * the lock pointer.
4358  */
4359 static list_t *
4360 l2arc_list_locked(int list_num, kmutex_t **lock)
4361 {
4362 	list_t *list = NULL;
4363 
4364 	ASSERT(list_num >= 0 && list_num <= 3);
4365 
4366 	switch (list_num) {
4367 	case 0:
4368 		list = &arc_mfu->arcs_list[ARC_BUFC_METADATA];
4369 		*lock = &arc_mfu->arcs_mtx;
4370 		break;
4371 	case 1:
4372 		list = &arc_mru->arcs_list[ARC_BUFC_METADATA];
4373 		*lock = &arc_mru->arcs_mtx;
4374 		break;
4375 	case 2:
4376 		list = &arc_mfu->arcs_list[ARC_BUFC_DATA];
4377 		*lock = &arc_mfu->arcs_mtx;
4378 		break;
4379 	case 3:
4380 		list = &arc_mru->arcs_list[ARC_BUFC_DATA];
4381 		*lock = &arc_mru->arcs_mtx;
4382 		break;
4383 	}
4384 
4385 	ASSERT(!(MUTEX_HELD(*lock)));
4386 	mutex_enter(*lock);
4387 	return (list);
4388 }
4389 
4390 /*
4391  * Evict buffers from the device write hand to the distance specified in
4392  * bytes.  This distance may span populated buffers, it may span nothing.
4393  * This is clearing a region on the L2ARC device ready for writing.
4394  * If the 'all' boolean is set, every buffer is evicted.
4395  */
4396 static void
4397 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
4398 {
4399 	list_t *buflist;
4400 	l2arc_buf_hdr_t *abl2;
4401 	arc_buf_hdr_t *ab, *ab_prev;
4402 	kmutex_t *hash_lock;
4403 	uint64_t taddr;
4404 
4405 	buflist = dev->l2ad_buflist;
4406 
4407 	if (buflist == NULL)
4408 		return;
4409 
4410 	if (!all && dev->l2ad_first) {
4411 		/*
4412 		 * This is the first sweep through the device.  There is
4413 		 * nothing to evict.
4414 		 */
4415 		return;
4416 	}
4417 
4418 	if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) {
4419 		/*
4420 		 * When nearing the end of the device, evict to the end
4421 		 * before the device write hand jumps to the start.
4422 		 */
4423 		taddr = dev->l2ad_end;
4424 	} else {
4425 		taddr = dev->l2ad_hand + distance;
4426 	}
4427 	DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
4428 	    uint64_t, taddr, boolean_t, all);
4429 
4430 top:
4431 	mutex_enter(&l2arc_buflist_mtx);
4432 	for (ab = list_tail(buflist); ab; ab = ab_prev) {
4433 		ab_prev = list_prev(buflist, ab);
4434 
4435 		hash_lock = HDR_LOCK(ab);
4436 		if (!mutex_tryenter(hash_lock)) {
4437 			/*
4438 			 * Missed the hash lock.  Retry.
4439 			 */
4440 			ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
4441 			mutex_exit(&l2arc_buflist_mtx);
4442 			mutex_enter(hash_lock);
4443 			mutex_exit(hash_lock);
4444 			goto top;
4445 		}
4446 
4447 		if (HDR_L2_WRITE_HEAD(ab)) {
4448 			/*
4449 			 * We hit a write head node.  Leave it for
4450 			 * l2arc_write_done().
4451 			 */
4452 			list_remove(buflist, ab);
4453 			mutex_exit(hash_lock);
4454 			continue;
4455 		}
4456 
4457 		if (!all && ab->b_l2hdr != NULL &&
4458 		    (ab->b_l2hdr->b_daddr > taddr ||
4459 		    ab->b_l2hdr->b_daddr < dev->l2ad_hand)) {
4460 			/*
4461 			 * We've evicted to the target address,
4462 			 * or the end of the device.
4463 			 */
4464 			mutex_exit(hash_lock);
4465 			break;
4466 		}
4467 
4468 		if (HDR_FREE_IN_PROGRESS(ab)) {
4469 			/*
4470 			 * Already on the path to destruction.
4471 			 */
4472 			mutex_exit(hash_lock);
4473 			continue;
4474 		}
4475 
4476 		if (ab->b_state == arc_l2c_only) {
4477 			ASSERT(!HDR_L2_READING(ab));
4478 			/*
4479 			 * This doesn't exist in the ARC.  Destroy.
4480 			 * arc_hdr_destroy() will call list_remove()
4481 			 * and decrement arcstat_l2_size.
4482 			 */
4483 			arc_change_state(arc_anon, ab, hash_lock);
4484 			arc_hdr_destroy(ab);
4485 		} else {
4486 			/*
4487 			 * Invalidate issued or about to be issued
4488 			 * reads, since we may be about to write
4489 			 * over this location.
4490 			 */
4491 			if (HDR_L2_READING(ab)) {
4492 				ARCSTAT_BUMP(arcstat_l2_evict_reading);
4493 				ab->b_flags |= ARC_L2_EVICTED;
4494 			}
4495 
4496 			/*
4497 			 * Tell ARC this no longer exists in L2ARC.
4498 			 */
4499 			if (ab->b_l2hdr != NULL) {
4500 				abl2 = ab->b_l2hdr;
4501 				ARCSTAT_INCR(arcstat_l2_asize, -abl2->b_asize);
4502 				ab->b_l2hdr = NULL;
4503 				kmem_free(abl2, sizeof (l2arc_buf_hdr_t));
4504 				ARCSTAT_INCR(arcstat_l2_size, -ab->b_size);
4505 			}
4506 			list_remove(buflist, ab);
4507 
4508 			/*
4509 			 * This may have been leftover after a
4510 			 * failed write.
4511 			 */
4512 			ab->b_flags &= ~ARC_L2_WRITING;
4513 		}
4514 		mutex_exit(hash_lock);
4515 	}
4516 	mutex_exit(&l2arc_buflist_mtx);
4517 
4518 	vdev_space_update(dev->l2ad_vdev, -(taddr - dev->l2ad_evict), 0, 0);
4519 	dev->l2ad_evict = taddr;
4520 }
4521 
4522 /*
4523  * Find and write ARC buffers to the L2ARC device.
4524  *
4525  * An ARC_L2_WRITING flag is set so that the L2ARC buffers are not valid
4526  * for reading until they have completed writing.
4527  * The headroom_boost is an in-out parameter used to maintain headroom boost
4528  * state between calls to this function.
4529  *
4530  * Returns the number of bytes actually written (which may be smaller than
4531  * the delta by which the device hand has changed due to alignment).
4532  */
4533 static uint64_t
4534 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz,
4535     boolean_t *headroom_boost)
4536 {
4537 	arc_buf_hdr_t *ab, *ab_prev, *head;
4538 	list_t *list;
4539 	uint64_t write_asize, write_psize, write_sz, headroom,
4540 	    buf_compress_minsz;
4541 	void *buf_data;
4542 	kmutex_t *list_lock;
4543 	boolean_t full;
4544 	l2arc_write_callback_t *cb;
4545 	zio_t *pio, *wzio;
4546 	uint64_t guid = spa_load_guid(spa);
4547 	const boolean_t do_headroom_boost = *headroom_boost;
4548 
4549 	ASSERT(dev->l2ad_vdev != NULL);
4550 
4551 	/* Lower the flag now, we might want to raise it again later. */
4552 	*headroom_boost = B_FALSE;
4553 
4554 	pio = NULL;
4555 	write_sz = write_asize = write_psize = 0;
4556 	full = B_FALSE;
4557 	head = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
4558 	head->b_flags |= ARC_L2_WRITE_HEAD;
4559 
4560 	/*
4561 	 * We will want to try to compress buffers that are at least 2x the
4562 	 * device sector size.
4563 	 */
4564 	buf_compress_minsz = 2 << dev->l2ad_vdev->vdev_ashift;
4565 
4566 	/*
4567 	 * Copy buffers for L2ARC writing.
4568 	 */
4569 	mutex_enter(&l2arc_buflist_mtx);
4570 	for (int try = 0; try <= 3; try++) {
4571 		uint64_t passed_sz = 0;
4572 
4573 		list = l2arc_list_locked(try, &list_lock);
4574 
4575 		/*
4576 		 * L2ARC fast warmup.
4577 		 *
4578 		 * Until the ARC is warm and starts to evict, read from the
4579 		 * head of the ARC lists rather than the tail.
4580 		 */
4581 		if (arc_warm == B_FALSE)
4582 			ab = list_head(list);
4583 		else
4584 			ab = list_tail(list);
4585 
4586 		headroom = target_sz * l2arc_headroom;
4587 		if (do_headroom_boost)
4588 			headroom = (headroom * l2arc_headroom_boost) / 100;
4589 
4590 		for (; ab; ab = ab_prev) {
4591 			l2arc_buf_hdr_t *l2hdr;
4592 			kmutex_t *hash_lock;
4593 			uint64_t buf_sz;
4594 
4595 			if (arc_warm == B_FALSE)
4596 				ab_prev = list_next(list, ab);
4597 			else
4598 				ab_prev = list_prev(list, ab);
4599 
4600 			hash_lock = HDR_LOCK(ab);
4601 			if (!mutex_tryenter(hash_lock)) {
4602 				/*
4603 				 * Skip this buffer rather than waiting.
4604 				 */
4605 				continue;
4606 			}
4607 
4608 			passed_sz += ab->b_size;
4609 			if (passed_sz > headroom) {
4610 				/*
4611 				 * Searched too far.
4612 				 */
4613 				mutex_exit(hash_lock);
4614 				break;
4615 			}
4616 
4617 			if (!l2arc_write_eligible(guid, ab)) {
4618 				mutex_exit(hash_lock);
4619 				continue;
4620 			}
4621 
4622 			if ((write_sz + ab->b_size) > target_sz) {
4623 				full = B_TRUE;
4624 				mutex_exit(hash_lock);
4625 				break;
4626 			}
4627 
4628 			if (pio == NULL) {
4629 				/*
4630 				 * Insert a dummy header on the buflist so
4631 				 * l2arc_write_done() can find where the
4632 				 * write buffers begin without searching.
4633 				 */
4634 				list_insert_head(dev->l2ad_buflist, head);
4635 
4636 				cb = kmem_alloc(
4637 				    sizeof (l2arc_write_callback_t), KM_SLEEP);
4638 				cb->l2wcb_dev = dev;
4639 				cb->l2wcb_head = head;
4640 				pio = zio_root(spa, l2arc_write_done, cb,
4641 				    ZIO_FLAG_CANFAIL);
4642 			}
4643 
4644 			/*
4645 			 * Create and add a new L2ARC header.
4646 			 */
4647 			l2hdr = kmem_zalloc(sizeof (l2arc_buf_hdr_t), KM_SLEEP);
4648 			l2hdr->b_dev = dev;
4649 			ab->b_flags |= ARC_L2_WRITING;
4650 
4651 			/*
4652 			 * Temporarily stash the data buffer in b_tmp_cdata.
4653 			 * The subsequent write step will pick it up from
4654 			 * there. This is because can't access ab->b_buf
4655 			 * without holding the hash_lock, which we in turn
4656 			 * can't access without holding the ARC list locks
4657 			 * (which we want to avoid during compression/writing).
4658 			 */
4659 			l2hdr->b_compress = ZIO_COMPRESS_OFF;
4660 			l2hdr->b_asize = ab->b_size;
4661 			l2hdr->b_tmp_cdata = ab->b_buf->b_data;
4662 
4663 			buf_sz = ab->b_size;
4664 			ab->b_l2hdr = l2hdr;
4665 
4666 			list_insert_head(dev->l2ad_buflist, ab);
4667 
4668 			/*
4669 			 * Compute and store the buffer cksum before
4670 			 * writing.  On debug the cksum is verified first.
4671 			 */
4672 			arc_cksum_verify(ab->b_buf);
4673 			arc_cksum_compute(ab->b_buf, B_TRUE);
4674 
4675 			mutex_exit(hash_lock);
4676 
4677 			write_sz += buf_sz;
4678 		}
4679 
4680 		mutex_exit(list_lock);
4681 
4682 		if (full == B_TRUE)
4683 			break;
4684 	}
4685 
4686 	/* No buffers selected for writing? */
4687 	if (pio == NULL) {
4688 		ASSERT0(write_sz);
4689 		mutex_exit(&l2arc_buflist_mtx);
4690 		kmem_cache_free(hdr_cache, head);
4691 		return (0);
4692 	}
4693 
4694 	/*
4695 	 * Now start writing the buffers. We're starting at the write head
4696 	 * and work backwards, retracing the course of the buffer selector
4697 	 * loop above.
4698 	 */
4699 	for (ab = list_prev(dev->l2ad_buflist, head); ab;
4700 	    ab = list_prev(dev->l2ad_buflist, ab)) {
4701 		l2arc_buf_hdr_t *l2hdr;
4702 		uint64_t buf_sz;
4703 
4704 		/*
4705 		 * We shouldn't need to lock the buffer here, since we flagged
4706 		 * it as ARC_L2_WRITING in the previous step, but we must take
4707 		 * care to only access its L2 cache parameters. In particular,
4708 		 * ab->b_buf may be invalid by now due to ARC eviction.
4709 		 */
4710 		l2hdr = ab->b_l2hdr;
4711 		l2hdr->b_daddr = dev->l2ad_hand;
4712 
4713 		if ((ab->b_flags & ARC_L2COMPRESS) &&
4714 		    l2hdr->b_asize >= buf_compress_minsz) {
4715 			if (l2arc_compress_buf(l2hdr)) {
4716 				/*
4717 				 * If compression succeeded, enable headroom
4718 				 * boost on the next scan cycle.
4719 				 */
4720 				*headroom_boost = B_TRUE;
4721 			}
4722 		}
4723 
4724 		/*
4725 		 * Pick up the buffer data we had previously stashed away
4726 		 * (and now potentially also compressed).
4727 		 */
4728 		buf_data = l2hdr->b_tmp_cdata;
4729 		buf_sz = l2hdr->b_asize;
4730 
4731 		/* Compression may have squashed the buffer to zero length. */
4732 		if (buf_sz != 0) {
4733 			uint64_t buf_p_sz;
4734 
4735 			wzio = zio_write_phys(pio, dev->l2ad_vdev,
4736 			    dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF,
4737 			    NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE,
4738 			    ZIO_FLAG_CANFAIL, B_FALSE);
4739 
4740 			DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
4741 			    zio_t *, wzio);
4742 			(void) zio_nowait(wzio);
4743 
4744 			write_asize += buf_sz;
4745 			/*
4746 			 * Keep the clock hand suitably device-aligned.
4747 			 */
4748 			buf_p_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz);
4749 			write_psize += buf_p_sz;
4750 			dev->l2ad_hand += buf_p_sz;
4751 		}
4752 	}
4753 
4754 	mutex_exit(&l2arc_buflist_mtx);
4755 
4756 	ASSERT3U(write_asize, <=, target_sz);
4757 	ARCSTAT_BUMP(arcstat_l2_writes_sent);
4758 	ARCSTAT_INCR(arcstat_l2_write_bytes, write_asize);
4759 	ARCSTAT_INCR(arcstat_l2_size, write_sz);
4760 	ARCSTAT_INCR(arcstat_l2_asize, write_asize);
4761 	vdev_space_update(dev->l2ad_vdev, write_psize, 0, 0);
4762 
4763 	/*
4764 	 * Bump device hand to the device start if it is approaching the end.
4765 	 * l2arc_evict() will already have evicted ahead for this case.
4766 	 */
4767 	if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) {
4768 		vdev_space_update(dev->l2ad_vdev,
4769 		    dev->l2ad_end - dev->l2ad_hand, 0, 0);
4770 		dev->l2ad_hand = dev->l2ad_start;
4771 		dev->l2ad_evict = dev->l2ad_start;
4772 		dev->l2ad_first = B_FALSE;
4773 	}
4774 
4775 	dev->l2ad_writing = B_TRUE;
4776 	(void) zio_wait(pio);
4777 	dev->l2ad_writing = B_FALSE;
4778 
4779 	return (write_asize);
4780 }
4781 
4782 /*
4783  * Compresses an L2ARC buffer.
4784  * The data to be compressed must be prefilled in l2hdr->b_tmp_cdata and its
4785  * size in l2hdr->b_asize. This routine tries to compress the data and
4786  * depending on the compression result there are three possible outcomes:
4787  * *) The buffer was incompressible. The original l2hdr contents were left
4788  *    untouched and are ready for writing to an L2 device.
4789  * *) The buffer was all-zeros, so there is no need to write it to an L2
4790  *    device. To indicate this situation b_tmp_cdata is NULL'ed, b_asize is
4791  *    set to zero and b_compress is set to ZIO_COMPRESS_EMPTY.
4792  * *) Compression succeeded and b_tmp_cdata was replaced with a temporary
4793  *    data buffer which holds the compressed data to be written, and b_asize
4794  *    tells us how much data there is. b_compress is set to the appropriate
4795  *    compression algorithm. Once writing is done, invoke
4796  *    l2arc_release_cdata_buf on this l2hdr to free this temporary buffer.
4797  *
4798  * Returns B_TRUE if compression succeeded, or B_FALSE if it didn't (the
4799  * buffer was incompressible).
4800  */
4801 static boolean_t
4802 l2arc_compress_buf(l2arc_buf_hdr_t *l2hdr)
4803 {
4804 	void *cdata;
4805 	size_t csize, len;
4806 
4807 	ASSERT(l2hdr->b_compress == ZIO_COMPRESS_OFF);
4808 	ASSERT(l2hdr->b_tmp_cdata != NULL);
4809 
4810 	len = l2hdr->b_asize;
4811 	cdata = zio_data_buf_alloc(len);
4812 	csize = zio_compress_data(ZIO_COMPRESS_LZ4, l2hdr->b_tmp_cdata,
4813 	    cdata, l2hdr->b_asize);
4814 
4815 	if (csize == 0) {
4816 		/* zero block, indicate that there's nothing to write */
4817 		zio_data_buf_free(cdata, len);
4818 		l2hdr->b_compress = ZIO_COMPRESS_EMPTY;
4819 		l2hdr->b_asize = 0;
4820 		l2hdr->b_tmp_cdata = NULL;
4821 		ARCSTAT_BUMP(arcstat_l2_compress_zeros);
4822 		return (B_TRUE);
4823 	} else if (csize > 0 && csize < len) {
4824 		/*
4825 		 * Compression succeeded, we'll keep the cdata around for
4826 		 * writing and release it afterwards.
4827 		 */
4828 		l2hdr->b_compress = ZIO_COMPRESS_LZ4;
4829 		l2hdr->b_asize = csize;
4830 		l2hdr->b_tmp_cdata = cdata;
4831 		ARCSTAT_BUMP(arcstat_l2_compress_successes);
4832 		return (B_TRUE);
4833 	} else {
4834 		/*
4835 		 * Compression failed, release the compressed buffer.
4836 		 * l2hdr will be left unmodified.
4837 		 */
4838 		zio_data_buf_free(cdata, len);
4839 		ARCSTAT_BUMP(arcstat_l2_compress_failures);
4840 		return (B_FALSE);
4841 	}
4842 }
4843 
4844 /*
4845  * Decompresses a zio read back from an l2arc device. On success, the
4846  * underlying zio's io_data buffer is overwritten by the uncompressed
4847  * version. On decompression error (corrupt compressed stream), the
4848  * zio->io_error value is set to signal an I/O error.
4849  *
4850  * Please note that the compressed data stream is not checksummed, so
4851  * if the underlying device is experiencing data corruption, we may feed
4852  * corrupt data to the decompressor, so the decompressor needs to be
4853  * able to handle this situation (LZ4 does).
4854  */
4855 static void
4856 l2arc_decompress_zio(zio_t *zio, arc_buf_hdr_t *hdr, enum zio_compress c)
4857 {
4858 	ASSERT(L2ARC_IS_VALID_COMPRESS(c));
4859 
4860 	if (zio->io_error != 0) {
4861 		/*
4862 		 * An io error has occured, just restore the original io
4863 		 * size in preparation for a main pool read.
4864 		 */
4865 		zio->io_orig_size = zio->io_size = hdr->b_size;
4866 		return;
4867 	}
4868 
4869 	if (c == ZIO_COMPRESS_EMPTY) {
4870 		/*
4871 		 * An empty buffer results in a null zio, which means we
4872 		 * need to fill its io_data after we're done restoring the
4873 		 * buffer's contents.
4874 		 */
4875 		ASSERT(hdr->b_buf != NULL);
4876 		bzero(hdr->b_buf->b_data, hdr->b_size);
4877 		zio->io_data = zio->io_orig_data = hdr->b_buf->b_data;
4878 	} else {
4879 		ASSERT(zio->io_data != NULL);
4880 		/*
4881 		 * We copy the compressed data from the start of the arc buffer
4882 		 * (the zio_read will have pulled in only what we need, the
4883 		 * rest is garbage which we will overwrite at decompression)
4884 		 * and then decompress back to the ARC data buffer. This way we
4885 		 * can minimize copying by simply decompressing back over the
4886 		 * original compressed data (rather than decompressing to an
4887 		 * aux buffer and then copying back the uncompressed buffer,
4888 		 * which is likely to be much larger).
4889 		 */
4890 		uint64_t csize;
4891 		void *cdata;
4892 
4893 		csize = zio->io_size;
4894 		cdata = zio_data_buf_alloc(csize);
4895 		bcopy(zio->io_data, cdata, csize);
4896 		if (zio_decompress_data(c, cdata, zio->io_data, csize,
4897 		    hdr->b_size) != 0)
4898 			zio->io_error = EIO;
4899 		zio_data_buf_free(cdata, csize);
4900 	}
4901 
4902 	/* Restore the expected uncompressed IO size. */
4903 	zio->io_orig_size = zio->io_size = hdr->b_size;
4904 }
4905 
4906 /*
4907  * Releases the temporary b_tmp_cdata buffer in an l2arc header structure.
4908  * This buffer serves as a temporary holder of compressed data while
4909  * the buffer entry is being written to an l2arc device. Once that is
4910  * done, we can dispose of it.
4911  */
4912 static void
4913 l2arc_release_cdata_buf(arc_buf_hdr_t *ab)
4914 {
4915 	l2arc_buf_hdr_t *l2hdr = ab->b_l2hdr;
4916 
4917 	if (l2hdr->b_compress == ZIO_COMPRESS_LZ4) {
4918 		/*
4919 		 * If the data was compressed, then we've allocated a
4920 		 * temporary buffer for it, so now we need to release it.
4921 		 */
4922 		ASSERT(l2hdr->b_tmp_cdata != NULL);
4923 		zio_data_buf_free(l2hdr->b_tmp_cdata, ab->b_size);
4924 	}
4925 	l2hdr->b_tmp_cdata = NULL;
4926 }
4927 
4928 /*
4929  * This thread feeds the L2ARC at regular intervals.  This is the beating
4930  * heart of the L2ARC.
4931  */
4932 static void
4933 l2arc_feed_thread(void)
4934 {
4935 	callb_cpr_t cpr;
4936 	l2arc_dev_t *dev;
4937 	spa_t *spa;
4938 	uint64_t size, wrote;
4939 	clock_t begin, next = ddi_get_lbolt();
4940 	boolean_t headroom_boost = B_FALSE;
4941 
4942 	CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
4943 
4944 	mutex_enter(&l2arc_feed_thr_lock);
4945 
4946 	while (l2arc_thread_exit == 0) {
4947 		CALLB_CPR_SAFE_BEGIN(&cpr);
4948 		(void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock,
4949 		    next);
4950 		CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
4951 		next = ddi_get_lbolt() + hz;
4952 
4953 		/*
4954 		 * Quick check for L2ARC devices.
4955 		 */
4956 		mutex_enter(&l2arc_dev_mtx);
4957 		if (l2arc_ndev == 0) {
4958 			mutex_exit(&l2arc_dev_mtx);
4959 			continue;
4960 		}
4961 		mutex_exit(&l2arc_dev_mtx);
4962 		begin = ddi_get_lbolt();
4963 
4964 		/*
4965 		 * This selects the next l2arc device to write to, and in
4966 		 * doing so the next spa to feed from: dev->l2ad_spa.   This
4967 		 * will return NULL if there are now no l2arc devices or if
4968 		 * they are all faulted.
4969 		 *
4970 		 * If a device is returned, its spa's config lock is also
4971 		 * held to prevent device removal.  l2arc_dev_get_next()
4972 		 * will grab and release l2arc_dev_mtx.
4973 		 */
4974 		if ((dev = l2arc_dev_get_next()) == NULL)
4975 			continue;
4976 
4977 		spa = dev->l2ad_spa;
4978 		ASSERT(spa != NULL);
4979 
4980 		/*
4981 		 * If the pool is read-only then force the feed thread to
4982 		 * sleep a little longer.
4983 		 */
4984 		if (!spa_writeable(spa)) {
4985 			next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
4986 			spa_config_exit(spa, SCL_L2ARC, dev);
4987 			continue;
4988 		}
4989 
4990 		/*
4991 		 * Avoid contributing to memory pressure.
4992 		 */
4993 		if (arc_reclaim_needed()) {
4994 			ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
4995 			spa_config_exit(spa, SCL_L2ARC, dev);
4996 			continue;
4997 		}
4998 
4999 		ARCSTAT_BUMP(arcstat_l2_feeds);
5000 
5001 		size = l2arc_write_size();
5002 
5003 		/*
5004 		 * Evict L2ARC buffers that will be overwritten.
5005 		 */
5006 		l2arc_evict(dev, size, B_FALSE);
5007 
5008 		/*
5009 		 * Write ARC buffers.
5010 		 */
5011 		wrote = l2arc_write_buffers(spa, dev, size, &headroom_boost);
5012 
5013 		/*
5014 		 * Calculate interval between writes.
5015 		 */
5016 		next = l2arc_write_interval(begin, size, wrote);
5017 		spa_config_exit(spa, SCL_L2ARC, dev);
5018 	}
5019 
5020 	l2arc_thread_exit = 0;
5021 	cv_broadcast(&l2arc_feed_thr_cv);
5022 	CALLB_CPR_EXIT(&cpr);		/* drops l2arc_feed_thr_lock */
5023 	thread_exit();
5024 }
5025 
5026 boolean_t
5027 l2arc_vdev_present(vdev_t *vd)
5028 {
5029 	l2arc_dev_t *dev;
5030 
5031 	mutex_enter(&l2arc_dev_mtx);
5032 	for (dev = list_head(l2arc_dev_list); dev != NULL;
5033 	    dev = list_next(l2arc_dev_list, dev)) {
5034 		if (dev->l2ad_vdev == vd)
5035 			break;
5036 	}
5037 	mutex_exit(&l2arc_dev_mtx);
5038 
5039 	return (dev != NULL);
5040 }
5041 
5042 /*
5043  * Add a vdev for use by the L2ARC.  By this point the spa has already
5044  * validated the vdev and opened it.
5045  */
5046 void
5047 l2arc_add_vdev(spa_t *spa, vdev_t *vd)
5048 {
5049 	l2arc_dev_t *adddev;
5050 
5051 	ASSERT(!l2arc_vdev_present(vd));
5052 
5053 	/*
5054 	 * Create a new l2arc device entry.
5055 	 */
5056 	adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
5057 	adddev->l2ad_spa = spa;
5058 	adddev->l2ad_vdev = vd;
5059 	adddev->l2ad_start = VDEV_LABEL_START_SIZE;
5060 	adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
5061 	adddev->l2ad_hand = adddev->l2ad_start;
5062 	adddev->l2ad_evict = adddev->l2ad_start;
5063 	adddev->l2ad_first = B_TRUE;
5064 	adddev->l2ad_writing = B_FALSE;
5065 
5066 	/*
5067 	 * This is a list of all ARC buffers that are still valid on the
5068 	 * device.
5069 	 */
5070 	adddev->l2ad_buflist = kmem_zalloc(sizeof (list_t), KM_SLEEP);
5071 	list_create(adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
5072 	    offsetof(arc_buf_hdr_t, b_l2node));
5073 
5074 	vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
5075 
5076 	/*
5077 	 * Add device to global list
5078 	 */
5079 	mutex_enter(&l2arc_dev_mtx);
5080 	list_insert_head(l2arc_dev_list, adddev);
5081 	atomic_inc_64(&l2arc_ndev);
5082 	mutex_exit(&l2arc_dev_mtx);
5083 }
5084 
5085 /*
5086  * Remove a vdev from the L2ARC.
5087  */
5088 void
5089 l2arc_remove_vdev(vdev_t *vd)
5090 {
5091 	l2arc_dev_t *dev, *nextdev, *remdev = NULL;
5092 
5093 	/*
5094 	 * Find the device by vdev
5095 	 */
5096 	mutex_enter(&l2arc_dev_mtx);
5097 	for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
5098 		nextdev = list_next(l2arc_dev_list, dev);
5099 		if (vd == dev->l2ad_vdev) {
5100 			remdev = dev;
5101 			break;
5102 		}
5103 	}
5104 	ASSERT(remdev != NULL);
5105 
5106 	/*
5107 	 * Remove device from global list
5108 	 */
5109 	list_remove(l2arc_dev_list, remdev);
5110 	l2arc_dev_last = NULL;		/* may have been invalidated */
5111 	atomic_dec_64(&l2arc_ndev);
5112 	mutex_exit(&l2arc_dev_mtx);
5113 
5114 	/*
5115 	 * Clear all buflists and ARC references.  L2ARC device flush.
5116 	 */
5117 	l2arc_evict(remdev, 0, B_TRUE);
5118 	list_destroy(remdev->l2ad_buflist);
5119 	kmem_free(remdev->l2ad_buflist, sizeof (list_t));
5120 	kmem_free(remdev, sizeof (l2arc_dev_t));
5121 }
5122 
5123 void
5124 l2arc_init(void)
5125 {
5126 	l2arc_thread_exit = 0;
5127 	l2arc_ndev = 0;
5128 	l2arc_writes_sent = 0;
5129 	l2arc_writes_done = 0;
5130 
5131 	mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
5132 	cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
5133 	mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
5134 	mutex_init(&l2arc_buflist_mtx, NULL, MUTEX_DEFAULT, NULL);
5135 	mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
5136 
5137 	l2arc_dev_list = &L2ARC_dev_list;
5138 	l2arc_free_on_write = &L2ARC_free_on_write;
5139 	list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
5140 	    offsetof(l2arc_dev_t, l2ad_node));
5141 	list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
5142 	    offsetof(l2arc_data_free_t, l2df_list_node));
5143 }
5144 
5145 void
5146 l2arc_fini(void)
5147 {
5148 	/*
5149 	 * This is called from dmu_fini(), which is called from spa_fini();
5150 	 * Because of this, we can assume that all l2arc devices have
5151 	 * already been removed when the pools themselves were removed.
5152 	 */
5153 
5154 	l2arc_do_free_on_write();
5155 
5156 	mutex_destroy(&l2arc_feed_thr_lock);
5157 	cv_destroy(&l2arc_feed_thr_cv);
5158 	mutex_destroy(&l2arc_dev_mtx);
5159 	mutex_destroy(&l2arc_buflist_mtx);
5160 	mutex_destroy(&l2arc_free_on_write_mtx);
5161 
5162 	list_destroy(l2arc_dev_list);
5163 	list_destroy(l2arc_free_on_write);
5164 }
5165 
5166 void
5167 l2arc_start(void)
5168 {
5169 	if (!(spa_mode_global & FWRITE))
5170 		return;
5171 
5172 	(void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
5173 	    TS_RUN, minclsyspri);
5174 }
5175 
5176 void
5177 l2arc_stop(void)
5178 {
5179 	if (!(spa_mode_global & FWRITE))
5180 		return;
5181 
5182 	mutex_enter(&l2arc_feed_thr_lock);
5183 	cv_signal(&l2arc_feed_thr_cv);	/* kick thread out of startup */
5184 	l2arc_thread_exit = 1;
5185 	while (l2arc_thread_exit != 0)
5186 		cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
5187 	mutex_exit(&l2arc_feed_thr_lock);
5188 }
5189