1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012, Joyent, Inc. All rights reserved. 24 * Copyright (c) 2013 by Delphix. All rights reserved. 25 * Copyright (c) 2014 by Saso Kiselkov. All rights reserved. 26 * Copyright 2014 Nexenta Systems, Inc. All rights reserved. 27 */ 28 29 /* 30 * DVA-based Adjustable Replacement Cache 31 * 32 * While much of the theory of operation used here is 33 * based on the self-tuning, low overhead replacement cache 34 * presented by Megiddo and Modha at FAST 2003, there are some 35 * significant differences: 36 * 37 * 1. The Megiddo and Modha model assumes any page is evictable. 38 * Pages in its cache cannot be "locked" into memory. This makes 39 * the eviction algorithm simple: evict the last page in the list. 40 * This also make the performance characteristics easy to reason 41 * about. Our cache is not so simple. At any given moment, some 42 * subset of the blocks in the cache are un-evictable because we 43 * have handed out a reference to them. Blocks are only evictable 44 * when there are no external references active. This makes 45 * eviction far more problematic: we choose to evict the evictable 46 * blocks that are the "lowest" in the list. 47 * 48 * There are times when it is not possible to evict the requested 49 * space. In these circumstances we are unable to adjust the cache 50 * size. To prevent the cache growing unbounded at these times we 51 * implement a "cache throttle" that slows the flow of new data 52 * into the cache until we can make space available. 53 * 54 * 2. The Megiddo and Modha model assumes a fixed cache size. 55 * Pages are evicted when the cache is full and there is a cache 56 * miss. Our model has a variable sized cache. It grows with 57 * high use, but also tries to react to memory pressure from the 58 * operating system: decreasing its size when system memory is 59 * tight. 60 * 61 * 3. The Megiddo and Modha model assumes a fixed page size. All 62 * elements of the cache are therefore exactly the same size. So 63 * when adjusting the cache size following a cache miss, its simply 64 * a matter of choosing a single page to evict. In our model, we 65 * have variable sized cache blocks (rangeing from 512 bytes to 66 * 128K bytes). We therefore choose a set of blocks to evict to make 67 * space for a cache miss that approximates as closely as possible 68 * the space used by the new block. 69 * 70 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache" 71 * by N. Megiddo & D. Modha, FAST 2003 72 */ 73 74 /* 75 * The locking model: 76 * 77 * A new reference to a cache buffer can be obtained in two 78 * ways: 1) via a hash table lookup using the DVA as a key, 79 * or 2) via one of the ARC lists. The arc_read() interface 80 * uses method 1, while the internal arc algorithms for 81 * adjusting the cache use method 2. We therefore provide two 82 * types of locks: 1) the hash table lock array, and 2) the 83 * arc list locks. 84 * 85 * Buffers do not have their own mutexes, rather they rely on the 86 * hash table mutexes for the bulk of their protection (i.e. most 87 * fields in the arc_buf_hdr_t are protected by these mutexes). 88 * 89 * buf_hash_find() returns the appropriate mutex (held) when it 90 * locates the requested buffer in the hash table. It returns 91 * NULL for the mutex if the buffer was not in the table. 92 * 93 * buf_hash_remove() expects the appropriate hash mutex to be 94 * already held before it is invoked. 95 * 96 * Each arc state also has a mutex which is used to protect the 97 * buffer list associated with the state. When attempting to 98 * obtain a hash table lock while holding an arc list lock you 99 * must use: mutex_tryenter() to avoid deadlock. Also note that 100 * the active state mutex must be held before the ghost state mutex. 101 * 102 * Arc buffers may have an associated eviction callback function. 103 * This function will be invoked prior to removing the buffer (e.g. 104 * in arc_do_user_evicts()). Note however that the data associated 105 * with the buffer may be evicted prior to the callback. The callback 106 * must be made with *no locks held* (to prevent deadlock). Additionally, 107 * the users of callbacks must ensure that their private data is 108 * protected from simultaneous callbacks from arc_buf_evict() 109 * and arc_do_user_evicts(). 110 * 111 * Note that the majority of the performance stats are manipulated 112 * with atomic operations. 113 * 114 * The L2ARC uses the l2arc_buflist_mtx global mutex for the following: 115 * 116 * - L2ARC buflist creation 117 * - L2ARC buflist eviction 118 * - L2ARC write completion, which walks L2ARC buflists 119 * - ARC header destruction, as it removes from L2ARC buflists 120 * - ARC header release, as it removes from L2ARC buflists 121 */ 122 123 #include <sys/spa.h> 124 #include <sys/zio.h> 125 #include <sys/zio_compress.h> 126 #include <sys/zfs_context.h> 127 #include <sys/arc.h> 128 #include <sys/refcount.h> 129 #include <sys/vdev.h> 130 #include <sys/vdev_impl.h> 131 #include <sys/dsl_pool.h> 132 #ifdef _KERNEL 133 #include <sys/vmsystm.h> 134 #include <vm/anon.h> 135 #include <sys/fs/swapnode.h> 136 #include <sys/dnlc.h> 137 #endif 138 #include <sys/callb.h> 139 #include <sys/kstat.h> 140 #include <zfs_fletcher.h> 141 142 #ifndef _KERNEL 143 /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */ 144 boolean_t arc_watch = B_FALSE; 145 int arc_procfd; 146 #endif 147 148 static kmutex_t arc_reclaim_thr_lock; 149 static kcondvar_t arc_reclaim_thr_cv; /* used to signal reclaim thr */ 150 static uint8_t arc_thread_exit; 151 152 #define ARC_REDUCE_DNLC_PERCENT 3 153 uint_t arc_reduce_dnlc_percent = ARC_REDUCE_DNLC_PERCENT; 154 155 typedef enum arc_reclaim_strategy { 156 ARC_RECLAIM_AGGR, /* Aggressive reclaim strategy */ 157 ARC_RECLAIM_CONS /* Conservative reclaim strategy */ 158 } arc_reclaim_strategy_t; 159 160 /* 161 * The number of iterations through arc_evict_*() before we 162 * drop & reacquire the lock. 163 */ 164 int arc_evict_iterations = 100; 165 166 /* number of seconds before growing cache again */ 167 static int arc_grow_retry = 60; 168 169 /* shift of arc_c for calculating both min and max arc_p */ 170 static int arc_p_min_shift = 4; 171 172 /* log2(fraction of arc to reclaim) */ 173 static int arc_shrink_shift = 5; 174 175 /* 176 * minimum lifespan of a prefetch block in clock ticks 177 * (initialized in arc_init()) 178 */ 179 static int arc_min_prefetch_lifespan; 180 181 /* 182 * If this percent of memory is free, don't throttle. 183 */ 184 int arc_lotsfree_percent = 10; 185 186 static int arc_dead; 187 188 /* 189 * The arc has filled available memory and has now warmed up. 190 */ 191 static boolean_t arc_warm; 192 193 /* 194 * These tunables are for performance analysis. 195 */ 196 uint64_t zfs_arc_max; 197 uint64_t zfs_arc_min; 198 uint64_t zfs_arc_meta_limit = 0; 199 int zfs_arc_grow_retry = 0; 200 int zfs_arc_shrink_shift = 0; 201 int zfs_arc_p_min_shift = 0; 202 int zfs_disable_dup_eviction = 0; 203 204 /* 205 * Note that buffers can be in one of 6 states: 206 * ARC_anon - anonymous (discussed below) 207 * ARC_mru - recently used, currently cached 208 * ARC_mru_ghost - recentely used, no longer in cache 209 * ARC_mfu - frequently used, currently cached 210 * ARC_mfu_ghost - frequently used, no longer in cache 211 * ARC_l2c_only - exists in L2ARC but not other states 212 * When there are no active references to the buffer, they are 213 * are linked onto a list in one of these arc states. These are 214 * the only buffers that can be evicted or deleted. Within each 215 * state there are multiple lists, one for meta-data and one for 216 * non-meta-data. Meta-data (indirect blocks, blocks of dnodes, 217 * etc.) is tracked separately so that it can be managed more 218 * explicitly: favored over data, limited explicitly. 219 * 220 * Anonymous buffers are buffers that are not associated with 221 * a DVA. These are buffers that hold dirty block copies 222 * before they are written to stable storage. By definition, 223 * they are "ref'd" and are considered part of arc_mru 224 * that cannot be freed. Generally, they will aquire a DVA 225 * as they are written and migrate onto the arc_mru list. 226 * 227 * The ARC_l2c_only state is for buffers that are in the second 228 * level ARC but no longer in any of the ARC_m* lists. The second 229 * level ARC itself may also contain buffers that are in any of 230 * the ARC_m* states - meaning that a buffer can exist in two 231 * places. The reason for the ARC_l2c_only state is to keep the 232 * buffer header in the hash table, so that reads that hit the 233 * second level ARC benefit from these fast lookups. 234 */ 235 236 typedef struct arc_state { 237 list_t arcs_list[ARC_BUFC_NUMTYPES]; /* list of evictable buffers */ 238 uint64_t arcs_lsize[ARC_BUFC_NUMTYPES]; /* amount of evictable data */ 239 uint64_t arcs_size; /* total amount of data in this state */ 240 kmutex_t arcs_mtx; 241 } arc_state_t; 242 243 /* The 6 states: */ 244 static arc_state_t ARC_anon; 245 static arc_state_t ARC_mru; 246 static arc_state_t ARC_mru_ghost; 247 static arc_state_t ARC_mfu; 248 static arc_state_t ARC_mfu_ghost; 249 static arc_state_t ARC_l2c_only; 250 251 typedef struct arc_stats { 252 kstat_named_t arcstat_hits; 253 kstat_named_t arcstat_misses; 254 kstat_named_t arcstat_demand_data_hits; 255 kstat_named_t arcstat_demand_data_misses; 256 kstat_named_t arcstat_demand_metadata_hits; 257 kstat_named_t arcstat_demand_metadata_misses; 258 kstat_named_t arcstat_prefetch_data_hits; 259 kstat_named_t arcstat_prefetch_data_misses; 260 kstat_named_t arcstat_prefetch_metadata_hits; 261 kstat_named_t arcstat_prefetch_metadata_misses; 262 kstat_named_t arcstat_mru_hits; 263 kstat_named_t arcstat_mru_ghost_hits; 264 kstat_named_t arcstat_mfu_hits; 265 kstat_named_t arcstat_mfu_ghost_hits; 266 kstat_named_t arcstat_deleted; 267 kstat_named_t arcstat_recycle_miss; 268 /* 269 * Number of buffers that could not be evicted because the hash lock 270 * was held by another thread. The lock may not necessarily be held 271 * by something using the same buffer, since hash locks are shared 272 * by multiple buffers. 273 */ 274 kstat_named_t arcstat_mutex_miss; 275 /* 276 * Number of buffers skipped because they have I/O in progress, are 277 * indrect prefetch buffers that have not lived long enough, or are 278 * not from the spa we're trying to evict from. 279 */ 280 kstat_named_t arcstat_evict_skip; 281 kstat_named_t arcstat_evict_l2_cached; 282 kstat_named_t arcstat_evict_l2_eligible; 283 kstat_named_t arcstat_evict_l2_ineligible; 284 kstat_named_t arcstat_hash_elements; 285 kstat_named_t arcstat_hash_elements_max; 286 kstat_named_t arcstat_hash_collisions; 287 kstat_named_t arcstat_hash_chains; 288 kstat_named_t arcstat_hash_chain_max; 289 kstat_named_t arcstat_p; 290 kstat_named_t arcstat_c; 291 kstat_named_t arcstat_c_min; 292 kstat_named_t arcstat_c_max; 293 kstat_named_t arcstat_size; 294 kstat_named_t arcstat_hdr_size; 295 kstat_named_t arcstat_data_size; 296 kstat_named_t arcstat_other_size; 297 kstat_named_t arcstat_l2_hits; 298 kstat_named_t arcstat_l2_misses; 299 kstat_named_t arcstat_l2_feeds; 300 kstat_named_t arcstat_l2_rw_clash; 301 kstat_named_t arcstat_l2_read_bytes; 302 kstat_named_t arcstat_l2_write_bytes; 303 kstat_named_t arcstat_l2_writes_sent; 304 kstat_named_t arcstat_l2_writes_done; 305 kstat_named_t arcstat_l2_writes_error; 306 kstat_named_t arcstat_l2_writes_hdr_miss; 307 kstat_named_t arcstat_l2_evict_lock_retry; 308 kstat_named_t arcstat_l2_evict_reading; 309 kstat_named_t arcstat_l2_free_on_write; 310 kstat_named_t arcstat_l2_abort_lowmem; 311 kstat_named_t arcstat_l2_cksum_bad; 312 kstat_named_t arcstat_l2_io_error; 313 kstat_named_t arcstat_l2_size; 314 kstat_named_t arcstat_l2_asize; 315 kstat_named_t arcstat_l2_hdr_size; 316 kstat_named_t arcstat_l2_compress_successes; 317 kstat_named_t arcstat_l2_compress_zeros; 318 kstat_named_t arcstat_l2_compress_failures; 319 kstat_named_t arcstat_memory_throttle_count; 320 kstat_named_t arcstat_duplicate_buffers; 321 kstat_named_t arcstat_duplicate_buffers_size; 322 kstat_named_t arcstat_duplicate_reads; 323 kstat_named_t arcstat_meta_used; 324 kstat_named_t arcstat_meta_limit; 325 kstat_named_t arcstat_meta_max; 326 } arc_stats_t; 327 328 static arc_stats_t arc_stats = { 329 { "hits", KSTAT_DATA_UINT64 }, 330 { "misses", KSTAT_DATA_UINT64 }, 331 { "demand_data_hits", KSTAT_DATA_UINT64 }, 332 { "demand_data_misses", KSTAT_DATA_UINT64 }, 333 { "demand_metadata_hits", KSTAT_DATA_UINT64 }, 334 { "demand_metadata_misses", KSTAT_DATA_UINT64 }, 335 { "prefetch_data_hits", KSTAT_DATA_UINT64 }, 336 { "prefetch_data_misses", KSTAT_DATA_UINT64 }, 337 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 }, 338 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 }, 339 { "mru_hits", KSTAT_DATA_UINT64 }, 340 { "mru_ghost_hits", KSTAT_DATA_UINT64 }, 341 { "mfu_hits", KSTAT_DATA_UINT64 }, 342 { "mfu_ghost_hits", KSTAT_DATA_UINT64 }, 343 { "deleted", KSTAT_DATA_UINT64 }, 344 { "recycle_miss", KSTAT_DATA_UINT64 }, 345 { "mutex_miss", KSTAT_DATA_UINT64 }, 346 { "evict_skip", KSTAT_DATA_UINT64 }, 347 { "evict_l2_cached", KSTAT_DATA_UINT64 }, 348 { "evict_l2_eligible", KSTAT_DATA_UINT64 }, 349 { "evict_l2_ineligible", KSTAT_DATA_UINT64 }, 350 { "hash_elements", KSTAT_DATA_UINT64 }, 351 { "hash_elements_max", KSTAT_DATA_UINT64 }, 352 { "hash_collisions", KSTAT_DATA_UINT64 }, 353 { "hash_chains", KSTAT_DATA_UINT64 }, 354 { "hash_chain_max", KSTAT_DATA_UINT64 }, 355 { "p", KSTAT_DATA_UINT64 }, 356 { "c", KSTAT_DATA_UINT64 }, 357 { "c_min", KSTAT_DATA_UINT64 }, 358 { "c_max", KSTAT_DATA_UINT64 }, 359 { "size", KSTAT_DATA_UINT64 }, 360 { "hdr_size", KSTAT_DATA_UINT64 }, 361 { "data_size", KSTAT_DATA_UINT64 }, 362 { "other_size", KSTAT_DATA_UINT64 }, 363 { "l2_hits", KSTAT_DATA_UINT64 }, 364 { "l2_misses", KSTAT_DATA_UINT64 }, 365 { "l2_feeds", KSTAT_DATA_UINT64 }, 366 { "l2_rw_clash", KSTAT_DATA_UINT64 }, 367 { "l2_read_bytes", KSTAT_DATA_UINT64 }, 368 { "l2_write_bytes", KSTAT_DATA_UINT64 }, 369 { "l2_writes_sent", KSTAT_DATA_UINT64 }, 370 { "l2_writes_done", KSTAT_DATA_UINT64 }, 371 { "l2_writes_error", KSTAT_DATA_UINT64 }, 372 { "l2_writes_hdr_miss", KSTAT_DATA_UINT64 }, 373 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 }, 374 { "l2_evict_reading", KSTAT_DATA_UINT64 }, 375 { "l2_free_on_write", KSTAT_DATA_UINT64 }, 376 { "l2_abort_lowmem", KSTAT_DATA_UINT64 }, 377 { "l2_cksum_bad", KSTAT_DATA_UINT64 }, 378 { "l2_io_error", KSTAT_DATA_UINT64 }, 379 { "l2_size", KSTAT_DATA_UINT64 }, 380 { "l2_asize", KSTAT_DATA_UINT64 }, 381 { "l2_hdr_size", KSTAT_DATA_UINT64 }, 382 { "l2_compress_successes", KSTAT_DATA_UINT64 }, 383 { "l2_compress_zeros", KSTAT_DATA_UINT64 }, 384 { "l2_compress_failures", KSTAT_DATA_UINT64 }, 385 { "memory_throttle_count", KSTAT_DATA_UINT64 }, 386 { "duplicate_buffers", KSTAT_DATA_UINT64 }, 387 { "duplicate_buffers_size", KSTAT_DATA_UINT64 }, 388 { "duplicate_reads", KSTAT_DATA_UINT64 }, 389 { "arc_meta_used", KSTAT_DATA_UINT64 }, 390 { "arc_meta_limit", KSTAT_DATA_UINT64 }, 391 { "arc_meta_max", KSTAT_DATA_UINT64 } 392 }; 393 394 #define ARCSTAT(stat) (arc_stats.stat.value.ui64) 395 396 #define ARCSTAT_INCR(stat, val) \ 397 atomic_add_64(&arc_stats.stat.value.ui64, (val)) 398 399 #define ARCSTAT_BUMP(stat) ARCSTAT_INCR(stat, 1) 400 #define ARCSTAT_BUMPDOWN(stat) ARCSTAT_INCR(stat, -1) 401 402 #define ARCSTAT_MAX(stat, val) { \ 403 uint64_t m; \ 404 while ((val) > (m = arc_stats.stat.value.ui64) && \ 405 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \ 406 continue; \ 407 } 408 409 #define ARCSTAT_MAXSTAT(stat) \ 410 ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64) 411 412 /* 413 * We define a macro to allow ARC hits/misses to be easily broken down by 414 * two separate conditions, giving a total of four different subtypes for 415 * each of hits and misses (so eight statistics total). 416 */ 417 #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \ 418 if (cond1) { \ 419 if (cond2) { \ 420 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \ 421 } else { \ 422 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \ 423 } \ 424 } else { \ 425 if (cond2) { \ 426 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \ 427 } else { \ 428 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\ 429 } \ 430 } 431 432 kstat_t *arc_ksp; 433 static arc_state_t *arc_anon; 434 static arc_state_t *arc_mru; 435 static arc_state_t *arc_mru_ghost; 436 static arc_state_t *arc_mfu; 437 static arc_state_t *arc_mfu_ghost; 438 static arc_state_t *arc_l2c_only; 439 440 /* 441 * There are several ARC variables that are critical to export as kstats -- 442 * but we don't want to have to grovel around in the kstat whenever we wish to 443 * manipulate them. For these variables, we therefore define them to be in 444 * terms of the statistic variable. This assures that we are not introducing 445 * the possibility of inconsistency by having shadow copies of the variables, 446 * while still allowing the code to be readable. 447 */ 448 #define arc_size ARCSTAT(arcstat_size) /* actual total arc size */ 449 #define arc_p ARCSTAT(arcstat_p) /* target size of MRU */ 450 #define arc_c ARCSTAT(arcstat_c) /* target size of cache */ 451 #define arc_c_min ARCSTAT(arcstat_c_min) /* min target cache size */ 452 #define arc_c_max ARCSTAT(arcstat_c_max) /* max target cache size */ 453 #define arc_meta_limit ARCSTAT(arcstat_meta_limit) /* max size for metadata */ 454 #define arc_meta_used ARCSTAT(arcstat_meta_used) /* size of metadata */ 455 #define arc_meta_max ARCSTAT(arcstat_meta_max) /* max size of metadata */ 456 457 #define L2ARC_IS_VALID_COMPRESS(_c_) \ 458 ((_c_) == ZIO_COMPRESS_LZ4 || (_c_) == ZIO_COMPRESS_EMPTY) 459 460 static int arc_no_grow; /* Don't try to grow cache size */ 461 static uint64_t arc_tempreserve; 462 static uint64_t arc_loaned_bytes; 463 464 typedef struct l2arc_buf_hdr l2arc_buf_hdr_t; 465 466 typedef struct arc_callback arc_callback_t; 467 468 struct arc_callback { 469 void *acb_private; 470 arc_done_func_t *acb_done; 471 arc_buf_t *acb_buf; 472 zio_t *acb_zio_dummy; 473 arc_callback_t *acb_next; 474 }; 475 476 typedef struct arc_write_callback arc_write_callback_t; 477 478 struct arc_write_callback { 479 void *awcb_private; 480 arc_done_func_t *awcb_ready; 481 arc_done_func_t *awcb_physdone; 482 arc_done_func_t *awcb_done; 483 arc_buf_t *awcb_buf; 484 }; 485 486 struct arc_buf_hdr { 487 /* protected by hash lock */ 488 dva_t b_dva; 489 uint64_t b_birth; 490 uint64_t b_cksum0; 491 492 kmutex_t b_freeze_lock; 493 zio_cksum_t *b_freeze_cksum; 494 void *b_thawed; 495 496 arc_buf_hdr_t *b_hash_next; 497 arc_buf_t *b_buf; 498 uint32_t b_flags; 499 uint32_t b_datacnt; 500 501 arc_callback_t *b_acb; 502 kcondvar_t b_cv; 503 504 /* immutable */ 505 arc_buf_contents_t b_type; 506 uint64_t b_size; 507 uint64_t b_spa; 508 509 /* protected by arc state mutex */ 510 arc_state_t *b_state; 511 list_node_t b_arc_node; 512 513 /* updated atomically */ 514 clock_t b_arc_access; 515 516 /* self protecting */ 517 refcount_t b_refcnt; 518 519 l2arc_buf_hdr_t *b_l2hdr; 520 list_node_t b_l2node; 521 }; 522 523 static arc_buf_t *arc_eviction_list; 524 static kmutex_t arc_eviction_mtx; 525 static arc_buf_hdr_t arc_eviction_hdr; 526 static void arc_get_data_buf(arc_buf_t *buf); 527 static void arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock); 528 static int arc_evict_needed(arc_buf_contents_t type); 529 static void arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes); 530 static void arc_buf_watch(arc_buf_t *buf); 531 532 static boolean_t l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab); 533 534 #define GHOST_STATE(state) \ 535 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \ 536 (state) == arc_l2c_only) 537 538 /* 539 * Private ARC flags. These flags are private ARC only flags that will show up 540 * in b_flags in the arc_hdr_buf_t. Some flags are publicly declared, and can 541 * be passed in as arc_flags in things like arc_read. However, these flags 542 * should never be passed and should only be set by ARC code. When adding new 543 * public flags, make sure not to smash the private ones. 544 */ 545 546 #define ARC_IN_HASH_TABLE (1 << 9) /* this buffer is hashed */ 547 #define ARC_IO_IN_PROGRESS (1 << 10) /* I/O in progress for buf */ 548 #define ARC_IO_ERROR (1 << 11) /* I/O failed for buf */ 549 #define ARC_FREED_IN_READ (1 << 12) /* buf freed while in read */ 550 #define ARC_BUF_AVAILABLE (1 << 13) /* block not in active use */ 551 #define ARC_INDIRECT (1 << 14) /* this is an indirect block */ 552 #define ARC_FREE_IN_PROGRESS (1 << 15) /* hdr about to be freed */ 553 #define ARC_L2_WRITING (1 << 16) /* L2ARC write in progress */ 554 #define ARC_L2_EVICTED (1 << 17) /* evicted during I/O */ 555 #define ARC_L2_WRITE_HEAD (1 << 18) /* head of write list */ 556 557 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_IN_HASH_TABLE) 558 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_IO_IN_PROGRESS) 559 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_IO_ERROR) 560 #define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_PREFETCH) 561 #define HDR_FREED_IN_READ(hdr) ((hdr)->b_flags & ARC_FREED_IN_READ) 562 #define HDR_BUF_AVAILABLE(hdr) ((hdr)->b_flags & ARC_BUF_AVAILABLE) 563 #define HDR_FREE_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FREE_IN_PROGRESS) 564 #define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_L2CACHE) 565 #define HDR_L2_READING(hdr) ((hdr)->b_flags & ARC_IO_IN_PROGRESS && \ 566 (hdr)->b_l2hdr != NULL) 567 #define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_L2_WRITING) 568 #define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_L2_EVICTED) 569 #define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_L2_WRITE_HEAD) 570 571 /* 572 * Other sizes 573 */ 574 575 #define HDR_SIZE ((int64_t)sizeof (arc_buf_hdr_t)) 576 #define L2HDR_SIZE ((int64_t)sizeof (l2arc_buf_hdr_t)) 577 578 /* 579 * Hash table routines 580 */ 581 582 #define HT_LOCK_PAD 64 583 584 struct ht_lock { 585 kmutex_t ht_lock; 586 #ifdef _KERNEL 587 unsigned char pad[(HT_LOCK_PAD - sizeof (kmutex_t))]; 588 #endif 589 }; 590 591 #define BUF_LOCKS 256 592 typedef struct buf_hash_table { 593 uint64_t ht_mask; 594 arc_buf_hdr_t **ht_table; 595 struct ht_lock ht_locks[BUF_LOCKS]; 596 } buf_hash_table_t; 597 598 static buf_hash_table_t buf_hash_table; 599 600 #define BUF_HASH_INDEX(spa, dva, birth) \ 601 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask) 602 #define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)]) 603 #define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock)) 604 #define HDR_LOCK(hdr) \ 605 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth))) 606 607 uint64_t zfs_crc64_table[256]; 608 609 /* 610 * Level 2 ARC 611 */ 612 613 #define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */ 614 #define L2ARC_HEADROOM 2 /* num of writes */ 615 /* 616 * If we discover during ARC scan any buffers to be compressed, we boost 617 * our headroom for the next scanning cycle by this percentage multiple. 618 */ 619 #define L2ARC_HEADROOM_BOOST 200 620 #define L2ARC_FEED_SECS 1 /* caching interval secs */ 621 #define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */ 622 623 #define l2arc_writes_sent ARCSTAT(arcstat_l2_writes_sent) 624 #define l2arc_writes_done ARCSTAT(arcstat_l2_writes_done) 625 626 /* L2ARC Performance Tunables */ 627 uint64_t l2arc_write_max = L2ARC_WRITE_SIZE; /* default max write size */ 628 uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra write during warmup */ 629 uint64_t l2arc_headroom = L2ARC_HEADROOM; /* number of dev writes */ 630 uint64_t l2arc_headroom_boost = L2ARC_HEADROOM_BOOST; 631 uint64_t l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */ 632 uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval milliseconds */ 633 boolean_t l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */ 634 boolean_t l2arc_feed_again = B_TRUE; /* turbo warmup */ 635 boolean_t l2arc_norw = B_TRUE; /* no reads during writes */ 636 637 /* 638 * L2ARC Internals 639 */ 640 typedef struct l2arc_dev { 641 vdev_t *l2ad_vdev; /* vdev */ 642 spa_t *l2ad_spa; /* spa */ 643 uint64_t l2ad_hand; /* next write location */ 644 uint64_t l2ad_start; /* first addr on device */ 645 uint64_t l2ad_end; /* last addr on device */ 646 uint64_t l2ad_evict; /* last addr eviction reached */ 647 boolean_t l2ad_first; /* first sweep through */ 648 boolean_t l2ad_writing; /* currently writing */ 649 list_t *l2ad_buflist; /* buffer list */ 650 list_node_t l2ad_node; /* device list node */ 651 } l2arc_dev_t; 652 653 static list_t L2ARC_dev_list; /* device list */ 654 static list_t *l2arc_dev_list; /* device list pointer */ 655 static kmutex_t l2arc_dev_mtx; /* device list mutex */ 656 static l2arc_dev_t *l2arc_dev_last; /* last device used */ 657 static kmutex_t l2arc_buflist_mtx; /* mutex for all buflists */ 658 static list_t L2ARC_free_on_write; /* free after write buf list */ 659 static list_t *l2arc_free_on_write; /* free after write list ptr */ 660 static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */ 661 static uint64_t l2arc_ndev; /* number of devices */ 662 663 typedef struct l2arc_read_callback { 664 arc_buf_t *l2rcb_buf; /* read buffer */ 665 spa_t *l2rcb_spa; /* spa */ 666 blkptr_t l2rcb_bp; /* original blkptr */ 667 zbookmark_t l2rcb_zb; /* original bookmark */ 668 int l2rcb_flags; /* original flags */ 669 enum zio_compress l2rcb_compress; /* applied compress */ 670 } l2arc_read_callback_t; 671 672 typedef struct l2arc_write_callback { 673 l2arc_dev_t *l2wcb_dev; /* device info */ 674 arc_buf_hdr_t *l2wcb_head; /* head of write buflist */ 675 } l2arc_write_callback_t; 676 677 struct l2arc_buf_hdr { 678 /* protected by arc_buf_hdr mutex */ 679 l2arc_dev_t *b_dev; /* L2ARC device */ 680 uint64_t b_daddr; /* disk address, offset byte */ 681 /* compression applied to buffer data */ 682 enum zio_compress b_compress; 683 /* real alloc'd buffer size depending on b_compress applied */ 684 int b_asize; 685 /* temporary buffer holder for in-flight compressed data */ 686 void *b_tmp_cdata; 687 }; 688 689 typedef struct l2arc_data_free { 690 /* protected by l2arc_free_on_write_mtx */ 691 void *l2df_data; 692 size_t l2df_size; 693 void (*l2df_func)(void *, size_t); 694 list_node_t l2df_list_node; 695 } l2arc_data_free_t; 696 697 static kmutex_t l2arc_feed_thr_lock; 698 static kcondvar_t l2arc_feed_thr_cv; 699 static uint8_t l2arc_thread_exit; 700 701 static void l2arc_read_done(zio_t *zio); 702 static void l2arc_hdr_stat_add(void); 703 static void l2arc_hdr_stat_remove(void); 704 705 static boolean_t l2arc_compress_buf(l2arc_buf_hdr_t *l2hdr); 706 static void l2arc_decompress_zio(zio_t *zio, arc_buf_hdr_t *hdr, 707 enum zio_compress c); 708 static void l2arc_release_cdata_buf(arc_buf_hdr_t *ab); 709 710 static uint64_t 711 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth) 712 { 713 uint8_t *vdva = (uint8_t *)dva; 714 uint64_t crc = -1ULL; 715 int i; 716 717 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY); 718 719 for (i = 0; i < sizeof (dva_t); i++) 720 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF]; 721 722 crc ^= (spa>>8) ^ birth; 723 724 return (crc); 725 } 726 727 #define BUF_EMPTY(buf) \ 728 ((buf)->b_dva.dva_word[0] == 0 && \ 729 (buf)->b_dva.dva_word[1] == 0 && \ 730 (buf)->b_cksum0 == 0) 731 732 #define BUF_EQUAL(spa, dva, birth, buf) \ 733 ((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \ 734 ((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \ 735 ((buf)->b_birth == birth) && ((buf)->b_spa == spa) 736 737 static void 738 buf_discard_identity(arc_buf_hdr_t *hdr) 739 { 740 hdr->b_dva.dva_word[0] = 0; 741 hdr->b_dva.dva_word[1] = 0; 742 hdr->b_birth = 0; 743 hdr->b_cksum0 = 0; 744 } 745 746 static arc_buf_hdr_t * 747 buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp) 748 { 749 const dva_t *dva = BP_IDENTITY(bp); 750 uint64_t birth = BP_PHYSICAL_BIRTH(bp); 751 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth); 752 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 753 arc_buf_hdr_t *buf; 754 755 mutex_enter(hash_lock); 756 for (buf = buf_hash_table.ht_table[idx]; buf != NULL; 757 buf = buf->b_hash_next) { 758 if (BUF_EQUAL(spa, dva, birth, buf)) { 759 *lockp = hash_lock; 760 return (buf); 761 } 762 } 763 mutex_exit(hash_lock); 764 *lockp = NULL; 765 return (NULL); 766 } 767 768 /* 769 * Insert an entry into the hash table. If there is already an element 770 * equal to elem in the hash table, then the already existing element 771 * will be returned and the new element will not be inserted. 772 * Otherwise returns NULL. 773 */ 774 static arc_buf_hdr_t * 775 buf_hash_insert(arc_buf_hdr_t *buf, kmutex_t **lockp) 776 { 777 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth); 778 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 779 arc_buf_hdr_t *fbuf; 780 uint32_t i; 781 782 ASSERT(!DVA_IS_EMPTY(&buf->b_dva)); 783 ASSERT(buf->b_birth != 0); 784 ASSERT(!HDR_IN_HASH_TABLE(buf)); 785 *lockp = hash_lock; 786 mutex_enter(hash_lock); 787 for (fbuf = buf_hash_table.ht_table[idx], i = 0; fbuf != NULL; 788 fbuf = fbuf->b_hash_next, i++) { 789 if (BUF_EQUAL(buf->b_spa, &buf->b_dva, buf->b_birth, fbuf)) 790 return (fbuf); 791 } 792 793 buf->b_hash_next = buf_hash_table.ht_table[idx]; 794 buf_hash_table.ht_table[idx] = buf; 795 buf->b_flags |= ARC_IN_HASH_TABLE; 796 797 /* collect some hash table performance data */ 798 if (i > 0) { 799 ARCSTAT_BUMP(arcstat_hash_collisions); 800 if (i == 1) 801 ARCSTAT_BUMP(arcstat_hash_chains); 802 803 ARCSTAT_MAX(arcstat_hash_chain_max, i); 804 } 805 806 ARCSTAT_BUMP(arcstat_hash_elements); 807 ARCSTAT_MAXSTAT(arcstat_hash_elements); 808 809 return (NULL); 810 } 811 812 static void 813 buf_hash_remove(arc_buf_hdr_t *buf) 814 { 815 arc_buf_hdr_t *fbuf, **bufp; 816 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth); 817 818 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx))); 819 ASSERT(HDR_IN_HASH_TABLE(buf)); 820 821 bufp = &buf_hash_table.ht_table[idx]; 822 while ((fbuf = *bufp) != buf) { 823 ASSERT(fbuf != NULL); 824 bufp = &fbuf->b_hash_next; 825 } 826 *bufp = buf->b_hash_next; 827 buf->b_hash_next = NULL; 828 buf->b_flags &= ~ARC_IN_HASH_TABLE; 829 830 /* collect some hash table performance data */ 831 ARCSTAT_BUMPDOWN(arcstat_hash_elements); 832 833 if (buf_hash_table.ht_table[idx] && 834 buf_hash_table.ht_table[idx]->b_hash_next == NULL) 835 ARCSTAT_BUMPDOWN(arcstat_hash_chains); 836 } 837 838 /* 839 * Global data structures and functions for the buf kmem cache. 840 */ 841 static kmem_cache_t *hdr_cache; 842 static kmem_cache_t *buf_cache; 843 844 static void 845 buf_fini(void) 846 { 847 int i; 848 849 kmem_free(buf_hash_table.ht_table, 850 (buf_hash_table.ht_mask + 1) * sizeof (void *)); 851 for (i = 0; i < BUF_LOCKS; i++) 852 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock); 853 kmem_cache_destroy(hdr_cache); 854 kmem_cache_destroy(buf_cache); 855 } 856 857 /* 858 * Constructor callback - called when the cache is empty 859 * and a new buf is requested. 860 */ 861 /* ARGSUSED */ 862 static int 863 hdr_cons(void *vbuf, void *unused, int kmflag) 864 { 865 arc_buf_hdr_t *buf = vbuf; 866 867 bzero(buf, sizeof (arc_buf_hdr_t)); 868 refcount_create(&buf->b_refcnt); 869 cv_init(&buf->b_cv, NULL, CV_DEFAULT, NULL); 870 mutex_init(&buf->b_freeze_lock, NULL, MUTEX_DEFAULT, NULL); 871 arc_space_consume(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS); 872 873 return (0); 874 } 875 876 /* ARGSUSED */ 877 static int 878 buf_cons(void *vbuf, void *unused, int kmflag) 879 { 880 arc_buf_t *buf = vbuf; 881 882 bzero(buf, sizeof (arc_buf_t)); 883 mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL); 884 arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS); 885 886 return (0); 887 } 888 889 /* 890 * Destructor callback - called when a cached buf is 891 * no longer required. 892 */ 893 /* ARGSUSED */ 894 static void 895 hdr_dest(void *vbuf, void *unused) 896 { 897 arc_buf_hdr_t *buf = vbuf; 898 899 ASSERT(BUF_EMPTY(buf)); 900 refcount_destroy(&buf->b_refcnt); 901 cv_destroy(&buf->b_cv); 902 mutex_destroy(&buf->b_freeze_lock); 903 arc_space_return(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS); 904 } 905 906 /* ARGSUSED */ 907 static void 908 buf_dest(void *vbuf, void *unused) 909 { 910 arc_buf_t *buf = vbuf; 911 912 mutex_destroy(&buf->b_evict_lock); 913 arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS); 914 } 915 916 /* 917 * Reclaim callback -- invoked when memory is low. 918 */ 919 /* ARGSUSED */ 920 static void 921 hdr_recl(void *unused) 922 { 923 dprintf("hdr_recl called\n"); 924 /* 925 * umem calls the reclaim func when we destroy the buf cache, 926 * which is after we do arc_fini(). 927 */ 928 if (!arc_dead) 929 cv_signal(&arc_reclaim_thr_cv); 930 } 931 932 static void 933 buf_init(void) 934 { 935 uint64_t *ct; 936 uint64_t hsize = 1ULL << 12; 937 int i, j; 938 939 /* 940 * The hash table is big enough to fill all of physical memory 941 * with an average 64K block size. The table will take up 942 * totalmem*sizeof(void*)/64K (eg. 128KB/GB with 8-byte pointers). 943 */ 944 while (hsize * 65536 < physmem * PAGESIZE) 945 hsize <<= 1; 946 retry: 947 buf_hash_table.ht_mask = hsize - 1; 948 buf_hash_table.ht_table = 949 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP); 950 if (buf_hash_table.ht_table == NULL) { 951 ASSERT(hsize > (1ULL << 8)); 952 hsize >>= 1; 953 goto retry; 954 } 955 956 hdr_cache = kmem_cache_create("arc_buf_hdr_t", sizeof (arc_buf_hdr_t), 957 0, hdr_cons, hdr_dest, hdr_recl, NULL, NULL, 0); 958 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t), 959 0, buf_cons, buf_dest, NULL, NULL, NULL, 0); 960 961 for (i = 0; i < 256; i++) 962 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--) 963 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY); 964 965 for (i = 0; i < BUF_LOCKS; i++) { 966 mutex_init(&buf_hash_table.ht_locks[i].ht_lock, 967 NULL, MUTEX_DEFAULT, NULL); 968 } 969 } 970 971 #define ARC_MINTIME (hz>>4) /* 62 ms */ 972 973 static void 974 arc_cksum_verify(arc_buf_t *buf) 975 { 976 zio_cksum_t zc; 977 978 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 979 return; 980 981 mutex_enter(&buf->b_hdr->b_freeze_lock); 982 if (buf->b_hdr->b_freeze_cksum == NULL || 983 (buf->b_hdr->b_flags & ARC_IO_ERROR)) { 984 mutex_exit(&buf->b_hdr->b_freeze_lock); 985 return; 986 } 987 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc); 988 if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc)) 989 panic("buffer modified while frozen!"); 990 mutex_exit(&buf->b_hdr->b_freeze_lock); 991 } 992 993 static int 994 arc_cksum_equal(arc_buf_t *buf) 995 { 996 zio_cksum_t zc; 997 int equal; 998 999 mutex_enter(&buf->b_hdr->b_freeze_lock); 1000 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc); 1001 equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc); 1002 mutex_exit(&buf->b_hdr->b_freeze_lock); 1003 1004 return (equal); 1005 } 1006 1007 static void 1008 arc_cksum_compute(arc_buf_t *buf, boolean_t force) 1009 { 1010 if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY)) 1011 return; 1012 1013 mutex_enter(&buf->b_hdr->b_freeze_lock); 1014 if (buf->b_hdr->b_freeze_cksum != NULL) { 1015 mutex_exit(&buf->b_hdr->b_freeze_lock); 1016 return; 1017 } 1018 buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP); 1019 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, 1020 buf->b_hdr->b_freeze_cksum); 1021 mutex_exit(&buf->b_hdr->b_freeze_lock); 1022 arc_buf_watch(buf); 1023 } 1024 1025 #ifndef _KERNEL 1026 typedef struct procctl { 1027 long cmd; 1028 prwatch_t prwatch; 1029 } procctl_t; 1030 #endif 1031 1032 /* ARGSUSED */ 1033 static void 1034 arc_buf_unwatch(arc_buf_t *buf) 1035 { 1036 #ifndef _KERNEL 1037 if (arc_watch) { 1038 int result; 1039 procctl_t ctl; 1040 ctl.cmd = PCWATCH; 1041 ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data; 1042 ctl.prwatch.pr_size = 0; 1043 ctl.prwatch.pr_wflags = 0; 1044 result = write(arc_procfd, &ctl, sizeof (ctl)); 1045 ASSERT3U(result, ==, sizeof (ctl)); 1046 } 1047 #endif 1048 } 1049 1050 /* ARGSUSED */ 1051 static void 1052 arc_buf_watch(arc_buf_t *buf) 1053 { 1054 #ifndef _KERNEL 1055 if (arc_watch) { 1056 int result; 1057 procctl_t ctl; 1058 ctl.cmd = PCWATCH; 1059 ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data; 1060 ctl.prwatch.pr_size = buf->b_hdr->b_size; 1061 ctl.prwatch.pr_wflags = WA_WRITE; 1062 result = write(arc_procfd, &ctl, sizeof (ctl)); 1063 ASSERT3U(result, ==, sizeof (ctl)); 1064 } 1065 #endif 1066 } 1067 1068 void 1069 arc_buf_thaw(arc_buf_t *buf) 1070 { 1071 if (zfs_flags & ZFS_DEBUG_MODIFY) { 1072 if (buf->b_hdr->b_state != arc_anon) 1073 panic("modifying non-anon buffer!"); 1074 if (buf->b_hdr->b_flags & ARC_IO_IN_PROGRESS) 1075 panic("modifying buffer while i/o in progress!"); 1076 arc_cksum_verify(buf); 1077 } 1078 1079 mutex_enter(&buf->b_hdr->b_freeze_lock); 1080 if (buf->b_hdr->b_freeze_cksum != NULL) { 1081 kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t)); 1082 buf->b_hdr->b_freeze_cksum = NULL; 1083 } 1084 1085 if (zfs_flags & ZFS_DEBUG_MODIFY) { 1086 if (buf->b_hdr->b_thawed) 1087 kmem_free(buf->b_hdr->b_thawed, 1); 1088 buf->b_hdr->b_thawed = kmem_alloc(1, KM_SLEEP); 1089 } 1090 1091 mutex_exit(&buf->b_hdr->b_freeze_lock); 1092 1093 arc_buf_unwatch(buf); 1094 } 1095 1096 void 1097 arc_buf_freeze(arc_buf_t *buf) 1098 { 1099 kmutex_t *hash_lock; 1100 1101 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1102 return; 1103 1104 hash_lock = HDR_LOCK(buf->b_hdr); 1105 mutex_enter(hash_lock); 1106 1107 ASSERT(buf->b_hdr->b_freeze_cksum != NULL || 1108 buf->b_hdr->b_state == arc_anon); 1109 arc_cksum_compute(buf, B_FALSE); 1110 mutex_exit(hash_lock); 1111 1112 } 1113 1114 static void 1115 add_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag) 1116 { 1117 ASSERT(MUTEX_HELD(hash_lock)); 1118 1119 if ((refcount_add(&ab->b_refcnt, tag) == 1) && 1120 (ab->b_state != arc_anon)) { 1121 uint64_t delta = ab->b_size * ab->b_datacnt; 1122 list_t *list = &ab->b_state->arcs_list[ab->b_type]; 1123 uint64_t *size = &ab->b_state->arcs_lsize[ab->b_type]; 1124 1125 ASSERT(!MUTEX_HELD(&ab->b_state->arcs_mtx)); 1126 mutex_enter(&ab->b_state->arcs_mtx); 1127 ASSERT(list_link_active(&ab->b_arc_node)); 1128 list_remove(list, ab); 1129 if (GHOST_STATE(ab->b_state)) { 1130 ASSERT0(ab->b_datacnt); 1131 ASSERT3P(ab->b_buf, ==, NULL); 1132 delta = ab->b_size; 1133 } 1134 ASSERT(delta > 0); 1135 ASSERT3U(*size, >=, delta); 1136 atomic_add_64(size, -delta); 1137 mutex_exit(&ab->b_state->arcs_mtx); 1138 /* remove the prefetch flag if we get a reference */ 1139 if (ab->b_flags & ARC_PREFETCH) 1140 ab->b_flags &= ~ARC_PREFETCH; 1141 } 1142 } 1143 1144 static int 1145 remove_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag) 1146 { 1147 int cnt; 1148 arc_state_t *state = ab->b_state; 1149 1150 ASSERT(state == arc_anon || MUTEX_HELD(hash_lock)); 1151 ASSERT(!GHOST_STATE(state)); 1152 1153 if (((cnt = refcount_remove(&ab->b_refcnt, tag)) == 0) && 1154 (state != arc_anon)) { 1155 uint64_t *size = &state->arcs_lsize[ab->b_type]; 1156 1157 ASSERT(!MUTEX_HELD(&state->arcs_mtx)); 1158 mutex_enter(&state->arcs_mtx); 1159 ASSERT(!list_link_active(&ab->b_arc_node)); 1160 list_insert_head(&state->arcs_list[ab->b_type], ab); 1161 ASSERT(ab->b_datacnt > 0); 1162 atomic_add_64(size, ab->b_size * ab->b_datacnt); 1163 mutex_exit(&state->arcs_mtx); 1164 } 1165 return (cnt); 1166 } 1167 1168 /* 1169 * Move the supplied buffer to the indicated state. The mutex 1170 * for the buffer must be held by the caller. 1171 */ 1172 static void 1173 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *ab, kmutex_t *hash_lock) 1174 { 1175 arc_state_t *old_state = ab->b_state; 1176 int64_t refcnt = refcount_count(&ab->b_refcnt); 1177 uint64_t from_delta, to_delta; 1178 1179 ASSERT(MUTEX_HELD(hash_lock)); 1180 ASSERT3P(new_state, !=, old_state); 1181 ASSERT(refcnt == 0 || ab->b_datacnt > 0); 1182 ASSERT(ab->b_datacnt == 0 || !GHOST_STATE(new_state)); 1183 ASSERT(ab->b_datacnt <= 1 || old_state != arc_anon); 1184 1185 from_delta = to_delta = ab->b_datacnt * ab->b_size; 1186 1187 /* 1188 * If this buffer is evictable, transfer it from the 1189 * old state list to the new state list. 1190 */ 1191 if (refcnt == 0) { 1192 if (old_state != arc_anon) { 1193 int use_mutex = !MUTEX_HELD(&old_state->arcs_mtx); 1194 uint64_t *size = &old_state->arcs_lsize[ab->b_type]; 1195 1196 if (use_mutex) 1197 mutex_enter(&old_state->arcs_mtx); 1198 1199 ASSERT(list_link_active(&ab->b_arc_node)); 1200 list_remove(&old_state->arcs_list[ab->b_type], ab); 1201 1202 /* 1203 * If prefetching out of the ghost cache, 1204 * we will have a non-zero datacnt. 1205 */ 1206 if (GHOST_STATE(old_state) && ab->b_datacnt == 0) { 1207 /* ghost elements have a ghost size */ 1208 ASSERT(ab->b_buf == NULL); 1209 from_delta = ab->b_size; 1210 } 1211 ASSERT3U(*size, >=, from_delta); 1212 atomic_add_64(size, -from_delta); 1213 1214 if (use_mutex) 1215 mutex_exit(&old_state->arcs_mtx); 1216 } 1217 if (new_state != arc_anon) { 1218 int use_mutex = !MUTEX_HELD(&new_state->arcs_mtx); 1219 uint64_t *size = &new_state->arcs_lsize[ab->b_type]; 1220 1221 if (use_mutex) 1222 mutex_enter(&new_state->arcs_mtx); 1223 1224 list_insert_head(&new_state->arcs_list[ab->b_type], ab); 1225 1226 /* ghost elements have a ghost size */ 1227 if (GHOST_STATE(new_state)) { 1228 ASSERT(ab->b_datacnt == 0); 1229 ASSERT(ab->b_buf == NULL); 1230 to_delta = ab->b_size; 1231 } 1232 atomic_add_64(size, to_delta); 1233 1234 if (use_mutex) 1235 mutex_exit(&new_state->arcs_mtx); 1236 } 1237 } 1238 1239 ASSERT(!BUF_EMPTY(ab)); 1240 if (new_state == arc_anon && HDR_IN_HASH_TABLE(ab)) 1241 buf_hash_remove(ab); 1242 1243 /* adjust state sizes */ 1244 if (to_delta) 1245 atomic_add_64(&new_state->arcs_size, to_delta); 1246 if (from_delta) { 1247 ASSERT3U(old_state->arcs_size, >=, from_delta); 1248 atomic_add_64(&old_state->arcs_size, -from_delta); 1249 } 1250 ab->b_state = new_state; 1251 1252 /* adjust l2arc hdr stats */ 1253 if (new_state == arc_l2c_only) 1254 l2arc_hdr_stat_add(); 1255 else if (old_state == arc_l2c_only) 1256 l2arc_hdr_stat_remove(); 1257 } 1258 1259 void 1260 arc_space_consume(uint64_t space, arc_space_type_t type) 1261 { 1262 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 1263 1264 switch (type) { 1265 case ARC_SPACE_DATA: 1266 ARCSTAT_INCR(arcstat_data_size, space); 1267 break; 1268 case ARC_SPACE_OTHER: 1269 ARCSTAT_INCR(arcstat_other_size, space); 1270 break; 1271 case ARC_SPACE_HDRS: 1272 ARCSTAT_INCR(arcstat_hdr_size, space); 1273 break; 1274 case ARC_SPACE_L2HDRS: 1275 ARCSTAT_INCR(arcstat_l2_hdr_size, space); 1276 break; 1277 } 1278 1279 ARCSTAT_INCR(arcstat_meta_used, space); 1280 atomic_add_64(&arc_size, space); 1281 } 1282 1283 void 1284 arc_space_return(uint64_t space, arc_space_type_t type) 1285 { 1286 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 1287 1288 switch (type) { 1289 case ARC_SPACE_DATA: 1290 ARCSTAT_INCR(arcstat_data_size, -space); 1291 break; 1292 case ARC_SPACE_OTHER: 1293 ARCSTAT_INCR(arcstat_other_size, -space); 1294 break; 1295 case ARC_SPACE_HDRS: 1296 ARCSTAT_INCR(arcstat_hdr_size, -space); 1297 break; 1298 case ARC_SPACE_L2HDRS: 1299 ARCSTAT_INCR(arcstat_l2_hdr_size, -space); 1300 break; 1301 } 1302 1303 ASSERT(arc_meta_used >= space); 1304 if (arc_meta_max < arc_meta_used) 1305 arc_meta_max = arc_meta_used; 1306 ARCSTAT_INCR(arcstat_meta_used, -space); 1307 ASSERT(arc_size >= space); 1308 atomic_add_64(&arc_size, -space); 1309 } 1310 1311 void * 1312 arc_data_buf_alloc(uint64_t size) 1313 { 1314 if (arc_evict_needed(ARC_BUFC_DATA)) 1315 cv_signal(&arc_reclaim_thr_cv); 1316 atomic_add_64(&arc_size, size); 1317 return (zio_data_buf_alloc(size)); 1318 } 1319 1320 void 1321 arc_data_buf_free(void *buf, uint64_t size) 1322 { 1323 zio_data_buf_free(buf, size); 1324 ASSERT(arc_size >= size); 1325 atomic_add_64(&arc_size, -size); 1326 } 1327 1328 arc_buf_t * 1329 arc_buf_alloc(spa_t *spa, int size, void *tag, arc_buf_contents_t type) 1330 { 1331 arc_buf_hdr_t *hdr; 1332 arc_buf_t *buf; 1333 1334 ASSERT3U(size, >, 0); 1335 hdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE); 1336 ASSERT(BUF_EMPTY(hdr)); 1337 hdr->b_size = size; 1338 hdr->b_type = type; 1339 hdr->b_spa = spa_load_guid(spa); 1340 hdr->b_state = arc_anon; 1341 hdr->b_arc_access = 0; 1342 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 1343 buf->b_hdr = hdr; 1344 buf->b_data = NULL; 1345 buf->b_efunc = NULL; 1346 buf->b_private = NULL; 1347 buf->b_next = NULL; 1348 hdr->b_buf = buf; 1349 arc_get_data_buf(buf); 1350 hdr->b_datacnt = 1; 1351 hdr->b_flags = 0; 1352 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 1353 (void) refcount_add(&hdr->b_refcnt, tag); 1354 1355 return (buf); 1356 } 1357 1358 static char *arc_onloan_tag = "onloan"; 1359 1360 /* 1361 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in 1362 * flight data by arc_tempreserve_space() until they are "returned". Loaned 1363 * buffers must be returned to the arc before they can be used by the DMU or 1364 * freed. 1365 */ 1366 arc_buf_t * 1367 arc_loan_buf(spa_t *spa, int size) 1368 { 1369 arc_buf_t *buf; 1370 1371 buf = arc_buf_alloc(spa, size, arc_onloan_tag, ARC_BUFC_DATA); 1372 1373 atomic_add_64(&arc_loaned_bytes, size); 1374 return (buf); 1375 } 1376 1377 /* 1378 * Return a loaned arc buffer to the arc. 1379 */ 1380 void 1381 arc_return_buf(arc_buf_t *buf, void *tag) 1382 { 1383 arc_buf_hdr_t *hdr = buf->b_hdr; 1384 1385 ASSERT(buf->b_data != NULL); 1386 (void) refcount_add(&hdr->b_refcnt, tag); 1387 (void) refcount_remove(&hdr->b_refcnt, arc_onloan_tag); 1388 1389 atomic_add_64(&arc_loaned_bytes, -hdr->b_size); 1390 } 1391 1392 /* Detach an arc_buf from a dbuf (tag) */ 1393 void 1394 arc_loan_inuse_buf(arc_buf_t *buf, void *tag) 1395 { 1396 arc_buf_hdr_t *hdr; 1397 1398 ASSERT(buf->b_data != NULL); 1399 hdr = buf->b_hdr; 1400 (void) refcount_add(&hdr->b_refcnt, arc_onloan_tag); 1401 (void) refcount_remove(&hdr->b_refcnt, tag); 1402 buf->b_efunc = NULL; 1403 buf->b_private = NULL; 1404 1405 atomic_add_64(&arc_loaned_bytes, hdr->b_size); 1406 } 1407 1408 static arc_buf_t * 1409 arc_buf_clone(arc_buf_t *from) 1410 { 1411 arc_buf_t *buf; 1412 arc_buf_hdr_t *hdr = from->b_hdr; 1413 uint64_t size = hdr->b_size; 1414 1415 ASSERT(hdr->b_state != arc_anon); 1416 1417 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 1418 buf->b_hdr = hdr; 1419 buf->b_data = NULL; 1420 buf->b_efunc = NULL; 1421 buf->b_private = NULL; 1422 buf->b_next = hdr->b_buf; 1423 hdr->b_buf = buf; 1424 arc_get_data_buf(buf); 1425 bcopy(from->b_data, buf->b_data, size); 1426 1427 /* 1428 * This buffer already exists in the arc so create a duplicate 1429 * copy for the caller. If the buffer is associated with user data 1430 * then track the size and number of duplicates. These stats will be 1431 * updated as duplicate buffers are created and destroyed. 1432 */ 1433 if (hdr->b_type == ARC_BUFC_DATA) { 1434 ARCSTAT_BUMP(arcstat_duplicate_buffers); 1435 ARCSTAT_INCR(arcstat_duplicate_buffers_size, size); 1436 } 1437 hdr->b_datacnt += 1; 1438 return (buf); 1439 } 1440 1441 void 1442 arc_buf_add_ref(arc_buf_t *buf, void* tag) 1443 { 1444 arc_buf_hdr_t *hdr; 1445 kmutex_t *hash_lock; 1446 1447 /* 1448 * Check to see if this buffer is evicted. Callers 1449 * must verify b_data != NULL to know if the add_ref 1450 * was successful. 1451 */ 1452 mutex_enter(&buf->b_evict_lock); 1453 if (buf->b_data == NULL) { 1454 mutex_exit(&buf->b_evict_lock); 1455 return; 1456 } 1457 hash_lock = HDR_LOCK(buf->b_hdr); 1458 mutex_enter(hash_lock); 1459 hdr = buf->b_hdr; 1460 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 1461 mutex_exit(&buf->b_evict_lock); 1462 1463 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu); 1464 add_reference(hdr, hash_lock, tag); 1465 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 1466 arc_access(hdr, hash_lock); 1467 mutex_exit(hash_lock); 1468 ARCSTAT_BUMP(arcstat_hits); 1469 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH), 1470 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA, 1471 data, metadata, hits); 1472 } 1473 1474 /* 1475 * Free the arc data buffer. If it is an l2arc write in progress, 1476 * the buffer is placed on l2arc_free_on_write to be freed later. 1477 */ 1478 static void 1479 arc_buf_data_free(arc_buf_t *buf, void (*free_func)(void *, size_t)) 1480 { 1481 arc_buf_hdr_t *hdr = buf->b_hdr; 1482 1483 if (HDR_L2_WRITING(hdr)) { 1484 l2arc_data_free_t *df; 1485 df = kmem_alloc(sizeof (l2arc_data_free_t), KM_SLEEP); 1486 df->l2df_data = buf->b_data; 1487 df->l2df_size = hdr->b_size; 1488 df->l2df_func = free_func; 1489 mutex_enter(&l2arc_free_on_write_mtx); 1490 list_insert_head(l2arc_free_on_write, df); 1491 mutex_exit(&l2arc_free_on_write_mtx); 1492 ARCSTAT_BUMP(arcstat_l2_free_on_write); 1493 } else { 1494 free_func(buf->b_data, hdr->b_size); 1495 } 1496 } 1497 1498 static void 1499 arc_buf_destroy(arc_buf_t *buf, boolean_t recycle, boolean_t all) 1500 { 1501 arc_buf_t **bufp; 1502 1503 /* free up data associated with the buf */ 1504 if (buf->b_data) { 1505 arc_state_t *state = buf->b_hdr->b_state; 1506 uint64_t size = buf->b_hdr->b_size; 1507 arc_buf_contents_t type = buf->b_hdr->b_type; 1508 1509 arc_cksum_verify(buf); 1510 arc_buf_unwatch(buf); 1511 1512 if (!recycle) { 1513 if (type == ARC_BUFC_METADATA) { 1514 arc_buf_data_free(buf, zio_buf_free); 1515 arc_space_return(size, ARC_SPACE_DATA); 1516 } else { 1517 ASSERT(type == ARC_BUFC_DATA); 1518 arc_buf_data_free(buf, zio_data_buf_free); 1519 ARCSTAT_INCR(arcstat_data_size, -size); 1520 atomic_add_64(&arc_size, -size); 1521 } 1522 } 1523 if (list_link_active(&buf->b_hdr->b_arc_node)) { 1524 uint64_t *cnt = &state->arcs_lsize[type]; 1525 1526 ASSERT(refcount_is_zero(&buf->b_hdr->b_refcnt)); 1527 ASSERT(state != arc_anon); 1528 1529 ASSERT3U(*cnt, >=, size); 1530 atomic_add_64(cnt, -size); 1531 } 1532 ASSERT3U(state->arcs_size, >=, size); 1533 atomic_add_64(&state->arcs_size, -size); 1534 buf->b_data = NULL; 1535 1536 /* 1537 * If we're destroying a duplicate buffer make sure 1538 * that the appropriate statistics are updated. 1539 */ 1540 if (buf->b_hdr->b_datacnt > 1 && 1541 buf->b_hdr->b_type == ARC_BUFC_DATA) { 1542 ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers); 1543 ARCSTAT_INCR(arcstat_duplicate_buffers_size, -size); 1544 } 1545 ASSERT(buf->b_hdr->b_datacnt > 0); 1546 buf->b_hdr->b_datacnt -= 1; 1547 } 1548 1549 /* only remove the buf if requested */ 1550 if (!all) 1551 return; 1552 1553 /* remove the buf from the hdr list */ 1554 for (bufp = &buf->b_hdr->b_buf; *bufp != buf; bufp = &(*bufp)->b_next) 1555 continue; 1556 *bufp = buf->b_next; 1557 buf->b_next = NULL; 1558 1559 ASSERT(buf->b_efunc == NULL); 1560 1561 /* clean up the buf */ 1562 buf->b_hdr = NULL; 1563 kmem_cache_free(buf_cache, buf); 1564 } 1565 1566 static void 1567 arc_hdr_destroy(arc_buf_hdr_t *hdr) 1568 { 1569 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 1570 ASSERT3P(hdr->b_state, ==, arc_anon); 1571 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 1572 l2arc_buf_hdr_t *l2hdr = hdr->b_l2hdr; 1573 1574 if (l2hdr != NULL) { 1575 boolean_t buflist_held = MUTEX_HELD(&l2arc_buflist_mtx); 1576 /* 1577 * To prevent arc_free() and l2arc_evict() from 1578 * attempting to free the same buffer at the same time, 1579 * a FREE_IN_PROGRESS flag is given to arc_free() to 1580 * give it priority. l2arc_evict() can't destroy this 1581 * header while we are waiting on l2arc_buflist_mtx. 1582 * 1583 * The hdr may be removed from l2ad_buflist before we 1584 * grab l2arc_buflist_mtx, so b_l2hdr is rechecked. 1585 */ 1586 if (!buflist_held) { 1587 mutex_enter(&l2arc_buflist_mtx); 1588 l2hdr = hdr->b_l2hdr; 1589 } 1590 1591 if (l2hdr != NULL) { 1592 list_remove(l2hdr->b_dev->l2ad_buflist, hdr); 1593 ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size); 1594 ARCSTAT_INCR(arcstat_l2_asize, -l2hdr->b_asize); 1595 vdev_space_update(l2hdr->b_dev->l2ad_vdev, 1596 -l2hdr->b_asize, 0, 0); 1597 kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t)); 1598 if (hdr->b_state == arc_l2c_only) 1599 l2arc_hdr_stat_remove(); 1600 hdr->b_l2hdr = NULL; 1601 } 1602 1603 if (!buflist_held) 1604 mutex_exit(&l2arc_buflist_mtx); 1605 } 1606 1607 if (!BUF_EMPTY(hdr)) { 1608 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 1609 buf_discard_identity(hdr); 1610 } 1611 while (hdr->b_buf) { 1612 arc_buf_t *buf = hdr->b_buf; 1613 1614 if (buf->b_efunc) { 1615 mutex_enter(&arc_eviction_mtx); 1616 mutex_enter(&buf->b_evict_lock); 1617 ASSERT(buf->b_hdr != NULL); 1618 arc_buf_destroy(hdr->b_buf, FALSE, FALSE); 1619 hdr->b_buf = buf->b_next; 1620 buf->b_hdr = &arc_eviction_hdr; 1621 buf->b_next = arc_eviction_list; 1622 arc_eviction_list = buf; 1623 mutex_exit(&buf->b_evict_lock); 1624 mutex_exit(&arc_eviction_mtx); 1625 } else { 1626 arc_buf_destroy(hdr->b_buf, FALSE, TRUE); 1627 } 1628 } 1629 if (hdr->b_freeze_cksum != NULL) { 1630 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t)); 1631 hdr->b_freeze_cksum = NULL; 1632 } 1633 if (hdr->b_thawed) { 1634 kmem_free(hdr->b_thawed, 1); 1635 hdr->b_thawed = NULL; 1636 } 1637 1638 ASSERT(!list_link_active(&hdr->b_arc_node)); 1639 ASSERT3P(hdr->b_hash_next, ==, NULL); 1640 ASSERT3P(hdr->b_acb, ==, NULL); 1641 kmem_cache_free(hdr_cache, hdr); 1642 } 1643 1644 void 1645 arc_buf_free(arc_buf_t *buf, void *tag) 1646 { 1647 arc_buf_hdr_t *hdr = buf->b_hdr; 1648 int hashed = hdr->b_state != arc_anon; 1649 1650 ASSERT(buf->b_efunc == NULL); 1651 ASSERT(buf->b_data != NULL); 1652 1653 if (hashed) { 1654 kmutex_t *hash_lock = HDR_LOCK(hdr); 1655 1656 mutex_enter(hash_lock); 1657 hdr = buf->b_hdr; 1658 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 1659 1660 (void) remove_reference(hdr, hash_lock, tag); 1661 if (hdr->b_datacnt > 1) { 1662 arc_buf_destroy(buf, FALSE, TRUE); 1663 } else { 1664 ASSERT(buf == hdr->b_buf); 1665 ASSERT(buf->b_efunc == NULL); 1666 hdr->b_flags |= ARC_BUF_AVAILABLE; 1667 } 1668 mutex_exit(hash_lock); 1669 } else if (HDR_IO_IN_PROGRESS(hdr)) { 1670 int destroy_hdr; 1671 /* 1672 * We are in the middle of an async write. Don't destroy 1673 * this buffer unless the write completes before we finish 1674 * decrementing the reference count. 1675 */ 1676 mutex_enter(&arc_eviction_mtx); 1677 (void) remove_reference(hdr, NULL, tag); 1678 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 1679 destroy_hdr = !HDR_IO_IN_PROGRESS(hdr); 1680 mutex_exit(&arc_eviction_mtx); 1681 if (destroy_hdr) 1682 arc_hdr_destroy(hdr); 1683 } else { 1684 if (remove_reference(hdr, NULL, tag) > 0) 1685 arc_buf_destroy(buf, FALSE, TRUE); 1686 else 1687 arc_hdr_destroy(hdr); 1688 } 1689 } 1690 1691 boolean_t 1692 arc_buf_remove_ref(arc_buf_t *buf, void* tag) 1693 { 1694 arc_buf_hdr_t *hdr = buf->b_hdr; 1695 kmutex_t *hash_lock = HDR_LOCK(hdr); 1696 boolean_t no_callback = (buf->b_efunc == NULL); 1697 1698 if (hdr->b_state == arc_anon) { 1699 ASSERT(hdr->b_datacnt == 1); 1700 arc_buf_free(buf, tag); 1701 return (no_callback); 1702 } 1703 1704 mutex_enter(hash_lock); 1705 hdr = buf->b_hdr; 1706 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 1707 ASSERT(hdr->b_state != arc_anon); 1708 ASSERT(buf->b_data != NULL); 1709 1710 (void) remove_reference(hdr, hash_lock, tag); 1711 if (hdr->b_datacnt > 1) { 1712 if (no_callback) 1713 arc_buf_destroy(buf, FALSE, TRUE); 1714 } else if (no_callback) { 1715 ASSERT(hdr->b_buf == buf && buf->b_next == NULL); 1716 ASSERT(buf->b_efunc == NULL); 1717 hdr->b_flags |= ARC_BUF_AVAILABLE; 1718 } 1719 ASSERT(no_callback || hdr->b_datacnt > 1 || 1720 refcount_is_zero(&hdr->b_refcnt)); 1721 mutex_exit(hash_lock); 1722 return (no_callback); 1723 } 1724 1725 int 1726 arc_buf_size(arc_buf_t *buf) 1727 { 1728 return (buf->b_hdr->b_size); 1729 } 1730 1731 /* 1732 * Called from the DMU to determine if the current buffer should be 1733 * evicted. In order to ensure proper locking, the eviction must be initiated 1734 * from the DMU. Return true if the buffer is associated with user data and 1735 * duplicate buffers still exist. 1736 */ 1737 boolean_t 1738 arc_buf_eviction_needed(arc_buf_t *buf) 1739 { 1740 arc_buf_hdr_t *hdr; 1741 boolean_t evict_needed = B_FALSE; 1742 1743 if (zfs_disable_dup_eviction) 1744 return (B_FALSE); 1745 1746 mutex_enter(&buf->b_evict_lock); 1747 hdr = buf->b_hdr; 1748 if (hdr == NULL) { 1749 /* 1750 * We are in arc_do_user_evicts(); let that function 1751 * perform the eviction. 1752 */ 1753 ASSERT(buf->b_data == NULL); 1754 mutex_exit(&buf->b_evict_lock); 1755 return (B_FALSE); 1756 } else if (buf->b_data == NULL) { 1757 /* 1758 * We have already been added to the arc eviction list; 1759 * recommend eviction. 1760 */ 1761 ASSERT3P(hdr, ==, &arc_eviction_hdr); 1762 mutex_exit(&buf->b_evict_lock); 1763 return (B_TRUE); 1764 } 1765 1766 if (hdr->b_datacnt > 1 && hdr->b_type == ARC_BUFC_DATA) 1767 evict_needed = B_TRUE; 1768 1769 mutex_exit(&buf->b_evict_lock); 1770 return (evict_needed); 1771 } 1772 1773 /* 1774 * Evict buffers from list until we've removed the specified number of 1775 * bytes. Move the removed buffers to the appropriate evict state. 1776 * If the recycle flag is set, then attempt to "recycle" a buffer: 1777 * - look for a buffer to evict that is `bytes' long. 1778 * - return the data block from this buffer rather than freeing it. 1779 * This flag is used by callers that are trying to make space for a 1780 * new buffer in a full arc cache. 1781 * 1782 * This function makes a "best effort". It skips over any buffers 1783 * it can't get a hash_lock on, and so may not catch all candidates. 1784 * It may also return without evicting as much space as requested. 1785 */ 1786 static void * 1787 arc_evict(arc_state_t *state, uint64_t spa, int64_t bytes, boolean_t recycle, 1788 arc_buf_contents_t type) 1789 { 1790 arc_state_t *evicted_state; 1791 uint64_t bytes_evicted = 0, skipped = 0, missed = 0; 1792 arc_buf_hdr_t *ab, *ab_prev = NULL; 1793 list_t *list = &state->arcs_list[type]; 1794 kmutex_t *hash_lock; 1795 boolean_t have_lock; 1796 void *stolen = NULL; 1797 arc_buf_hdr_t marker = { 0 }; 1798 int count = 0; 1799 1800 ASSERT(state == arc_mru || state == arc_mfu); 1801 1802 evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost; 1803 1804 mutex_enter(&state->arcs_mtx); 1805 mutex_enter(&evicted_state->arcs_mtx); 1806 1807 for (ab = list_tail(list); ab; ab = ab_prev) { 1808 ab_prev = list_prev(list, ab); 1809 /* prefetch buffers have a minimum lifespan */ 1810 if (HDR_IO_IN_PROGRESS(ab) || 1811 (spa && ab->b_spa != spa) || 1812 (ab->b_flags & (ARC_PREFETCH|ARC_INDIRECT) && 1813 ddi_get_lbolt() - ab->b_arc_access < 1814 arc_min_prefetch_lifespan)) { 1815 skipped++; 1816 continue; 1817 } 1818 /* "lookahead" for better eviction candidate */ 1819 if (recycle && ab->b_size != bytes && 1820 ab_prev && ab_prev->b_size == bytes) 1821 continue; 1822 1823 /* ignore markers */ 1824 if (ab->b_spa == 0) 1825 continue; 1826 1827 /* 1828 * It may take a long time to evict all the bufs requested. 1829 * To avoid blocking all arc activity, periodically drop 1830 * the arcs_mtx and give other threads a chance to run 1831 * before reacquiring the lock. 1832 * 1833 * If we are looking for a buffer to recycle, we are in 1834 * the hot code path, so don't sleep. 1835 */ 1836 if (!recycle && count++ > arc_evict_iterations) { 1837 list_insert_after(list, ab, &marker); 1838 mutex_exit(&evicted_state->arcs_mtx); 1839 mutex_exit(&state->arcs_mtx); 1840 kpreempt(KPREEMPT_SYNC); 1841 mutex_enter(&state->arcs_mtx); 1842 mutex_enter(&evicted_state->arcs_mtx); 1843 ab_prev = list_prev(list, &marker); 1844 list_remove(list, &marker); 1845 count = 0; 1846 continue; 1847 } 1848 1849 hash_lock = HDR_LOCK(ab); 1850 have_lock = MUTEX_HELD(hash_lock); 1851 if (have_lock || mutex_tryenter(hash_lock)) { 1852 ASSERT0(refcount_count(&ab->b_refcnt)); 1853 ASSERT(ab->b_datacnt > 0); 1854 while (ab->b_buf) { 1855 arc_buf_t *buf = ab->b_buf; 1856 if (!mutex_tryenter(&buf->b_evict_lock)) { 1857 missed += 1; 1858 break; 1859 } 1860 if (buf->b_data) { 1861 bytes_evicted += ab->b_size; 1862 if (recycle && ab->b_type == type && 1863 ab->b_size == bytes && 1864 !HDR_L2_WRITING(ab)) { 1865 stolen = buf->b_data; 1866 recycle = FALSE; 1867 } 1868 } 1869 if (buf->b_efunc) { 1870 mutex_enter(&arc_eviction_mtx); 1871 arc_buf_destroy(buf, 1872 buf->b_data == stolen, FALSE); 1873 ab->b_buf = buf->b_next; 1874 buf->b_hdr = &arc_eviction_hdr; 1875 buf->b_next = arc_eviction_list; 1876 arc_eviction_list = buf; 1877 mutex_exit(&arc_eviction_mtx); 1878 mutex_exit(&buf->b_evict_lock); 1879 } else { 1880 mutex_exit(&buf->b_evict_lock); 1881 arc_buf_destroy(buf, 1882 buf->b_data == stolen, TRUE); 1883 } 1884 } 1885 1886 if (ab->b_l2hdr) { 1887 ARCSTAT_INCR(arcstat_evict_l2_cached, 1888 ab->b_size); 1889 } else { 1890 if (l2arc_write_eligible(ab->b_spa, ab)) { 1891 ARCSTAT_INCR(arcstat_evict_l2_eligible, 1892 ab->b_size); 1893 } else { 1894 ARCSTAT_INCR( 1895 arcstat_evict_l2_ineligible, 1896 ab->b_size); 1897 } 1898 } 1899 1900 if (ab->b_datacnt == 0) { 1901 arc_change_state(evicted_state, ab, hash_lock); 1902 ASSERT(HDR_IN_HASH_TABLE(ab)); 1903 ab->b_flags |= ARC_IN_HASH_TABLE; 1904 ab->b_flags &= ~ARC_BUF_AVAILABLE; 1905 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, ab); 1906 } 1907 if (!have_lock) 1908 mutex_exit(hash_lock); 1909 if (bytes >= 0 && bytes_evicted >= bytes) 1910 break; 1911 } else { 1912 missed += 1; 1913 } 1914 } 1915 1916 mutex_exit(&evicted_state->arcs_mtx); 1917 mutex_exit(&state->arcs_mtx); 1918 1919 if (bytes_evicted < bytes) 1920 dprintf("only evicted %lld bytes from %x", 1921 (longlong_t)bytes_evicted, state); 1922 1923 if (skipped) 1924 ARCSTAT_INCR(arcstat_evict_skip, skipped); 1925 1926 if (missed) 1927 ARCSTAT_INCR(arcstat_mutex_miss, missed); 1928 1929 /* 1930 * Note: we have just evicted some data into the ghost state, 1931 * potentially putting the ghost size over the desired size. Rather 1932 * that evicting from the ghost list in this hot code path, leave 1933 * this chore to the arc_reclaim_thread(). 1934 */ 1935 1936 return (stolen); 1937 } 1938 1939 /* 1940 * Remove buffers from list until we've removed the specified number of 1941 * bytes. Destroy the buffers that are removed. 1942 */ 1943 static void 1944 arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes) 1945 { 1946 arc_buf_hdr_t *ab, *ab_prev; 1947 arc_buf_hdr_t marker = { 0 }; 1948 list_t *list = &state->arcs_list[ARC_BUFC_DATA]; 1949 kmutex_t *hash_lock; 1950 uint64_t bytes_deleted = 0; 1951 uint64_t bufs_skipped = 0; 1952 int count = 0; 1953 1954 ASSERT(GHOST_STATE(state)); 1955 top: 1956 mutex_enter(&state->arcs_mtx); 1957 for (ab = list_tail(list); ab; ab = ab_prev) { 1958 ab_prev = list_prev(list, ab); 1959 if (ab->b_type > ARC_BUFC_NUMTYPES) 1960 panic("invalid ab=%p", (void *)ab); 1961 if (spa && ab->b_spa != spa) 1962 continue; 1963 1964 /* ignore markers */ 1965 if (ab->b_spa == 0) 1966 continue; 1967 1968 hash_lock = HDR_LOCK(ab); 1969 /* caller may be trying to modify this buffer, skip it */ 1970 if (MUTEX_HELD(hash_lock)) 1971 continue; 1972 1973 /* 1974 * It may take a long time to evict all the bufs requested. 1975 * To avoid blocking all arc activity, periodically drop 1976 * the arcs_mtx and give other threads a chance to run 1977 * before reacquiring the lock. 1978 */ 1979 if (count++ > arc_evict_iterations) { 1980 list_insert_after(list, ab, &marker); 1981 mutex_exit(&state->arcs_mtx); 1982 kpreempt(KPREEMPT_SYNC); 1983 mutex_enter(&state->arcs_mtx); 1984 ab_prev = list_prev(list, &marker); 1985 list_remove(list, &marker); 1986 count = 0; 1987 continue; 1988 } 1989 if (mutex_tryenter(hash_lock)) { 1990 ASSERT(!HDR_IO_IN_PROGRESS(ab)); 1991 ASSERT(ab->b_buf == NULL); 1992 ARCSTAT_BUMP(arcstat_deleted); 1993 bytes_deleted += ab->b_size; 1994 1995 if (ab->b_l2hdr != NULL) { 1996 /* 1997 * This buffer is cached on the 2nd Level ARC; 1998 * don't destroy the header. 1999 */ 2000 arc_change_state(arc_l2c_only, ab, hash_lock); 2001 mutex_exit(hash_lock); 2002 } else { 2003 arc_change_state(arc_anon, ab, hash_lock); 2004 mutex_exit(hash_lock); 2005 arc_hdr_destroy(ab); 2006 } 2007 2008 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, ab); 2009 if (bytes >= 0 && bytes_deleted >= bytes) 2010 break; 2011 } else if (bytes < 0) { 2012 /* 2013 * Insert a list marker and then wait for the 2014 * hash lock to become available. Once its 2015 * available, restart from where we left off. 2016 */ 2017 list_insert_after(list, ab, &marker); 2018 mutex_exit(&state->arcs_mtx); 2019 mutex_enter(hash_lock); 2020 mutex_exit(hash_lock); 2021 mutex_enter(&state->arcs_mtx); 2022 ab_prev = list_prev(list, &marker); 2023 list_remove(list, &marker); 2024 } else { 2025 bufs_skipped += 1; 2026 } 2027 2028 } 2029 mutex_exit(&state->arcs_mtx); 2030 2031 if (list == &state->arcs_list[ARC_BUFC_DATA] && 2032 (bytes < 0 || bytes_deleted < bytes)) { 2033 list = &state->arcs_list[ARC_BUFC_METADATA]; 2034 goto top; 2035 } 2036 2037 if (bufs_skipped) { 2038 ARCSTAT_INCR(arcstat_mutex_miss, bufs_skipped); 2039 ASSERT(bytes >= 0); 2040 } 2041 2042 if (bytes_deleted < bytes) 2043 dprintf("only deleted %lld bytes from %p", 2044 (longlong_t)bytes_deleted, state); 2045 } 2046 2047 static void 2048 arc_adjust(void) 2049 { 2050 int64_t adjustment, delta; 2051 2052 /* 2053 * Adjust MRU size 2054 */ 2055 2056 adjustment = MIN((int64_t)(arc_size - arc_c), 2057 (int64_t)(arc_anon->arcs_size + arc_mru->arcs_size + arc_meta_used - 2058 arc_p)); 2059 2060 if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_DATA] > 0) { 2061 delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_DATA], adjustment); 2062 (void) arc_evict(arc_mru, NULL, delta, FALSE, ARC_BUFC_DATA); 2063 adjustment -= delta; 2064 } 2065 2066 if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_METADATA] > 0) { 2067 delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_METADATA], adjustment); 2068 (void) arc_evict(arc_mru, NULL, delta, FALSE, 2069 ARC_BUFC_METADATA); 2070 } 2071 2072 /* 2073 * Adjust MFU size 2074 */ 2075 2076 adjustment = arc_size - arc_c; 2077 2078 if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_DATA] > 0) { 2079 delta = MIN(adjustment, arc_mfu->arcs_lsize[ARC_BUFC_DATA]); 2080 (void) arc_evict(arc_mfu, NULL, delta, FALSE, ARC_BUFC_DATA); 2081 adjustment -= delta; 2082 } 2083 2084 if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_METADATA] > 0) { 2085 int64_t delta = MIN(adjustment, 2086 arc_mfu->arcs_lsize[ARC_BUFC_METADATA]); 2087 (void) arc_evict(arc_mfu, NULL, delta, FALSE, 2088 ARC_BUFC_METADATA); 2089 } 2090 2091 /* 2092 * Adjust ghost lists 2093 */ 2094 2095 adjustment = arc_mru->arcs_size + arc_mru_ghost->arcs_size - arc_c; 2096 2097 if (adjustment > 0 && arc_mru_ghost->arcs_size > 0) { 2098 delta = MIN(arc_mru_ghost->arcs_size, adjustment); 2099 arc_evict_ghost(arc_mru_ghost, NULL, delta); 2100 } 2101 2102 adjustment = 2103 arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size - arc_c; 2104 2105 if (adjustment > 0 && arc_mfu_ghost->arcs_size > 0) { 2106 delta = MIN(arc_mfu_ghost->arcs_size, adjustment); 2107 arc_evict_ghost(arc_mfu_ghost, NULL, delta); 2108 } 2109 } 2110 2111 static void 2112 arc_do_user_evicts(void) 2113 { 2114 mutex_enter(&arc_eviction_mtx); 2115 while (arc_eviction_list != NULL) { 2116 arc_buf_t *buf = arc_eviction_list; 2117 arc_eviction_list = buf->b_next; 2118 mutex_enter(&buf->b_evict_lock); 2119 buf->b_hdr = NULL; 2120 mutex_exit(&buf->b_evict_lock); 2121 mutex_exit(&arc_eviction_mtx); 2122 2123 if (buf->b_efunc != NULL) 2124 VERIFY(buf->b_efunc(buf) == 0); 2125 2126 buf->b_efunc = NULL; 2127 buf->b_private = NULL; 2128 kmem_cache_free(buf_cache, buf); 2129 mutex_enter(&arc_eviction_mtx); 2130 } 2131 mutex_exit(&arc_eviction_mtx); 2132 } 2133 2134 /* 2135 * Flush all *evictable* data from the cache for the given spa. 2136 * NOTE: this will not touch "active" (i.e. referenced) data. 2137 */ 2138 void 2139 arc_flush(spa_t *spa) 2140 { 2141 uint64_t guid = 0; 2142 2143 if (spa) 2144 guid = spa_load_guid(spa); 2145 2146 while (list_head(&arc_mru->arcs_list[ARC_BUFC_DATA])) { 2147 (void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_DATA); 2148 if (spa) 2149 break; 2150 } 2151 while (list_head(&arc_mru->arcs_list[ARC_BUFC_METADATA])) { 2152 (void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_METADATA); 2153 if (spa) 2154 break; 2155 } 2156 while (list_head(&arc_mfu->arcs_list[ARC_BUFC_DATA])) { 2157 (void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_DATA); 2158 if (spa) 2159 break; 2160 } 2161 while (list_head(&arc_mfu->arcs_list[ARC_BUFC_METADATA])) { 2162 (void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_METADATA); 2163 if (spa) 2164 break; 2165 } 2166 2167 arc_evict_ghost(arc_mru_ghost, guid, -1); 2168 arc_evict_ghost(arc_mfu_ghost, guid, -1); 2169 2170 mutex_enter(&arc_reclaim_thr_lock); 2171 arc_do_user_evicts(); 2172 mutex_exit(&arc_reclaim_thr_lock); 2173 ASSERT(spa || arc_eviction_list == NULL); 2174 } 2175 2176 void 2177 arc_shrink(void) 2178 { 2179 if (arc_c > arc_c_min) { 2180 uint64_t to_free; 2181 2182 #ifdef _KERNEL 2183 to_free = MAX(arc_c >> arc_shrink_shift, ptob(needfree)); 2184 #else 2185 to_free = arc_c >> arc_shrink_shift; 2186 #endif 2187 if (arc_c > arc_c_min + to_free) 2188 atomic_add_64(&arc_c, -to_free); 2189 else 2190 arc_c = arc_c_min; 2191 2192 atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift)); 2193 if (arc_c > arc_size) 2194 arc_c = MAX(arc_size, arc_c_min); 2195 if (arc_p > arc_c) 2196 arc_p = (arc_c >> 1); 2197 ASSERT(arc_c >= arc_c_min); 2198 ASSERT((int64_t)arc_p >= 0); 2199 } 2200 2201 if (arc_size > arc_c) 2202 arc_adjust(); 2203 } 2204 2205 /* 2206 * Determine if the system is under memory pressure and is asking 2207 * to reclaim memory. A return value of 1 indicates that the system 2208 * is under memory pressure and that the arc should adjust accordingly. 2209 */ 2210 static int 2211 arc_reclaim_needed(void) 2212 { 2213 uint64_t extra; 2214 2215 #ifdef _KERNEL 2216 2217 if (needfree) 2218 return (1); 2219 2220 /* 2221 * take 'desfree' extra pages, so we reclaim sooner, rather than later 2222 */ 2223 extra = desfree; 2224 2225 /* 2226 * check that we're out of range of the pageout scanner. It starts to 2227 * schedule paging if freemem is less than lotsfree and needfree. 2228 * lotsfree is the high-water mark for pageout, and needfree is the 2229 * number of needed free pages. We add extra pages here to make sure 2230 * the scanner doesn't start up while we're freeing memory. 2231 */ 2232 if (freemem < lotsfree + needfree + extra) 2233 return (1); 2234 2235 /* 2236 * check to make sure that swapfs has enough space so that anon 2237 * reservations can still succeed. anon_resvmem() checks that the 2238 * availrmem is greater than swapfs_minfree, and the number of reserved 2239 * swap pages. We also add a bit of extra here just to prevent 2240 * circumstances from getting really dire. 2241 */ 2242 if (availrmem < swapfs_minfree + swapfs_reserve + extra) 2243 return (1); 2244 2245 /* 2246 * Check that we have enough availrmem that memory locking (e.g., via 2247 * mlock(3C) or memcntl(2)) can still succeed. (pages_pp_maximum 2248 * stores the number of pages that cannot be locked; when availrmem 2249 * drops below pages_pp_maximum, page locking mechanisms such as 2250 * page_pp_lock() will fail.) 2251 */ 2252 if (availrmem <= pages_pp_maximum) 2253 return (1); 2254 2255 #if defined(__i386) 2256 /* 2257 * If we're on an i386 platform, it's possible that we'll exhaust the 2258 * kernel heap space before we ever run out of available physical 2259 * memory. Most checks of the size of the heap_area compare against 2260 * tune.t_minarmem, which is the minimum available real memory that we 2261 * can have in the system. However, this is generally fixed at 25 pages 2262 * which is so low that it's useless. In this comparison, we seek to 2263 * calculate the total heap-size, and reclaim if more than 3/4ths of the 2264 * heap is allocated. (Or, in the calculation, if less than 1/4th is 2265 * free) 2266 */ 2267 if (vmem_size(heap_arena, VMEM_FREE) < 2268 (vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC) >> 2)) 2269 return (1); 2270 #endif 2271 2272 /* 2273 * If zio data pages are being allocated out of a separate heap segment, 2274 * then enforce that the size of available vmem for this arena remains 2275 * above about 1/16th free. 2276 * 2277 * Note: The 1/16th arena free requirement was put in place 2278 * to aggressively evict memory from the arc in order to avoid 2279 * memory fragmentation issues. 2280 */ 2281 if (zio_arena != NULL && 2282 vmem_size(zio_arena, VMEM_FREE) < 2283 (vmem_size(zio_arena, VMEM_ALLOC) >> 4)) 2284 return (1); 2285 #else 2286 if (spa_get_random(100) == 0) 2287 return (1); 2288 #endif 2289 return (0); 2290 } 2291 2292 static void 2293 arc_kmem_reap_now(arc_reclaim_strategy_t strat) 2294 { 2295 size_t i; 2296 kmem_cache_t *prev_cache = NULL; 2297 kmem_cache_t *prev_data_cache = NULL; 2298 extern kmem_cache_t *zio_buf_cache[]; 2299 extern kmem_cache_t *zio_data_buf_cache[]; 2300 2301 #ifdef _KERNEL 2302 if (arc_meta_used >= arc_meta_limit) { 2303 /* 2304 * We are exceeding our meta-data cache limit. 2305 * Purge some DNLC entries to release holds on meta-data. 2306 */ 2307 dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent); 2308 } 2309 #if defined(__i386) 2310 /* 2311 * Reclaim unused memory from all kmem caches. 2312 */ 2313 kmem_reap(); 2314 #endif 2315 #endif 2316 2317 /* 2318 * An aggressive reclamation will shrink the cache size as well as 2319 * reap free buffers from the arc kmem caches. 2320 */ 2321 if (strat == ARC_RECLAIM_AGGR) 2322 arc_shrink(); 2323 2324 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) { 2325 if (zio_buf_cache[i] != prev_cache) { 2326 prev_cache = zio_buf_cache[i]; 2327 kmem_cache_reap_now(zio_buf_cache[i]); 2328 } 2329 if (zio_data_buf_cache[i] != prev_data_cache) { 2330 prev_data_cache = zio_data_buf_cache[i]; 2331 kmem_cache_reap_now(zio_data_buf_cache[i]); 2332 } 2333 } 2334 kmem_cache_reap_now(buf_cache); 2335 kmem_cache_reap_now(hdr_cache); 2336 2337 /* 2338 * Ask the vmem areana to reclaim unused memory from its 2339 * quantum caches. 2340 */ 2341 if (zio_arena != NULL && strat == ARC_RECLAIM_AGGR) 2342 vmem_qcache_reap(zio_arena); 2343 } 2344 2345 static void 2346 arc_reclaim_thread(void) 2347 { 2348 clock_t growtime = 0; 2349 arc_reclaim_strategy_t last_reclaim = ARC_RECLAIM_CONS; 2350 callb_cpr_t cpr; 2351 2352 CALLB_CPR_INIT(&cpr, &arc_reclaim_thr_lock, callb_generic_cpr, FTAG); 2353 2354 mutex_enter(&arc_reclaim_thr_lock); 2355 while (arc_thread_exit == 0) { 2356 if (arc_reclaim_needed()) { 2357 2358 if (arc_no_grow) { 2359 if (last_reclaim == ARC_RECLAIM_CONS) { 2360 last_reclaim = ARC_RECLAIM_AGGR; 2361 } else { 2362 last_reclaim = ARC_RECLAIM_CONS; 2363 } 2364 } else { 2365 arc_no_grow = TRUE; 2366 last_reclaim = ARC_RECLAIM_AGGR; 2367 membar_producer(); 2368 } 2369 2370 /* reset the growth delay for every reclaim */ 2371 growtime = ddi_get_lbolt() + (arc_grow_retry * hz); 2372 2373 arc_kmem_reap_now(last_reclaim); 2374 arc_warm = B_TRUE; 2375 2376 } else if (arc_no_grow && ddi_get_lbolt() >= growtime) { 2377 arc_no_grow = FALSE; 2378 } 2379 2380 arc_adjust(); 2381 2382 if (arc_eviction_list != NULL) 2383 arc_do_user_evicts(); 2384 2385 /* block until needed, or one second, whichever is shorter */ 2386 CALLB_CPR_SAFE_BEGIN(&cpr); 2387 (void) cv_timedwait(&arc_reclaim_thr_cv, 2388 &arc_reclaim_thr_lock, (ddi_get_lbolt() + hz)); 2389 CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_thr_lock); 2390 } 2391 2392 arc_thread_exit = 0; 2393 cv_broadcast(&arc_reclaim_thr_cv); 2394 CALLB_CPR_EXIT(&cpr); /* drops arc_reclaim_thr_lock */ 2395 thread_exit(); 2396 } 2397 2398 /* 2399 * Adapt arc info given the number of bytes we are trying to add and 2400 * the state that we are comming from. This function is only called 2401 * when we are adding new content to the cache. 2402 */ 2403 static void 2404 arc_adapt(int bytes, arc_state_t *state) 2405 { 2406 int mult; 2407 uint64_t arc_p_min = (arc_c >> arc_p_min_shift); 2408 2409 if (state == arc_l2c_only) 2410 return; 2411 2412 ASSERT(bytes > 0); 2413 /* 2414 * Adapt the target size of the MRU list: 2415 * - if we just hit in the MRU ghost list, then increase 2416 * the target size of the MRU list. 2417 * - if we just hit in the MFU ghost list, then increase 2418 * the target size of the MFU list by decreasing the 2419 * target size of the MRU list. 2420 */ 2421 if (state == arc_mru_ghost) { 2422 mult = ((arc_mru_ghost->arcs_size >= arc_mfu_ghost->arcs_size) ? 2423 1 : (arc_mfu_ghost->arcs_size/arc_mru_ghost->arcs_size)); 2424 mult = MIN(mult, 10); /* avoid wild arc_p adjustment */ 2425 2426 arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult); 2427 } else if (state == arc_mfu_ghost) { 2428 uint64_t delta; 2429 2430 mult = ((arc_mfu_ghost->arcs_size >= arc_mru_ghost->arcs_size) ? 2431 1 : (arc_mru_ghost->arcs_size/arc_mfu_ghost->arcs_size)); 2432 mult = MIN(mult, 10); 2433 2434 delta = MIN(bytes * mult, arc_p); 2435 arc_p = MAX(arc_p_min, arc_p - delta); 2436 } 2437 ASSERT((int64_t)arc_p >= 0); 2438 2439 if (arc_reclaim_needed()) { 2440 cv_signal(&arc_reclaim_thr_cv); 2441 return; 2442 } 2443 2444 if (arc_no_grow) 2445 return; 2446 2447 if (arc_c >= arc_c_max) 2448 return; 2449 2450 /* 2451 * If we're within (2 * maxblocksize) bytes of the target 2452 * cache size, increment the target cache size 2453 */ 2454 if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) { 2455 atomic_add_64(&arc_c, (int64_t)bytes); 2456 if (arc_c > arc_c_max) 2457 arc_c = arc_c_max; 2458 else if (state == arc_anon) 2459 atomic_add_64(&arc_p, (int64_t)bytes); 2460 if (arc_p > arc_c) 2461 arc_p = arc_c; 2462 } 2463 ASSERT((int64_t)arc_p >= 0); 2464 } 2465 2466 /* 2467 * Check if the cache has reached its limits and eviction is required 2468 * prior to insert. 2469 */ 2470 static int 2471 arc_evict_needed(arc_buf_contents_t type) 2472 { 2473 if (type == ARC_BUFC_METADATA && arc_meta_used >= arc_meta_limit) 2474 return (1); 2475 2476 if (arc_reclaim_needed()) 2477 return (1); 2478 2479 return (arc_size > arc_c); 2480 } 2481 2482 /* 2483 * The buffer, supplied as the first argument, needs a data block. 2484 * So, if we are at cache max, determine which cache should be victimized. 2485 * We have the following cases: 2486 * 2487 * 1. Insert for MRU, p > sizeof(arc_anon + arc_mru) -> 2488 * In this situation if we're out of space, but the resident size of the MFU is 2489 * under the limit, victimize the MFU cache to satisfy this insertion request. 2490 * 2491 * 2. Insert for MRU, p <= sizeof(arc_anon + arc_mru) -> 2492 * Here, we've used up all of the available space for the MRU, so we need to 2493 * evict from our own cache instead. Evict from the set of resident MRU 2494 * entries. 2495 * 2496 * 3. Insert for MFU (c - p) > sizeof(arc_mfu) -> 2497 * c minus p represents the MFU space in the cache, since p is the size of the 2498 * cache that is dedicated to the MRU. In this situation there's still space on 2499 * the MFU side, so the MRU side needs to be victimized. 2500 * 2501 * 4. Insert for MFU (c - p) < sizeof(arc_mfu) -> 2502 * MFU's resident set is consuming more space than it has been allotted. In 2503 * this situation, we must victimize our own cache, the MFU, for this insertion. 2504 */ 2505 static void 2506 arc_get_data_buf(arc_buf_t *buf) 2507 { 2508 arc_state_t *state = buf->b_hdr->b_state; 2509 uint64_t size = buf->b_hdr->b_size; 2510 arc_buf_contents_t type = buf->b_hdr->b_type; 2511 2512 arc_adapt(size, state); 2513 2514 /* 2515 * We have not yet reached cache maximum size, 2516 * just allocate a new buffer. 2517 */ 2518 if (!arc_evict_needed(type)) { 2519 if (type == ARC_BUFC_METADATA) { 2520 buf->b_data = zio_buf_alloc(size); 2521 arc_space_consume(size, ARC_SPACE_DATA); 2522 } else { 2523 ASSERT(type == ARC_BUFC_DATA); 2524 buf->b_data = zio_data_buf_alloc(size); 2525 ARCSTAT_INCR(arcstat_data_size, size); 2526 atomic_add_64(&arc_size, size); 2527 } 2528 goto out; 2529 } 2530 2531 /* 2532 * If we are prefetching from the mfu ghost list, this buffer 2533 * will end up on the mru list; so steal space from there. 2534 */ 2535 if (state == arc_mfu_ghost) 2536 state = buf->b_hdr->b_flags & ARC_PREFETCH ? arc_mru : arc_mfu; 2537 else if (state == arc_mru_ghost) 2538 state = arc_mru; 2539 2540 if (state == arc_mru || state == arc_anon) { 2541 uint64_t mru_used = arc_anon->arcs_size + arc_mru->arcs_size; 2542 state = (arc_mfu->arcs_lsize[type] >= size && 2543 arc_p > mru_used) ? arc_mfu : arc_mru; 2544 } else { 2545 /* MFU cases */ 2546 uint64_t mfu_space = arc_c - arc_p; 2547 state = (arc_mru->arcs_lsize[type] >= size && 2548 mfu_space > arc_mfu->arcs_size) ? arc_mru : arc_mfu; 2549 } 2550 if ((buf->b_data = arc_evict(state, NULL, size, TRUE, type)) == NULL) { 2551 if (type == ARC_BUFC_METADATA) { 2552 buf->b_data = zio_buf_alloc(size); 2553 arc_space_consume(size, ARC_SPACE_DATA); 2554 } else { 2555 ASSERT(type == ARC_BUFC_DATA); 2556 buf->b_data = zio_data_buf_alloc(size); 2557 ARCSTAT_INCR(arcstat_data_size, size); 2558 atomic_add_64(&arc_size, size); 2559 } 2560 ARCSTAT_BUMP(arcstat_recycle_miss); 2561 } 2562 ASSERT(buf->b_data != NULL); 2563 out: 2564 /* 2565 * Update the state size. Note that ghost states have a 2566 * "ghost size" and so don't need to be updated. 2567 */ 2568 if (!GHOST_STATE(buf->b_hdr->b_state)) { 2569 arc_buf_hdr_t *hdr = buf->b_hdr; 2570 2571 atomic_add_64(&hdr->b_state->arcs_size, size); 2572 if (list_link_active(&hdr->b_arc_node)) { 2573 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 2574 atomic_add_64(&hdr->b_state->arcs_lsize[type], size); 2575 } 2576 /* 2577 * If we are growing the cache, and we are adding anonymous 2578 * data, and we have outgrown arc_p, update arc_p 2579 */ 2580 if (arc_size < arc_c && hdr->b_state == arc_anon && 2581 arc_anon->arcs_size + arc_mru->arcs_size > arc_p) 2582 arc_p = MIN(arc_c, arc_p + size); 2583 } 2584 } 2585 2586 /* 2587 * This routine is called whenever a buffer is accessed. 2588 * NOTE: the hash lock is dropped in this function. 2589 */ 2590 static void 2591 arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock) 2592 { 2593 clock_t now; 2594 2595 ASSERT(MUTEX_HELD(hash_lock)); 2596 2597 if (buf->b_state == arc_anon) { 2598 /* 2599 * This buffer is not in the cache, and does not 2600 * appear in our "ghost" list. Add the new buffer 2601 * to the MRU state. 2602 */ 2603 2604 ASSERT(buf->b_arc_access == 0); 2605 buf->b_arc_access = ddi_get_lbolt(); 2606 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf); 2607 arc_change_state(arc_mru, buf, hash_lock); 2608 2609 } else if (buf->b_state == arc_mru) { 2610 now = ddi_get_lbolt(); 2611 2612 /* 2613 * If this buffer is here because of a prefetch, then either: 2614 * - clear the flag if this is a "referencing" read 2615 * (any subsequent access will bump this into the MFU state). 2616 * or 2617 * - move the buffer to the head of the list if this is 2618 * another prefetch (to make it less likely to be evicted). 2619 */ 2620 if ((buf->b_flags & ARC_PREFETCH) != 0) { 2621 if (refcount_count(&buf->b_refcnt) == 0) { 2622 ASSERT(list_link_active(&buf->b_arc_node)); 2623 } else { 2624 buf->b_flags &= ~ARC_PREFETCH; 2625 ARCSTAT_BUMP(arcstat_mru_hits); 2626 } 2627 buf->b_arc_access = now; 2628 return; 2629 } 2630 2631 /* 2632 * This buffer has been "accessed" only once so far, 2633 * but it is still in the cache. Move it to the MFU 2634 * state. 2635 */ 2636 if (now > buf->b_arc_access + ARC_MINTIME) { 2637 /* 2638 * More than 125ms have passed since we 2639 * instantiated this buffer. Move it to the 2640 * most frequently used state. 2641 */ 2642 buf->b_arc_access = now; 2643 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2644 arc_change_state(arc_mfu, buf, hash_lock); 2645 } 2646 ARCSTAT_BUMP(arcstat_mru_hits); 2647 } else if (buf->b_state == arc_mru_ghost) { 2648 arc_state_t *new_state; 2649 /* 2650 * This buffer has been "accessed" recently, but 2651 * was evicted from the cache. Move it to the 2652 * MFU state. 2653 */ 2654 2655 if (buf->b_flags & ARC_PREFETCH) { 2656 new_state = arc_mru; 2657 if (refcount_count(&buf->b_refcnt) > 0) 2658 buf->b_flags &= ~ARC_PREFETCH; 2659 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf); 2660 } else { 2661 new_state = arc_mfu; 2662 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2663 } 2664 2665 buf->b_arc_access = ddi_get_lbolt(); 2666 arc_change_state(new_state, buf, hash_lock); 2667 2668 ARCSTAT_BUMP(arcstat_mru_ghost_hits); 2669 } else if (buf->b_state == arc_mfu) { 2670 /* 2671 * This buffer has been accessed more than once and is 2672 * still in the cache. Keep it in the MFU state. 2673 * 2674 * NOTE: an add_reference() that occurred when we did 2675 * the arc_read() will have kicked this off the list. 2676 * If it was a prefetch, we will explicitly move it to 2677 * the head of the list now. 2678 */ 2679 if ((buf->b_flags & ARC_PREFETCH) != 0) { 2680 ASSERT(refcount_count(&buf->b_refcnt) == 0); 2681 ASSERT(list_link_active(&buf->b_arc_node)); 2682 } 2683 ARCSTAT_BUMP(arcstat_mfu_hits); 2684 buf->b_arc_access = ddi_get_lbolt(); 2685 } else if (buf->b_state == arc_mfu_ghost) { 2686 arc_state_t *new_state = arc_mfu; 2687 /* 2688 * This buffer has been accessed more than once but has 2689 * been evicted from the cache. Move it back to the 2690 * MFU state. 2691 */ 2692 2693 if (buf->b_flags & ARC_PREFETCH) { 2694 /* 2695 * This is a prefetch access... 2696 * move this block back to the MRU state. 2697 */ 2698 ASSERT0(refcount_count(&buf->b_refcnt)); 2699 new_state = arc_mru; 2700 } 2701 2702 buf->b_arc_access = ddi_get_lbolt(); 2703 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2704 arc_change_state(new_state, buf, hash_lock); 2705 2706 ARCSTAT_BUMP(arcstat_mfu_ghost_hits); 2707 } else if (buf->b_state == arc_l2c_only) { 2708 /* 2709 * This buffer is on the 2nd Level ARC. 2710 */ 2711 2712 buf->b_arc_access = ddi_get_lbolt(); 2713 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2714 arc_change_state(arc_mfu, buf, hash_lock); 2715 } else { 2716 ASSERT(!"invalid arc state"); 2717 } 2718 } 2719 2720 /* a generic arc_done_func_t which you can use */ 2721 /* ARGSUSED */ 2722 void 2723 arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg) 2724 { 2725 if (zio == NULL || zio->io_error == 0) 2726 bcopy(buf->b_data, arg, buf->b_hdr->b_size); 2727 VERIFY(arc_buf_remove_ref(buf, arg)); 2728 } 2729 2730 /* a generic arc_done_func_t */ 2731 void 2732 arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg) 2733 { 2734 arc_buf_t **bufp = arg; 2735 if (zio && zio->io_error) { 2736 VERIFY(arc_buf_remove_ref(buf, arg)); 2737 *bufp = NULL; 2738 } else { 2739 *bufp = buf; 2740 ASSERT(buf->b_data); 2741 } 2742 } 2743 2744 static void 2745 arc_read_done(zio_t *zio) 2746 { 2747 arc_buf_hdr_t *hdr; 2748 arc_buf_t *buf; 2749 arc_buf_t *abuf; /* buffer we're assigning to callback */ 2750 kmutex_t *hash_lock = NULL; 2751 arc_callback_t *callback_list, *acb; 2752 int freeable = FALSE; 2753 2754 buf = zio->io_private; 2755 hdr = buf->b_hdr; 2756 2757 /* 2758 * The hdr was inserted into hash-table and removed from lists 2759 * prior to starting I/O. We should find this header, since 2760 * it's in the hash table, and it should be legit since it's 2761 * not possible to evict it during the I/O. The only possible 2762 * reason for it not to be found is if we were freed during the 2763 * read. 2764 */ 2765 if (HDR_IN_HASH_TABLE(hdr)) { 2766 ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp)); 2767 ASSERT3U(hdr->b_dva.dva_word[0], ==, 2768 BP_IDENTITY(zio->io_bp)->dva_word[0]); 2769 ASSERT3U(hdr->b_dva.dva_word[1], ==, 2770 BP_IDENTITY(zio->io_bp)->dva_word[1]); 2771 2772 arc_buf_hdr_t *found = buf_hash_find(hdr->b_spa, zio->io_bp, 2773 &hash_lock); 2774 2775 ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) && 2776 hash_lock == NULL) || 2777 (found == hdr && 2778 DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) || 2779 (found == hdr && HDR_L2_READING(hdr))); 2780 } 2781 2782 hdr->b_flags &= ~ARC_L2_EVICTED; 2783 if (l2arc_noprefetch && (hdr->b_flags & ARC_PREFETCH)) 2784 hdr->b_flags &= ~ARC_L2CACHE; 2785 2786 /* byteswap if necessary */ 2787 callback_list = hdr->b_acb; 2788 ASSERT(callback_list != NULL); 2789 if (BP_SHOULD_BYTESWAP(zio->io_bp) && zio->io_error == 0) { 2790 dmu_object_byteswap_t bswap = 2791 DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp)); 2792 arc_byteswap_func_t *func = BP_GET_LEVEL(zio->io_bp) > 0 ? 2793 byteswap_uint64_array : 2794 dmu_ot_byteswap[bswap].ob_func; 2795 func(buf->b_data, hdr->b_size); 2796 } 2797 2798 arc_cksum_compute(buf, B_FALSE); 2799 arc_buf_watch(buf); 2800 2801 if (hash_lock && zio->io_error == 0 && hdr->b_state == arc_anon) { 2802 /* 2803 * Only call arc_access on anonymous buffers. This is because 2804 * if we've issued an I/O for an evicted buffer, we've already 2805 * called arc_access (to prevent any simultaneous readers from 2806 * getting confused). 2807 */ 2808 arc_access(hdr, hash_lock); 2809 } 2810 2811 /* create copies of the data buffer for the callers */ 2812 abuf = buf; 2813 for (acb = callback_list; acb; acb = acb->acb_next) { 2814 if (acb->acb_done) { 2815 if (abuf == NULL) { 2816 ARCSTAT_BUMP(arcstat_duplicate_reads); 2817 abuf = arc_buf_clone(buf); 2818 } 2819 acb->acb_buf = abuf; 2820 abuf = NULL; 2821 } 2822 } 2823 hdr->b_acb = NULL; 2824 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 2825 ASSERT(!HDR_BUF_AVAILABLE(hdr)); 2826 if (abuf == buf) { 2827 ASSERT(buf->b_efunc == NULL); 2828 ASSERT(hdr->b_datacnt == 1); 2829 hdr->b_flags |= ARC_BUF_AVAILABLE; 2830 } 2831 2832 ASSERT(refcount_is_zero(&hdr->b_refcnt) || callback_list != NULL); 2833 2834 if (zio->io_error != 0) { 2835 hdr->b_flags |= ARC_IO_ERROR; 2836 if (hdr->b_state != arc_anon) 2837 arc_change_state(arc_anon, hdr, hash_lock); 2838 if (HDR_IN_HASH_TABLE(hdr)) 2839 buf_hash_remove(hdr); 2840 freeable = refcount_is_zero(&hdr->b_refcnt); 2841 } 2842 2843 /* 2844 * Broadcast before we drop the hash_lock to avoid the possibility 2845 * that the hdr (and hence the cv) might be freed before we get to 2846 * the cv_broadcast(). 2847 */ 2848 cv_broadcast(&hdr->b_cv); 2849 2850 if (hash_lock) { 2851 mutex_exit(hash_lock); 2852 } else { 2853 /* 2854 * This block was freed while we waited for the read to 2855 * complete. It has been removed from the hash table and 2856 * moved to the anonymous state (so that it won't show up 2857 * in the cache). 2858 */ 2859 ASSERT3P(hdr->b_state, ==, arc_anon); 2860 freeable = refcount_is_zero(&hdr->b_refcnt); 2861 } 2862 2863 /* execute each callback and free its structure */ 2864 while ((acb = callback_list) != NULL) { 2865 if (acb->acb_done) 2866 acb->acb_done(zio, acb->acb_buf, acb->acb_private); 2867 2868 if (acb->acb_zio_dummy != NULL) { 2869 acb->acb_zio_dummy->io_error = zio->io_error; 2870 zio_nowait(acb->acb_zio_dummy); 2871 } 2872 2873 callback_list = acb->acb_next; 2874 kmem_free(acb, sizeof (arc_callback_t)); 2875 } 2876 2877 if (freeable) 2878 arc_hdr_destroy(hdr); 2879 } 2880 2881 /* 2882 * "Read" the block at the specified DVA (in bp) via the 2883 * cache. If the block is found in the cache, invoke the provided 2884 * callback immediately and return. Note that the `zio' parameter 2885 * in the callback will be NULL in this case, since no IO was 2886 * required. If the block is not in the cache pass the read request 2887 * on to the spa with a substitute callback function, so that the 2888 * requested block will be added to the cache. 2889 * 2890 * If a read request arrives for a block that has a read in-progress, 2891 * either wait for the in-progress read to complete (and return the 2892 * results); or, if this is a read with a "done" func, add a record 2893 * to the read to invoke the "done" func when the read completes, 2894 * and return; or just return. 2895 * 2896 * arc_read_done() will invoke all the requested "done" functions 2897 * for readers of this block. 2898 */ 2899 int 2900 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_done_func_t *done, 2901 void *private, zio_priority_t priority, int zio_flags, uint32_t *arc_flags, 2902 const zbookmark_t *zb) 2903 { 2904 arc_buf_hdr_t *hdr = NULL; 2905 arc_buf_t *buf = NULL; 2906 kmutex_t *hash_lock = NULL; 2907 zio_t *rzio; 2908 uint64_t guid = spa_load_guid(spa); 2909 2910 ASSERT(!BP_IS_EMBEDDED(bp) || 2911 BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA); 2912 2913 top: 2914 if (!BP_IS_EMBEDDED(bp)) { 2915 /* 2916 * Embedded BP's have no DVA and require no I/O to "read". 2917 * Create an anonymous arc buf to back it. 2918 */ 2919 hdr = buf_hash_find(guid, bp, &hash_lock); 2920 } 2921 2922 if (hdr != NULL && hdr->b_datacnt > 0) { 2923 2924 *arc_flags |= ARC_CACHED; 2925 2926 if (HDR_IO_IN_PROGRESS(hdr)) { 2927 2928 if (*arc_flags & ARC_WAIT) { 2929 cv_wait(&hdr->b_cv, hash_lock); 2930 mutex_exit(hash_lock); 2931 goto top; 2932 } 2933 ASSERT(*arc_flags & ARC_NOWAIT); 2934 2935 if (done) { 2936 arc_callback_t *acb = NULL; 2937 2938 acb = kmem_zalloc(sizeof (arc_callback_t), 2939 KM_SLEEP); 2940 acb->acb_done = done; 2941 acb->acb_private = private; 2942 if (pio != NULL) 2943 acb->acb_zio_dummy = zio_null(pio, 2944 spa, NULL, NULL, NULL, zio_flags); 2945 2946 ASSERT(acb->acb_done != NULL); 2947 acb->acb_next = hdr->b_acb; 2948 hdr->b_acb = acb; 2949 add_reference(hdr, hash_lock, private); 2950 mutex_exit(hash_lock); 2951 return (0); 2952 } 2953 mutex_exit(hash_lock); 2954 return (0); 2955 } 2956 2957 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu); 2958 2959 if (done) { 2960 add_reference(hdr, hash_lock, private); 2961 /* 2962 * If this block is already in use, create a new 2963 * copy of the data so that we will be guaranteed 2964 * that arc_release() will always succeed. 2965 */ 2966 buf = hdr->b_buf; 2967 ASSERT(buf); 2968 ASSERT(buf->b_data); 2969 if (HDR_BUF_AVAILABLE(hdr)) { 2970 ASSERT(buf->b_efunc == NULL); 2971 hdr->b_flags &= ~ARC_BUF_AVAILABLE; 2972 } else { 2973 buf = arc_buf_clone(buf); 2974 } 2975 2976 } else if (*arc_flags & ARC_PREFETCH && 2977 refcount_count(&hdr->b_refcnt) == 0) { 2978 hdr->b_flags |= ARC_PREFETCH; 2979 } 2980 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 2981 arc_access(hdr, hash_lock); 2982 if (*arc_flags & ARC_L2CACHE) 2983 hdr->b_flags |= ARC_L2CACHE; 2984 if (*arc_flags & ARC_L2COMPRESS) 2985 hdr->b_flags |= ARC_L2COMPRESS; 2986 mutex_exit(hash_lock); 2987 ARCSTAT_BUMP(arcstat_hits); 2988 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH), 2989 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA, 2990 data, metadata, hits); 2991 2992 if (done) 2993 done(NULL, buf, private); 2994 } else { 2995 uint64_t size = BP_GET_LSIZE(bp); 2996 arc_callback_t *acb; 2997 vdev_t *vd = NULL; 2998 uint64_t addr = 0; 2999 boolean_t devw = B_FALSE; 3000 enum zio_compress b_compress = ZIO_COMPRESS_OFF; 3001 uint64_t b_asize = 0; 3002 3003 if (hdr == NULL) { 3004 /* this block is not in the cache */ 3005 arc_buf_hdr_t *exists = NULL; 3006 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp); 3007 buf = arc_buf_alloc(spa, size, private, type); 3008 hdr = buf->b_hdr; 3009 if (!BP_IS_EMBEDDED(bp)) { 3010 hdr->b_dva = *BP_IDENTITY(bp); 3011 hdr->b_birth = BP_PHYSICAL_BIRTH(bp); 3012 hdr->b_cksum0 = bp->blk_cksum.zc_word[0]; 3013 exists = buf_hash_insert(hdr, &hash_lock); 3014 } 3015 if (exists != NULL) { 3016 /* somebody beat us to the hash insert */ 3017 mutex_exit(hash_lock); 3018 buf_discard_identity(hdr); 3019 (void) arc_buf_remove_ref(buf, private); 3020 goto top; /* restart the IO request */ 3021 } 3022 /* if this is a prefetch, we don't have a reference */ 3023 if (*arc_flags & ARC_PREFETCH) { 3024 (void) remove_reference(hdr, hash_lock, 3025 private); 3026 hdr->b_flags |= ARC_PREFETCH; 3027 } 3028 if (*arc_flags & ARC_L2CACHE) 3029 hdr->b_flags |= ARC_L2CACHE; 3030 if (*arc_flags & ARC_L2COMPRESS) 3031 hdr->b_flags |= ARC_L2COMPRESS; 3032 if (BP_GET_LEVEL(bp) > 0) 3033 hdr->b_flags |= ARC_INDIRECT; 3034 } else { 3035 /* this block is in the ghost cache */ 3036 ASSERT(GHOST_STATE(hdr->b_state)); 3037 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3038 ASSERT0(refcount_count(&hdr->b_refcnt)); 3039 ASSERT(hdr->b_buf == NULL); 3040 3041 /* if this is a prefetch, we don't have a reference */ 3042 if (*arc_flags & ARC_PREFETCH) 3043 hdr->b_flags |= ARC_PREFETCH; 3044 else 3045 add_reference(hdr, hash_lock, private); 3046 if (*arc_flags & ARC_L2CACHE) 3047 hdr->b_flags |= ARC_L2CACHE; 3048 if (*arc_flags & ARC_L2COMPRESS) 3049 hdr->b_flags |= ARC_L2COMPRESS; 3050 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 3051 buf->b_hdr = hdr; 3052 buf->b_data = NULL; 3053 buf->b_efunc = NULL; 3054 buf->b_private = NULL; 3055 buf->b_next = NULL; 3056 hdr->b_buf = buf; 3057 ASSERT(hdr->b_datacnt == 0); 3058 hdr->b_datacnt = 1; 3059 arc_get_data_buf(buf); 3060 arc_access(hdr, hash_lock); 3061 } 3062 3063 ASSERT(!GHOST_STATE(hdr->b_state)); 3064 3065 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP); 3066 acb->acb_done = done; 3067 acb->acb_private = private; 3068 3069 ASSERT(hdr->b_acb == NULL); 3070 hdr->b_acb = acb; 3071 hdr->b_flags |= ARC_IO_IN_PROGRESS; 3072 3073 if (hdr->b_l2hdr != NULL && 3074 (vd = hdr->b_l2hdr->b_dev->l2ad_vdev) != NULL) { 3075 devw = hdr->b_l2hdr->b_dev->l2ad_writing; 3076 addr = hdr->b_l2hdr->b_daddr; 3077 b_compress = hdr->b_l2hdr->b_compress; 3078 b_asize = hdr->b_l2hdr->b_asize; 3079 /* 3080 * Lock out device removal. 3081 */ 3082 if (vdev_is_dead(vd) || 3083 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER)) 3084 vd = NULL; 3085 } 3086 3087 if (hash_lock != NULL) 3088 mutex_exit(hash_lock); 3089 3090 /* 3091 * At this point, we have a level 1 cache miss. Try again in 3092 * L2ARC if possible. 3093 */ 3094 ASSERT3U(hdr->b_size, ==, size); 3095 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp, 3096 uint64_t, size, zbookmark_t *, zb); 3097 ARCSTAT_BUMP(arcstat_misses); 3098 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH), 3099 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA, 3100 data, metadata, misses); 3101 3102 if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) { 3103 /* 3104 * Read from the L2ARC if the following are true: 3105 * 1. The L2ARC vdev was previously cached. 3106 * 2. This buffer still has L2ARC metadata. 3107 * 3. This buffer isn't currently writing to the L2ARC. 3108 * 4. The L2ARC entry wasn't evicted, which may 3109 * also have invalidated the vdev. 3110 * 5. This isn't prefetch and l2arc_noprefetch is set. 3111 */ 3112 if (hdr->b_l2hdr != NULL && 3113 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) && 3114 !(l2arc_noprefetch && HDR_PREFETCH(hdr))) { 3115 l2arc_read_callback_t *cb; 3116 3117 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr); 3118 ARCSTAT_BUMP(arcstat_l2_hits); 3119 3120 cb = kmem_zalloc(sizeof (l2arc_read_callback_t), 3121 KM_SLEEP); 3122 cb->l2rcb_buf = buf; 3123 cb->l2rcb_spa = spa; 3124 cb->l2rcb_bp = *bp; 3125 cb->l2rcb_zb = *zb; 3126 cb->l2rcb_flags = zio_flags; 3127 cb->l2rcb_compress = b_compress; 3128 3129 ASSERT(addr >= VDEV_LABEL_START_SIZE && 3130 addr + size < vd->vdev_psize - 3131 VDEV_LABEL_END_SIZE); 3132 3133 /* 3134 * l2arc read. The SCL_L2ARC lock will be 3135 * released by l2arc_read_done(). 3136 * Issue a null zio if the underlying buffer 3137 * was squashed to zero size by compression. 3138 */ 3139 if (b_compress == ZIO_COMPRESS_EMPTY) { 3140 rzio = zio_null(pio, spa, vd, 3141 l2arc_read_done, cb, 3142 zio_flags | ZIO_FLAG_DONT_CACHE | 3143 ZIO_FLAG_CANFAIL | 3144 ZIO_FLAG_DONT_PROPAGATE | 3145 ZIO_FLAG_DONT_RETRY); 3146 } else { 3147 rzio = zio_read_phys(pio, vd, addr, 3148 b_asize, buf->b_data, 3149 ZIO_CHECKSUM_OFF, 3150 l2arc_read_done, cb, priority, 3151 zio_flags | ZIO_FLAG_DONT_CACHE | 3152 ZIO_FLAG_CANFAIL | 3153 ZIO_FLAG_DONT_PROPAGATE | 3154 ZIO_FLAG_DONT_RETRY, B_FALSE); 3155 } 3156 DTRACE_PROBE2(l2arc__read, vdev_t *, vd, 3157 zio_t *, rzio); 3158 ARCSTAT_INCR(arcstat_l2_read_bytes, b_asize); 3159 3160 if (*arc_flags & ARC_NOWAIT) { 3161 zio_nowait(rzio); 3162 return (0); 3163 } 3164 3165 ASSERT(*arc_flags & ARC_WAIT); 3166 if (zio_wait(rzio) == 0) 3167 return (0); 3168 3169 /* l2arc read error; goto zio_read() */ 3170 } else { 3171 DTRACE_PROBE1(l2arc__miss, 3172 arc_buf_hdr_t *, hdr); 3173 ARCSTAT_BUMP(arcstat_l2_misses); 3174 if (HDR_L2_WRITING(hdr)) 3175 ARCSTAT_BUMP(arcstat_l2_rw_clash); 3176 spa_config_exit(spa, SCL_L2ARC, vd); 3177 } 3178 } else { 3179 if (vd != NULL) 3180 spa_config_exit(spa, SCL_L2ARC, vd); 3181 if (l2arc_ndev != 0) { 3182 DTRACE_PROBE1(l2arc__miss, 3183 arc_buf_hdr_t *, hdr); 3184 ARCSTAT_BUMP(arcstat_l2_misses); 3185 } 3186 } 3187 3188 rzio = zio_read(pio, spa, bp, buf->b_data, size, 3189 arc_read_done, buf, priority, zio_flags, zb); 3190 3191 if (*arc_flags & ARC_WAIT) 3192 return (zio_wait(rzio)); 3193 3194 ASSERT(*arc_flags & ARC_NOWAIT); 3195 zio_nowait(rzio); 3196 } 3197 return (0); 3198 } 3199 3200 void 3201 arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private) 3202 { 3203 ASSERT(buf->b_hdr != NULL); 3204 ASSERT(buf->b_hdr->b_state != arc_anon); 3205 ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt) || func == NULL); 3206 ASSERT(buf->b_efunc == NULL); 3207 ASSERT(!HDR_BUF_AVAILABLE(buf->b_hdr)); 3208 3209 buf->b_efunc = func; 3210 buf->b_private = private; 3211 } 3212 3213 /* 3214 * Notify the arc that a block was freed, and thus will never be used again. 3215 */ 3216 void 3217 arc_freed(spa_t *spa, const blkptr_t *bp) 3218 { 3219 arc_buf_hdr_t *hdr; 3220 kmutex_t *hash_lock; 3221 uint64_t guid = spa_load_guid(spa); 3222 3223 ASSERT(!BP_IS_EMBEDDED(bp)); 3224 3225 hdr = buf_hash_find(guid, bp, &hash_lock); 3226 if (hdr == NULL) 3227 return; 3228 if (HDR_BUF_AVAILABLE(hdr)) { 3229 arc_buf_t *buf = hdr->b_buf; 3230 add_reference(hdr, hash_lock, FTAG); 3231 hdr->b_flags &= ~ARC_BUF_AVAILABLE; 3232 mutex_exit(hash_lock); 3233 3234 arc_release(buf, FTAG); 3235 (void) arc_buf_remove_ref(buf, FTAG); 3236 } else { 3237 mutex_exit(hash_lock); 3238 } 3239 3240 } 3241 3242 /* 3243 * This is used by the DMU to let the ARC know that a buffer is 3244 * being evicted, so the ARC should clean up. If this arc buf 3245 * is not yet in the evicted state, it will be put there. 3246 */ 3247 int 3248 arc_buf_evict(arc_buf_t *buf) 3249 { 3250 arc_buf_hdr_t *hdr; 3251 kmutex_t *hash_lock; 3252 arc_buf_t **bufp; 3253 3254 mutex_enter(&buf->b_evict_lock); 3255 hdr = buf->b_hdr; 3256 if (hdr == NULL) { 3257 /* 3258 * We are in arc_do_user_evicts(). 3259 */ 3260 ASSERT(buf->b_data == NULL); 3261 mutex_exit(&buf->b_evict_lock); 3262 return (0); 3263 } else if (buf->b_data == NULL) { 3264 arc_buf_t copy = *buf; /* structure assignment */ 3265 /* 3266 * We are on the eviction list; process this buffer now 3267 * but let arc_do_user_evicts() do the reaping. 3268 */ 3269 buf->b_efunc = NULL; 3270 mutex_exit(&buf->b_evict_lock); 3271 VERIFY(copy.b_efunc(©) == 0); 3272 return (1); 3273 } 3274 hash_lock = HDR_LOCK(hdr); 3275 mutex_enter(hash_lock); 3276 hdr = buf->b_hdr; 3277 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 3278 3279 ASSERT3U(refcount_count(&hdr->b_refcnt), <, hdr->b_datacnt); 3280 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu); 3281 3282 /* 3283 * Pull this buffer off of the hdr 3284 */ 3285 bufp = &hdr->b_buf; 3286 while (*bufp != buf) 3287 bufp = &(*bufp)->b_next; 3288 *bufp = buf->b_next; 3289 3290 ASSERT(buf->b_data != NULL); 3291 arc_buf_destroy(buf, FALSE, FALSE); 3292 3293 if (hdr->b_datacnt == 0) { 3294 arc_state_t *old_state = hdr->b_state; 3295 arc_state_t *evicted_state; 3296 3297 ASSERT(hdr->b_buf == NULL); 3298 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 3299 3300 evicted_state = 3301 (old_state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost; 3302 3303 mutex_enter(&old_state->arcs_mtx); 3304 mutex_enter(&evicted_state->arcs_mtx); 3305 3306 arc_change_state(evicted_state, hdr, hash_lock); 3307 ASSERT(HDR_IN_HASH_TABLE(hdr)); 3308 hdr->b_flags |= ARC_IN_HASH_TABLE; 3309 hdr->b_flags &= ~ARC_BUF_AVAILABLE; 3310 3311 mutex_exit(&evicted_state->arcs_mtx); 3312 mutex_exit(&old_state->arcs_mtx); 3313 } 3314 mutex_exit(hash_lock); 3315 mutex_exit(&buf->b_evict_lock); 3316 3317 VERIFY(buf->b_efunc(buf) == 0); 3318 buf->b_efunc = NULL; 3319 buf->b_private = NULL; 3320 buf->b_hdr = NULL; 3321 buf->b_next = NULL; 3322 kmem_cache_free(buf_cache, buf); 3323 return (1); 3324 } 3325 3326 /* 3327 * Release this buffer from the cache, making it an anonymous buffer. This 3328 * must be done after a read and prior to modifying the buffer contents. 3329 * If the buffer has more than one reference, we must make 3330 * a new hdr for the buffer. 3331 */ 3332 void 3333 arc_release(arc_buf_t *buf, void *tag) 3334 { 3335 arc_buf_hdr_t *hdr; 3336 kmutex_t *hash_lock = NULL; 3337 l2arc_buf_hdr_t *l2hdr; 3338 uint64_t buf_size; 3339 3340 /* 3341 * It would be nice to assert that if it's DMU metadata (level > 3342 * 0 || it's the dnode file), then it must be syncing context. 3343 * But we don't know that information at this level. 3344 */ 3345 3346 mutex_enter(&buf->b_evict_lock); 3347 hdr = buf->b_hdr; 3348 3349 /* this buffer is not on any list */ 3350 ASSERT(refcount_count(&hdr->b_refcnt) > 0); 3351 3352 if (hdr->b_state == arc_anon) { 3353 /* this buffer is already released */ 3354 ASSERT(buf->b_efunc == NULL); 3355 } else { 3356 hash_lock = HDR_LOCK(hdr); 3357 mutex_enter(hash_lock); 3358 hdr = buf->b_hdr; 3359 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 3360 } 3361 3362 l2hdr = hdr->b_l2hdr; 3363 if (l2hdr) { 3364 mutex_enter(&l2arc_buflist_mtx); 3365 hdr->b_l2hdr = NULL; 3366 list_remove(l2hdr->b_dev->l2ad_buflist, hdr); 3367 } 3368 buf_size = hdr->b_size; 3369 3370 /* 3371 * Do we have more than one buf? 3372 */ 3373 if (hdr->b_datacnt > 1) { 3374 arc_buf_hdr_t *nhdr; 3375 arc_buf_t **bufp; 3376 uint64_t blksz = hdr->b_size; 3377 uint64_t spa = hdr->b_spa; 3378 arc_buf_contents_t type = hdr->b_type; 3379 uint32_t flags = hdr->b_flags; 3380 3381 ASSERT(hdr->b_buf != buf || buf->b_next != NULL); 3382 /* 3383 * Pull the data off of this hdr and attach it to 3384 * a new anonymous hdr. 3385 */ 3386 (void) remove_reference(hdr, hash_lock, tag); 3387 bufp = &hdr->b_buf; 3388 while (*bufp != buf) 3389 bufp = &(*bufp)->b_next; 3390 *bufp = buf->b_next; 3391 buf->b_next = NULL; 3392 3393 ASSERT3U(hdr->b_state->arcs_size, >=, hdr->b_size); 3394 atomic_add_64(&hdr->b_state->arcs_size, -hdr->b_size); 3395 if (refcount_is_zero(&hdr->b_refcnt)) { 3396 uint64_t *size = &hdr->b_state->arcs_lsize[hdr->b_type]; 3397 ASSERT3U(*size, >=, hdr->b_size); 3398 atomic_add_64(size, -hdr->b_size); 3399 } 3400 3401 /* 3402 * We're releasing a duplicate user data buffer, update 3403 * our statistics accordingly. 3404 */ 3405 if (hdr->b_type == ARC_BUFC_DATA) { 3406 ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers); 3407 ARCSTAT_INCR(arcstat_duplicate_buffers_size, 3408 -hdr->b_size); 3409 } 3410 hdr->b_datacnt -= 1; 3411 arc_cksum_verify(buf); 3412 arc_buf_unwatch(buf); 3413 3414 mutex_exit(hash_lock); 3415 3416 nhdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE); 3417 nhdr->b_size = blksz; 3418 nhdr->b_spa = spa; 3419 nhdr->b_type = type; 3420 nhdr->b_buf = buf; 3421 nhdr->b_state = arc_anon; 3422 nhdr->b_arc_access = 0; 3423 nhdr->b_flags = flags & ARC_L2_WRITING; 3424 nhdr->b_l2hdr = NULL; 3425 nhdr->b_datacnt = 1; 3426 nhdr->b_freeze_cksum = NULL; 3427 (void) refcount_add(&nhdr->b_refcnt, tag); 3428 buf->b_hdr = nhdr; 3429 mutex_exit(&buf->b_evict_lock); 3430 atomic_add_64(&arc_anon->arcs_size, blksz); 3431 } else { 3432 mutex_exit(&buf->b_evict_lock); 3433 ASSERT(refcount_count(&hdr->b_refcnt) == 1); 3434 ASSERT(!list_link_active(&hdr->b_arc_node)); 3435 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3436 if (hdr->b_state != arc_anon) 3437 arc_change_state(arc_anon, hdr, hash_lock); 3438 hdr->b_arc_access = 0; 3439 if (hash_lock) 3440 mutex_exit(hash_lock); 3441 3442 buf_discard_identity(hdr); 3443 arc_buf_thaw(buf); 3444 } 3445 buf->b_efunc = NULL; 3446 buf->b_private = NULL; 3447 3448 if (l2hdr) { 3449 ARCSTAT_INCR(arcstat_l2_asize, -l2hdr->b_asize); 3450 vdev_space_update(l2hdr->b_dev->l2ad_vdev, 3451 -l2hdr->b_asize, 0, 0); 3452 kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t)); 3453 ARCSTAT_INCR(arcstat_l2_size, -buf_size); 3454 mutex_exit(&l2arc_buflist_mtx); 3455 } 3456 } 3457 3458 int 3459 arc_released(arc_buf_t *buf) 3460 { 3461 int released; 3462 3463 mutex_enter(&buf->b_evict_lock); 3464 released = (buf->b_data != NULL && buf->b_hdr->b_state == arc_anon); 3465 mutex_exit(&buf->b_evict_lock); 3466 return (released); 3467 } 3468 3469 int 3470 arc_has_callback(arc_buf_t *buf) 3471 { 3472 int callback; 3473 3474 mutex_enter(&buf->b_evict_lock); 3475 callback = (buf->b_efunc != NULL); 3476 mutex_exit(&buf->b_evict_lock); 3477 return (callback); 3478 } 3479 3480 #ifdef ZFS_DEBUG 3481 int 3482 arc_referenced(arc_buf_t *buf) 3483 { 3484 int referenced; 3485 3486 mutex_enter(&buf->b_evict_lock); 3487 referenced = (refcount_count(&buf->b_hdr->b_refcnt)); 3488 mutex_exit(&buf->b_evict_lock); 3489 return (referenced); 3490 } 3491 #endif 3492 3493 static void 3494 arc_write_ready(zio_t *zio) 3495 { 3496 arc_write_callback_t *callback = zio->io_private; 3497 arc_buf_t *buf = callback->awcb_buf; 3498 arc_buf_hdr_t *hdr = buf->b_hdr; 3499 3500 ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt)); 3501 callback->awcb_ready(zio, buf, callback->awcb_private); 3502 3503 /* 3504 * If the IO is already in progress, then this is a re-write 3505 * attempt, so we need to thaw and re-compute the cksum. 3506 * It is the responsibility of the callback to handle the 3507 * accounting for any re-write attempt. 3508 */ 3509 if (HDR_IO_IN_PROGRESS(hdr)) { 3510 mutex_enter(&hdr->b_freeze_lock); 3511 if (hdr->b_freeze_cksum != NULL) { 3512 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t)); 3513 hdr->b_freeze_cksum = NULL; 3514 } 3515 mutex_exit(&hdr->b_freeze_lock); 3516 } 3517 arc_cksum_compute(buf, B_FALSE); 3518 hdr->b_flags |= ARC_IO_IN_PROGRESS; 3519 } 3520 3521 /* 3522 * The SPA calls this callback for each physical write that happens on behalf 3523 * of a logical write. See the comment in dbuf_write_physdone() for details. 3524 */ 3525 static void 3526 arc_write_physdone(zio_t *zio) 3527 { 3528 arc_write_callback_t *cb = zio->io_private; 3529 if (cb->awcb_physdone != NULL) 3530 cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private); 3531 } 3532 3533 static void 3534 arc_write_done(zio_t *zio) 3535 { 3536 arc_write_callback_t *callback = zio->io_private; 3537 arc_buf_t *buf = callback->awcb_buf; 3538 arc_buf_hdr_t *hdr = buf->b_hdr; 3539 3540 ASSERT(hdr->b_acb == NULL); 3541 3542 if (zio->io_error == 0) { 3543 if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) { 3544 buf_discard_identity(hdr); 3545 } else { 3546 hdr->b_dva = *BP_IDENTITY(zio->io_bp); 3547 hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp); 3548 hdr->b_cksum0 = zio->io_bp->blk_cksum.zc_word[0]; 3549 } 3550 } else { 3551 ASSERT(BUF_EMPTY(hdr)); 3552 } 3553 3554 /* 3555 * If the block to be written was all-zero or compressed enough to be 3556 * embedded in the BP, no write was performed so there will be no 3557 * dva/birth/checksum. The buffer must therefore remain anonymous 3558 * (and uncached). 3559 */ 3560 if (!BUF_EMPTY(hdr)) { 3561 arc_buf_hdr_t *exists; 3562 kmutex_t *hash_lock; 3563 3564 ASSERT(zio->io_error == 0); 3565 3566 arc_cksum_verify(buf); 3567 3568 exists = buf_hash_insert(hdr, &hash_lock); 3569 if (exists) { 3570 /* 3571 * This can only happen if we overwrite for 3572 * sync-to-convergence, because we remove 3573 * buffers from the hash table when we arc_free(). 3574 */ 3575 if (zio->io_flags & ZIO_FLAG_IO_REWRITE) { 3576 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) 3577 panic("bad overwrite, hdr=%p exists=%p", 3578 (void *)hdr, (void *)exists); 3579 ASSERT(refcount_is_zero(&exists->b_refcnt)); 3580 arc_change_state(arc_anon, exists, hash_lock); 3581 mutex_exit(hash_lock); 3582 arc_hdr_destroy(exists); 3583 exists = buf_hash_insert(hdr, &hash_lock); 3584 ASSERT3P(exists, ==, NULL); 3585 } else if (zio->io_flags & ZIO_FLAG_NOPWRITE) { 3586 /* nopwrite */ 3587 ASSERT(zio->io_prop.zp_nopwrite); 3588 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) 3589 panic("bad nopwrite, hdr=%p exists=%p", 3590 (void *)hdr, (void *)exists); 3591 } else { 3592 /* Dedup */ 3593 ASSERT(hdr->b_datacnt == 1); 3594 ASSERT(hdr->b_state == arc_anon); 3595 ASSERT(BP_GET_DEDUP(zio->io_bp)); 3596 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0); 3597 } 3598 } 3599 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 3600 /* if it's not anon, we are doing a scrub */ 3601 if (!exists && hdr->b_state == arc_anon) 3602 arc_access(hdr, hash_lock); 3603 mutex_exit(hash_lock); 3604 } else { 3605 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 3606 } 3607 3608 ASSERT(!refcount_is_zero(&hdr->b_refcnt)); 3609 callback->awcb_done(zio, buf, callback->awcb_private); 3610 3611 kmem_free(callback, sizeof (arc_write_callback_t)); 3612 } 3613 3614 zio_t * 3615 arc_write(zio_t *pio, spa_t *spa, uint64_t txg, 3616 blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, boolean_t l2arc_compress, 3617 const zio_prop_t *zp, arc_done_func_t *ready, arc_done_func_t *physdone, 3618 arc_done_func_t *done, void *private, zio_priority_t priority, 3619 int zio_flags, const zbookmark_t *zb) 3620 { 3621 arc_buf_hdr_t *hdr = buf->b_hdr; 3622 arc_write_callback_t *callback; 3623 zio_t *zio; 3624 3625 ASSERT(ready != NULL); 3626 ASSERT(done != NULL); 3627 ASSERT(!HDR_IO_ERROR(hdr)); 3628 ASSERT((hdr->b_flags & ARC_IO_IN_PROGRESS) == 0); 3629 ASSERT(hdr->b_acb == NULL); 3630 if (l2arc) 3631 hdr->b_flags |= ARC_L2CACHE; 3632 if (l2arc_compress) 3633 hdr->b_flags |= ARC_L2COMPRESS; 3634 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP); 3635 callback->awcb_ready = ready; 3636 callback->awcb_physdone = physdone; 3637 callback->awcb_done = done; 3638 callback->awcb_private = private; 3639 callback->awcb_buf = buf; 3640 3641 zio = zio_write(pio, spa, txg, bp, buf->b_data, hdr->b_size, zp, 3642 arc_write_ready, arc_write_physdone, arc_write_done, callback, 3643 priority, zio_flags, zb); 3644 3645 return (zio); 3646 } 3647 3648 static int 3649 arc_memory_throttle(uint64_t reserve, uint64_t txg) 3650 { 3651 #ifdef _KERNEL 3652 uint64_t available_memory = ptob(freemem); 3653 static uint64_t page_load = 0; 3654 static uint64_t last_txg = 0; 3655 3656 #if defined(__i386) 3657 available_memory = 3658 MIN(available_memory, vmem_size(heap_arena, VMEM_FREE)); 3659 #endif 3660 3661 if (freemem > physmem * arc_lotsfree_percent / 100) 3662 return (0); 3663 3664 if (txg > last_txg) { 3665 last_txg = txg; 3666 page_load = 0; 3667 } 3668 /* 3669 * If we are in pageout, we know that memory is already tight, 3670 * the arc is already going to be evicting, so we just want to 3671 * continue to let page writes occur as quickly as possible. 3672 */ 3673 if (curproc == proc_pageout) { 3674 if (page_load > MAX(ptob(minfree), available_memory) / 4) 3675 return (SET_ERROR(ERESTART)); 3676 /* Note: reserve is inflated, so we deflate */ 3677 page_load += reserve / 8; 3678 return (0); 3679 } else if (page_load > 0 && arc_reclaim_needed()) { 3680 /* memory is low, delay before restarting */ 3681 ARCSTAT_INCR(arcstat_memory_throttle_count, 1); 3682 return (SET_ERROR(EAGAIN)); 3683 } 3684 page_load = 0; 3685 #endif 3686 return (0); 3687 } 3688 3689 void 3690 arc_tempreserve_clear(uint64_t reserve) 3691 { 3692 atomic_add_64(&arc_tempreserve, -reserve); 3693 ASSERT((int64_t)arc_tempreserve >= 0); 3694 } 3695 3696 int 3697 arc_tempreserve_space(uint64_t reserve, uint64_t txg) 3698 { 3699 int error; 3700 uint64_t anon_size; 3701 3702 if (reserve > arc_c/4 && !arc_no_grow) 3703 arc_c = MIN(arc_c_max, reserve * 4); 3704 if (reserve > arc_c) 3705 return (SET_ERROR(ENOMEM)); 3706 3707 /* 3708 * Don't count loaned bufs as in flight dirty data to prevent long 3709 * network delays from blocking transactions that are ready to be 3710 * assigned to a txg. 3711 */ 3712 anon_size = MAX((int64_t)(arc_anon->arcs_size - arc_loaned_bytes), 0); 3713 3714 /* 3715 * Writes will, almost always, require additional memory allocations 3716 * in order to compress/encrypt/etc the data. We therefore need to 3717 * make sure that there is sufficient available memory for this. 3718 */ 3719 error = arc_memory_throttle(reserve, txg); 3720 if (error != 0) 3721 return (error); 3722 3723 /* 3724 * Throttle writes when the amount of dirty data in the cache 3725 * gets too large. We try to keep the cache less than half full 3726 * of dirty blocks so that our sync times don't grow too large. 3727 * Note: if two requests come in concurrently, we might let them 3728 * both succeed, when one of them should fail. Not a huge deal. 3729 */ 3730 3731 if (reserve + arc_tempreserve + anon_size > arc_c / 2 && 3732 anon_size > arc_c / 4) { 3733 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK " 3734 "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n", 3735 arc_tempreserve>>10, 3736 arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10, 3737 arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10, 3738 reserve>>10, arc_c>>10); 3739 return (SET_ERROR(ERESTART)); 3740 } 3741 atomic_add_64(&arc_tempreserve, reserve); 3742 return (0); 3743 } 3744 3745 void 3746 arc_init(void) 3747 { 3748 mutex_init(&arc_reclaim_thr_lock, NULL, MUTEX_DEFAULT, NULL); 3749 cv_init(&arc_reclaim_thr_cv, NULL, CV_DEFAULT, NULL); 3750 3751 /* Convert seconds to clock ticks */ 3752 arc_min_prefetch_lifespan = 1 * hz; 3753 3754 /* Start out with 1/8 of all memory */ 3755 arc_c = physmem * PAGESIZE / 8; 3756 3757 #ifdef _KERNEL 3758 /* 3759 * On architectures where the physical memory can be larger 3760 * than the addressable space (intel in 32-bit mode), we may 3761 * need to limit the cache to 1/8 of VM size. 3762 */ 3763 arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8); 3764 #endif 3765 3766 /* set min cache to 1/32 of all memory, or 64MB, whichever is more */ 3767 arc_c_min = MAX(arc_c / 4, 64<<20); 3768 /* set max to 3/4 of all memory, or all but 1GB, whichever is more */ 3769 if (arc_c * 8 >= 1<<30) 3770 arc_c_max = (arc_c * 8) - (1<<30); 3771 else 3772 arc_c_max = arc_c_min; 3773 arc_c_max = MAX(arc_c * 6, arc_c_max); 3774 3775 /* 3776 * Allow the tunables to override our calculations if they are 3777 * reasonable (ie. over 64MB) 3778 */ 3779 if (zfs_arc_max > 64<<20 && zfs_arc_max < physmem * PAGESIZE) 3780 arc_c_max = zfs_arc_max; 3781 if (zfs_arc_min > 64<<20 && zfs_arc_min <= arc_c_max) 3782 arc_c_min = zfs_arc_min; 3783 3784 arc_c = arc_c_max; 3785 arc_p = (arc_c >> 1); 3786 3787 /* limit meta-data to 1/4 of the arc capacity */ 3788 arc_meta_limit = arc_c_max / 4; 3789 3790 /* Allow the tunable to override if it is reasonable */ 3791 if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max) 3792 arc_meta_limit = zfs_arc_meta_limit; 3793 3794 if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0) 3795 arc_c_min = arc_meta_limit / 2; 3796 3797 if (zfs_arc_grow_retry > 0) 3798 arc_grow_retry = zfs_arc_grow_retry; 3799 3800 if (zfs_arc_shrink_shift > 0) 3801 arc_shrink_shift = zfs_arc_shrink_shift; 3802 3803 if (zfs_arc_p_min_shift > 0) 3804 arc_p_min_shift = zfs_arc_p_min_shift; 3805 3806 /* if kmem_flags are set, lets try to use less memory */ 3807 if (kmem_debugging()) 3808 arc_c = arc_c / 2; 3809 if (arc_c < arc_c_min) 3810 arc_c = arc_c_min; 3811 3812 arc_anon = &ARC_anon; 3813 arc_mru = &ARC_mru; 3814 arc_mru_ghost = &ARC_mru_ghost; 3815 arc_mfu = &ARC_mfu; 3816 arc_mfu_ghost = &ARC_mfu_ghost; 3817 arc_l2c_only = &ARC_l2c_only; 3818 arc_size = 0; 3819 3820 mutex_init(&arc_anon->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3821 mutex_init(&arc_mru->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3822 mutex_init(&arc_mru_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3823 mutex_init(&arc_mfu->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3824 mutex_init(&arc_mfu_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3825 mutex_init(&arc_l2c_only->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3826 3827 list_create(&arc_mru->arcs_list[ARC_BUFC_METADATA], 3828 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3829 list_create(&arc_mru->arcs_list[ARC_BUFC_DATA], 3830 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3831 list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA], 3832 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3833 list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA], 3834 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3835 list_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA], 3836 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3837 list_create(&arc_mfu->arcs_list[ARC_BUFC_DATA], 3838 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3839 list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA], 3840 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3841 list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA], 3842 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3843 list_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA], 3844 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3845 list_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA], 3846 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3847 3848 buf_init(); 3849 3850 arc_thread_exit = 0; 3851 arc_eviction_list = NULL; 3852 mutex_init(&arc_eviction_mtx, NULL, MUTEX_DEFAULT, NULL); 3853 bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t)); 3854 3855 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED, 3856 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); 3857 3858 if (arc_ksp != NULL) { 3859 arc_ksp->ks_data = &arc_stats; 3860 kstat_install(arc_ksp); 3861 } 3862 3863 (void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0, 3864 TS_RUN, minclsyspri); 3865 3866 arc_dead = FALSE; 3867 arc_warm = B_FALSE; 3868 3869 /* 3870 * Calculate maximum amount of dirty data per pool. 3871 * 3872 * If it has been set by /etc/system, take that. 3873 * Otherwise, use a percentage of physical memory defined by 3874 * zfs_dirty_data_max_percent (default 10%) with a cap at 3875 * zfs_dirty_data_max_max (default 4GB). 3876 */ 3877 if (zfs_dirty_data_max == 0) { 3878 zfs_dirty_data_max = physmem * PAGESIZE * 3879 zfs_dirty_data_max_percent / 100; 3880 zfs_dirty_data_max = MIN(zfs_dirty_data_max, 3881 zfs_dirty_data_max_max); 3882 } 3883 } 3884 3885 void 3886 arc_fini(void) 3887 { 3888 mutex_enter(&arc_reclaim_thr_lock); 3889 arc_thread_exit = 1; 3890 while (arc_thread_exit != 0) 3891 cv_wait(&arc_reclaim_thr_cv, &arc_reclaim_thr_lock); 3892 mutex_exit(&arc_reclaim_thr_lock); 3893 3894 arc_flush(NULL); 3895 3896 arc_dead = TRUE; 3897 3898 if (arc_ksp != NULL) { 3899 kstat_delete(arc_ksp); 3900 arc_ksp = NULL; 3901 } 3902 3903 mutex_destroy(&arc_eviction_mtx); 3904 mutex_destroy(&arc_reclaim_thr_lock); 3905 cv_destroy(&arc_reclaim_thr_cv); 3906 3907 list_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]); 3908 list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]); 3909 list_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]); 3910 list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]); 3911 list_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]); 3912 list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]); 3913 list_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]); 3914 list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]); 3915 3916 mutex_destroy(&arc_anon->arcs_mtx); 3917 mutex_destroy(&arc_mru->arcs_mtx); 3918 mutex_destroy(&arc_mru_ghost->arcs_mtx); 3919 mutex_destroy(&arc_mfu->arcs_mtx); 3920 mutex_destroy(&arc_mfu_ghost->arcs_mtx); 3921 mutex_destroy(&arc_l2c_only->arcs_mtx); 3922 3923 buf_fini(); 3924 3925 ASSERT(arc_loaned_bytes == 0); 3926 } 3927 3928 /* 3929 * Level 2 ARC 3930 * 3931 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk. 3932 * It uses dedicated storage devices to hold cached data, which are populated 3933 * using large infrequent writes. The main role of this cache is to boost 3934 * the performance of random read workloads. The intended L2ARC devices 3935 * include short-stroked disks, solid state disks, and other media with 3936 * substantially faster read latency than disk. 3937 * 3938 * +-----------------------+ 3939 * | ARC | 3940 * +-----------------------+ 3941 * | ^ ^ 3942 * | | | 3943 * l2arc_feed_thread() arc_read() 3944 * | | | 3945 * | l2arc read | 3946 * V | | 3947 * +---------------+ | 3948 * | L2ARC | | 3949 * +---------------+ | 3950 * | ^ | 3951 * l2arc_write() | | 3952 * | | | 3953 * V | | 3954 * +-------+ +-------+ 3955 * | vdev | | vdev | 3956 * | cache | | cache | 3957 * +-------+ +-------+ 3958 * +=========+ .-----. 3959 * : L2ARC : |-_____-| 3960 * : devices : | Disks | 3961 * +=========+ `-_____-' 3962 * 3963 * Read requests are satisfied from the following sources, in order: 3964 * 3965 * 1) ARC 3966 * 2) vdev cache of L2ARC devices 3967 * 3) L2ARC devices 3968 * 4) vdev cache of disks 3969 * 5) disks 3970 * 3971 * Some L2ARC device types exhibit extremely slow write performance. 3972 * To accommodate for this there are some significant differences between 3973 * the L2ARC and traditional cache design: 3974 * 3975 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from 3976 * the ARC behave as usual, freeing buffers and placing headers on ghost 3977 * lists. The ARC does not send buffers to the L2ARC during eviction as 3978 * this would add inflated write latencies for all ARC memory pressure. 3979 * 3980 * 2. The L2ARC attempts to cache data from the ARC before it is evicted. 3981 * It does this by periodically scanning buffers from the eviction-end of 3982 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are 3983 * not already there. It scans until a headroom of buffers is satisfied, 3984 * which itself is a buffer for ARC eviction. If a compressible buffer is 3985 * found during scanning and selected for writing to an L2ARC device, we 3986 * temporarily boost scanning headroom during the next scan cycle to make 3987 * sure we adapt to compression effects (which might significantly reduce 3988 * the data volume we write to L2ARC). The thread that does this is 3989 * l2arc_feed_thread(), illustrated below; example sizes are included to 3990 * provide a better sense of ratio than this diagram: 3991 * 3992 * head --> tail 3993 * +---------------------+----------+ 3994 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC 3995 * +---------------------+----------+ | o L2ARC eligible 3996 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer 3997 * +---------------------+----------+ | 3998 * 15.9 Gbytes ^ 32 Mbytes | 3999 * headroom | 4000 * l2arc_feed_thread() 4001 * | 4002 * l2arc write hand <--[oooo]--' 4003 * | 8 Mbyte 4004 * | write max 4005 * V 4006 * +==============================+ 4007 * L2ARC dev |####|#|###|###| |####| ... | 4008 * +==============================+ 4009 * 32 Gbytes 4010 * 4011 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of 4012 * evicted, then the L2ARC has cached a buffer much sooner than it probably 4013 * needed to, potentially wasting L2ARC device bandwidth and storage. It is 4014 * safe to say that this is an uncommon case, since buffers at the end of 4015 * the ARC lists have moved there due to inactivity. 4016 * 4017 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom, 4018 * then the L2ARC simply misses copying some buffers. This serves as a 4019 * pressure valve to prevent heavy read workloads from both stalling the ARC 4020 * with waits and clogging the L2ARC with writes. This also helps prevent 4021 * the potential for the L2ARC to churn if it attempts to cache content too 4022 * quickly, such as during backups of the entire pool. 4023 * 4024 * 5. After system boot and before the ARC has filled main memory, there are 4025 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru 4026 * lists can remain mostly static. Instead of searching from tail of these 4027 * lists as pictured, the l2arc_feed_thread() will search from the list heads 4028 * for eligible buffers, greatly increasing its chance of finding them. 4029 * 4030 * The L2ARC device write speed is also boosted during this time so that 4031 * the L2ARC warms up faster. Since there have been no ARC evictions yet, 4032 * there are no L2ARC reads, and no fear of degrading read performance 4033 * through increased writes. 4034 * 4035 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that 4036 * the vdev queue can aggregate them into larger and fewer writes. Each 4037 * device is written to in a rotor fashion, sweeping writes through 4038 * available space then repeating. 4039 * 4040 * 7. The L2ARC does not store dirty content. It never needs to flush 4041 * write buffers back to disk based storage. 4042 * 4043 * 8. If an ARC buffer is written (and dirtied) which also exists in the 4044 * L2ARC, the now stale L2ARC buffer is immediately dropped. 4045 * 4046 * The performance of the L2ARC can be tweaked by a number of tunables, which 4047 * may be necessary for different workloads: 4048 * 4049 * l2arc_write_max max write bytes per interval 4050 * l2arc_write_boost extra write bytes during device warmup 4051 * l2arc_noprefetch skip caching prefetched buffers 4052 * l2arc_headroom number of max device writes to precache 4053 * l2arc_headroom_boost when we find compressed buffers during ARC 4054 * scanning, we multiply headroom by this 4055 * percentage factor for the next scan cycle, 4056 * since more compressed buffers are likely to 4057 * be present 4058 * l2arc_feed_secs seconds between L2ARC writing 4059 * 4060 * Tunables may be removed or added as future performance improvements are 4061 * integrated, and also may become zpool properties. 4062 * 4063 * There are three key functions that control how the L2ARC warms up: 4064 * 4065 * l2arc_write_eligible() check if a buffer is eligible to cache 4066 * l2arc_write_size() calculate how much to write 4067 * l2arc_write_interval() calculate sleep delay between writes 4068 * 4069 * These three functions determine what to write, how much, and how quickly 4070 * to send writes. 4071 */ 4072 4073 static boolean_t 4074 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab) 4075 { 4076 /* 4077 * A buffer is *not* eligible for the L2ARC if it: 4078 * 1. belongs to a different spa. 4079 * 2. is already cached on the L2ARC. 4080 * 3. has an I/O in progress (it may be an incomplete read). 4081 * 4. is flagged not eligible (zfs property). 4082 */ 4083 if (ab->b_spa != spa_guid || ab->b_l2hdr != NULL || 4084 HDR_IO_IN_PROGRESS(ab) || !HDR_L2CACHE(ab)) 4085 return (B_FALSE); 4086 4087 return (B_TRUE); 4088 } 4089 4090 static uint64_t 4091 l2arc_write_size(void) 4092 { 4093 uint64_t size; 4094 4095 /* 4096 * Make sure our globals have meaningful values in case the user 4097 * altered them. 4098 */ 4099 size = l2arc_write_max; 4100 if (size == 0) { 4101 cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must " 4102 "be greater than zero, resetting it to the default (%d)", 4103 L2ARC_WRITE_SIZE); 4104 size = l2arc_write_max = L2ARC_WRITE_SIZE; 4105 } 4106 4107 if (arc_warm == B_FALSE) 4108 size += l2arc_write_boost; 4109 4110 return (size); 4111 4112 } 4113 4114 static clock_t 4115 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote) 4116 { 4117 clock_t interval, next, now; 4118 4119 /* 4120 * If the ARC lists are busy, increase our write rate; if the 4121 * lists are stale, idle back. This is achieved by checking 4122 * how much we previously wrote - if it was more than half of 4123 * what we wanted, schedule the next write much sooner. 4124 */ 4125 if (l2arc_feed_again && wrote > (wanted / 2)) 4126 interval = (hz * l2arc_feed_min_ms) / 1000; 4127 else 4128 interval = hz * l2arc_feed_secs; 4129 4130 now = ddi_get_lbolt(); 4131 next = MAX(now, MIN(now + interval, began + interval)); 4132 4133 return (next); 4134 } 4135 4136 static void 4137 l2arc_hdr_stat_add(void) 4138 { 4139 ARCSTAT_INCR(arcstat_l2_hdr_size, HDR_SIZE + L2HDR_SIZE); 4140 ARCSTAT_INCR(arcstat_hdr_size, -HDR_SIZE); 4141 } 4142 4143 static void 4144 l2arc_hdr_stat_remove(void) 4145 { 4146 ARCSTAT_INCR(arcstat_l2_hdr_size, -(HDR_SIZE + L2HDR_SIZE)); 4147 ARCSTAT_INCR(arcstat_hdr_size, HDR_SIZE); 4148 } 4149 4150 /* 4151 * Cycle through L2ARC devices. This is how L2ARC load balances. 4152 * If a device is returned, this also returns holding the spa config lock. 4153 */ 4154 static l2arc_dev_t * 4155 l2arc_dev_get_next(void) 4156 { 4157 l2arc_dev_t *first, *next = NULL; 4158 4159 /* 4160 * Lock out the removal of spas (spa_namespace_lock), then removal 4161 * of cache devices (l2arc_dev_mtx). Once a device has been selected, 4162 * both locks will be dropped and a spa config lock held instead. 4163 */ 4164 mutex_enter(&spa_namespace_lock); 4165 mutex_enter(&l2arc_dev_mtx); 4166 4167 /* if there are no vdevs, there is nothing to do */ 4168 if (l2arc_ndev == 0) 4169 goto out; 4170 4171 first = NULL; 4172 next = l2arc_dev_last; 4173 do { 4174 /* loop around the list looking for a non-faulted vdev */ 4175 if (next == NULL) { 4176 next = list_head(l2arc_dev_list); 4177 } else { 4178 next = list_next(l2arc_dev_list, next); 4179 if (next == NULL) 4180 next = list_head(l2arc_dev_list); 4181 } 4182 4183 /* if we have come back to the start, bail out */ 4184 if (first == NULL) 4185 first = next; 4186 else if (next == first) 4187 break; 4188 4189 } while (vdev_is_dead(next->l2ad_vdev)); 4190 4191 /* if we were unable to find any usable vdevs, return NULL */ 4192 if (vdev_is_dead(next->l2ad_vdev)) 4193 next = NULL; 4194 4195 l2arc_dev_last = next; 4196 4197 out: 4198 mutex_exit(&l2arc_dev_mtx); 4199 4200 /* 4201 * Grab the config lock to prevent the 'next' device from being 4202 * removed while we are writing to it. 4203 */ 4204 if (next != NULL) 4205 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER); 4206 mutex_exit(&spa_namespace_lock); 4207 4208 return (next); 4209 } 4210 4211 /* 4212 * Free buffers that were tagged for destruction. 4213 */ 4214 static void 4215 l2arc_do_free_on_write() 4216 { 4217 list_t *buflist; 4218 l2arc_data_free_t *df, *df_prev; 4219 4220 mutex_enter(&l2arc_free_on_write_mtx); 4221 buflist = l2arc_free_on_write; 4222 4223 for (df = list_tail(buflist); df; df = df_prev) { 4224 df_prev = list_prev(buflist, df); 4225 ASSERT(df->l2df_data != NULL); 4226 ASSERT(df->l2df_func != NULL); 4227 df->l2df_func(df->l2df_data, df->l2df_size); 4228 list_remove(buflist, df); 4229 kmem_free(df, sizeof (l2arc_data_free_t)); 4230 } 4231 4232 mutex_exit(&l2arc_free_on_write_mtx); 4233 } 4234 4235 /* 4236 * A write to a cache device has completed. Update all headers to allow 4237 * reads from these buffers to begin. 4238 */ 4239 static void 4240 l2arc_write_done(zio_t *zio) 4241 { 4242 l2arc_write_callback_t *cb; 4243 l2arc_dev_t *dev; 4244 list_t *buflist; 4245 arc_buf_hdr_t *head, *ab, *ab_prev; 4246 l2arc_buf_hdr_t *abl2; 4247 kmutex_t *hash_lock; 4248 int64_t bytes_dropped = 0; 4249 4250 cb = zio->io_private; 4251 ASSERT(cb != NULL); 4252 dev = cb->l2wcb_dev; 4253 ASSERT(dev != NULL); 4254 head = cb->l2wcb_head; 4255 ASSERT(head != NULL); 4256 buflist = dev->l2ad_buflist; 4257 ASSERT(buflist != NULL); 4258 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio, 4259 l2arc_write_callback_t *, cb); 4260 4261 if (zio->io_error != 0) 4262 ARCSTAT_BUMP(arcstat_l2_writes_error); 4263 4264 mutex_enter(&l2arc_buflist_mtx); 4265 4266 /* 4267 * All writes completed, or an error was hit. 4268 */ 4269 for (ab = list_prev(buflist, head); ab; ab = ab_prev) { 4270 ab_prev = list_prev(buflist, ab); 4271 abl2 = ab->b_l2hdr; 4272 4273 /* 4274 * Release the temporary compressed buffer as soon as possible. 4275 */ 4276 if (abl2->b_compress != ZIO_COMPRESS_OFF) 4277 l2arc_release_cdata_buf(ab); 4278 4279 hash_lock = HDR_LOCK(ab); 4280 if (!mutex_tryenter(hash_lock)) { 4281 /* 4282 * This buffer misses out. It may be in a stage 4283 * of eviction. Its ARC_L2_WRITING flag will be 4284 * left set, denying reads to this buffer. 4285 */ 4286 ARCSTAT_BUMP(arcstat_l2_writes_hdr_miss); 4287 continue; 4288 } 4289 4290 if (zio->io_error != 0) { 4291 /* 4292 * Error - drop L2ARC entry. 4293 */ 4294 list_remove(buflist, ab); 4295 ARCSTAT_INCR(arcstat_l2_asize, -abl2->b_asize); 4296 bytes_dropped += abl2->b_asize; 4297 ab->b_l2hdr = NULL; 4298 kmem_free(abl2, sizeof (l2arc_buf_hdr_t)); 4299 ARCSTAT_INCR(arcstat_l2_size, -ab->b_size); 4300 } 4301 4302 /* 4303 * Allow ARC to begin reads to this L2ARC entry. 4304 */ 4305 ab->b_flags &= ~ARC_L2_WRITING; 4306 4307 mutex_exit(hash_lock); 4308 } 4309 4310 atomic_inc_64(&l2arc_writes_done); 4311 list_remove(buflist, head); 4312 kmem_cache_free(hdr_cache, head); 4313 mutex_exit(&l2arc_buflist_mtx); 4314 4315 vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0); 4316 4317 l2arc_do_free_on_write(); 4318 4319 kmem_free(cb, sizeof (l2arc_write_callback_t)); 4320 } 4321 4322 /* 4323 * A read to a cache device completed. Validate buffer contents before 4324 * handing over to the regular ARC routines. 4325 */ 4326 static void 4327 l2arc_read_done(zio_t *zio) 4328 { 4329 l2arc_read_callback_t *cb; 4330 arc_buf_hdr_t *hdr; 4331 arc_buf_t *buf; 4332 kmutex_t *hash_lock; 4333 int equal; 4334 4335 ASSERT(zio->io_vd != NULL); 4336 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE); 4337 4338 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd); 4339 4340 cb = zio->io_private; 4341 ASSERT(cb != NULL); 4342 buf = cb->l2rcb_buf; 4343 ASSERT(buf != NULL); 4344 4345 hash_lock = HDR_LOCK(buf->b_hdr); 4346 mutex_enter(hash_lock); 4347 hdr = buf->b_hdr; 4348 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 4349 4350 /* 4351 * If the buffer was compressed, decompress it first. 4352 */ 4353 if (cb->l2rcb_compress != ZIO_COMPRESS_OFF) 4354 l2arc_decompress_zio(zio, hdr, cb->l2rcb_compress); 4355 ASSERT(zio->io_data != NULL); 4356 4357 /* 4358 * Check this survived the L2ARC journey. 4359 */ 4360 equal = arc_cksum_equal(buf); 4361 if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) { 4362 mutex_exit(hash_lock); 4363 zio->io_private = buf; 4364 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */ 4365 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */ 4366 arc_read_done(zio); 4367 } else { 4368 mutex_exit(hash_lock); 4369 /* 4370 * Buffer didn't survive caching. Increment stats and 4371 * reissue to the original storage device. 4372 */ 4373 if (zio->io_error != 0) { 4374 ARCSTAT_BUMP(arcstat_l2_io_error); 4375 } else { 4376 zio->io_error = SET_ERROR(EIO); 4377 } 4378 if (!equal) 4379 ARCSTAT_BUMP(arcstat_l2_cksum_bad); 4380 4381 /* 4382 * If there's no waiter, issue an async i/o to the primary 4383 * storage now. If there *is* a waiter, the caller must 4384 * issue the i/o in a context where it's OK to block. 4385 */ 4386 if (zio->io_waiter == NULL) { 4387 zio_t *pio = zio_unique_parent(zio); 4388 4389 ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL); 4390 4391 zio_nowait(zio_read(pio, cb->l2rcb_spa, &cb->l2rcb_bp, 4392 buf->b_data, zio->io_size, arc_read_done, buf, 4393 zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb)); 4394 } 4395 } 4396 4397 kmem_free(cb, sizeof (l2arc_read_callback_t)); 4398 } 4399 4400 /* 4401 * This is the list priority from which the L2ARC will search for pages to 4402 * cache. This is used within loops (0..3) to cycle through lists in the 4403 * desired order. This order can have a significant effect on cache 4404 * performance. 4405 * 4406 * Currently the metadata lists are hit first, MFU then MRU, followed by 4407 * the data lists. This function returns a locked list, and also returns 4408 * the lock pointer. 4409 */ 4410 static list_t * 4411 l2arc_list_locked(int list_num, kmutex_t **lock) 4412 { 4413 list_t *list = NULL; 4414 4415 ASSERT(list_num >= 0 && list_num <= 3); 4416 4417 switch (list_num) { 4418 case 0: 4419 list = &arc_mfu->arcs_list[ARC_BUFC_METADATA]; 4420 *lock = &arc_mfu->arcs_mtx; 4421 break; 4422 case 1: 4423 list = &arc_mru->arcs_list[ARC_BUFC_METADATA]; 4424 *lock = &arc_mru->arcs_mtx; 4425 break; 4426 case 2: 4427 list = &arc_mfu->arcs_list[ARC_BUFC_DATA]; 4428 *lock = &arc_mfu->arcs_mtx; 4429 break; 4430 case 3: 4431 list = &arc_mru->arcs_list[ARC_BUFC_DATA]; 4432 *lock = &arc_mru->arcs_mtx; 4433 break; 4434 } 4435 4436 ASSERT(!(MUTEX_HELD(*lock))); 4437 mutex_enter(*lock); 4438 return (list); 4439 } 4440 4441 /* 4442 * Evict buffers from the device write hand to the distance specified in 4443 * bytes. This distance may span populated buffers, it may span nothing. 4444 * This is clearing a region on the L2ARC device ready for writing. 4445 * If the 'all' boolean is set, every buffer is evicted. 4446 */ 4447 static void 4448 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all) 4449 { 4450 list_t *buflist; 4451 l2arc_buf_hdr_t *abl2; 4452 arc_buf_hdr_t *ab, *ab_prev; 4453 kmutex_t *hash_lock; 4454 uint64_t taddr; 4455 int64_t bytes_evicted = 0; 4456 4457 buflist = dev->l2ad_buflist; 4458 4459 if (buflist == NULL) 4460 return; 4461 4462 if (!all && dev->l2ad_first) { 4463 /* 4464 * This is the first sweep through the device. There is 4465 * nothing to evict. 4466 */ 4467 return; 4468 } 4469 4470 if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) { 4471 /* 4472 * When nearing the end of the device, evict to the end 4473 * before the device write hand jumps to the start. 4474 */ 4475 taddr = dev->l2ad_end; 4476 } else { 4477 taddr = dev->l2ad_hand + distance; 4478 } 4479 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist, 4480 uint64_t, taddr, boolean_t, all); 4481 4482 top: 4483 mutex_enter(&l2arc_buflist_mtx); 4484 for (ab = list_tail(buflist); ab; ab = ab_prev) { 4485 ab_prev = list_prev(buflist, ab); 4486 4487 hash_lock = HDR_LOCK(ab); 4488 if (!mutex_tryenter(hash_lock)) { 4489 /* 4490 * Missed the hash lock. Retry. 4491 */ 4492 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry); 4493 mutex_exit(&l2arc_buflist_mtx); 4494 mutex_enter(hash_lock); 4495 mutex_exit(hash_lock); 4496 goto top; 4497 } 4498 4499 if (HDR_L2_WRITE_HEAD(ab)) { 4500 /* 4501 * We hit a write head node. Leave it for 4502 * l2arc_write_done(). 4503 */ 4504 list_remove(buflist, ab); 4505 mutex_exit(hash_lock); 4506 continue; 4507 } 4508 4509 if (!all && ab->b_l2hdr != NULL && 4510 (ab->b_l2hdr->b_daddr > taddr || 4511 ab->b_l2hdr->b_daddr < dev->l2ad_hand)) { 4512 /* 4513 * We've evicted to the target address, 4514 * or the end of the device. 4515 */ 4516 mutex_exit(hash_lock); 4517 break; 4518 } 4519 4520 if (HDR_FREE_IN_PROGRESS(ab)) { 4521 /* 4522 * Already on the path to destruction. 4523 */ 4524 mutex_exit(hash_lock); 4525 continue; 4526 } 4527 4528 if (ab->b_state == arc_l2c_only) { 4529 ASSERT(!HDR_L2_READING(ab)); 4530 /* 4531 * This doesn't exist in the ARC. Destroy. 4532 * arc_hdr_destroy() will call list_remove() 4533 * and decrement arcstat_l2_size. 4534 */ 4535 arc_change_state(arc_anon, ab, hash_lock); 4536 arc_hdr_destroy(ab); 4537 } else { 4538 /* 4539 * Invalidate issued or about to be issued 4540 * reads, since we may be about to write 4541 * over this location. 4542 */ 4543 if (HDR_L2_READING(ab)) { 4544 ARCSTAT_BUMP(arcstat_l2_evict_reading); 4545 ab->b_flags |= ARC_L2_EVICTED; 4546 } 4547 4548 /* 4549 * Tell ARC this no longer exists in L2ARC. 4550 */ 4551 if (ab->b_l2hdr != NULL) { 4552 abl2 = ab->b_l2hdr; 4553 ARCSTAT_INCR(arcstat_l2_asize, -abl2->b_asize); 4554 bytes_evicted += abl2->b_asize; 4555 ab->b_l2hdr = NULL; 4556 kmem_free(abl2, sizeof (l2arc_buf_hdr_t)); 4557 ARCSTAT_INCR(arcstat_l2_size, -ab->b_size); 4558 } 4559 list_remove(buflist, ab); 4560 4561 /* 4562 * This may have been leftover after a 4563 * failed write. 4564 */ 4565 ab->b_flags &= ~ARC_L2_WRITING; 4566 } 4567 mutex_exit(hash_lock); 4568 } 4569 mutex_exit(&l2arc_buflist_mtx); 4570 4571 vdev_space_update(dev->l2ad_vdev, -bytes_evicted, 0, 0); 4572 dev->l2ad_evict = taddr; 4573 } 4574 4575 /* 4576 * Find and write ARC buffers to the L2ARC device. 4577 * 4578 * An ARC_L2_WRITING flag is set so that the L2ARC buffers are not valid 4579 * for reading until they have completed writing. 4580 * The headroom_boost is an in-out parameter used to maintain headroom boost 4581 * state between calls to this function. 4582 * 4583 * Returns the number of bytes actually written (which may be smaller than 4584 * the delta by which the device hand has changed due to alignment). 4585 */ 4586 static uint64_t 4587 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz, 4588 boolean_t *headroom_boost) 4589 { 4590 arc_buf_hdr_t *ab, *ab_prev, *head; 4591 list_t *list; 4592 uint64_t write_asize, write_psize, write_sz, headroom, 4593 buf_compress_minsz; 4594 void *buf_data; 4595 kmutex_t *list_lock; 4596 boolean_t full; 4597 l2arc_write_callback_t *cb; 4598 zio_t *pio, *wzio; 4599 uint64_t guid = spa_load_guid(spa); 4600 const boolean_t do_headroom_boost = *headroom_boost; 4601 4602 ASSERT(dev->l2ad_vdev != NULL); 4603 4604 /* Lower the flag now, we might want to raise it again later. */ 4605 *headroom_boost = B_FALSE; 4606 4607 pio = NULL; 4608 write_sz = write_asize = write_psize = 0; 4609 full = B_FALSE; 4610 head = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE); 4611 head->b_flags |= ARC_L2_WRITE_HEAD; 4612 4613 /* 4614 * We will want to try to compress buffers that are at least 2x the 4615 * device sector size. 4616 */ 4617 buf_compress_minsz = 2 << dev->l2ad_vdev->vdev_ashift; 4618 4619 /* 4620 * Copy buffers for L2ARC writing. 4621 */ 4622 mutex_enter(&l2arc_buflist_mtx); 4623 for (int try = 0; try <= 3; try++) { 4624 uint64_t passed_sz = 0; 4625 4626 list = l2arc_list_locked(try, &list_lock); 4627 4628 /* 4629 * L2ARC fast warmup. 4630 * 4631 * Until the ARC is warm and starts to evict, read from the 4632 * head of the ARC lists rather than the tail. 4633 */ 4634 if (arc_warm == B_FALSE) 4635 ab = list_head(list); 4636 else 4637 ab = list_tail(list); 4638 4639 headroom = target_sz * l2arc_headroom; 4640 if (do_headroom_boost) 4641 headroom = (headroom * l2arc_headroom_boost) / 100; 4642 4643 for (; ab; ab = ab_prev) { 4644 l2arc_buf_hdr_t *l2hdr; 4645 kmutex_t *hash_lock; 4646 uint64_t buf_sz; 4647 4648 if (arc_warm == B_FALSE) 4649 ab_prev = list_next(list, ab); 4650 else 4651 ab_prev = list_prev(list, ab); 4652 4653 hash_lock = HDR_LOCK(ab); 4654 if (!mutex_tryenter(hash_lock)) { 4655 /* 4656 * Skip this buffer rather than waiting. 4657 */ 4658 continue; 4659 } 4660 4661 passed_sz += ab->b_size; 4662 if (passed_sz > headroom) { 4663 /* 4664 * Searched too far. 4665 */ 4666 mutex_exit(hash_lock); 4667 break; 4668 } 4669 4670 if (!l2arc_write_eligible(guid, ab)) { 4671 mutex_exit(hash_lock); 4672 continue; 4673 } 4674 4675 if ((write_sz + ab->b_size) > target_sz) { 4676 full = B_TRUE; 4677 mutex_exit(hash_lock); 4678 break; 4679 } 4680 4681 if (pio == NULL) { 4682 /* 4683 * Insert a dummy header on the buflist so 4684 * l2arc_write_done() can find where the 4685 * write buffers begin without searching. 4686 */ 4687 list_insert_head(dev->l2ad_buflist, head); 4688 4689 cb = kmem_alloc( 4690 sizeof (l2arc_write_callback_t), KM_SLEEP); 4691 cb->l2wcb_dev = dev; 4692 cb->l2wcb_head = head; 4693 pio = zio_root(spa, l2arc_write_done, cb, 4694 ZIO_FLAG_CANFAIL); 4695 } 4696 4697 /* 4698 * Create and add a new L2ARC header. 4699 */ 4700 l2hdr = kmem_zalloc(sizeof (l2arc_buf_hdr_t), KM_SLEEP); 4701 l2hdr->b_dev = dev; 4702 ab->b_flags |= ARC_L2_WRITING; 4703 4704 /* 4705 * Temporarily stash the data buffer in b_tmp_cdata. 4706 * The subsequent write step will pick it up from 4707 * there. This is because can't access ab->b_buf 4708 * without holding the hash_lock, which we in turn 4709 * can't access without holding the ARC list locks 4710 * (which we want to avoid during compression/writing). 4711 */ 4712 l2hdr->b_compress = ZIO_COMPRESS_OFF; 4713 l2hdr->b_asize = ab->b_size; 4714 l2hdr->b_tmp_cdata = ab->b_buf->b_data; 4715 4716 buf_sz = ab->b_size; 4717 ab->b_l2hdr = l2hdr; 4718 4719 list_insert_head(dev->l2ad_buflist, ab); 4720 4721 /* 4722 * Compute and store the buffer cksum before 4723 * writing. On debug the cksum is verified first. 4724 */ 4725 arc_cksum_verify(ab->b_buf); 4726 arc_cksum_compute(ab->b_buf, B_TRUE); 4727 4728 mutex_exit(hash_lock); 4729 4730 write_sz += buf_sz; 4731 } 4732 4733 mutex_exit(list_lock); 4734 4735 if (full == B_TRUE) 4736 break; 4737 } 4738 4739 /* No buffers selected for writing? */ 4740 if (pio == NULL) { 4741 ASSERT0(write_sz); 4742 mutex_exit(&l2arc_buflist_mtx); 4743 kmem_cache_free(hdr_cache, head); 4744 return (0); 4745 } 4746 4747 /* 4748 * Now start writing the buffers. We're starting at the write head 4749 * and work backwards, retracing the course of the buffer selector 4750 * loop above. 4751 */ 4752 for (ab = list_prev(dev->l2ad_buflist, head); ab; 4753 ab = list_prev(dev->l2ad_buflist, ab)) { 4754 l2arc_buf_hdr_t *l2hdr; 4755 uint64_t buf_sz; 4756 4757 /* 4758 * We shouldn't need to lock the buffer here, since we flagged 4759 * it as ARC_L2_WRITING in the previous step, but we must take 4760 * care to only access its L2 cache parameters. In particular, 4761 * ab->b_buf may be invalid by now due to ARC eviction. 4762 */ 4763 l2hdr = ab->b_l2hdr; 4764 l2hdr->b_daddr = dev->l2ad_hand; 4765 4766 if ((ab->b_flags & ARC_L2COMPRESS) && 4767 l2hdr->b_asize >= buf_compress_minsz) { 4768 if (l2arc_compress_buf(l2hdr)) { 4769 /* 4770 * If compression succeeded, enable headroom 4771 * boost on the next scan cycle. 4772 */ 4773 *headroom_boost = B_TRUE; 4774 } 4775 } 4776 4777 /* 4778 * Pick up the buffer data we had previously stashed away 4779 * (and now potentially also compressed). 4780 */ 4781 buf_data = l2hdr->b_tmp_cdata; 4782 buf_sz = l2hdr->b_asize; 4783 4784 /* Compression may have squashed the buffer to zero length. */ 4785 if (buf_sz != 0) { 4786 uint64_t buf_p_sz; 4787 4788 wzio = zio_write_phys(pio, dev->l2ad_vdev, 4789 dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF, 4790 NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE, 4791 ZIO_FLAG_CANFAIL, B_FALSE); 4792 4793 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, 4794 zio_t *, wzio); 4795 (void) zio_nowait(wzio); 4796 4797 write_asize += buf_sz; 4798 /* 4799 * Keep the clock hand suitably device-aligned. 4800 */ 4801 buf_p_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz); 4802 write_psize += buf_p_sz; 4803 dev->l2ad_hand += buf_p_sz; 4804 } 4805 } 4806 4807 mutex_exit(&l2arc_buflist_mtx); 4808 4809 ASSERT3U(write_asize, <=, target_sz); 4810 ARCSTAT_BUMP(arcstat_l2_writes_sent); 4811 ARCSTAT_INCR(arcstat_l2_write_bytes, write_asize); 4812 ARCSTAT_INCR(arcstat_l2_size, write_sz); 4813 ARCSTAT_INCR(arcstat_l2_asize, write_asize); 4814 vdev_space_update(dev->l2ad_vdev, write_asize, 0, 0); 4815 4816 /* 4817 * Bump device hand to the device start if it is approaching the end. 4818 * l2arc_evict() will already have evicted ahead for this case. 4819 */ 4820 if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) { 4821 dev->l2ad_hand = dev->l2ad_start; 4822 dev->l2ad_evict = dev->l2ad_start; 4823 dev->l2ad_first = B_FALSE; 4824 } 4825 4826 dev->l2ad_writing = B_TRUE; 4827 (void) zio_wait(pio); 4828 dev->l2ad_writing = B_FALSE; 4829 4830 return (write_asize); 4831 } 4832 4833 /* 4834 * Compresses an L2ARC buffer. 4835 * The data to be compressed must be prefilled in l2hdr->b_tmp_cdata and its 4836 * size in l2hdr->b_asize. This routine tries to compress the data and 4837 * depending on the compression result there are three possible outcomes: 4838 * *) The buffer was incompressible. The original l2hdr contents were left 4839 * untouched and are ready for writing to an L2 device. 4840 * *) The buffer was all-zeros, so there is no need to write it to an L2 4841 * device. To indicate this situation b_tmp_cdata is NULL'ed, b_asize is 4842 * set to zero and b_compress is set to ZIO_COMPRESS_EMPTY. 4843 * *) Compression succeeded and b_tmp_cdata was replaced with a temporary 4844 * data buffer which holds the compressed data to be written, and b_asize 4845 * tells us how much data there is. b_compress is set to the appropriate 4846 * compression algorithm. Once writing is done, invoke 4847 * l2arc_release_cdata_buf on this l2hdr to free this temporary buffer. 4848 * 4849 * Returns B_TRUE if compression succeeded, or B_FALSE if it didn't (the 4850 * buffer was incompressible). 4851 */ 4852 static boolean_t 4853 l2arc_compress_buf(l2arc_buf_hdr_t *l2hdr) 4854 { 4855 void *cdata; 4856 size_t csize, len, rounded; 4857 4858 ASSERT(l2hdr->b_compress == ZIO_COMPRESS_OFF); 4859 ASSERT(l2hdr->b_tmp_cdata != NULL); 4860 4861 len = l2hdr->b_asize; 4862 cdata = zio_data_buf_alloc(len); 4863 csize = zio_compress_data(ZIO_COMPRESS_LZ4, l2hdr->b_tmp_cdata, 4864 cdata, l2hdr->b_asize); 4865 4866 rounded = P2ROUNDUP(csize, (size_t)SPA_MINBLOCKSIZE); 4867 if (rounded > csize) { 4868 bzero((char *)cdata + csize, rounded - csize); 4869 csize = rounded; 4870 } 4871 4872 if (csize == 0) { 4873 /* zero block, indicate that there's nothing to write */ 4874 zio_data_buf_free(cdata, len); 4875 l2hdr->b_compress = ZIO_COMPRESS_EMPTY; 4876 l2hdr->b_asize = 0; 4877 l2hdr->b_tmp_cdata = NULL; 4878 ARCSTAT_BUMP(arcstat_l2_compress_zeros); 4879 return (B_TRUE); 4880 } else if (csize > 0 && csize < len) { 4881 /* 4882 * Compression succeeded, we'll keep the cdata around for 4883 * writing and release it afterwards. 4884 */ 4885 l2hdr->b_compress = ZIO_COMPRESS_LZ4; 4886 l2hdr->b_asize = csize; 4887 l2hdr->b_tmp_cdata = cdata; 4888 ARCSTAT_BUMP(arcstat_l2_compress_successes); 4889 return (B_TRUE); 4890 } else { 4891 /* 4892 * Compression failed, release the compressed buffer. 4893 * l2hdr will be left unmodified. 4894 */ 4895 zio_data_buf_free(cdata, len); 4896 ARCSTAT_BUMP(arcstat_l2_compress_failures); 4897 return (B_FALSE); 4898 } 4899 } 4900 4901 /* 4902 * Decompresses a zio read back from an l2arc device. On success, the 4903 * underlying zio's io_data buffer is overwritten by the uncompressed 4904 * version. On decompression error (corrupt compressed stream), the 4905 * zio->io_error value is set to signal an I/O error. 4906 * 4907 * Please note that the compressed data stream is not checksummed, so 4908 * if the underlying device is experiencing data corruption, we may feed 4909 * corrupt data to the decompressor, so the decompressor needs to be 4910 * able to handle this situation (LZ4 does). 4911 */ 4912 static void 4913 l2arc_decompress_zio(zio_t *zio, arc_buf_hdr_t *hdr, enum zio_compress c) 4914 { 4915 ASSERT(L2ARC_IS_VALID_COMPRESS(c)); 4916 4917 if (zio->io_error != 0) { 4918 /* 4919 * An io error has occured, just restore the original io 4920 * size in preparation for a main pool read. 4921 */ 4922 zio->io_orig_size = zio->io_size = hdr->b_size; 4923 return; 4924 } 4925 4926 if (c == ZIO_COMPRESS_EMPTY) { 4927 /* 4928 * An empty buffer results in a null zio, which means we 4929 * need to fill its io_data after we're done restoring the 4930 * buffer's contents. 4931 */ 4932 ASSERT(hdr->b_buf != NULL); 4933 bzero(hdr->b_buf->b_data, hdr->b_size); 4934 zio->io_data = zio->io_orig_data = hdr->b_buf->b_data; 4935 } else { 4936 ASSERT(zio->io_data != NULL); 4937 /* 4938 * We copy the compressed data from the start of the arc buffer 4939 * (the zio_read will have pulled in only what we need, the 4940 * rest is garbage which we will overwrite at decompression) 4941 * and then decompress back to the ARC data buffer. This way we 4942 * can minimize copying by simply decompressing back over the 4943 * original compressed data (rather than decompressing to an 4944 * aux buffer and then copying back the uncompressed buffer, 4945 * which is likely to be much larger). 4946 */ 4947 uint64_t csize; 4948 void *cdata; 4949 4950 csize = zio->io_size; 4951 cdata = zio_data_buf_alloc(csize); 4952 bcopy(zio->io_data, cdata, csize); 4953 if (zio_decompress_data(c, cdata, zio->io_data, csize, 4954 hdr->b_size) != 0) 4955 zio->io_error = EIO; 4956 zio_data_buf_free(cdata, csize); 4957 } 4958 4959 /* Restore the expected uncompressed IO size. */ 4960 zio->io_orig_size = zio->io_size = hdr->b_size; 4961 } 4962 4963 /* 4964 * Releases the temporary b_tmp_cdata buffer in an l2arc header structure. 4965 * This buffer serves as a temporary holder of compressed data while 4966 * the buffer entry is being written to an l2arc device. Once that is 4967 * done, we can dispose of it. 4968 */ 4969 static void 4970 l2arc_release_cdata_buf(arc_buf_hdr_t *ab) 4971 { 4972 l2arc_buf_hdr_t *l2hdr = ab->b_l2hdr; 4973 4974 if (l2hdr->b_compress == ZIO_COMPRESS_LZ4) { 4975 /* 4976 * If the data was compressed, then we've allocated a 4977 * temporary buffer for it, so now we need to release it. 4978 */ 4979 ASSERT(l2hdr->b_tmp_cdata != NULL); 4980 zio_data_buf_free(l2hdr->b_tmp_cdata, ab->b_size); 4981 } 4982 l2hdr->b_tmp_cdata = NULL; 4983 } 4984 4985 /* 4986 * This thread feeds the L2ARC at regular intervals. This is the beating 4987 * heart of the L2ARC. 4988 */ 4989 static void 4990 l2arc_feed_thread(void) 4991 { 4992 callb_cpr_t cpr; 4993 l2arc_dev_t *dev; 4994 spa_t *spa; 4995 uint64_t size, wrote; 4996 clock_t begin, next = ddi_get_lbolt(); 4997 boolean_t headroom_boost = B_FALSE; 4998 4999 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG); 5000 5001 mutex_enter(&l2arc_feed_thr_lock); 5002 5003 while (l2arc_thread_exit == 0) { 5004 CALLB_CPR_SAFE_BEGIN(&cpr); 5005 (void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock, 5006 next); 5007 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock); 5008 next = ddi_get_lbolt() + hz; 5009 5010 /* 5011 * Quick check for L2ARC devices. 5012 */ 5013 mutex_enter(&l2arc_dev_mtx); 5014 if (l2arc_ndev == 0) { 5015 mutex_exit(&l2arc_dev_mtx); 5016 continue; 5017 } 5018 mutex_exit(&l2arc_dev_mtx); 5019 begin = ddi_get_lbolt(); 5020 5021 /* 5022 * This selects the next l2arc device to write to, and in 5023 * doing so the next spa to feed from: dev->l2ad_spa. This 5024 * will return NULL if there are now no l2arc devices or if 5025 * they are all faulted. 5026 * 5027 * If a device is returned, its spa's config lock is also 5028 * held to prevent device removal. l2arc_dev_get_next() 5029 * will grab and release l2arc_dev_mtx. 5030 */ 5031 if ((dev = l2arc_dev_get_next()) == NULL) 5032 continue; 5033 5034 spa = dev->l2ad_spa; 5035 ASSERT(spa != NULL); 5036 5037 /* 5038 * If the pool is read-only then force the feed thread to 5039 * sleep a little longer. 5040 */ 5041 if (!spa_writeable(spa)) { 5042 next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz; 5043 spa_config_exit(spa, SCL_L2ARC, dev); 5044 continue; 5045 } 5046 5047 /* 5048 * Avoid contributing to memory pressure. 5049 */ 5050 if (arc_reclaim_needed()) { 5051 ARCSTAT_BUMP(arcstat_l2_abort_lowmem); 5052 spa_config_exit(spa, SCL_L2ARC, dev); 5053 continue; 5054 } 5055 5056 ARCSTAT_BUMP(arcstat_l2_feeds); 5057 5058 size = l2arc_write_size(); 5059 5060 /* 5061 * Evict L2ARC buffers that will be overwritten. 5062 */ 5063 l2arc_evict(dev, size, B_FALSE); 5064 5065 /* 5066 * Write ARC buffers. 5067 */ 5068 wrote = l2arc_write_buffers(spa, dev, size, &headroom_boost); 5069 5070 /* 5071 * Calculate interval between writes. 5072 */ 5073 next = l2arc_write_interval(begin, size, wrote); 5074 spa_config_exit(spa, SCL_L2ARC, dev); 5075 } 5076 5077 l2arc_thread_exit = 0; 5078 cv_broadcast(&l2arc_feed_thr_cv); 5079 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */ 5080 thread_exit(); 5081 } 5082 5083 boolean_t 5084 l2arc_vdev_present(vdev_t *vd) 5085 { 5086 l2arc_dev_t *dev; 5087 5088 mutex_enter(&l2arc_dev_mtx); 5089 for (dev = list_head(l2arc_dev_list); dev != NULL; 5090 dev = list_next(l2arc_dev_list, dev)) { 5091 if (dev->l2ad_vdev == vd) 5092 break; 5093 } 5094 mutex_exit(&l2arc_dev_mtx); 5095 5096 return (dev != NULL); 5097 } 5098 5099 /* 5100 * Add a vdev for use by the L2ARC. By this point the spa has already 5101 * validated the vdev and opened it. 5102 */ 5103 void 5104 l2arc_add_vdev(spa_t *spa, vdev_t *vd) 5105 { 5106 l2arc_dev_t *adddev; 5107 5108 ASSERT(!l2arc_vdev_present(vd)); 5109 5110 /* 5111 * Create a new l2arc device entry. 5112 */ 5113 adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP); 5114 adddev->l2ad_spa = spa; 5115 adddev->l2ad_vdev = vd; 5116 adddev->l2ad_start = VDEV_LABEL_START_SIZE; 5117 adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd); 5118 adddev->l2ad_hand = adddev->l2ad_start; 5119 adddev->l2ad_evict = adddev->l2ad_start; 5120 adddev->l2ad_first = B_TRUE; 5121 adddev->l2ad_writing = B_FALSE; 5122 5123 /* 5124 * This is a list of all ARC buffers that are still valid on the 5125 * device. 5126 */ 5127 adddev->l2ad_buflist = kmem_zalloc(sizeof (list_t), KM_SLEEP); 5128 list_create(adddev->l2ad_buflist, sizeof (arc_buf_hdr_t), 5129 offsetof(arc_buf_hdr_t, b_l2node)); 5130 5131 vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand); 5132 5133 /* 5134 * Add device to global list 5135 */ 5136 mutex_enter(&l2arc_dev_mtx); 5137 list_insert_head(l2arc_dev_list, adddev); 5138 atomic_inc_64(&l2arc_ndev); 5139 mutex_exit(&l2arc_dev_mtx); 5140 } 5141 5142 /* 5143 * Remove a vdev from the L2ARC. 5144 */ 5145 void 5146 l2arc_remove_vdev(vdev_t *vd) 5147 { 5148 l2arc_dev_t *dev, *nextdev, *remdev = NULL; 5149 5150 /* 5151 * Find the device by vdev 5152 */ 5153 mutex_enter(&l2arc_dev_mtx); 5154 for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) { 5155 nextdev = list_next(l2arc_dev_list, dev); 5156 if (vd == dev->l2ad_vdev) { 5157 remdev = dev; 5158 break; 5159 } 5160 } 5161 ASSERT(remdev != NULL); 5162 5163 /* 5164 * Remove device from global list 5165 */ 5166 list_remove(l2arc_dev_list, remdev); 5167 l2arc_dev_last = NULL; /* may have been invalidated */ 5168 atomic_dec_64(&l2arc_ndev); 5169 mutex_exit(&l2arc_dev_mtx); 5170 5171 /* 5172 * Clear all buflists and ARC references. L2ARC device flush. 5173 */ 5174 l2arc_evict(remdev, 0, B_TRUE); 5175 list_destroy(remdev->l2ad_buflist); 5176 kmem_free(remdev->l2ad_buflist, sizeof (list_t)); 5177 kmem_free(remdev, sizeof (l2arc_dev_t)); 5178 } 5179 5180 void 5181 l2arc_init(void) 5182 { 5183 l2arc_thread_exit = 0; 5184 l2arc_ndev = 0; 5185 l2arc_writes_sent = 0; 5186 l2arc_writes_done = 0; 5187 5188 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL); 5189 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL); 5190 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL); 5191 mutex_init(&l2arc_buflist_mtx, NULL, MUTEX_DEFAULT, NULL); 5192 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL); 5193 5194 l2arc_dev_list = &L2ARC_dev_list; 5195 l2arc_free_on_write = &L2ARC_free_on_write; 5196 list_create(l2arc_dev_list, sizeof (l2arc_dev_t), 5197 offsetof(l2arc_dev_t, l2ad_node)); 5198 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t), 5199 offsetof(l2arc_data_free_t, l2df_list_node)); 5200 } 5201 5202 void 5203 l2arc_fini(void) 5204 { 5205 /* 5206 * This is called from dmu_fini(), which is called from spa_fini(); 5207 * Because of this, we can assume that all l2arc devices have 5208 * already been removed when the pools themselves were removed. 5209 */ 5210 5211 l2arc_do_free_on_write(); 5212 5213 mutex_destroy(&l2arc_feed_thr_lock); 5214 cv_destroy(&l2arc_feed_thr_cv); 5215 mutex_destroy(&l2arc_dev_mtx); 5216 mutex_destroy(&l2arc_buflist_mtx); 5217 mutex_destroy(&l2arc_free_on_write_mtx); 5218 5219 list_destroy(l2arc_dev_list); 5220 list_destroy(l2arc_free_on_write); 5221 } 5222 5223 void 5224 l2arc_start(void) 5225 { 5226 if (!(spa_mode_global & FWRITE)) 5227 return; 5228 5229 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0, 5230 TS_RUN, minclsyspri); 5231 } 5232 5233 void 5234 l2arc_stop(void) 5235 { 5236 if (!(spa_mode_global & FWRITE)) 5237 return; 5238 5239 mutex_enter(&l2arc_feed_thr_lock); 5240 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */ 5241 l2arc_thread_exit = 1; 5242 while (l2arc_thread_exit != 0) 5243 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock); 5244 mutex_exit(&l2arc_feed_thr_lock); 5245 } 5246