1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * DVA-based Adjustable Replacement Cache 28 * 29 * While much of the theory of operation used here is 30 * based on the self-tuning, low overhead replacement cache 31 * presented by Megiddo and Modha at FAST 2003, there are some 32 * significant differences: 33 * 34 * 1. The Megiddo and Modha model assumes any page is evictable. 35 * Pages in its cache cannot be "locked" into memory. This makes 36 * the eviction algorithm simple: evict the last page in the list. 37 * This also make the performance characteristics easy to reason 38 * about. Our cache is not so simple. At any given moment, some 39 * subset of the blocks in the cache are un-evictable because we 40 * have handed out a reference to them. Blocks are only evictable 41 * when there are no external references active. This makes 42 * eviction far more problematic: we choose to evict the evictable 43 * blocks that are the "lowest" in the list. 44 * 45 * There are times when it is not possible to evict the requested 46 * space. In these circumstances we are unable to adjust the cache 47 * size. To prevent the cache growing unbounded at these times we 48 * implement a "cache throttle" that slows the flow of new data 49 * into the cache until we can make space available. 50 * 51 * 2. The Megiddo and Modha model assumes a fixed cache size. 52 * Pages are evicted when the cache is full and there is a cache 53 * miss. Our model has a variable sized cache. It grows with 54 * high use, but also tries to react to memory pressure from the 55 * operating system: decreasing its size when system memory is 56 * tight. 57 * 58 * 3. The Megiddo and Modha model assumes a fixed page size. All 59 * elements of the cache are therefor exactly the same size. So 60 * when adjusting the cache size following a cache miss, its simply 61 * a matter of choosing a single page to evict. In our model, we 62 * have variable sized cache blocks (rangeing from 512 bytes to 63 * 128K bytes). We therefor choose a set of blocks to evict to make 64 * space for a cache miss that approximates as closely as possible 65 * the space used by the new block. 66 * 67 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache" 68 * by N. Megiddo & D. Modha, FAST 2003 69 */ 70 71 /* 72 * The locking model: 73 * 74 * A new reference to a cache buffer can be obtained in two 75 * ways: 1) via a hash table lookup using the DVA as a key, 76 * or 2) via one of the ARC lists. The arc_read() interface 77 * uses method 1, while the internal arc algorithms for 78 * adjusting the cache use method 2. We therefor provide two 79 * types of locks: 1) the hash table lock array, and 2) the 80 * arc list locks. 81 * 82 * Buffers do not have their own mutexs, rather they rely on the 83 * hash table mutexs for the bulk of their protection (i.e. most 84 * fields in the arc_buf_hdr_t are protected by these mutexs). 85 * 86 * buf_hash_find() returns the appropriate mutex (held) when it 87 * locates the requested buffer in the hash table. It returns 88 * NULL for the mutex if the buffer was not in the table. 89 * 90 * buf_hash_remove() expects the appropriate hash mutex to be 91 * already held before it is invoked. 92 * 93 * Each arc state also has a mutex which is used to protect the 94 * buffer list associated with the state. When attempting to 95 * obtain a hash table lock while holding an arc list lock you 96 * must use: mutex_tryenter() to avoid deadlock. Also note that 97 * the active state mutex must be held before the ghost state mutex. 98 * 99 * Arc buffers may have an associated eviction callback function. 100 * This function will be invoked prior to removing the buffer (e.g. 101 * in arc_do_user_evicts()). Note however that the data associated 102 * with the buffer may be evicted prior to the callback. The callback 103 * must be made with *no locks held* (to prevent deadlock). Additionally, 104 * the users of callbacks must ensure that their private data is 105 * protected from simultaneous callbacks from arc_buf_evict() 106 * and arc_do_user_evicts(). 107 * 108 * Note that the majority of the performance stats are manipulated 109 * with atomic operations. 110 * 111 * The L2ARC uses the l2arc_buflist_mtx global mutex for the following: 112 * 113 * - L2ARC buflist creation 114 * - L2ARC buflist eviction 115 * - L2ARC write completion, which walks L2ARC buflists 116 * - ARC header destruction, as it removes from L2ARC buflists 117 * - ARC header release, as it removes from L2ARC buflists 118 */ 119 120 #include <sys/spa.h> 121 #include <sys/zio.h> 122 #include <sys/zio_checksum.h> 123 #include <sys/zfs_context.h> 124 #include <sys/arc.h> 125 #include <sys/refcount.h> 126 #include <sys/vdev.h> 127 #ifdef _KERNEL 128 #include <sys/vmsystm.h> 129 #include <vm/anon.h> 130 #include <sys/fs/swapnode.h> 131 #include <sys/dnlc.h> 132 #endif 133 #include <sys/callb.h> 134 #include <sys/kstat.h> 135 136 static kmutex_t arc_reclaim_thr_lock; 137 static kcondvar_t arc_reclaim_thr_cv; /* used to signal reclaim thr */ 138 static uint8_t arc_thread_exit; 139 140 extern int zfs_write_limit_shift; 141 extern uint64_t zfs_write_limit_max; 142 extern uint64_t zfs_write_limit_inflated; 143 144 #define ARC_REDUCE_DNLC_PERCENT 3 145 uint_t arc_reduce_dnlc_percent = ARC_REDUCE_DNLC_PERCENT; 146 147 typedef enum arc_reclaim_strategy { 148 ARC_RECLAIM_AGGR, /* Aggressive reclaim strategy */ 149 ARC_RECLAIM_CONS /* Conservative reclaim strategy */ 150 } arc_reclaim_strategy_t; 151 152 /* number of seconds before growing cache again */ 153 static int arc_grow_retry = 60; 154 155 /* 156 * minimum lifespan of a prefetch block in clock ticks 157 * (initialized in arc_init()) 158 */ 159 static int arc_min_prefetch_lifespan; 160 161 static int arc_dead; 162 163 /* 164 * The arc has filled available memory and has now warmed up. 165 */ 166 static boolean_t arc_warm; 167 168 /* 169 * These tunables are for performance analysis. 170 */ 171 uint64_t zfs_arc_max; 172 uint64_t zfs_arc_min; 173 uint64_t zfs_arc_meta_limit = 0; 174 int zfs_mdcomp_disable = 0; 175 176 /* 177 * Note that buffers can be in one of 6 states: 178 * ARC_anon - anonymous (discussed below) 179 * ARC_mru - recently used, currently cached 180 * ARC_mru_ghost - recentely used, no longer in cache 181 * ARC_mfu - frequently used, currently cached 182 * ARC_mfu_ghost - frequently used, no longer in cache 183 * ARC_l2c_only - exists in L2ARC but not other states 184 * When there are no active references to the buffer, they are 185 * are linked onto a list in one of these arc states. These are 186 * the only buffers that can be evicted or deleted. Within each 187 * state there are multiple lists, one for meta-data and one for 188 * non-meta-data. Meta-data (indirect blocks, blocks of dnodes, 189 * etc.) is tracked separately so that it can be managed more 190 * explicitly: favored over data, limited explicitly. 191 * 192 * Anonymous buffers are buffers that are not associated with 193 * a DVA. These are buffers that hold dirty block copies 194 * before they are written to stable storage. By definition, 195 * they are "ref'd" and are considered part of arc_mru 196 * that cannot be freed. Generally, they will aquire a DVA 197 * as they are written and migrate onto the arc_mru list. 198 * 199 * The ARC_l2c_only state is for buffers that are in the second 200 * level ARC but no longer in any of the ARC_m* lists. The second 201 * level ARC itself may also contain buffers that are in any of 202 * the ARC_m* states - meaning that a buffer can exist in two 203 * places. The reason for the ARC_l2c_only state is to keep the 204 * buffer header in the hash table, so that reads that hit the 205 * second level ARC benefit from these fast lookups. 206 */ 207 208 typedef struct arc_state { 209 list_t arcs_list[ARC_BUFC_NUMTYPES]; /* list of evictable buffers */ 210 uint64_t arcs_lsize[ARC_BUFC_NUMTYPES]; /* amount of evictable data */ 211 uint64_t arcs_size; /* total amount of data in this state */ 212 kmutex_t arcs_mtx; 213 } arc_state_t; 214 215 /* The 6 states: */ 216 static arc_state_t ARC_anon; 217 static arc_state_t ARC_mru; 218 static arc_state_t ARC_mru_ghost; 219 static arc_state_t ARC_mfu; 220 static arc_state_t ARC_mfu_ghost; 221 static arc_state_t ARC_l2c_only; 222 223 typedef struct arc_stats { 224 kstat_named_t arcstat_hits; 225 kstat_named_t arcstat_misses; 226 kstat_named_t arcstat_demand_data_hits; 227 kstat_named_t arcstat_demand_data_misses; 228 kstat_named_t arcstat_demand_metadata_hits; 229 kstat_named_t arcstat_demand_metadata_misses; 230 kstat_named_t arcstat_prefetch_data_hits; 231 kstat_named_t arcstat_prefetch_data_misses; 232 kstat_named_t arcstat_prefetch_metadata_hits; 233 kstat_named_t arcstat_prefetch_metadata_misses; 234 kstat_named_t arcstat_mru_hits; 235 kstat_named_t arcstat_mru_ghost_hits; 236 kstat_named_t arcstat_mfu_hits; 237 kstat_named_t arcstat_mfu_ghost_hits; 238 kstat_named_t arcstat_deleted; 239 kstat_named_t arcstat_recycle_miss; 240 kstat_named_t arcstat_mutex_miss; 241 kstat_named_t arcstat_evict_skip; 242 kstat_named_t arcstat_hash_elements; 243 kstat_named_t arcstat_hash_elements_max; 244 kstat_named_t arcstat_hash_collisions; 245 kstat_named_t arcstat_hash_chains; 246 kstat_named_t arcstat_hash_chain_max; 247 kstat_named_t arcstat_p; 248 kstat_named_t arcstat_c; 249 kstat_named_t arcstat_c_min; 250 kstat_named_t arcstat_c_max; 251 kstat_named_t arcstat_size; 252 kstat_named_t arcstat_hdr_size; 253 kstat_named_t arcstat_l2_hits; 254 kstat_named_t arcstat_l2_misses; 255 kstat_named_t arcstat_l2_feeds; 256 kstat_named_t arcstat_l2_rw_clash; 257 kstat_named_t arcstat_l2_writes_sent; 258 kstat_named_t arcstat_l2_writes_done; 259 kstat_named_t arcstat_l2_writes_error; 260 kstat_named_t arcstat_l2_writes_hdr_miss; 261 kstat_named_t arcstat_l2_evict_lock_retry; 262 kstat_named_t arcstat_l2_evict_reading; 263 kstat_named_t arcstat_l2_free_on_write; 264 kstat_named_t arcstat_l2_abort_lowmem; 265 kstat_named_t arcstat_l2_cksum_bad; 266 kstat_named_t arcstat_l2_io_error; 267 kstat_named_t arcstat_l2_size; 268 kstat_named_t arcstat_l2_hdr_size; 269 kstat_named_t arcstat_memory_throttle_count; 270 } arc_stats_t; 271 272 static arc_stats_t arc_stats = { 273 { "hits", KSTAT_DATA_UINT64 }, 274 { "misses", KSTAT_DATA_UINT64 }, 275 { "demand_data_hits", KSTAT_DATA_UINT64 }, 276 { "demand_data_misses", KSTAT_DATA_UINT64 }, 277 { "demand_metadata_hits", KSTAT_DATA_UINT64 }, 278 { "demand_metadata_misses", KSTAT_DATA_UINT64 }, 279 { "prefetch_data_hits", KSTAT_DATA_UINT64 }, 280 { "prefetch_data_misses", KSTAT_DATA_UINT64 }, 281 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 }, 282 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 }, 283 { "mru_hits", KSTAT_DATA_UINT64 }, 284 { "mru_ghost_hits", KSTAT_DATA_UINT64 }, 285 { "mfu_hits", KSTAT_DATA_UINT64 }, 286 { "mfu_ghost_hits", KSTAT_DATA_UINT64 }, 287 { "deleted", KSTAT_DATA_UINT64 }, 288 { "recycle_miss", KSTAT_DATA_UINT64 }, 289 { "mutex_miss", KSTAT_DATA_UINT64 }, 290 { "evict_skip", KSTAT_DATA_UINT64 }, 291 { "hash_elements", KSTAT_DATA_UINT64 }, 292 { "hash_elements_max", KSTAT_DATA_UINT64 }, 293 { "hash_collisions", KSTAT_DATA_UINT64 }, 294 { "hash_chains", KSTAT_DATA_UINT64 }, 295 { "hash_chain_max", KSTAT_DATA_UINT64 }, 296 { "p", KSTAT_DATA_UINT64 }, 297 { "c", KSTAT_DATA_UINT64 }, 298 { "c_min", KSTAT_DATA_UINT64 }, 299 { "c_max", KSTAT_DATA_UINT64 }, 300 { "size", KSTAT_DATA_UINT64 }, 301 { "hdr_size", KSTAT_DATA_UINT64 }, 302 { "l2_hits", KSTAT_DATA_UINT64 }, 303 { "l2_misses", KSTAT_DATA_UINT64 }, 304 { "l2_feeds", KSTAT_DATA_UINT64 }, 305 { "l2_rw_clash", KSTAT_DATA_UINT64 }, 306 { "l2_writes_sent", KSTAT_DATA_UINT64 }, 307 { "l2_writes_done", KSTAT_DATA_UINT64 }, 308 { "l2_writes_error", KSTAT_DATA_UINT64 }, 309 { "l2_writes_hdr_miss", KSTAT_DATA_UINT64 }, 310 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 }, 311 { "l2_evict_reading", KSTAT_DATA_UINT64 }, 312 { "l2_free_on_write", KSTAT_DATA_UINT64 }, 313 { "l2_abort_lowmem", KSTAT_DATA_UINT64 }, 314 { "l2_cksum_bad", KSTAT_DATA_UINT64 }, 315 { "l2_io_error", KSTAT_DATA_UINT64 }, 316 { "l2_size", KSTAT_DATA_UINT64 }, 317 { "l2_hdr_size", KSTAT_DATA_UINT64 }, 318 { "memory_throttle_count", KSTAT_DATA_UINT64 } 319 }; 320 321 #define ARCSTAT(stat) (arc_stats.stat.value.ui64) 322 323 #define ARCSTAT_INCR(stat, val) \ 324 atomic_add_64(&arc_stats.stat.value.ui64, (val)); 325 326 #define ARCSTAT_BUMP(stat) ARCSTAT_INCR(stat, 1) 327 #define ARCSTAT_BUMPDOWN(stat) ARCSTAT_INCR(stat, -1) 328 329 #define ARCSTAT_MAX(stat, val) { \ 330 uint64_t m; \ 331 while ((val) > (m = arc_stats.stat.value.ui64) && \ 332 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \ 333 continue; \ 334 } 335 336 #define ARCSTAT_MAXSTAT(stat) \ 337 ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64) 338 339 /* 340 * We define a macro to allow ARC hits/misses to be easily broken down by 341 * two separate conditions, giving a total of four different subtypes for 342 * each of hits and misses (so eight statistics total). 343 */ 344 #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \ 345 if (cond1) { \ 346 if (cond2) { \ 347 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \ 348 } else { \ 349 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \ 350 } \ 351 } else { \ 352 if (cond2) { \ 353 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \ 354 } else { \ 355 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\ 356 } \ 357 } 358 359 kstat_t *arc_ksp; 360 static arc_state_t *arc_anon; 361 static arc_state_t *arc_mru; 362 static arc_state_t *arc_mru_ghost; 363 static arc_state_t *arc_mfu; 364 static arc_state_t *arc_mfu_ghost; 365 static arc_state_t *arc_l2c_only; 366 367 /* 368 * There are several ARC variables that are critical to export as kstats -- 369 * but we don't want to have to grovel around in the kstat whenever we wish to 370 * manipulate them. For these variables, we therefore define them to be in 371 * terms of the statistic variable. This assures that we are not introducing 372 * the possibility of inconsistency by having shadow copies of the variables, 373 * while still allowing the code to be readable. 374 */ 375 #define arc_size ARCSTAT(arcstat_size) /* actual total arc size */ 376 #define arc_p ARCSTAT(arcstat_p) /* target size of MRU */ 377 #define arc_c ARCSTAT(arcstat_c) /* target size of cache */ 378 #define arc_c_min ARCSTAT(arcstat_c_min) /* min target cache size */ 379 #define arc_c_max ARCSTAT(arcstat_c_max) /* max target cache size */ 380 381 static int arc_no_grow; /* Don't try to grow cache size */ 382 static uint64_t arc_tempreserve; 383 static uint64_t arc_meta_used; 384 static uint64_t arc_meta_limit; 385 static uint64_t arc_meta_max = 0; 386 387 typedef struct l2arc_buf_hdr l2arc_buf_hdr_t; 388 389 typedef struct arc_callback arc_callback_t; 390 391 struct arc_callback { 392 void *acb_private; 393 arc_done_func_t *acb_done; 394 arc_buf_t *acb_buf; 395 zio_t *acb_zio_dummy; 396 arc_callback_t *acb_next; 397 }; 398 399 typedef struct arc_write_callback arc_write_callback_t; 400 401 struct arc_write_callback { 402 void *awcb_private; 403 arc_done_func_t *awcb_ready; 404 arc_done_func_t *awcb_done; 405 arc_buf_t *awcb_buf; 406 }; 407 408 struct arc_buf_hdr { 409 /* protected by hash lock */ 410 dva_t b_dva; 411 uint64_t b_birth; 412 uint64_t b_cksum0; 413 414 kmutex_t b_freeze_lock; 415 zio_cksum_t *b_freeze_cksum; 416 417 arc_buf_hdr_t *b_hash_next; 418 arc_buf_t *b_buf; 419 uint32_t b_flags; 420 uint32_t b_datacnt; 421 422 arc_callback_t *b_acb; 423 kcondvar_t b_cv; 424 425 /* immutable */ 426 arc_buf_contents_t b_type; 427 uint64_t b_size; 428 spa_t *b_spa; 429 430 /* protected by arc state mutex */ 431 arc_state_t *b_state; 432 list_node_t b_arc_node; 433 434 /* updated atomically */ 435 clock_t b_arc_access; 436 437 /* self protecting */ 438 refcount_t b_refcnt; 439 440 l2arc_buf_hdr_t *b_l2hdr; 441 list_node_t b_l2node; 442 /* 443 * scrub code can lockout access to the buf while it changes 444 * bp's contained within it. 445 */ 446 krwlock_t b_datalock; 447 }; 448 449 static arc_buf_t *arc_eviction_list; 450 static kmutex_t arc_eviction_mtx; 451 static arc_buf_hdr_t arc_eviction_hdr; 452 static void arc_get_data_buf(arc_buf_t *buf); 453 static void arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock); 454 static int arc_evict_needed(arc_buf_contents_t type); 455 static void arc_evict_ghost(arc_state_t *state, spa_t *spa, int64_t bytes); 456 457 #define GHOST_STATE(state) \ 458 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \ 459 (state) == arc_l2c_only) 460 461 /* 462 * Private ARC flags. These flags are private ARC only flags that will show up 463 * in b_flags in the arc_hdr_buf_t. Some flags are publicly declared, and can 464 * be passed in as arc_flags in things like arc_read. However, these flags 465 * should never be passed and should only be set by ARC code. When adding new 466 * public flags, make sure not to smash the private ones. 467 */ 468 469 #define ARC_IN_HASH_TABLE (1 << 9) /* this buffer is hashed */ 470 #define ARC_IO_IN_PROGRESS (1 << 10) /* I/O in progress for buf */ 471 #define ARC_IO_ERROR (1 << 11) /* I/O failed for buf */ 472 #define ARC_FREED_IN_READ (1 << 12) /* buf freed while in read */ 473 #define ARC_BUF_AVAILABLE (1 << 13) /* block not in active use */ 474 #define ARC_INDIRECT (1 << 14) /* this is an indirect block */ 475 #define ARC_FREE_IN_PROGRESS (1 << 15) /* hdr about to be freed */ 476 #define ARC_L2_WRITING (1 << 16) /* L2ARC write in progress */ 477 #define ARC_L2_EVICTED (1 << 17) /* evicted during I/O */ 478 #define ARC_L2_WRITE_HEAD (1 << 18) /* head of write list */ 479 #define ARC_STORED (1 << 19) /* has been store()d to */ 480 481 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_IN_HASH_TABLE) 482 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_IO_IN_PROGRESS) 483 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_IO_ERROR) 484 #define HDR_FREED_IN_READ(hdr) ((hdr)->b_flags & ARC_FREED_IN_READ) 485 #define HDR_BUF_AVAILABLE(hdr) ((hdr)->b_flags & ARC_BUF_AVAILABLE) 486 #define HDR_FREE_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FREE_IN_PROGRESS) 487 #define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_L2CACHE) 488 #define HDR_L2_READING(hdr) ((hdr)->b_flags & ARC_IO_IN_PROGRESS && \ 489 (hdr)->b_l2hdr != NULL) 490 #define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_L2_WRITING) 491 #define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_L2_EVICTED) 492 #define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_L2_WRITE_HEAD) 493 494 /* 495 * Other sizes 496 */ 497 498 #define HDR_SIZE ((int64_t)sizeof (arc_buf_hdr_t)) 499 #define L2HDR_SIZE ((int64_t)sizeof (l2arc_buf_hdr_t)) 500 501 /* 502 * Hash table routines 503 */ 504 505 #define HT_LOCK_PAD 64 506 507 struct ht_lock { 508 kmutex_t ht_lock; 509 #ifdef _KERNEL 510 unsigned char pad[(HT_LOCK_PAD - sizeof (kmutex_t))]; 511 #endif 512 }; 513 514 #define BUF_LOCKS 256 515 typedef struct buf_hash_table { 516 uint64_t ht_mask; 517 arc_buf_hdr_t **ht_table; 518 struct ht_lock ht_locks[BUF_LOCKS]; 519 } buf_hash_table_t; 520 521 static buf_hash_table_t buf_hash_table; 522 523 #define BUF_HASH_INDEX(spa, dva, birth) \ 524 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask) 525 #define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)]) 526 #define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock)) 527 #define HDR_LOCK(buf) \ 528 (BUF_HASH_LOCK(BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth))) 529 530 uint64_t zfs_crc64_table[256]; 531 532 /* 533 * Level 2 ARC 534 */ 535 536 #define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */ 537 #define L2ARC_HEADROOM 4 /* num of writes */ 538 #define L2ARC_FEED_SECS 1 /* caching interval */ 539 540 #define l2arc_writes_sent ARCSTAT(arcstat_l2_writes_sent) 541 #define l2arc_writes_done ARCSTAT(arcstat_l2_writes_done) 542 543 /* 544 * L2ARC Performance Tunables 545 */ 546 uint64_t l2arc_write_max = L2ARC_WRITE_SIZE; /* default max write size */ 547 uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra write during warmup */ 548 uint64_t l2arc_headroom = L2ARC_HEADROOM; /* number of dev writes */ 549 uint64_t l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */ 550 boolean_t l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */ 551 552 /* 553 * L2ARC Internals 554 */ 555 typedef struct l2arc_dev { 556 vdev_t *l2ad_vdev; /* vdev */ 557 spa_t *l2ad_spa; /* spa */ 558 uint64_t l2ad_hand; /* next write location */ 559 uint64_t l2ad_write; /* desired write size, bytes */ 560 uint64_t l2ad_boost; /* warmup write boost, bytes */ 561 uint64_t l2ad_start; /* first addr on device */ 562 uint64_t l2ad_end; /* last addr on device */ 563 uint64_t l2ad_evict; /* last addr eviction reached */ 564 boolean_t l2ad_first; /* first sweep through */ 565 list_t *l2ad_buflist; /* buffer list */ 566 list_node_t l2ad_node; /* device list node */ 567 } l2arc_dev_t; 568 569 static list_t L2ARC_dev_list; /* device list */ 570 static list_t *l2arc_dev_list; /* device list pointer */ 571 static kmutex_t l2arc_dev_mtx; /* device list mutex */ 572 static l2arc_dev_t *l2arc_dev_last; /* last device used */ 573 static kmutex_t l2arc_buflist_mtx; /* mutex for all buflists */ 574 static list_t L2ARC_free_on_write; /* free after write buf list */ 575 static list_t *l2arc_free_on_write; /* free after write list ptr */ 576 static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */ 577 static uint64_t l2arc_ndev; /* number of devices */ 578 579 typedef struct l2arc_read_callback { 580 arc_buf_t *l2rcb_buf; /* read buffer */ 581 spa_t *l2rcb_spa; /* spa */ 582 blkptr_t l2rcb_bp; /* original blkptr */ 583 zbookmark_t l2rcb_zb; /* original bookmark */ 584 int l2rcb_flags; /* original flags */ 585 } l2arc_read_callback_t; 586 587 typedef struct l2arc_write_callback { 588 l2arc_dev_t *l2wcb_dev; /* device info */ 589 arc_buf_hdr_t *l2wcb_head; /* head of write buflist */ 590 } l2arc_write_callback_t; 591 592 struct l2arc_buf_hdr { 593 /* protected by arc_buf_hdr mutex */ 594 l2arc_dev_t *b_dev; /* L2ARC device */ 595 daddr_t b_daddr; /* disk address, offset byte */ 596 }; 597 598 typedef struct l2arc_data_free { 599 /* protected by l2arc_free_on_write_mtx */ 600 void *l2df_data; 601 size_t l2df_size; 602 void (*l2df_func)(void *, size_t); 603 list_node_t l2df_list_node; 604 } l2arc_data_free_t; 605 606 static kmutex_t l2arc_feed_thr_lock; 607 static kcondvar_t l2arc_feed_thr_cv; 608 static uint8_t l2arc_thread_exit; 609 610 static void l2arc_read_done(zio_t *zio); 611 static void l2arc_hdr_stat_add(void); 612 static void l2arc_hdr_stat_remove(void); 613 614 static uint64_t 615 buf_hash(spa_t *spa, const dva_t *dva, uint64_t birth) 616 { 617 uintptr_t spav = (uintptr_t)spa; 618 uint8_t *vdva = (uint8_t *)dva; 619 uint64_t crc = -1ULL; 620 int i; 621 622 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY); 623 624 for (i = 0; i < sizeof (dva_t); i++) 625 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF]; 626 627 crc ^= (spav>>8) ^ birth; 628 629 return (crc); 630 } 631 632 #define BUF_EMPTY(buf) \ 633 ((buf)->b_dva.dva_word[0] == 0 && \ 634 (buf)->b_dva.dva_word[1] == 0 && \ 635 (buf)->b_birth == 0) 636 637 #define BUF_EQUAL(spa, dva, birth, buf) \ 638 ((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \ 639 ((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \ 640 ((buf)->b_birth == birth) && ((buf)->b_spa == spa) 641 642 static arc_buf_hdr_t * 643 buf_hash_find(spa_t *spa, const dva_t *dva, uint64_t birth, kmutex_t **lockp) 644 { 645 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth); 646 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 647 arc_buf_hdr_t *buf; 648 649 mutex_enter(hash_lock); 650 for (buf = buf_hash_table.ht_table[idx]; buf != NULL; 651 buf = buf->b_hash_next) { 652 if (BUF_EQUAL(spa, dva, birth, buf)) { 653 *lockp = hash_lock; 654 return (buf); 655 } 656 } 657 mutex_exit(hash_lock); 658 *lockp = NULL; 659 return (NULL); 660 } 661 662 /* 663 * Insert an entry into the hash table. If there is already an element 664 * equal to elem in the hash table, then the already existing element 665 * will be returned and the new element will not be inserted. 666 * Otherwise returns NULL. 667 */ 668 static arc_buf_hdr_t * 669 buf_hash_insert(arc_buf_hdr_t *buf, kmutex_t **lockp) 670 { 671 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth); 672 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 673 arc_buf_hdr_t *fbuf; 674 uint32_t i; 675 676 ASSERT(!HDR_IN_HASH_TABLE(buf)); 677 *lockp = hash_lock; 678 mutex_enter(hash_lock); 679 for (fbuf = buf_hash_table.ht_table[idx], i = 0; fbuf != NULL; 680 fbuf = fbuf->b_hash_next, i++) { 681 if (BUF_EQUAL(buf->b_spa, &buf->b_dva, buf->b_birth, fbuf)) 682 return (fbuf); 683 } 684 685 buf->b_hash_next = buf_hash_table.ht_table[idx]; 686 buf_hash_table.ht_table[idx] = buf; 687 buf->b_flags |= ARC_IN_HASH_TABLE; 688 689 /* collect some hash table performance data */ 690 if (i > 0) { 691 ARCSTAT_BUMP(arcstat_hash_collisions); 692 if (i == 1) 693 ARCSTAT_BUMP(arcstat_hash_chains); 694 695 ARCSTAT_MAX(arcstat_hash_chain_max, i); 696 } 697 698 ARCSTAT_BUMP(arcstat_hash_elements); 699 ARCSTAT_MAXSTAT(arcstat_hash_elements); 700 701 return (NULL); 702 } 703 704 static void 705 buf_hash_remove(arc_buf_hdr_t *buf) 706 { 707 arc_buf_hdr_t *fbuf, **bufp; 708 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth); 709 710 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx))); 711 ASSERT(HDR_IN_HASH_TABLE(buf)); 712 713 bufp = &buf_hash_table.ht_table[idx]; 714 while ((fbuf = *bufp) != buf) { 715 ASSERT(fbuf != NULL); 716 bufp = &fbuf->b_hash_next; 717 } 718 *bufp = buf->b_hash_next; 719 buf->b_hash_next = NULL; 720 buf->b_flags &= ~ARC_IN_HASH_TABLE; 721 722 /* collect some hash table performance data */ 723 ARCSTAT_BUMPDOWN(arcstat_hash_elements); 724 725 if (buf_hash_table.ht_table[idx] && 726 buf_hash_table.ht_table[idx]->b_hash_next == NULL) 727 ARCSTAT_BUMPDOWN(arcstat_hash_chains); 728 } 729 730 /* 731 * Global data structures and functions for the buf kmem cache. 732 */ 733 static kmem_cache_t *hdr_cache; 734 static kmem_cache_t *buf_cache; 735 736 static void 737 buf_fini(void) 738 { 739 int i; 740 741 kmem_free(buf_hash_table.ht_table, 742 (buf_hash_table.ht_mask + 1) * sizeof (void *)); 743 for (i = 0; i < BUF_LOCKS; i++) 744 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock); 745 kmem_cache_destroy(hdr_cache); 746 kmem_cache_destroy(buf_cache); 747 } 748 749 /* 750 * Constructor callback - called when the cache is empty 751 * and a new buf is requested. 752 */ 753 /* ARGSUSED */ 754 static int 755 hdr_cons(void *vbuf, void *unused, int kmflag) 756 { 757 arc_buf_hdr_t *buf = vbuf; 758 759 bzero(buf, sizeof (arc_buf_hdr_t)); 760 refcount_create(&buf->b_refcnt); 761 cv_init(&buf->b_cv, NULL, CV_DEFAULT, NULL); 762 mutex_init(&buf->b_freeze_lock, NULL, MUTEX_DEFAULT, NULL); 763 rw_init(&buf->b_datalock, NULL, RW_DEFAULT, NULL); 764 765 ARCSTAT_INCR(arcstat_hdr_size, HDR_SIZE); 766 return (0); 767 } 768 769 /* 770 * Destructor callback - called when a cached buf is 771 * no longer required. 772 */ 773 /* ARGSUSED */ 774 static void 775 hdr_dest(void *vbuf, void *unused) 776 { 777 arc_buf_hdr_t *buf = vbuf; 778 779 refcount_destroy(&buf->b_refcnt); 780 cv_destroy(&buf->b_cv); 781 mutex_destroy(&buf->b_freeze_lock); 782 rw_destroy(&buf->b_datalock); 783 784 ARCSTAT_INCR(arcstat_hdr_size, -HDR_SIZE); 785 } 786 787 /* 788 * Reclaim callback -- invoked when memory is low. 789 */ 790 /* ARGSUSED */ 791 static void 792 hdr_recl(void *unused) 793 { 794 dprintf("hdr_recl called\n"); 795 /* 796 * umem calls the reclaim func when we destroy the buf cache, 797 * which is after we do arc_fini(). 798 */ 799 if (!arc_dead) 800 cv_signal(&arc_reclaim_thr_cv); 801 } 802 803 static void 804 buf_init(void) 805 { 806 uint64_t *ct; 807 uint64_t hsize = 1ULL << 12; 808 int i, j; 809 810 /* 811 * The hash table is big enough to fill all of physical memory 812 * with an average 64K block size. The table will take up 813 * totalmem*sizeof(void*)/64K (eg. 128KB/GB with 8-byte pointers). 814 */ 815 while (hsize * 65536 < physmem * PAGESIZE) 816 hsize <<= 1; 817 retry: 818 buf_hash_table.ht_mask = hsize - 1; 819 buf_hash_table.ht_table = 820 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP); 821 if (buf_hash_table.ht_table == NULL) { 822 ASSERT(hsize > (1ULL << 8)); 823 hsize >>= 1; 824 goto retry; 825 } 826 827 hdr_cache = kmem_cache_create("arc_buf_hdr_t", sizeof (arc_buf_hdr_t), 828 0, hdr_cons, hdr_dest, hdr_recl, NULL, NULL, 0); 829 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t), 830 0, NULL, NULL, NULL, NULL, NULL, 0); 831 832 for (i = 0; i < 256; i++) 833 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--) 834 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY); 835 836 for (i = 0; i < BUF_LOCKS; i++) { 837 mutex_init(&buf_hash_table.ht_locks[i].ht_lock, 838 NULL, MUTEX_DEFAULT, NULL); 839 } 840 } 841 842 #define ARC_MINTIME (hz>>4) /* 62 ms */ 843 844 static void 845 arc_cksum_verify(arc_buf_t *buf) 846 { 847 zio_cksum_t zc; 848 849 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 850 return; 851 852 mutex_enter(&buf->b_hdr->b_freeze_lock); 853 if (buf->b_hdr->b_freeze_cksum == NULL || 854 (buf->b_hdr->b_flags & ARC_IO_ERROR)) { 855 mutex_exit(&buf->b_hdr->b_freeze_lock); 856 return; 857 } 858 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc); 859 if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc)) 860 panic("buffer modified while frozen!"); 861 mutex_exit(&buf->b_hdr->b_freeze_lock); 862 } 863 864 static int 865 arc_cksum_equal(arc_buf_t *buf) 866 { 867 zio_cksum_t zc; 868 int equal; 869 870 mutex_enter(&buf->b_hdr->b_freeze_lock); 871 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc); 872 equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc); 873 mutex_exit(&buf->b_hdr->b_freeze_lock); 874 875 return (equal); 876 } 877 878 static void 879 arc_cksum_compute(arc_buf_t *buf, boolean_t force) 880 { 881 if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY)) 882 return; 883 884 mutex_enter(&buf->b_hdr->b_freeze_lock); 885 if (buf->b_hdr->b_freeze_cksum != NULL) { 886 mutex_exit(&buf->b_hdr->b_freeze_lock); 887 return; 888 } 889 buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP); 890 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, 891 buf->b_hdr->b_freeze_cksum); 892 mutex_exit(&buf->b_hdr->b_freeze_lock); 893 } 894 895 void 896 arc_buf_thaw(arc_buf_t *buf) 897 { 898 if (zfs_flags & ZFS_DEBUG_MODIFY) { 899 if (buf->b_hdr->b_state != arc_anon) 900 panic("modifying non-anon buffer!"); 901 if (buf->b_hdr->b_flags & ARC_IO_IN_PROGRESS) 902 panic("modifying buffer while i/o in progress!"); 903 arc_cksum_verify(buf); 904 } 905 906 mutex_enter(&buf->b_hdr->b_freeze_lock); 907 if (buf->b_hdr->b_freeze_cksum != NULL) { 908 kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t)); 909 buf->b_hdr->b_freeze_cksum = NULL; 910 } 911 mutex_exit(&buf->b_hdr->b_freeze_lock); 912 } 913 914 void 915 arc_buf_freeze(arc_buf_t *buf) 916 { 917 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 918 return; 919 920 ASSERT(buf->b_hdr->b_freeze_cksum != NULL || 921 buf->b_hdr->b_state == arc_anon); 922 arc_cksum_compute(buf, B_FALSE); 923 } 924 925 static void 926 add_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag) 927 { 928 ASSERT(MUTEX_HELD(hash_lock)); 929 930 if ((refcount_add(&ab->b_refcnt, tag) == 1) && 931 (ab->b_state != arc_anon)) { 932 uint64_t delta = ab->b_size * ab->b_datacnt; 933 list_t *list = &ab->b_state->arcs_list[ab->b_type]; 934 uint64_t *size = &ab->b_state->arcs_lsize[ab->b_type]; 935 936 ASSERT(!MUTEX_HELD(&ab->b_state->arcs_mtx)); 937 mutex_enter(&ab->b_state->arcs_mtx); 938 ASSERT(list_link_active(&ab->b_arc_node)); 939 list_remove(list, ab); 940 if (GHOST_STATE(ab->b_state)) { 941 ASSERT3U(ab->b_datacnt, ==, 0); 942 ASSERT3P(ab->b_buf, ==, NULL); 943 delta = ab->b_size; 944 } 945 ASSERT(delta > 0); 946 ASSERT3U(*size, >=, delta); 947 atomic_add_64(size, -delta); 948 mutex_exit(&ab->b_state->arcs_mtx); 949 /* remove the prefetch flag if we get a reference */ 950 if (ab->b_flags & ARC_PREFETCH) 951 ab->b_flags &= ~ARC_PREFETCH; 952 } 953 } 954 955 static int 956 remove_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag) 957 { 958 int cnt; 959 arc_state_t *state = ab->b_state; 960 961 ASSERT(state == arc_anon || MUTEX_HELD(hash_lock)); 962 ASSERT(!GHOST_STATE(state)); 963 964 if (((cnt = refcount_remove(&ab->b_refcnt, tag)) == 0) && 965 (state != arc_anon)) { 966 uint64_t *size = &state->arcs_lsize[ab->b_type]; 967 968 ASSERT(!MUTEX_HELD(&state->arcs_mtx)); 969 mutex_enter(&state->arcs_mtx); 970 ASSERT(!list_link_active(&ab->b_arc_node)); 971 list_insert_head(&state->arcs_list[ab->b_type], ab); 972 ASSERT(ab->b_datacnt > 0); 973 atomic_add_64(size, ab->b_size * ab->b_datacnt); 974 mutex_exit(&state->arcs_mtx); 975 } 976 return (cnt); 977 } 978 979 /* 980 * Move the supplied buffer to the indicated state. The mutex 981 * for the buffer must be held by the caller. 982 */ 983 static void 984 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *ab, kmutex_t *hash_lock) 985 { 986 arc_state_t *old_state = ab->b_state; 987 int64_t refcnt = refcount_count(&ab->b_refcnt); 988 uint64_t from_delta, to_delta; 989 990 ASSERT(MUTEX_HELD(hash_lock)); 991 ASSERT(new_state != old_state); 992 ASSERT(refcnt == 0 || ab->b_datacnt > 0); 993 ASSERT(ab->b_datacnt == 0 || !GHOST_STATE(new_state)); 994 995 from_delta = to_delta = ab->b_datacnt * ab->b_size; 996 997 /* 998 * If this buffer is evictable, transfer it from the 999 * old state list to the new state list. 1000 */ 1001 if (refcnt == 0) { 1002 if (old_state != arc_anon) { 1003 int use_mutex = !MUTEX_HELD(&old_state->arcs_mtx); 1004 uint64_t *size = &old_state->arcs_lsize[ab->b_type]; 1005 1006 if (use_mutex) 1007 mutex_enter(&old_state->arcs_mtx); 1008 1009 ASSERT(list_link_active(&ab->b_arc_node)); 1010 list_remove(&old_state->arcs_list[ab->b_type], ab); 1011 1012 /* 1013 * If prefetching out of the ghost cache, 1014 * we will have a non-null datacnt. 1015 */ 1016 if (GHOST_STATE(old_state) && ab->b_datacnt == 0) { 1017 /* ghost elements have a ghost size */ 1018 ASSERT(ab->b_buf == NULL); 1019 from_delta = ab->b_size; 1020 } 1021 ASSERT3U(*size, >=, from_delta); 1022 atomic_add_64(size, -from_delta); 1023 1024 if (use_mutex) 1025 mutex_exit(&old_state->arcs_mtx); 1026 } 1027 if (new_state != arc_anon) { 1028 int use_mutex = !MUTEX_HELD(&new_state->arcs_mtx); 1029 uint64_t *size = &new_state->arcs_lsize[ab->b_type]; 1030 1031 if (use_mutex) 1032 mutex_enter(&new_state->arcs_mtx); 1033 1034 list_insert_head(&new_state->arcs_list[ab->b_type], ab); 1035 1036 /* ghost elements have a ghost size */ 1037 if (GHOST_STATE(new_state)) { 1038 ASSERT(ab->b_datacnt == 0); 1039 ASSERT(ab->b_buf == NULL); 1040 to_delta = ab->b_size; 1041 } 1042 atomic_add_64(size, to_delta); 1043 1044 if (use_mutex) 1045 mutex_exit(&new_state->arcs_mtx); 1046 } 1047 } 1048 1049 ASSERT(!BUF_EMPTY(ab)); 1050 if (new_state == arc_anon) { 1051 buf_hash_remove(ab); 1052 } 1053 1054 /* adjust state sizes */ 1055 if (to_delta) 1056 atomic_add_64(&new_state->arcs_size, to_delta); 1057 if (from_delta) { 1058 ASSERT3U(old_state->arcs_size, >=, from_delta); 1059 atomic_add_64(&old_state->arcs_size, -from_delta); 1060 } 1061 ab->b_state = new_state; 1062 1063 /* adjust l2arc hdr stats */ 1064 if (new_state == arc_l2c_only) 1065 l2arc_hdr_stat_add(); 1066 else if (old_state == arc_l2c_only) 1067 l2arc_hdr_stat_remove(); 1068 } 1069 1070 void 1071 arc_space_consume(uint64_t space) 1072 { 1073 atomic_add_64(&arc_meta_used, space); 1074 atomic_add_64(&arc_size, space); 1075 } 1076 1077 void 1078 arc_space_return(uint64_t space) 1079 { 1080 ASSERT(arc_meta_used >= space); 1081 if (arc_meta_max < arc_meta_used) 1082 arc_meta_max = arc_meta_used; 1083 atomic_add_64(&arc_meta_used, -space); 1084 ASSERT(arc_size >= space); 1085 atomic_add_64(&arc_size, -space); 1086 } 1087 1088 void * 1089 arc_data_buf_alloc(uint64_t size) 1090 { 1091 if (arc_evict_needed(ARC_BUFC_DATA)) 1092 cv_signal(&arc_reclaim_thr_cv); 1093 atomic_add_64(&arc_size, size); 1094 return (zio_data_buf_alloc(size)); 1095 } 1096 1097 void 1098 arc_data_buf_free(void *buf, uint64_t size) 1099 { 1100 zio_data_buf_free(buf, size); 1101 ASSERT(arc_size >= size); 1102 atomic_add_64(&arc_size, -size); 1103 } 1104 1105 arc_buf_t * 1106 arc_buf_alloc(spa_t *spa, int size, void *tag, arc_buf_contents_t type) 1107 { 1108 arc_buf_hdr_t *hdr; 1109 arc_buf_t *buf; 1110 1111 ASSERT3U(size, >, 0); 1112 hdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE); 1113 ASSERT(BUF_EMPTY(hdr)); 1114 hdr->b_size = size; 1115 hdr->b_type = type; 1116 hdr->b_spa = spa; 1117 hdr->b_state = arc_anon; 1118 hdr->b_arc_access = 0; 1119 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 1120 buf->b_hdr = hdr; 1121 buf->b_data = NULL; 1122 buf->b_efunc = NULL; 1123 buf->b_private = NULL; 1124 buf->b_next = NULL; 1125 hdr->b_buf = buf; 1126 arc_get_data_buf(buf); 1127 hdr->b_datacnt = 1; 1128 hdr->b_flags = 0; 1129 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 1130 (void) refcount_add(&hdr->b_refcnt, tag); 1131 1132 return (buf); 1133 } 1134 1135 static arc_buf_t * 1136 arc_buf_clone(arc_buf_t *from) 1137 { 1138 arc_buf_t *buf; 1139 arc_buf_hdr_t *hdr = from->b_hdr; 1140 uint64_t size = hdr->b_size; 1141 1142 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 1143 buf->b_hdr = hdr; 1144 buf->b_data = NULL; 1145 buf->b_efunc = NULL; 1146 buf->b_private = NULL; 1147 buf->b_next = hdr->b_buf; 1148 hdr->b_buf = buf; 1149 arc_get_data_buf(buf); 1150 bcopy(from->b_data, buf->b_data, size); 1151 hdr->b_datacnt += 1; 1152 return (buf); 1153 } 1154 1155 void 1156 arc_buf_add_ref(arc_buf_t *buf, void* tag) 1157 { 1158 arc_buf_hdr_t *hdr; 1159 kmutex_t *hash_lock; 1160 1161 /* 1162 * Check to see if this buffer is currently being evicted via 1163 * arc_do_user_evicts(). 1164 */ 1165 mutex_enter(&arc_eviction_mtx); 1166 hdr = buf->b_hdr; 1167 if (hdr == NULL) { 1168 mutex_exit(&arc_eviction_mtx); 1169 return; 1170 } 1171 hash_lock = HDR_LOCK(hdr); 1172 mutex_exit(&arc_eviction_mtx); 1173 1174 mutex_enter(hash_lock); 1175 if (buf->b_data == NULL) { 1176 /* 1177 * This buffer is evicted. 1178 */ 1179 mutex_exit(hash_lock); 1180 return; 1181 } 1182 1183 ASSERT(buf->b_hdr == hdr); 1184 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu); 1185 add_reference(hdr, hash_lock, tag); 1186 arc_access(hdr, hash_lock); 1187 mutex_exit(hash_lock); 1188 ARCSTAT_BUMP(arcstat_hits); 1189 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH), 1190 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA, 1191 data, metadata, hits); 1192 } 1193 1194 /* 1195 * Free the arc data buffer. If it is an l2arc write in progress, 1196 * the buffer is placed on l2arc_free_on_write to be freed later. 1197 */ 1198 static void 1199 arc_buf_data_free(arc_buf_hdr_t *hdr, void (*free_func)(void *, size_t), 1200 void *data, size_t size) 1201 { 1202 if (HDR_L2_WRITING(hdr)) { 1203 l2arc_data_free_t *df; 1204 df = kmem_alloc(sizeof (l2arc_data_free_t), KM_SLEEP); 1205 df->l2df_data = data; 1206 df->l2df_size = size; 1207 df->l2df_func = free_func; 1208 mutex_enter(&l2arc_free_on_write_mtx); 1209 list_insert_head(l2arc_free_on_write, df); 1210 mutex_exit(&l2arc_free_on_write_mtx); 1211 ARCSTAT_BUMP(arcstat_l2_free_on_write); 1212 } else { 1213 free_func(data, size); 1214 } 1215 } 1216 1217 static void 1218 arc_buf_destroy(arc_buf_t *buf, boolean_t recycle, boolean_t all) 1219 { 1220 arc_buf_t **bufp; 1221 1222 /* free up data associated with the buf */ 1223 if (buf->b_data) { 1224 arc_state_t *state = buf->b_hdr->b_state; 1225 uint64_t size = buf->b_hdr->b_size; 1226 arc_buf_contents_t type = buf->b_hdr->b_type; 1227 1228 arc_cksum_verify(buf); 1229 if (!recycle) { 1230 if (type == ARC_BUFC_METADATA) { 1231 arc_buf_data_free(buf->b_hdr, zio_buf_free, 1232 buf->b_data, size); 1233 arc_space_return(size); 1234 } else { 1235 ASSERT(type == ARC_BUFC_DATA); 1236 arc_buf_data_free(buf->b_hdr, 1237 zio_data_buf_free, buf->b_data, size); 1238 atomic_add_64(&arc_size, -size); 1239 } 1240 } 1241 if (list_link_active(&buf->b_hdr->b_arc_node)) { 1242 uint64_t *cnt = &state->arcs_lsize[type]; 1243 1244 ASSERT(refcount_is_zero(&buf->b_hdr->b_refcnt)); 1245 ASSERT(state != arc_anon); 1246 1247 ASSERT3U(*cnt, >=, size); 1248 atomic_add_64(cnt, -size); 1249 } 1250 ASSERT3U(state->arcs_size, >=, size); 1251 atomic_add_64(&state->arcs_size, -size); 1252 buf->b_data = NULL; 1253 ASSERT(buf->b_hdr->b_datacnt > 0); 1254 buf->b_hdr->b_datacnt -= 1; 1255 } 1256 1257 /* only remove the buf if requested */ 1258 if (!all) 1259 return; 1260 1261 /* remove the buf from the hdr list */ 1262 for (bufp = &buf->b_hdr->b_buf; *bufp != buf; bufp = &(*bufp)->b_next) 1263 continue; 1264 *bufp = buf->b_next; 1265 1266 ASSERT(buf->b_efunc == NULL); 1267 1268 /* clean up the buf */ 1269 buf->b_hdr = NULL; 1270 kmem_cache_free(buf_cache, buf); 1271 } 1272 1273 static void 1274 arc_hdr_destroy(arc_buf_hdr_t *hdr) 1275 { 1276 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 1277 ASSERT3P(hdr->b_state, ==, arc_anon); 1278 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 1279 ASSERT(!(hdr->b_flags & ARC_STORED)); 1280 1281 if (hdr->b_l2hdr != NULL) { 1282 if (!MUTEX_HELD(&l2arc_buflist_mtx)) { 1283 /* 1284 * To prevent arc_free() and l2arc_evict() from 1285 * attempting to free the same buffer at the same time, 1286 * a FREE_IN_PROGRESS flag is given to arc_free() to 1287 * give it priority. l2arc_evict() can't destroy this 1288 * header while we are waiting on l2arc_buflist_mtx. 1289 * 1290 * The hdr may be removed from l2ad_buflist before we 1291 * grab l2arc_buflist_mtx, so b_l2hdr is rechecked. 1292 */ 1293 mutex_enter(&l2arc_buflist_mtx); 1294 if (hdr->b_l2hdr != NULL) { 1295 list_remove(hdr->b_l2hdr->b_dev->l2ad_buflist, 1296 hdr); 1297 } 1298 mutex_exit(&l2arc_buflist_mtx); 1299 } else { 1300 list_remove(hdr->b_l2hdr->b_dev->l2ad_buflist, hdr); 1301 } 1302 ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size); 1303 kmem_free(hdr->b_l2hdr, sizeof (l2arc_buf_hdr_t)); 1304 if (hdr->b_state == arc_l2c_only) 1305 l2arc_hdr_stat_remove(); 1306 hdr->b_l2hdr = NULL; 1307 } 1308 1309 if (!BUF_EMPTY(hdr)) { 1310 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 1311 bzero(&hdr->b_dva, sizeof (dva_t)); 1312 hdr->b_birth = 0; 1313 hdr->b_cksum0 = 0; 1314 } 1315 while (hdr->b_buf) { 1316 arc_buf_t *buf = hdr->b_buf; 1317 1318 if (buf->b_efunc) { 1319 mutex_enter(&arc_eviction_mtx); 1320 ASSERT(buf->b_hdr != NULL); 1321 arc_buf_destroy(hdr->b_buf, FALSE, FALSE); 1322 hdr->b_buf = buf->b_next; 1323 buf->b_hdr = &arc_eviction_hdr; 1324 buf->b_next = arc_eviction_list; 1325 arc_eviction_list = buf; 1326 mutex_exit(&arc_eviction_mtx); 1327 } else { 1328 arc_buf_destroy(hdr->b_buf, FALSE, TRUE); 1329 } 1330 } 1331 if (hdr->b_freeze_cksum != NULL) { 1332 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t)); 1333 hdr->b_freeze_cksum = NULL; 1334 } 1335 1336 ASSERT(!list_link_active(&hdr->b_arc_node)); 1337 ASSERT3P(hdr->b_hash_next, ==, NULL); 1338 ASSERT3P(hdr->b_acb, ==, NULL); 1339 kmem_cache_free(hdr_cache, hdr); 1340 } 1341 1342 void 1343 arc_buf_free(arc_buf_t *buf, void *tag) 1344 { 1345 arc_buf_hdr_t *hdr = buf->b_hdr; 1346 int hashed = hdr->b_state != arc_anon; 1347 1348 ASSERT(buf->b_efunc == NULL); 1349 ASSERT(buf->b_data != NULL); 1350 1351 if (hashed) { 1352 kmutex_t *hash_lock = HDR_LOCK(hdr); 1353 1354 mutex_enter(hash_lock); 1355 (void) remove_reference(hdr, hash_lock, tag); 1356 if (hdr->b_datacnt > 1) 1357 arc_buf_destroy(buf, FALSE, TRUE); 1358 else 1359 hdr->b_flags |= ARC_BUF_AVAILABLE; 1360 mutex_exit(hash_lock); 1361 } else if (HDR_IO_IN_PROGRESS(hdr)) { 1362 int destroy_hdr; 1363 /* 1364 * We are in the middle of an async write. Don't destroy 1365 * this buffer unless the write completes before we finish 1366 * decrementing the reference count. 1367 */ 1368 mutex_enter(&arc_eviction_mtx); 1369 (void) remove_reference(hdr, NULL, tag); 1370 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 1371 destroy_hdr = !HDR_IO_IN_PROGRESS(hdr); 1372 mutex_exit(&arc_eviction_mtx); 1373 if (destroy_hdr) 1374 arc_hdr_destroy(hdr); 1375 } else { 1376 if (remove_reference(hdr, NULL, tag) > 0) { 1377 ASSERT(HDR_IO_ERROR(hdr)); 1378 arc_buf_destroy(buf, FALSE, TRUE); 1379 } else { 1380 arc_hdr_destroy(hdr); 1381 } 1382 } 1383 } 1384 1385 int 1386 arc_buf_remove_ref(arc_buf_t *buf, void* tag) 1387 { 1388 arc_buf_hdr_t *hdr = buf->b_hdr; 1389 kmutex_t *hash_lock = HDR_LOCK(hdr); 1390 int no_callback = (buf->b_efunc == NULL); 1391 1392 if (hdr->b_state == arc_anon) { 1393 arc_buf_free(buf, tag); 1394 return (no_callback); 1395 } 1396 1397 mutex_enter(hash_lock); 1398 ASSERT(hdr->b_state != arc_anon); 1399 ASSERT(buf->b_data != NULL); 1400 1401 (void) remove_reference(hdr, hash_lock, tag); 1402 if (hdr->b_datacnt > 1) { 1403 if (no_callback) 1404 arc_buf_destroy(buf, FALSE, TRUE); 1405 } else if (no_callback) { 1406 ASSERT(hdr->b_buf == buf && buf->b_next == NULL); 1407 hdr->b_flags |= ARC_BUF_AVAILABLE; 1408 } 1409 ASSERT(no_callback || hdr->b_datacnt > 1 || 1410 refcount_is_zero(&hdr->b_refcnt)); 1411 mutex_exit(hash_lock); 1412 return (no_callback); 1413 } 1414 1415 int 1416 arc_buf_size(arc_buf_t *buf) 1417 { 1418 return (buf->b_hdr->b_size); 1419 } 1420 1421 /* 1422 * Evict buffers from list until we've removed the specified number of 1423 * bytes. Move the removed buffers to the appropriate evict state. 1424 * If the recycle flag is set, then attempt to "recycle" a buffer: 1425 * - look for a buffer to evict that is `bytes' long. 1426 * - return the data block from this buffer rather than freeing it. 1427 * This flag is used by callers that are trying to make space for a 1428 * new buffer in a full arc cache. 1429 * 1430 * This function makes a "best effort". It skips over any buffers 1431 * it can't get a hash_lock on, and so may not catch all candidates. 1432 * It may also return without evicting as much space as requested. 1433 */ 1434 static void * 1435 arc_evict(arc_state_t *state, spa_t *spa, int64_t bytes, boolean_t recycle, 1436 arc_buf_contents_t type) 1437 { 1438 arc_state_t *evicted_state; 1439 uint64_t bytes_evicted = 0, skipped = 0, missed = 0; 1440 arc_buf_hdr_t *ab, *ab_prev = NULL; 1441 list_t *list = &state->arcs_list[type]; 1442 kmutex_t *hash_lock; 1443 boolean_t have_lock; 1444 void *stolen = NULL; 1445 1446 ASSERT(state == arc_mru || state == arc_mfu); 1447 1448 evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost; 1449 1450 mutex_enter(&state->arcs_mtx); 1451 mutex_enter(&evicted_state->arcs_mtx); 1452 1453 for (ab = list_tail(list); ab; ab = ab_prev) { 1454 ab_prev = list_prev(list, ab); 1455 /* prefetch buffers have a minimum lifespan */ 1456 if (HDR_IO_IN_PROGRESS(ab) || 1457 (spa && ab->b_spa != spa) || 1458 (ab->b_flags & (ARC_PREFETCH|ARC_INDIRECT) && 1459 lbolt - ab->b_arc_access < arc_min_prefetch_lifespan)) { 1460 skipped++; 1461 continue; 1462 } 1463 /* "lookahead" for better eviction candidate */ 1464 if (recycle && ab->b_size != bytes && 1465 ab_prev && ab_prev->b_size == bytes) 1466 continue; 1467 hash_lock = HDR_LOCK(ab); 1468 have_lock = MUTEX_HELD(hash_lock); 1469 if (have_lock || mutex_tryenter(hash_lock)) { 1470 ASSERT3U(refcount_count(&ab->b_refcnt), ==, 0); 1471 ASSERT(ab->b_datacnt > 0); 1472 while (ab->b_buf) { 1473 arc_buf_t *buf = ab->b_buf; 1474 if (buf->b_data) { 1475 bytes_evicted += ab->b_size; 1476 if (recycle && ab->b_type == type && 1477 ab->b_size == bytes && 1478 !HDR_L2_WRITING(ab)) { 1479 stolen = buf->b_data; 1480 recycle = FALSE; 1481 } 1482 } 1483 if (buf->b_efunc) { 1484 mutex_enter(&arc_eviction_mtx); 1485 arc_buf_destroy(buf, 1486 buf->b_data == stolen, FALSE); 1487 ab->b_buf = buf->b_next; 1488 buf->b_hdr = &arc_eviction_hdr; 1489 buf->b_next = arc_eviction_list; 1490 arc_eviction_list = buf; 1491 mutex_exit(&arc_eviction_mtx); 1492 } else { 1493 arc_buf_destroy(buf, 1494 buf->b_data == stolen, TRUE); 1495 } 1496 } 1497 ASSERT(ab->b_datacnt == 0); 1498 arc_change_state(evicted_state, ab, hash_lock); 1499 ASSERT(HDR_IN_HASH_TABLE(ab)); 1500 ab->b_flags |= ARC_IN_HASH_TABLE; 1501 ab->b_flags &= ~ARC_BUF_AVAILABLE; 1502 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, ab); 1503 if (!have_lock) 1504 mutex_exit(hash_lock); 1505 if (bytes >= 0 && bytes_evicted >= bytes) 1506 break; 1507 } else { 1508 missed += 1; 1509 } 1510 } 1511 1512 mutex_exit(&evicted_state->arcs_mtx); 1513 mutex_exit(&state->arcs_mtx); 1514 1515 if (bytes_evicted < bytes) 1516 dprintf("only evicted %lld bytes from %x", 1517 (longlong_t)bytes_evicted, state); 1518 1519 if (skipped) 1520 ARCSTAT_INCR(arcstat_evict_skip, skipped); 1521 1522 if (missed) 1523 ARCSTAT_INCR(arcstat_mutex_miss, missed); 1524 1525 /* 1526 * We have just evicted some date into the ghost state, make 1527 * sure we also adjust the ghost state size if necessary. 1528 */ 1529 if (arc_no_grow && 1530 arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size > arc_c) { 1531 int64_t mru_over = arc_anon->arcs_size + arc_mru->arcs_size + 1532 arc_mru_ghost->arcs_size - arc_c; 1533 1534 if (mru_over > 0 && arc_mru_ghost->arcs_lsize[type] > 0) { 1535 int64_t todelete = 1536 MIN(arc_mru_ghost->arcs_lsize[type], mru_over); 1537 arc_evict_ghost(arc_mru_ghost, NULL, todelete); 1538 } else if (arc_mfu_ghost->arcs_lsize[type] > 0) { 1539 int64_t todelete = MIN(arc_mfu_ghost->arcs_lsize[type], 1540 arc_mru_ghost->arcs_size + 1541 arc_mfu_ghost->arcs_size - arc_c); 1542 arc_evict_ghost(arc_mfu_ghost, NULL, todelete); 1543 } 1544 } 1545 1546 return (stolen); 1547 } 1548 1549 /* 1550 * Remove buffers from list until we've removed the specified number of 1551 * bytes. Destroy the buffers that are removed. 1552 */ 1553 static void 1554 arc_evict_ghost(arc_state_t *state, spa_t *spa, int64_t bytes) 1555 { 1556 arc_buf_hdr_t *ab, *ab_prev; 1557 list_t *list = &state->arcs_list[ARC_BUFC_DATA]; 1558 kmutex_t *hash_lock; 1559 uint64_t bytes_deleted = 0; 1560 uint64_t bufs_skipped = 0; 1561 1562 ASSERT(GHOST_STATE(state)); 1563 top: 1564 mutex_enter(&state->arcs_mtx); 1565 for (ab = list_tail(list); ab; ab = ab_prev) { 1566 ab_prev = list_prev(list, ab); 1567 if (spa && ab->b_spa != spa) 1568 continue; 1569 hash_lock = HDR_LOCK(ab); 1570 if (mutex_tryenter(hash_lock)) { 1571 ASSERT(!HDR_IO_IN_PROGRESS(ab)); 1572 ASSERT(ab->b_buf == NULL); 1573 ARCSTAT_BUMP(arcstat_deleted); 1574 bytes_deleted += ab->b_size; 1575 1576 if (ab->b_l2hdr != NULL) { 1577 /* 1578 * This buffer is cached on the 2nd Level ARC; 1579 * don't destroy the header. 1580 */ 1581 arc_change_state(arc_l2c_only, ab, hash_lock); 1582 mutex_exit(hash_lock); 1583 } else { 1584 arc_change_state(arc_anon, ab, hash_lock); 1585 mutex_exit(hash_lock); 1586 arc_hdr_destroy(ab); 1587 } 1588 1589 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, ab); 1590 if (bytes >= 0 && bytes_deleted >= bytes) 1591 break; 1592 } else { 1593 if (bytes < 0) { 1594 mutex_exit(&state->arcs_mtx); 1595 mutex_enter(hash_lock); 1596 mutex_exit(hash_lock); 1597 goto top; 1598 } 1599 bufs_skipped += 1; 1600 } 1601 } 1602 mutex_exit(&state->arcs_mtx); 1603 1604 if (list == &state->arcs_list[ARC_BUFC_DATA] && 1605 (bytes < 0 || bytes_deleted < bytes)) { 1606 list = &state->arcs_list[ARC_BUFC_METADATA]; 1607 goto top; 1608 } 1609 1610 if (bufs_skipped) { 1611 ARCSTAT_INCR(arcstat_mutex_miss, bufs_skipped); 1612 ASSERT(bytes >= 0); 1613 } 1614 1615 if (bytes_deleted < bytes) 1616 dprintf("only deleted %lld bytes from %p", 1617 (longlong_t)bytes_deleted, state); 1618 } 1619 1620 static void 1621 arc_adjust(void) 1622 { 1623 int64_t top_sz, mru_over, arc_over, todelete; 1624 1625 top_sz = arc_anon->arcs_size + arc_mru->arcs_size + arc_meta_used; 1626 1627 if (top_sz > arc_p && arc_mru->arcs_lsize[ARC_BUFC_DATA] > 0) { 1628 int64_t toevict = 1629 MIN(arc_mru->arcs_lsize[ARC_BUFC_DATA], top_sz - arc_p); 1630 (void) arc_evict(arc_mru, NULL, toevict, FALSE, ARC_BUFC_DATA); 1631 top_sz = arc_anon->arcs_size + arc_mru->arcs_size; 1632 } 1633 1634 if (top_sz > arc_p && arc_mru->arcs_lsize[ARC_BUFC_METADATA] > 0) { 1635 int64_t toevict = 1636 MIN(arc_mru->arcs_lsize[ARC_BUFC_METADATA], top_sz - arc_p); 1637 (void) arc_evict(arc_mru, NULL, toevict, FALSE, 1638 ARC_BUFC_METADATA); 1639 top_sz = arc_anon->arcs_size + arc_mru->arcs_size; 1640 } 1641 1642 mru_over = top_sz + arc_mru_ghost->arcs_size - arc_c; 1643 1644 if (mru_over > 0) { 1645 if (arc_mru_ghost->arcs_size > 0) { 1646 todelete = MIN(arc_mru_ghost->arcs_size, mru_over); 1647 arc_evict_ghost(arc_mru_ghost, NULL, todelete); 1648 } 1649 } 1650 1651 if ((arc_over = arc_size - arc_c) > 0) { 1652 int64_t tbl_over; 1653 1654 if (arc_mfu->arcs_lsize[ARC_BUFC_DATA] > 0) { 1655 int64_t toevict = 1656 MIN(arc_mfu->arcs_lsize[ARC_BUFC_DATA], arc_over); 1657 (void) arc_evict(arc_mfu, NULL, toevict, FALSE, 1658 ARC_BUFC_DATA); 1659 arc_over = arc_size - arc_c; 1660 } 1661 1662 if (arc_over > 0 && 1663 arc_mfu->arcs_lsize[ARC_BUFC_METADATA] > 0) { 1664 int64_t toevict = 1665 MIN(arc_mfu->arcs_lsize[ARC_BUFC_METADATA], 1666 arc_over); 1667 (void) arc_evict(arc_mfu, NULL, toevict, FALSE, 1668 ARC_BUFC_METADATA); 1669 } 1670 1671 tbl_over = arc_size + arc_mru_ghost->arcs_size + 1672 arc_mfu_ghost->arcs_size - arc_c * 2; 1673 1674 if (tbl_over > 0 && arc_mfu_ghost->arcs_size > 0) { 1675 todelete = MIN(arc_mfu_ghost->arcs_size, tbl_over); 1676 arc_evict_ghost(arc_mfu_ghost, NULL, todelete); 1677 } 1678 } 1679 } 1680 1681 static void 1682 arc_do_user_evicts(void) 1683 { 1684 mutex_enter(&arc_eviction_mtx); 1685 while (arc_eviction_list != NULL) { 1686 arc_buf_t *buf = arc_eviction_list; 1687 arc_eviction_list = buf->b_next; 1688 buf->b_hdr = NULL; 1689 mutex_exit(&arc_eviction_mtx); 1690 1691 if (buf->b_efunc != NULL) 1692 VERIFY(buf->b_efunc(buf) == 0); 1693 1694 buf->b_efunc = NULL; 1695 buf->b_private = NULL; 1696 kmem_cache_free(buf_cache, buf); 1697 mutex_enter(&arc_eviction_mtx); 1698 } 1699 mutex_exit(&arc_eviction_mtx); 1700 } 1701 1702 /* 1703 * Flush all *evictable* data from the cache for the given spa. 1704 * NOTE: this will not touch "active" (i.e. referenced) data. 1705 */ 1706 void 1707 arc_flush(spa_t *spa) 1708 { 1709 while (list_head(&arc_mru->arcs_list[ARC_BUFC_DATA])) { 1710 (void) arc_evict(arc_mru, spa, -1, FALSE, ARC_BUFC_DATA); 1711 if (spa) 1712 break; 1713 } 1714 while (list_head(&arc_mru->arcs_list[ARC_BUFC_METADATA])) { 1715 (void) arc_evict(arc_mru, spa, -1, FALSE, ARC_BUFC_METADATA); 1716 if (spa) 1717 break; 1718 } 1719 while (list_head(&arc_mfu->arcs_list[ARC_BUFC_DATA])) { 1720 (void) arc_evict(arc_mfu, spa, -1, FALSE, ARC_BUFC_DATA); 1721 if (spa) 1722 break; 1723 } 1724 while (list_head(&arc_mfu->arcs_list[ARC_BUFC_METADATA])) { 1725 (void) arc_evict(arc_mfu, spa, -1, FALSE, ARC_BUFC_METADATA); 1726 if (spa) 1727 break; 1728 } 1729 1730 arc_evict_ghost(arc_mru_ghost, spa, -1); 1731 arc_evict_ghost(arc_mfu_ghost, spa, -1); 1732 1733 mutex_enter(&arc_reclaim_thr_lock); 1734 arc_do_user_evicts(); 1735 mutex_exit(&arc_reclaim_thr_lock); 1736 ASSERT(spa || arc_eviction_list == NULL); 1737 } 1738 1739 int arc_shrink_shift = 5; /* log2(fraction of arc to reclaim) */ 1740 1741 void 1742 arc_shrink(void) 1743 { 1744 if (arc_c > arc_c_min) { 1745 uint64_t to_free; 1746 1747 #ifdef _KERNEL 1748 to_free = MAX(arc_c >> arc_shrink_shift, ptob(needfree)); 1749 #else 1750 to_free = arc_c >> arc_shrink_shift; 1751 #endif 1752 if (arc_c > arc_c_min + to_free) 1753 atomic_add_64(&arc_c, -to_free); 1754 else 1755 arc_c = arc_c_min; 1756 1757 atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift)); 1758 if (arc_c > arc_size) 1759 arc_c = MAX(arc_size, arc_c_min); 1760 if (arc_p > arc_c) 1761 arc_p = (arc_c >> 1); 1762 ASSERT(arc_c >= arc_c_min); 1763 ASSERT((int64_t)arc_p >= 0); 1764 } 1765 1766 if (arc_size > arc_c) 1767 arc_adjust(); 1768 } 1769 1770 static int 1771 arc_reclaim_needed(void) 1772 { 1773 uint64_t extra; 1774 1775 #ifdef _KERNEL 1776 1777 if (needfree) 1778 return (1); 1779 1780 /* 1781 * take 'desfree' extra pages, so we reclaim sooner, rather than later 1782 */ 1783 extra = desfree; 1784 1785 /* 1786 * check that we're out of range of the pageout scanner. It starts to 1787 * schedule paging if freemem is less than lotsfree and needfree. 1788 * lotsfree is the high-water mark for pageout, and needfree is the 1789 * number of needed free pages. We add extra pages here to make sure 1790 * the scanner doesn't start up while we're freeing memory. 1791 */ 1792 if (freemem < lotsfree + needfree + extra) 1793 return (1); 1794 1795 /* 1796 * check to make sure that swapfs has enough space so that anon 1797 * reservations can still succeed. anon_resvmem() checks that the 1798 * availrmem is greater than swapfs_minfree, and the number of reserved 1799 * swap pages. We also add a bit of extra here just to prevent 1800 * circumstances from getting really dire. 1801 */ 1802 if (availrmem < swapfs_minfree + swapfs_reserve + extra) 1803 return (1); 1804 1805 #if defined(__i386) 1806 /* 1807 * If we're on an i386 platform, it's possible that we'll exhaust the 1808 * kernel heap space before we ever run out of available physical 1809 * memory. Most checks of the size of the heap_area compare against 1810 * tune.t_minarmem, which is the minimum available real memory that we 1811 * can have in the system. However, this is generally fixed at 25 pages 1812 * which is so low that it's useless. In this comparison, we seek to 1813 * calculate the total heap-size, and reclaim if more than 3/4ths of the 1814 * heap is allocated. (Or, in the calculation, if less than 1/4th is 1815 * free) 1816 */ 1817 if (btop(vmem_size(heap_arena, VMEM_FREE)) < 1818 (btop(vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC)) >> 2)) 1819 return (1); 1820 #endif 1821 1822 #else 1823 if (spa_get_random(100) == 0) 1824 return (1); 1825 #endif 1826 return (0); 1827 } 1828 1829 static void 1830 arc_kmem_reap_now(arc_reclaim_strategy_t strat) 1831 { 1832 size_t i; 1833 kmem_cache_t *prev_cache = NULL; 1834 kmem_cache_t *prev_data_cache = NULL; 1835 extern kmem_cache_t *zio_buf_cache[]; 1836 extern kmem_cache_t *zio_data_buf_cache[]; 1837 1838 #ifdef _KERNEL 1839 if (arc_meta_used >= arc_meta_limit) { 1840 /* 1841 * We are exceeding our meta-data cache limit. 1842 * Purge some DNLC entries to release holds on meta-data. 1843 */ 1844 dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent); 1845 } 1846 #if defined(__i386) 1847 /* 1848 * Reclaim unused memory from all kmem caches. 1849 */ 1850 kmem_reap(); 1851 #endif 1852 #endif 1853 1854 /* 1855 * An aggressive reclamation will shrink the cache size as well as 1856 * reap free buffers from the arc kmem caches. 1857 */ 1858 if (strat == ARC_RECLAIM_AGGR) 1859 arc_shrink(); 1860 1861 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) { 1862 if (zio_buf_cache[i] != prev_cache) { 1863 prev_cache = zio_buf_cache[i]; 1864 kmem_cache_reap_now(zio_buf_cache[i]); 1865 } 1866 if (zio_data_buf_cache[i] != prev_data_cache) { 1867 prev_data_cache = zio_data_buf_cache[i]; 1868 kmem_cache_reap_now(zio_data_buf_cache[i]); 1869 } 1870 } 1871 kmem_cache_reap_now(buf_cache); 1872 kmem_cache_reap_now(hdr_cache); 1873 } 1874 1875 static void 1876 arc_reclaim_thread(void) 1877 { 1878 clock_t growtime = 0; 1879 arc_reclaim_strategy_t last_reclaim = ARC_RECLAIM_CONS; 1880 callb_cpr_t cpr; 1881 1882 CALLB_CPR_INIT(&cpr, &arc_reclaim_thr_lock, callb_generic_cpr, FTAG); 1883 1884 mutex_enter(&arc_reclaim_thr_lock); 1885 while (arc_thread_exit == 0) { 1886 if (arc_reclaim_needed()) { 1887 1888 if (arc_no_grow) { 1889 if (last_reclaim == ARC_RECLAIM_CONS) { 1890 last_reclaim = ARC_RECLAIM_AGGR; 1891 } else { 1892 last_reclaim = ARC_RECLAIM_CONS; 1893 } 1894 } else { 1895 arc_no_grow = TRUE; 1896 last_reclaim = ARC_RECLAIM_AGGR; 1897 membar_producer(); 1898 } 1899 1900 /* reset the growth delay for every reclaim */ 1901 growtime = lbolt + (arc_grow_retry * hz); 1902 1903 arc_kmem_reap_now(last_reclaim); 1904 arc_warm = B_TRUE; 1905 1906 } else if (arc_no_grow && lbolt >= growtime) { 1907 arc_no_grow = FALSE; 1908 } 1909 1910 if (2 * arc_c < arc_size + 1911 arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size) 1912 arc_adjust(); 1913 1914 if (arc_eviction_list != NULL) 1915 arc_do_user_evicts(); 1916 1917 /* block until needed, or one second, whichever is shorter */ 1918 CALLB_CPR_SAFE_BEGIN(&cpr); 1919 (void) cv_timedwait(&arc_reclaim_thr_cv, 1920 &arc_reclaim_thr_lock, (lbolt + hz)); 1921 CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_thr_lock); 1922 } 1923 1924 arc_thread_exit = 0; 1925 cv_broadcast(&arc_reclaim_thr_cv); 1926 CALLB_CPR_EXIT(&cpr); /* drops arc_reclaim_thr_lock */ 1927 thread_exit(); 1928 } 1929 1930 /* 1931 * Adapt arc info given the number of bytes we are trying to add and 1932 * the state that we are comming from. This function is only called 1933 * when we are adding new content to the cache. 1934 */ 1935 static void 1936 arc_adapt(int bytes, arc_state_t *state) 1937 { 1938 int mult; 1939 1940 if (state == arc_l2c_only) 1941 return; 1942 1943 ASSERT(bytes > 0); 1944 /* 1945 * Adapt the target size of the MRU list: 1946 * - if we just hit in the MRU ghost list, then increase 1947 * the target size of the MRU list. 1948 * - if we just hit in the MFU ghost list, then increase 1949 * the target size of the MFU list by decreasing the 1950 * target size of the MRU list. 1951 */ 1952 if (state == arc_mru_ghost) { 1953 mult = ((arc_mru_ghost->arcs_size >= arc_mfu_ghost->arcs_size) ? 1954 1 : (arc_mfu_ghost->arcs_size/arc_mru_ghost->arcs_size)); 1955 1956 arc_p = MIN(arc_c, arc_p + bytes * mult); 1957 } else if (state == arc_mfu_ghost) { 1958 mult = ((arc_mfu_ghost->arcs_size >= arc_mru_ghost->arcs_size) ? 1959 1 : (arc_mru_ghost->arcs_size/arc_mfu_ghost->arcs_size)); 1960 1961 arc_p = MAX(0, (int64_t)arc_p - bytes * mult); 1962 } 1963 ASSERT((int64_t)arc_p >= 0); 1964 1965 if (arc_reclaim_needed()) { 1966 cv_signal(&arc_reclaim_thr_cv); 1967 return; 1968 } 1969 1970 if (arc_no_grow) 1971 return; 1972 1973 if (arc_c >= arc_c_max) 1974 return; 1975 1976 /* 1977 * If we're within (2 * maxblocksize) bytes of the target 1978 * cache size, increment the target cache size 1979 */ 1980 if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) { 1981 atomic_add_64(&arc_c, (int64_t)bytes); 1982 if (arc_c > arc_c_max) 1983 arc_c = arc_c_max; 1984 else if (state == arc_anon) 1985 atomic_add_64(&arc_p, (int64_t)bytes); 1986 if (arc_p > arc_c) 1987 arc_p = arc_c; 1988 } 1989 ASSERT((int64_t)arc_p >= 0); 1990 } 1991 1992 /* 1993 * Check if the cache has reached its limits and eviction is required 1994 * prior to insert. 1995 */ 1996 static int 1997 arc_evict_needed(arc_buf_contents_t type) 1998 { 1999 if (type == ARC_BUFC_METADATA && arc_meta_used >= arc_meta_limit) 2000 return (1); 2001 2002 #ifdef _KERNEL 2003 /* 2004 * If zio data pages are being allocated out of a separate heap segment, 2005 * then enforce that the size of available vmem for this area remains 2006 * above about 1/32nd free. 2007 */ 2008 if (type == ARC_BUFC_DATA && zio_arena != NULL && 2009 vmem_size(zio_arena, VMEM_FREE) < 2010 (vmem_size(zio_arena, VMEM_ALLOC) >> 5)) 2011 return (1); 2012 #endif 2013 2014 if (arc_reclaim_needed()) 2015 return (1); 2016 2017 return (arc_size > arc_c); 2018 } 2019 2020 /* 2021 * The buffer, supplied as the first argument, needs a data block. 2022 * So, if we are at cache max, determine which cache should be victimized. 2023 * We have the following cases: 2024 * 2025 * 1. Insert for MRU, p > sizeof(arc_anon + arc_mru) -> 2026 * In this situation if we're out of space, but the resident size of the MFU is 2027 * under the limit, victimize the MFU cache to satisfy this insertion request. 2028 * 2029 * 2. Insert for MRU, p <= sizeof(arc_anon + arc_mru) -> 2030 * Here, we've used up all of the available space for the MRU, so we need to 2031 * evict from our own cache instead. Evict from the set of resident MRU 2032 * entries. 2033 * 2034 * 3. Insert for MFU (c - p) > sizeof(arc_mfu) -> 2035 * c minus p represents the MFU space in the cache, since p is the size of the 2036 * cache that is dedicated to the MRU. In this situation there's still space on 2037 * the MFU side, so the MRU side needs to be victimized. 2038 * 2039 * 4. Insert for MFU (c - p) < sizeof(arc_mfu) -> 2040 * MFU's resident set is consuming more space than it has been allotted. In 2041 * this situation, we must victimize our own cache, the MFU, for this insertion. 2042 */ 2043 static void 2044 arc_get_data_buf(arc_buf_t *buf) 2045 { 2046 arc_state_t *state = buf->b_hdr->b_state; 2047 uint64_t size = buf->b_hdr->b_size; 2048 arc_buf_contents_t type = buf->b_hdr->b_type; 2049 2050 arc_adapt(size, state); 2051 2052 /* 2053 * We have not yet reached cache maximum size, 2054 * just allocate a new buffer. 2055 */ 2056 if (!arc_evict_needed(type)) { 2057 if (type == ARC_BUFC_METADATA) { 2058 buf->b_data = zio_buf_alloc(size); 2059 arc_space_consume(size); 2060 } else { 2061 ASSERT(type == ARC_BUFC_DATA); 2062 buf->b_data = zio_data_buf_alloc(size); 2063 atomic_add_64(&arc_size, size); 2064 } 2065 goto out; 2066 } 2067 2068 /* 2069 * If we are prefetching from the mfu ghost list, this buffer 2070 * will end up on the mru list; so steal space from there. 2071 */ 2072 if (state == arc_mfu_ghost) 2073 state = buf->b_hdr->b_flags & ARC_PREFETCH ? arc_mru : arc_mfu; 2074 else if (state == arc_mru_ghost) 2075 state = arc_mru; 2076 2077 if (state == arc_mru || state == arc_anon) { 2078 uint64_t mru_used = arc_anon->arcs_size + arc_mru->arcs_size; 2079 state = (arc_mfu->arcs_lsize[type] > 0 && 2080 arc_p > mru_used) ? arc_mfu : arc_mru; 2081 } else { 2082 /* MFU cases */ 2083 uint64_t mfu_space = arc_c - arc_p; 2084 state = (arc_mru->arcs_lsize[type] > 0 && 2085 mfu_space > arc_mfu->arcs_size) ? arc_mru : arc_mfu; 2086 } 2087 if ((buf->b_data = arc_evict(state, NULL, size, TRUE, type)) == NULL) { 2088 if (type == ARC_BUFC_METADATA) { 2089 buf->b_data = zio_buf_alloc(size); 2090 arc_space_consume(size); 2091 } else { 2092 ASSERT(type == ARC_BUFC_DATA); 2093 buf->b_data = zio_data_buf_alloc(size); 2094 atomic_add_64(&arc_size, size); 2095 } 2096 ARCSTAT_BUMP(arcstat_recycle_miss); 2097 } 2098 ASSERT(buf->b_data != NULL); 2099 out: 2100 /* 2101 * Update the state size. Note that ghost states have a 2102 * "ghost size" and so don't need to be updated. 2103 */ 2104 if (!GHOST_STATE(buf->b_hdr->b_state)) { 2105 arc_buf_hdr_t *hdr = buf->b_hdr; 2106 2107 atomic_add_64(&hdr->b_state->arcs_size, size); 2108 if (list_link_active(&hdr->b_arc_node)) { 2109 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 2110 atomic_add_64(&hdr->b_state->arcs_lsize[type], size); 2111 } 2112 /* 2113 * If we are growing the cache, and we are adding anonymous 2114 * data, and we have outgrown arc_p, update arc_p 2115 */ 2116 if (arc_size < arc_c && hdr->b_state == arc_anon && 2117 arc_anon->arcs_size + arc_mru->arcs_size > arc_p) 2118 arc_p = MIN(arc_c, arc_p + size); 2119 } 2120 } 2121 2122 /* 2123 * This routine is called whenever a buffer is accessed. 2124 * NOTE: the hash lock is dropped in this function. 2125 */ 2126 static void 2127 arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock) 2128 { 2129 ASSERT(MUTEX_HELD(hash_lock)); 2130 2131 if (buf->b_state == arc_anon) { 2132 /* 2133 * This buffer is not in the cache, and does not 2134 * appear in our "ghost" list. Add the new buffer 2135 * to the MRU state. 2136 */ 2137 2138 ASSERT(buf->b_arc_access == 0); 2139 buf->b_arc_access = lbolt; 2140 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf); 2141 arc_change_state(arc_mru, buf, hash_lock); 2142 2143 } else if (buf->b_state == arc_mru) { 2144 /* 2145 * If this buffer is here because of a prefetch, then either: 2146 * - clear the flag if this is a "referencing" read 2147 * (any subsequent access will bump this into the MFU state). 2148 * or 2149 * - move the buffer to the head of the list if this is 2150 * another prefetch (to make it less likely to be evicted). 2151 */ 2152 if ((buf->b_flags & ARC_PREFETCH) != 0) { 2153 if (refcount_count(&buf->b_refcnt) == 0) { 2154 ASSERT(list_link_active(&buf->b_arc_node)); 2155 } else { 2156 buf->b_flags &= ~ARC_PREFETCH; 2157 ARCSTAT_BUMP(arcstat_mru_hits); 2158 } 2159 buf->b_arc_access = lbolt; 2160 return; 2161 } 2162 2163 /* 2164 * This buffer has been "accessed" only once so far, 2165 * but it is still in the cache. Move it to the MFU 2166 * state. 2167 */ 2168 if (lbolt > buf->b_arc_access + ARC_MINTIME) { 2169 /* 2170 * More than 125ms have passed since we 2171 * instantiated this buffer. Move it to the 2172 * most frequently used state. 2173 */ 2174 buf->b_arc_access = lbolt; 2175 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2176 arc_change_state(arc_mfu, buf, hash_lock); 2177 } 2178 ARCSTAT_BUMP(arcstat_mru_hits); 2179 } else if (buf->b_state == arc_mru_ghost) { 2180 arc_state_t *new_state; 2181 /* 2182 * This buffer has been "accessed" recently, but 2183 * was evicted from the cache. Move it to the 2184 * MFU state. 2185 */ 2186 2187 if (buf->b_flags & ARC_PREFETCH) { 2188 new_state = arc_mru; 2189 if (refcount_count(&buf->b_refcnt) > 0) 2190 buf->b_flags &= ~ARC_PREFETCH; 2191 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf); 2192 } else { 2193 new_state = arc_mfu; 2194 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2195 } 2196 2197 buf->b_arc_access = lbolt; 2198 arc_change_state(new_state, buf, hash_lock); 2199 2200 ARCSTAT_BUMP(arcstat_mru_ghost_hits); 2201 } else if (buf->b_state == arc_mfu) { 2202 /* 2203 * This buffer has been accessed more than once and is 2204 * still in the cache. Keep it in the MFU state. 2205 * 2206 * NOTE: an add_reference() that occurred when we did 2207 * the arc_read() will have kicked this off the list. 2208 * If it was a prefetch, we will explicitly move it to 2209 * the head of the list now. 2210 */ 2211 if ((buf->b_flags & ARC_PREFETCH) != 0) { 2212 ASSERT(refcount_count(&buf->b_refcnt) == 0); 2213 ASSERT(list_link_active(&buf->b_arc_node)); 2214 } 2215 ARCSTAT_BUMP(arcstat_mfu_hits); 2216 buf->b_arc_access = lbolt; 2217 } else if (buf->b_state == arc_mfu_ghost) { 2218 arc_state_t *new_state = arc_mfu; 2219 /* 2220 * This buffer has been accessed more than once but has 2221 * been evicted from the cache. Move it back to the 2222 * MFU state. 2223 */ 2224 2225 if (buf->b_flags & ARC_PREFETCH) { 2226 /* 2227 * This is a prefetch access... 2228 * move this block back to the MRU state. 2229 */ 2230 ASSERT3U(refcount_count(&buf->b_refcnt), ==, 0); 2231 new_state = arc_mru; 2232 } 2233 2234 buf->b_arc_access = lbolt; 2235 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2236 arc_change_state(new_state, buf, hash_lock); 2237 2238 ARCSTAT_BUMP(arcstat_mfu_ghost_hits); 2239 } else if (buf->b_state == arc_l2c_only) { 2240 /* 2241 * This buffer is on the 2nd Level ARC. 2242 */ 2243 2244 buf->b_arc_access = lbolt; 2245 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2246 arc_change_state(arc_mfu, buf, hash_lock); 2247 } else { 2248 ASSERT(!"invalid arc state"); 2249 } 2250 } 2251 2252 /* a generic arc_done_func_t which you can use */ 2253 /* ARGSUSED */ 2254 void 2255 arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg) 2256 { 2257 bcopy(buf->b_data, arg, buf->b_hdr->b_size); 2258 VERIFY(arc_buf_remove_ref(buf, arg) == 1); 2259 } 2260 2261 /* a generic arc_done_func_t */ 2262 void 2263 arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg) 2264 { 2265 arc_buf_t **bufp = arg; 2266 if (zio && zio->io_error) { 2267 VERIFY(arc_buf_remove_ref(buf, arg) == 1); 2268 *bufp = NULL; 2269 } else { 2270 *bufp = buf; 2271 } 2272 } 2273 2274 static void 2275 arc_read_done(zio_t *zio) 2276 { 2277 arc_buf_hdr_t *hdr, *found; 2278 arc_buf_t *buf; 2279 arc_buf_t *abuf; /* buffer we're assigning to callback */ 2280 kmutex_t *hash_lock; 2281 arc_callback_t *callback_list, *acb; 2282 int freeable = FALSE; 2283 2284 buf = zio->io_private; 2285 hdr = buf->b_hdr; 2286 2287 /* 2288 * The hdr was inserted into hash-table and removed from lists 2289 * prior to starting I/O. We should find this header, since 2290 * it's in the hash table, and it should be legit since it's 2291 * not possible to evict it during the I/O. The only possible 2292 * reason for it not to be found is if we were freed during the 2293 * read. 2294 */ 2295 found = buf_hash_find(zio->io_spa, &hdr->b_dva, hdr->b_birth, 2296 &hash_lock); 2297 2298 ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) && hash_lock == NULL) || 2299 (found == hdr && DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) || 2300 (found == hdr && HDR_L2_READING(hdr))); 2301 2302 hdr->b_flags &= ~ARC_L2_EVICTED; 2303 if (l2arc_noprefetch && (hdr->b_flags & ARC_PREFETCH)) 2304 hdr->b_flags &= ~ARC_L2CACHE; 2305 2306 /* byteswap if necessary */ 2307 callback_list = hdr->b_acb; 2308 ASSERT(callback_list != NULL); 2309 if (BP_SHOULD_BYTESWAP(zio->io_bp)) { 2310 arc_byteswap_func_t *func = BP_GET_LEVEL(zio->io_bp) > 0 ? 2311 byteswap_uint64_array : 2312 dmu_ot[BP_GET_TYPE(zio->io_bp)].ot_byteswap; 2313 func(buf->b_data, hdr->b_size); 2314 } 2315 2316 arc_cksum_compute(buf, B_FALSE); 2317 2318 /* create copies of the data buffer for the callers */ 2319 abuf = buf; 2320 for (acb = callback_list; acb; acb = acb->acb_next) { 2321 if (acb->acb_done) { 2322 if (abuf == NULL) 2323 abuf = arc_buf_clone(buf); 2324 acb->acb_buf = abuf; 2325 abuf = NULL; 2326 } 2327 } 2328 hdr->b_acb = NULL; 2329 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 2330 ASSERT(!HDR_BUF_AVAILABLE(hdr)); 2331 if (abuf == buf) 2332 hdr->b_flags |= ARC_BUF_AVAILABLE; 2333 2334 ASSERT(refcount_is_zero(&hdr->b_refcnt) || callback_list != NULL); 2335 2336 if (zio->io_error != 0) { 2337 hdr->b_flags |= ARC_IO_ERROR; 2338 if (hdr->b_state != arc_anon) 2339 arc_change_state(arc_anon, hdr, hash_lock); 2340 if (HDR_IN_HASH_TABLE(hdr)) 2341 buf_hash_remove(hdr); 2342 freeable = refcount_is_zero(&hdr->b_refcnt); 2343 } 2344 2345 /* 2346 * Broadcast before we drop the hash_lock to avoid the possibility 2347 * that the hdr (and hence the cv) might be freed before we get to 2348 * the cv_broadcast(). 2349 */ 2350 cv_broadcast(&hdr->b_cv); 2351 2352 if (hash_lock) { 2353 /* 2354 * Only call arc_access on anonymous buffers. This is because 2355 * if we've issued an I/O for an evicted buffer, we've already 2356 * called arc_access (to prevent any simultaneous readers from 2357 * getting confused). 2358 */ 2359 if (zio->io_error == 0 && hdr->b_state == arc_anon) 2360 arc_access(hdr, hash_lock); 2361 mutex_exit(hash_lock); 2362 } else { 2363 /* 2364 * This block was freed while we waited for the read to 2365 * complete. It has been removed from the hash table and 2366 * moved to the anonymous state (so that it won't show up 2367 * in the cache). 2368 */ 2369 ASSERT3P(hdr->b_state, ==, arc_anon); 2370 freeable = refcount_is_zero(&hdr->b_refcnt); 2371 } 2372 2373 /* execute each callback and free its structure */ 2374 while ((acb = callback_list) != NULL) { 2375 if (acb->acb_done) 2376 acb->acb_done(zio, acb->acb_buf, acb->acb_private); 2377 2378 if (acb->acb_zio_dummy != NULL) { 2379 acb->acb_zio_dummy->io_error = zio->io_error; 2380 zio_nowait(acb->acb_zio_dummy); 2381 } 2382 2383 callback_list = acb->acb_next; 2384 kmem_free(acb, sizeof (arc_callback_t)); 2385 } 2386 2387 if (freeable) 2388 arc_hdr_destroy(hdr); 2389 } 2390 2391 /* 2392 * "Read" the block block at the specified DVA (in bp) via the 2393 * cache. If the block is found in the cache, invoke the provided 2394 * callback immediately and return. Note that the `zio' parameter 2395 * in the callback will be NULL in this case, since no IO was 2396 * required. If the block is not in the cache pass the read request 2397 * on to the spa with a substitute callback function, so that the 2398 * requested block will be added to the cache. 2399 * 2400 * If a read request arrives for a block that has a read in-progress, 2401 * either wait for the in-progress read to complete (and return the 2402 * results); or, if this is a read with a "done" func, add a record 2403 * to the read to invoke the "done" func when the read completes, 2404 * and return; or just return. 2405 * 2406 * arc_read_done() will invoke all the requested "done" functions 2407 * for readers of this block. 2408 * 2409 * Normal callers should use arc_read and pass the arc buffer and offset 2410 * for the bp. But if you know you don't need locking, you can use 2411 * arc_read_bp. 2412 */ 2413 int 2414 arc_read(zio_t *pio, spa_t *spa, blkptr_t *bp, arc_buf_t *pbuf, 2415 arc_done_func_t *done, void *private, int priority, int zio_flags, 2416 uint32_t *arc_flags, const zbookmark_t *zb) 2417 { 2418 int err; 2419 arc_buf_hdr_t *hdr = pbuf->b_hdr; 2420 2421 ASSERT(!refcount_is_zero(&pbuf->b_hdr->b_refcnt)); 2422 ASSERT3U((char *)bp - (char *)pbuf->b_data, <, pbuf->b_hdr->b_size); 2423 rw_enter(&pbuf->b_hdr->b_datalock, RW_READER); 2424 2425 err = arc_read_nolock(pio, spa, bp, done, private, priority, 2426 zio_flags, arc_flags, zb); 2427 2428 ASSERT3P(hdr, ==, pbuf->b_hdr); 2429 rw_exit(&pbuf->b_hdr->b_datalock); 2430 return (err); 2431 } 2432 2433 int 2434 arc_read_nolock(zio_t *pio, spa_t *spa, blkptr_t *bp, 2435 arc_done_func_t *done, void *private, int priority, int zio_flags, 2436 uint32_t *arc_flags, const zbookmark_t *zb) 2437 { 2438 arc_buf_hdr_t *hdr; 2439 arc_buf_t *buf; 2440 kmutex_t *hash_lock; 2441 zio_t *rzio; 2442 2443 top: 2444 hdr = buf_hash_find(spa, BP_IDENTITY(bp), bp->blk_birth, &hash_lock); 2445 if (hdr && hdr->b_datacnt > 0) { 2446 2447 *arc_flags |= ARC_CACHED; 2448 2449 if (HDR_IO_IN_PROGRESS(hdr)) { 2450 2451 if (*arc_flags & ARC_WAIT) { 2452 cv_wait(&hdr->b_cv, hash_lock); 2453 mutex_exit(hash_lock); 2454 goto top; 2455 } 2456 ASSERT(*arc_flags & ARC_NOWAIT); 2457 2458 if (done) { 2459 arc_callback_t *acb = NULL; 2460 2461 acb = kmem_zalloc(sizeof (arc_callback_t), 2462 KM_SLEEP); 2463 acb->acb_done = done; 2464 acb->acb_private = private; 2465 if (pio != NULL) 2466 acb->acb_zio_dummy = zio_null(pio, 2467 spa, NULL, NULL, zio_flags); 2468 2469 ASSERT(acb->acb_done != NULL); 2470 acb->acb_next = hdr->b_acb; 2471 hdr->b_acb = acb; 2472 add_reference(hdr, hash_lock, private); 2473 mutex_exit(hash_lock); 2474 return (0); 2475 } 2476 mutex_exit(hash_lock); 2477 return (0); 2478 } 2479 2480 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu); 2481 2482 if (done) { 2483 add_reference(hdr, hash_lock, private); 2484 /* 2485 * If this block is already in use, create a new 2486 * copy of the data so that we will be guaranteed 2487 * that arc_release() will always succeed. 2488 */ 2489 buf = hdr->b_buf; 2490 ASSERT(buf); 2491 ASSERT(buf->b_data); 2492 if (HDR_BUF_AVAILABLE(hdr)) { 2493 ASSERT(buf->b_efunc == NULL); 2494 hdr->b_flags &= ~ARC_BUF_AVAILABLE; 2495 } else { 2496 buf = arc_buf_clone(buf); 2497 } 2498 } else if (*arc_flags & ARC_PREFETCH && 2499 refcount_count(&hdr->b_refcnt) == 0) { 2500 hdr->b_flags |= ARC_PREFETCH; 2501 } 2502 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 2503 arc_access(hdr, hash_lock); 2504 if (*arc_flags & ARC_L2CACHE) 2505 hdr->b_flags |= ARC_L2CACHE; 2506 mutex_exit(hash_lock); 2507 ARCSTAT_BUMP(arcstat_hits); 2508 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH), 2509 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA, 2510 data, metadata, hits); 2511 2512 if (done) 2513 done(NULL, buf, private); 2514 } else { 2515 uint64_t size = BP_GET_LSIZE(bp); 2516 arc_callback_t *acb; 2517 vdev_t *vd = NULL; 2518 daddr_t addr; 2519 2520 if (hdr == NULL) { 2521 /* this block is not in the cache */ 2522 arc_buf_hdr_t *exists; 2523 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp); 2524 buf = arc_buf_alloc(spa, size, private, type); 2525 hdr = buf->b_hdr; 2526 hdr->b_dva = *BP_IDENTITY(bp); 2527 hdr->b_birth = bp->blk_birth; 2528 hdr->b_cksum0 = bp->blk_cksum.zc_word[0]; 2529 exists = buf_hash_insert(hdr, &hash_lock); 2530 if (exists) { 2531 /* somebody beat us to the hash insert */ 2532 mutex_exit(hash_lock); 2533 bzero(&hdr->b_dva, sizeof (dva_t)); 2534 hdr->b_birth = 0; 2535 hdr->b_cksum0 = 0; 2536 (void) arc_buf_remove_ref(buf, private); 2537 goto top; /* restart the IO request */ 2538 } 2539 /* if this is a prefetch, we don't have a reference */ 2540 if (*arc_flags & ARC_PREFETCH) { 2541 (void) remove_reference(hdr, hash_lock, 2542 private); 2543 hdr->b_flags |= ARC_PREFETCH; 2544 } 2545 if (*arc_flags & ARC_L2CACHE) 2546 hdr->b_flags |= ARC_L2CACHE; 2547 if (BP_GET_LEVEL(bp) > 0) 2548 hdr->b_flags |= ARC_INDIRECT; 2549 } else { 2550 /* this block is in the ghost cache */ 2551 ASSERT(GHOST_STATE(hdr->b_state)); 2552 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 2553 ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 0); 2554 ASSERT(hdr->b_buf == NULL); 2555 2556 /* if this is a prefetch, we don't have a reference */ 2557 if (*arc_flags & ARC_PREFETCH) 2558 hdr->b_flags |= ARC_PREFETCH; 2559 else 2560 add_reference(hdr, hash_lock, private); 2561 if (*arc_flags & ARC_L2CACHE) 2562 hdr->b_flags |= ARC_L2CACHE; 2563 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 2564 buf->b_hdr = hdr; 2565 buf->b_data = NULL; 2566 buf->b_efunc = NULL; 2567 buf->b_private = NULL; 2568 buf->b_next = NULL; 2569 hdr->b_buf = buf; 2570 arc_get_data_buf(buf); 2571 ASSERT(hdr->b_datacnt == 0); 2572 hdr->b_datacnt = 1; 2573 2574 } 2575 2576 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP); 2577 acb->acb_done = done; 2578 acb->acb_private = private; 2579 2580 ASSERT(hdr->b_acb == NULL); 2581 hdr->b_acb = acb; 2582 hdr->b_flags |= ARC_IO_IN_PROGRESS; 2583 2584 /* 2585 * If the buffer has been evicted, migrate it to a present state 2586 * before issuing the I/O. Once we drop the hash-table lock, 2587 * the header will be marked as I/O in progress and have an 2588 * attached buffer. At this point, anybody who finds this 2589 * buffer ought to notice that it's legit but has a pending I/O. 2590 */ 2591 2592 if (GHOST_STATE(hdr->b_state)) 2593 arc_access(hdr, hash_lock); 2594 2595 if (hdr->b_l2hdr != NULL) { 2596 vd = hdr->b_l2hdr->b_dev->l2ad_vdev; 2597 addr = hdr->b_l2hdr->b_daddr; 2598 } 2599 2600 mutex_exit(hash_lock); 2601 2602 ASSERT3U(hdr->b_size, ==, size); 2603 DTRACE_PROBE3(arc__miss, blkptr_t *, bp, uint64_t, size, 2604 zbookmark_t *, zb); 2605 ARCSTAT_BUMP(arcstat_misses); 2606 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH), 2607 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA, 2608 data, metadata, misses); 2609 2610 if (l2arc_ndev != 0 && HDR_L2CACHE(hdr)) { 2611 /* 2612 * Lock out device removal. 2613 */ 2614 spa_config_enter(spa, RW_READER, FTAG); 2615 2616 /* 2617 * Read from the L2ARC if the following are true: 2618 * 1. The L2ARC vdev was previously cached. 2619 * 2. This buffer still has L2ARC metadata. 2620 * 3. This buffer isn't currently writing to the L2ARC. 2621 * 4. The L2ARC entry wasn't evicted, which may 2622 * also have invalidated the vdev. 2623 */ 2624 if (vd != NULL && hdr->b_l2hdr != NULL && 2625 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr)) { 2626 l2arc_read_callback_t *cb; 2627 2628 if (vdev_is_dead(vd)) 2629 goto l2skip; 2630 2631 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr); 2632 ARCSTAT_BUMP(arcstat_l2_hits); 2633 2634 cb = kmem_zalloc(sizeof (l2arc_read_callback_t), 2635 KM_SLEEP); 2636 cb->l2rcb_buf = buf; 2637 cb->l2rcb_spa = spa; 2638 cb->l2rcb_bp = *bp; 2639 cb->l2rcb_zb = *zb; 2640 cb->l2rcb_flags = zio_flags; 2641 2642 /* 2643 * l2arc read. 2644 */ 2645 rzio = zio_read_phys(pio, vd, addr, size, 2646 buf->b_data, ZIO_CHECKSUM_OFF, 2647 l2arc_read_done, cb, priority, zio_flags | 2648 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL | 2649 ZIO_FLAG_DONT_PROPAGATE, B_FALSE); 2650 DTRACE_PROBE2(l2arc__read, vdev_t *, vd, 2651 zio_t *, rzio); 2652 spa_config_exit(spa, FTAG); 2653 2654 if (*arc_flags & ARC_NOWAIT) { 2655 zio_nowait(rzio); 2656 return (0); 2657 } 2658 2659 ASSERT(*arc_flags & ARC_WAIT); 2660 if (zio_wait(rzio) == 0) 2661 return (0); 2662 2663 /* l2arc read error; goto zio_read() */ 2664 } else { 2665 DTRACE_PROBE1(l2arc__miss, 2666 arc_buf_hdr_t *, hdr); 2667 ARCSTAT_BUMP(arcstat_l2_misses); 2668 if (HDR_L2_WRITING(hdr)) 2669 ARCSTAT_BUMP(arcstat_l2_rw_clash); 2670 l2skip: 2671 spa_config_exit(spa, FTAG); 2672 } 2673 } 2674 2675 rzio = zio_read(pio, spa, bp, buf->b_data, size, 2676 arc_read_done, buf, priority, zio_flags, zb); 2677 2678 if (*arc_flags & ARC_WAIT) 2679 return (zio_wait(rzio)); 2680 2681 ASSERT(*arc_flags & ARC_NOWAIT); 2682 zio_nowait(rzio); 2683 } 2684 return (0); 2685 } 2686 2687 /* 2688 * arc_read() variant to support pool traversal. If the block is already 2689 * in the ARC, make a copy of it; otherwise, the caller will do the I/O. 2690 * The idea is that we don't want pool traversal filling up memory, but 2691 * if the ARC already has the data anyway, we shouldn't pay for the I/O. 2692 */ 2693 int 2694 arc_tryread(spa_t *spa, blkptr_t *bp, void *data) 2695 { 2696 arc_buf_hdr_t *hdr; 2697 kmutex_t *hash_mtx; 2698 int rc = 0; 2699 2700 hdr = buf_hash_find(spa, BP_IDENTITY(bp), bp->blk_birth, &hash_mtx); 2701 2702 if (hdr && hdr->b_datacnt > 0 && !HDR_IO_IN_PROGRESS(hdr)) { 2703 arc_buf_t *buf = hdr->b_buf; 2704 2705 ASSERT(buf); 2706 while (buf->b_data == NULL) { 2707 buf = buf->b_next; 2708 ASSERT(buf); 2709 } 2710 bcopy(buf->b_data, data, hdr->b_size); 2711 } else { 2712 rc = ENOENT; 2713 } 2714 2715 if (hash_mtx) 2716 mutex_exit(hash_mtx); 2717 2718 return (rc); 2719 } 2720 2721 void 2722 arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private) 2723 { 2724 ASSERT(buf->b_hdr != NULL); 2725 ASSERT(buf->b_hdr->b_state != arc_anon); 2726 ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt) || func == NULL); 2727 buf->b_efunc = func; 2728 buf->b_private = private; 2729 } 2730 2731 /* 2732 * This is used by the DMU to let the ARC know that a buffer is 2733 * being evicted, so the ARC should clean up. If this arc buf 2734 * is not yet in the evicted state, it will be put there. 2735 */ 2736 int 2737 arc_buf_evict(arc_buf_t *buf) 2738 { 2739 arc_buf_hdr_t *hdr; 2740 kmutex_t *hash_lock; 2741 arc_buf_t **bufp; 2742 2743 mutex_enter(&arc_eviction_mtx); 2744 hdr = buf->b_hdr; 2745 if (hdr == NULL) { 2746 /* 2747 * We are in arc_do_user_evicts(). 2748 */ 2749 ASSERT(buf->b_data == NULL); 2750 mutex_exit(&arc_eviction_mtx); 2751 return (0); 2752 } 2753 hash_lock = HDR_LOCK(hdr); 2754 mutex_exit(&arc_eviction_mtx); 2755 2756 mutex_enter(hash_lock); 2757 2758 if (buf->b_data == NULL) { 2759 /* 2760 * We are on the eviction list. 2761 */ 2762 mutex_exit(hash_lock); 2763 mutex_enter(&arc_eviction_mtx); 2764 if (buf->b_hdr == NULL) { 2765 /* 2766 * We are already in arc_do_user_evicts(). 2767 */ 2768 mutex_exit(&arc_eviction_mtx); 2769 return (0); 2770 } else { 2771 arc_buf_t copy = *buf; /* structure assignment */ 2772 /* 2773 * Process this buffer now 2774 * but let arc_do_user_evicts() do the reaping. 2775 */ 2776 buf->b_efunc = NULL; 2777 mutex_exit(&arc_eviction_mtx); 2778 VERIFY(copy.b_efunc(©) == 0); 2779 return (1); 2780 } 2781 } 2782 2783 ASSERT(buf->b_hdr == hdr); 2784 ASSERT3U(refcount_count(&hdr->b_refcnt), <, hdr->b_datacnt); 2785 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu); 2786 2787 /* 2788 * Pull this buffer off of the hdr 2789 */ 2790 bufp = &hdr->b_buf; 2791 while (*bufp != buf) 2792 bufp = &(*bufp)->b_next; 2793 *bufp = buf->b_next; 2794 2795 ASSERT(buf->b_data != NULL); 2796 arc_buf_destroy(buf, FALSE, FALSE); 2797 2798 if (hdr->b_datacnt == 0) { 2799 arc_state_t *old_state = hdr->b_state; 2800 arc_state_t *evicted_state; 2801 2802 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 2803 2804 evicted_state = 2805 (old_state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost; 2806 2807 mutex_enter(&old_state->arcs_mtx); 2808 mutex_enter(&evicted_state->arcs_mtx); 2809 2810 arc_change_state(evicted_state, hdr, hash_lock); 2811 ASSERT(HDR_IN_HASH_TABLE(hdr)); 2812 hdr->b_flags |= ARC_IN_HASH_TABLE; 2813 hdr->b_flags &= ~ARC_BUF_AVAILABLE; 2814 2815 mutex_exit(&evicted_state->arcs_mtx); 2816 mutex_exit(&old_state->arcs_mtx); 2817 } 2818 mutex_exit(hash_lock); 2819 2820 VERIFY(buf->b_efunc(buf) == 0); 2821 buf->b_efunc = NULL; 2822 buf->b_private = NULL; 2823 buf->b_hdr = NULL; 2824 kmem_cache_free(buf_cache, buf); 2825 return (1); 2826 } 2827 2828 /* 2829 * Release this buffer from the cache. This must be done 2830 * after a read and prior to modifying the buffer contents. 2831 * If the buffer has more than one reference, we must make 2832 * a new hdr for the buffer. 2833 */ 2834 void 2835 arc_release(arc_buf_t *buf, void *tag) 2836 { 2837 arc_buf_hdr_t *hdr = buf->b_hdr; 2838 kmutex_t *hash_lock = HDR_LOCK(hdr); 2839 l2arc_buf_hdr_t *l2hdr = NULL; 2840 uint64_t buf_size; 2841 2842 /* this buffer is not on any list */ 2843 ASSERT(refcount_count(&hdr->b_refcnt) > 0); 2844 ASSERT(!(hdr->b_flags & ARC_STORED)); 2845 2846 if (hdr->b_state == arc_anon) { 2847 /* this buffer is already released */ 2848 ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 1); 2849 ASSERT(BUF_EMPTY(hdr)); 2850 ASSERT(buf->b_efunc == NULL); 2851 arc_buf_thaw(buf); 2852 return; 2853 } 2854 2855 mutex_enter(hash_lock); 2856 2857 /* 2858 * Do we have more than one buf? 2859 */ 2860 if (hdr->b_buf != buf || buf->b_next != NULL) { 2861 arc_buf_hdr_t *nhdr; 2862 arc_buf_t **bufp; 2863 uint64_t blksz = hdr->b_size; 2864 spa_t *spa = hdr->b_spa; 2865 arc_buf_contents_t type = hdr->b_type; 2866 uint32_t flags = hdr->b_flags; 2867 2868 ASSERT(hdr->b_datacnt > 1); 2869 /* 2870 * Pull the data off of this buf and attach it to 2871 * a new anonymous buf. 2872 */ 2873 (void) remove_reference(hdr, hash_lock, tag); 2874 bufp = &hdr->b_buf; 2875 while (*bufp != buf) 2876 bufp = &(*bufp)->b_next; 2877 *bufp = (*bufp)->b_next; 2878 buf->b_next = NULL; 2879 2880 ASSERT3U(hdr->b_state->arcs_size, >=, hdr->b_size); 2881 atomic_add_64(&hdr->b_state->arcs_size, -hdr->b_size); 2882 if (refcount_is_zero(&hdr->b_refcnt)) { 2883 uint64_t *size = &hdr->b_state->arcs_lsize[hdr->b_type]; 2884 ASSERT3U(*size, >=, hdr->b_size); 2885 atomic_add_64(size, -hdr->b_size); 2886 } 2887 hdr->b_datacnt -= 1; 2888 if (hdr->b_l2hdr != NULL) { 2889 mutex_enter(&l2arc_buflist_mtx); 2890 l2hdr = hdr->b_l2hdr; 2891 hdr->b_l2hdr = NULL; 2892 buf_size = hdr->b_size; 2893 } 2894 arc_cksum_verify(buf); 2895 2896 mutex_exit(hash_lock); 2897 2898 nhdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE); 2899 nhdr->b_size = blksz; 2900 nhdr->b_spa = spa; 2901 nhdr->b_type = type; 2902 nhdr->b_buf = buf; 2903 nhdr->b_state = arc_anon; 2904 nhdr->b_arc_access = 0; 2905 nhdr->b_flags = flags & ARC_L2_WRITING; 2906 nhdr->b_l2hdr = NULL; 2907 nhdr->b_datacnt = 1; 2908 nhdr->b_freeze_cksum = NULL; 2909 (void) refcount_add(&nhdr->b_refcnt, tag); 2910 buf->b_hdr = nhdr; 2911 atomic_add_64(&arc_anon->arcs_size, blksz); 2912 } else { 2913 ASSERT(refcount_count(&hdr->b_refcnt) == 1); 2914 ASSERT(!list_link_active(&hdr->b_arc_node)); 2915 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 2916 arc_change_state(arc_anon, hdr, hash_lock); 2917 hdr->b_arc_access = 0; 2918 if (hdr->b_l2hdr != NULL) { 2919 mutex_enter(&l2arc_buflist_mtx); 2920 l2hdr = hdr->b_l2hdr; 2921 hdr->b_l2hdr = NULL; 2922 buf_size = hdr->b_size; 2923 } 2924 mutex_exit(hash_lock); 2925 2926 bzero(&hdr->b_dva, sizeof (dva_t)); 2927 hdr->b_birth = 0; 2928 hdr->b_cksum0 = 0; 2929 arc_buf_thaw(buf); 2930 } 2931 buf->b_efunc = NULL; 2932 buf->b_private = NULL; 2933 2934 if (l2hdr) { 2935 list_remove(l2hdr->b_dev->l2ad_buflist, hdr); 2936 kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t)); 2937 ARCSTAT_INCR(arcstat_l2_size, -buf_size); 2938 } 2939 if (MUTEX_HELD(&l2arc_buflist_mtx)) 2940 mutex_exit(&l2arc_buflist_mtx); 2941 } 2942 2943 int 2944 arc_released(arc_buf_t *buf) 2945 { 2946 return (buf->b_data != NULL && buf->b_hdr->b_state == arc_anon); 2947 } 2948 2949 int 2950 arc_has_callback(arc_buf_t *buf) 2951 { 2952 return (buf->b_efunc != NULL); 2953 } 2954 2955 #ifdef ZFS_DEBUG 2956 int 2957 arc_referenced(arc_buf_t *buf) 2958 { 2959 return (refcount_count(&buf->b_hdr->b_refcnt)); 2960 } 2961 #endif 2962 2963 static void 2964 arc_write_ready(zio_t *zio) 2965 { 2966 arc_write_callback_t *callback = zio->io_private; 2967 arc_buf_t *buf = callback->awcb_buf; 2968 arc_buf_hdr_t *hdr = buf->b_hdr; 2969 2970 if (zio->io_error == 0 && callback->awcb_ready) { 2971 ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt)); 2972 callback->awcb_ready(zio, buf, callback->awcb_private); 2973 } 2974 /* 2975 * If the IO is already in progress, then this is a re-write 2976 * attempt, so we need to thaw and re-compute the cksum. It is 2977 * the responsibility of the callback to handle the freeing 2978 * and accounting for any re-write attempt. If we don't have a 2979 * callback registered then simply free the block here. 2980 */ 2981 if (HDR_IO_IN_PROGRESS(hdr)) { 2982 if (!BP_IS_HOLE(&zio->io_bp_orig) && 2983 callback->awcb_ready == NULL) { 2984 zio_nowait(zio_free(zio, zio->io_spa, zio->io_txg, 2985 &zio->io_bp_orig, NULL, NULL)); 2986 } 2987 mutex_enter(&hdr->b_freeze_lock); 2988 if (hdr->b_freeze_cksum != NULL) { 2989 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t)); 2990 hdr->b_freeze_cksum = NULL; 2991 } 2992 mutex_exit(&hdr->b_freeze_lock); 2993 } 2994 arc_cksum_compute(buf, B_FALSE); 2995 hdr->b_flags |= ARC_IO_IN_PROGRESS; 2996 } 2997 2998 static void 2999 arc_write_done(zio_t *zio) 3000 { 3001 arc_write_callback_t *callback = zio->io_private; 3002 arc_buf_t *buf = callback->awcb_buf; 3003 arc_buf_hdr_t *hdr = buf->b_hdr; 3004 3005 hdr->b_acb = NULL; 3006 3007 hdr->b_dva = *BP_IDENTITY(zio->io_bp); 3008 hdr->b_birth = zio->io_bp->blk_birth; 3009 hdr->b_cksum0 = zio->io_bp->blk_cksum.zc_word[0]; 3010 /* 3011 * If the block to be written was all-zero, we may have 3012 * compressed it away. In this case no write was performed 3013 * so there will be no dva/birth-date/checksum. The buffer 3014 * must therefor remain anonymous (and uncached). 3015 */ 3016 if (!BUF_EMPTY(hdr)) { 3017 arc_buf_hdr_t *exists; 3018 kmutex_t *hash_lock; 3019 3020 arc_cksum_verify(buf); 3021 3022 exists = buf_hash_insert(hdr, &hash_lock); 3023 if (exists) { 3024 /* 3025 * This can only happen if we overwrite for 3026 * sync-to-convergence, because we remove 3027 * buffers from the hash table when we arc_free(). 3028 */ 3029 ASSERT(DVA_EQUAL(BP_IDENTITY(&zio->io_bp_orig), 3030 BP_IDENTITY(zio->io_bp))); 3031 ASSERT3U(zio->io_bp_orig.blk_birth, ==, 3032 zio->io_bp->blk_birth); 3033 3034 ASSERT(refcount_is_zero(&exists->b_refcnt)); 3035 arc_change_state(arc_anon, exists, hash_lock); 3036 mutex_exit(hash_lock); 3037 arc_hdr_destroy(exists); 3038 exists = buf_hash_insert(hdr, &hash_lock); 3039 ASSERT3P(exists, ==, NULL); 3040 } 3041 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 3042 /* if it's not anon, we are doing a scrub */ 3043 if (hdr->b_state == arc_anon) 3044 arc_access(hdr, hash_lock); 3045 mutex_exit(hash_lock); 3046 } else if (callback->awcb_done == NULL) { 3047 int destroy_hdr; 3048 /* 3049 * This is an anonymous buffer with no user callback, 3050 * destroy it if there are no active references. 3051 */ 3052 mutex_enter(&arc_eviction_mtx); 3053 destroy_hdr = refcount_is_zero(&hdr->b_refcnt); 3054 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 3055 mutex_exit(&arc_eviction_mtx); 3056 if (destroy_hdr) 3057 arc_hdr_destroy(hdr); 3058 } else { 3059 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 3060 } 3061 hdr->b_flags &= ~ARC_STORED; 3062 3063 if (callback->awcb_done) { 3064 ASSERT(!refcount_is_zero(&hdr->b_refcnt)); 3065 callback->awcb_done(zio, buf, callback->awcb_private); 3066 } 3067 3068 kmem_free(callback, sizeof (arc_write_callback_t)); 3069 } 3070 3071 static void 3072 write_policy(spa_t *spa, const writeprops_t *wp, 3073 int *cksump, int *compp, int *copiesp) 3074 { 3075 int copies = wp->wp_copies; 3076 boolean_t ismd = (wp->wp_level > 0 || dmu_ot[wp->wp_type].ot_metadata); 3077 3078 /* Determine copies setting */ 3079 if (ismd) 3080 copies++; 3081 *copiesp = MIN(copies, spa_max_replication(spa)); 3082 3083 /* Determine checksum setting */ 3084 if (ismd) { 3085 /* 3086 * Metadata always gets checksummed. If the data 3087 * checksum is multi-bit correctable, and it's not a 3088 * ZBT-style checksum, then it's suitable for metadata 3089 * as well. Otherwise, the metadata checksum defaults 3090 * to fletcher4. 3091 */ 3092 if (zio_checksum_table[wp->wp_oschecksum].ci_correctable && 3093 !zio_checksum_table[wp->wp_oschecksum].ci_zbt) 3094 *cksump = wp->wp_oschecksum; 3095 else 3096 *cksump = ZIO_CHECKSUM_FLETCHER_4; 3097 } else { 3098 *cksump = zio_checksum_select(wp->wp_dnchecksum, 3099 wp->wp_oschecksum); 3100 } 3101 3102 /* Determine compression setting */ 3103 if (ismd) { 3104 /* 3105 * XXX -- we should design a compression algorithm 3106 * that specializes in arrays of bps. 3107 */ 3108 *compp = zfs_mdcomp_disable ? ZIO_COMPRESS_EMPTY : 3109 ZIO_COMPRESS_LZJB; 3110 } else { 3111 *compp = zio_compress_select(wp->wp_dncompress, 3112 wp->wp_oscompress); 3113 } 3114 } 3115 3116 zio_t * 3117 arc_write(zio_t *pio, spa_t *spa, const writeprops_t *wp, 3118 boolean_t l2arc, uint64_t txg, blkptr_t *bp, arc_buf_t *buf, 3119 arc_done_func_t *ready, arc_done_func_t *done, void *private, int priority, 3120 int zio_flags, const zbookmark_t *zb) 3121 { 3122 arc_buf_hdr_t *hdr = buf->b_hdr; 3123 arc_write_callback_t *callback; 3124 zio_t *zio; 3125 int cksum, comp, copies; 3126 3127 ASSERT(!HDR_IO_ERROR(hdr)); 3128 ASSERT((hdr->b_flags & ARC_IO_IN_PROGRESS) == 0); 3129 ASSERT(hdr->b_acb == 0); 3130 if (l2arc) 3131 hdr->b_flags |= ARC_L2CACHE; 3132 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP); 3133 callback->awcb_ready = ready; 3134 callback->awcb_done = done; 3135 callback->awcb_private = private; 3136 callback->awcb_buf = buf; 3137 3138 write_policy(spa, wp, &cksum, &comp, &copies); 3139 zio = zio_write(pio, spa, cksum, comp, copies, txg, bp, 3140 buf->b_data, hdr->b_size, arc_write_ready, arc_write_done, 3141 callback, priority, zio_flags, zb); 3142 3143 return (zio); 3144 } 3145 3146 int 3147 arc_free(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, 3148 zio_done_func_t *done, void *private, uint32_t arc_flags) 3149 { 3150 arc_buf_hdr_t *ab; 3151 kmutex_t *hash_lock; 3152 zio_t *zio; 3153 3154 /* 3155 * If this buffer is in the cache, release it, so it 3156 * can be re-used. 3157 */ 3158 ab = buf_hash_find(spa, BP_IDENTITY(bp), bp->blk_birth, &hash_lock); 3159 if (ab != NULL) { 3160 /* 3161 * The checksum of blocks to free is not always 3162 * preserved (eg. on the deadlist). However, if it is 3163 * nonzero, it should match what we have in the cache. 3164 */ 3165 ASSERT(bp->blk_cksum.zc_word[0] == 0 || 3166 ab->b_cksum0 == bp->blk_cksum.zc_word[0]); 3167 if (ab->b_state != arc_anon) 3168 arc_change_state(arc_anon, ab, hash_lock); 3169 if (HDR_IO_IN_PROGRESS(ab)) { 3170 /* 3171 * This should only happen when we prefetch. 3172 */ 3173 ASSERT(ab->b_flags & ARC_PREFETCH); 3174 ASSERT3U(ab->b_datacnt, ==, 1); 3175 ab->b_flags |= ARC_FREED_IN_READ; 3176 if (HDR_IN_HASH_TABLE(ab)) 3177 buf_hash_remove(ab); 3178 ab->b_arc_access = 0; 3179 bzero(&ab->b_dva, sizeof (dva_t)); 3180 ab->b_birth = 0; 3181 ab->b_cksum0 = 0; 3182 ab->b_buf->b_efunc = NULL; 3183 ab->b_buf->b_private = NULL; 3184 mutex_exit(hash_lock); 3185 } else if (refcount_is_zero(&ab->b_refcnt)) { 3186 ab->b_flags |= ARC_FREE_IN_PROGRESS; 3187 mutex_exit(hash_lock); 3188 arc_hdr_destroy(ab); 3189 ARCSTAT_BUMP(arcstat_deleted); 3190 } else { 3191 /* 3192 * We still have an active reference on this 3193 * buffer. This can happen, e.g., from 3194 * dbuf_unoverride(). 3195 */ 3196 ASSERT(!HDR_IN_HASH_TABLE(ab)); 3197 ab->b_arc_access = 0; 3198 bzero(&ab->b_dva, sizeof (dva_t)); 3199 ab->b_birth = 0; 3200 ab->b_cksum0 = 0; 3201 ab->b_buf->b_efunc = NULL; 3202 ab->b_buf->b_private = NULL; 3203 mutex_exit(hash_lock); 3204 } 3205 } 3206 3207 zio = zio_free(pio, spa, txg, bp, done, private); 3208 3209 if (arc_flags & ARC_WAIT) 3210 return (zio_wait(zio)); 3211 3212 ASSERT(arc_flags & ARC_NOWAIT); 3213 zio_nowait(zio); 3214 3215 return (0); 3216 } 3217 3218 static int 3219 arc_memory_throttle(uint64_t reserve, uint64_t txg) 3220 { 3221 #ifdef _KERNEL 3222 uint64_t inflight_data = arc_anon->arcs_size; 3223 uint64_t available_memory = ptob(freemem); 3224 static uint64_t page_load = 0; 3225 static uint64_t last_txg = 0; 3226 3227 #if defined(__i386) 3228 available_memory = 3229 MIN(available_memory, vmem_size(heap_arena, VMEM_FREE)); 3230 #endif 3231 if (available_memory >= zfs_write_limit_max) 3232 return (0); 3233 3234 if (txg > last_txg) { 3235 last_txg = txg; 3236 page_load = 0; 3237 } 3238 /* 3239 * If we are in pageout, we know that memory is already tight, 3240 * the arc is already going to be evicting, so we just want to 3241 * continue to let page writes occur as quickly as possible. 3242 */ 3243 if (curproc == proc_pageout) { 3244 if (page_load > MAX(ptob(minfree), available_memory) / 4) 3245 return (ERESTART); 3246 /* Note: reserve is inflated, so we deflate */ 3247 page_load += reserve / 8; 3248 return (0); 3249 } else if (page_load > 0 && arc_reclaim_needed()) { 3250 /* memory is low, delay before restarting */ 3251 ARCSTAT_INCR(arcstat_memory_throttle_count, 1); 3252 return (EAGAIN); 3253 } 3254 page_load = 0; 3255 3256 if (arc_size > arc_c_min) { 3257 uint64_t evictable_memory = 3258 arc_mru->arcs_lsize[ARC_BUFC_DATA] + 3259 arc_mru->arcs_lsize[ARC_BUFC_METADATA] + 3260 arc_mfu->arcs_lsize[ARC_BUFC_DATA] + 3261 arc_mfu->arcs_lsize[ARC_BUFC_METADATA]; 3262 available_memory += MIN(evictable_memory, arc_size - arc_c_min); 3263 } 3264 3265 if (inflight_data > available_memory / 4) { 3266 ARCSTAT_INCR(arcstat_memory_throttle_count, 1); 3267 return (ERESTART); 3268 } 3269 #endif 3270 return (0); 3271 } 3272 3273 void 3274 arc_tempreserve_clear(uint64_t reserve) 3275 { 3276 atomic_add_64(&arc_tempreserve, -reserve); 3277 ASSERT((int64_t)arc_tempreserve >= 0); 3278 } 3279 3280 int 3281 arc_tempreserve_space(uint64_t reserve, uint64_t txg) 3282 { 3283 int error; 3284 3285 #ifdef ZFS_DEBUG 3286 /* 3287 * Once in a while, fail for no reason. Everything should cope. 3288 */ 3289 if (spa_get_random(10000) == 0) { 3290 dprintf("forcing random failure\n"); 3291 return (ERESTART); 3292 } 3293 #endif 3294 if (reserve > arc_c/4 && !arc_no_grow) 3295 arc_c = MIN(arc_c_max, reserve * 4); 3296 if (reserve > arc_c) 3297 return (ENOMEM); 3298 3299 /* 3300 * Writes will, almost always, require additional memory allocations 3301 * in order to compress/encrypt/etc the data. We therefor need to 3302 * make sure that there is sufficient available memory for this. 3303 */ 3304 if (error = arc_memory_throttle(reserve, txg)) 3305 return (error); 3306 3307 /* 3308 * Throttle writes when the amount of dirty data in the cache 3309 * gets too large. We try to keep the cache less than half full 3310 * of dirty blocks so that our sync times don't grow too large. 3311 * Note: if two requests come in concurrently, we might let them 3312 * both succeed, when one of them should fail. Not a huge deal. 3313 */ 3314 if (reserve + arc_tempreserve + arc_anon->arcs_size > arc_c / 2 && 3315 arc_anon->arcs_size > arc_c / 4) { 3316 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK " 3317 "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n", 3318 arc_tempreserve>>10, 3319 arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10, 3320 arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10, 3321 reserve>>10, arc_c>>10); 3322 return (ERESTART); 3323 } 3324 atomic_add_64(&arc_tempreserve, reserve); 3325 return (0); 3326 } 3327 3328 void 3329 arc_init(void) 3330 { 3331 mutex_init(&arc_reclaim_thr_lock, NULL, MUTEX_DEFAULT, NULL); 3332 cv_init(&arc_reclaim_thr_cv, NULL, CV_DEFAULT, NULL); 3333 3334 /* Convert seconds to clock ticks */ 3335 arc_min_prefetch_lifespan = 1 * hz; 3336 3337 /* Start out with 1/8 of all memory */ 3338 arc_c = physmem * PAGESIZE / 8; 3339 3340 #ifdef _KERNEL 3341 /* 3342 * On architectures where the physical memory can be larger 3343 * than the addressable space (intel in 32-bit mode), we may 3344 * need to limit the cache to 1/8 of VM size. 3345 */ 3346 arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8); 3347 #endif 3348 3349 /* set min cache to 1/32 of all memory, or 64MB, whichever is more */ 3350 arc_c_min = MAX(arc_c / 4, 64<<20); 3351 /* set max to 3/4 of all memory, or all but 1GB, whichever is more */ 3352 if (arc_c * 8 >= 1<<30) 3353 arc_c_max = (arc_c * 8) - (1<<30); 3354 else 3355 arc_c_max = arc_c_min; 3356 arc_c_max = MAX(arc_c * 6, arc_c_max); 3357 3358 /* 3359 * Allow the tunables to override our calculations if they are 3360 * reasonable (ie. over 64MB) 3361 */ 3362 if (zfs_arc_max > 64<<20 && zfs_arc_max < physmem * PAGESIZE) 3363 arc_c_max = zfs_arc_max; 3364 if (zfs_arc_min > 64<<20 && zfs_arc_min <= arc_c_max) 3365 arc_c_min = zfs_arc_min; 3366 3367 arc_c = arc_c_max; 3368 arc_p = (arc_c >> 1); 3369 3370 /* limit meta-data to 1/4 of the arc capacity */ 3371 arc_meta_limit = arc_c_max / 4; 3372 3373 /* Allow the tunable to override if it is reasonable */ 3374 if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max) 3375 arc_meta_limit = zfs_arc_meta_limit; 3376 3377 if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0) 3378 arc_c_min = arc_meta_limit / 2; 3379 3380 /* if kmem_flags are set, lets try to use less memory */ 3381 if (kmem_debugging()) 3382 arc_c = arc_c / 2; 3383 if (arc_c < arc_c_min) 3384 arc_c = arc_c_min; 3385 3386 arc_anon = &ARC_anon; 3387 arc_mru = &ARC_mru; 3388 arc_mru_ghost = &ARC_mru_ghost; 3389 arc_mfu = &ARC_mfu; 3390 arc_mfu_ghost = &ARC_mfu_ghost; 3391 arc_l2c_only = &ARC_l2c_only; 3392 arc_size = 0; 3393 3394 mutex_init(&arc_anon->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3395 mutex_init(&arc_mru->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3396 mutex_init(&arc_mru_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3397 mutex_init(&arc_mfu->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3398 mutex_init(&arc_mfu_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3399 mutex_init(&arc_l2c_only->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3400 3401 list_create(&arc_mru->arcs_list[ARC_BUFC_METADATA], 3402 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3403 list_create(&arc_mru->arcs_list[ARC_BUFC_DATA], 3404 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3405 list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA], 3406 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3407 list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA], 3408 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3409 list_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA], 3410 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3411 list_create(&arc_mfu->arcs_list[ARC_BUFC_DATA], 3412 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3413 list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA], 3414 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3415 list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA], 3416 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3417 list_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA], 3418 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3419 list_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA], 3420 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3421 3422 buf_init(); 3423 3424 arc_thread_exit = 0; 3425 arc_eviction_list = NULL; 3426 mutex_init(&arc_eviction_mtx, NULL, MUTEX_DEFAULT, NULL); 3427 bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t)); 3428 3429 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED, 3430 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); 3431 3432 if (arc_ksp != NULL) { 3433 arc_ksp->ks_data = &arc_stats; 3434 kstat_install(arc_ksp); 3435 } 3436 3437 (void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0, 3438 TS_RUN, minclsyspri); 3439 3440 arc_dead = FALSE; 3441 arc_warm = B_FALSE; 3442 3443 if (zfs_write_limit_max == 0) 3444 zfs_write_limit_max = physmem * PAGESIZE >> 3445 zfs_write_limit_shift; 3446 else 3447 zfs_write_limit_shift = 0; 3448 } 3449 3450 void 3451 arc_fini(void) 3452 { 3453 mutex_enter(&arc_reclaim_thr_lock); 3454 arc_thread_exit = 1; 3455 while (arc_thread_exit != 0) 3456 cv_wait(&arc_reclaim_thr_cv, &arc_reclaim_thr_lock); 3457 mutex_exit(&arc_reclaim_thr_lock); 3458 3459 arc_flush(NULL); 3460 3461 arc_dead = TRUE; 3462 3463 if (arc_ksp != NULL) { 3464 kstat_delete(arc_ksp); 3465 arc_ksp = NULL; 3466 } 3467 3468 mutex_destroy(&arc_eviction_mtx); 3469 mutex_destroy(&arc_reclaim_thr_lock); 3470 cv_destroy(&arc_reclaim_thr_cv); 3471 3472 list_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]); 3473 list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]); 3474 list_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]); 3475 list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]); 3476 list_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]); 3477 list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]); 3478 list_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]); 3479 list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]); 3480 3481 mutex_destroy(&arc_anon->arcs_mtx); 3482 mutex_destroy(&arc_mru->arcs_mtx); 3483 mutex_destroy(&arc_mru_ghost->arcs_mtx); 3484 mutex_destroy(&arc_mfu->arcs_mtx); 3485 mutex_destroy(&arc_mfu_ghost->arcs_mtx); 3486 3487 buf_fini(); 3488 } 3489 3490 /* 3491 * Level 2 ARC 3492 * 3493 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk. 3494 * It uses dedicated storage devices to hold cached data, which are populated 3495 * using large infrequent writes. The main role of this cache is to boost 3496 * the performance of random read workloads. The intended L2ARC devices 3497 * include short-stroked disks, solid state disks, and other media with 3498 * substantially faster read latency than disk. 3499 * 3500 * +-----------------------+ 3501 * | ARC | 3502 * +-----------------------+ 3503 * | ^ ^ 3504 * | | | 3505 * l2arc_feed_thread() arc_read() 3506 * | | | 3507 * | l2arc read | 3508 * V | | 3509 * +---------------+ | 3510 * | L2ARC | | 3511 * +---------------+ | 3512 * | ^ | 3513 * l2arc_write() | | 3514 * | | | 3515 * V | | 3516 * +-------+ +-------+ 3517 * | vdev | | vdev | 3518 * | cache | | cache | 3519 * +-------+ +-------+ 3520 * +=========+ .-----. 3521 * : L2ARC : |-_____-| 3522 * : devices : | Disks | 3523 * +=========+ `-_____-' 3524 * 3525 * Read requests are satisfied from the following sources, in order: 3526 * 3527 * 1) ARC 3528 * 2) vdev cache of L2ARC devices 3529 * 3) L2ARC devices 3530 * 4) vdev cache of disks 3531 * 5) disks 3532 * 3533 * Some L2ARC device types exhibit extremely slow write performance. 3534 * To accommodate for this there are some significant differences between 3535 * the L2ARC and traditional cache design: 3536 * 3537 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from 3538 * the ARC behave as usual, freeing buffers and placing headers on ghost 3539 * lists. The ARC does not send buffers to the L2ARC during eviction as 3540 * this would add inflated write latencies for all ARC memory pressure. 3541 * 3542 * 2. The L2ARC attempts to cache data from the ARC before it is evicted. 3543 * It does this by periodically scanning buffers from the eviction-end of 3544 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are 3545 * not already there. It scans until a headroom of buffers is satisfied, 3546 * which itself is a buffer for ARC eviction. The thread that does this is 3547 * l2arc_feed_thread(), illustrated below; example sizes are included to 3548 * provide a better sense of ratio than this diagram: 3549 * 3550 * head --> tail 3551 * +---------------------+----------+ 3552 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC 3553 * +---------------------+----------+ | o L2ARC eligible 3554 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer 3555 * +---------------------+----------+ | 3556 * 15.9 Gbytes ^ 32 Mbytes | 3557 * headroom | 3558 * l2arc_feed_thread() 3559 * | 3560 * l2arc write hand <--[oooo]--' 3561 * | 8 Mbyte 3562 * | write max 3563 * V 3564 * +==============================+ 3565 * L2ARC dev |####|#|###|###| |####| ... | 3566 * +==============================+ 3567 * 32 Gbytes 3568 * 3569 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of 3570 * evicted, then the L2ARC has cached a buffer much sooner than it probably 3571 * needed to, potentially wasting L2ARC device bandwidth and storage. It is 3572 * safe to say that this is an uncommon case, since buffers at the end of 3573 * the ARC lists have moved there due to inactivity. 3574 * 3575 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom, 3576 * then the L2ARC simply misses copying some buffers. This serves as a 3577 * pressure valve to prevent heavy read workloads from both stalling the ARC 3578 * with waits and clogging the L2ARC with writes. This also helps prevent 3579 * the potential for the L2ARC to churn if it attempts to cache content too 3580 * quickly, such as during backups of the entire pool. 3581 * 3582 * 5. After system boot and before the ARC has filled main memory, there are 3583 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru 3584 * lists can remain mostly static. Instead of searching from tail of these 3585 * lists as pictured, the l2arc_feed_thread() will search from the list heads 3586 * for eligible buffers, greatly increasing its chance of finding them. 3587 * 3588 * The L2ARC device write speed is also boosted during this time so that 3589 * the L2ARC warms up faster. Since there have been no ARC evictions yet, 3590 * there are no L2ARC reads, and no fear of degrading read performance 3591 * through increased writes. 3592 * 3593 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that 3594 * the vdev queue can aggregate them into larger and fewer writes. Each 3595 * device is written to in a rotor fashion, sweeping writes through 3596 * available space then repeating. 3597 * 3598 * 7. The L2ARC does not store dirty content. It never needs to flush 3599 * write buffers back to disk based storage. 3600 * 3601 * 8. If an ARC buffer is written (and dirtied) which also exists in the 3602 * L2ARC, the now stale L2ARC buffer is immediately dropped. 3603 * 3604 * The performance of the L2ARC can be tweaked by a number of tunables, which 3605 * may be necessary for different workloads: 3606 * 3607 * l2arc_write_max max write bytes per interval 3608 * l2arc_write_boost extra write bytes during device warmup 3609 * l2arc_noprefetch skip caching prefetched buffers 3610 * l2arc_headroom number of max device writes to precache 3611 * l2arc_feed_secs seconds between L2ARC writing 3612 * 3613 * Tunables may be removed or added as future performance improvements are 3614 * integrated, and also may become zpool properties. 3615 */ 3616 3617 static void 3618 l2arc_hdr_stat_add(void) 3619 { 3620 ARCSTAT_INCR(arcstat_l2_hdr_size, HDR_SIZE + L2HDR_SIZE); 3621 ARCSTAT_INCR(arcstat_hdr_size, -HDR_SIZE); 3622 } 3623 3624 static void 3625 l2arc_hdr_stat_remove(void) 3626 { 3627 ARCSTAT_INCR(arcstat_l2_hdr_size, -(HDR_SIZE + L2HDR_SIZE)); 3628 ARCSTAT_INCR(arcstat_hdr_size, HDR_SIZE); 3629 } 3630 3631 /* 3632 * Cycle through L2ARC devices. This is how L2ARC load balances. 3633 * If a device is returned, this also returns holding the spa config lock. 3634 */ 3635 static l2arc_dev_t * 3636 l2arc_dev_get_next(void) 3637 { 3638 l2arc_dev_t *first, *next = NULL; 3639 3640 /* 3641 * Lock out the removal of spas (spa_namespace_lock), then removal 3642 * of cache devices (l2arc_dev_mtx). Once a device has been selected, 3643 * both locks will be dropped and a spa config lock held instead. 3644 */ 3645 mutex_enter(&spa_namespace_lock); 3646 mutex_enter(&l2arc_dev_mtx); 3647 3648 /* if there are no vdevs, there is nothing to do */ 3649 if (l2arc_ndev == 0) 3650 goto out; 3651 3652 first = NULL; 3653 next = l2arc_dev_last; 3654 do { 3655 /* loop around the list looking for a non-faulted vdev */ 3656 if (next == NULL) { 3657 next = list_head(l2arc_dev_list); 3658 } else { 3659 next = list_next(l2arc_dev_list, next); 3660 if (next == NULL) 3661 next = list_head(l2arc_dev_list); 3662 } 3663 3664 /* if we have come back to the start, bail out */ 3665 if (first == NULL) 3666 first = next; 3667 else if (next == first) 3668 break; 3669 3670 } while (vdev_is_dead(next->l2ad_vdev)); 3671 3672 /* if we were unable to find any usable vdevs, return NULL */ 3673 if (vdev_is_dead(next->l2ad_vdev)) 3674 next = NULL; 3675 3676 l2arc_dev_last = next; 3677 3678 out: 3679 mutex_exit(&l2arc_dev_mtx); 3680 3681 /* 3682 * Grab the config lock to prevent the 'next' device from being 3683 * removed while we are writing to it. 3684 */ 3685 if (next != NULL) 3686 spa_config_enter(next->l2ad_spa, RW_READER, next); 3687 mutex_exit(&spa_namespace_lock); 3688 3689 return (next); 3690 } 3691 3692 /* 3693 * Free buffers that were tagged for destruction. 3694 */ 3695 static void 3696 l2arc_do_free_on_write() 3697 { 3698 list_t *buflist; 3699 l2arc_data_free_t *df, *df_prev; 3700 3701 mutex_enter(&l2arc_free_on_write_mtx); 3702 buflist = l2arc_free_on_write; 3703 3704 for (df = list_tail(buflist); df; df = df_prev) { 3705 df_prev = list_prev(buflist, df); 3706 ASSERT(df->l2df_data != NULL); 3707 ASSERT(df->l2df_func != NULL); 3708 df->l2df_func(df->l2df_data, df->l2df_size); 3709 list_remove(buflist, df); 3710 kmem_free(df, sizeof (l2arc_data_free_t)); 3711 } 3712 3713 mutex_exit(&l2arc_free_on_write_mtx); 3714 } 3715 3716 /* 3717 * A write to a cache device has completed. Update all headers to allow 3718 * reads from these buffers to begin. 3719 */ 3720 static void 3721 l2arc_write_done(zio_t *zio) 3722 { 3723 l2arc_write_callback_t *cb; 3724 l2arc_dev_t *dev; 3725 list_t *buflist; 3726 arc_buf_hdr_t *head, *ab, *ab_prev; 3727 l2arc_buf_hdr_t *abl2; 3728 kmutex_t *hash_lock; 3729 3730 cb = zio->io_private; 3731 ASSERT(cb != NULL); 3732 dev = cb->l2wcb_dev; 3733 ASSERT(dev != NULL); 3734 head = cb->l2wcb_head; 3735 ASSERT(head != NULL); 3736 buflist = dev->l2ad_buflist; 3737 ASSERT(buflist != NULL); 3738 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio, 3739 l2arc_write_callback_t *, cb); 3740 3741 if (zio->io_error != 0) 3742 ARCSTAT_BUMP(arcstat_l2_writes_error); 3743 3744 mutex_enter(&l2arc_buflist_mtx); 3745 3746 /* 3747 * All writes completed, or an error was hit. 3748 */ 3749 for (ab = list_prev(buflist, head); ab; ab = ab_prev) { 3750 ab_prev = list_prev(buflist, ab); 3751 3752 hash_lock = HDR_LOCK(ab); 3753 if (!mutex_tryenter(hash_lock)) { 3754 /* 3755 * This buffer misses out. It may be in a stage 3756 * of eviction. Its ARC_L2_WRITING flag will be 3757 * left set, denying reads to this buffer. 3758 */ 3759 ARCSTAT_BUMP(arcstat_l2_writes_hdr_miss); 3760 continue; 3761 } 3762 3763 if (zio->io_error != 0) { 3764 /* 3765 * Error - drop L2ARC entry. 3766 */ 3767 list_remove(buflist, ab); 3768 abl2 = ab->b_l2hdr; 3769 ab->b_l2hdr = NULL; 3770 kmem_free(abl2, sizeof (l2arc_buf_hdr_t)); 3771 ARCSTAT_INCR(arcstat_l2_size, -ab->b_size); 3772 } 3773 3774 /* 3775 * Allow ARC to begin reads to this L2ARC entry. 3776 */ 3777 ab->b_flags &= ~ARC_L2_WRITING; 3778 3779 mutex_exit(hash_lock); 3780 } 3781 3782 atomic_inc_64(&l2arc_writes_done); 3783 list_remove(buflist, head); 3784 kmem_cache_free(hdr_cache, head); 3785 mutex_exit(&l2arc_buflist_mtx); 3786 3787 l2arc_do_free_on_write(); 3788 3789 kmem_free(cb, sizeof (l2arc_write_callback_t)); 3790 } 3791 3792 /* 3793 * A read to a cache device completed. Validate buffer contents before 3794 * handing over to the regular ARC routines. 3795 */ 3796 static void 3797 l2arc_read_done(zio_t *zio) 3798 { 3799 l2arc_read_callback_t *cb; 3800 arc_buf_hdr_t *hdr; 3801 arc_buf_t *buf; 3802 zio_t *rzio; 3803 kmutex_t *hash_lock; 3804 int equal; 3805 3806 cb = zio->io_private; 3807 ASSERT(cb != NULL); 3808 buf = cb->l2rcb_buf; 3809 ASSERT(buf != NULL); 3810 hdr = buf->b_hdr; 3811 ASSERT(hdr != NULL); 3812 3813 hash_lock = HDR_LOCK(hdr); 3814 mutex_enter(hash_lock); 3815 3816 /* 3817 * Check this survived the L2ARC journey. 3818 */ 3819 equal = arc_cksum_equal(buf); 3820 if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) { 3821 mutex_exit(hash_lock); 3822 zio->io_private = buf; 3823 arc_read_done(zio); 3824 } else { 3825 mutex_exit(hash_lock); 3826 /* 3827 * Buffer didn't survive caching. Increment stats and 3828 * reissue to the original storage device. 3829 */ 3830 if (zio->io_error != 0) { 3831 ARCSTAT_BUMP(arcstat_l2_io_error); 3832 } else { 3833 zio->io_error = EIO; 3834 } 3835 if (!equal) 3836 ARCSTAT_BUMP(arcstat_l2_cksum_bad); 3837 3838 if (zio->io_waiter == NULL) { 3839 /* 3840 * Let the resent I/O call arc_read_done() instead. 3841 */ 3842 zio->io_done = NULL; 3843 zio->io_flags &= ~ZIO_FLAG_DONT_CACHE; 3844 3845 rzio = zio_read(zio->io_parent, cb->l2rcb_spa, 3846 &cb->l2rcb_bp, buf->b_data, zio->io_size, 3847 arc_read_done, buf, zio->io_priority, 3848 cb->l2rcb_flags, &cb->l2rcb_zb); 3849 3850 (void) zio_nowait(rzio); 3851 } 3852 } 3853 3854 kmem_free(cb, sizeof (l2arc_read_callback_t)); 3855 } 3856 3857 /* 3858 * This is the list priority from which the L2ARC will search for pages to 3859 * cache. This is used within loops (0..3) to cycle through lists in the 3860 * desired order. This order can have a significant effect on cache 3861 * performance. 3862 * 3863 * Currently the metadata lists are hit first, MFU then MRU, followed by 3864 * the data lists. This function returns a locked list, and also returns 3865 * the lock pointer. 3866 */ 3867 static list_t * 3868 l2arc_list_locked(int list_num, kmutex_t **lock) 3869 { 3870 list_t *list; 3871 3872 ASSERT(list_num >= 0 && list_num <= 3); 3873 3874 switch (list_num) { 3875 case 0: 3876 list = &arc_mfu->arcs_list[ARC_BUFC_METADATA]; 3877 *lock = &arc_mfu->arcs_mtx; 3878 break; 3879 case 1: 3880 list = &arc_mru->arcs_list[ARC_BUFC_METADATA]; 3881 *lock = &arc_mru->arcs_mtx; 3882 break; 3883 case 2: 3884 list = &arc_mfu->arcs_list[ARC_BUFC_DATA]; 3885 *lock = &arc_mfu->arcs_mtx; 3886 break; 3887 case 3: 3888 list = &arc_mru->arcs_list[ARC_BUFC_DATA]; 3889 *lock = &arc_mru->arcs_mtx; 3890 break; 3891 } 3892 3893 ASSERT(!(MUTEX_HELD(*lock))); 3894 mutex_enter(*lock); 3895 return (list); 3896 } 3897 3898 /* 3899 * Evict buffers from the device write hand to the distance specified in 3900 * bytes. This distance may span populated buffers, it may span nothing. 3901 * This is clearing a region on the L2ARC device ready for writing. 3902 * If the 'all' boolean is set, every buffer is evicted. 3903 */ 3904 static void 3905 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all) 3906 { 3907 list_t *buflist; 3908 l2arc_buf_hdr_t *abl2; 3909 arc_buf_hdr_t *ab, *ab_prev; 3910 kmutex_t *hash_lock; 3911 uint64_t taddr; 3912 3913 buflist = dev->l2ad_buflist; 3914 3915 if (buflist == NULL) 3916 return; 3917 3918 if (!all && dev->l2ad_first) { 3919 /* 3920 * This is the first sweep through the device. There is 3921 * nothing to evict. 3922 */ 3923 return; 3924 } 3925 3926 if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) { 3927 /* 3928 * When nearing the end of the device, evict to the end 3929 * before the device write hand jumps to the start. 3930 */ 3931 taddr = dev->l2ad_end; 3932 } else { 3933 taddr = dev->l2ad_hand + distance; 3934 } 3935 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist, 3936 uint64_t, taddr, boolean_t, all); 3937 3938 top: 3939 mutex_enter(&l2arc_buflist_mtx); 3940 for (ab = list_tail(buflist); ab; ab = ab_prev) { 3941 ab_prev = list_prev(buflist, ab); 3942 3943 hash_lock = HDR_LOCK(ab); 3944 if (!mutex_tryenter(hash_lock)) { 3945 /* 3946 * Missed the hash lock. Retry. 3947 */ 3948 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry); 3949 mutex_exit(&l2arc_buflist_mtx); 3950 mutex_enter(hash_lock); 3951 mutex_exit(hash_lock); 3952 goto top; 3953 } 3954 3955 if (HDR_L2_WRITE_HEAD(ab)) { 3956 /* 3957 * We hit a write head node. Leave it for 3958 * l2arc_write_done(). 3959 */ 3960 list_remove(buflist, ab); 3961 mutex_exit(hash_lock); 3962 continue; 3963 } 3964 3965 if (!all && ab->b_l2hdr != NULL && 3966 (ab->b_l2hdr->b_daddr > taddr || 3967 ab->b_l2hdr->b_daddr < dev->l2ad_hand)) { 3968 /* 3969 * We've evicted to the target address, 3970 * or the end of the device. 3971 */ 3972 mutex_exit(hash_lock); 3973 break; 3974 } 3975 3976 if (HDR_FREE_IN_PROGRESS(ab)) { 3977 /* 3978 * Already on the path to destruction. 3979 */ 3980 mutex_exit(hash_lock); 3981 continue; 3982 } 3983 3984 if (ab->b_state == arc_l2c_only) { 3985 ASSERT(!HDR_L2_READING(ab)); 3986 /* 3987 * This doesn't exist in the ARC. Destroy. 3988 * arc_hdr_destroy() will call list_remove() 3989 * and decrement arcstat_l2_size. 3990 */ 3991 arc_change_state(arc_anon, ab, hash_lock); 3992 arc_hdr_destroy(ab); 3993 } else { 3994 /* 3995 * Invalidate issued or about to be issued 3996 * reads, since we may be about to write 3997 * over this location. 3998 */ 3999 if (HDR_L2_READING(ab)) { 4000 ARCSTAT_BUMP(arcstat_l2_evict_reading); 4001 ab->b_flags |= ARC_L2_EVICTED; 4002 } 4003 4004 /* 4005 * Tell ARC this no longer exists in L2ARC. 4006 */ 4007 if (ab->b_l2hdr != NULL) { 4008 abl2 = ab->b_l2hdr; 4009 ab->b_l2hdr = NULL; 4010 kmem_free(abl2, sizeof (l2arc_buf_hdr_t)); 4011 ARCSTAT_INCR(arcstat_l2_size, -ab->b_size); 4012 } 4013 list_remove(buflist, ab); 4014 4015 /* 4016 * This may have been leftover after a 4017 * failed write. 4018 */ 4019 ab->b_flags &= ~ARC_L2_WRITING; 4020 } 4021 mutex_exit(hash_lock); 4022 } 4023 mutex_exit(&l2arc_buflist_mtx); 4024 4025 spa_l2cache_space_update(dev->l2ad_vdev, 0, -(taddr - dev->l2ad_evict)); 4026 dev->l2ad_evict = taddr; 4027 } 4028 4029 /* 4030 * Find and write ARC buffers to the L2ARC device. 4031 * 4032 * An ARC_L2_WRITING flag is set so that the L2ARC buffers are not valid 4033 * for reading until they have completed writing. 4034 */ 4035 static void 4036 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz) 4037 { 4038 arc_buf_hdr_t *ab, *ab_prev, *head; 4039 l2arc_buf_hdr_t *hdrl2; 4040 list_t *list; 4041 uint64_t passed_sz, write_sz, buf_sz, headroom; 4042 void *buf_data; 4043 kmutex_t *hash_lock, *list_lock; 4044 boolean_t have_lock, full; 4045 l2arc_write_callback_t *cb; 4046 zio_t *pio, *wzio; 4047 4048 ASSERT(dev->l2ad_vdev != NULL); 4049 4050 pio = NULL; 4051 write_sz = 0; 4052 full = B_FALSE; 4053 head = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE); 4054 head->b_flags |= ARC_L2_WRITE_HEAD; 4055 4056 /* 4057 * Copy buffers for L2ARC writing. 4058 */ 4059 mutex_enter(&l2arc_buflist_mtx); 4060 for (int try = 0; try <= 3; try++) { 4061 list = l2arc_list_locked(try, &list_lock); 4062 passed_sz = 0; 4063 4064 /* 4065 * L2ARC fast warmup. 4066 * 4067 * Until the ARC is warm and starts to evict, read from the 4068 * head of the ARC lists rather than the tail. 4069 */ 4070 headroom = target_sz * l2arc_headroom; 4071 if (arc_warm == B_FALSE) 4072 ab = list_head(list); 4073 else 4074 ab = list_tail(list); 4075 4076 for (; ab; ab = ab_prev) { 4077 if (arc_warm == B_FALSE) 4078 ab_prev = list_next(list, ab); 4079 else 4080 ab_prev = list_prev(list, ab); 4081 4082 hash_lock = HDR_LOCK(ab); 4083 have_lock = MUTEX_HELD(hash_lock); 4084 if (!have_lock && !mutex_tryenter(hash_lock)) { 4085 /* 4086 * Skip this buffer rather than waiting. 4087 */ 4088 continue; 4089 } 4090 4091 passed_sz += ab->b_size; 4092 if (passed_sz > headroom) { 4093 /* 4094 * Searched too far. 4095 */ 4096 mutex_exit(hash_lock); 4097 break; 4098 } 4099 4100 if (ab->b_spa != spa) { 4101 mutex_exit(hash_lock); 4102 continue; 4103 } 4104 4105 if (ab->b_l2hdr != NULL) { 4106 /* 4107 * Already in L2ARC. 4108 */ 4109 mutex_exit(hash_lock); 4110 continue; 4111 } 4112 4113 if (HDR_IO_IN_PROGRESS(ab) || !HDR_L2CACHE(ab)) { 4114 mutex_exit(hash_lock); 4115 continue; 4116 } 4117 4118 if ((write_sz + ab->b_size) > target_sz) { 4119 full = B_TRUE; 4120 mutex_exit(hash_lock); 4121 break; 4122 } 4123 4124 if (ab->b_buf == NULL) { 4125 DTRACE_PROBE1(l2arc__buf__null, void *, ab); 4126 mutex_exit(hash_lock); 4127 continue; 4128 } 4129 4130 if (pio == NULL) { 4131 /* 4132 * Insert a dummy header on the buflist so 4133 * l2arc_write_done() can find where the 4134 * write buffers begin without searching. 4135 */ 4136 list_insert_head(dev->l2ad_buflist, head); 4137 4138 cb = kmem_alloc( 4139 sizeof (l2arc_write_callback_t), KM_SLEEP); 4140 cb->l2wcb_dev = dev; 4141 cb->l2wcb_head = head; 4142 pio = zio_root(spa, l2arc_write_done, cb, 4143 ZIO_FLAG_CANFAIL); 4144 } 4145 4146 /* 4147 * Create and add a new L2ARC header. 4148 */ 4149 hdrl2 = kmem_zalloc(sizeof (l2arc_buf_hdr_t), KM_SLEEP); 4150 hdrl2->b_dev = dev; 4151 hdrl2->b_daddr = dev->l2ad_hand; 4152 4153 ab->b_flags |= ARC_L2_WRITING; 4154 ab->b_l2hdr = hdrl2; 4155 list_insert_head(dev->l2ad_buflist, ab); 4156 buf_data = ab->b_buf->b_data; 4157 buf_sz = ab->b_size; 4158 4159 /* 4160 * Compute and store the buffer cksum before 4161 * writing. On debug the cksum is verified first. 4162 */ 4163 arc_cksum_verify(ab->b_buf); 4164 arc_cksum_compute(ab->b_buf, B_TRUE); 4165 4166 mutex_exit(hash_lock); 4167 4168 wzio = zio_write_phys(pio, dev->l2ad_vdev, 4169 dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF, 4170 NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE, 4171 ZIO_FLAG_CANFAIL, B_FALSE); 4172 4173 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, 4174 zio_t *, wzio); 4175 (void) zio_nowait(wzio); 4176 4177 write_sz += buf_sz; 4178 dev->l2ad_hand += buf_sz; 4179 } 4180 4181 mutex_exit(list_lock); 4182 4183 if (full == B_TRUE) 4184 break; 4185 } 4186 mutex_exit(&l2arc_buflist_mtx); 4187 4188 if (pio == NULL) { 4189 ASSERT3U(write_sz, ==, 0); 4190 kmem_cache_free(hdr_cache, head); 4191 return; 4192 } 4193 4194 ASSERT3U(write_sz, <=, target_sz); 4195 ARCSTAT_BUMP(arcstat_l2_writes_sent); 4196 ARCSTAT_INCR(arcstat_l2_size, write_sz); 4197 spa_l2cache_space_update(dev->l2ad_vdev, 0, write_sz); 4198 4199 /* 4200 * Bump device hand to the device start if it is approaching the end. 4201 * l2arc_evict() will already have evicted ahead for this case. 4202 */ 4203 if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) { 4204 spa_l2cache_space_update(dev->l2ad_vdev, 0, 4205 dev->l2ad_end - dev->l2ad_hand); 4206 dev->l2ad_hand = dev->l2ad_start; 4207 dev->l2ad_evict = dev->l2ad_start; 4208 dev->l2ad_first = B_FALSE; 4209 } 4210 4211 (void) zio_wait(pio); 4212 } 4213 4214 /* 4215 * This thread feeds the L2ARC at regular intervals. This is the beating 4216 * heart of the L2ARC. 4217 */ 4218 static void 4219 l2arc_feed_thread(void) 4220 { 4221 callb_cpr_t cpr; 4222 l2arc_dev_t *dev; 4223 spa_t *spa; 4224 uint64_t size; 4225 4226 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG); 4227 4228 mutex_enter(&l2arc_feed_thr_lock); 4229 4230 while (l2arc_thread_exit == 0) { 4231 /* 4232 * Pause for l2arc_feed_secs seconds between writes. 4233 */ 4234 CALLB_CPR_SAFE_BEGIN(&cpr); 4235 (void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock, 4236 lbolt + (hz * l2arc_feed_secs)); 4237 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock); 4238 4239 /* 4240 * Quick check for L2ARC devices. 4241 */ 4242 mutex_enter(&l2arc_dev_mtx); 4243 if (l2arc_ndev == 0) { 4244 mutex_exit(&l2arc_dev_mtx); 4245 continue; 4246 } 4247 mutex_exit(&l2arc_dev_mtx); 4248 4249 /* 4250 * This selects the next l2arc device to write to, and in 4251 * doing so the next spa to feed from: dev->l2ad_spa. This 4252 * will return NULL if there are now no l2arc devices or if 4253 * they are all faulted. 4254 * 4255 * If a device is returned, its spa's config lock is also 4256 * held to prevent device removal. l2arc_dev_get_next() 4257 * will grab and release l2arc_dev_mtx. 4258 */ 4259 if ((dev = l2arc_dev_get_next()) == NULL) 4260 continue; 4261 4262 spa = dev->l2ad_spa; 4263 ASSERT(spa != NULL); 4264 4265 /* 4266 * Avoid contributing to memory pressure. 4267 */ 4268 if (arc_reclaim_needed()) { 4269 ARCSTAT_BUMP(arcstat_l2_abort_lowmem); 4270 spa_config_exit(spa, dev); 4271 continue; 4272 } 4273 4274 ARCSTAT_BUMP(arcstat_l2_feeds); 4275 4276 size = dev->l2ad_write; 4277 if (arc_warm == B_FALSE) 4278 size += dev->l2ad_boost; 4279 4280 /* 4281 * Evict L2ARC buffers that will be overwritten. 4282 */ 4283 l2arc_evict(dev, size, B_FALSE); 4284 4285 /* 4286 * Write ARC buffers. 4287 */ 4288 l2arc_write_buffers(spa, dev, size); 4289 spa_config_exit(spa, dev); 4290 } 4291 4292 l2arc_thread_exit = 0; 4293 cv_broadcast(&l2arc_feed_thr_cv); 4294 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */ 4295 thread_exit(); 4296 } 4297 4298 boolean_t 4299 l2arc_vdev_present(vdev_t *vd) 4300 { 4301 l2arc_dev_t *dev; 4302 4303 mutex_enter(&l2arc_dev_mtx); 4304 for (dev = list_head(l2arc_dev_list); dev != NULL; 4305 dev = list_next(l2arc_dev_list, dev)) { 4306 if (dev->l2ad_vdev == vd) 4307 break; 4308 } 4309 mutex_exit(&l2arc_dev_mtx); 4310 4311 return (dev != NULL); 4312 } 4313 4314 /* 4315 * Add a vdev for use by the L2ARC. By this point the spa has already 4316 * validated the vdev and opened it. 4317 */ 4318 void 4319 l2arc_add_vdev(spa_t *spa, vdev_t *vd, uint64_t start, uint64_t end) 4320 { 4321 l2arc_dev_t *adddev; 4322 4323 ASSERT(!l2arc_vdev_present(vd)); 4324 4325 /* 4326 * Create a new l2arc device entry. 4327 */ 4328 adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP); 4329 adddev->l2ad_spa = spa; 4330 adddev->l2ad_vdev = vd; 4331 adddev->l2ad_write = l2arc_write_max; 4332 adddev->l2ad_boost = l2arc_write_boost; 4333 adddev->l2ad_start = start; 4334 adddev->l2ad_end = end; 4335 adddev->l2ad_hand = adddev->l2ad_start; 4336 adddev->l2ad_evict = adddev->l2ad_start; 4337 adddev->l2ad_first = B_TRUE; 4338 ASSERT3U(adddev->l2ad_write, >, 0); 4339 4340 /* 4341 * This is a list of all ARC buffers that are still valid on the 4342 * device. 4343 */ 4344 adddev->l2ad_buflist = kmem_zalloc(sizeof (list_t), KM_SLEEP); 4345 list_create(adddev->l2ad_buflist, sizeof (arc_buf_hdr_t), 4346 offsetof(arc_buf_hdr_t, b_l2node)); 4347 4348 spa_l2cache_space_update(vd, adddev->l2ad_end - adddev->l2ad_hand, 0); 4349 4350 /* 4351 * Add device to global list 4352 */ 4353 mutex_enter(&l2arc_dev_mtx); 4354 list_insert_head(l2arc_dev_list, adddev); 4355 atomic_inc_64(&l2arc_ndev); 4356 mutex_exit(&l2arc_dev_mtx); 4357 } 4358 4359 /* 4360 * Remove a vdev from the L2ARC. 4361 */ 4362 void 4363 l2arc_remove_vdev(vdev_t *vd) 4364 { 4365 l2arc_dev_t *dev, *nextdev, *remdev = NULL; 4366 4367 /* 4368 * Find the device by vdev 4369 */ 4370 mutex_enter(&l2arc_dev_mtx); 4371 for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) { 4372 nextdev = list_next(l2arc_dev_list, dev); 4373 if (vd == dev->l2ad_vdev) { 4374 remdev = dev; 4375 break; 4376 } 4377 } 4378 ASSERT(remdev != NULL); 4379 4380 /* 4381 * Remove device from global list 4382 */ 4383 list_remove(l2arc_dev_list, remdev); 4384 l2arc_dev_last = NULL; /* may have been invalidated */ 4385 atomic_dec_64(&l2arc_ndev); 4386 mutex_exit(&l2arc_dev_mtx); 4387 4388 /* 4389 * Clear all buflists and ARC references. L2ARC device flush. 4390 */ 4391 l2arc_evict(remdev, 0, B_TRUE); 4392 list_destroy(remdev->l2ad_buflist); 4393 kmem_free(remdev->l2ad_buflist, sizeof (list_t)); 4394 kmem_free(remdev, sizeof (l2arc_dev_t)); 4395 } 4396 4397 void 4398 l2arc_init() 4399 { 4400 l2arc_thread_exit = 0; 4401 l2arc_ndev = 0; 4402 l2arc_writes_sent = 0; 4403 l2arc_writes_done = 0; 4404 4405 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL); 4406 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL); 4407 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL); 4408 mutex_init(&l2arc_buflist_mtx, NULL, MUTEX_DEFAULT, NULL); 4409 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL); 4410 4411 l2arc_dev_list = &L2ARC_dev_list; 4412 l2arc_free_on_write = &L2ARC_free_on_write; 4413 list_create(l2arc_dev_list, sizeof (l2arc_dev_t), 4414 offsetof(l2arc_dev_t, l2ad_node)); 4415 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t), 4416 offsetof(l2arc_data_free_t, l2df_list_node)); 4417 4418 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0, 4419 TS_RUN, minclsyspri); 4420 } 4421 4422 void 4423 l2arc_fini() 4424 { 4425 /* 4426 * This is called from dmu_fini(), which is called from spa_fini(); 4427 * Because of this, we can assume that all l2arc devices have 4428 * already been removed when the pools themselves were removed. 4429 */ 4430 4431 mutex_enter(&l2arc_feed_thr_lock); 4432 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */ 4433 l2arc_thread_exit = 1; 4434 while (l2arc_thread_exit != 0) 4435 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock); 4436 mutex_exit(&l2arc_feed_thr_lock); 4437 4438 l2arc_do_free_on_write(); 4439 4440 mutex_destroy(&l2arc_feed_thr_lock); 4441 cv_destroy(&l2arc_feed_thr_cv); 4442 mutex_destroy(&l2arc_dev_mtx); 4443 mutex_destroy(&l2arc_buflist_mtx); 4444 mutex_destroy(&l2arc_free_on_write_mtx); 4445 4446 list_destroy(l2arc_dev_list); 4447 list_destroy(l2arc_free_on_write); 4448 } 4449