1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * DVA-based Adjustable Replacement Cache 28 * 29 * While much of the theory of operation used here is 30 * based on the self-tuning, low overhead replacement cache 31 * presented by Megiddo and Modha at FAST 2003, there are some 32 * significant differences: 33 * 34 * 1. The Megiddo and Modha model assumes any page is evictable. 35 * Pages in its cache cannot be "locked" into memory. This makes 36 * the eviction algorithm simple: evict the last page in the list. 37 * This also make the performance characteristics easy to reason 38 * about. Our cache is not so simple. At any given moment, some 39 * subset of the blocks in the cache are un-evictable because we 40 * have handed out a reference to them. Blocks are only evictable 41 * when there are no external references active. This makes 42 * eviction far more problematic: we choose to evict the evictable 43 * blocks that are the "lowest" in the list. 44 * 45 * There are times when it is not possible to evict the requested 46 * space. In these circumstances we are unable to adjust the cache 47 * size. To prevent the cache growing unbounded at these times we 48 * implement a "cache throttle" that slows the flow of new data 49 * into the cache until we can make space available. 50 * 51 * 2. The Megiddo and Modha model assumes a fixed cache size. 52 * Pages are evicted when the cache is full and there is a cache 53 * miss. Our model has a variable sized cache. It grows with 54 * high use, but also tries to react to memory pressure from the 55 * operating system: decreasing its size when system memory is 56 * tight. 57 * 58 * 3. The Megiddo and Modha model assumes a fixed page size. All 59 * elements of the cache are therefor exactly the same size. So 60 * when adjusting the cache size following a cache miss, its simply 61 * a matter of choosing a single page to evict. In our model, we 62 * have variable sized cache blocks (rangeing from 512 bytes to 63 * 128K bytes). We therefor choose a set of blocks to evict to make 64 * space for a cache miss that approximates as closely as possible 65 * the space used by the new block. 66 * 67 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache" 68 * by N. Megiddo & D. Modha, FAST 2003 69 */ 70 71 /* 72 * The locking model: 73 * 74 * A new reference to a cache buffer can be obtained in two 75 * ways: 1) via a hash table lookup using the DVA as a key, 76 * or 2) via one of the ARC lists. The arc_read() interface 77 * uses method 1, while the internal arc algorithms for 78 * adjusting the cache use method 2. We therefor provide two 79 * types of locks: 1) the hash table lock array, and 2) the 80 * arc list locks. 81 * 82 * Buffers do not have their own mutexs, rather they rely on the 83 * hash table mutexs for the bulk of their protection (i.e. most 84 * fields in the arc_buf_hdr_t are protected by these mutexs). 85 * 86 * buf_hash_find() returns the appropriate mutex (held) when it 87 * locates the requested buffer in the hash table. It returns 88 * NULL for the mutex if the buffer was not in the table. 89 * 90 * buf_hash_remove() expects the appropriate hash mutex to be 91 * already held before it is invoked. 92 * 93 * Each arc state also has a mutex which is used to protect the 94 * buffer list associated with the state. When attempting to 95 * obtain a hash table lock while holding an arc list lock you 96 * must use: mutex_tryenter() to avoid deadlock. Also note that 97 * the active state mutex must be held before the ghost state mutex. 98 * 99 * Arc buffers may have an associated eviction callback function. 100 * This function will be invoked prior to removing the buffer (e.g. 101 * in arc_do_user_evicts()). Note however that the data associated 102 * with the buffer may be evicted prior to the callback. The callback 103 * must be made with *no locks held* (to prevent deadlock). Additionally, 104 * the users of callbacks must ensure that their private data is 105 * protected from simultaneous callbacks from arc_buf_evict() 106 * and arc_do_user_evicts(). 107 * 108 * Note that the majority of the performance stats are manipulated 109 * with atomic operations. 110 * 111 * The L2ARC uses the l2arc_buflist_mtx global mutex for the following: 112 * 113 * - L2ARC buflist creation 114 * - L2ARC buflist eviction 115 * - L2ARC write completion, which walks L2ARC buflists 116 * - ARC header destruction, as it removes from L2ARC buflists 117 * - ARC header release, as it removes from L2ARC buflists 118 */ 119 120 #include <sys/spa.h> 121 #include <sys/zio.h> 122 #include <sys/zfs_context.h> 123 #include <sys/arc.h> 124 #include <sys/refcount.h> 125 #include <sys/vdev.h> 126 #include <sys/vdev_impl.h> 127 #ifdef _KERNEL 128 #include <sys/vmsystm.h> 129 #include <vm/anon.h> 130 #include <sys/fs/swapnode.h> 131 #include <sys/dnlc.h> 132 #endif 133 #include <sys/callb.h> 134 #include <sys/kstat.h> 135 #include <zfs_fletcher.h> 136 137 static kmutex_t arc_reclaim_thr_lock; 138 static kcondvar_t arc_reclaim_thr_cv; /* used to signal reclaim thr */ 139 static uint8_t arc_thread_exit; 140 141 extern int zfs_write_limit_shift; 142 extern uint64_t zfs_write_limit_max; 143 extern kmutex_t zfs_write_limit_lock; 144 145 #define ARC_REDUCE_DNLC_PERCENT 3 146 uint_t arc_reduce_dnlc_percent = ARC_REDUCE_DNLC_PERCENT; 147 148 typedef enum arc_reclaim_strategy { 149 ARC_RECLAIM_AGGR, /* Aggressive reclaim strategy */ 150 ARC_RECLAIM_CONS /* Conservative reclaim strategy */ 151 } arc_reclaim_strategy_t; 152 153 /* number of seconds before growing cache again */ 154 static int arc_grow_retry = 60; 155 156 /* shift of arc_c for calculating both min and max arc_p */ 157 static int arc_p_min_shift = 4; 158 159 /* log2(fraction of arc to reclaim) */ 160 static int arc_shrink_shift = 5; 161 162 /* 163 * minimum lifespan of a prefetch block in clock ticks 164 * (initialized in arc_init()) 165 */ 166 static int arc_min_prefetch_lifespan; 167 168 static int arc_dead; 169 170 /* 171 * The arc has filled available memory and has now warmed up. 172 */ 173 static boolean_t arc_warm; 174 175 /* 176 * These tunables are for performance analysis. 177 */ 178 uint64_t zfs_arc_max; 179 uint64_t zfs_arc_min; 180 uint64_t zfs_arc_meta_limit = 0; 181 int zfs_arc_grow_retry = 0; 182 int zfs_arc_shrink_shift = 0; 183 int zfs_arc_p_min_shift = 0; 184 185 /* 186 * Note that buffers can be in one of 6 states: 187 * ARC_anon - anonymous (discussed below) 188 * ARC_mru - recently used, currently cached 189 * ARC_mru_ghost - recentely used, no longer in cache 190 * ARC_mfu - frequently used, currently cached 191 * ARC_mfu_ghost - frequently used, no longer in cache 192 * ARC_l2c_only - exists in L2ARC but not other states 193 * When there are no active references to the buffer, they are 194 * are linked onto a list in one of these arc states. These are 195 * the only buffers that can be evicted or deleted. Within each 196 * state there are multiple lists, one for meta-data and one for 197 * non-meta-data. Meta-data (indirect blocks, blocks of dnodes, 198 * etc.) is tracked separately so that it can be managed more 199 * explicitly: favored over data, limited explicitly. 200 * 201 * Anonymous buffers are buffers that are not associated with 202 * a DVA. These are buffers that hold dirty block copies 203 * before they are written to stable storage. By definition, 204 * they are "ref'd" and are considered part of arc_mru 205 * that cannot be freed. Generally, they will aquire a DVA 206 * as they are written and migrate onto the arc_mru list. 207 * 208 * The ARC_l2c_only state is for buffers that are in the second 209 * level ARC but no longer in any of the ARC_m* lists. The second 210 * level ARC itself may also contain buffers that are in any of 211 * the ARC_m* states - meaning that a buffer can exist in two 212 * places. The reason for the ARC_l2c_only state is to keep the 213 * buffer header in the hash table, so that reads that hit the 214 * second level ARC benefit from these fast lookups. 215 */ 216 217 typedef struct arc_state { 218 list_t arcs_list[ARC_BUFC_NUMTYPES]; /* list of evictable buffers */ 219 uint64_t arcs_lsize[ARC_BUFC_NUMTYPES]; /* amount of evictable data */ 220 uint64_t arcs_size; /* total amount of data in this state */ 221 kmutex_t arcs_mtx; 222 } arc_state_t; 223 224 /* The 6 states: */ 225 static arc_state_t ARC_anon; 226 static arc_state_t ARC_mru; 227 static arc_state_t ARC_mru_ghost; 228 static arc_state_t ARC_mfu; 229 static arc_state_t ARC_mfu_ghost; 230 static arc_state_t ARC_l2c_only; 231 232 typedef struct arc_stats { 233 kstat_named_t arcstat_hits; 234 kstat_named_t arcstat_misses; 235 kstat_named_t arcstat_demand_data_hits; 236 kstat_named_t arcstat_demand_data_misses; 237 kstat_named_t arcstat_demand_metadata_hits; 238 kstat_named_t arcstat_demand_metadata_misses; 239 kstat_named_t arcstat_prefetch_data_hits; 240 kstat_named_t arcstat_prefetch_data_misses; 241 kstat_named_t arcstat_prefetch_metadata_hits; 242 kstat_named_t arcstat_prefetch_metadata_misses; 243 kstat_named_t arcstat_mru_hits; 244 kstat_named_t arcstat_mru_ghost_hits; 245 kstat_named_t arcstat_mfu_hits; 246 kstat_named_t arcstat_mfu_ghost_hits; 247 kstat_named_t arcstat_deleted; 248 kstat_named_t arcstat_recycle_miss; 249 kstat_named_t arcstat_mutex_miss; 250 kstat_named_t arcstat_evict_skip; 251 kstat_named_t arcstat_evict_l2_cached; 252 kstat_named_t arcstat_evict_l2_eligible; 253 kstat_named_t arcstat_evict_l2_ineligible; 254 kstat_named_t arcstat_hash_elements; 255 kstat_named_t arcstat_hash_elements_max; 256 kstat_named_t arcstat_hash_collisions; 257 kstat_named_t arcstat_hash_chains; 258 kstat_named_t arcstat_hash_chain_max; 259 kstat_named_t arcstat_p; 260 kstat_named_t arcstat_c; 261 kstat_named_t arcstat_c_min; 262 kstat_named_t arcstat_c_max; 263 kstat_named_t arcstat_size; 264 kstat_named_t arcstat_hdr_size; 265 kstat_named_t arcstat_data_size; 266 kstat_named_t arcstat_other_size; 267 kstat_named_t arcstat_l2_hits; 268 kstat_named_t arcstat_l2_misses; 269 kstat_named_t arcstat_l2_feeds; 270 kstat_named_t arcstat_l2_rw_clash; 271 kstat_named_t arcstat_l2_read_bytes; 272 kstat_named_t arcstat_l2_write_bytes; 273 kstat_named_t arcstat_l2_writes_sent; 274 kstat_named_t arcstat_l2_writes_done; 275 kstat_named_t arcstat_l2_writes_error; 276 kstat_named_t arcstat_l2_writes_hdr_miss; 277 kstat_named_t arcstat_l2_evict_lock_retry; 278 kstat_named_t arcstat_l2_evict_reading; 279 kstat_named_t arcstat_l2_free_on_write; 280 kstat_named_t arcstat_l2_abort_lowmem; 281 kstat_named_t arcstat_l2_cksum_bad; 282 kstat_named_t arcstat_l2_io_error; 283 kstat_named_t arcstat_l2_size; 284 kstat_named_t arcstat_l2_hdr_size; 285 kstat_named_t arcstat_memory_throttle_count; 286 } arc_stats_t; 287 288 static arc_stats_t arc_stats = { 289 { "hits", KSTAT_DATA_UINT64 }, 290 { "misses", KSTAT_DATA_UINT64 }, 291 { "demand_data_hits", KSTAT_DATA_UINT64 }, 292 { "demand_data_misses", KSTAT_DATA_UINT64 }, 293 { "demand_metadata_hits", KSTAT_DATA_UINT64 }, 294 { "demand_metadata_misses", KSTAT_DATA_UINT64 }, 295 { "prefetch_data_hits", KSTAT_DATA_UINT64 }, 296 { "prefetch_data_misses", KSTAT_DATA_UINT64 }, 297 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 }, 298 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 }, 299 { "mru_hits", KSTAT_DATA_UINT64 }, 300 { "mru_ghost_hits", KSTAT_DATA_UINT64 }, 301 { "mfu_hits", KSTAT_DATA_UINT64 }, 302 { "mfu_ghost_hits", KSTAT_DATA_UINT64 }, 303 { "deleted", KSTAT_DATA_UINT64 }, 304 { "recycle_miss", KSTAT_DATA_UINT64 }, 305 { "mutex_miss", KSTAT_DATA_UINT64 }, 306 { "evict_skip", KSTAT_DATA_UINT64 }, 307 { "evict_l2_cached", KSTAT_DATA_UINT64 }, 308 { "evict_l2_eligible", KSTAT_DATA_UINT64 }, 309 { "evict_l2_ineligible", KSTAT_DATA_UINT64 }, 310 { "hash_elements", KSTAT_DATA_UINT64 }, 311 { "hash_elements_max", KSTAT_DATA_UINT64 }, 312 { "hash_collisions", KSTAT_DATA_UINT64 }, 313 { "hash_chains", KSTAT_DATA_UINT64 }, 314 { "hash_chain_max", KSTAT_DATA_UINT64 }, 315 { "p", KSTAT_DATA_UINT64 }, 316 { "c", KSTAT_DATA_UINT64 }, 317 { "c_min", KSTAT_DATA_UINT64 }, 318 { "c_max", KSTAT_DATA_UINT64 }, 319 { "size", KSTAT_DATA_UINT64 }, 320 { "hdr_size", KSTAT_DATA_UINT64 }, 321 { "data_size", KSTAT_DATA_UINT64 }, 322 { "other_size", KSTAT_DATA_UINT64 }, 323 { "l2_hits", KSTAT_DATA_UINT64 }, 324 { "l2_misses", KSTAT_DATA_UINT64 }, 325 { "l2_feeds", KSTAT_DATA_UINT64 }, 326 { "l2_rw_clash", KSTAT_DATA_UINT64 }, 327 { "l2_read_bytes", KSTAT_DATA_UINT64 }, 328 { "l2_write_bytes", KSTAT_DATA_UINT64 }, 329 { "l2_writes_sent", KSTAT_DATA_UINT64 }, 330 { "l2_writes_done", KSTAT_DATA_UINT64 }, 331 { "l2_writes_error", KSTAT_DATA_UINT64 }, 332 { "l2_writes_hdr_miss", KSTAT_DATA_UINT64 }, 333 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 }, 334 { "l2_evict_reading", KSTAT_DATA_UINT64 }, 335 { "l2_free_on_write", KSTAT_DATA_UINT64 }, 336 { "l2_abort_lowmem", KSTAT_DATA_UINT64 }, 337 { "l2_cksum_bad", KSTAT_DATA_UINT64 }, 338 { "l2_io_error", KSTAT_DATA_UINT64 }, 339 { "l2_size", KSTAT_DATA_UINT64 }, 340 { "l2_hdr_size", KSTAT_DATA_UINT64 }, 341 { "memory_throttle_count", KSTAT_DATA_UINT64 } 342 }; 343 344 #define ARCSTAT(stat) (arc_stats.stat.value.ui64) 345 346 #define ARCSTAT_INCR(stat, val) \ 347 atomic_add_64(&arc_stats.stat.value.ui64, (val)); 348 349 #define ARCSTAT_BUMP(stat) ARCSTAT_INCR(stat, 1) 350 #define ARCSTAT_BUMPDOWN(stat) ARCSTAT_INCR(stat, -1) 351 352 #define ARCSTAT_MAX(stat, val) { \ 353 uint64_t m; \ 354 while ((val) > (m = arc_stats.stat.value.ui64) && \ 355 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \ 356 continue; \ 357 } 358 359 #define ARCSTAT_MAXSTAT(stat) \ 360 ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64) 361 362 /* 363 * We define a macro to allow ARC hits/misses to be easily broken down by 364 * two separate conditions, giving a total of four different subtypes for 365 * each of hits and misses (so eight statistics total). 366 */ 367 #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \ 368 if (cond1) { \ 369 if (cond2) { \ 370 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \ 371 } else { \ 372 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \ 373 } \ 374 } else { \ 375 if (cond2) { \ 376 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \ 377 } else { \ 378 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\ 379 } \ 380 } 381 382 kstat_t *arc_ksp; 383 static arc_state_t *arc_anon; 384 static arc_state_t *arc_mru; 385 static arc_state_t *arc_mru_ghost; 386 static arc_state_t *arc_mfu; 387 static arc_state_t *arc_mfu_ghost; 388 static arc_state_t *arc_l2c_only; 389 390 /* 391 * There are several ARC variables that are critical to export as kstats -- 392 * but we don't want to have to grovel around in the kstat whenever we wish to 393 * manipulate them. For these variables, we therefore define them to be in 394 * terms of the statistic variable. This assures that we are not introducing 395 * the possibility of inconsistency by having shadow copies of the variables, 396 * while still allowing the code to be readable. 397 */ 398 #define arc_size ARCSTAT(arcstat_size) /* actual total arc size */ 399 #define arc_p ARCSTAT(arcstat_p) /* target size of MRU */ 400 #define arc_c ARCSTAT(arcstat_c) /* target size of cache */ 401 #define arc_c_min ARCSTAT(arcstat_c_min) /* min target cache size */ 402 #define arc_c_max ARCSTAT(arcstat_c_max) /* max target cache size */ 403 404 static int arc_no_grow; /* Don't try to grow cache size */ 405 static uint64_t arc_tempreserve; 406 static uint64_t arc_loaned_bytes; 407 static uint64_t arc_meta_used; 408 static uint64_t arc_meta_limit; 409 static uint64_t arc_meta_max = 0; 410 411 typedef struct l2arc_buf_hdr l2arc_buf_hdr_t; 412 413 typedef struct arc_callback arc_callback_t; 414 415 struct arc_callback { 416 void *acb_private; 417 arc_done_func_t *acb_done; 418 arc_buf_t *acb_buf; 419 zio_t *acb_zio_dummy; 420 arc_callback_t *acb_next; 421 }; 422 423 typedef struct arc_write_callback arc_write_callback_t; 424 425 struct arc_write_callback { 426 void *awcb_private; 427 arc_done_func_t *awcb_ready; 428 arc_done_func_t *awcb_done; 429 arc_buf_t *awcb_buf; 430 }; 431 432 struct arc_buf_hdr { 433 /* protected by hash lock */ 434 dva_t b_dva; 435 uint64_t b_birth; 436 uint64_t b_cksum0; 437 438 kmutex_t b_freeze_lock; 439 zio_cksum_t *b_freeze_cksum; 440 441 arc_buf_hdr_t *b_hash_next; 442 arc_buf_t *b_buf; 443 uint32_t b_flags; 444 uint32_t b_datacnt; 445 446 arc_callback_t *b_acb; 447 kcondvar_t b_cv; 448 449 /* immutable */ 450 arc_buf_contents_t b_type; 451 uint64_t b_size; 452 uint64_t b_spa; 453 454 /* protected by arc state mutex */ 455 arc_state_t *b_state; 456 list_node_t b_arc_node; 457 458 /* updated atomically */ 459 clock_t b_arc_access; 460 461 /* self protecting */ 462 refcount_t b_refcnt; 463 464 l2arc_buf_hdr_t *b_l2hdr; 465 list_node_t b_l2node; 466 }; 467 468 static arc_buf_t *arc_eviction_list; 469 static kmutex_t arc_eviction_mtx; 470 static arc_buf_hdr_t arc_eviction_hdr; 471 static void arc_get_data_buf(arc_buf_t *buf); 472 static void arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock); 473 static int arc_evict_needed(arc_buf_contents_t type); 474 static void arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes); 475 476 static boolean_t l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab); 477 478 #define GHOST_STATE(state) \ 479 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \ 480 (state) == arc_l2c_only) 481 482 /* 483 * Private ARC flags. These flags are private ARC only flags that will show up 484 * in b_flags in the arc_hdr_buf_t. Some flags are publicly declared, and can 485 * be passed in as arc_flags in things like arc_read. However, these flags 486 * should never be passed and should only be set by ARC code. When adding new 487 * public flags, make sure not to smash the private ones. 488 */ 489 490 #define ARC_IN_HASH_TABLE (1 << 9) /* this buffer is hashed */ 491 #define ARC_IO_IN_PROGRESS (1 << 10) /* I/O in progress for buf */ 492 #define ARC_IO_ERROR (1 << 11) /* I/O failed for buf */ 493 #define ARC_FREED_IN_READ (1 << 12) /* buf freed while in read */ 494 #define ARC_BUF_AVAILABLE (1 << 13) /* block not in active use */ 495 #define ARC_INDIRECT (1 << 14) /* this is an indirect block */ 496 #define ARC_FREE_IN_PROGRESS (1 << 15) /* hdr about to be freed */ 497 #define ARC_L2_WRITING (1 << 16) /* L2ARC write in progress */ 498 #define ARC_L2_EVICTED (1 << 17) /* evicted during I/O */ 499 #define ARC_L2_WRITE_HEAD (1 << 18) /* head of write list */ 500 501 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_IN_HASH_TABLE) 502 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_IO_IN_PROGRESS) 503 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_IO_ERROR) 504 #define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_PREFETCH) 505 #define HDR_FREED_IN_READ(hdr) ((hdr)->b_flags & ARC_FREED_IN_READ) 506 #define HDR_BUF_AVAILABLE(hdr) ((hdr)->b_flags & ARC_BUF_AVAILABLE) 507 #define HDR_FREE_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FREE_IN_PROGRESS) 508 #define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_L2CACHE) 509 #define HDR_L2_READING(hdr) ((hdr)->b_flags & ARC_IO_IN_PROGRESS && \ 510 (hdr)->b_l2hdr != NULL) 511 #define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_L2_WRITING) 512 #define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_L2_EVICTED) 513 #define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_L2_WRITE_HEAD) 514 515 /* 516 * Other sizes 517 */ 518 519 #define HDR_SIZE ((int64_t)sizeof (arc_buf_hdr_t)) 520 #define L2HDR_SIZE ((int64_t)sizeof (l2arc_buf_hdr_t)) 521 522 /* 523 * Hash table routines 524 */ 525 526 #define HT_LOCK_PAD 64 527 528 struct ht_lock { 529 kmutex_t ht_lock; 530 #ifdef _KERNEL 531 unsigned char pad[(HT_LOCK_PAD - sizeof (kmutex_t))]; 532 #endif 533 }; 534 535 #define BUF_LOCKS 256 536 typedef struct buf_hash_table { 537 uint64_t ht_mask; 538 arc_buf_hdr_t **ht_table; 539 struct ht_lock ht_locks[BUF_LOCKS]; 540 } buf_hash_table_t; 541 542 static buf_hash_table_t buf_hash_table; 543 544 #define BUF_HASH_INDEX(spa, dva, birth) \ 545 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask) 546 #define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)]) 547 #define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock)) 548 #define HDR_LOCK(buf) \ 549 (BUF_HASH_LOCK(BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth))) 550 551 uint64_t zfs_crc64_table[256]; 552 553 /* 554 * Level 2 ARC 555 */ 556 557 #define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */ 558 #define L2ARC_HEADROOM 2 /* num of writes */ 559 #define L2ARC_FEED_SECS 1 /* caching interval secs */ 560 #define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */ 561 562 #define l2arc_writes_sent ARCSTAT(arcstat_l2_writes_sent) 563 #define l2arc_writes_done ARCSTAT(arcstat_l2_writes_done) 564 565 /* 566 * L2ARC Performance Tunables 567 */ 568 uint64_t l2arc_write_max = L2ARC_WRITE_SIZE; /* default max write size */ 569 uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra write during warmup */ 570 uint64_t l2arc_headroom = L2ARC_HEADROOM; /* number of dev writes */ 571 uint64_t l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */ 572 uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval milliseconds */ 573 boolean_t l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */ 574 boolean_t l2arc_feed_again = B_TRUE; /* turbo warmup */ 575 boolean_t l2arc_norw = B_TRUE; /* no reads during writes */ 576 577 /* 578 * L2ARC Internals 579 */ 580 typedef struct l2arc_dev { 581 vdev_t *l2ad_vdev; /* vdev */ 582 spa_t *l2ad_spa; /* spa */ 583 uint64_t l2ad_hand; /* next write location */ 584 uint64_t l2ad_write; /* desired write size, bytes */ 585 uint64_t l2ad_boost; /* warmup write boost, bytes */ 586 uint64_t l2ad_start; /* first addr on device */ 587 uint64_t l2ad_end; /* last addr on device */ 588 uint64_t l2ad_evict; /* last addr eviction reached */ 589 boolean_t l2ad_first; /* first sweep through */ 590 boolean_t l2ad_writing; /* currently writing */ 591 list_t *l2ad_buflist; /* buffer list */ 592 list_node_t l2ad_node; /* device list node */ 593 } l2arc_dev_t; 594 595 static list_t L2ARC_dev_list; /* device list */ 596 static list_t *l2arc_dev_list; /* device list pointer */ 597 static kmutex_t l2arc_dev_mtx; /* device list mutex */ 598 static l2arc_dev_t *l2arc_dev_last; /* last device used */ 599 static kmutex_t l2arc_buflist_mtx; /* mutex for all buflists */ 600 static list_t L2ARC_free_on_write; /* free after write buf list */ 601 static list_t *l2arc_free_on_write; /* free after write list ptr */ 602 static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */ 603 static uint64_t l2arc_ndev; /* number of devices */ 604 605 typedef struct l2arc_read_callback { 606 arc_buf_t *l2rcb_buf; /* read buffer */ 607 spa_t *l2rcb_spa; /* spa */ 608 blkptr_t l2rcb_bp; /* original blkptr */ 609 zbookmark_t l2rcb_zb; /* original bookmark */ 610 int l2rcb_flags; /* original flags */ 611 } l2arc_read_callback_t; 612 613 typedef struct l2arc_write_callback { 614 l2arc_dev_t *l2wcb_dev; /* device info */ 615 arc_buf_hdr_t *l2wcb_head; /* head of write buflist */ 616 } l2arc_write_callback_t; 617 618 struct l2arc_buf_hdr { 619 /* protected by arc_buf_hdr mutex */ 620 l2arc_dev_t *b_dev; /* L2ARC device */ 621 uint64_t b_daddr; /* disk address, offset byte */ 622 }; 623 624 typedef struct l2arc_data_free { 625 /* protected by l2arc_free_on_write_mtx */ 626 void *l2df_data; 627 size_t l2df_size; 628 void (*l2df_func)(void *, size_t); 629 list_node_t l2df_list_node; 630 } l2arc_data_free_t; 631 632 static kmutex_t l2arc_feed_thr_lock; 633 static kcondvar_t l2arc_feed_thr_cv; 634 static uint8_t l2arc_thread_exit; 635 636 static void l2arc_read_done(zio_t *zio); 637 static void l2arc_hdr_stat_add(void); 638 static void l2arc_hdr_stat_remove(void); 639 640 static uint64_t 641 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth) 642 { 643 uint8_t *vdva = (uint8_t *)dva; 644 uint64_t crc = -1ULL; 645 int i; 646 647 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY); 648 649 for (i = 0; i < sizeof (dva_t); i++) 650 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF]; 651 652 crc ^= (spa>>8) ^ birth; 653 654 return (crc); 655 } 656 657 #define BUF_EMPTY(buf) \ 658 ((buf)->b_dva.dva_word[0] == 0 && \ 659 (buf)->b_dva.dva_word[1] == 0 && \ 660 (buf)->b_birth == 0) 661 662 #define BUF_EQUAL(spa, dva, birth, buf) \ 663 ((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \ 664 ((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \ 665 ((buf)->b_birth == birth) && ((buf)->b_spa == spa) 666 667 static arc_buf_hdr_t * 668 buf_hash_find(uint64_t spa, const dva_t *dva, uint64_t birth, kmutex_t **lockp) 669 { 670 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth); 671 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 672 arc_buf_hdr_t *buf; 673 674 mutex_enter(hash_lock); 675 for (buf = buf_hash_table.ht_table[idx]; buf != NULL; 676 buf = buf->b_hash_next) { 677 if (BUF_EQUAL(spa, dva, birth, buf)) { 678 *lockp = hash_lock; 679 return (buf); 680 } 681 } 682 mutex_exit(hash_lock); 683 *lockp = NULL; 684 return (NULL); 685 } 686 687 /* 688 * Insert an entry into the hash table. If there is already an element 689 * equal to elem in the hash table, then the already existing element 690 * will be returned and the new element will not be inserted. 691 * Otherwise returns NULL. 692 */ 693 static arc_buf_hdr_t * 694 buf_hash_insert(arc_buf_hdr_t *buf, kmutex_t **lockp) 695 { 696 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth); 697 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 698 arc_buf_hdr_t *fbuf; 699 uint32_t i; 700 701 ASSERT(!HDR_IN_HASH_TABLE(buf)); 702 *lockp = hash_lock; 703 mutex_enter(hash_lock); 704 for (fbuf = buf_hash_table.ht_table[idx], i = 0; fbuf != NULL; 705 fbuf = fbuf->b_hash_next, i++) { 706 if (BUF_EQUAL(buf->b_spa, &buf->b_dva, buf->b_birth, fbuf)) 707 return (fbuf); 708 } 709 710 buf->b_hash_next = buf_hash_table.ht_table[idx]; 711 buf_hash_table.ht_table[idx] = buf; 712 buf->b_flags |= ARC_IN_HASH_TABLE; 713 714 /* collect some hash table performance data */ 715 if (i > 0) { 716 ARCSTAT_BUMP(arcstat_hash_collisions); 717 if (i == 1) 718 ARCSTAT_BUMP(arcstat_hash_chains); 719 720 ARCSTAT_MAX(arcstat_hash_chain_max, i); 721 } 722 723 ARCSTAT_BUMP(arcstat_hash_elements); 724 ARCSTAT_MAXSTAT(arcstat_hash_elements); 725 726 return (NULL); 727 } 728 729 static void 730 buf_hash_remove(arc_buf_hdr_t *buf) 731 { 732 arc_buf_hdr_t *fbuf, **bufp; 733 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth); 734 735 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx))); 736 ASSERT(HDR_IN_HASH_TABLE(buf)); 737 738 bufp = &buf_hash_table.ht_table[idx]; 739 while ((fbuf = *bufp) != buf) { 740 ASSERT(fbuf != NULL); 741 bufp = &fbuf->b_hash_next; 742 } 743 *bufp = buf->b_hash_next; 744 buf->b_hash_next = NULL; 745 buf->b_flags &= ~ARC_IN_HASH_TABLE; 746 747 /* collect some hash table performance data */ 748 ARCSTAT_BUMPDOWN(arcstat_hash_elements); 749 750 if (buf_hash_table.ht_table[idx] && 751 buf_hash_table.ht_table[idx]->b_hash_next == NULL) 752 ARCSTAT_BUMPDOWN(arcstat_hash_chains); 753 } 754 755 /* 756 * Global data structures and functions for the buf kmem cache. 757 */ 758 static kmem_cache_t *hdr_cache; 759 static kmem_cache_t *buf_cache; 760 761 static void 762 buf_fini(void) 763 { 764 int i; 765 766 kmem_free(buf_hash_table.ht_table, 767 (buf_hash_table.ht_mask + 1) * sizeof (void *)); 768 for (i = 0; i < BUF_LOCKS; i++) 769 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock); 770 kmem_cache_destroy(hdr_cache); 771 kmem_cache_destroy(buf_cache); 772 } 773 774 /* 775 * Constructor callback - called when the cache is empty 776 * and a new buf is requested. 777 */ 778 /* ARGSUSED */ 779 static int 780 hdr_cons(void *vbuf, void *unused, int kmflag) 781 { 782 arc_buf_hdr_t *buf = vbuf; 783 784 bzero(buf, sizeof (arc_buf_hdr_t)); 785 refcount_create(&buf->b_refcnt); 786 cv_init(&buf->b_cv, NULL, CV_DEFAULT, NULL); 787 mutex_init(&buf->b_freeze_lock, NULL, MUTEX_DEFAULT, NULL); 788 arc_space_consume(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS); 789 790 return (0); 791 } 792 793 /* ARGSUSED */ 794 static int 795 buf_cons(void *vbuf, void *unused, int kmflag) 796 { 797 arc_buf_t *buf = vbuf; 798 799 bzero(buf, sizeof (arc_buf_t)); 800 rw_init(&buf->b_lock, NULL, RW_DEFAULT, NULL); 801 arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS); 802 803 return (0); 804 } 805 806 /* 807 * Destructor callback - called when a cached buf is 808 * no longer required. 809 */ 810 /* ARGSUSED */ 811 static void 812 hdr_dest(void *vbuf, void *unused) 813 { 814 arc_buf_hdr_t *buf = vbuf; 815 816 ASSERT(BUF_EMPTY(buf)); 817 refcount_destroy(&buf->b_refcnt); 818 cv_destroy(&buf->b_cv); 819 mutex_destroy(&buf->b_freeze_lock); 820 arc_space_return(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS); 821 } 822 823 /* ARGSUSED */ 824 static void 825 buf_dest(void *vbuf, void *unused) 826 { 827 arc_buf_t *buf = vbuf; 828 829 rw_destroy(&buf->b_lock); 830 arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS); 831 } 832 833 /* 834 * Reclaim callback -- invoked when memory is low. 835 */ 836 /* ARGSUSED */ 837 static void 838 hdr_recl(void *unused) 839 { 840 dprintf("hdr_recl called\n"); 841 /* 842 * umem calls the reclaim func when we destroy the buf cache, 843 * which is after we do arc_fini(). 844 */ 845 if (!arc_dead) 846 cv_signal(&arc_reclaim_thr_cv); 847 } 848 849 static void 850 buf_init(void) 851 { 852 uint64_t *ct; 853 uint64_t hsize = 1ULL << 12; 854 int i, j; 855 856 /* 857 * The hash table is big enough to fill all of physical memory 858 * with an average 64K block size. The table will take up 859 * totalmem*sizeof(void*)/64K (eg. 128KB/GB with 8-byte pointers). 860 */ 861 while (hsize * 65536 < physmem * PAGESIZE) 862 hsize <<= 1; 863 retry: 864 buf_hash_table.ht_mask = hsize - 1; 865 buf_hash_table.ht_table = 866 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP); 867 if (buf_hash_table.ht_table == NULL) { 868 ASSERT(hsize > (1ULL << 8)); 869 hsize >>= 1; 870 goto retry; 871 } 872 873 hdr_cache = kmem_cache_create("arc_buf_hdr_t", sizeof (arc_buf_hdr_t), 874 0, hdr_cons, hdr_dest, hdr_recl, NULL, NULL, 0); 875 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t), 876 0, buf_cons, buf_dest, NULL, NULL, NULL, 0); 877 878 for (i = 0; i < 256; i++) 879 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--) 880 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY); 881 882 for (i = 0; i < BUF_LOCKS; i++) { 883 mutex_init(&buf_hash_table.ht_locks[i].ht_lock, 884 NULL, MUTEX_DEFAULT, NULL); 885 } 886 } 887 888 #define ARC_MINTIME (hz>>4) /* 62 ms */ 889 890 static void 891 arc_cksum_verify(arc_buf_t *buf) 892 { 893 zio_cksum_t zc; 894 895 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 896 return; 897 898 mutex_enter(&buf->b_hdr->b_freeze_lock); 899 if (buf->b_hdr->b_freeze_cksum == NULL || 900 (buf->b_hdr->b_flags & ARC_IO_ERROR)) { 901 mutex_exit(&buf->b_hdr->b_freeze_lock); 902 return; 903 } 904 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc); 905 if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc)) 906 panic("buffer modified while frozen!"); 907 mutex_exit(&buf->b_hdr->b_freeze_lock); 908 } 909 910 static int 911 arc_cksum_equal(arc_buf_t *buf) 912 { 913 zio_cksum_t zc; 914 int equal; 915 916 mutex_enter(&buf->b_hdr->b_freeze_lock); 917 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc); 918 equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc); 919 mutex_exit(&buf->b_hdr->b_freeze_lock); 920 921 return (equal); 922 } 923 924 static void 925 arc_cksum_compute(arc_buf_t *buf, boolean_t force) 926 { 927 if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY)) 928 return; 929 930 mutex_enter(&buf->b_hdr->b_freeze_lock); 931 if (buf->b_hdr->b_freeze_cksum != NULL) { 932 mutex_exit(&buf->b_hdr->b_freeze_lock); 933 return; 934 } 935 buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP); 936 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, 937 buf->b_hdr->b_freeze_cksum); 938 mutex_exit(&buf->b_hdr->b_freeze_lock); 939 } 940 941 void 942 arc_buf_thaw(arc_buf_t *buf) 943 { 944 if (zfs_flags & ZFS_DEBUG_MODIFY) { 945 if (buf->b_hdr->b_state != arc_anon) 946 panic("modifying non-anon buffer!"); 947 if (buf->b_hdr->b_flags & ARC_IO_IN_PROGRESS) 948 panic("modifying buffer while i/o in progress!"); 949 arc_cksum_verify(buf); 950 } 951 952 mutex_enter(&buf->b_hdr->b_freeze_lock); 953 if (buf->b_hdr->b_freeze_cksum != NULL) { 954 kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t)); 955 buf->b_hdr->b_freeze_cksum = NULL; 956 } 957 mutex_exit(&buf->b_hdr->b_freeze_lock); 958 } 959 960 void 961 arc_buf_freeze(arc_buf_t *buf) 962 { 963 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 964 return; 965 966 ASSERT(buf->b_hdr->b_freeze_cksum != NULL || 967 buf->b_hdr->b_state == arc_anon); 968 arc_cksum_compute(buf, B_FALSE); 969 } 970 971 static void 972 add_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag) 973 { 974 ASSERT(MUTEX_HELD(hash_lock)); 975 976 if ((refcount_add(&ab->b_refcnt, tag) == 1) && 977 (ab->b_state != arc_anon)) { 978 uint64_t delta = ab->b_size * ab->b_datacnt; 979 list_t *list = &ab->b_state->arcs_list[ab->b_type]; 980 uint64_t *size = &ab->b_state->arcs_lsize[ab->b_type]; 981 982 ASSERT(!MUTEX_HELD(&ab->b_state->arcs_mtx)); 983 mutex_enter(&ab->b_state->arcs_mtx); 984 ASSERT(list_link_active(&ab->b_arc_node)); 985 list_remove(list, ab); 986 if (GHOST_STATE(ab->b_state)) { 987 ASSERT3U(ab->b_datacnt, ==, 0); 988 ASSERT3P(ab->b_buf, ==, NULL); 989 delta = ab->b_size; 990 } 991 ASSERT(delta > 0); 992 ASSERT3U(*size, >=, delta); 993 atomic_add_64(size, -delta); 994 mutex_exit(&ab->b_state->arcs_mtx); 995 /* remove the prefetch flag if we get a reference */ 996 if (ab->b_flags & ARC_PREFETCH) 997 ab->b_flags &= ~ARC_PREFETCH; 998 } 999 } 1000 1001 static int 1002 remove_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag) 1003 { 1004 int cnt; 1005 arc_state_t *state = ab->b_state; 1006 1007 ASSERT(state == arc_anon || MUTEX_HELD(hash_lock)); 1008 ASSERT(!GHOST_STATE(state)); 1009 1010 if (((cnt = refcount_remove(&ab->b_refcnt, tag)) == 0) && 1011 (state != arc_anon)) { 1012 uint64_t *size = &state->arcs_lsize[ab->b_type]; 1013 1014 ASSERT(!MUTEX_HELD(&state->arcs_mtx)); 1015 mutex_enter(&state->arcs_mtx); 1016 ASSERT(!list_link_active(&ab->b_arc_node)); 1017 list_insert_head(&state->arcs_list[ab->b_type], ab); 1018 ASSERT(ab->b_datacnt > 0); 1019 atomic_add_64(size, ab->b_size * ab->b_datacnt); 1020 mutex_exit(&state->arcs_mtx); 1021 } 1022 return (cnt); 1023 } 1024 1025 /* 1026 * Move the supplied buffer to the indicated state. The mutex 1027 * for the buffer must be held by the caller. 1028 */ 1029 static void 1030 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *ab, kmutex_t *hash_lock) 1031 { 1032 arc_state_t *old_state = ab->b_state; 1033 int64_t refcnt = refcount_count(&ab->b_refcnt); 1034 uint64_t from_delta, to_delta; 1035 1036 ASSERT(MUTEX_HELD(hash_lock)); 1037 ASSERT(new_state != old_state); 1038 ASSERT(refcnt == 0 || ab->b_datacnt > 0); 1039 ASSERT(ab->b_datacnt == 0 || !GHOST_STATE(new_state)); 1040 ASSERT(ab->b_datacnt <= 1 || new_state != arc_anon); 1041 ASSERT(ab->b_datacnt <= 1 || old_state != arc_anon); 1042 1043 from_delta = to_delta = ab->b_datacnt * ab->b_size; 1044 1045 /* 1046 * If this buffer is evictable, transfer it from the 1047 * old state list to the new state list. 1048 */ 1049 if (refcnt == 0) { 1050 if (old_state != arc_anon) { 1051 int use_mutex = !MUTEX_HELD(&old_state->arcs_mtx); 1052 uint64_t *size = &old_state->arcs_lsize[ab->b_type]; 1053 1054 if (use_mutex) 1055 mutex_enter(&old_state->arcs_mtx); 1056 1057 ASSERT(list_link_active(&ab->b_arc_node)); 1058 list_remove(&old_state->arcs_list[ab->b_type], ab); 1059 1060 /* 1061 * If prefetching out of the ghost cache, 1062 * we will have a non-null datacnt. 1063 */ 1064 if (GHOST_STATE(old_state) && ab->b_datacnt == 0) { 1065 /* ghost elements have a ghost size */ 1066 ASSERT(ab->b_buf == NULL); 1067 from_delta = ab->b_size; 1068 } 1069 ASSERT3U(*size, >=, from_delta); 1070 atomic_add_64(size, -from_delta); 1071 1072 if (use_mutex) 1073 mutex_exit(&old_state->arcs_mtx); 1074 } 1075 if (new_state != arc_anon) { 1076 int use_mutex = !MUTEX_HELD(&new_state->arcs_mtx); 1077 uint64_t *size = &new_state->arcs_lsize[ab->b_type]; 1078 1079 if (use_mutex) 1080 mutex_enter(&new_state->arcs_mtx); 1081 1082 list_insert_head(&new_state->arcs_list[ab->b_type], ab); 1083 1084 /* ghost elements have a ghost size */ 1085 if (GHOST_STATE(new_state)) { 1086 ASSERT(ab->b_datacnt == 0); 1087 ASSERT(ab->b_buf == NULL); 1088 to_delta = ab->b_size; 1089 } 1090 atomic_add_64(size, to_delta); 1091 1092 if (use_mutex) 1093 mutex_exit(&new_state->arcs_mtx); 1094 } 1095 } 1096 1097 ASSERT(!BUF_EMPTY(ab)); 1098 if (new_state == arc_anon) { 1099 buf_hash_remove(ab); 1100 } 1101 1102 /* adjust state sizes */ 1103 if (to_delta) 1104 atomic_add_64(&new_state->arcs_size, to_delta); 1105 if (from_delta) { 1106 ASSERT3U(old_state->arcs_size, >=, from_delta); 1107 atomic_add_64(&old_state->arcs_size, -from_delta); 1108 } 1109 ab->b_state = new_state; 1110 1111 /* adjust l2arc hdr stats */ 1112 if (new_state == arc_l2c_only) 1113 l2arc_hdr_stat_add(); 1114 else if (old_state == arc_l2c_only) 1115 l2arc_hdr_stat_remove(); 1116 } 1117 1118 void 1119 arc_space_consume(uint64_t space, arc_space_type_t type) 1120 { 1121 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 1122 1123 switch (type) { 1124 case ARC_SPACE_DATA: 1125 ARCSTAT_INCR(arcstat_data_size, space); 1126 break; 1127 case ARC_SPACE_OTHER: 1128 ARCSTAT_INCR(arcstat_other_size, space); 1129 break; 1130 case ARC_SPACE_HDRS: 1131 ARCSTAT_INCR(arcstat_hdr_size, space); 1132 break; 1133 case ARC_SPACE_L2HDRS: 1134 ARCSTAT_INCR(arcstat_l2_hdr_size, space); 1135 break; 1136 } 1137 1138 atomic_add_64(&arc_meta_used, space); 1139 atomic_add_64(&arc_size, space); 1140 } 1141 1142 void 1143 arc_space_return(uint64_t space, arc_space_type_t type) 1144 { 1145 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 1146 1147 switch (type) { 1148 case ARC_SPACE_DATA: 1149 ARCSTAT_INCR(arcstat_data_size, -space); 1150 break; 1151 case ARC_SPACE_OTHER: 1152 ARCSTAT_INCR(arcstat_other_size, -space); 1153 break; 1154 case ARC_SPACE_HDRS: 1155 ARCSTAT_INCR(arcstat_hdr_size, -space); 1156 break; 1157 case ARC_SPACE_L2HDRS: 1158 ARCSTAT_INCR(arcstat_l2_hdr_size, -space); 1159 break; 1160 } 1161 1162 ASSERT(arc_meta_used >= space); 1163 if (arc_meta_max < arc_meta_used) 1164 arc_meta_max = arc_meta_used; 1165 atomic_add_64(&arc_meta_used, -space); 1166 ASSERT(arc_size >= space); 1167 atomic_add_64(&arc_size, -space); 1168 } 1169 1170 void * 1171 arc_data_buf_alloc(uint64_t size) 1172 { 1173 if (arc_evict_needed(ARC_BUFC_DATA)) 1174 cv_signal(&arc_reclaim_thr_cv); 1175 atomic_add_64(&arc_size, size); 1176 return (zio_data_buf_alloc(size)); 1177 } 1178 1179 void 1180 arc_data_buf_free(void *buf, uint64_t size) 1181 { 1182 zio_data_buf_free(buf, size); 1183 ASSERT(arc_size >= size); 1184 atomic_add_64(&arc_size, -size); 1185 } 1186 1187 arc_buf_t * 1188 arc_buf_alloc(spa_t *spa, int size, void *tag, arc_buf_contents_t type) 1189 { 1190 arc_buf_hdr_t *hdr; 1191 arc_buf_t *buf; 1192 1193 ASSERT3U(size, >, 0); 1194 hdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE); 1195 ASSERT(BUF_EMPTY(hdr)); 1196 hdr->b_size = size; 1197 hdr->b_type = type; 1198 hdr->b_spa = spa_guid(spa); 1199 hdr->b_state = arc_anon; 1200 hdr->b_arc_access = 0; 1201 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 1202 buf->b_hdr = hdr; 1203 buf->b_data = NULL; 1204 buf->b_efunc = NULL; 1205 buf->b_private = NULL; 1206 buf->b_next = NULL; 1207 hdr->b_buf = buf; 1208 arc_get_data_buf(buf); 1209 hdr->b_datacnt = 1; 1210 hdr->b_flags = 0; 1211 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 1212 (void) refcount_add(&hdr->b_refcnt, tag); 1213 1214 return (buf); 1215 } 1216 1217 static char *arc_onloan_tag = "onloan"; 1218 1219 /* 1220 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in 1221 * flight data by arc_tempreserve_space() until they are "returned". Loaned 1222 * buffers must be returned to the arc before they can be used by the DMU or 1223 * freed. 1224 */ 1225 arc_buf_t * 1226 arc_loan_buf(spa_t *spa, int size) 1227 { 1228 arc_buf_t *buf; 1229 1230 buf = arc_buf_alloc(spa, size, arc_onloan_tag, ARC_BUFC_DATA); 1231 1232 atomic_add_64(&arc_loaned_bytes, size); 1233 return (buf); 1234 } 1235 1236 /* 1237 * Return a loaned arc buffer to the arc. 1238 */ 1239 void 1240 arc_return_buf(arc_buf_t *buf, void *tag) 1241 { 1242 arc_buf_hdr_t *hdr = buf->b_hdr; 1243 1244 ASSERT(hdr->b_state == arc_anon); 1245 ASSERT(buf->b_data != NULL); 1246 VERIFY(refcount_remove(&hdr->b_refcnt, arc_onloan_tag) == 0); 1247 VERIFY(refcount_add(&hdr->b_refcnt, tag) == 1); 1248 1249 atomic_add_64(&arc_loaned_bytes, -hdr->b_size); 1250 } 1251 1252 static arc_buf_t * 1253 arc_buf_clone(arc_buf_t *from) 1254 { 1255 arc_buf_t *buf; 1256 arc_buf_hdr_t *hdr = from->b_hdr; 1257 uint64_t size = hdr->b_size; 1258 1259 ASSERT(hdr->b_state != arc_anon); 1260 1261 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 1262 buf->b_hdr = hdr; 1263 buf->b_data = NULL; 1264 buf->b_efunc = NULL; 1265 buf->b_private = NULL; 1266 buf->b_next = hdr->b_buf; 1267 hdr->b_buf = buf; 1268 arc_get_data_buf(buf); 1269 bcopy(from->b_data, buf->b_data, size); 1270 hdr->b_datacnt += 1; 1271 return (buf); 1272 } 1273 1274 void 1275 arc_buf_add_ref(arc_buf_t *buf, void* tag) 1276 { 1277 arc_buf_hdr_t *hdr; 1278 kmutex_t *hash_lock; 1279 1280 /* 1281 * Check to see if this buffer is evicted. Callers 1282 * must verify b_data != NULL to know if the add_ref 1283 * was successful. 1284 */ 1285 rw_enter(&buf->b_lock, RW_READER); 1286 if (buf->b_data == NULL) { 1287 rw_exit(&buf->b_lock); 1288 return; 1289 } 1290 hdr = buf->b_hdr; 1291 ASSERT(hdr != NULL); 1292 hash_lock = HDR_LOCK(hdr); 1293 mutex_enter(hash_lock); 1294 rw_exit(&buf->b_lock); 1295 1296 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu); 1297 add_reference(hdr, hash_lock, tag); 1298 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 1299 arc_access(hdr, hash_lock); 1300 mutex_exit(hash_lock); 1301 ARCSTAT_BUMP(arcstat_hits); 1302 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH), 1303 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA, 1304 data, metadata, hits); 1305 } 1306 1307 /* 1308 * Free the arc data buffer. If it is an l2arc write in progress, 1309 * the buffer is placed on l2arc_free_on_write to be freed later. 1310 */ 1311 static void 1312 arc_buf_data_free(arc_buf_hdr_t *hdr, void (*free_func)(void *, size_t), 1313 void *data, size_t size) 1314 { 1315 if (HDR_L2_WRITING(hdr)) { 1316 l2arc_data_free_t *df; 1317 df = kmem_alloc(sizeof (l2arc_data_free_t), KM_SLEEP); 1318 df->l2df_data = data; 1319 df->l2df_size = size; 1320 df->l2df_func = free_func; 1321 mutex_enter(&l2arc_free_on_write_mtx); 1322 list_insert_head(l2arc_free_on_write, df); 1323 mutex_exit(&l2arc_free_on_write_mtx); 1324 ARCSTAT_BUMP(arcstat_l2_free_on_write); 1325 } else { 1326 free_func(data, size); 1327 } 1328 } 1329 1330 static void 1331 arc_buf_destroy(arc_buf_t *buf, boolean_t recycle, boolean_t all) 1332 { 1333 arc_buf_t **bufp; 1334 1335 /* free up data associated with the buf */ 1336 if (buf->b_data) { 1337 arc_state_t *state = buf->b_hdr->b_state; 1338 uint64_t size = buf->b_hdr->b_size; 1339 arc_buf_contents_t type = buf->b_hdr->b_type; 1340 1341 arc_cksum_verify(buf); 1342 1343 if (!recycle) { 1344 if (type == ARC_BUFC_METADATA) { 1345 arc_buf_data_free(buf->b_hdr, zio_buf_free, 1346 buf->b_data, size); 1347 arc_space_return(size, ARC_SPACE_DATA); 1348 } else { 1349 ASSERT(type == ARC_BUFC_DATA); 1350 arc_buf_data_free(buf->b_hdr, 1351 zio_data_buf_free, buf->b_data, size); 1352 ARCSTAT_INCR(arcstat_data_size, -size); 1353 atomic_add_64(&arc_size, -size); 1354 } 1355 } 1356 if (list_link_active(&buf->b_hdr->b_arc_node)) { 1357 uint64_t *cnt = &state->arcs_lsize[type]; 1358 1359 ASSERT(refcount_is_zero(&buf->b_hdr->b_refcnt)); 1360 ASSERT(state != arc_anon); 1361 1362 ASSERT3U(*cnt, >=, size); 1363 atomic_add_64(cnt, -size); 1364 } 1365 ASSERT3U(state->arcs_size, >=, size); 1366 atomic_add_64(&state->arcs_size, -size); 1367 buf->b_data = NULL; 1368 ASSERT(buf->b_hdr->b_datacnt > 0); 1369 buf->b_hdr->b_datacnt -= 1; 1370 } 1371 1372 /* only remove the buf if requested */ 1373 if (!all) 1374 return; 1375 1376 /* remove the buf from the hdr list */ 1377 for (bufp = &buf->b_hdr->b_buf; *bufp != buf; bufp = &(*bufp)->b_next) 1378 continue; 1379 *bufp = buf->b_next; 1380 1381 ASSERT(buf->b_efunc == NULL); 1382 1383 /* clean up the buf */ 1384 buf->b_hdr = NULL; 1385 kmem_cache_free(buf_cache, buf); 1386 } 1387 1388 static void 1389 arc_hdr_destroy(arc_buf_hdr_t *hdr) 1390 { 1391 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 1392 ASSERT3P(hdr->b_state, ==, arc_anon); 1393 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 1394 l2arc_buf_hdr_t *l2hdr = hdr->b_l2hdr; 1395 1396 if (l2hdr != NULL) { 1397 boolean_t buflist_held = MUTEX_HELD(&l2arc_buflist_mtx); 1398 /* 1399 * To prevent arc_free() and l2arc_evict() from 1400 * attempting to free the same buffer at the same time, 1401 * a FREE_IN_PROGRESS flag is given to arc_free() to 1402 * give it priority. l2arc_evict() can't destroy this 1403 * header while we are waiting on l2arc_buflist_mtx. 1404 * 1405 * The hdr may be removed from l2ad_buflist before we 1406 * grab l2arc_buflist_mtx, so b_l2hdr is rechecked. 1407 */ 1408 if (!buflist_held) { 1409 mutex_enter(&l2arc_buflist_mtx); 1410 l2hdr = hdr->b_l2hdr; 1411 } 1412 1413 if (l2hdr != NULL) { 1414 list_remove(l2hdr->b_dev->l2ad_buflist, hdr); 1415 ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size); 1416 kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t)); 1417 if (hdr->b_state == arc_l2c_only) 1418 l2arc_hdr_stat_remove(); 1419 hdr->b_l2hdr = NULL; 1420 } 1421 1422 if (!buflist_held) 1423 mutex_exit(&l2arc_buflist_mtx); 1424 } 1425 1426 if (!BUF_EMPTY(hdr)) { 1427 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 1428 bzero(&hdr->b_dva, sizeof (dva_t)); 1429 hdr->b_birth = 0; 1430 hdr->b_cksum0 = 0; 1431 } 1432 while (hdr->b_buf) { 1433 arc_buf_t *buf = hdr->b_buf; 1434 1435 if (buf->b_efunc) { 1436 mutex_enter(&arc_eviction_mtx); 1437 rw_enter(&buf->b_lock, RW_WRITER); 1438 ASSERT(buf->b_hdr != NULL); 1439 arc_buf_destroy(hdr->b_buf, FALSE, FALSE); 1440 hdr->b_buf = buf->b_next; 1441 buf->b_hdr = &arc_eviction_hdr; 1442 buf->b_next = arc_eviction_list; 1443 arc_eviction_list = buf; 1444 rw_exit(&buf->b_lock); 1445 mutex_exit(&arc_eviction_mtx); 1446 } else { 1447 arc_buf_destroy(hdr->b_buf, FALSE, TRUE); 1448 } 1449 } 1450 if (hdr->b_freeze_cksum != NULL) { 1451 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t)); 1452 hdr->b_freeze_cksum = NULL; 1453 } 1454 1455 ASSERT(!list_link_active(&hdr->b_arc_node)); 1456 ASSERT3P(hdr->b_hash_next, ==, NULL); 1457 ASSERT3P(hdr->b_acb, ==, NULL); 1458 kmem_cache_free(hdr_cache, hdr); 1459 } 1460 1461 void 1462 arc_buf_free(arc_buf_t *buf, void *tag) 1463 { 1464 arc_buf_hdr_t *hdr = buf->b_hdr; 1465 int hashed = hdr->b_state != arc_anon; 1466 1467 ASSERT(buf->b_efunc == NULL); 1468 ASSERT(buf->b_data != NULL); 1469 1470 if (hashed) { 1471 kmutex_t *hash_lock = HDR_LOCK(hdr); 1472 1473 mutex_enter(hash_lock); 1474 (void) remove_reference(hdr, hash_lock, tag); 1475 if (hdr->b_datacnt > 1) { 1476 arc_buf_destroy(buf, FALSE, TRUE); 1477 } else { 1478 ASSERT(buf == hdr->b_buf); 1479 ASSERT(buf->b_efunc == NULL); 1480 hdr->b_flags |= ARC_BUF_AVAILABLE; 1481 } 1482 mutex_exit(hash_lock); 1483 } else if (HDR_IO_IN_PROGRESS(hdr)) { 1484 int destroy_hdr; 1485 /* 1486 * We are in the middle of an async write. Don't destroy 1487 * this buffer unless the write completes before we finish 1488 * decrementing the reference count. 1489 */ 1490 mutex_enter(&arc_eviction_mtx); 1491 (void) remove_reference(hdr, NULL, tag); 1492 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 1493 destroy_hdr = !HDR_IO_IN_PROGRESS(hdr); 1494 mutex_exit(&arc_eviction_mtx); 1495 if (destroy_hdr) 1496 arc_hdr_destroy(hdr); 1497 } else { 1498 if (remove_reference(hdr, NULL, tag) > 0) { 1499 ASSERT(HDR_IO_ERROR(hdr)); 1500 arc_buf_destroy(buf, FALSE, TRUE); 1501 } else { 1502 arc_hdr_destroy(hdr); 1503 } 1504 } 1505 } 1506 1507 int 1508 arc_buf_remove_ref(arc_buf_t *buf, void* tag) 1509 { 1510 arc_buf_hdr_t *hdr = buf->b_hdr; 1511 kmutex_t *hash_lock = HDR_LOCK(hdr); 1512 int no_callback = (buf->b_efunc == NULL); 1513 1514 if (hdr->b_state == arc_anon) { 1515 ASSERT(hdr->b_datacnt == 1); 1516 arc_buf_free(buf, tag); 1517 return (no_callback); 1518 } 1519 1520 mutex_enter(hash_lock); 1521 ASSERT(hdr->b_state != arc_anon); 1522 ASSERT(buf->b_data != NULL); 1523 1524 (void) remove_reference(hdr, hash_lock, tag); 1525 if (hdr->b_datacnt > 1) { 1526 if (no_callback) 1527 arc_buf_destroy(buf, FALSE, TRUE); 1528 } else if (no_callback) { 1529 ASSERT(hdr->b_buf == buf && buf->b_next == NULL); 1530 ASSERT(buf->b_efunc == NULL); 1531 hdr->b_flags |= ARC_BUF_AVAILABLE; 1532 } 1533 ASSERT(no_callback || hdr->b_datacnt > 1 || 1534 refcount_is_zero(&hdr->b_refcnt)); 1535 mutex_exit(hash_lock); 1536 return (no_callback); 1537 } 1538 1539 int 1540 arc_buf_size(arc_buf_t *buf) 1541 { 1542 return (buf->b_hdr->b_size); 1543 } 1544 1545 /* 1546 * Evict buffers from list until we've removed the specified number of 1547 * bytes. Move the removed buffers to the appropriate evict state. 1548 * If the recycle flag is set, then attempt to "recycle" a buffer: 1549 * - look for a buffer to evict that is `bytes' long. 1550 * - return the data block from this buffer rather than freeing it. 1551 * This flag is used by callers that are trying to make space for a 1552 * new buffer in a full arc cache. 1553 * 1554 * This function makes a "best effort". It skips over any buffers 1555 * it can't get a hash_lock on, and so may not catch all candidates. 1556 * It may also return without evicting as much space as requested. 1557 */ 1558 static void * 1559 arc_evict(arc_state_t *state, uint64_t spa, int64_t bytes, boolean_t recycle, 1560 arc_buf_contents_t type) 1561 { 1562 arc_state_t *evicted_state; 1563 uint64_t bytes_evicted = 0, skipped = 0, missed = 0; 1564 arc_buf_hdr_t *ab, *ab_prev = NULL; 1565 list_t *list = &state->arcs_list[type]; 1566 kmutex_t *hash_lock; 1567 boolean_t have_lock; 1568 void *stolen = NULL; 1569 1570 ASSERT(state == arc_mru || state == arc_mfu); 1571 1572 evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost; 1573 1574 mutex_enter(&state->arcs_mtx); 1575 mutex_enter(&evicted_state->arcs_mtx); 1576 1577 for (ab = list_tail(list); ab; ab = ab_prev) { 1578 ab_prev = list_prev(list, ab); 1579 /* prefetch buffers have a minimum lifespan */ 1580 if (HDR_IO_IN_PROGRESS(ab) || 1581 (spa && ab->b_spa != spa) || 1582 (ab->b_flags & (ARC_PREFETCH|ARC_INDIRECT) && 1583 lbolt - ab->b_arc_access < arc_min_prefetch_lifespan)) { 1584 skipped++; 1585 continue; 1586 } 1587 /* "lookahead" for better eviction candidate */ 1588 if (recycle && ab->b_size != bytes && 1589 ab_prev && ab_prev->b_size == bytes) 1590 continue; 1591 hash_lock = HDR_LOCK(ab); 1592 have_lock = MUTEX_HELD(hash_lock); 1593 if (have_lock || mutex_tryenter(hash_lock)) { 1594 ASSERT3U(refcount_count(&ab->b_refcnt), ==, 0); 1595 ASSERT(ab->b_datacnt > 0); 1596 while (ab->b_buf) { 1597 arc_buf_t *buf = ab->b_buf; 1598 if (!rw_tryenter(&buf->b_lock, RW_WRITER)) { 1599 missed += 1; 1600 break; 1601 } 1602 if (buf->b_data) { 1603 bytes_evicted += ab->b_size; 1604 if (recycle && ab->b_type == type && 1605 ab->b_size == bytes && 1606 !HDR_L2_WRITING(ab)) { 1607 stolen = buf->b_data; 1608 recycle = FALSE; 1609 } 1610 } 1611 if (buf->b_efunc) { 1612 mutex_enter(&arc_eviction_mtx); 1613 arc_buf_destroy(buf, 1614 buf->b_data == stolen, FALSE); 1615 ab->b_buf = buf->b_next; 1616 buf->b_hdr = &arc_eviction_hdr; 1617 buf->b_next = arc_eviction_list; 1618 arc_eviction_list = buf; 1619 mutex_exit(&arc_eviction_mtx); 1620 rw_exit(&buf->b_lock); 1621 } else { 1622 rw_exit(&buf->b_lock); 1623 arc_buf_destroy(buf, 1624 buf->b_data == stolen, TRUE); 1625 } 1626 } 1627 1628 if (ab->b_l2hdr) { 1629 ARCSTAT_INCR(arcstat_evict_l2_cached, 1630 ab->b_size); 1631 } else { 1632 if (l2arc_write_eligible(ab->b_spa, ab)) { 1633 ARCSTAT_INCR(arcstat_evict_l2_eligible, 1634 ab->b_size); 1635 } else { 1636 ARCSTAT_INCR( 1637 arcstat_evict_l2_ineligible, 1638 ab->b_size); 1639 } 1640 } 1641 1642 if (ab->b_datacnt == 0) { 1643 arc_change_state(evicted_state, ab, hash_lock); 1644 ASSERT(HDR_IN_HASH_TABLE(ab)); 1645 ab->b_flags |= ARC_IN_HASH_TABLE; 1646 ab->b_flags &= ~ARC_BUF_AVAILABLE; 1647 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, ab); 1648 } 1649 if (!have_lock) 1650 mutex_exit(hash_lock); 1651 if (bytes >= 0 && bytes_evicted >= bytes) 1652 break; 1653 } else { 1654 missed += 1; 1655 } 1656 } 1657 1658 mutex_exit(&evicted_state->arcs_mtx); 1659 mutex_exit(&state->arcs_mtx); 1660 1661 if (bytes_evicted < bytes) 1662 dprintf("only evicted %lld bytes from %x", 1663 (longlong_t)bytes_evicted, state); 1664 1665 if (skipped) 1666 ARCSTAT_INCR(arcstat_evict_skip, skipped); 1667 1668 if (missed) 1669 ARCSTAT_INCR(arcstat_mutex_miss, missed); 1670 1671 /* 1672 * We have just evicted some date into the ghost state, make 1673 * sure we also adjust the ghost state size if necessary. 1674 */ 1675 if (arc_no_grow && 1676 arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size > arc_c) { 1677 int64_t mru_over = arc_anon->arcs_size + arc_mru->arcs_size + 1678 arc_mru_ghost->arcs_size - arc_c; 1679 1680 if (mru_over > 0 && arc_mru_ghost->arcs_lsize[type] > 0) { 1681 int64_t todelete = 1682 MIN(arc_mru_ghost->arcs_lsize[type], mru_over); 1683 arc_evict_ghost(arc_mru_ghost, NULL, todelete); 1684 } else if (arc_mfu_ghost->arcs_lsize[type] > 0) { 1685 int64_t todelete = MIN(arc_mfu_ghost->arcs_lsize[type], 1686 arc_mru_ghost->arcs_size + 1687 arc_mfu_ghost->arcs_size - arc_c); 1688 arc_evict_ghost(arc_mfu_ghost, NULL, todelete); 1689 } 1690 } 1691 1692 return (stolen); 1693 } 1694 1695 /* 1696 * Remove buffers from list until we've removed the specified number of 1697 * bytes. Destroy the buffers that are removed. 1698 */ 1699 static void 1700 arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes) 1701 { 1702 arc_buf_hdr_t *ab, *ab_prev; 1703 list_t *list = &state->arcs_list[ARC_BUFC_DATA]; 1704 kmutex_t *hash_lock; 1705 uint64_t bytes_deleted = 0; 1706 uint64_t bufs_skipped = 0; 1707 1708 ASSERT(GHOST_STATE(state)); 1709 top: 1710 mutex_enter(&state->arcs_mtx); 1711 for (ab = list_tail(list); ab; ab = ab_prev) { 1712 ab_prev = list_prev(list, ab); 1713 if (spa && ab->b_spa != spa) 1714 continue; 1715 hash_lock = HDR_LOCK(ab); 1716 if (mutex_tryenter(hash_lock)) { 1717 ASSERT(!HDR_IO_IN_PROGRESS(ab)); 1718 ASSERT(ab->b_buf == NULL); 1719 ARCSTAT_BUMP(arcstat_deleted); 1720 bytes_deleted += ab->b_size; 1721 1722 if (ab->b_l2hdr != NULL) { 1723 /* 1724 * This buffer is cached on the 2nd Level ARC; 1725 * don't destroy the header. 1726 */ 1727 arc_change_state(arc_l2c_only, ab, hash_lock); 1728 mutex_exit(hash_lock); 1729 } else { 1730 arc_change_state(arc_anon, ab, hash_lock); 1731 mutex_exit(hash_lock); 1732 arc_hdr_destroy(ab); 1733 } 1734 1735 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, ab); 1736 if (bytes >= 0 && bytes_deleted >= bytes) 1737 break; 1738 } else { 1739 if (bytes < 0) { 1740 mutex_exit(&state->arcs_mtx); 1741 mutex_enter(hash_lock); 1742 mutex_exit(hash_lock); 1743 goto top; 1744 } 1745 bufs_skipped += 1; 1746 } 1747 } 1748 mutex_exit(&state->arcs_mtx); 1749 1750 if (list == &state->arcs_list[ARC_BUFC_DATA] && 1751 (bytes < 0 || bytes_deleted < bytes)) { 1752 list = &state->arcs_list[ARC_BUFC_METADATA]; 1753 goto top; 1754 } 1755 1756 if (bufs_skipped) { 1757 ARCSTAT_INCR(arcstat_mutex_miss, bufs_skipped); 1758 ASSERT(bytes >= 0); 1759 } 1760 1761 if (bytes_deleted < bytes) 1762 dprintf("only deleted %lld bytes from %p", 1763 (longlong_t)bytes_deleted, state); 1764 } 1765 1766 static void 1767 arc_adjust(void) 1768 { 1769 int64_t adjustment, delta; 1770 1771 /* 1772 * Adjust MRU size 1773 */ 1774 1775 adjustment = MIN(arc_size - arc_c, 1776 arc_anon->arcs_size + arc_mru->arcs_size + arc_meta_used - arc_p); 1777 1778 if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_DATA] > 0) { 1779 delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_DATA], adjustment); 1780 (void) arc_evict(arc_mru, NULL, delta, FALSE, ARC_BUFC_DATA); 1781 adjustment -= delta; 1782 } 1783 1784 if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_METADATA] > 0) { 1785 delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_METADATA], adjustment); 1786 (void) arc_evict(arc_mru, NULL, delta, FALSE, 1787 ARC_BUFC_METADATA); 1788 } 1789 1790 /* 1791 * Adjust MFU size 1792 */ 1793 1794 adjustment = arc_size - arc_c; 1795 1796 if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_DATA] > 0) { 1797 delta = MIN(adjustment, arc_mfu->arcs_lsize[ARC_BUFC_DATA]); 1798 (void) arc_evict(arc_mfu, NULL, delta, FALSE, ARC_BUFC_DATA); 1799 adjustment -= delta; 1800 } 1801 1802 if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_METADATA] > 0) { 1803 int64_t delta = MIN(adjustment, 1804 arc_mfu->arcs_lsize[ARC_BUFC_METADATA]); 1805 (void) arc_evict(arc_mfu, NULL, delta, FALSE, 1806 ARC_BUFC_METADATA); 1807 } 1808 1809 /* 1810 * Adjust ghost lists 1811 */ 1812 1813 adjustment = arc_mru->arcs_size + arc_mru_ghost->arcs_size - arc_c; 1814 1815 if (adjustment > 0 && arc_mru_ghost->arcs_size > 0) { 1816 delta = MIN(arc_mru_ghost->arcs_size, adjustment); 1817 arc_evict_ghost(arc_mru_ghost, NULL, delta); 1818 } 1819 1820 adjustment = 1821 arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size - arc_c; 1822 1823 if (adjustment > 0 && arc_mfu_ghost->arcs_size > 0) { 1824 delta = MIN(arc_mfu_ghost->arcs_size, adjustment); 1825 arc_evict_ghost(arc_mfu_ghost, NULL, delta); 1826 } 1827 } 1828 1829 static void 1830 arc_do_user_evicts(void) 1831 { 1832 mutex_enter(&arc_eviction_mtx); 1833 while (arc_eviction_list != NULL) { 1834 arc_buf_t *buf = arc_eviction_list; 1835 arc_eviction_list = buf->b_next; 1836 rw_enter(&buf->b_lock, RW_WRITER); 1837 buf->b_hdr = NULL; 1838 rw_exit(&buf->b_lock); 1839 mutex_exit(&arc_eviction_mtx); 1840 1841 if (buf->b_efunc != NULL) 1842 VERIFY(buf->b_efunc(buf) == 0); 1843 1844 buf->b_efunc = NULL; 1845 buf->b_private = NULL; 1846 kmem_cache_free(buf_cache, buf); 1847 mutex_enter(&arc_eviction_mtx); 1848 } 1849 mutex_exit(&arc_eviction_mtx); 1850 } 1851 1852 /* 1853 * Flush all *evictable* data from the cache for the given spa. 1854 * NOTE: this will not touch "active" (i.e. referenced) data. 1855 */ 1856 void 1857 arc_flush(spa_t *spa) 1858 { 1859 uint64_t guid = 0; 1860 1861 if (spa) 1862 guid = spa_guid(spa); 1863 1864 while (list_head(&arc_mru->arcs_list[ARC_BUFC_DATA])) { 1865 (void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_DATA); 1866 if (spa) 1867 break; 1868 } 1869 while (list_head(&arc_mru->arcs_list[ARC_BUFC_METADATA])) { 1870 (void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_METADATA); 1871 if (spa) 1872 break; 1873 } 1874 while (list_head(&arc_mfu->arcs_list[ARC_BUFC_DATA])) { 1875 (void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_DATA); 1876 if (spa) 1877 break; 1878 } 1879 while (list_head(&arc_mfu->arcs_list[ARC_BUFC_METADATA])) { 1880 (void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_METADATA); 1881 if (spa) 1882 break; 1883 } 1884 1885 arc_evict_ghost(arc_mru_ghost, guid, -1); 1886 arc_evict_ghost(arc_mfu_ghost, guid, -1); 1887 1888 mutex_enter(&arc_reclaim_thr_lock); 1889 arc_do_user_evicts(); 1890 mutex_exit(&arc_reclaim_thr_lock); 1891 ASSERT(spa || arc_eviction_list == NULL); 1892 } 1893 1894 void 1895 arc_shrink(void) 1896 { 1897 if (arc_c > arc_c_min) { 1898 uint64_t to_free; 1899 1900 #ifdef _KERNEL 1901 to_free = MAX(arc_c >> arc_shrink_shift, ptob(needfree)); 1902 #else 1903 to_free = arc_c >> arc_shrink_shift; 1904 #endif 1905 if (arc_c > arc_c_min + to_free) 1906 atomic_add_64(&arc_c, -to_free); 1907 else 1908 arc_c = arc_c_min; 1909 1910 atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift)); 1911 if (arc_c > arc_size) 1912 arc_c = MAX(arc_size, arc_c_min); 1913 if (arc_p > arc_c) 1914 arc_p = (arc_c >> 1); 1915 ASSERT(arc_c >= arc_c_min); 1916 ASSERT((int64_t)arc_p >= 0); 1917 } 1918 1919 if (arc_size > arc_c) 1920 arc_adjust(); 1921 } 1922 1923 static int 1924 arc_reclaim_needed(void) 1925 { 1926 uint64_t extra; 1927 1928 #ifdef _KERNEL 1929 1930 if (needfree) 1931 return (1); 1932 1933 /* 1934 * take 'desfree' extra pages, so we reclaim sooner, rather than later 1935 */ 1936 extra = desfree; 1937 1938 /* 1939 * check that we're out of range of the pageout scanner. It starts to 1940 * schedule paging if freemem is less than lotsfree and needfree. 1941 * lotsfree is the high-water mark for pageout, and needfree is the 1942 * number of needed free pages. We add extra pages here to make sure 1943 * the scanner doesn't start up while we're freeing memory. 1944 */ 1945 if (freemem < lotsfree + needfree + extra) 1946 return (1); 1947 1948 /* 1949 * check to make sure that swapfs has enough space so that anon 1950 * reservations can still succeed. anon_resvmem() checks that the 1951 * availrmem is greater than swapfs_minfree, and the number of reserved 1952 * swap pages. We also add a bit of extra here just to prevent 1953 * circumstances from getting really dire. 1954 */ 1955 if (availrmem < swapfs_minfree + swapfs_reserve + extra) 1956 return (1); 1957 1958 #if defined(__i386) 1959 /* 1960 * If we're on an i386 platform, it's possible that we'll exhaust the 1961 * kernel heap space before we ever run out of available physical 1962 * memory. Most checks of the size of the heap_area compare against 1963 * tune.t_minarmem, which is the minimum available real memory that we 1964 * can have in the system. However, this is generally fixed at 25 pages 1965 * which is so low that it's useless. In this comparison, we seek to 1966 * calculate the total heap-size, and reclaim if more than 3/4ths of the 1967 * heap is allocated. (Or, in the calculation, if less than 1/4th is 1968 * free) 1969 */ 1970 if (btop(vmem_size(heap_arena, VMEM_FREE)) < 1971 (btop(vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC)) >> 2)) 1972 return (1); 1973 #endif 1974 1975 #else 1976 if (spa_get_random(100) == 0) 1977 return (1); 1978 #endif 1979 return (0); 1980 } 1981 1982 static void 1983 arc_kmem_reap_now(arc_reclaim_strategy_t strat) 1984 { 1985 size_t i; 1986 kmem_cache_t *prev_cache = NULL; 1987 kmem_cache_t *prev_data_cache = NULL; 1988 extern kmem_cache_t *zio_buf_cache[]; 1989 extern kmem_cache_t *zio_data_buf_cache[]; 1990 1991 #ifdef _KERNEL 1992 if (arc_meta_used >= arc_meta_limit) { 1993 /* 1994 * We are exceeding our meta-data cache limit. 1995 * Purge some DNLC entries to release holds on meta-data. 1996 */ 1997 dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent); 1998 } 1999 #if defined(__i386) 2000 /* 2001 * Reclaim unused memory from all kmem caches. 2002 */ 2003 kmem_reap(); 2004 #endif 2005 #endif 2006 2007 /* 2008 * An aggressive reclamation will shrink the cache size as well as 2009 * reap free buffers from the arc kmem caches. 2010 */ 2011 if (strat == ARC_RECLAIM_AGGR) 2012 arc_shrink(); 2013 2014 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) { 2015 if (zio_buf_cache[i] != prev_cache) { 2016 prev_cache = zio_buf_cache[i]; 2017 kmem_cache_reap_now(zio_buf_cache[i]); 2018 } 2019 if (zio_data_buf_cache[i] != prev_data_cache) { 2020 prev_data_cache = zio_data_buf_cache[i]; 2021 kmem_cache_reap_now(zio_data_buf_cache[i]); 2022 } 2023 } 2024 kmem_cache_reap_now(buf_cache); 2025 kmem_cache_reap_now(hdr_cache); 2026 } 2027 2028 static void 2029 arc_reclaim_thread(void) 2030 { 2031 clock_t growtime = 0; 2032 arc_reclaim_strategy_t last_reclaim = ARC_RECLAIM_CONS; 2033 callb_cpr_t cpr; 2034 2035 CALLB_CPR_INIT(&cpr, &arc_reclaim_thr_lock, callb_generic_cpr, FTAG); 2036 2037 mutex_enter(&arc_reclaim_thr_lock); 2038 while (arc_thread_exit == 0) { 2039 if (arc_reclaim_needed()) { 2040 2041 if (arc_no_grow) { 2042 if (last_reclaim == ARC_RECLAIM_CONS) { 2043 last_reclaim = ARC_RECLAIM_AGGR; 2044 } else { 2045 last_reclaim = ARC_RECLAIM_CONS; 2046 } 2047 } else { 2048 arc_no_grow = TRUE; 2049 last_reclaim = ARC_RECLAIM_AGGR; 2050 membar_producer(); 2051 } 2052 2053 /* reset the growth delay for every reclaim */ 2054 growtime = lbolt + (arc_grow_retry * hz); 2055 2056 arc_kmem_reap_now(last_reclaim); 2057 arc_warm = B_TRUE; 2058 2059 } else if (arc_no_grow && lbolt >= growtime) { 2060 arc_no_grow = FALSE; 2061 } 2062 2063 if (2 * arc_c < arc_size + 2064 arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size) 2065 arc_adjust(); 2066 2067 if (arc_eviction_list != NULL) 2068 arc_do_user_evicts(); 2069 2070 /* block until needed, or one second, whichever is shorter */ 2071 CALLB_CPR_SAFE_BEGIN(&cpr); 2072 (void) cv_timedwait(&arc_reclaim_thr_cv, 2073 &arc_reclaim_thr_lock, (lbolt + hz)); 2074 CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_thr_lock); 2075 } 2076 2077 arc_thread_exit = 0; 2078 cv_broadcast(&arc_reclaim_thr_cv); 2079 CALLB_CPR_EXIT(&cpr); /* drops arc_reclaim_thr_lock */ 2080 thread_exit(); 2081 } 2082 2083 /* 2084 * Adapt arc info given the number of bytes we are trying to add and 2085 * the state that we are comming from. This function is only called 2086 * when we are adding new content to the cache. 2087 */ 2088 static void 2089 arc_adapt(int bytes, arc_state_t *state) 2090 { 2091 int mult; 2092 uint64_t arc_p_min = (arc_c >> arc_p_min_shift); 2093 2094 if (state == arc_l2c_only) 2095 return; 2096 2097 ASSERT(bytes > 0); 2098 /* 2099 * Adapt the target size of the MRU list: 2100 * - if we just hit in the MRU ghost list, then increase 2101 * the target size of the MRU list. 2102 * - if we just hit in the MFU ghost list, then increase 2103 * the target size of the MFU list by decreasing the 2104 * target size of the MRU list. 2105 */ 2106 if (state == arc_mru_ghost) { 2107 mult = ((arc_mru_ghost->arcs_size >= arc_mfu_ghost->arcs_size) ? 2108 1 : (arc_mfu_ghost->arcs_size/arc_mru_ghost->arcs_size)); 2109 2110 arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult); 2111 } else if (state == arc_mfu_ghost) { 2112 uint64_t delta; 2113 2114 mult = ((arc_mfu_ghost->arcs_size >= arc_mru_ghost->arcs_size) ? 2115 1 : (arc_mru_ghost->arcs_size/arc_mfu_ghost->arcs_size)); 2116 2117 delta = MIN(bytes * mult, arc_p); 2118 arc_p = MAX(arc_p_min, arc_p - delta); 2119 } 2120 ASSERT((int64_t)arc_p >= 0); 2121 2122 if (arc_reclaim_needed()) { 2123 cv_signal(&arc_reclaim_thr_cv); 2124 return; 2125 } 2126 2127 if (arc_no_grow) 2128 return; 2129 2130 if (arc_c >= arc_c_max) 2131 return; 2132 2133 /* 2134 * If we're within (2 * maxblocksize) bytes of the target 2135 * cache size, increment the target cache size 2136 */ 2137 if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) { 2138 atomic_add_64(&arc_c, (int64_t)bytes); 2139 if (arc_c > arc_c_max) 2140 arc_c = arc_c_max; 2141 else if (state == arc_anon) 2142 atomic_add_64(&arc_p, (int64_t)bytes); 2143 if (arc_p > arc_c) 2144 arc_p = arc_c; 2145 } 2146 ASSERT((int64_t)arc_p >= 0); 2147 } 2148 2149 /* 2150 * Check if the cache has reached its limits and eviction is required 2151 * prior to insert. 2152 */ 2153 static int 2154 arc_evict_needed(arc_buf_contents_t type) 2155 { 2156 if (type == ARC_BUFC_METADATA && arc_meta_used >= arc_meta_limit) 2157 return (1); 2158 2159 #ifdef _KERNEL 2160 /* 2161 * If zio data pages are being allocated out of a separate heap segment, 2162 * then enforce that the size of available vmem for this area remains 2163 * above about 1/32nd free. 2164 */ 2165 if (type == ARC_BUFC_DATA && zio_arena != NULL && 2166 vmem_size(zio_arena, VMEM_FREE) < 2167 (vmem_size(zio_arena, VMEM_ALLOC) >> 5)) 2168 return (1); 2169 #endif 2170 2171 if (arc_reclaim_needed()) 2172 return (1); 2173 2174 return (arc_size > arc_c); 2175 } 2176 2177 /* 2178 * The buffer, supplied as the first argument, needs a data block. 2179 * So, if we are at cache max, determine which cache should be victimized. 2180 * We have the following cases: 2181 * 2182 * 1. Insert for MRU, p > sizeof(arc_anon + arc_mru) -> 2183 * In this situation if we're out of space, but the resident size of the MFU is 2184 * under the limit, victimize the MFU cache to satisfy this insertion request. 2185 * 2186 * 2. Insert for MRU, p <= sizeof(arc_anon + arc_mru) -> 2187 * Here, we've used up all of the available space for the MRU, so we need to 2188 * evict from our own cache instead. Evict from the set of resident MRU 2189 * entries. 2190 * 2191 * 3. Insert for MFU (c - p) > sizeof(arc_mfu) -> 2192 * c minus p represents the MFU space in the cache, since p is the size of the 2193 * cache that is dedicated to the MRU. In this situation there's still space on 2194 * the MFU side, so the MRU side needs to be victimized. 2195 * 2196 * 4. Insert for MFU (c - p) < sizeof(arc_mfu) -> 2197 * MFU's resident set is consuming more space than it has been allotted. In 2198 * this situation, we must victimize our own cache, the MFU, for this insertion. 2199 */ 2200 static void 2201 arc_get_data_buf(arc_buf_t *buf) 2202 { 2203 arc_state_t *state = buf->b_hdr->b_state; 2204 uint64_t size = buf->b_hdr->b_size; 2205 arc_buf_contents_t type = buf->b_hdr->b_type; 2206 2207 arc_adapt(size, state); 2208 2209 /* 2210 * We have not yet reached cache maximum size, 2211 * just allocate a new buffer. 2212 */ 2213 if (!arc_evict_needed(type)) { 2214 if (type == ARC_BUFC_METADATA) { 2215 buf->b_data = zio_buf_alloc(size); 2216 arc_space_consume(size, ARC_SPACE_DATA); 2217 } else { 2218 ASSERT(type == ARC_BUFC_DATA); 2219 buf->b_data = zio_data_buf_alloc(size); 2220 ARCSTAT_INCR(arcstat_data_size, size); 2221 atomic_add_64(&arc_size, size); 2222 } 2223 goto out; 2224 } 2225 2226 /* 2227 * If we are prefetching from the mfu ghost list, this buffer 2228 * will end up on the mru list; so steal space from there. 2229 */ 2230 if (state == arc_mfu_ghost) 2231 state = buf->b_hdr->b_flags & ARC_PREFETCH ? arc_mru : arc_mfu; 2232 else if (state == arc_mru_ghost) 2233 state = arc_mru; 2234 2235 if (state == arc_mru || state == arc_anon) { 2236 uint64_t mru_used = arc_anon->arcs_size + arc_mru->arcs_size; 2237 state = (arc_mfu->arcs_lsize[type] >= size && 2238 arc_p > mru_used) ? arc_mfu : arc_mru; 2239 } else { 2240 /* MFU cases */ 2241 uint64_t mfu_space = arc_c - arc_p; 2242 state = (arc_mru->arcs_lsize[type] >= size && 2243 mfu_space > arc_mfu->arcs_size) ? arc_mru : arc_mfu; 2244 } 2245 if ((buf->b_data = arc_evict(state, NULL, size, TRUE, type)) == NULL) { 2246 if (type == ARC_BUFC_METADATA) { 2247 buf->b_data = zio_buf_alloc(size); 2248 arc_space_consume(size, ARC_SPACE_DATA); 2249 } else { 2250 ASSERT(type == ARC_BUFC_DATA); 2251 buf->b_data = zio_data_buf_alloc(size); 2252 ARCSTAT_INCR(arcstat_data_size, size); 2253 atomic_add_64(&arc_size, size); 2254 } 2255 ARCSTAT_BUMP(arcstat_recycle_miss); 2256 } 2257 ASSERT(buf->b_data != NULL); 2258 out: 2259 /* 2260 * Update the state size. Note that ghost states have a 2261 * "ghost size" and so don't need to be updated. 2262 */ 2263 if (!GHOST_STATE(buf->b_hdr->b_state)) { 2264 arc_buf_hdr_t *hdr = buf->b_hdr; 2265 2266 atomic_add_64(&hdr->b_state->arcs_size, size); 2267 if (list_link_active(&hdr->b_arc_node)) { 2268 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 2269 atomic_add_64(&hdr->b_state->arcs_lsize[type], size); 2270 } 2271 /* 2272 * If we are growing the cache, and we are adding anonymous 2273 * data, and we have outgrown arc_p, update arc_p 2274 */ 2275 if (arc_size < arc_c && hdr->b_state == arc_anon && 2276 arc_anon->arcs_size + arc_mru->arcs_size > arc_p) 2277 arc_p = MIN(arc_c, arc_p + size); 2278 } 2279 } 2280 2281 /* 2282 * This routine is called whenever a buffer is accessed. 2283 * NOTE: the hash lock is dropped in this function. 2284 */ 2285 static void 2286 arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock) 2287 { 2288 ASSERT(MUTEX_HELD(hash_lock)); 2289 2290 if (buf->b_state == arc_anon) { 2291 /* 2292 * This buffer is not in the cache, and does not 2293 * appear in our "ghost" list. Add the new buffer 2294 * to the MRU state. 2295 */ 2296 2297 ASSERT(buf->b_arc_access == 0); 2298 buf->b_arc_access = lbolt; 2299 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf); 2300 arc_change_state(arc_mru, buf, hash_lock); 2301 2302 } else if (buf->b_state == arc_mru) { 2303 /* 2304 * If this buffer is here because of a prefetch, then either: 2305 * - clear the flag if this is a "referencing" read 2306 * (any subsequent access will bump this into the MFU state). 2307 * or 2308 * - move the buffer to the head of the list if this is 2309 * another prefetch (to make it less likely to be evicted). 2310 */ 2311 if ((buf->b_flags & ARC_PREFETCH) != 0) { 2312 if (refcount_count(&buf->b_refcnt) == 0) { 2313 ASSERT(list_link_active(&buf->b_arc_node)); 2314 } else { 2315 buf->b_flags &= ~ARC_PREFETCH; 2316 ARCSTAT_BUMP(arcstat_mru_hits); 2317 } 2318 buf->b_arc_access = lbolt; 2319 return; 2320 } 2321 2322 /* 2323 * This buffer has been "accessed" only once so far, 2324 * but it is still in the cache. Move it to the MFU 2325 * state. 2326 */ 2327 if (lbolt > buf->b_arc_access + ARC_MINTIME) { 2328 /* 2329 * More than 125ms have passed since we 2330 * instantiated this buffer. Move it to the 2331 * most frequently used state. 2332 */ 2333 buf->b_arc_access = lbolt; 2334 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2335 arc_change_state(arc_mfu, buf, hash_lock); 2336 } 2337 ARCSTAT_BUMP(arcstat_mru_hits); 2338 } else if (buf->b_state == arc_mru_ghost) { 2339 arc_state_t *new_state; 2340 /* 2341 * This buffer has been "accessed" recently, but 2342 * was evicted from the cache. Move it to the 2343 * MFU state. 2344 */ 2345 2346 if (buf->b_flags & ARC_PREFETCH) { 2347 new_state = arc_mru; 2348 if (refcount_count(&buf->b_refcnt) > 0) 2349 buf->b_flags &= ~ARC_PREFETCH; 2350 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf); 2351 } else { 2352 new_state = arc_mfu; 2353 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2354 } 2355 2356 buf->b_arc_access = lbolt; 2357 arc_change_state(new_state, buf, hash_lock); 2358 2359 ARCSTAT_BUMP(arcstat_mru_ghost_hits); 2360 } else if (buf->b_state == arc_mfu) { 2361 /* 2362 * This buffer has been accessed more than once and is 2363 * still in the cache. Keep it in the MFU state. 2364 * 2365 * NOTE: an add_reference() that occurred when we did 2366 * the arc_read() will have kicked this off the list. 2367 * If it was a prefetch, we will explicitly move it to 2368 * the head of the list now. 2369 */ 2370 if ((buf->b_flags & ARC_PREFETCH) != 0) { 2371 ASSERT(refcount_count(&buf->b_refcnt) == 0); 2372 ASSERT(list_link_active(&buf->b_arc_node)); 2373 } 2374 ARCSTAT_BUMP(arcstat_mfu_hits); 2375 buf->b_arc_access = lbolt; 2376 } else if (buf->b_state == arc_mfu_ghost) { 2377 arc_state_t *new_state = arc_mfu; 2378 /* 2379 * This buffer has been accessed more than once but has 2380 * been evicted from the cache. Move it back to the 2381 * MFU state. 2382 */ 2383 2384 if (buf->b_flags & ARC_PREFETCH) { 2385 /* 2386 * This is a prefetch access... 2387 * move this block back to the MRU state. 2388 */ 2389 ASSERT3U(refcount_count(&buf->b_refcnt), ==, 0); 2390 new_state = arc_mru; 2391 } 2392 2393 buf->b_arc_access = lbolt; 2394 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2395 arc_change_state(new_state, buf, hash_lock); 2396 2397 ARCSTAT_BUMP(arcstat_mfu_ghost_hits); 2398 } else if (buf->b_state == arc_l2c_only) { 2399 /* 2400 * This buffer is on the 2nd Level ARC. 2401 */ 2402 2403 buf->b_arc_access = lbolt; 2404 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2405 arc_change_state(arc_mfu, buf, hash_lock); 2406 } else { 2407 ASSERT(!"invalid arc state"); 2408 } 2409 } 2410 2411 /* a generic arc_done_func_t which you can use */ 2412 /* ARGSUSED */ 2413 void 2414 arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg) 2415 { 2416 bcopy(buf->b_data, arg, buf->b_hdr->b_size); 2417 VERIFY(arc_buf_remove_ref(buf, arg) == 1); 2418 } 2419 2420 /* a generic arc_done_func_t */ 2421 void 2422 arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg) 2423 { 2424 arc_buf_t **bufp = arg; 2425 if (zio && zio->io_error) { 2426 VERIFY(arc_buf_remove_ref(buf, arg) == 1); 2427 *bufp = NULL; 2428 } else { 2429 *bufp = buf; 2430 } 2431 } 2432 2433 static void 2434 arc_read_done(zio_t *zio) 2435 { 2436 arc_buf_hdr_t *hdr, *found; 2437 arc_buf_t *buf; 2438 arc_buf_t *abuf; /* buffer we're assigning to callback */ 2439 kmutex_t *hash_lock; 2440 arc_callback_t *callback_list, *acb; 2441 int freeable = FALSE; 2442 2443 buf = zio->io_private; 2444 hdr = buf->b_hdr; 2445 2446 /* 2447 * The hdr was inserted into hash-table and removed from lists 2448 * prior to starting I/O. We should find this header, since 2449 * it's in the hash table, and it should be legit since it's 2450 * not possible to evict it during the I/O. The only possible 2451 * reason for it not to be found is if we were freed during the 2452 * read. 2453 */ 2454 found = buf_hash_find(hdr->b_spa, &hdr->b_dva, hdr->b_birth, 2455 &hash_lock); 2456 2457 ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) && hash_lock == NULL) || 2458 (found == hdr && DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) || 2459 (found == hdr && HDR_L2_READING(hdr))); 2460 2461 hdr->b_flags &= ~ARC_L2_EVICTED; 2462 if (l2arc_noprefetch && (hdr->b_flags & ARC_PREFETCH)) 2463 hdr->b_flags &= ~ARC_L2CACHE; 2464 2465 /* byteswap if necessary */ 2466 callback_list = hdr->b_acb; 2467 ASSERT(callback_list != NULL); 2468 if (BP_SHOULD_BYTESWAP(zio->io_bp) && zio->io_error == 0) { 2469 arc_byteswap_func_t *func = BP_GET_LEVEL(zio->io_bp) > 0 ? 2470 byteswap_uint64_array : 2471 dmu_ot[BP_GET_TYPE(zio->io_bp)].ot_byteswap; 2472 func(buf->b_data, hdr->b_size); 2473 } 2474 2475 arc_cksum_compute(buf, B_FALSE); 2476 2477 if (hash_lock && zio->io_error == 0 && hdr->b_state == arc_anon) { 2478 /* 2479 * Only call arc_access on anonymous buffers. This is because 2480 * if we've issued an I/O for an evicted buffer, we've already 2481 * called arc_access (to prevent any simultaneous readers from 2482 * getting confused). 2483 */ 2484 arc_access(hdr, hash_lock); 2485 } 2486 2487 /* create copies of the data buffer for the callers */ 2488 abuf = buf; 2489 for (acb = callback_list; acb; acb = acb->acb_next) { 2490 if (acb->acb_done) { 2491 if (abuf == NULL) 2492 abuf = arc_buf_clone(buf); 2493 acb->acb_buf = abuf; 2494 abuf = NULL; 2495 } 2496 } 2497 hdr->b_acb = NULL; 2498 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 2499 ASSERT(!HDR_BUF_AVAILABLE(hdr)); 2500 if (abuf == buf) { 2501 ASSERT(buf->b_efunc == NULL); 2502 ASSERT(hdr->b_datacnt == 1); 2503 hdr->b_flags |= ARC_BUF_AVAILABLE; 2504 } 2505 2506 ASSERT(refcount_is_zero(&hdr->b_refcnt) || callback_list != NULL); 2507 2508 if (zio->io_error != 0) { 2509 hdr->b_flags |= ARC_IO_ERROR; 2510 if (hdr->b_state != arc_anon) 2511 arc_change_state(arc_anon, hdr, hash_lock); 2512 if (HDR_IN_HASH_TABLE(hdr)) 2513 buf_hash_remove(hdr); 2514 freeable = refcount_is_zero(&hdr->b_refcnt); 2515 } 2516 2517 /* 2518 * Broadcast before we drop the hash_lock to avoid the possibility 2519 * that the hdr (and hence the cv) might be freed before we get to 2520 * the cv_broadcast(). 2521 */ 2522 cv_broadcast(&hdr->b_cv); 2523 2524 if (hash_lock) { 2525 mutex_exit(hash_lock); 2526 } else { 2527 /* 2528 * This block was freed while we waited for the read to 2529 * complete. It has been removed from the hash table and 2530 * moved to the anonymous state (so that it won't show up 2531 * in the cache). 2532 */ 2533 ASSERT3P(hdr->b_state, ==, arc_anon); 2534 freeable = refcount_is_zero(&hdr->b_refcnt); 2535 } 2536 2537 /* execute each callback and free its structure */ 2538 while ((acb = callback_list) != NULL) { 2539 if (acb->acb_done) 2540 acb->acb_done(zio, acb->acb_buf, acb->acb_private); 2541 2542 if (acb->acb_zio_dummy != NULL) { 2543 acb->acb_zio_dummy->io_error = zio->io_error; 2544 zio_nowait(acb->acb_zio_dummy); 2545 } 2546 2547 callback_list = acb->acb_next; 2548 kmem_free(acb, sizeof (arc_callback_t)); 2549 } 2550 2551 if (freeable) 2552 arc_hdr_destroy(hdr); 2553 } 2554 2555 /* 2556 * "Read" the block block at the specified DVA (in bp) via the 2557 * cache. If the block is found in the cache, invoke the provided 2558 * callback immediately and return. Note that the `zio' parameter 2559 * in the callback will be NULL in this case, since no IO was 2560 * required. If the block is not in the cache pass the read request 2561 * on to the spa with a substitute callback function, so that the 2562 * requested block will be added to the cache. 2563 * 2564 * If a read request arrives for a block that has a read in-progress, 2565 * either wait for the in-progress read to complete (and return the 2566 * results); or, if this is a read with a "done" func, add a record 2567 * to the read to invoke the "done" func when the read completes, 2568 * and return; or just return. 2569 * 2570 * arc_read_done() will invoke all the requested "done" functions 2571 * for readers of this block. 2572 * 2573 * Normal callers should use arc_read and pass the arc buffer and offset 2574 * for the bp. But if you know you don't need locking, you can use 2575 * arc_read_bp. 2576 */ 2577 int 2578 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_buf_t *pbuf, 2579 arc_done_func_t *done, void *private, int priority, int zio_flags, 2580 uint32_t *arc_flags, const zbookmark_t *zb) 2581 { 2582 int err; 2583 2584 ASSERT(!refcount_is_zero(&pbuf->b_hdr->b_refcnt)); 2585 ASSERT3U((char *)bp - (char *)pbuf->b_data, <, pbuf->b_hdr->b_size); 2586 rw_enter(&pbuf->b_lock, RW_READER); 2587 2588 err = arc_read_nolock(pio, spa, bp, done, private, priority, 2589 zio_flags, arc_flags, zb); 2590 rw_exit(&pbuf->b_lock); 2591 2592 return (err); 2593 } 2594 2595 int 2596 arc_read_nolock(zio_t *pio, spa_t *spa, const blkptr_t *bp, 2597 arc_done_func_t *done, void *private, int priority, int zio_flags, 2598 uint32_t *arc_flags, const zbookmark_t *zb) 2599 { 2600 arc_buf_hdr_t *hdr; 2601 arc_buf_t *buf; 2602 kmutex_t *hash_lock; 2603 zio_t *rzio; 2604 uint64_t guid = spa_guid(spa); 2605 2606 top: 2607 hdr = buf_hash_find(guid, BP_IDENTITY(bp), BP_PHYSICAL_BIRTH(bp), 2608 &hash_lock); 2609 if (hdr && hdr->b_datacnt > 0) { 2610 2611 *arc_flags |= ARC_CACHED; 2612 2613 if (HDR_IO_IN_PROGRESS(hdr)) { 2614 2615 if (*arc_flags & ARC_WAIT) { 2616 cv_wait(&hdr->b_cv, hash_lock); 2617 mutex_exit(hash_lock); 2618 goto top; 2619 } 2620 ASSERT(*arc_flags & ARC_NOWAIT); 2621 2622 if (done) { 2623 arc_callback_t *acb = NULL; 2624 2625 acb = kmem_zalloc(sizeof (arc_callback_t), 2626 KM_SLEEP); 2627 acb->acb_done = done; 2628 acb->acb_private = private; 2629 if (pio != NULL) 2630 acb->acb_zio_dummy = zio_null(pio, 2631 spa, NULL, NULL, NULL, zio_flags); 2632 2633 ASSERT(acb->acb_done != NULL); 2634 acb->acb_next = hdr->b_acb; 2635 hdr->b_acb = acb; 2636 add_reference(hdr, hash_lock, private); 2637 mutex_exit(hash_lock); 2638 return (0); 2639 } 2640 mutex_exit(hash_lock); 2641 return (0); 2642 } 2643 2644 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu); 2645 2646 if (done) { 2647 add_reference(hdr, hash_lock, private); 2648 /* 2649 * If this block is already in use, create a new 2650 * copy of the data so that we will be guaranteed 2651 * that arc_release() will always succeed. 2652 */ 2653 buf = hdr->b_buf; 2654 ASSERT(buf); 2655 ASSERT(buf->b_data); 2656 if (HDR_BUF_AVAILABLE(hdr)) { 2657 ASSERT(buf->b_efunc == NULL); 2658 hdr->b_flags &= ~ARC_BUF_AVAILABLE; 2659 } else { 2660 buf = arc_buf_clone(buf); 2661 } 2662 2663 } else if (*arc_flags & ARC_PREFETCH && 2664 refcount_count(&hdr->b_refcnt) == 0) { 2665 hdr->b_flags |= ARC_PREFETCH; 2666 } 2667 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 2668 arc_access(hdr, hash_lock); 2669 if (*arc_flags & ARC_L2CACHE) 2670 hdr->b_flags |= ARC_L2CACHE; 2671 mutex_exit(hash_lock); 2672 ARCSTAT_BUMP(arcstat_hits); 2673 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH), 2674 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA, 2675 data, metadata, hits); 2676 2677 if (done) 2678 done(NULL, buf, private); 2679 } else { 2680 uint64_t size = BP_GET_LSIZE(bp); 2681 arc_callback_t *acb; 2682 vdev_t *vd = NULL; 2683 uint64_t addr; 2684 boolean_t devw = B_FALSE; 2685 2686 if (hdr == NULL) { 2687 /* this block is not in the cache */ 2688 arc_buf_hdr_t *exists; 2689 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp); 2690 buf = arc_buf_alloc(spa, size, private, type); 2691 hdr = buf->b_hdr; 2692 hdr->b_dva = *BP_IDENTITY(bp); 2693 hdr->b_birth = BP_PHYSICAL_BIRTH(bp); 2694 hdr->b_cksum0 = bp->blk_cksum.zc_word[0]; 2695 exists = buf_hash_insert(hdr, &hash_lock); 2696 if (exists) { 2697 /* somebody beat us to the hash insert */ 2698 mutex_exit(hash_lock); 2699 bzero(&hdr->b_dva, sizeof (dva_t)); 2700 hdr->b_birth = 0; 2701 hdr->b_cksum0 = 0; 2702 (void) arc_buf_remove_ref(buf, private); 2703 goto top; /* restart the IO request */ 2704 } 2705 /* if this is a prefetch, we don't have a reference */ 2706 if (*arc_flags & ARC_PREFETCH) { 2707 (void) remove_reference(hdr, hash_lock, 2708 private); 2709 hdr->b_flags |= ARC_PREFETCH; 2710 } 2711 if (*arc_flags & ARC_L2CACHE) 2712 hdr->b_flags |= ARC_L2CACHE; 2713 if (BP_GET_LEVEL(bp) > 0) 2714 hdr->b_flags |= ARC_INDIRECT; 2715 } else { 2716 /* this block is in the ghost cache */ 2717 ASSERT(GHOST_STATE(hdr->b_state)); 2718 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 2719 ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 0); 2720 ASSERT(hdr->b_buf == NULL); 2721 2722 /* if this is a prefetch, we don't have a reference */ 2723 if (*arc_flags & ARC_PREFETCH) 2724 hdr->b_flags |= ARC_PREFETCH; 2725 else 2726 add_reference(hdr, hash_lock, private); 2727 if (*arc_flags & ARC_L2CACHE) 2728 hdr->b_flags |= ARC_L2CACHE; 2729 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 2730 buf->b_hdr = hdr; 2731 buf->b_data = NULL; 2732 buf->b_efunc = NULL; 2733 buf->b_private = NULL; 2734 buf->b_next = NULL; 2735 hdr->b_buf = buf; 2736 arc_get_data_buf(buf); 2737 ASSERT(hdr->b_datacnt == 0); 2738 hdr->b_datacnt = 1; 2739 } 2740 2741 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP); 2742 acb->acb_done = done; 2743 acb->acb_private = private; 2744 2745 ASSERT(hdr->b_acb == NULL); 2746 hdr->b_acb = acb; 2747 hdr->b_flags |= ARC_IO_IN_PROGRESS; 2748 2749 /* 2750 * If the buffer has been evicted, migrate it to a present state 2751 * before issuing the I/O. Once we drop the hash-table lock, 2752 * the header will be marked as I/O in progress and have an 2753 * attached buffer. At this point, anybody who finds this 2754 * buffer ought to notice that it's legit but has a pending I/O. 2755 */ 2756 2757 if (GHOST_STATE(hdr->b_state)) 2758 arc_access(hdr, hash_lock); 2759 2760 if (HDR_L2CACHE(hdr) && hdr->b_l2hdr != NULL && 2761 (vd = hdr->b_l2hdr->b_dev->l2ad_vdev) != NULL) { 2762 devw = hdr->b_l2hdr->b_dev->l2ad_writing; 2763 addr = hdr->b_l2hdr->b_daddr; 2764 /* 2765 * Lock out device removal. 2766 */ 2767 if (vdev_is_dead(vd) || 2768 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER)) 2769 vd = NULL; 2770 } 2771 2772 mutex_exit(hash_lock); 2773 2774 ASSERT3U(hdr->b_size, ==, size); 2775 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp, 2776 uint64_t, size, zbookmark_t *, zb); 2777 ARCSTAT_BUMP(arcstat_misses); 2778 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH), 2779 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA, 2780 data, metadata, misses); 2781 2782 if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) { 2783 /* 2784 * Read from the L2ARC if the following are true: 2785 * 1. The L2ARC vdev was previously cached. 2786 * 2. This buffer still has L2ARC metadata. 2787 * 3. This buffer isn't currently writing to the L2ARC. 2788 * 4. The L2ARC entry wasn't evicted, which may 2789 * also have invalidated the vdev. 2790 * 5. This isn't prefetch and l2arc_noprefetch is set. 2791 */ 2792 if (hdr->b_l2hdr != NULL && 2793 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) && 2794 !(l2arc_noprefetch && HDR_PREFETCH(hdr))) { 2795 l2arc_read_callback_t *cb; 2796 2797 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr); 2798 ARCSTAT_BUMP(arcstat_l2_hits); 2799 2800 cb = kmem_zalloc(sizeof (l2arc_read_callback_t), 2801 KM_SLEEP); 2802 cb->l2rcb_buf = buf; 2803 cb->l2rcb_spa = spa; 2804 cb->l2rcb_bp = *bp; 2805 cb->l2rcb_zb = *zb; 2806 cb->l2rcb_flags = zio_flags; 2807 2808 /* 2809 * l2arc read. The SCL_L2ARC lock will be 2810 * released by l2arc_read_done(). 2811 */ 2812 rzio = zio_read_phys(pio, vd, addr, size, 2813 buf->b_data, ZIO_CHECKSUM_OFF, 2814 l2arc_read_done, cb, priority, zio_flags | 2815 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL | 2816 ZIO_FLAG_DONT_PROPAGATE | 2817 ZIO_FLAG_DONT_RETRY, B_FALSE); 2818 DTRACE_PROBE2(l2arc__read, vdev_t *, vd, 2819 zio_t *, rzio); 2820 ARCSTAT_INCR(arcstat_l2_read_bytes, size); 2821 2822 if (*arc_flags & ARC_NOWAIT) { 2823 zio_nowait(rzio); 2824 return (0); 2825 } 2826 2827 ASSERT(*arc_flags & ARC_WAIT); 2828 if (zio_wait(rzio) == 0) 2829 return (0); 2830 2831 /* l2arc read error; goto zio_read() */ 2832 } else { 2833 DTRACE_PROBE1(l2arc__miss, 2834 arc_buf_hdr_t *, hdr); 2835 ARCSTAT_BUMP(arcstat_l2_misses); 2836 if (HDR_L2_WRITING(hdr)) 2837 ARCSTAT_BUMP(arcstat_l2_rw_clash); 2838 spa_config_exit(spa, SCL_L2ARC, vd); 2839 } 2840 } else { 2841 if (vd != NULL) 2842 spa_config_exit(spa, SCL_L2ARC, vd); 2843 if (l2arc_ndev != 0) { 2844 DTRACE_PROBE1(l2arc__miss, 2845 arc_buf_hdr_t *, hdr); 2846 ARCSTAT_BUMP(arcstat_l2_misses); 2847 } 2848 } 2849 2850 rzio = zio_read(pio, spa, bp, buf->b_data, size, 2851 arc_read_done, buf, priority, zio_flags, zb); 2852 2853 if (*arc_flags & ARC_WAIT) 2854 return (zio_wait(rzio)); 2855 2856 ASSERT(*arc_flags & ARC_NOWAIT); 2857 zio_nowait(rzio); 2858 } 2859 return (0); 2860 } 2861 2862 void 2863 arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private) 2864 { 2865 ASSERT(buf->b_hdr != NULL); 2866 ASSERT(buf->b_hdr->b_state != arc_anon); 2867 ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt) || func == NULL); 2868 ASSERT(buf->b_efunc == NULL); 2869 ASSERT(!HDR_BUF_AVAILABLE(buf->b_hdr)); 2870 2871 buf->b_efunc = func; 2872 buf->b_private = private; 2873 } 2874 2875 /* 2876 * This is used by the DMU to let the ARC know that a buffer is 2877 * being evicted, so the ARC should clean up. If this arc buf 2878 * is not yet in the evicted state, it will be put there. 2879 */ 2880 int 2881 arc_buf_evict(arc_buf_t *buf) 2882 { 2883 arc_buf_hdr_t *hdr; 2884 kmutex_t *hash_lock; 2885 arc_buf_t **bufp; 2886 2887 rw_enter(&buf->b_lock, RW_WRITER); 2888 hdr = buf->b_hdr; 2889 if (hdr == NULL) { 2890 /* 2891 * We are in arc_do_user_evicts(). 2892 */ 2893 ASSERT(buf->b_data == NULL); 2894 rw_exit(&buf->b_lock); 2895 return (0); 2896 } else if (buf->b_data == NULL) { 2897 arc_buf_t copy = *buf; /* structure assignment */ 2898 /* 2899 * We are on the eviction list; process this buffer now 2900 * but let arc_do_user_evicts() do the reaping. 2901 */ 2902 buf->b_efunc = NULL; 2903 rw_exit(&buf->b_lock); 2904 VERIFY(copy.b_efunc(©) == 0); 2905 return (1); 2906 } 2907 hash_lock = HDR_LOCK(hdr); 2908 mutex_enter(hash_lock); 2909 2910 ASSERT(buf->b_hdr == hdr); 2911 ASSERT3U(refcount_count(&hdr->b_refcnt), <, hdr->b_datacnt); 2912 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu); 2913 2914 /* 2915 * Pull this buffer off of the hdr 2916 */ 2917 bufp = &hdr->b_buf; 2918 while (*bufp != buf) 2919 bufp = &(*bufp)->b_next; 2920 *bufp = buf->b_next; 2921 2922 ASSERT(buf->b_data != NULL); 2923 arc_buf_destroy(buf, FALSE, FALSE); 2924 2925 if (hdr->b_datacnt == 0) { 2926 arc_state_t *old_state = hdr->b_state; 2927 arc_state_t *evicted_state; 2928 2929 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 2930 2931 evicted_state = 2932 (old_state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost; 2933 2934 mutex_enter(&old_state->arcs_mtx); 2935 mutex_enter(&evicted_state->arcs_mtx); 2936 2937 arc_change_state(evicted_state, hdr, hash_lock); 2938 ASSERT(HDR_IN_HASH_TABLE(hdr)); 2939 hdr->b_flags |= ARC_IN_HASH_TABLE; 2940 hdr->b_flags &= ~ARC_BUF_AVAILABLE; 2941 2942 mutex_exit(&evicted_state->arcs_mtx); 2943 mutex_exit(&old_state->arcs_mtx); 2944 } 2945 mutex_exit(hash_lock); 2946 rw_exit(&buf->b_lock); 2947 2948 VERIFY(buf->b_efunc(buf) == 0); 2949 buf->b_efunc = NULL; 2950 buf->b_private = NULL; 2951 buf->b_hdr = NULL; 2952 kmem_cache_free(buf_cache, buf); 2953 return (1); 2954 } 2955 2956 /* 2957 * Release this buffer from the cache. This must be done 2958 * after a read and prior to modifying the buffer contents. 2959 * If the buffer has more than one reference, we must make 2960 * a new hdr for the buffer. 2961 */ 2962 void 2963 arc_release(arc_buf_t *buf, void *tag) 2964 { 2965 arc_buf_hdr_t *hdr; 2966 kmutex_t *hash_lock; 2967 l2arc_buf_hdr_t *l2hdr; 2968 uint64_t buf_size; 2969 boolean_t released = B_FALSE; 2970 2971 rw_enter(&buf->b_lock, RW_WRITER); 2972 hdr = buf->b_hdr; 2973 2974 /* this buffer is not on any list */ 2975 ASSERT(refcount_count(&hdr->b_refcnt) > 0); 2976 2977 if (hdr->b_state == arc_anon) { 2978 /* this buffer is already released */ 2979 ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 1); 2980 ASSERT(BUF_EMPTY(hdr)); 2981 ASSERT(buf->b_efunc == NULL); 2982 arc_buf_thaw(buf); 2983 rw_exit(&buf->b_lock); 2984 released = B_TRUE; 2985 } else { 2986 hash_lock = HDR_LOCK(hdr); 2987 mutex_enter(hash_lock); 2988 } 2989 2990 l2hdr = hdr->b_l2hdr; 2991 if (l2hdr) { 2992 mutex_enter(&l2arc_buflist_mtx); 2993 hdr->b_l2hdr = NULL; 2994 buf_size = hdr->b_size; 2995 } 2996 2997 if (released) 2998 goto out; 2999 3000 /* 3001 * Do we have more than one buf? 3002 */ 3003 if (hdr->b_datacnt > 1) { 3004 arc_buf_hdr_t *nhdr; 3005 arc_buf_t **bufp; 3006 uint64_t blksz = hdr->b_size; 3007 uint64_t spa = hdr->b_spa; 3008 arc_buf_contents_t type = hdr->b_type; 3009 uint32_t flags = hdr->b_flags; 3010 3011 ASSERT(hdr->b_buf != buf || buf->b_next != NULL); 3012 /* 3013 * Pull the data off of this buf and attach it to 3014 * a new anonymous buf. 3015 */ 3016 (void) remove_reference(hdr, hash_lock, tag); 3017 bufp = &hdr->b_buf; 3018 while (*bufp != buf) 3019 bufp = &(*bufp)->b_next; 3020 *bufp = (*bufp)->b_next; 3021 buf->b_next = NULL; 3022 3023 ASSERT3U(hdr->b_state->arcs_size, >=, hdr->b_size); 3024 atomic_add_64(&hdr->b_state->arcs_size, -hdr->b_size); 3025 if (refcount_is_zero(&hdr->b_refcnt)) { 3026 uint64_t *size = &hdr->b_state->arcs_lsize[hdr->b_type]; 3027 ASSERT3U(*size, >=, hdr->b_size); 3028 atomic_add_64(size, -hdr->b_size); 3029 } 3030 hdr->b_datacnt -= 1; 3031 arc_cksum_verify(buf); 3032 3033 mutex_exit(hash_lock); 3034 3035 nhdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE); 3036 nhdr->b_size = blksz; 3037 nhdr->b_spa = spa; 3038 nhdr->b_type = type; 3039 nhdr->b_buf = buf; 3040 nhdr->b_state = arc_anon; 3041 nhdr->b_arc_access = 0; 3042 nhdr->b_flags = flags & ARC_L2_WRITING; 3043 nhdr->b_l2hdr = NULL; 3044 nhdr->b_datacnt = 1; 3045 nhdr->b_freeze_cksum = NULL; 3046 (void) refcount_add(&nhdr->b_refcnt, tag); 3047 buf->b_hdr = nhdr; 3048 rw_exit(&buf->b_lock); 3049 atomic_add_64(&arc_anon->arcs_size, blksz); 3050 } else { 3051 rw_exit(&buf->b_lock); 3052 ASSERT(refcount_count(&hdr->b_refcnt) == 1); 3053 ASSERT(!list_link_active(&hdr->b_arc_node)); 3054 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3055 arc_change_state(arc_anon, hdr, hash_lock); 3056 hdr->b_arc_access = 0; 3057 mutex_exit(hash_lock); 3058 3059 bzero(&hdr->b_dva, sizeof (dva_t)); 3060 hdr->b_birth = 0; 3061 hdr->b_cksum0 = 0; 3062 arc_buf_thaw(buf); 3063 } 3064 buf->b_efunc = NULL; 3065 buf->b_private = NULL; 3066 3067 out: 3068 if (l2hdr) { 3069 list_remove(l2hdr->b_dev->l2ad_buflist, hdr); 3070 kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t)); 3071 ARCSTAT_INCR(arcstat_l2_size, -buf_size); 3072 mutex_exit(&l2arc_buflist_mtx); 3073 } 3074 } 3075 3076 int 3077 arc_released(arc_buf_t *buf) 3078 { 3079 int released; 3080 3081 rw_enter(&buf->b_lock, RW_READER); 3082 released = (buf->b_data != NULL && buf->b_hdr->b_state == arc_anon); 3083 rw_exit(&buf->b_lock); 3084 return (released); 3085 } 3086 3087 int 3088 arc_has_callback(arc_buf_t *buf) 3089 { 3090 int callback; 3091 3092 rw_enter(&buf->b_lock, RW_READER); 3093 callback = (buf->b_efunc != NULL); 3094 rw_exit(&buf->b_lock); 3095 return (callback); 3096 } 3097 3098 #ifdef ZFS_DEBUG 3099 int 3100 arc_referenced(arc_buf_t *buf) 3101 { 3102 int referenced; 3103 3104 rw_enter(&buf->b_lock, RW_READER); 3105 referenced = (refcount_count(&buf->b_hdr->b_refcnt)); 3106 rw_exit(&buf->b_lock); 3107 return (referenced); 3108 } 3109 #endif 3110 3111 static void 3112 arc_write_ready(zio_t *zio) 3113 { 3114 arc_write_callback_t *callback = zio->io_private; 3115 arc_buf_t *buf = callback->awcb_buf; 3116 arc_buf_hdr_t *hdr = buf->b_hdr; 3117 3118 ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt)); 3119 callback->awcb_ready(zio, buf, callback->awcb_private); 3120 3121 /* 3122 * If the IO is already in progress, then this is a re-write 3123 * attempt, so we need to thaw and re-compute the cksum. 3124 * It is the responsibility of the callback to handle the 3125 * accounting for any re-write attempt. 3126 */ 3127 if (HDR_IO_IN_PROGRESS(hdr)) { 3128 mutex_enter(&hdr->b_freeze_lock); 3129 if (hdr->b_freeze_cksum != NULL) { 3130 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t)); 3131 hdr->b_freeze_cksum = NULL; 3132 } 3133 mutex_exit(&hdr->b_freeze_lock); 3134 } 3135 arc_cksum_compute(buf, B_FALSE); 3136 hdr->b_flags |= ARC_IO_IN_PROGRESS; 3137 } 3138 3139 static void 3140 arc_write_done(zio_t *zio) 3141 { 3142 arc_write_callback_t *callback = zio->io_private; 3143 arc_buf_t *buf = callback->awcb_buf; 3144 arc_buf_hdr_t *hdr = buf->b_hdr; 3145 3146 ASSERT(hdr->b_acb == NULL); 3147 3148 if (zio->io_error == 0) { 3149 hdr->b_dva = *BP_IDENTITY(zio->io_bp); 3150 hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp); 3151 hdr->b_cksum0 = zio->io_bp->blk_cksum.zc_word[0]; 3152 } else { 3153 ASSERT(BUF_EMPTY(hdr)); 3154 } 3155 3156 /* 3157 * If the block to be written was all-zero, we may have 3158 * compressed it away. In this case no write was performed 3159 * so there will be no dva/birth-date/checksum. The buffer 3160 * must therefor remain anonymous (and uncached). 3161 */ 3162 if (!BUF_EMPTY(hdr)) { 3163 arc_buf_hdr_t *exists; 3164 kmutex_t *hash_lock; 3165 3166 ASSERT(zio->io_error == 0); 3167 3168 arc_cksum_verify(buf); 3169 3170 exists = buf_hash_insert(hdr, &hash_lock); 3171 if (exists) { 3172 /* 3173 * This can only happen if we overwrite for 3174 * sync-to-convergence, because we remove 3175 * buffers from the hash table when we arc_free(). 3176 */ 3177 if (zio->io_flags & ZIO_FLAG_IO_REWRITE) { 3178 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) 3179 panic("bad overwrite, hdr=%p exists=%p", 3180 (void *)hdr, (void *)exists); 3181 ASSERT(refcount_is_zero(&exists->b_refcnt)); 3182 arc_change_state(arc_anon, exists, hash_lock); 3183 mutex_exit(hash_lock); 3184 arc_hdr_destroy(exists); 3185 exists = buf_hash_insert(hdr, &hash_lock); 3186 ASSERT3P(exists, ==, NULL); 3187 } else { 3188 /* Dedup */ 3189 ASSERT(hdr->b_datacnt == 1); 3190 ASSERT(hdr->b_state == arc_anon); 3191 ASSERT(BP_GET_DEDUP(zio->io_bp)); 3192 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0); 3193 } 3194 } 3195 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 3196 /* if it's not anon, we are doing a scrub */ 3197 if (!exists && hdr->b_state == arc_anon) 3198 arc_access(hdr, hash_lock); 3199 mutex_exit(hash_lock); 3200 } else { 3201 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 3202 } 3203 3204 ASSERT(!refcount_is_zero(&hdr->b_refcnt)); 3205 callback->awcb_done(zio, buf, callback->awcb_private); 3206 3207 kmem_free(callback, sizeof (arc_write_callback_t)); 3208 } 3209 3210 zio_t * 3211 arc_write(zio_t *pio, spa_t *spa, uint64_t txg, 3212 blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, const zio_prop_t *zp, 3213 arc_done_func_t *ready, arc_done_func_t *done, void *private, 3214 int priority, int zio_flags, const zbookmark_t *zb) 3215 { 3216 arc_buf_hdr_t *hdr = buf->b_hdr; 3217 arc_write_callback_t *callback; 3218 zio_t *zio; 3219 3220 ASSERT(ready != NULL); 3221 ASSERT(done != NULL); 3222 ASSERT(!HDR_IO_ERROR(hdr)); 3223 ASSERT((hdr->b_flags & ARC_IO_IN_PROGRESS) == 0); 3224 ASSERT(hdr->b_acb == NULL); 3225 if (l2arc) 3226 hdr->b_flags |= ARC_L2CACHE; 3227 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP); 3228 callback->awcb_ready = ready; 3229 callback->awcb_done = done; 3230 callback->awcb_private = private; 3231 callback->awcb_buf = buf; 3232 3233 zio = zio_write(pio, spa, txg, bp, buf->b_data, hdr->b_size, zp, 3234 arc_write_ready, arc_write_done, callback, priority, zio_flags, zb); 3235 3236 return (zio); 3237 } 3238 3239 void 3240 arc_free(spa_t *spa, const blkptr_t *bp) 3241 { 3242 arc_buf_hdr_t *ab; 3243 kmutex_t *hash_lock; 3244 uint64_t guid = spa_guid(spa); 3245 3246 /* 3247 * If this buffer is in the cache, release it, so it can be re-used. 3248 */ 3249 ab = buf_hash_find(guid, BP_IDENTITY(bp), BP_PHYSICAL_BIRTH(bp), 3250 &hash_lock); 3251 if (ab != NULL) { 3252 if (ab->b_state != arc_anon) 3253 arc_change_state(arc_anon, ab, hash_lock); 3254 if (HDR_IO_IN_PROGRESS(ab)) { 3255 /* 3256 * This should only happen when we prefetch. 3257 */ 3258 ASSERT(ab->b_flags & ARC_PREFETCH); 3259 ASSERT3U(ab->b_datacnt, ==, 1); 3260 ab->b_flags |= ARC_FREED_IN_READ; 3261 if (HDR_IN_HASH_TABLE(ab)) 3262 buf_hash_remove(ab); 3263 ab->b_arc_access = 0; 3264 bzero(&ab->b_dva, sizeof (dva_t)); 3265 ab->b_birth = 0; 3266 ab->b_cksum0 = 0; 3267 ab->b_buf->b_efunc = NULL; 3268 ab->b_buf->b_private = NULL; 3269 mutex_exit(hash_lock); 3270 } else { 3271 ASSERT(refcount_is_zero(&ab->b_refcnt)); 3272 ab->b_flags |= ARC_FREE_IN_PROGRESS; 3273 mutex_exit(hash_lock); 3274 arc_hdr_destroy(ab); 3275 ARCSTAT_BUMP(arcstat_deleted); 3276 } 3277 } 3278 } 3279 3280 static int 3281 arc_memory_throttle(uint64_t reserve, uint64_t inflight_data, uint64_t txg) 3282 { 3283 #ifdef _KERNEL 3284 uint64_t available_memory = ptob(freemem); 3285 static uint64_t page_load = 0; 3286 static uint64_t last_txg = 0; 3287 3288 #if defined(__i386) 3289 available_memory = 3290 MIN(available_memory, vmem_size(heap_arena, VMEM_FREE)); 3291 #endif 3292 if (available_memory >= zfs_write_limit_max) 3293 return (0); 3294 3295 if (txg > last_txg) { 3296 last_txg = txg; 3297 page_load = 0; 3298 } 3299 /* 3300 * If we are in pageout, we know that memory is already tight, 3301 * the arc is already going to be evicting, so we just want to 3302 * continue to let page writes occur as quickly as possible. 3303 */ 3304 if (curproc == proc_pageout) { 3305 if (page_load > MAX(ptob(minfree), available_memory) / 4) 3306 return (ERESTART); 3307 /* Note: reserve is inflated, so we deflate */ 3308 page_load += reserve / 8; 3309 return (0); 3310 } else if (page_load > 0 && arc_reclaim_needed()) { 3311 /* memory is low, delay before restarting */ 3312 ARCSTAT_INCR(arcstat_memory_throttle_count, 1); 3313 return (EAGAIN); 3314 } 3315 page_load = 0; 3316 3317 if (arc_size > arc_c_min) { 3318 uint64_t evictable_memory = 3319 arc_mru->arcs_lsize[ARC_BUFC_DATA] + 3320 arc_mru->arcs_lsize[ARC_BUFC_METADATA] + 3321 arc_mfu->arcs_lsize[ARC_BUFC_DATA] + 3322 arc_mfu->arcs_lsize[ARC_BUFC_METADATA]; 3323 available_memory += MIN(evictable_memory, arc_size - arc_c_min); 3324 } 3325 3326 if (inflight_data > available_memory / 4) { 3327 ARCSTAT_INCR(arcstat_memory_throttle_count, 1); 3328 return (ERESTART); 3329 } 3330 #endif 3331 return (0); 3332 } 3333 3334 void 3335 arc_tempreserve_clear(uint64_t reserve) 3336 { 3337 atomic_add_64(&arc_tempreserve, -reserve); 3338 ASSERT((int64_t)arc_tempreserve >= 0); 3339 } 3340 3341 int 3342 arc_tempreserve_space(uint64_t reserve, uint64_t txg) 3343 { 3344 int error; 3345 uint64_t anon_size; 3346 3347 #ifdef ZFS_DEBUG 3348 /* 3349 * Once in a while, fail for no reason. Everything should cope. 3350 */ 3351 if (spa_get_random(10000) == 0) { 3352 dprintf("forcing random failure\n"); 3353 return (ERESTART); 3354 } 3355 #endif 3356 if (reserve > arc_c/4 && !arc_no_grow) 3357 arc_c = MIN(arc_c_max, reserve * 4); 3358 if (reserve > arc_c) 3359 return (ENOMEM); 3360 3361 /* 3362 * Don't count loaned bufs as in flight dirty data to prevent long 3363 * network delays from blocking transactions that are ready to be 3364 * assigned to a txg. 3365 */ 3366 anon_size = MAX((int64_t)(arc_anon->arcs_size - arc_loaned_bytes), 0); 3367 3368 /* 3369 * Writes will, almost always, require additional memory allocations 3370 * in order to compress/encrypt/etc the data. We therefor need to 3371 * make sure that there is sufficient available memory for this. 3372 */ 3373 if (error = arc_memory_throttle(reserve, anon_size, txg)) 3374 return (error); 3375 3376 /* 3377 * Throttle writes when the amount of dirty data in the cache 3378 * gets too large. We try to keep the cache less than half full 3379 * of dirty blocks so that our sync times don't grow too large. 3380 * Note: if two requests come in concurrently, we might let them 3381 * both succeed, when one of them should fail. Not a huge deal. 3382 */ 3383 3384 if (reserve + arc_tempreserve + anon_size > arc_c / 2 && 3385 anon_size > arc_c / 4) { 3386 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK " 3387 "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n", 3388 arc_tempreserve>>10, 3389 arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10, 3390 arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10, 3391 reserve>>10, arc_c>>10); 3392 return (ERESTART); 3393 } 3394 atomic_add_64(&arc_tempreserve, reserve); 3395 return (0); 3396 } 3397 3398 void 3399 arc_init(void) 3400 { 3401 mutex_init(&arc_reclaim_thr_lock, NULL, MUTEX_DEFAULT, NULL); 3402 cv_init(&arc_reclaim_thr_cv, NULL, CV_DEFAULT, NULL); 3403 3404 /* Convert seconds to clock ticks */ 3405 arc_min_prefetch_lifespan = 1 * hz; 3406 3407 /* Start out with 1/8 of all memory */ 3408 arc_c = physmem * PAGESIZE / 8; 3409 3410 #ifdef _KERNEL 3411 /* 3412 * On architectures where the physical memory can be larger 3413 * than the addressable space (intel in 32-bit mode), we may 3414 * need to limit the cache to 1/8 of VM size. 3415 */ 3416 arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8); 3417 #endif 3418 3419 /* set min cache to 1/32 of all memory, or 64MB, whichever is more */ 3420 arc_c_min = MAX(arc_c / 4, 64<<20); 3421 /* set max to 3/4 of all memory, or all but 1GB, whichever is more */ 3422 if (arc_c * 8 >= 1<<30) 3423 arc_c_max = (arc_c * 8) - (1<<30); 3424 else 3425 arc_c_max = arc_c_min; 3426 arc_c_max = MAX(arc_c * 6, arc_c_max); 3427 3428 /* 3429 * Allow the tunables to override our calculations if they are 3430 * reasonable (ie. over 64MB) 3431 */ 3432 if (zfs_arc_max > 64<<20 && zfs_arc_max < physmem * PAGESIZE) 3433 arc_c_max = zfs_arc_max; 3434 if (zfs_arc_min > 64<<20 && zfs_arc_min <= arc_c_max) 3435 arc_c_min = zfs_arc_min; 3436 3437 arc_c = arc_c_max; 3438 arc_p = (arc_c >> 1); 3439 3440 /* limit meta-data to 1/4 of the arc capacity */ 3441 arc_meta_limit = arc_c_max / 4; 3442 3443 /* Allow the tunable to override if it is reasonable */ 3444 if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max) 3445 arc_meta_limit = zfs_arc_meta_limit; 3446 3447 if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0) 3448 arc_c_min = arc_meta_limit / 2; 3449 3450 if (zfs_arc_grow_retry > 0) 3451 arc_grow_retry = zfs_arc_grow_retry; 3452 3453 if (zfs_arc_shrink_shift > 0) 3454 arc_shrink_shift = zfs_arc_shrink_shift; 3455 3456 if (zfs_arc_p_min_shift > 0) 3457 arc_p_min_shift = zfs_arc_p_min_shift; 3458 3459 /* if kmem_flags are set, lets try to use less memory */ 3460 if (kmem_debugging()) 3461 arc_c = arc_c / 2; 3462 if (arc_c < arc_c_min) 3463 arc_c = arc_c_min; 3464 3465 arc_anon = &ARC_anon; 3466 arc_mru = &ARC_mru; 3467 arc_mru_ghost = &ARC_mru_ghost; 3468 arc_mfu = &ARC_mfu; 3469 arc_mfu_ghost = &ARC_mfu_ghost; 3470 arc_l2c_only = &ARC_l2c_only; 3471 arc_size = 0; 3472 3473 mutex_init(&arc_anon->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3474 mutex_init(&arc_mru->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3475 mutex_init(&arc_mru_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3476 mutex_init(&arc_mfu->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3477 mutex_init(&arc_mfu_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3478 mutex_init(&arc_l2c_only->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3479 3480 list_create(&arc_mru->arcs_list[ARC_BUFC_METADATA], 3481 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3482 list_create(&arc_mru->arcs_list[ARC_BUFC_DATA], 3483 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3484 list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA], 3485 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3486 list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA], 3487 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3488 list_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA], 3489 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3490 list_create(&arc_mfu->arcs_list[ARC_BUFC_DATA], 3491 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3492 list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA], 3493 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3494 list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA], 3495 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3496 list_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA], 3497 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3498 list_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA], 3499 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3500 3501 buf_init(); 3502 3503 arc_thread_exit = 0; 3504 arc_eviction_list = NULL; 3505 mutex_init(&arc_eviction_mtx, NULL, MUTEX_DEFAULT, NULL); 3506 bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t)); 3507 3508 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED, 3509 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); 3510 3511 if (arc_ksp != NULL) { 3512 arc_ksp->ks_data = &arc_stats; 3513 kstat_install(arc_ksp); 3514 } 3515 3516 (void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0, 3517 TS_RUN, minclsyspri); 3518 3519 arc_dead = FALSE; 3520 arc_warm = B_FALSE; 3521 3522 if (zfs_write_limit_max == 0) 3523 zfs_write_limit_max = ptob(physmem) >> zfs_write_limit_shift; 3524 else 3525 zfs_write_limit_shift = 0; 3526 mutex_init(&zfs_write_limit_lock, NULL, MUTEX_DEFAULT, NULL); 3527 } 3528 3529 void 3530 arc_fini(void) 3531 { 3532 mutex_enter(&arc_reclaim_thr_lock); 3533 arc_thread_exit = 1; 3534 while (arc_thread_exit != 0) 3535 cv_wait(&arc_reclaim_thr_cv, &arc_reclaim_thr_lock); 3536 mutex_exit(&arc_reclaim_thr_lock); 3537 3538 arc_flush(NULL); 3539 3540 arc_dead = TRUE; 3541 3542 if (arc_ksp != NULL) { 3543 kstat_delete(arc_ksp); 3544 arc_ksp = NULL; 3545 } 3546 3547 mutex_destroy(&arc_eviction_mtx); 3548 mutex_destroy(&arc_reclaim_thr_lock); 3549 cv_destroy(&arc_reclaim_thr_cv); 3550 3551 list_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]); 3552 list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]); 3553 list_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]); 3554 list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]); 3555 list_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]); 3556 list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]); 3557 list_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]); 3558 list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]); 3559 3560 mutex_destroy(&arc_anon->arcs_mtx); 3561 mutex_destroy(&arc_mru->arcs_mtx); 3562 mutex_destroy(&arc_mru_ghost->arcs_mtx); 3563 mutex_destroy(&arc_mfu->arcs_mtx); 3564 mutex_destroy(&arc_mfu_ghost->arcs_mtx); 3565 mutex_destroy(&arc_l2c_only->arcs_mtx); 3566 3567 mutex_destroy(&zfs_write_limit_lock); 3568 3569 buf_fini(); 3570 3571 ASSERT(arc_loaned_bytes == 0); 3572 } 3573 3574 /* 3575 * Level 2 ARC 3576 * 3577 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk. 3578 * It uses dedicated storage devices to hold cached data, which are populated 3579 * using large infrequent writes. The main role of this cache is to boost 3580 * the performance of random read workloads. The intended L2ARC devices 3581 * include short-stroked disks, solid state disks, and other media with 3582 * substantially faster read latency than disk. 3583 * 3584 * +-----------------------+ 3585 * | ARC | 3586 * +-----------------------+ 3587 * | ^ ^ 3588 * | | | 3589 * l2arc_feed_thread() arc_read() 3590 * | | | 3591 * | l2arc read | 3592 * V | | 3593 * +---------------+ | 3594 * | L2ARC | | 3595 * +---------------+ | 3596 * | ^ | 3597 * l2arc_write() | | 3598 * | | | 3599 * V | | 3600 * +-------+ +-------+ 3601 * | vdev | | vdev | 3602 * | cache | | cache | 3603 * +-------+ +-------+ 3604 * +=========+ .-----. 3605 * : L2ARC : |-_____-| 3606 * : devices : | Disks | 3607 * +=========+ `-_____-' 3608 * 3609 * Read requests are satisfied from the following sources, in order: 3610 * 3611 * 1) ARC 3612 * 2) vdev cache of L2ARC devices 3613 * 3) L2ARC devices 3614 * 4) vdev cache of disks 3615 * 5) disks 3616 * 3617 * Some L2ARC device types exhibit extremely slow write performance. 3618 * To accommodate for this there are some significant differences between 3619 * the L2ARC and traditional cache design: 3620 * 3621 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from 3622 * the ARC behave as usual, freeing buffers and placing headers on ghost 3623 * lists. The ARC does not send buffers to the L2ARC during eviction as 3624 * this would add inflated write latencies for all ARC memory pressure. 3625 * 3626 * 2. The L2ARC attempts to cache data from the ARC before it is evicted. 3627 * It does this by periodically scanning buffers from the eviction-end of 3628 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are 3629 * not already there. It scans until a headroom of buffers is satisfied, 3630 * which itself is a buffer for ARC eviction. The thread that does this is 3631 * l2arc_feed_thread(), illustrated below; example sizes are included to 3632 * provide a better sense of ratio than this diagram: 3633 * 3634 * head --> tail 3635 * +---------------------+----------+ 3636 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC 3637 * +---------------------+----------+ | o L2ARC eligible 3638 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer 3639 * +---------------------+----------+ | 3640 * 15.9 Gbytes ^ 32 Mbytes | 3641 * headroom | 3642 * l2arc_feed_thread() 3643 * | 3644 * l2arc write hand <--[oooo]--' 3645 * | 8 Mbyte 3646 * | write max 3647 * V 3648 * +==============================+ 3649 * L2ARC dev |####|#|###|###| |####| ... | 3650 * +==============================+ 3651 * 32 Gbytes 3652 * 3653 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of 3654 * evicted, then the L2ARC has cached a buffer much sooner than it probably 3655 * needed to, potentially wasting L2ARC device bandwidth and storage. It is 3656 * safe to say that this is an uncommon case, since buffers at the end of 3657 * the ARC lists have moved there due to inactivity. 3658 * 3659 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom, 3660 * then the L2ARC simply misses copying some buffers. This serves as a 3661 * pressure valve to prevent heavy read workloads from both stalling the ARC 3662 * with waits and clogging the L2ARC with writes. This also helps prevent 3663 * the potential for the L2ARC to churn if it attempts to cache content too 3664 * quickly, such as during backups of the entire pool. 3665 * 3666 * 5. After system boot and before the ARC has filled main memory, there are 3667 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru 3668 * lists can remain mostly static. Instead of searching from tail of these 3669 * lists as pictured, the l2arc_feed_thread() will search from the list heads 3670 * for eligible buffers, greatly increasing its chance of finding them. 3671 * 3672 * The L2ARC device write speed is also boosted during this time so that 3673 * the L2ARC warms up faster. Since there have been no ARC evictions yet, 3674 * there are no L2ARC reads, and no fear of degrading read performance 3675 * through increased writes. 3676 * 3677 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that 3678 * the vdev queue can aggregate them into larger and fewer writes. Each 3679 * device is written to in a rotor fashion, sweeping writes through 3680 * available space then repeating. 3681 * 3682 * 7. The L2ARC does not store dirty content. It never needs to flush 3683 * write buffers back to disk based storage. 3684 * 3685 * 8. If an ARC buffer is written (and dirtied) which also exists in the 3686 * L2ARC, the now stale L2ARC buffer is immediately dropped. 3687 * 3688 * The performance of the L2ARC can be tweaked by a number of tunables, which 3689 * may be necessary for different workloads: 3690 * 3691 * l2arc_write_max max write bytes per interval 3692 * l2arc_write_boost extra write bytes during device warmup 3693 * l2arc_noprefetch skip caching prefetched buffers 3694 * l2arc_headroom number of max device writes to precache 3695 * l2arc_feed_secs seconds between L2ARC writing 3696 * 3697 * Tunables may be removed or added as future performance improvements are 3698 * integrated, and also may become zpool properties. 3699 * 3700 * There are three key functions that control how the L2ARC warms up: 3701 * 3702 * l2arc_write_eligible() check if a buffer is eligible to cache 3703 * l2arc_write_size() calculate how much to write 3704 * l2arc_write_interval() calculate sleep delay between writes 3705 * 3706 * These three functions determine what to write, how much, and how quickly 3707 * to send writes. 3708 */ 3709 3710 static boolean_t 3711 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab) 3712 { 3713 /* 3714 * A buffer is *not* eligible for the L2ARC if it: 3715 * 1. belongs to a different spa. 3716 * 2. is already cached on the L2ARC. 3717 * 3. has an I/O in progress (it may be an incomplete read). 3718 * 4. is flagged not eligible (zfs property). 3719 */ 3720 if (ab->b_spa != spa_guid || ab->b_l2hdr != NULL || 3721 HDR_IO_IN_PROGRESS(ab) || !HDR_L2CACHE(ab)) 3722 return (B_FALSE); 3723 3724 return (B_TRUE); 3725 } 3726 3727 static uint64_t 3728 l2arc_write_size(l2arc_dev_t *dev) 3729 { 3730 uint64_t size; 3731 3732 size = dev->l2ad_write; 3733 3734 if (arc_warm == B_FALSE) 3735 size += dev->l2ad_boost; 3736 3737 return (size); 3738 3739 } 3740 3741 static clock_t 3742 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote) 3743 { 3744 clock_t interval, next; 3745 3746 /* 3747 * If the ARC lists are busy, increase our write rate; if the 3748 * lists are stale, idle back. This is achieved by checking 3749 * how much we previously wrote - if it was more than half of 3750 * what we wanted, schedule the next write much sooner. 3751 */ 3752 if (l2arc_feed_again && wrote > (wanted / 2)) 3753 interval = (hz * l2arc_feed_min_ms) / 1000; 3754 else 3755 interval = hz * l2arc_feed_secs; 3756 3757 next = MAX(lbolt, MIN(lbolt + interval, began + interval)); 3758 3759 return (next); 3760 } 3761 3762 static void 3763 l2arc_hdr_stat_add(void) 3764 { 3765 ARCSTAT_INCR(arcstat_l2_hdr_size, HDR_SIZE + L2HDR_SIZE); 3766 ARCSTAT_INCR(arcstat_hdr_size, -HDR_SIZE); 3767 } 3768 3769 static void 3770 l2arc_hdr_stat_remove(void) 3771 { 3772 ARCSTAT_INCR(arcstat_l2_hdr_size, -(HDR_SIZE + L2HDR_SIZE)); 3773 ARCSTAT_INCR(arcstat_hdr_size, HDR_SIZE); 3774 } 3775 3776 /* 3777 * Cycle through L2ARC devices. This is how L2ARC load balances. 3778 * If a device is returned, this also returns holding the spa config lock. 3779 */ 3780 static l2arc_dev_t * 3781 l2arc_dev_get_next(void) 3782 { 3783 l2arc_dev_t *first, *next = NULL; 3784 3785 /* 3786 * Lock out the removal of spas (spa_namespace_lock), then removal 3787 * of cache devices (l2arc_dev_mtx). Once a device has been selected, 3788 * both locks will be dropped and a spa config lock held instead. 3789 */ 3790 mutex_enter(&spa_namespace_lock); 3791 mutex_enter(&l2arc_dev_mtx); 3792 3793 /* if there are no vdevs, there is nothing to do */ 3794 if (l2arc_ndev == 0) 3795 goto out; 3796 3797 first = NULL; 3798 next = l2arc_dev_last; 3799 do { 3800 /* loop around the list looking for a non-faulted vdev */ 3801 if (next == NULL) { 3802 next = list_head(l2arc_dev_list); 3803 } else { 3804 next = list_next(l2arc_dev_list, next); 3805 if (next == NULL) 3806 next = list_head(l2arc_dev_list); 3807 } 3808 3809 /* if we have come back to the start, bail out */ 3810 if (first == NULL) 3811 first = next; 3812 else if (next == first) 3813 break; 3814 3815 } while (vdev_is_dead(next->l2ad_vdev)); 3816 3817 /* if we were unable to find any usable vdevs, return NULL */ 3818 if (vdev_is_dead(next->l2ad_vdev)) 3819 next = NULL; 3820 3821 l2arc_dev_last = next; 3822 3823 out: 3824 mutex_exit(&l2arc_dev_mtx); 3825 3826 /* 3827 * Grab the config lock to prevent the 'next' device from being 3828 * removed while we are writing to it. 3829 */ 3830 if (next != NULL) 3831 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER); 3832 mutex_exit(&spa_namespace_lock); 3833 3834 return (next); 3835 } 3836 3837 /* 3838 * Free buffers that were tagged for destruction. 3839 */ 3840 static void 3841 l2arc_do_free_on_write() 3842 { 3843 list_t *buflist; 3844 l2arc_data_free_t *df, *df_prev; 3845 3846 mutex_enter(&l2arc_free_on_write_mtx); 3847 buflist = l2arc_free_on_write; 3848 3849 for (df = list_tail(buflist); df; df = df_prev) { 3850 df_prev = list_prev(buflist, df); 3851 ASSERT(df->l2df_data != NULL); 3852 ASSERT(df->l2df_func != NULL); 3853 df->l2df_func(df->l2df_data, df->l2df_size); 3854 list_remove(buflist, df); 3855 kmem_free(df, sizeof (l2arc_data_free_t)); 3856 } 3857 3858 mutex_exit(&l2arc_free_on_write_mtx); 3859 } 3860 3861 /* 3862 * A write to a cache device has completed. Update all headers to allow 3863 * reads from these buffers to begin. 3864 */ 3865 static void 3866 l2arc_write_done(zio_t *zio) 3867 { 3868 l2arc_write_callback_t *cb; 3869 l2arc_dev_t *dev; 3870 list_t *buflist; 3871 arc_buf_hdr_t *head, *ab, *ab_prev; 3872 l2arc_buf_hdr_t *abl2; 3873 kmutex_t *hash_lock; 3874 3875 cb = zio->io_private; 3876 ASSERT(cb != NULL); 3877 dev = cb->l2wcb_dev; 3878 ASSERT(dev != NULL); 3879 head = cb->l2wcb_head; 3880 ASSERT(head != NULL); 3881 buflist = dev->l2ad_buflist; 3882 ASSERT(buflist != NULL); 3883 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio, 3884 l2arc_write_callback_t *, cb); 3885 3886 if (zio->io_error != 0) 3887 ARCSTAT_BUMP(arcstat_l2_writes_error); 3888 3889 mutex_enter(&l2arc_buflist_mtx); 3890 3891 /* 3892 * All writes completed, or an error was hit. 3893 */ 3894 for (ab = list_prev(buflist, head); ab; ab = ab_prev) { 3895 ab_prev = list_prev(buflist, ab); 3896 3897 hash_lock = HDR_LOCK(ab); 3898 if (!mutex_tryenter(hash_lock)) { 3899 /* 3900 * This buffer misses out. It may be in a stage 3901 * of eviction. Its ARC_L2_WRITING flag will be 3902 * left set, denying reads to this buffer. 3903 */ 3904 ARCSTAT_BUMP(arcstat_l2_writes_hdr_miss); 3905 continue; 3906 } 3907 3908 if (zio->io_error != 0) { 3909 /* 3910 * Error - drop L2ARC entry. 3911 */ 3912 list_remove(buflist, ab); 3913 abl2 = ab->b_l2hdr; 3914 ab->b_l2hdr = NULL; 3915 kmem_free(abl2, sizeof (l2arc_buf_hdr_t)); 3916 ARCSTAT_INCR(arcstat_l2_size, -ab->b_size); 3917 } 3918 3919 /* 3920 * Allow ARC to begin reads to this L2ARC entry. 3921 */ 3922 ab->b_flags &= ~ARC_L2_WRITING; 3923 3924 mutex_exit(hash_lock); 3925 } 3926 3927 atomic_inc_64(&l2arc_writes_done); 3928 list_remove(buflist, head); 3929 kmem_cache_free(hdr_cache, head); 3930 mutex_exit(&l2arc_buflist_mtx); 3931 3932 l2arc_do_free_on_write(); 3933 3934 kmem_free(cb, sizeof (l2arc_write_callback_t)); 3935 } 3936 3937 /* 3938 * A read to a cache device completed. Validate buffer contents before 3939 * handing over to the regular ARC routines. 3940 */ 3941 static void 3942 l2arc_read_done(zio_t *zio) 3943 { 3944 l2arc_read_callback_t *cb; 3945 arc_buf_hdr_t *hdr; 3946 arc_buf_t *buf; 3947 kmutex_t *hash_lock; 3948 int equal; 3949 3950 ASSERT(zio->io_vd != NULL); 3951 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE); 3952 3953 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd); 3954 3955 cb = zio->io_private; 3956 ASSERT(cb != NULL); 3957 buf = cb->l2rcb_buf; 3958 ASSERT(buf != NULL); 3959 hdr = buf->b_hdr; 3960 ASSERT(hdr != NULL); 3961 3962 hash_lock = HDR_LOCK(hdr); 3963 mutex_enter(hash_lock); 3964 3965 /* 3966 * Check this survived the L2ARC journey. 3967 */ 3968 equal = arc_cksum_equal(buf); 3969 if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) { 3970 mutex_exit(hash_lock); 3971 zio->io_private = buf; 3972 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */ 3973 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */ 3974 arc_read_done(zio); 3975 } else { 3976 mutex_exit(hash_lock); 3977 /* 3978 * Buffer didn't survive caching. Increment stats and 3979 * reissue to the original storage device. 3980 */ 3981 if (zio->io_error != 0) { 3982 ARCSTAT_BUMP(arcstat_l2_io_error); 3983 } else { 3984 zio->io_error = EIO; 3985 } 3986 if (!equal) 3987 ARCSTAT_BUMP(arcstat_l2_cksum_bad); 3988 3989 /* 3990 * If there's no waiter, issue an async i/o to the primary 3991 * storage now. If there *is* a waiter, the caller must 3992 * issue the i/o in a context where it's OK to block. 3993 */ 3994 if (zio->io_waiter == NULL) { 3995 zio_t *pio = zio_unique_parent(zio); 3996 3997 ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL); 3998 3999 zio_nowait(zio_read(pio, cb->l2rcb_spa, &cb->l2rcb_bp, 4000 buf->b_data, zio->io_size, arc_read_done, buf, 4001 zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb)); 4002 } 4003 } 4004 4005 kmem_free(cb, sizeof (l2arc_read_callback_t)); 4006 } 4007 4008 /* 4009 * This is the list priority from which the L2ARC will search for pages to 4010 * cache. This is used within loops (0..3) to cycle through lists in the 4011 * desired order. This order can have a significant effect on cache 4012 * performance. 4013 * 4014 * Currently the metadata lists are hit first, MFU then MRU, followed by 4015 * the data lists. This function returns a locked list, and also returns 4016 * the lock pointer. 4017 */ 4018 static list_t * 4019 l2arc_list_locked(int list_num, kmutex_t **lock) 4020 { 4021 list_t *list; 4022 4023 ASSERT(list_num >= 0 && list_num <= 3); 4024 4025 switch (list_num) { 4026 case 0: 4027 list = &arc_mfu->arcs_list[ARC_BUFC_METADATA]; 4028 *lock = &arc_mfu->arcs_mtx; 4029 break; 4030 case 1: 4031 list = &arc_mru->arcs_list[ARC_BUFC_METADATA]; 4032 *lock = &arc_mru->arcs_mtx; 4033 break; 4034 case 2: 4035 list = &arc_mfu->arcs_list[ARC_BUFC_DATA]; 4036 *lock = &arc_mfu->arcs_mtx; 4037 break; 4038 case 3: 4039 list = &arc_mru->arcs_list[ARC_BUFC_DATA]; 4040 *lock = &arc_mru->arcs_mtx; 4041 break; 4042 } 4043 4044 ASSERT(!(MUTEX_HELD(*lock))); 4045 mutex_enter(*lock); 4046 return (list); 4047 } 4048 4049 /* 4050 * Evict buffers from the device write hand to the distance specified in 4051 * bytes. This distance may span populated buffers, it may span nothing. 4052 * This is clearing a region on the L2ARC device ready for writing. 4053 * If the 'all' boolean is set, every buffer is evicted. 4054 */ 4055 static void 4056 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all) 4057 { 4058 list_t *buflist; 4059 l2arc_buf_hdr_t *abl2; 4060 arc_buf_hdr_t *ab, *ab_prev; 4061 kmutex_t *hash_lock; 4062 uint64_t taddr; 4063 4064 buflist = dev->l2ad_buflist; 4065 4066 if (buflist == NULL) 4067 return; 4068 4069 if (!all && dev->l2ad_first) { 4070 /* 4071 * This is the first sweep through the device. There is 4072 * nothing to evict. 4073 */ 4074 return; 4075 } 4076 4077 if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) { 4078 /* 4079 * When nearing the end of the device, evict to the end 4080 * before the device write hand jumps to the start. 4081 */ 4082 taddr = dev->l2ad_end; 4083 } else { 4084 taddr = dev->l2ad_hand + distance; 4085 } 4086 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist, 4087 uint64_t, taddr, boolean_t, all); 4088 4089 top: 4090 mutex_enter(&l2arc_buflist_mtx); 4091 for (ab = list_tail(buflist); ab; ab = ab_prev) { 4092 ab_prev = list_prev(buflist, ab); 4093 4094 hash_lock = HDR_LOCK(ab); 4095 if (!mutex_tryenter(hash_lock)) { 4096 /* 4097 * Missed the hash lock. Retry. 4098 */ 4099 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry); 4100 mutex_exit(&l2arc_buflist_mtx); 4101 mutex_enter(hash_lock); 4102 mutex_exit(hash_lock); 4103 goto top; 4104 } 4105 4106 if (HDR_L2_WRITE_HEAD(ab)) { 4107 /* 4108 * We hit a write head node. Leave it for 4109 * l2arc_write_done(). 4110 */ 4111 list_remove(buflist, ab); 4112 mutex_exit(hash_lock); 4113 continue; 4114 } 4115 4116 if (!all && ab->b_l2hdr != NULL && 4117 (ab->b_l2hdr->b_daddr > taddr || 4118 ab->b_l2hdr->b_daddr < dev->l2ad_hand)) { 4119 /* 4120 * We've evicted to the target address, 4121 * or the end of the device. 4122 */ 4123 mutex_exit(hash_lock); 4124 break; 4125 } 4126 4127 if (HDR_FREE_IN_PROGRESS(ab)) { 4128 /* 4129 * Already on the path to destruction. 4130 */ 4131 mutex_exit(hash_lock); 4132 continue; 4133 } 4134 4135 if (ab->b_state == arc_l2c_only) { 4136 ASSERT(!HDR_L2_READING(ab)); 4137 /* 4138 * This doesn't exist in the ARC. Destroy. 4139 * arc_hdr_destroy() will call list_remove() 4140 * and decrement arcstat_l2_size. 4141 */ 4142 arc_change_state(arc_anon, ab, hash_lock); 4143 arc_hdr_destroy(ab); 4144 } else { 4145 /* 4146 * Invalidate issued or about to be issued 4147 * reads, since we may be about to write 4148 * over this location. 4149 */ 4150 if (HDR_L2_READING(ab)) { 4151 ARCSTAT_BUMP(arcstat_l2_evict_reading); 4152 ab->b_flags |= ARC_L2_EVICTED; 4153 } 4154 4155 /* 4156 * Tell ARC this no longer exists in L2ARC. 4157 */ 4158 if (ab->b_l2hdr != NULL) { 4159 abl2 = ab->b_l2hdr; 4160 ab->b_l2hdr = NULL; 4161 kmem_free(abl2, sizeof (l2arc_buf_hdr_t)); 4162 ARCSTAT_INCR(arcstat_l2_size, -ab->b_size); 4163 } 4164 list_remove(buflist, ab); 4165 4166 /* 4167 * This may have been leftover after a 4168 * failed write. 4169 */ 4170 ab->b_flags &= ~ARC_L2_WRITING; 4171 } 4172 mutex_exit(hash_lock); 4173 } 4174 mutex_exit(&l2arc_buflist_mtx); 4175 4176 vdev_space_update(dev->l2ad_vdev, -(taddr - dev->l2ad_evict), 0, 0); 4177 dev->l2ad_evict = taddr; 4178 } 4179 4180 /* 4181 * Find and write ARC buffers to the L2ARC device. 4182 * 4183 * An ARC_L2_WRITING flag is set so that the L2ARC buffers are not valid 4184 * for reading until they have completed writing. 4185 */ 4186 static uint64_t 4187 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz) 4188 { 4189 arc_buf_hdr_t *ab, *ab_prev, *head; 4190 l2arc_buf_hdr_t *hdrl2; 4191 list_t *list; 4192 uint64_t passed_sz, write_sz, buf_sz, headroom; 4193 void *buf_data; 4194 kmutex_t *hash_lock, *list_lock; 4195 boolean_t have_lock, full; 4196 l2arc_write_callback_t *cb; 4197 zio_t *pio, *wzio; 4198 uint64_t guid = spa_guid(spa); 4199 4200 ASSERT(dev->l2ad_vdev != NULL); 4201 4202 pio = NULL; 4203 write_sz = 0; 4204 full = B_FALSE; 4205 head = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE); 4206 head->b_flags |= ARC_L2_WRITE_HEAD; 4207 4208 /* 4209 * Copy buffers for L2ARC writing. 4210 */ 4211 mutex_enter(&l2arc_buflist_mtx); 4212 for (int try = 0; try <= 3; try++) { 4213 list = l2arc_list_locked(try, &list_lock); 4214 passed_sz = 0; 4215 4216 /* 4217 * L2ARC fast warmup. 4218 * 4219 * Until the ARC is warm and starts to evict, read from the 4220 * head of the ARC lists rather than the tail. 4221 */ 4222 headroom = target_sz * l2arc_headroom; 4223 if (arc_warm == B_FALSE) 4224 ab = list_head(list); 4225 else 4226 ab = list_tail(list); 4227 4228 for (; ab; ab = ab_prev) { 4229 if (arc_warm == B_FALSE) 4230 ab_prev = list_next(list, ab); 4231 else 4232 ab_prev = list_prev(list, ab); 4233 4234 hash_lock = HDR_LOCK(ab); 4235 have_lock = MUTEX_HELD(hash_lock); 4236 if (!have_lock && !mutex_tryenter(hash_lock)) { 4237 /* 4238 * Skip this buffer rather than waiting. 4239 */ 4240 continue; 4241 } 4242 4243 passed_sz += ab->b_size; 4244 if (passed_sz > headroom) { 4245 /* 4246 * Searched too far. 4247 */ 4248 mutex_exit(hash_lock); 4249 break; 4250 } 4251 4252 if (!l2arc_write_eligible(guid, ab)) { 4253 mutex_exit(hash_lock); 4254 continue; 4255 } 4256 4257 if ((write_sz + ab->b_size) > target_sz) { 4258 full = B_TRUE; 4259 mutex_exit(hash_lock); 4260 break; 4261 } 4262 4263 if (pio == NULL) { 4264 /* 4265 * Insert a dummy header on the buflist so 4266 * l2arc_write_done() can find where the 4267 * write buffers begin without searching. 4268 */ 4269 list_insert_head(dev->l2ad_buflist, head); 4270 4271 cb = kmem_alloc( 4272 sizeof (l2arc_write_callback_t), KM_SLEEP); 4273 cb->l2wcb_dev = dev; 4274 cb->l2wcb_head = head; 4275 pio = zio_root(spa, l2arc_write_done, cb, 4276 ZIO_FLAG_CANFAIL); 4277 } 4278 4279 /* 4280 * Create and add a new L2ARC header. 4281 */ 4282 hdrl2 = kmem_zalloc(sizeof (l2arc_buf_hdr_t), KM_SLEEP); 4283 hdrl2->b_dev = dev; 4284 hdrl2->b_daddr = dev->l2ad_hand; 4285 4286 ab->b_flags |= ARC_L2_WRITING; 4287 ab->b_l2hdr = hdrl2; 4288 list_insert_head(dev->l2ad_buflist, ab); 4289 buf_data = ab->b_buf->b_data; 4290 buf_sz = ab->b_size; 4291 4292 /* 4293 * Compute and store the buffer cksum before 4294 * writing. On debug the cksum is verified first. 4295 */ 4296 arc_cksum_verify(ab->b_buf); 4297 arc_cksum_compute(ab->b_buf, B_TRUE); 4298 4299 mutex_exit(hash_lock); 4300 4301 wzio = zio_write_phys(pio, dev->l2ad_vdev, 4302 dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF, 4303 NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE, 4304 ZIO_FLAG_CANFAIL, B_FALSE); 4305 4306 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, 4307 zio_t *, wzio); 4308 (void) zio_nowait(wzio); 4309 4310 /* 4311 * Keep the clock hand suitably device-aligned. 4312 */ 4313 buf_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz); 4314 4315 write_sz += buf_sz; 4316 dev->l2ad_hand += buf_sz; 4317 } 4318 4319 mutex_exit(list_lock); 4320 4321 if (full == B_TRUE) 4322 break; 4323 } 4324 mutex_exit(&l2arc_buflist_mtx); 4325 4326 if (pio == NULL) { 4327 ASSERT3U(write_sz, ==, 0); 4328 kmem_cache_free(hdr_cache, head); 4329 return (0); 4330 } 4331 4332 ASSERT3U(write_sz, <=, target_sz); 4333 ARCSTAT_BUMP(arcstat_l2_writes_sent); 4334 ARCSTAT_INCR(arcstat_l2_write_bytes, write_sz); 4335 ARCSTAT_INCR(arcstat_l2_size, write_sz); 4336 vdev_space_update(dev->l2ad_vdev, write_sz, 0, 0); 4337 4338 /* 4339 * Bump device hand to the device start if it is approaching the end. 4340 * l2arc_evict() will already have evicted ahead for this case. 4341 */ 4342 if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) { 4343 vdev_space_update(dev->l2ad_vdev, 4344 dev->l2ad_end - dev->l2ad_hand, 0, 0); 4345 dev->l2ad_hand = dev->l2ad_start; 4346 dev->l2ad_evict = dev->l2ad_start; 4347 dev->l2ad_first = B_FALSE; 4348 } 4349 4350 dev->l2ad_writing = B_TRUE; 4351 (void) zio_wait(pio); 4352 dev->l2ad_writing = B_FALSE; 4353 4354 return (write_sz); 4355 } 4356 4357 /* 4358 * This thread feeds the L2ARC at regular intervals. This is the beating 4359 * heart of the L2ARC. 4360 */ 4361 static void 4362 l2arc_feed_thread(void) 4363 { 4364 callb_cpr_t cpr; 4365 l2arc_dev_t *dev; 4366 spa_t *spa; 4367 uint64_t size, wrote; 4368 clock_t begin, next = lbolt; 4369 4370 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG); 4371 4372 mutex_enter(&l2arc_feed_thr_lock); 4373 4374 while (l2arc_thread_exit == 0) { 4375 CALLB_CPR_SAFE_BEGIN(&cpr); 4376 (void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock, 4377 next); 4378 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock); 4379 next = lbolt + hz; 4380 4381 /* 4382 * Quick check for L2ARC devices. 4383 */ 4384 mutex_enter(&l2arc_dev_mtx); 4385 if (l2arc_ndev == 0) { 4386 mutex_exit(&l2arc_dev_mtx); 4387 continue; 4388 } 4389 mutex_exit(&l2arc_dev_mtx); 4390 begin = lbolt; 4391 4392 /* 4393 * This selects the next l2arc device to write to, and in 4394 * doing so the next spa to feed from: dev->l2ad_spa. This 4395 * will return NULL if there are now no l2arc devices or if 4396 * they are all faulted. 4397 * 4398 * If a device is returned, its spa's config lock is also 4399 * held to prevent device removal. l2arc_dev_get_next() 4400 * will grab and release l2arc_dev_mtx. 4401 */ 4402 if ((dev = l2arc_dev_get_next()) == NULL) 4403 continue; 4404 4405 spa = dev->l2ad_spa; 4406 ASSERT(spa != NULL); 4407 4408 /* 4409 * Avoid contributing to memory pressure. 4410 */ 4411 if (arc_reclaim_needed()) { 4412 ARCSTAT_BUMP(arcstat_l2_abort_lowmem); 4413 spa_config_exit(spa, SCL_L2ARC, dev); 4414 continue; 4415 } 4416 4417 ARCSTAT_BUMP(arcstat_l2_feeds); 4418 4419 size = l2arc_write_size(dev); 4420 4421 /* 4422 * Evict L2ARC buffers that will be overwritten. 4423 */ 4424 l2arc_evict(dev, size, B_FALSE); 4425 4426 /* 4427 * Write ARC buffers. 4428 */ 4429 wrote = l2arc_write_buffers(spa, dev, size); 4430 4431 /* 4432 * Calculate interval between writes. 4433 */ 4434 next = l2arc_write_interval(begin, size, wrote); 4435 spa_config_exit(spa, SCL_L2ARC, dev); 4436 } 4437 4438 l2arc_thread_exit = 0; 4439 cv_broadcast(&l2arc_feed_thr_cv); 4440 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */ 4441 thread_exit(); 4442 } 4443 4444 boolean_t 4445 l2arc_vdev_present(vdev_t *vd) 4446 { 4447 l2arc_dev_t *dev; 4448 4449 mutex_enter(&l2arc_dev_mtx); 4450 for (dev = list_head(l2arc_dev_list); dev != NULL; 4451 dev = list_next(l2arc_dev_list, dev)) { 4452 if (dev->l2ad_vdev == vd) 4453 break; 4454 } 4455 mutex_exit(&l2arc_dev_mtx); 4456 4457 return (dev != NULL); 4458 } 4459 4460 /* 4461 * Add a vdev for use by the L2ARC. By this point the spa has already 4462 * validated the vdev and opened it. 4463 */ 4464 void 4465 l2arc_add_vdev(spa_t *spa, vdev_t *vd) 4466 { 4467 l2arc_dev_t *adddev; 4468 4469 ASSERT(!l2arc_vdev_present(vd)); 4470 4471 /* 4472 * Create a new l2arc device entry. 4473 */ 4474 adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP); 4475 adddev->l2ad_spa = spa; 4476 adddev->l2ad_vdev = vd; 4477 adddev->l2ad_write = l2arc_write_max; 4478 adddev->l2ad_boost = l2arc_write_boost; 4479 adddev->l2ad_start = VDEV_LABEL_START_SIZE; 4480 adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd); 4481 adddev->l2ad_hand = adddev->l2ad_start; 4482 adddev->l2ad_evict = adddev->l2ad_start; 4483 adddev->l2ad_first = B_TRUE; 4484 adddev->l2ad_writing = B_FALSE; 4485 ASSERT3U(adddev->l2ad_write, >, 0); 4486 4487 /* 4488 * This is a list of all ARC buffers that are still valid on the 4489 * device. 4490 */ 4491 adddev->l2ad_buflist = kmem_zalloc(sizeof (list_t), KM_SLEEP); 4492 list_create(adddev->l2ad_buflist, sizeof (arc_buf_hdr_t), 4493 offsetof(arc_buf_hdr_t, b_l2node)); 4494 4495 vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand); 4496 4497 /* 4498 * Add device to global list 4499 */ 4500 mutex_enter(&l2arc_dev_mtx); 4501 list_insert_head(l2arc_dev_list, adddev); 4502 atomic_inc_64(&l2arc_ndev); 4503 mutex_exit(&l2arc_dev_mtx); 4504 } 4505 4506 /* 4507 * Remove a vdev from the L2ARC. 4508 */ 4509 void 4510 l2arc_remove_vdev(vdev_t *vd) 4511 { 4512 l2arc_dev_t *dev, *nextdev, *remdev = NULL; 4513 4514 /* 4515 * Find the device by vdev 4516 */ 4517 mutex_enter(&l2arc_dev_mtx); 4518 for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) { 4519 nextdev = list_next(l2arc_dev_list, dev); 4520 if (vd == dev->l2ad_vdev) { 4521 remdev = dev; 4522 break; 4523 } 4524 } 4525 ASSERT(remdev != NULL); 4526 4527 /* 4528 * Remove device from global list 4529 */ 4530 list_remove(l2arc_dev_list, remdev); 4531 l2arc_dev_last = NULL; /* may have been invalidated */ 4532 atomic_dec_64(&l2arc_ndev); 4533 mutex_exit(&l2arc_dev_mtx); 4534 4535 /* 4536 * Clear all buflists and ARC references. L2ARC device flush. 4537 */ 4538 l2arc_evict(remdev, 0, B_TRUE); 4539 list_destroy(remdev->l2ad_buflist); 4540 kmem_free(remdev->l2ad_buflist, sizeof (list_t)); 4541 kmem_free(remdev, sizeof (l2arc_dev_t)); 4542 } 4543 4544 void 4545 l2arc_init(void) 4546 { 4547 l2arc_thread_exit = 0; 4548 l2arc_ndev = 0; 4549 l2arc_writes_sent = 0; 4550 l2arc_writes_done = 0; 4551 4552 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL); 4553 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL); 4554 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL); 4555 mutex_init(&l2arc_buflist_mtx, NULL, MUTEX_DEFAULT, NULL); 4556 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL); 4557 4558 l2arc_dev_list = &L2ARC_dev_list; 4559 l2arc_free_on_write = &L2ARC_free_on_write; 4560 list_create(l2arc_dev_list, sizeof (l2arc_dev_t), 4561 offsetof(l2arc_dev_t, l2ad_node)); 4562 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t), 4563 offsetof(l2arc_data_free_t, l2df_list_node)); 4564 } 4565 4566 void 4567 l2arc_fini(void) 4568 { 4569 /* 4570 * This is called from dmu_fini(), which is called from spa_fini(); 4571 * Because of this, we can assume that all l2arc devices have 4572 * already been removed when the pools themselves were removed. 4573 */ 4574 4575 l2arc_do_free_on_write(); 4576 4577 mutex_destroy(&l2arc_feed_thr_lock); 4578 cv_destroy(&l2arc_feed_thr_cv); 4579 mutex_destroy(&l2arc_dev_mtx); 4580 mutex_destroy(&l2arc_buflist_mtx); 4581 mutex_destroy(&l2arc_free_on_write_mtx); 4582 4583 list_destroy(l2arc_dev_list); 4584 list_destroy(l2arc_free_on_write); 4585 } 4586 4587 void 4588 l2arc_start(void) 4589 { 4590 if (!(spa_mode_global & FWRITE)) 4591 return; 4592 4593 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0, 4594 TS_RUN, minclsyspri); 4595 } 4596 4597 void 4598 l2arc_stop(void) 4599 { 4600 if (!(spa_mode_global & FWRITE)) 4601 return; 4602 4603 mutex_enter(&l2arc_feed_thr_lock); 4604 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */ 4605 l2arc_thread_exit = 1; 4606 while (l2arc_thread_exit != 0) 4607 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock); 4608 mutex_exit(&l2arc_feed_thr_lock); 4609 } 4610