1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 /* 29 * DVA-based Adjustable Relpacement Cache 30 * 31 * While much of the theory of operation and algorithms used here 32 * are based on the self-tuning, low overhead replacement cache 33 * presented by Megiddo and Modha at FAST 2003, there are some 34 * significant differences: 35 * 36 * 1. The Megiddo and Modha model assumes any page is evictable. 37 * Pages in its cache cannot be "locked" into memory. This makes 38 * the eviction algorithm simple: evict the last page in the list. 39 * This also make the performance characteristics easy to reason 40 * about. Our cache is not so simple. At any given moment, some 41 * subset of the blocks in the cache are un-evictable because we 42 * have handed out a reference to them. Blocks are only evictable 43 * when there are no external references active. This makes 44 * eviction far more problematic: we choose to evict the evictable 45 * blocks that are the "lowest" in the list. 46 * 47 * There are times when it is not possible to evict the requested 48 * space. In these circumstances we are unable to adjust the cache 49 * size. To prevent the cache growing unbounded at these times we 50 * implement a "cache throttle" that slowes the flow of new data 51 * into the cache until we can make space avaiable. 52 * 53 * 2. The Megiddo and Modha model assumes a fixed cache size. 54 * Pages are evicted when the cache is full and there is a cache 55 * miss. Our model has a variable sized cache. It grows with 56 * high use, but also tries to react to memory preasure from the 57 * operating system: decreasing its size when system memory is 58 * tight. 59 * 60 * 3. The Megiddo and Modha model assumes a fixed page size. All 61 * elements of the cache are therefor exactly the same size. So 62 * when adjusting the cache size following a cache miss, its simply 63 * a matter of choosing a single page to evict. In our model, we 64 * have variable sized cache blocks (rangeing from 512 bytes to 65 * 128K bytes). We therefor choose a set of blocks to evict to make 66 * space for a cache miss that approximates as closely as possible 67 * the space used by the new block. 68 * 69 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache" 70 * by N. Megiddo & D. Modha, FAST 2003 71 */ 72 73 /* 74 * The locking model: 75 * 76 * A new reference to a cache buffer can be obtained in two 77 * ways: 1) via a hash table lookup using the DVA as a key, 78 * or 2) via one of the ARC lists. The arc_read() inerface 79 * uses method 1, while the internal arc algorithms for 80 * adjusting the cache use method 2. We therefor provide two 81 * types of locks: 1) the hash table lock array, and 2) the 82 * arc list locks. 83 * 84 * Buffers do not have their own mutexs, rather they rely on the 85 * hash table mutexs for the bulk of their protection (i.e. most 86 * fields in the arc_buf_hdr_t are protected by these mutexs). 87 * 88 * buf_hash_find() returns the appropriate mutex (held) when it 89 * locates the requested buffer in the hash table. It returns 90 * NULL for the mutex if the buffer was not in the table. 91 * 92 * buf_hash_remove() expects the appropriate hash mutex to be 93 * already held before it is invoked. 94 * 95 * Each arc state also has a mutex which is used to protect the 96 * buffer list associated with the state. When attempting to 97 * obtain a hash table lock while holding an arc list lock you 98 * must use: mutex_tryenter() to avoid deadlock. Also note that 99 * the "top" state mutex must be held before the "bot" state mutex. 100 * 101 * Note that the majority of the performance stats are manipulated 102 * with atomic operations. 103 */ 104 105 #include <sys/spa.h> 106 #include <sys/zio.h> 107 #include <sys/zfs_context.h> 108 #include <sys/arc.h> 109 #include <sys/refcount.h> 110 #ifdef _KERNEL 111 #include <sys/vmsystm.h> 112 #include <vm/anon.h> 113 #include <sys/fs/swapnode.h> 114 #include <sys/dnlc.h> 115 #endif 116 #include <sys/callb.h> 117 118 static kmutex_t arc_reclaim_thr_lock; 119 static kcondvar_t arc_reclaim_thr_cv; /* used to signal reclaim thr */ 120 static uint8_t arc_thread_exit; 121 122 #define ARC_REDUCE_DNLC_PERCENT 3 123 uint_t arc_reduce_dnlc_percent = ARC_REDUCE_DNLC_PERCENT; 124 125 typedef enum arc_reclaim_strategy { 126 ARC_RECLAIM_AGGR, /* Aggressive reclaim strategy */ 127 ARC_RECLAIM_CONS /* Conservative reclaim strategy */ 128 } arc_reclaim_strategy_t; 129 130 /* number of seconds before growing cache again */ 131 static int arc_grow_retry = 60; 132 133 static kmutex_t arc_reclaim_lock; 134 static int arc_dead; 135 136 /* 137 * Note that buffers can be on one of 5 states: 138 * ARC_anon - anonymous (discussed below) 139 * ARC_mru_top - recently used, currently cached 140 * ARC_mru_bot - recentely used, no longer in cache 141 * ARC_mfu_top - frequently used, currently cached 142 * ARC_mfu_bot - frequently used, no longer in cache 143 * When there are no active references to the buffer, they 144 * are linked onto one of the lists in arc. These are the 145 * only buffers that can be evicted or deleted. 146 * 147 * Anonymous buffers are buffers that are not associated with 148 * a DVA. These are buffers that hold dirty block copies 149 * before they are written to stable storage. By definition, 150 * they are "ref'd" and are considered part of arc_mru_top 151 * that cannot be freed. Generally, they will aquire a DVA 152 * as they are written and migrate onto the arc_mru_top list. 153 */ 154 155 typedef struct arc_state { 156 list_t list; /* linked list of evictable buffer in state */ 157 uint64_t lsize; /* total size of buffers in the linked list */ 158 uint64_t size; /* total size of all buffers in this state */ 159 uint64_t hits; 160 kmutex_t mtx; 161 } arc_state_t; 162 163 /* The 5 states: */ 164 static arc_state_t ARC_anon; 165 static arc_state_t ARC_mru_top; 166 static arc_state_t ARC_mru_bot; 167 static arc_state_t ARC_mfu_top; 168 static arc_state_t ARC_mfu_bot; 169 170 static struct arc { 171 arc_state_t *anon; 172 arc_state_t *mru_top; 173 arc_state_t *mru_bot; 174 arc_state_t *mfu_top; 175 arc_state_t *mfu_bot; 176 uint64_t size; /* Actual total arc size */ 177 uint64_t p; /* Target size (in bytes) of mru_top */ 178 uint64_t c; /* Target size of cache (in bytes) */ 179 uint64_t c_min; /* Minimum target cache size */ 180 uint64_t c_max; /* Maximum target cache size */ 181 uint64_t incr; /* Size by which to increment arc.c */ 182 int64_t size_check; 183 184 /* performance stats */ 185 uint64_t hits; 186 uint64_t misses; 187 uint64_t deleted; 188 uint64_t skipped; 189 uint64_t hash_elements; 190 uint64_t hash_elements_max; 191 uint64_t hash_collisions; 192 uint64_t hash_chains; 193 uint32_t hash_chain_max; 194 195 int no_grow; /* Don't try to grow cache size */ 196 } arc; 197 198 /* Default amount to grow arc.incr */ 199 static int64_t arc_incr_size = 1024; 200 201 /* > 0 ==> time to increment arc.c */ 202 static int64_t arc_size_check_default = -1000; 203 204 static uint64_t arc_tempreserve; 205 206 typedef struct arc_callback arc_callback_t; 207 208 struct arc_callback { 209 arc_done_func_t *acb_done; 210 void *acb_private; 211 arc_byteswap_func_t *acb_byteswap; 212 arc_buf_t *acb_buf; 213 zio_t *acb_zio_dummy; 214 arc_callback_t *acb_next; 215 }; 216 217 struct arc_buf_hdr { 218 /* immutable */ 219 uint64_t b_size; 220 spa_t *b_spa; 221 222 /* protected by hash lock */ 223 dva_t b_dva; 224 uint64_t b_birth; 225 uint64_t b_cksum0; 226 227 arc_buf_hdr_t *b_hash_next; 228 arc_buf_t *b_buf; 229 uint32_t b_flags; 230 231 kcondvar_t b_cv; 232 arc_callback_t *b_acb; 233 234 /* protected by arc state mutex */ 235 arc_state_t *b_state; 236 list_node_t b_arc_node; 237 238 /* updated atomically */ 239 clock_t b_arc_access; 240 241 /* self protecting */ 242 refcount_t b_refcnt; 243 }; 244 245 /* 246 * Private ARC flags. These flags are private ARC only flags that will show up 247 * in b_flags in the arc_hdr_buf_t. Some flags are publicly declared, and can 248 * be passed in as arc_flags in things like arc_read. However, these flags 249 * should never be passed and should only be set by ARC code. When adding new 250 * public flags, make sure not to smash the private ones. 251 */ 252 253 #define ARC_IO_IN_PROGRESS (1 << 10) /* I/O in progress for buf */ 254 #define ARC_IO_ERROR (1 << 11) /* I/O failed for buf */ 255 #define ARC_FREED_IN_READ (1 << 12) /* buf freed while in read */ 256 257 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_IO_IN_PROGRESS) 258 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_IO_ERROR) 259 #define HDR_FREED_IN_READ(hdr) ((hdr)->b_flags & ARC_FREED_IN_READ) 260 261 /* 262 * Hash table routines 263 */ 264 265 #define HT_LOCK_PAD 64 266 267 struct ht_lock { 268 kmutex_t ht_lock; 269 #ifdef _KERNEL 270 unsigned char pad[(HT_LOCK_PAD - sizeof (kmutex_t))]; 271 #endif 272 }; 273 274 #define BUF_LOCKS 256 275 typedef struct buf_hash_table { 276 uint64_t ht_mask; 277 arc_buf_hdr_t **ht_table; 278 struct ht_lock ht_locks[BUF_LOCKS]; 279 } buf_hash_table_t; 280 281 static buf_hash_table_t buf_hash_table; 282 283 #define BUF_HASH_INDEX(spa, dva, birth) \ 284 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask) 285 #define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)]) 286 #define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock)) 287 #define HDR_LOCK(buf) \ 288 (BUF_HASH_LOCK(BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth))) 289 290 uint64_t zfs_crc64_table[256]; 291 292 static uint64_t 293 buf_hash(spa_t *spa, dva_t *dva, uint64_t birth) 294 { 295 uintptr_t spav = (uintptr_t)spa; 296 uint8_t *vdva = (uint8_t *)dva; 297 uint64_t crc = -1ULL; 298 int i; 299 300 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY); 301 302 for (i = 0; i < sizeof (dva_t); i++) 303 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF]; 304 305 crc ^= (spav>>8) ^ birth; 306 307 return (crc); 308 } 309 310 #define BUF_EMPTY(buf) \ 311 ((buf)->b_dva.dva_word[0] == 0 && \ 312 (buf)->b_dva.dva_word[1] == 0 && \ 313 (buf)->b_birth == 0) 314 315 #define BUF_EQUAL(spa, dva, birth, buf) \ 316 ((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \ 317 ((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \ 318 ((buf)->b_birth == birth) && ((buf)->b_spa == spa) 319 320 static arc_buf_hdr_t * 321 buf_hash_find(spa_t *spa, dva_t *dva, uint64_t birth, kmutex_t **lockp) 322 { 323 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth); 324 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 325 arc_buf_hdr_t *buf; 326 327 mutex_enter(hash_lock); 328 for (buf = buf_hash_table.ht_table[idx]; buf != NULL; 329 buf = buf->b_hash_next) { 330 if (BUF_EQUAL(spa, dva, birth, buf)) { 331 *lockp = hash_lock; 332 return (buf); 333 } 334 } 335 mutex_exit(hash_lock); 336 *lockp = NULL; 337 return (NULL); 338 } 339 340 /* 341 * Insert an entry into the hash table. If there is already an element 342 * equal to elem in the hash table, then the already existing element 343 * will be returned and the new element will not be inserted. 344 * Otherwise returns NULL. 345 */ 346 static arc_buf_hdr_t *fbufs[4]; /* XXX to find 6341326 */ 347 static kthread_t *fbufs_lastthread; 348 static arc_buf_hdr_t * 349 buf_hash_insert(arc_buf_hdr_t *buf, kmutex_t **lockp) 350 { 351 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth); 352 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 353 arc_buf_hdr_t *fbuf; 354 uint32_t max, i; 355 356 fbufs_lastthread = curthread; 357 *lockp = hash_lock; 358 mutex_enter(hash_lock); 359 for (fbuf = buf_hash_table.ht_table[idx], i = 0; fbuf != NULL; 360 fbuf = fbuf->b_hash_next, i++) { 361 if (i < sizeof (fbufs) / sizeof (fbufs[0])) 362 fbufs[i] = fbuf; 363 if (BUF_EQUAL(buf->b_spa, &buf->b_dva, buf->b_birth, fbuf)) 364 return (fbuf); 365 } 366 367 buf->b_hash_next = buf_hash_table.ht_table[idx]; 368 buf_hash_table.ht_table[idx] = buf; 369 370 /* collect some hash table performance data */ 371 if (i > 0) { 372 atomic_add_64(&arc.hash_collisions, 1); 373 if (i == 1) 374 atomic_add_64(&arc.hash_chains, 1); 375 } 376 while (i > (max = arc.hash_chain_max) && 377 max != atomic_cas_32(&arc.hash_chain_max, max, i)) { 378 continue; 379 } 380 atomic_add_64(&arc.hash_elements, 1); 381 if (arc.hash_elements > arc.hash_elements_max) 382 atomic_add_64(&arc.hash_elements_max, 1); 383 384 return (NULL); 385 } 386 387 static void 388 buf_hash_remove(arc_buf_hdr_t *buf) 389 { 390 arc_buf_hdr_t *fbuf, **bufp; 391 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth); 392 393 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx))); 394 395 bufp = &buf_hash_table.ht_table[idx]; 396 while ((fbuf = *bufp) != buf) { 397 ASSERT(fbuf != NULL); 398 bufp = &fbuf->b_hash_next; 399 } 400 *bufp = buf->b_hash_next; 401 buf->b_hash_next = NULL; 402 403 /* collect some hash table performance data */ 404 atomic_add_64(&arc.hash_elements, -1); 405 if (buf_hash_table.ht_table[idx] && 406 buf_hash_table.ht_table[idx]->b_hash_next == NULL) 407 atomic_add_64(&arc.hash_chains, -1); 408 } 409 410 /* 411 * Global data structures and functions for the buf kmem cache. 412 */ 413 static kmem_cache_t *hdr_cache; 414 static kmem_cache_t *buf_cache; 415 416 static void 417 buf_fini(void) 418 { 419 int i; 420 421 kmem_free(buf_hash_table.ht_table, 422 (buf_hash_table.ht_mask + 1) * sizeof (void *)); 423 for (i = 0; i < BUF_LOCKS; i++) 424 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock); 425 kmem_cache_destroy(hdr_cache); 426 kmem_cache_destroy(buf_cache); 427 } 428 429 /* 430 * Constructor callback - called when the cache is empty 431 * and a new buf is requested. 432 */ 433 /* ARGSUSED */ 434 static int 435 hdr_cons(void *vbuf, void *unused, int kmflag) 436 { 437 arc_buf_hdr_t *buf = vbuf; 438 439 bzero(buf, sizeof (arc_buf_hdr_t)); 440 refcount_create(&buf->b_refcnt); 441 cv_init(&buf->b_cv, NULL, CV_DEFAULT, NULL); 442 return (0); 443 } 444 445 /* 446 * Destructor callback - called when a cached buf is 447 * no longer required. 448 */ 449 /* ARGSUSED */ 450 static void 451 hdr_dest(void *vbuf, void *unused) 452 { 453 arc_buf_hdr_t *buf = vbuf; 454 455 refcount_destroy(&buf->b_refcnt); 456 cv_destroy(&buf->b_cv); 457 } 458 459 void arc_kmem_reclaim(void); 460 461 /* 462 * Reclaim callback -- invoked when memory is low. 463 */ 464 /* ARGSUSED */ 465 static void 466 hdr_recl(void *unused) 467 { 468 dprintf("hdr_recl called\n"); 469 arc_kmem_reclaim(); 470 } 471 472 static void 473 buf_init(void) 474 { 475 uint64_t *ct; 476 uint64_t hsize = 1ULL << 10; 477 int i, j; 478 479 /* 480 * The hash table is big enough to fill all of physical memory 481 * with an average 4k block size. The table will take up 482 * totalmem*sizeof(void*)/4k bytes (eg. 2MB/GB with 8-byte 483 * pointers). 484 */ 485 while (hsize * 4096 < physmem * PAGESIZE) 486 hsize <<= 1; 487 488 buf_hash_table.ht_mask = hsize - 1; 489 buf_hash_table.ht_table = kmem_zalloc(hsize * sizeof (void*), KM_SLEEP); 490 491 hdr_cache = kmem_cache_create("arc_buf_hdr_t", sizeof (arc_buf_hdr_t), 492 0, hdr_cons, hdr_dest, hdr_recl, NULL, NULL, 0); 493 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t), 494 0, NULL, NULL, NULL, NULL, NULL, 0); 495 496 for (i = 0; i < 256; i++) 497 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--) 498 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY); 499 500 for (i = 0; i < BUF_LOCKS; i++) { 501 mutex_init(&buf_hash_table.ht_locks[i].ht_lock, 502 NULL, MUTEX_DEFAULT, NULL); 503 } 504 } 505 506 #define ARC_MINTIME (hz>>4) /* 62 ms */ 507 508 #define ARC_TAG (void *)0x05201962 509 510 static void 511 add_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag) 512 { 513 ASSERT(MUTEX_HELD(hash_lock)); 514 515 if ((refcount_add(&ab->b_refcnt, tag) == 1) && 516 (ab->b_state != arc.anon)) { 517 518 ASSERT(!MUTEX_HELD(&ab->b_state->mtx)); 519 mutex_enter(&ab->b_state->mtx); 520 ASSERT(!refcount_is_zero(&ab->b_refcnt)); 521 ASSERT(list_link_active(&ab->b_arc_node)); 522 list_remove(&ab->b_state->list, ab); 523 ASSERT3U(ab->b_state->lsize, >=, ab->b_size); 524 ab->b_state->lsize -= ab->b_size; 525 mutex_exit(&ab->b_state->mtx); 526 } 527 } 528 529 static int 530 remove_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag) 531 { 532 int cnt; 533 534 ASSERT(MUTEX_HELD(hash_lock)); 535 536 if (((cnt = refcount_remove(&ab->b_refcnt, tag)) == 0) && 537 (ab->b_state != arc.anon)) { 538 539 ASSERT(!MUTEX_HELD(&ab->b_state->mtx)); 540 mutex_enter(&ab->b_state->mtx); 541 ASSERT(!list_link_active(&ab->b_arc_node)); 542 list_insert_head(&ab->b_state->list, ab); 543 ASSERT(ab->b_buf != NULL); 544 ab->b_state->lsize += ab->b_size; 545 mutex_exit(&ab->b_state->mtx); 546 } 547 return (cnt); 548 } 549 550 /* 551 * Move the supplied buffer to the indicated state. The mutex 552 * for the buffer must be held by the caller. 553 */ 554 static void 555 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *ab, 556 kmutex_t *hash_lock) 557 { 558 arc_buf_t *buf; 559 560 ASSERT(MUTEX_HELD(hash_lock)); 561 562 /* 563 * If this buffer is evictable, transfer it from the 564 * old state list to the new state list. 565 */ 566 if (refcount_is_zero(&ab->b_refcnt)) { 567 if (ab->b_state != arc.anon) { 568 int drop_mutex = FALSE; 569 570 if (!MUTEX_HELD(&ab->b_state->mtx)) { 571 mutex_enter(&ab->b_state->mtx); 572 drop_mutex = TRUE; 573 } 574 ASSERT(list_link_active(&ab->b_arc_node)); 575 list_remove(&ab->b_state->list, ab); 576 ASSERT3U(ab->b_state->lsize, >=, ab->b_size); 577 ab->b_state->lsize -= ab->b_size; 578 if (drop_mutex) 579 mutex_exit(&ab->b_state->mtx); 580 } 581 if (new_state != arc.anon) { 582 int drop_mutex = FALSE; 583 584 if (!MUTEX_HELD(&new_state->mtx)) { 585 mutex_enter(&new_state->mtx); 586 drop_mutex = TRUE; 587 } 588 list_insert_head(&new_state->list, ab); 589 ASSERT(ab->b_buf != NULL); 590 new_state->lsize += ab->b_size; 591 if (drop_mutex) 592 mutex_exit(&new_state->mtx); 593 } 594 } 595 596 ASSERT(!BUF_EMPTY(ab)); 597 if (new_state == arc.anon && ab->b_state != arc.anon) { 598 buf_hash_remove(ab); 599 } 600 601 /* 602 * If this buffer isn't being transferred to the MRU-top 603 * state, it's safe to clear its prefetch flag 604 */ 605 if ((new_state != arc.mru_top) && (new_state != arc.mru_bot)) { 606 ab->b_flags &= ~ARC_PREFETCH; 607 } 608 609 buf = ab->b_buf; 610 if (buf == NULL) { 611 ASSERT3U(ab->b_state->size, >=, ab->b_size); 612 atomic_add_64(&ab->b_state->size, -ab->b_size); 613 /* we should only be here if we are deleting state */ 614 ASSERT(new_state == arc.anon && 615 (ab->b_state == arc.mru_bot || ab->b_state == arc.mfu_bot)); 616 } else while (buf) { 617 ASSERT3U(ab->b_state->size, >=, ab->b_size); 618 atomic_add_64(&ab->b_state->size, -ab->b_size); 619 atomic_add_64(&new_state->size, ab->b_size); 620 buf = buf->b_next; 621 } 622 ab->b_state = new_state; 623 } 624 625 arc_buf_t * 626 arc_buf_alloc(spa_t *spa, int size, void *tag) 627 { 628 arc_buf_hdr_t *hdr; 629 arc_buf_t *buf; 630 631 ASSERT3U(size, >, 0); 632 hdr = kmem_cache_alloc(hdr_cache, KM_SLEEP); 633 ASSERT(BUF_EMPTY(hdr)); 634 hdr->b_size = size; 635 hdr->b_spa = spa; 636 hdr->b_state = arc.anon; 637 hdr->b_arc_access = 0; 638 buf = kmem_cache_alloc(buf_cache, KM_SLEEP); 639 buf->b_hdr = hdr; 640 buf->b_next = NULL; 641 buf->b_data = zio_buf_alloc(size); 642 hdr->b_buf = buf; 643 hdr->b_flags = 0; 644 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 645 (void) refcount_add(&hdr->b_refcnt, tag); 646 647 atomic_add_64(&arc.size, size); 648 atomic_add_64(&arc.anon->size, size); 649 650 return (buf); 651 } 652 653 static void 654 arc_hdr_free(arc_buf_hdr_t *hdr) 655 { 656 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 657 ASSERT3P(hdr->b_state, ==, arc.anon); 658 659 if (!BUF_EMPTY(hdr)) { 660 /* 661 * We can be called with an arc state lock held, 662 * so we can't hold a hash lock here. 663 * ASSERT(not in hash table) 664 */ 665 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 666 bzero(&hdr->b_dva, sizeof (dva_t)); 667 hdr->b_birth = 0; 668 hdr->b_cksum0 = 0; 669 } 670 if (hdr->b_buf) { 671 arc_buf_t *buf = hdr->b_buf; 672 673 ASSERT3U(hdr->b_size, >, 0); 674 zio_buf_free(buf->b_data, hdr->b_size); 675 atomic_add_64(&arc.size, -hdr->b_size); 676 ASSERT3U(arc.anon->size, >=, hdr->b_size); 677 atomic_add_64(&arc.anon->size, -hdr->b_size); 678 ASSERT3P(buf->b_next, ==, NULL); 679 kmem_cache_free(buf_cache, buf); 680 hdr->b_buf = NULL; 681 } 682 ASSERT(!list_link_active(&hdr->b_arc_node)); 683 ASSERT3P(hdr->b_hash_next, ==, NULL); 684 ASSERT3P(hdr->b_acb, ==, NULL); 685 kmem_cache_free(hdr_cache, hdr); 686 } 687 688 void 689 arc_buf_free(arc_buf_t *buf, void *tag) 690 { 691 arc_buf_hdr_t *hdr = buf->b_hdr; 692 kmutex_t *hash_lock = HDR_LOCK(hdr); 693 int freeable; 694 695 mutex_enter(hash_lock); 696 if (remove_reference(hdr, hash_lock, tag) > 0) { 697 arc_buf_t **bufp = &hdr->b_buf; 698 arc_state_t *state = hdr->b_state; 699 uint64_t size = hdr->b_size; 700 701 ASSERT(hdr->b_state != arc.anon || HDR_IO_ERROR(hdr)); 702 while (*bufp != buf) { 703 ASSERT(*bufp); 704 bufp = &(*bufp)->b_next; 705 } 706 *bufp = buf->b_next; 707 mutex_exit(hash_lock); 708 zio_buf_free(buf->b_data, size); 709 atomic_add_64(&arc.size, -size); 710 kmem_cache_free(buf_cache, buf); 711 ASSERT3U(state->size, >=, size); 712 atomic_add_64(&state->size, -size); 713 return; 714 } 715 716 /* don't free buffers that are in the middle of an async write */ 717 freeable = (hdr->b_state == arc.anon && hdr->b_acb == NULL); 718 mutex_exit(hash_lock); 719 720 if (freeable) 721 arc_hdr_free(hdr); 722 } 723 724 int 725 arc_buf_size(arc_buf_t *buf) 726 { 727 return (buf->b_hdr->b_size); 728 } 729 730 /* 731 * Evict buffers from list until we've removed the specified number of 732 * bytes. Move the removed buffers to the appropriate evict state. 733 */ 734 static uint64_t 735 arc_evict_state(arc_state_t *state, int64_t bytes) 736 { 737 arc_state_t *evicted_state; 738 uint64_t bytes_evicted = 0; 739 arc_buf_hdr_t *ab, *ab_prev; 740 kmutex_t *hash_lock; 741 742 ASSERT(state == arc.mru_top || state == arc.mfu_top); 743 744 if (state == arc.mru_top) 745 evicted_state = arc.mru_bot; 746 else 747 evicted_state = arc.mfu_bot; 748 749 mutex_enter(&state->mtx); 750 mutex_enter(&evicted_state->mtx); 751 752 for (ab = list_tail(&state->list); ab; ab = ab_prev) { 753 ab_prev = list_prev(&state->list, ab); 754 hash_lock = HDR_LOCK(ab); 755 if (mutex_tryenter(hash_lock)) { 756 ASSERT3U(refcount_count(&ab->b_refcnt), ==, 0); 757 arc_change_state(evicted_state, ab, hash_lock); 758 zio_buf_free(ab->b_buf->b_data, ab->b_size); 759 atomic_add_64(&arc.size, -ab->b_size); 760 ASSERT3P(ab->b_buf->b_next, ==, NULL); 761 kmem_cache_free(buf_cache, ab->b_buf); 762 ab->b_buf = NULL; 763 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, ab); 764 bytes_evicted += ab->b_size; 765 mutex_exit(hash_lock); 766 if (bytes_evicted >= bytes) 767 break; 768 } else { 769 atomic_add_64(&arc.skipped, 1); 770 } 771 } 772 mutex_exit(&evicted_state->mtx); 773 mutex_exit(&state->mtx); 774 775 if (bytes_evicted < bytes) 776 dprintf("only evicted %lld bytes from %x", 777 (longlong_t)bytes_evicted, state); 778 779 return (bytes_evicted); 780 } 781 782 /* 783 * Remove buffers from list until we've removed the specified number of 784 * bytes. Destroy the buffers that are removed. 785 */ 786 static void 787 arc_delete_state(arc_state_t *state, int64_t bytes) 788 { 789 uint_t bufs_skipped = 0; 790 uint64_t bytes_deleted = 0; 791 arc_buf_hdr_t *ab, *ab_prev; 792 kmutex_t *hash_lock; 793 794 top: 795 mutex_enter(&state->mtx); 796 for (ab = list_tail(&state->list); ab; ab = ab_prev) { 797 ab_prev = list_prev(&state->list, ab); 798 hash_lock = HDR_LOCK(ab); 799 if (mutex_tryenter(hash_lock)) { 800 arc_change_state(arc.anon, ab, hash_lock); 801 mutex_exit(hash_lock); 802 atomic_add_64(&arc.deleted, 1); 803 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, ab); 804 bytes_deleted += ab->b_size; 805 arc_hdr_free(ab); 806 if (bytes >= 0 && bytes_deleted >= bytes) 807 break; 808 } else { 809 if (bytes < 0) { 810 mutex_exit(&state->mtx); 811 mutex_enter(hash_lock); 812 mutex_exit(hash_lock); 813 goto top; 814 } 815 bufs_skipped += 1; 816 } 817 } 818 mutex_exit(&state->mtx); 819 820 if (bufs_skipped) { 821 atomic_add_64(&arc.skipped, bufs_skipped); 822 ASSERT(bytes >= 0); 823 } 824 825 if (bytes_deleted < bytes) 826 dprintf("only deleted %lld bytes from %p", 827 (longlong_t)bytes_deleted, state); 828 } 829 830 static void 831 arc_adjust(void) 832 { 833 int64_t top_sz, mru_over, arc_over; 834 835 top_sz = arc.anon->size + arc.mru_top->size; 836 837 if (top_sz > arc.p && arc.mru_top->lsize > 0) { 838 int64_t toevict = MIN(arc.mru_top->lsize, top_sz-arc.p); 839 (void) arc_evict_state(arc.mru_top, toevict); 840 top_sz = arc.anon->size + arc.mru_top->size; 841 } 842 843 mru_over = top_sz + arc.mru_bot->size - arc.c; 844 845 if (mru_over > 0) { 846 if (arc.mru_bot->lsize > 0) { 847 int64_t todelete = MIN(arc.mru_bot->lsize, mru_over); 848 arc_delete_state(arc.mru_bot, todelete); 849 } 850 } 851 852 if ((arc_over = arc.size - arc.c) > 0) { 853 int64_t table_over; 854 855 if (arc.mfu_top->lsize > 0) { 856 int64_t toevict = MIN(arc.mfu_top->lsize, arc_over); 857 (void) arc_evict_state(arc.mfu_top, toevict); 858 } 859 860 table_over = arc.size + arc.mru_bot->lsize + arc.mfu_bot->lsize 861 - arc.c*2; 862 863 if (table_over > 0 && arc.mfu_bot->lsize > 0) { 864 int64_t todelete = MIN(arc.mfu_bot->lsize, table_over); 865 arc_delete_state(arc.mfu_bot, todelete); 866 } 867 } 868 } 869 870 /* 871 * Flush all *evictable* data from the cache. 872 * NOTE: this will not touch "active" (i.e. referenced) data. 873 */ 874 void 875 arc_flush(void) 876 { 877 arc_delete_state(arc.mru_top, -1); 878 arc_delete_state(arc.mfu_top, -1); 879 880 arc_delete_state(arc.mru_bot, -1); 881 arc_delete_state(arc.mfu_bot, -1); 882 } 883 884 void 885 arc_kmem_reclaim(void) 886 { 887 /* Remove 6.25% */ 888 /* 889 * We need arc_reclaim_lock because we don't want multiple 890 * threads trying to reclaim concurrently. 891 */ 892 893 /* 894 * umem calls the reclaim func when we destroy the buf cache, 895 * which is after we do arc_fini(). So we set a flag to prevent 896 * accessing the destroyed mutexes and lists. 897 */ 898 if (arc_dead) 899 return; 900 901 mutex_enter(&arc_reclaim_lock); 902 903 atomic_add_64(&arc.c, -(arc.c >> 4)); 904 if (arc.c < arc.c_min) 905 arc.c = arc.c_min; 906 atomic_add_64(&arc.p, -(arc.p >> 4)); 907 908 arc_adjust(); 909 910 /* Cool it for a while */ 911 arc.incr = 0; 912 arc.size_check = arc_size_check_default << 3; 913 914 mutex_exit(&arc_reclaim_lock); 915 } 916 917 static int 918 arc_reclaim_needed(void) 919 { 920 uint64_t extra; 921 922 #ifdef _KERNEL 923 /* 924 * take 'desfree' extra pages, so we reclaim sooner, rather than later 925 */ 926 extra = desfree; 927 928 /* 929 * check that we're out of range of the pageout scanner. It starts to 930 * schedule paging if freemem is less than lotsfree and needfree. 931 * lotsfree is the high-water mark for pageout, and needfree is the 932 * number of needed free pages. We add extra pages here to make sure 933 * the scanner doesn't start up while we're freeing memory. 934 */ 935 if (freemem < lotsfree + needfree + extra) 936 return (1); 937 938 /* 939 * check to make sure that swapfs has enough space so that anon 940 * reservations can still succeeed. anon_resvmem() checks that the 941 * availrmem is greater than swapfs_minfree, and the number of reserved 942 * swap pages. We also add a bit of extra here just to prevent 943 * circumstances from getting really dire. 944 */ 945 if (availrmem < swapfs_minfree + swapfs_reserve + extra) 946 return (1); 947 948 /* 949 * If we're on an i386 platform, it's possible that we'll exhaust the 950 * kernel heap space before we ever run out of available physical 951 * memory. Most checks of the size of the heap_area compare against 952 * tune.t_minarmem, which is the minimum available real memory that we 953 * can have in the system. However, this is generally fixed at 25 pages 954 * which is so low that it's useless. In this comparison, we seek to 955 * calculate the total heap-size, and reclaim if more than 3/4ths of the 956 * heap is allocated. (Or, in the caclulation, if less than 1/4th is 957 * free) 958 */ 959 #if defined(__i386) 960 if (btop(vmem_size(heap_arena, VMEM_FREE)) < 961 (btop(vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC)) >> 2)) 962 return (1); 963 #endif 964 965 #else 966 if (spa_get_random(100) == 0) 967 return (1); 968 #endif 969 return (0); 970 } 971 972 static void 973 arc_kmem_reap_now(arc_reclaim_strategy_t strat) 974 { 975 size_t i; 976 kmem_cache_t *prev_cache = NULL; 977 extern kmem_cache_t *zio_buf_cache[]; 978 979 #ifdef _KERNEL 980 /* 981 * First purge some DNLC entries, in case the DNLC is using 982 * up too much memory. 983 */ 984 dnlc_reduce_cache((void *)arc_reduce_dnlc_percent); 985 #endif 986 987 /* 988 * an agressive reclamation will shrink the cache size as well as reap 989 * free kmem buffers. The arc_kmem_reclaim function is called when the 990 * header-cache is reaped, so we only reap the header cache if we're 991 * performing an agressive reclaim. If we're not, just clean the kmem 992 * buffer caches. 993 */ 994 if (strat == ARC_RECLAIM_AGGR) 995 kmem_cache_reap_now(hdr_cache); 996 997 kmem_cache_reap_now(buf_cache); 998 999 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) { 1000 if (zio_buf_cache[i] != prev_cache) { 1001 prev_cache = zio_buf_cache[i]; 1002 kmem_cache_reap_now(zio_buf_cache[i]); 1003 } 1004 } 1005 } 1006 1007 static void 1008 arc_reclaim_thread(void) 1009 { 1010 clock_t growtime = 0; 1011 arc_reclaim_strategy_t last_reclaim = ARC_RECLAIM_CONS; 1012 callb_cpr_t cpr; 1013 1014 CALLB_CPR_INIT(&cpr, &arc_reclaim_thr_lock, callb_generic_cpr, FTAG); 1015 1016 mutex_enter(&arc_reclaim_thr_lock); 1017 while (arc_thread_exit == 0) { 1018 if (arc_reclaim_needed()) { 1019 1020 if (arc.no_grow) { 1021 if (last_reclaim == ARC_RECLAIM_CONS) { 1022 last_reclaim = ARC_RECLAIM_AGGR; 1023 } else { 1024 last_reclaim = ARC_RECLAIM_CONS; 1025 } 1026 } else { 1027 arc.no_grow = TRUE; 1028 last_reclaim = ARC_RECLAIM_AGGR; 1029 membar_producer(); 1030 } 1031 1032 /* reset the growth delay for every reclaim */ 1033 growtime = lbolt + (arc_grow_retry * hz); 1034 1035 arc_kmem_reap_now(last_reclaim); 1036 1037 } else if ((growtime > 0) && ((growtime - lbolt) <= 0)) { 1038 arc.no_grow = FALSE; 1039 } 1040 1041 /* block until needed, or one second, whichever is shorter */ 1042 CALLB_CPR_SAFE_BEGIN(&cpr); 1043 (void) cv_timedwait(&arc_reclaim_thr_cv, 1044 &arc_reclaim_thr_lock, (lbolt + hz)); 1045 CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_thr_lock); 1046 } 1047 1048 arc_thread_exit = 0; 1049 cv_broadcast(&arc_reclaim_thr_cv); 1050 CALLB_CPR_EXIT(&cpr); /* drops arc_reclaim_thr_lock */ 1051 thread_exit(); 1052 } 1053 1054 static void 1055 arc_try_grow(int64_t bytes) 1056 { 1057 /* 1058 * If we're within (2 * maxblocksize) bytes of the target 1059 * cache size, increment the target cache size 1060 */ 1061 atomic_add_64((uint64_t *)&arc.size_check, 1); 1062 1063 if (arc_reclaim_needed()) { 1064 cv_signal(&arc_reclaim_thr_cv); 1065 return; 1066 } 1067 1068 if (arc.no_grow) 1069 return; 1070 1071 /* 1072 * return true if we successfully grow, or if there's enough space that 1073 * we don't have to grow. Above, we return false if we can't grow, or 1074 * if we shouldn't because a reclaim is in progress. 1075 */ 1076 if ((arc.c - arc.size) <= (2ULL << SPA_MAXBLOCKSHIFT)) { 1077 if (arc.size_check > 0) { 1078 arc.size_check = arc_size_check_default; 1079 atomic_add_64(&arc.incr, arc_incr_size); 1080 } 1081 atomic_add_64(&arc.c, MIN(bytes, arc.incr)); 1082 if (arc.c > arc.c_max) 1083 arc.c = arc.c_max; 1084 else 1085 atomic_add_64(&arc.p, MIN(bytes, arc.incr)); 1086 } else if (arc.size > arc.c) { 1087 if (arc.size_check > 0) { 1088 arc.size_check = arc_size_check_default; 1089 atomic_add_64(&arc.incr, arc_incr_size); 1090 } 1091 atomic_add_64(&arc.c, MIN(bytes, arc.incr)); 1092 if (arc.c > arc.c_max) 1093 arc.c = arc.c_max; 1094 else 1095 atomic_add_64(&arc.p, MIN(bytes, arc.incr)); 1096 } 1097 } 1098 1099 /* 1100 * check if the cache has reached its limits and eviction is required prior to 1101 * insert. In this situation, we want to evict if no_grow is set Otherwise, the 1102 * cache is either big enough that we can insert, or a arc_try_grow will result 1103 * in more space being made available. 1104 */ 1105 1106 static int 1107 arc_evict_needed() 1108 { 1109 1110 if (arc_reclaim_needed()) 1111 return (1); 1112 1113 if (arc.no_grow || (arc.c > arc.c_max) || (arc.size > arc.c)) 1114 return (1); 1115 1116 return (0); 1117 } 1118 1119 /* 1120 * The state, supplied as the first argument, is going to have something 1121 * inserted on its behalf. So, determine which cache must be victimized to 1122 * satisfy an insertion for this state. We have the following cases: 1123 * 1124 * 1. Insert for MRU, p > sizeof(arc.anon + arc.mru_top) -> 1125 * In this situation if we're out of space, but the resident size of the MFU is 1126 * under the limit, victimize the MFU cache to satisfy this insertion request. 1127 * 1128 * 2. Insert for MRU, p <= sizeof(arc.anon + arc.mru_top) -> 1129 * Here, we've used up all of the available space for the MRU, so we need to 1130 * evict from our own cache instead. Evict from the set of resident MRU 1131 * entries. 1132 * 1133 * 3. Insert for MFU (c - p) > sizeof(arc.mfu_top) -> 1134 * c minus p represents the MFU space in the cache, since p is the size of the 1135 * cache that is dedicated to the MRU. In this situation there's still space on 1136 * the MFU side, so the MRU side needs to be victimized. 1137 * 1138 * 4. Insert for MFU (c - p) < sizeof(arc.mfu_top) -> 1139 * MFU's resident set is consuming more space than it has been allotted. In 1140 * this situation, we must victimize our own cache, the MFU, for this insertion. 1141 */ 1142 static void 1143 arc_evict_for_state(arc_state_t *state, uint64_t bytes) 1144 { 1145 uint64_t mru_used; 1146 uint64_t mfu_space; 1147 uint64_t evicted; 1148 1149 ASSERT(state == arc.mru_top || state == arc.mfu_top); 1150 1151 if (state == arc.mru_top) { 1152 mru_used = arc.anon->size + arc.mru_top->size; 1153 if (arc.p > mru_used) { 1154 /* case 1 */ 1155 evicted = arc_evict_state(arc.mfu_top, bytes); 1156 if (evicted < bytes) { 1157 arc_adjust(); 1158 } 1159 } else { 1160 /* case 2 */ 1161 evicted = arc_evict_state(arc.mru_top, bytes); 1162 if (evicted < bytes) { 1163 arc_adjust(); 1164 } 1165 } 1166 } else { 1167 /* MFU_top case */ 1168 mfu_space = arc.c - arc.p; 1169 if (mfu_space > arc.mfu_top->size) { 1170 /* case 3 */ 1171 evicted = arc_evict_state(arc.mru_top, bytes); 1172 if (evicted < bytes) { 1173 arc_adjust(); 1174 } 1175 } else { 1176 /* case 4 */ 1177 evicted = arc_evict_state(arc.mfu_top, bytes); 1178 if (evicted < bytes) { 1179 arc_adjust(); 1180 } 1181 } 1182 } 1183 } 1184 1185 /* 1186 * This routine is called whenever a buffer is accessed. 1187 */ 1188 static void 1189 arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock) 1190 { 1191 int blksz, mult; 1192 1193 ASSERT(MUTEX_HELD(hash_lock)); 1194 1195 blksz = buf->b_size; 1196 1197 if (buf->b_state == arc.anon) { 1198 /* 1199 * This buffer is not in the cache, and does not 1200 * appear in our "ghost" list. Add the new buffer 1201 * to the MRU state. 1202 */ 1203 1204 arc_try_grow(blksz); 1205 if (arc_evict_needed()) { 1206 arc_evict_for_state(arc.mru_top, blksz); 1207 } 1208 1209 ASSERT(buf->b_arc_access == 0); 1210 buf->b_arc_access = lbolt; 1211 DTRACE_PROBE1(new_state__mru_top, arc_buf_hdr_t *, 1212 buf); 1213 arc_change_state(arc.mru_top, buf, hash_lock); 1214 1215 /* 1216 * If we are using less than 2/3 of our total target 1217 * cache size, bump up the target size for the MRU 1218 * list. 1219 */ 1220 if (arc.size < arc.c*2/3) { 1221 arc.p = arc.anon->size + arc.mru_top->size + arc.c/6; 1222 } 1223 1224 } else if (buf->b_state == arc.mru_top) { 1225 /* 1226 * If this buffer is in the MRU-top state and has the prefetch 1227 * flag, the first read was actually part of a prefetch. In 1228 * this situation, we simply want to clear the flag and return. 1229 * A subsequent access should bump this into the MFU state. 1230 */ 1231 if ((buf->b_flags & ARC_PREFETCH) != 0) { 1232 buf->b_flags &= ~ARC_PREFETCH; 1233 atomic_add_64(&arc.mru_top->hits, 1); 1234 return; 1235 } 1236 1237 /* 1238 * This buffer has been "accessed" only once so far, 1239 * but it is still in the cache. Move it to the MFU 1240 * state. 1241 */ 1242 if (lbolt > buf->b_arc_access + ARC_MINTIME) { 1243 /* 1244 * More than 125ms have passed since we 1245 * instantiated this buffer. Move it to the 1246 * most frequently used state. 1247 */ 1248 buf->b_arc_access = lbolt; 1249 DTRACE_PROBE1(new_state__mfu_top, 1250 arc_buf_hdr_t *, buf); 1251 arc_change_state(arc.mfu_top, buf, hash_lock); 1252 } 1253 atomic_add_64(&arc.mru_top->hits, 1); 1254 } else if (buf->b_state == arc.mru_bot) { 1255 arc_state_t *new_state; 1256 /* 1257 * This buffer has been "accessed" recently, but 1258 * was evicted from the cache. Move it to the 1259 * MFU state. 1260 */ 1261 1262 if (buf->b_flags & ARC_PREFETCH) { 1263 new_state = arc.mru_top; 1264 DTRACE_PROBE1(new_state__mru_top, 1265 arc_buf_hdr_t *, buf); 1266 } else { 1267 new_state = arc.mfu_top; 1268 DTRACE_PROBE1(new_state__mfu_top, 1269 arc_buf_hdr_t *, buf); 1270 } 1271 1272 arc_try_grow(blksz); 1273 if (arc_evict_needed()) { 1274 arc_evict_for_state(new_state, blksz); 1275 } 1276 1277 /* Bump up the target size of the MRU list */ 1278 mult = ((arc.mru_bot->size >= arc.mfu_bot->size) ? 1279 1 : (arc.mfu_bot->size/arc.mru_bot->size)); 1280 arc.p = MIN(arc.c, arc.p + blksz * mult); 1281 1282 buf->b_arc_access = lbolt; 1283 arc_change_state(new_state, buf, hash_lock); 1284 1285 atomic_add_64(&arc.mru_bot->hits, 1); 1286 } else if (buf->b_state == arc.mfu_top) { 1287 /* 1288 * This buffer has been accessed more than once and is 1289 * still in the cache. Keep it in the MFU state. 1290 * 1291 * NOTE: the add_reference() that occurred when we did 1292 * the arc_read() should have kicked this off the list, 1293 * so even if it was a prefetch, it will be put back at 1294 * the head of the list when we remove_reference(). 1295 */ 1296 atomic_add_64(&arc.mfu_top->hits, 1); 1297 } else if (buf->b_state == arc.mfu_bot) { 1298 /* 1299 * This buffer has been accessed more than once but has 1300 * been evicted from the cache. Move it back to the 1301 * MFU state. 1302 */ 1303 1304 arc_try_grow(blksz); 1305 if (arc_evict_needed()) { 1306 arc_evict_for_state(arc.mfu_top, blksz); 1307 } 1308 1309 /* Bump up the target size for the MFU list */ 1310 mult = ((arc.mfu_bot->size >= arc.mru_bot->size) ? 1311 1 : (arc.mru_bot->size/arc.mfu_bot->size)); 1312 arc.p = MAX(0, (int64_t)arc.p - blksz * mult); 1313 1314 buf->b_arc_access = lbolt; 1315 DTRACE_PROBE1(new_state__mfu_top, 1316 arc_buf_hdr_t *, buf); 1317 arc_change_state(arc.mfu_top, buf, hash_lock); 1318 1319 atomic_add_64(&arc.mfu_bot->hits, 1); 1320 } else { 1321 ASSERT(!"invalid arc state"); 1322 } 1323 1324 } 1325 1326 /* a generic arc_done_func_t which you can use */ 1327 /* ARGSUSED */ 1328 void 1329 arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg) 1330 { 1331 bcopy(buf->b_data, arg, buf->b_hdr->b_size); 1332 arc_buf_free(buf, arg); 1333 } 1334 1335 /* a generic arc_done_func_t which you can use */ 1336 void 1337 arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg) 1338 { 1339 arc_buf_t **bufp = arg; 1340 if (zio && zio->io_error) { 1341 arc_buf_free(buf, arg); 1342 *bufp = NULL; 1343 } else { 1344 *bufp = buf; 1345 } 1346 } 1347 1348 static void 1349 arc_read_done(zio_t *zio) 1350 { 1351 arc_buf_hdr_t *hdr; 1352 arc_buf_t *buf; 1353 arc_buf_t *abuf; /* buffer we're assigning to callback */ 1354 kmutex_t *hash_lock; 1355 arc_callback_t *callback_list, *acb; 1356 int freeable = FALSE; 1357 1358 buf = zio->io_private; 1359 hdr = buf->b_hdr; 1360 1361 if (!HDR_FREED_IN_READ(hdr)) { 1362 arc_buf_hdr_t *found; 1363 1364 found = buf_hash_find(zio->io_spa, &hdr->b_dva, hdr->b_birth, 1365 &hash_lock); 1366 1367 /* 1368 * Buffer was inserted into hash-table and removed from lists 1369 * prior to starting I/O. We should find this header, since 1370 * it's in the hash table, and it should be legit since it's 1371 * not possible to evict it during the I/O. 1372 */ 1373 1374 ASSERT(found); 1375 ASSERT(DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))); 1376 } 1377 1378 /* byteswap if necessary */ 1379 callback_list = hdr->b_acb; 1380 ASSERT(callback_list != NULL); 1381 if (BP_SHOULD_BYTESWAP(zio->io_bp) && callback_list->acb_byteswap) 1382 callback_list->acb_byteswap(buf->b_data, hdr->b_size); 1383 1384 /* create copies of the data buffer for the callers */ 1385 abuf = buf; 1386 for (acb = callback_list; acb; acb = acb->acb_next) { 1387 if (acb->acb_done) { 1388 if (abuf == NULL) { 1389 abuf = kmem_cache_alloc(buf_cache, KM_SLEEP); 1390 abuf->b_data = zio_buf_alloc(hdr->b_size); 1391 atomic_add_64(&arc.size, hdr->b_size); 1392 bcopy(buf->b_data, abuf->b_data, hdr->b_size); 1393 abuf->b_hdr = hdr; 1394 abuf->b_next = hdr->b_buf; 1395 hdr->b_buf = abuf; 1396 atomic_add_64(&hdr->b_state->size, hdr->b_size); 1397 } 1398 acb->acb_buf = abuf; 1399 abuf = NULL; 1400 } else { 1401 /* 1402 * The caller did not provide a callback function. 1403 * In this case, we should just remove the reference. 1404 */ 1405 if (HDR_FREED_IN_READ(hdr)) { 1406 ASSERT3P(hdr->b_state, ==, arc.anon); 1407 (void) refcount_remove(&hdr->b_refcnt, 1408 acb->acb_private); 1409 } else { 1410 (void) remove_reference(hdr, hash_lock, 1411 acb->acb_private); 1412 } 1413 } 1414 } 1415 hdr->b_acb = NULL; 1416 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 1417 1418 ASSERT(refcount_is_zero(&hdr->b_refcnt) || callback_list != NULL); 1419 1420 if (zio->io_error != 0) { 1421 hdr->b_flags |= ARC_IO_ERROR; 1422 if (hdr->b_state != arc.anon) 1423 arc_change_state(arc.anon, hdr, hash_lock); 1424 freeable = refcount_is_zero(&hdr->b_refcnt); 1425 } 1426 1427 if (!HDR_FREED_IN_READ(hdr)) { 1428 /* 1429 * Only call arc_access on anonymous buffers. This is because 1430 * if we've issued an I/O for an evicted buffer, we've already 1431 * called arc_access (to prevent any simultaneous readers from 1432 * getting confused). 1433 */ 1434 if (zio->io_error == 0 && hdr->b_state == arc.anon) 1435 arc_access(hdr, hash_lock); 1436 mutex_exit(hash_lock); 1437 } else { 1438 /* 1439 * This block was freed while we waited for the read to 1440 * complete. It has been removed from the hash table and 1441 * moved to the anonymous state (so that it won't show up 1442 * in the cache). 1443 */ 1444 ASSERT3P(hdr->b_state, ==, arc.anon); 1445 freeable = refcount_is_zero(&hdr->b_refcnt); 1446 } 1447 1448 cv_broadcast(&hdr->b_cv); 1449 1450 /* execute each callback and free its structure */ 1451 while ((acb = callback_list) != NULL) { 1452 if (acb->acb_done) 1453 acb->acb_done(zio, acb->acb_buf, acb->acb_private); 1454 1455 if (acb->acb_zio_dummy != NULL) { 1456 acb->acb_zio_dummy->io_error = zio->io_error; 1457 zio_nowait(acb->acb_zio_dummy); 1458 } 1459 1460 callback_list = acb->acb_next; 1461 kmem_free(acb, sizeof (arc_callback_t)); 1462 } 1463 1464 if (freeable) 1465 arc_hdr_free(hdr); 1466 } 1467 1468 /* 1469 * "Read" the block block at the specified DVA (in bp) via the 1470 * cache. If the block is found in the cache, invoke the provided 1471 * callback immediately and return. Note that the `zio' parameter 1472 * in the callback will be NULL in this case, since no IO was 1473 * required. If the block is not in the cache pass the read request 1474 * on to the spa with a substitute callback function, so that the 1475 * requested block will be added to the cache. 1476 * 1477 * If a read request arrives for a block that has a read in-progress, 1478 * either wait for the in-progress read to complete (and return the 1479 * results); or, if this is a read with a "done" func, add a record 1480 * to the read to invoke the "done" func when the read completes, 1481 * and return; or just return. 1482 * 1483 * arc_read_done() will invoke all the requested "done" functions 1484 * for readers of this block. 1485 */ 1486 int 1487 arc_read(zio_t *pio, spa_t *spa, blkptr_t *bp, arc_byteswap_func_t *swap, 1488 arc_done_func_t *done, void *private, int priority, int flags, 1489 uint32_t arc_flags) 1490 { 1491 arc_buf_hdr_t *hdr; 1492 arc_buf_t *buf; 1493 kmutex_t *hash_lock; 1494 zio_t *rzio; 1495 1496 top: 1497 hdr = buf_hash_find(spa, BP_IDENTITY(bp), bp->blk_birth, &hash_lock); 1498 if (hdr && hdr->b_buf) { 1499 1500 ASSERT((hdr->b_state == arc.mru_top) || 1501 (hdr->b_state == arc.mfu_top) || 1502 ((hdr->b_state == arc.anon) && 1503 (HDR_IO_IN_PROGRESS(hdr)))); 1504 1505 if (HDR_IO_IN_PROGRESS(hdr)) { 1506 1507 if ((arc_flags & ARC_NOWAIT) && done) { 1508 arc_callback_t *acb = NULL; 1509 1510 acb = kmem_zalloc(sizeof (arc_callback_t), 1511 KM_SLEEP); 1512 acb->acb_done = done; 1513 acb->acb_private = private; 1514 acb->acb_byteswap = swap; 1515 if (pio != NULL) 1516 acb->acb_zio_dummy = zio_null(pio, 1517 spa, NULL, NULL, flags); 1518 1519 ASSERT(acb->acb_done != NULL); 1520 acb->acb_next = hdr->b_acb; 1521 hdr->b_acb = acb; 1522 add_reference(hdr, hash_lock, private); 1523 mutex_exit(hash_lock); 1524 return (0); 1525 } else if (arc_flags & ARC_WAIT) { 1526 cv_wait(&hdr->b_cv, hash_lock); 1527 mutex_exit(hash_lock); 1528 goto top; 1529 } 1530 1531 mutex_exit(hash_lock); 1532 return (0); 1533 } 1534 1535 /* 1536 * If there is already a reference on this block, create 1537 * a new copy of the data so that we will be guaranteed 1538 * that arc_release() will always succeed. 1539 */ 1540 1541 if (done) 1542 add_reference(hdr, hash_lock, private); 1543 if (done && refcount_count(&hdr->b_refcnt) > 1) { 1544 buf = kmem_cache_alloc(buf_cache, KM_SLEEP); 1545 buf->b_data = zio_buf_alloc(hdr->b_size); 1546 ASSERT3U(refcount_count(&hdr->b_refcnt), >, 1); 1547 atomic_add_64(&arc.size, hdr->b_size); 1548 bcopy(hdr->b_buf->b_data, buf->b_data, hdr->b_size); 1549 buf->b_hdr = hdr; 1550 buf->b_next = hdr->b_buf; 1551 hdr->b_buf = buf; 1552 atomic_add_64(&hdr->b_state->size, hdr->b_size); 1553 } else { 1554 buf = hdr->b_buf; 1555 } 1556 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 1557 arc_access(hdr, hash_lock); 1558 mutex_exit(hash_lock); 1559 atomic_add_64(&arc.hits, 1); 1560 if (done) 1561 done(NULL, buf, private); 1562 } else { 1563 uint64_t size = BP_GET_LSIZE(bp); 1564 arc_callback_t *acb; 1565 1566 if (hdr == NULL) { 1567 /* this block is not in the cache */ 1568 arc_buf_hdr_t *exists; 1569 1570 buf = arc_buf_alloc(spa, size, private); 1571 hdr = buf->b_hdr; 1572 hdr->b_dva = *BP_IDENTITY(bp); 1573 hdr->b_birth = bp->blk_birth; 1574 hdr->b_cksum0 = bp->blk_cksum.zc_word[0]; 1575 exists = buf_hash_insert(hdr, &hash_lock); 1576 if (exists) { 1577 /* somebody beat us to the hash insert */ 1578 mutex_exit(hash_lock); 1579 bzero(&hdr->b_dva, sizeof (dva_t)); 1580 hdr->b_birth = 0; 1581 hdr->b_cksum0 = 0; 1582 arc_buf_free(buf, private); 1583 goto top; /* restart the IO request */ 1584 } 1585 1586 } else { 1587 /* this block is in the ghost cache */ 1588 ASSERT((hdr->b_state == arc.mru_bot) || 1589 (hdr->b_state == arc.mfu_bot)); 1590 add_reference(hdr, hash_lock, private); 1591 1592 buf = kmem_cache_alloc(buf_cache, KM_SLEEP); 1593 buf->b_data = zio_buf_alloc(hdr->b_size); 1594 atomic_add_64(&arc.size, hdr->b_size); 1595 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 1596 ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 1); 1597 buf->b_hdr = hdr; 1598 buf->b_next = NULL; 1599 hdr->b_buf = buf; 1600 } 1601 1602 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP); 1603 acb->acb_done = done; 1604 acb->acb_private = private; 1605 acb->acb_byteswap = swap; 1606 1607 ASSERT(hdr->b_acb == NULL); 1608 hdr->b_acb = acb; 1609 1610 /* 1611 * If this DVA is part of a prefetch, mark the buf 1612 * header with the prefetch flag 1613 */ 1614 if (arc_flags & ARC_PREFETCH) 1615 hdr->b_flags |= ARC_PREFETCH; 1616 hdr->b_flags |= ARC_IO_IN_PROGRESS; 1617 1618 /* 1619 * If the buffer has been evicted, migrate it to a present state 1620 * before issuing the I/O. Once we drop the hash-table lock, 1621 * the header will be marked as I/O in progress and have an 1622 * attached buffer. At this point, anybody who finds this 1623 * buffer ought to notice that it's legit but has a pending I/O. 1624 */ 1625 1626 if ((hdr->b_state == arc.mru_bot) || 1627 (hdr->b_state == arc.mfu_bot)) 1628 arc_access(hdr, hash_lock); 1629 1630 mutex_exit(hash_lock); 1631 1632 ASSERT3U(hdr->b_size, ==, size); 1633 DTRACE_PROBE2(arc__miss, blkptr_t *, bp, 1634 uint64_t, size); 1635 atomic_add_64(&arc.misses, 1); 1636 rzio = zio_read(pio, spa, bp, buf->b_data, size, 1637 arc_read_done, buf, priority, flags); 1638 1639 if (arc_flags & ARC_WAIT) 1640 return (zio_wait(rzio)); 1641 1642 ASSERT(arc_flags & ARC_NOWAIT); 1643 zio_nowait(rzio); 1644 } 1645 return (0); 1646 } 1647 1648 /* 1649 * arc_read() variant to support pool traversal. If the block is already 1650 * in the ARC, make a copy of it; otherwise, the caller will do the I/O. 1651 * The idea is that we don't want pool traversal filling up memory, but 1652 * if the ARC already has the data anyway, we shouldn't pay for the I/O. 1653 */ 1654 int 1655 arc_tryread(spa_t *spa, blkptr_t *bp, void *data) 1656 { 1657 arc_buf_hdr_t *hdr; 1658 kmutex_t *hash_mtx; 1659 int rc = 0; 1660 1661 hdr = buf_hash_find(spa, BP_IDENTITY(bp), bp->blk_birth, &hash_mtx); 1662 1663 if (hdr && hdr->b_buf && !HDR_IO_IN_PROGRESS(hdr)) 1664 bcopy(hdr->b_buf->b_data, data, hdr->b_size); 1665 else 1666 rc = ENOENT; 1667 1668 if (hash_mtx) 1669 mutex_exit(hash_mtx); 1670 1671 return (rc); 1672 } 1673 1674 /* 1675 * Release this buffer from the cache. This must be done 1676 * after a read and prior to modifying the buffer contents. 1677 * If the buffer has more than one reference, we must make 1678 * make a new hdr for the buffer. 1679 */ 1680 void 1681 arc_release(arc_buf_t *buf, void *tag) 1682 { 1683 arc_buf_hdr_t *hdr = buf->b_hdr; 1684 kmutex_t *hash_lock = HDR_LOCK(hdr); 1685 1686 /* this buffer is not on any list */ 1687 ASSERT(refcount_count(&hdr->b_refcnt) > 0); 1688 1689 if (hdr->b_state == arc.anon) { 1690 /* this buffer is already released */ 1691 ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 1); 1692 ASSERT(BUF_EMPTY(hdr)); 1693 return; 1694 } 1695 1696 mutex_enter(hash_lock); 1697 1698 if (refcount_count(&hdr->b_refcnt) > 1) { 1699 arc_buf_hdr_t *nhdr; 1700 arc_buf_t **bufp; 1701 uint64_t blksz = hdr->b_size; 1702 spa_t *spa = hdr->b_spa; 1703 1704 /* 1705 * Pull the data off of this buf and attach it to 1706 * a new anonymous buf. 1707 */ 1708 bufp = &hdr->b_buf; 1709 while (*bufp != buf) { 1710 ASSERT(*bufp); 1711 bufp = &(*bufp)->b_next; 1712 } 1713 *bufp = (*bufp)->b_next; 1714 (void) refcount_remove(&hdr->b_refcnt, tag); 1715 ASSERT3U(hdr->b_state->size, >=, hdr->b_size); 1716 atomic_add_64(&hdr->b_state->size, -hdr->b_size); 1717 mutex_exit(hash_lock); 1718 1719 nhdr = kmem_cache_alloc(hdr_cache, KM_SLEEP); 1720 nhdr->b_size = blksz; 1721 nhdr->b_spa = spa; 1722 nhdr->b_buf = buf; 1723 nhdr->b_state = arc.anon; 1724 nhdr->b_arc_access = 0; 1725 nhdr->b_flags = 0; 1726 buf->b_hdr = nhdr; 1727 buf->b_next = NULL; 1728 (void) refcount_add(&nhdr->b_refcnt, tag); 1729 atomic_add_64(&arc.anon->size, blksz); 1730 1731 hdr = nhdr; 1732 } else { 1733 ASSERT(!list_link_active(&hdr->b_arc_node)); 1734 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 1735 arc_change_state(arc.anon, hdr, hash_lock); 1736 hdr->b_arc_access = 0; 1737 mutex_exit(hash_lock); 1738 bzero(&hdr->b_dva, sizeof (dva_t)); 1739 hdr->b_birth = 0; 1740 hdr->b_cksum0 = 0; 1741 } 1742 } 1743 1744 int 1745 arc_released(arc_buf_t *buf) 1746 { 1747 return (buf->b_hdr->b_state == arc.anon); 1748 } 1749 1750 static void 1751 arc_write_done(zio_t *zio) 1752 { 1753 arc_buf_t *buf; 1754 arc_buf_hdr_t *hdr; 1755 arc_callback_t *acb; 1756 1757 buf = zio->io_private; 1758 hdr = buf->b_hdr; 1759 acb = hdr->b_acb; 1760 hdr->b_acb = NULL; 1761 1762 /* this buffer is on no lists and is not in the hash table */ 1763 ASSERT3P(hdr->b_state, ==, arc.anon); 1764 1765 hdr->b_dva = *BP_IDENTITY(zio->io_bp); 1766 hdr->b_birth = zio->io_bp->blk_birth; 1767 hdr->b_cksum0 = zio->io_bp->blk_cksum.zc_word[0]; 1768 /* clear the "in-write" flag */ 1769 hdr->b_hash_next = NULL; 1770 /* This write may be all-zero */ 1771 if (!BUF_EMPTY(hdr)) { 1772 arc_buf_hdr_t *exists; 1773 kmutex_t *hash_lock; 1774 1775 exists = buf_hash_insert(hdr, &hash_lock); 1776 if (exists) { 1777 /* 1778 * This can only happen if we overwrite for 1779 * sync-to-convergence, because we remove 1780 * buffers from the hash table when we arc_free(). 1781 */ 1782 ASSERT(DVA_EQUAL(BP_IDENTITY(&zio->io_bp_orig), 1783 BP_IDENTITY(zio->io_bp))); 1784 ASSERT3U(zio->io_bp_orig.blk_birth, ==, 1785 zio->io_bp->blk_birth); 1786 1787 ASSERT(refcount_is_zero(&exists->b_refcnt)); 1788 arc_change_state(arc.anon, exists, hash_lock); 1789 mutex_exit(hash_lock); 1790 arc_hdr_free(exists); 1791 exists = buf_hash_insert(hdr, &hash_lock); 1792 ASSERT3P(exists, ==, NULL); 1793 } 1794 arc_access(hdr, hash_lock); 1795 mutex_exit(hash_lock); 1796 } 1797 if (acb && acb->acb_done) { 1798 ASSERT(!refcount_is_zero(&hdr->b_refcnt)); 1799 acb->acb_done(zio, buf, acb->acb_private); 1800 } 1801 1802 if (acb) 1803 kmem_free(acb, sizeof (arc_callback_t)); 1804 } 1805 1806 int 1807 arc_write(zio_t *pio, spa_t *spa, int checksum, int compress, 1808 uint64_t txg, blkptr_t *bp, arc_buf_t *buf, 1809 arc_done_func_t *done, void *private, int priority, int flags, 1810 uint32_t arc_flags) 1811 { 1812 arc_buf_hdr_t *hdr = buf->b_hdr; 1813 arc_callback_t *acb; 1814 zio_t *rzio; 1815 1816 /* this is a private buffer - no locking required */ 1817 ASSERT3P(hdr->b_state, ==, arc.anon); 1818 ASSERT(BUF_EMPTY(hdr)); 1819 ASSERT(!HDR_IO_ERROR(hdr)); 1820 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP); 1821 acb->acb_done = done; 1822 acb->acb_private = private; 1823 acb->acb_byteswap = (arc_byteswap_func_t *)-1; 1824 hdr->b_acb = acb; 1825 rzio = zio_write(pio, spa, checksum, compress, txg, bp, 1826 buf->b_data, hdr->b_size, arc_write_done, buf, priority, flags); 1827 1828 if (arc_flags & ARC_WAIT) 1829 return (zio_wait(rzio)); 1830 1831 ASSERT(arc_flags & ARC_NOWAIT); 1832 zio_nowait(rzio); 1833 1834 return (0); 1835 } 1836 1837 int 1838 arc_free(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, 1839 zio_done_func_t *done, void *private, uint32_t arc_flags) 1840 { 1841 arc_buf_hdr_t *ab; 1842 kmutex_t *hash_lock; 1843 zio_t *zio; 1844 1845 /* 1846 * If this buffer is in the cache, release it, so it 1847 * can be re-used. 1848 */ 1849 ab = buf_hash_find(spa, BP_IDENTITY(bp), bp->blk_birth, &hash_lock); 1850 if (ab != NULL) { 1851 /* 1852 * The checksum of blocks to free is not always 1853 * preserved (eg. on the deadlist). However, if it is 1854 * nonzero, it should match what we have in the cache. 1855 */ 1856 ASSERT(bp->blk_cksum.zc_word[0] == 0 || 1857 ab->b_cksum0 == bp->blk_cksum.zc_word[0]); 1858 arc_change_state(arc.anon, ab, hash_lock); 1859 if (refcount_is_zero(&ab->b_refcnt)) { 1860 mutex_exit(hash_lock); 1861 arc_hdr_free(ab); 1862 atomic_add_64(&arc.deleted, 1); 1863 } else { 1864 ASSERT3U(refcount_count(&ab->b_refcnt), ==, 1); 1865 if (HDR_IO_IN_PROGRESS(ab)) 1866 ab->b_flags |= ARC_FREED_IN_READ; 1867 ab->b_arc_access = 0; 1868 bzero(&ab->b_dva, sizeof (dva_t)); 1869 ab->b_birth = 0; 1870 ab->b_cksum0 = 0; 1871 mutex_exit(hash_lock); 1872 } 1873 } 1874 1875 zio = zio_free(pio, spa, txg, bp, done, private); 1876 1877 if (arc_flags & ARC_WAIT) 1878 return (zio_wait(zio)); 1879 1880 ASSERT(arc_flags & ARC_NOWAIT); 1881 zio_nowait(zio); 1882 1883 return (0); 1884 } 1885 1886 void 1887 arc_tempreserve_clear(uint64_t tempreserve) 1888 { 1889 atomic_add_64(&arc_tempreserve, -tempreserve); 1890 ASSERT((int64_t)arc_tempreserve >= 0); 1891 } 1892 1893 int 1894 arc_tempreserve_space(uint64_t tempreserve) 1895 { 1896 #ifdef ZFS_DEBUG 1897 /* 1898 * Once in a while, fail for no reason. Everything should cope. 1899 */ 1900 if (spa_get_random(10000) == 0) { 1901 dprintf("forcing random failure\n"); 1902 return (ERESTART); 1903 } 1904 #endif 1905 if (tempreserve > arc.c/4 && !arc.no_grow) 1906 arc.c = MIN(arc.c_max, tempreserve * 4); 1907 if (tempreserve > arc.c) 1908 return (ENOMEM); 1909 1910 /* 1911 * Throttle writes when the amount of dirty data in the cache 1912 * gets too large. We try to keep the cache less than half full 1913 * of dirty blocks so that our sync times don't grow too large. 1914 * Note: if two requests come in concurrently, we might let them 1915 * both succeed, when one of them should fail. Not a huge deal. 1916 * 1917 * XXX The limit should be adjusted dynamically to keep the time 1918 * to sync a dataset fixed (around 1-5 seconds?). 1919 */ 1920 1921 if (tempreserve + arc_tempreserve + arc.anon->size > arc.c / 2 && 1922 arc_tempreserve + arc.anon->size > arc.c / 4) { 1923 dprintf("failing, arc_tempreserve=%lluK anon=%lluK " 1924 "tempreserve=%lluK arc.c=%lluK\n", 1925 arc_tempreserve>>10, arc.anon->lsize>>10, 1926 tempreserve>>10, arc.c>>10); 1927 return (ERESTART); 1928 } 1929 atomic_add_64(&arc_tempreserve, tempreserve); 1930 return (0); 1931 } 1932 1933 void 1934 arc_init(void) 1935 { 1936 mutex_init(&arc_reclaim_lock, NULL, MUTEX_DEFAULT, NULL); 1937 mutex_init(&arc_reclaim_thr_lock, NULL, MUTEX_DEFAULT, NULL); 1938 cv_init(&arc_reclaim_thr_cv, NULL, CV_DEFAULT, NULL); 1939 1940 /* Start out with 1/8 of all memory */ 1941 arc.c = physmem * PAGESIZE / 8; 1942 1943 #ifdef _KERNEL 1944 /* 1945 * On architectures where the physical memory can be larger 1946 * than the addressable space (intel in 32-bit mode), we may 1947 * need to limit the cache to 1/8 of VM size. 1948 */ 1949 arc.c = MIN(arc.c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8); 1950 #endif 1951 1952 /* set min cache to 1/32 of all memory, or 64MB, whichever is more */ 1953 arc.c_min = MAX(arc.c / 4, 64<<20); 1954 /* set max to 3/4 of all memory, or all but 1GB, whichever is more */ 1955 if (arc.c * 8 >= 1<<30) 1956 arc.c_max = (arc.c * 8) - (1<<30); 1957 else 1958 arc.c_max = arc.c_min; 1959 arc.c_max = MAX(arc.c * 6, arc.c_max); 1960 arc.c = arc.c_max; 1961 arc.p = (arc.c >> 1); 1962 1963 /* if kmem_flags are set, lets try to use less memory */ 1964 if (kmem_debugging()) 1965 arc.c = arc.c / 2; 1966 if (arc.c < arc.c_min) 1967 arc.c = arc.c_min; 1968 1969 arc.anon = &ARC_anon; 1970 arc.mru_top = &ARC_mru_top; 1971 arc.mru_bot = &ARC_mru_bot; 1972 arc.mfu_top = &ARC_mfu_top; 1973 arc.mfu_bot = &ARC_mfu_bot; 1974 1975 list_create(&arc.mru_top->list, sizeof (arc_buf_hdr_t), 1976 offsetof(arc_buf_hdr_t, b_arc_node)); 1977 list_create(&arc.mru_bot->list, sizeof (arc_buf_hdr_t), 1978 offsetof(arc_buf_hdr_t, b_arc_node)); 1979 list_create(&arc.mfu_top->list, sizeof (arc_buf_hdr_t), 1980 offsetof(arc_buf_hdr_t, b_arc_node)); 1981 list_create(&arc.mfu_bot->list, sizeof (arc_buf_hdr_t), 1982 offsetof(arc_buf_hdr_t, b_arc_node)); 1983 1984 buf_init(); 1985 1986 arc_thread_exit = 0; 1987 1988 (void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0, 1989 TS_RUN, minclsyspri); 1990 } 1991 1992 void 1993 arc_fini(void) 1994 { 1995 mutex_enter(&arc_reclaim_thr_lock); 1996 arc_thread_exit = 1; 1997 while (arc_thread_exit != 0) 1998 cv_wait(&arc_reclaim_thr_cv, &arc_reclaim_thr_lock); 1999 mutex_exit(&arc_reclaim_thr_lock); 2000 2001 arc_flush(); 2002 2003 arc_dead = TRUE; 2004 2005 mutex_destroy(&arc_reclaim_lock); 2006 mutex_destroy(&arc_reclaim_thr_lock); 2007 cv_destroy(&arc_reclaim_thr_cv); 2008 2009 list_destroy(&arc.mru_top->list); 2010 list_destroy(&arc.mru_bot->list); 2011 list_destroy(&arc.mfu_top->list); 2012 list_destroy(&arc.mfu_bot->list); 2013 2014 buf_fini(); 2015 } 2016