1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 /* 29 * DVA-based Adjustable Relpacement Cache 30 * 31 * While much of the theory of operation used here is 32 * based on the self-tuning, low overhead replacement cache 33 * presented by Megiddo and Modha at FAST 2003, there are some 34 * significant differences: 35 * 36 * 1. The Megiddo and Modha model assumes any page is evictable. 37 * Pages in its cache cannot be "locked" into memory. This makes 38 * the eviction algorithm simple: evict the last page in the list. 39 * This also make the performance characteristics easy to reason 40 * about. Our cache is not so simple. At any given moment, some 41 * subset of the blocks in the cache are un-evictable because we 42 * have handed out a reference to them. Blocks are only evictable 43 * when there are no external references active. This makes 44 * eviction far more problematic: we choose to evict the evictable 45 * blocks that are the "lowest" in the list. 46 * 47 * There are times when it is not possible to evict the requested 48 * space. In these circumstances we are unable to adjust the cache 49 * size. To prevent the cache growing unbounded at these times we 50 * implement a "cache throttle" that slowes the flow of new data 51 * into the cache until we can make space avaiable. 52 * 53 * 2. The Megiddo and Modha model assumes a fixed cache size. 54 * Pages are evicted when the cache is full and there is a cache 55 * miss. Our model has a variable sized cache. It grows with 56 * high use, but also tries to react to memory preasure from the 57 * operating system: decreasing its size when system memory is 58 * tight. 59 * 60 * 3. The Megiddo and Modha model assumes a fixed page size. All 61 * elements of the cache are therefor exactly the same size. So 62 * when adjusting the cache size following a cache miss, its simply 63 * a matter of choosing a single page to evict. In our model, we 64 * have variable sized cache blocks (rangeing from 512 bytes to 65 * 128K bytes). We therefor choose a set of blocks to evict to make 66 * space for a cache miss that approximates as closely as possible 67 * the space used by the new block. 68 * 69 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache" 70 * by N. Megiddo & D. Modha, FAST 2003 71 */ 72 73 /* 74 * The locking model: 75 * 76 * A new reference to a cache buffer can be obtained in two 77 * ways: 1) via a hash table lookup using the DVA as a key, 78 * or 2) via one of the ARC lists. The arc_read() inerface 79 * uses method 1, while the internal arc algorithms for 80 * adjusting the cache use method 2. We therefor provide two 81 * types of locks: 1) the hash table lock array, and 2) the 82 * arc list locks. 83 * 84 * Buffers do not have their own mutexs, rather they rely on the 85 * hash table mutexs for the bulk of their protection (i.e. most 86 * fields in the arc_buf_hdr_t are protected by these mutexs). 87 * 88 * buf_hash_find() returns the appropriate mutex (held) when it 89 * locates the requested buffer in the hash table. It returns 90 * NULL for the mutex if the buffer was not in the table. 91 * 92 * buf_hash_remove() expects the appropriate hash mutex to be 93 * already held before it is invoked. 94 * 95 * Each arc state also has a mutex which is used to protect the 96 * buffer list associated with the state. When attempting to 97 * obtain a hash table lock while holding an arc list lock you 98 * must use: mutex_tryenter() to avoid deadlock. Also note that 99 * the active state mutex must be held before the ghost state mutex. 100 * 101 * Arc buffers may have an associated eviction callback function. 102 * This function will be invoked prior to removing the buffer (e.g. 103 * in arc_do_user_evicts()). Note however that the data associated 104 * with the buffer may be evicted prior to the callback. The callback 105 * must be made with *no locks held* (to prevent deadlock). Additionally, 106 * the users of callbacks must ensure that their private data is 107 * protected from simultaneous callbacks from arc_buf_evict() 108 * and arc_do_user_evicts(). 109 * 110 * Note that the majority of the performance stats are manipulated 111 * with atomic operations. 112 */ 113 114 #include <sys/spa.h> 115 #include <sys/zio.h> 116 #include <sys/zio_checksum.h> 117 #include <sys/zfs_context.h> 118 #include <sys/arc.h> 119 #include <sys/refcount.h> 120 #ifdef _KERNEL 121 #include <sys/vmsystm.h> 122 #include <vm/anon.h> 123 #include <sys/fs/swapnode.h> 124 #include <sys/dnlc.h> 125 #endif 126 #include <sys/callb.h> 127 128 static kmutex_t arc_reclaim_thr_lock; 129 static kcondvar_t arc_reclaim_thr_cv; /* used to signal reclaim thr */ 130 static uint8_t arc_thread_exit; 131 132 #define ARC_REDUCE_DNLC_PERCENT 3 133 uint_t arc_reduce_dnlc_percent = ARC_REDUCE_DNLC_PERCENT; 134 135 typedef enum arc_reclaim_strategy { 136 ARC_RECLAIM_AGGR, /* Aggressive reclaim strategy */ 137 ARC_RECLAIM_CONS /* Conservative reclaim strategy */ 138 } arc_reclaim_strategy_t; 139 140 /* number of seconds before growing cache again */ 141 static int arc_grow_retry = 60; 142 143 /* 144 * minimum lifespan of a prefetch block in clock ticks 145 * (initialized in arc_init()) 146 */ 147 static int arc_min_prefetch_lifespan; 148 149 static int arc_dead; 150 151 /* 152 * These tunables are for performance analysis. 153 */ 154 uint64_t zfs_arc_max; 155 uint64_t zfs_arc_min; 156 157 /* 158 * Note that buffers can be on one of 5 states: 159 * ARC_anon - anonymous (discussed below) 160 * ARC_mru - recently used, currently cached 161 * ARC_mru_ghost - recentely used, no longer in cache 162 * ARC_mfu - frequently used, currently cached 163 * ARC_mfu_ghost - frequently used, no longer in cache 164 * When there are no active references to the buffer, they 165 * are linked onto one of the lists in arc. These are the 166 * only buffers that can be evicted or deleted. 167 * 168 * Anonymous buffers are buffers that are not associated with 169 * a DVA. These are buffers that hold dirty block copies 170 * before they are written to stable storage. By definition, 171 * they are "ref'd" and are considered part of arc_mru 172 * that cannot be freed. Generally, they will aquire a DVA 173 * as they are written and migrate onto the arc_mru list. 174 */ 175 176 typedef struct arc_state { 177 list_t list; /* linked list of evictable buffer in state */ 178 uint64_t lsize; /* total size of buffers in the linked list */ 179 uint64_t size; /* total size of all buffers in this state */ 180 uint64_t hits; 181 kmutex_t mtx; 182 } arc_state_t; 183 184 /* The 5 states: */ 185 static arc_state_t ARC_anon; 186 static arc_state_t ARC_mru; 187 static arc_state_t ARC_mru_ghost; 188 static arc_state_t ARC_mfu; 189 static arc_state_t ARC_mfu_ghost; 190 191 static struct arc { 192 arc_state_t *anon; 193 arc_state_t *mru; 194 arc_state_t *mru_ghost; 195 arc_state_t *mfu; 196 arc_state_t *mfu_ghost; 197 uint64_t size; /* Actual total arc size */ 198 uint64_t p; /* Target size (in bytes) of mru */ 199 uint64_t c; /* Target size of cache (in bytes) */ 200 uint64_t c_min; /* Minimum target cache size */ 201 uint64_t c_max; /* Maximum target cache size */ 202 203 /* performance stats */ 204 uint64_t hits; 205 uint64_t misses; 206 uint64_t deleted; 207 uint64_t recycle_miss; 208 uint64_t mutex_miss; 209 uint64_t evict_skip; 210 uint64_t hash_elements; 211 uint64_t hash_elements_max; 212 uint64_t hash_collisions; 213 uint64_t hash_chains; 214 uint32_t hash_chain_max; 215 216 int no_grow; /* Don't try to grow cache size */ 217 } arc; 218 219 static uint64_t arc_tempreserve; 220 221 typedef struct arc_callback arc_callback_t; 222 223 struct arc_callback { 224 arc_done_func_t *acb_done; 225 void *acb_private; 226 arc_byteswap_func_t *acb_byteswap; 227 arc_buf_t *acb_buf; 228 zio_t *acb_zio_dummy; 229 arc_callback_t *acb_next; 230 }; 231 232 struct arc_buf_hdr { 233 /* immutable */ 234 uint64_t b_size; 235 spa_t *b_spa; 236 237 /* protected by hash lock */ 238 dva_t b_dva; 239 uint64_t b_birth; 240 uint64_t b_cksum0; 241 242 kmutex_t b_freeze_lock; 243 zio_cksum_t *b_freeze_cksum; 244 245 arc_buf_hdr_t *b_hash_next; 246 arc_buf_t *b_buf; 247 uint32_t b_flags; 248 uint32_t b_datacnt; 249 250 kcondvar_t b_cv; 251 arc_callback_t *b_acb; 252 253 /* protected by arc state mutex */ 254 arc_state_t *b_state; 255 list_node_t b_arc_node; 256 257 /* updated atomically */ 258 clock_t b_arc_access; 259 260 /* self protecting */ 261 refcount_t b_refcnt; 262 }; 263 264 static arc_buf_t *arc_eviction_list; 265 static kmutex_t arc_eviction_mtx; 266 static arc_buf_hdr_t arc_eviction_hdr; 267 static void arc_get_data_buf(arc_buf_t *buf); 268 static void arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock); 269 270 #define GHOST_STATE(state) \ 271 ((state) == arc.mru_ghost || (state) == arc.mfu_ghost) 272 273 /* 274 * Private ARC flags. These flags are private ARC only flags that will show up 275 * in b_flags in the arc_hdr_buf_t. Some flags are publicly declared, and can 276 * be passed in as arc_flags in things like arc_read. However, these flags 277 * should never be passed and should only be set by ARC code. When adding new 278 * public flags, make sure not to smash the private ones. 279 */ 280 281 #define ARC_IN_HASH_TABLE (1 << 9) /* this buffer is hashed */ 282 #define ARC_IO_IN_PROGRESS (1 << 10) /* I/O in progress for buf */ 283 #define ARC_IO_ERROR (1 << 11) /* I/O failed for buf */ 284 #define ARC_FREED_IN_READ (1 << 12) /* buf freed while in read */ 285 #define ARC_BUF_AVAILABLE (1 << 13) /* block not in active use */ 286 #define ARC_INDIRECT (1 << 14) /* this is an indirect block */ 287 288 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_IN_HASH_TABLE) 289 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_IO_IN_PROGRESS) 290 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_IO_ERROR) 291 #define HDR_FREED_IN_READ(hdr) ((hdr)->b_flags & ARC_FREED_IN_READ) 292 #define HDR_BUF_AVAILABLE(hdr) ((hdr)->b_flags & ARC_BUF_AVAILABLE) 293 294 /* 295 * Hash table routines 296 */ 297 298 #define HT_LOCK_PAD 64 299 300 struct ht_lock { 301 kmutex_t ht_lock; 302 #ifdef _KERNEL 303 unsigned char pad[(HT_LOCK_PAD - sizeof (kmutex_t))]; 304 #endif 305 }; 306 307 #define BUF_LOCKS 256 308 typedef struct buf_hash_table { 309 uint64_t ht_mask; 310 arc_buf_hdr_t **ht_table; 311 struct ht_lock ht_locks[BUF_LOCKS]; 312 } buf_hash_table_t; 313 314 static buf_hash_table_t buf_hash_table; 315 316 #define BUF_HASH_INDEX(spa, dva, birth) \ 317 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask) 318 #define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)]) 319 #define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock)) 320 #define HDR_LOCK(buf) \ 321 (BUF_HASH_LOCK(BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth))) 322 323 uint64_t zfs_crc64_table[256]; 324 325 static uint64_t 326 buf_hash(spa_t *spa, dva_t *dva, uint64_t birth) 327 { 328 uintptr_t spav = (uintptr_t)spa; 329 uint8_t *vdva = (uint8_t *)dva; 330 uint64_t crc = -1ULL; 331 int i; 332 333 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY); 334 335 for (i = 0; i < sizeof (dva_t); i++) 336 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF]; 337 338 crc ^= (spav>>8) ^ birth; 339 340 return (crc); 341 } 342 343 #define BUF_EMPTY(buf) \ 344 ((buf)->b_dva.dva_word[0] == 0 && \ 345 (buf)->b_dva.dva_word[1] == 0 && \ 346 (buf)->b_birth == 0) 347 348 #define BUF_EQUAL(spa, dva, birth, buf) \ 349 ((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \ 350 ((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \ 351 ((buf)->b_birth == birth) && ((buf)->b_spa == spa) 352 353 static arc_buf_hdr_t * 354 buf_hash_find(spa_t *spa, dva_t *dva, uint64_t birth, kmutex_t **lockp) 355 { 356 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth); 357 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 358 arc_buf_hdr_t *buf; 359 360 mutex_enter(hash_lock); 361 for (buf = buf_hash_table.ht_table[idx]; buf != NULL; 362 buf = buf->b_hash_next) { 363 if (BUF_EQUAL(spa, dva, birth, buf)) { 364 *lockp = hash_lock; 365 return (buf); 366 } 367 } 368 mutex_exit(hash_lock); 369 *lockp = NULL; 370 return (NULL); 371 } 372 373 /* 374 * Insert an entry into the hash table. If there is already an element 375 * equal to elem in the hash table, then the already existing element 376 * will be returned and the new element will not be inserted. 377 * Otherwise returns NULL. 378 */ 379 static arc_buf_hdr_t * 380 buf_hash_insert(arc_buf_hdr_t *buf, kmutex_t **lockp) 381 { 382 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth); 383 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 384 arc_buf_hdr_t *fbuf; 385 uint32_t max, i; 386 387 ASSERT(!HDR_IN_HASH_TABLE(buf)); 388 *lockp = hash_lock; 389 mutex_enter(hash_lock); 390 for (fbuf = buf_hash_table.ht_table[idx], i = 0; fbuf != NULL; 391 fbuf = fbuf->b_hash_next, i++) { 392 if (BUF_EQUAL(buf->b_spa, &buf->b_dva, buf->b_birth, fbuf)) 393 return (fbuf); 394 } 395 396 buf->b_hash_next = buf_hash_table.ht_table[idx]; 397 buf_hash_table.ht_table[idx] = buf; 398 buf->b_flags |= ARC_IN_HASH_TABLE; 399 400 /* collect some hash table performance data */ 401 if (i > 0) { 402 atomic_add_64(&arc.hash_collisions, 1); 403 if (i == 1) 404 atomic_add_64(&arc.hash_chains, 1); 405 } 406 while (i > (max = arc.hash_chain_max) && 407 max != atomic_cas_32(&arc.hash_chain_max, max, i)) { 408 continue; 409 } 410 atomic_add_64(&arc.hash_elements, 1); 411 if (arc.hash_elements > arc.hash_elements_max) 412 atomic_add_64(&arc.hash_elements_max, 1); 413 414 return (NULL); 415 } 416 417 static void 418 buf_hash_remove(arc_buf_hdr_t *buf) 419 { 420 arc_buf_hdr_t *fbuf, **bufp; 421 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth); 422 423 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx))); 424 ASSERT(HDR_IN_HASH_TABLE(buf)); 425 426 bufp = &buf_hash_table.ht_table[idx]; 427 while ((fbuf = *bufp) != buf) { 428 ASSERT(fbuf != NULL); 429 bufp = &fbuf->b_hash_next; 430 } 431 *bufp = buf->b_hash_next; 432 buf->b_hash_next = NULL; 433 buf->b_flags &= ~ARC_IN_HASH_TABLE; 434 435 /* collect some hash table performance data */ 436 atomic_add_64(&arc.hash_elements, -1); 437 if (buf_hash_table.ht_table[idx] && 438 buf_hash_table.ht_table[idx]->b_hash_next == NULL) 439 atomic_add_64(&arc.hash_chains, -1); 440 } 441 442 /* 443 * Global data structures and functions for the buf kmem cache. 444 */ 445 static kmem_cache_t *hdr_cache; 446 static kmem_cache_t *buf_cache; 447 448 static void 449 buf_fini(void) 450 { 451 int i; 452 453 kmem_free(buf_hash_table.ht_table, 454 (buf_hash_table.ht_mask + 1) * sizeof (void *)); 455 for (i = 0; i < BUF_LOCKS; i++) 456 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock); 457 kmem_cache_destroy(hdr_cache); 458 kmem_cache_destroy(buf_cache); 459 } 460 461 /* 462 * Constructor callback - called when the cache is empty 463 * and a new buf is requested. 464 */ 465 /* ARGSUSED */ 466 static int 467 hdr_cons(void *vbuf, void *unused, int kmflag) 468 { 469 arc_buf_hdr_t *buf = vbuf; 470 471 bzero(buf, sizeof (arc_buf_hdr_t)); 472 refcount_create(&buf->b_refcnt); 473 cv_init(&buf->b_cv, NULL, CV_DEFAULT, NULL); 474 return (0); 475 } 476 477 /* 478 * Destructor callback - called when a cached buf is 479 * no longer required. 480 */ 481 /* ARGSUSED */ 482 static void 483 hdr_dest(void *vbuf, void *unused) 484 { 485 arc_buf_hdr_t *buf = vbuf; 486 487 refcount_destroy(&buf->b_refcnt); 488 cv_destroy(&buf->b_cv); 489 } 490 491 /* 492 * Reclaim callback -- invoked when memory is low. 493 */ 494 /* ARGSUSED */ 495 static void 496 hdr_recl(void *unused) 497 { 498 dprintf("hdr_recl called\n"); 499 /* 500 * umem calls the reclaim func when we destroy the buf cache, 501 * which is after we do arc_fini(). 502 */ 503 if (!arc_dead) 504 cv_signal(&arc_reclaim_thr_cv); 505 } 506 507 static void 508 buf_init(void) 509 { 510 uint64_t *ct; 511 uint64_t hsize = 1ULL << 12; 512 int i, j; 513 514 /* 515 * The hash table is big enough to fill all of physical memory 516 * with an average 64K block size. The table will take up 517 * totalmem*sizeof(void*)/64K (eg. 128KB/GB with 8-byte pointers). 518 */ 519 while (hsize * 65536 < physmem * PAGESIZE) 520 hsize <<= 1; 521 retry: 522 buf_hash_table.ht_mask = hsize - 1; 523 buf_hash_table.ht_table = 524 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP); 525 if (buf_hash_table.ht_table == NULL) { 526 ASSERT(hsize > (1ULL << 8)); 527 hsize >>= 1; 528 goto retry; 529 } 530 531 hdr_cache = kmem_cache_create("arc_buf_hdr_t", sizeof (arc_buf_hdr_t), 532 0, hdr_cons, hdr_dest, hdr_recl, NULL, NULL, 0); 533 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t), 534 0, NULL, NULL, NULL, NULL, NULL, 0); 535 536 for (i = 0; i < 256; i++) 537 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--) 538 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY); 539 540 for (i = 0; i < BUF_LOCKS; i++) { 541 mutex_init(&buf_hash_table.ht_locks[i].ht_lock, 542 NULL, MUTEX_DEFAULT, NULL); 543 } 544 } 545 546 #define ARC_MINTIME (hz>>4) /* 62 ms */ 547 548 static void 549 arc_cksum_verify(arc_buf_t *buf) 550 { 551 zio_cksum_t zc; 552 553 if (!zfs_flags & ZFS_DEBUG_MODIFY) 554 return; 555 556 mutex_enter(&buf->b_hdr->b_freeze_lock); 557 if (buf->b_hdr->b_freeze_cksum == NULL || 558 (buf->b_hdr->b_flags & ARC_IO_ERROR)) { 559 mutex_exit(&buf->b_hdr->b_freeze_lock); 560 return; 561 } 562 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc); 563 if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc)) 564 panic("buffer modified while frozen!"); 565 mutex_exit(&buf->b_hdr->b_freeze_lock); 566 } 567 568 static void 569 arc_cksum_compute(arc_buf_t *buf) 570 { 571 if (!zfs_flags & ZFS_DEBUG_MODIFY) 572 return; 573 574 mutex_enter(&buf->b_hdr->b_freeze_lock); 575 if (buf->b_hdr->b_freeze_cksum != NULL) { 576 mutex_exit(&buf->b_hdr->b_freeze_lock); 577 return; 578 } 579 buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP); 580 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, 581 buf->b_hdr->b_freeze_cksum); 582 mutex_exit(&buf->b_hdr->b_freeze_lock); 583 } 584 585 void 586 arc_buf_thaw(arc_buf_t *buf) 587 { 588 if (!zfs_flags & ZFS_DEBUG_MODIFY) 589 return; 590 591 if (buf->b_hdr->b_state != arc.anon) 592 panic("modifying non-anon buffer!"); 593 if (buf->b_hdr->b_flags & ARC_IO_IN_PROGRESS) 594 panic("modifying buffer while i/o in progress!"); 595 arc_cksum_verify(buf); 596 mutex_enter(&buf->b_hdr->b_freeze_lock); 597 if (buf->b_hdr->b_freeze_cksum != NULL) { 598 kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t)); 599 buf->b_hdr->b_freeze_cksum = NULL; 600 } 601 mutex_exit(&buf->b_hdr->b_freeze_lock); 602 } 603 604 void 605 arc_buf_freeze(arc_buf_t *buf) 606 { 607 ASSERT(buf->b_hdr->b_freeze_cksum != NULL || 608 buf->b_hdr->b_state == arc.anon); 609 arc_cksum_compute(buf); 610 } 611 612 static void 613 add_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag) 614 { 615 ASSERT(MUTEX_HELD(hash_lock)); 616 617 if ((refcount_add(&ab->b_refcnt, tag) == 1) && 618 (ab->b_state != arc.anon)) { 619 int delta = ab->b_size * ab->b_datacnt; 620 621 ASSERT(!MUTEX_HELD(&ab->b_state->mtx)); 622 mutex_enter(&ab->b_state->mtx); 623 ASSERT(list_link_active(&ab->b_arc_node)); 624 list_remove(&ab->b_state->list, ab); 625 if (GHOST_STATE(ab->b_state)) { 626 ASSERT3U(ab->b_datacnt, ==, 0); 627 ASSERT3P(ab->b_buf, ==, NULL); 628 delta = ab->b_size; 629 } 630 ASSERT(delta > 0); 631 ASSERT3U(ab->b_state->lsize, >=, delta); 632 atomic_add_64(&ab->b_state->lsize, -delta); 633 mutex_exit(&ab->b_state->mtx); 634 /* remove the prefetch flag is we get a reference */ 635 if (ab->b_flags & ARC_PREFETCH) 636 ab->b_flags &= ~ARC_PREFETCH; 637 } 638 } 639 640 static int 641 remove_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag) 642 { 643 int cnt; 644 645 ASSERT(ab->b_state == arc.anon || MUTEX_HELD(hash_lock)); 646 ASSERT(!GHOST_STATE(ab->b_state)); 647 648 if (((cnt = refcount_remove(&ab->b_refcnt, tag)) == 0) && 649 (ab->b_state != arc.anon)) { 650 651 ASSERT(!MUTEX_HELD(&ab->b_state->mtx)); 652 mutex_enter(&ab->b_state->mtx); 653 ASSERT(!list_link_active(&ab->b_arc_node)); 654 list_insert_head(&ab->b_state->list, ab); 655 ASSERT(ab->b_datacnt > 0); 656 atomic_add_64(&ab->b_state->lsize, ab->b_size * ab->b_datacnt); 657 ASSERT3U(ab->b_state->size, >=, ab->b_state->lsize); 658 mutex_exit(&ab->b_state->mtx); 659 } 660 return (cnt); 661 } 662 663 /* 664 * Move the supplied buffer to the indicated state. The mutex 665 * for the buffer must be held by the caller. 666 */ 667 static void 668 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *ab, kmutex_t *hash_lock) 669 { 670 arc_state_t *old_state = ab->b_state; 671 int refcnt = refcount_count(&ab->b_refcnt); 672 int from_delta, to_delta; 673 674 ASSERT(MUTEX_HELD(hash_lock)); 675 ASSERT(new_state != old_state); 676 ASSERT(refcnt == 0 || ab->b_datacnt > 0); 677 ASSERT(ab->b_datacnt == 0 || !GHOST_STATE(new_state)); 678 679 from_delta = to_delta = ab->b_datacnt * ab->b_size; 680 681 /* 682 * If this buffer is evictable, transfer it from the 683 * old state list to the new state list. 684 */ 685 if (refcnt == 0) { 686 if (old_state != arc.anon) { 687 int use_mutex = !MUTEX_HELD(&old_state->mtx); 688 689 if (use_mutex) 690 mutex_enter(&old_state->mtx); 691 692 ASSERT(list_link_active(&ab->b_arc_node)); 693 list_remove(&old_state->list, ab); 694 695 /* 696 * If prefetching out of the ghost cache, 697 * we will have a non-null datacnt. 698 */ 699 if (GHOST_STATE(old_state) && ab->b_datacnt == 0) { 700 /* ghost elements have a ghost size */ 701 ASSERT(ab->b_buf == NULL); 702 from_delta = ab->b_size; 703 } 704 ASSERT3U(old_state->lsize, >=, from_delta); 705 atomic_add_64(&old_state->lsize, -from_delta); 706 707 if (use_mutex) 708 mutex_exit(&old_state->mtx); 709 } 710 if (new_state != arc.anon) { 711 int use_mutex = !MUTEX_HELD(&new_state->mtx); 712 713 if (use_mutex) 714 mutex_enter(&new_state->mtx); 715 716 list_insert_head(&new_state->list, ab); 717 718 /* ghost elements have a ghost size */ 719 if (GHOST_STATE(new_state)) { 720 ASSERT(ab->b_datacnt == 0); 721 ASSERT(ab->b_buf == NULL); 722 to_delta = ab->b_size; 723 } 724 atomic_add_64(&new_state->lsize, to_delta); 725 ASSERT3U(new_state->size + to_delta, >=, 726 new_state->lsize); 727 728 if (use_mutex) 729 mutex_exit(&new_state->mtx); 730 } 731 } 732 733 ASSERT(!BUF_EMPTY(ab)); 734 if (new_state == arc.anon && old_state != arc.anon) { 735 buf_hash_remove(ab); 736 } 737 738 /* adjust state sizes */ 739 if (to_delta) 740 atomic_add_64(&new_state->size, to_delta); 741 if (from_delta) { 742 ASSERT3U(old_state->size, >=, from_delta); 743 atomic_add_64(&old_state->size, -from_delta); 744 } 745 ab->b_state = new_state; 746 } 747 748 arc_buf_t * 749 arc_buf_alloc(spa_t *spa, int size, void *tag) 750 { 751 arc_buf_hdr_t *hdr; 752 arc_buf_t *buf; 753 754 ASSERT3U(size, >, 0); 755 hdr = kmem_cache_alloc(hdr_cache, KM_SLEEP); 756 ASSERT(BUF_EMPTY(hdr)); 757 hdr->b_size = size; 758 hdr->b_spa = spa; 759 hdr->b_state = arc.anon; 760 hdr->b_arc_access = 0; 761 buf = kmem_cache_alloc(buf_cache, KM_SLEEP); 762 buf->b_hdr = hdr; 763 buf->b_data = NULL; 764 buf->b_efunc = NULL; 765 buf->b_private = NULL; 766 buf->b_next = NULL; 767 hdr->b_buf = buf; 768 arc_get_data_buf(buf); 769 hdr->b_datacnt = 1; 770 hdr->b_flags = 0; 771 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 772 (void) refcount_add(&hdr->b_refcnt, tag); 773 774 return (buf); 775 } 776 777 static arc_buf_t * 778 arc_buf_clone(arc_buf_t *from) 779 { 780 arc_buf_t *buf; 781 arc_buf_hdr_t *hdr = from->b_hdr; 782 uint64_t size = hdr->b_size; 783 784 buf = kmem_cache_alloc(buf_cache, KM_SLEEP); 785 buf->b_hdr = hdr; 786 buf->b_data = NULL; 787 buf->b_efunc = NULL; 788 buf->b_private = NULL; 789 buf->b_next = hdr->b_buf; 790 hdr->b_buf = buf; 791 arc_get_data_buf(buf); 792 bcopy(from->b_data, buf->b_data, size); 793 hdr->b_datacnt += 1; 794 return (buf); 795 } 796 797 void 798 arc_buf_add_ref(arc_buf_t *buf, void* tag) 799 { 800 arc_buf_hdr_t *hdr; 801 kmutex_t *hash_lock; 802 803 /* 804 * Check to see if this buffer is currently being evicted via 805 * arc_do_user_evicts(). 806 */ 807 mutex_enter(&arc_eviction_mtx); 808 hdr = buf->b_hdr; 809 if (hdr == NULL) { 810 mutex_exit(&arc_eviction_mtx); 811 return; 812 } 813 hash_lock = HDR_LOCK(hdr); 814 mutex_exit(&arc_eviction_mtx); 815 816 mutex_enter(hash_lock); 817 if (buf->b_data == NULL) { 818 /* 819 * This buffer is evicted. 820 */ 821 mutex_exit(hash_lock); 822 return; 823 } 824 825 ASSERT(buf->b_hdr == hdr); 826 ASSERT(hdr->b_state == arc.mru || hdr->b_state == arc.mfu); 827 add_reference(hdr, hash_lock, tag); 828 arc_access(hdr, hash_lock); 829 mutex_exit(hash_lock); 830 atomic_add_64(&arc.hits, 1); 831 } 832 833 static void 834 arc_buf_destroy(arc_buf_t *buf, boolean_t recycle, boolean_t all) 835 { 836 arc_buf_t **bufp; 837 838 /* free up data associated with the buf */ 839 if (buf->b_data) { 840 arc_state_t *state = buf->b_hdr->b_state; 841 uint64_t size = buf->b_hdr->b_size; 842 843 arc_cksum_verify(buf); 844 if (!recycle) { 845 zio_buf_free(buf->b_data, size); 846 atomic_add_64(&arc.size, -size); 847 } 848 if (list_link_active(&buf->b_hdr->b_arc_node)) { 849 ASSERT(refcount_is_zero(&buf->b_hdr->b_refcnt)); 850 ASSERT(state != arc.anon); 851 ASSERT3U(state->lsize, >=, size); 852 atomic_add_64(&state->lsize, -size); 853 } 854 ASSERT3U(state->size, >=, size); 855 atomic_add_64(&state->size, -size); 856 buf->b_data = NULL; 857 ASSERT(buf->b_hdr->b_datacnt > 0); 858 buf->b_hdr->b_datacnt -= 1; 859 } 860 861 /* only remove the buf if requested */ 862 if (!all) 863 return; 864 865 /* remove the buf from the hdr list */ 866 for (bufp = &buf->b_hdr->b_buf; *bufp != buf; bufp = &(*bufp)->b_next) 867 continue; 868 *bufp = buf->b_next; 869 870 ASSERT(buf->b_efunc == NULL); 871 872 /* clean up the buf */ 873 buf->b_hdr = NULL; 874 kmem_cache_free(buf_cache, buf); 875 } 876 877 static void 878 arc_hdr_destroy(arc_buf_hdr_t *hdr) 879 { 880 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 881 ASSERT3P(hdr->b_state, ==, arc.anon); 882 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 883 884 if (!BUF_EMPTY(hdr)) { 885 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 886 bzero(&hdr->b_dva, sizeof (dva_t)); 887 hdr->b_birth = 0; 888 hdr->b_cksum0 = 0; 889 } 890 while (hdr->b_buf) { 891 arc_buf_t *buf = hdr->b_buf; 892 893 if (buf->b_efunc) { 894 mutex_enter(&arc_eviction_mtx); 895 ASSERT(buf->b_hdr != NULL); 896 arc_buf_destroy(hdr->b_buf, FALSE, FALSE); 897 hdr->b_buf = buf->b_next; 898 buf->b_hdr = &arc_eviction_hdr; 899 buf->b_next = arc_eviction_list; 900 arc_eviction_list = buf; 901 mutex_exit(&arc_eviction_mtx); 902 } else { 903 arc_buf_destroy(hdr->b_buf, FALSE, TRUE); 904 } 905 } 906 if (hdr->b_freeze_cksum != NULL) { 907 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t)); 908 hdr->b_freeze_cksum = NULL; 909 } 910 911 ASSERT(!list_link_active(&hdr->b_arc_node)); 912 ASSERT3P(hdr->b_hash_next, ==, NULL); 913 ASSERT3P(hdr->b_acb, ==, NULL); 914 kmem_cache_free(hdr_cache, hdr); 915 } 916 917 void 918 arc_buf_free(arc_buf_t *buf, void *tag) 919 { 920 arc_buf_hdr_t *hdr = buf->b_hdr; 921 int hashed = hdr->b_state != arc.anon; 922 923 ASSERT(buf->b_efunc == NULL); 924 ASSERT(buf->b_data != NULL); 925 926 if (hashed) { 927 kmutex_t *hash_lock = HDR_LOCK(hdr); 928 929 mutex_enter(hash_lock); 930 (void) remove_reference(hdr, hash_lock, tag); 931 if (hdr->b_datacnt > 1) 932 arc_buf_destroy(buf, FALSE, TRUE); 933 else 934 hdr->b_flags |= ARC_BUF_AVAILABLE; 935 mutex_exit(hash_lock); 936 } else if (HDR_IO_IN_PROGRESS(hdr)) { 937 int destroy_hdr; 938 /* 939 * We are in the middle of an async write. Don't destroy 940 * this buffer unless the write completes before we finish 941 * decrementing the reference count. 942 */ 943 mutex_enter(&arc_eviction_mtx); 944 (void) remove_reference(hdr, NULL, tag); 945 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 946 destroy_hdr = !HDR_IO_IN_PROGRESS(hdr); 947 mutex_exit(&arc_eviction_mtx); 948 if (destroy_hdr) 949 arc_hdr_destroy(hdr); 950 } else { 951 if (remove_reference(hdr, NULL, tag) > 0) { 952 ASSERT(HDR_IO_ERROR(hdr)); 953 arc_buf_destroy(buf, FALSE, TRUE); 954 } else { 955 arc_hdr_destroy(hdr); 956 } 957 } 958 } 959 960 int 961 arc_buf_remove_ref(arc_buf_t *buf, void* tag) 962 { 963 arc_buf_hdr_t *hdr = buf->b_hdr; 964 kmutex_t *hash_lock = HDR_LOCK(hdr); 965 int no_callback = (buf->b_efunc == NULL); 966 967 if (hdr->b_state == arc.anon) { 968 arc_buf_free(buf, tag); 969 return (no_callback); 970 } 971 972 mutex_enter(hash_lock); 973 ASSERT(hdr->b_state != arc.anon); 974 ASSERT(buf->b_data != NULL); 975 976 (void) remove_reference(hdr, hash_lock, tag); 977 if (hdr->b_datacnt > 1) { 978 if (no_callback) 979 arc_buf_destroy(buf, FALSE, TRUE); 980 } else if (no_callback) { 981 ASSERT(hdr->b_buf == buf && buf->b_next == NULL); 982 hdr->b_flags |= ARC_BUF_AVAILABLE; 983 } 984 ASSERT(no_callback || hdr->b_datacnt > 1 || 985 refcount_is_zero(&hdr->b_refcnt)); 986 mutex_exit(hash_lock); 987 return (no_callback); 988 } 989 990 int 991 arc_buf_size(arc_buf_t *buf) 992 { 993 return (buf->b_hdr->b_size); 994 } 995 996 /* 997 * Evict buffers from list until we've removed the specified number of 998 * bytes. Move the removed buffers to the appropriate evict state. 999 * If the recycle flag is set, then attempt to "recycle" a buffer: 1000 * - look for a buffer to evict that is `bytes' long. 1001 * - return the data block from this buffer rather than freeing it. 1002 * This flag is used by callers that are trying to make space for a 1003 * new buffer in a full arc cache. 1004 */ 1005 static void * 1006 arc_evict(arc_state_t *state, int64_t bytes, boolean_t recycle) 1007 { 1008 arc_state_t *evicted_state; 1009 uint64_t bytes_evicted = 0, skipped = 0, missed = 0; 1010 arc_buf_hdr_t *ab, *ab_prev = NULL; 1011 kmutex_t *hash_lock; 1012 boolean_t have_lock; 1013 void *stolen = NULL; 1014 1015 ASSERT(state == arc.mru || state == arc.mfu); 1016 1017 evicted_state = (state == arc.mru) ? arc.mru_ghost : arc.mfu_ghost; 1018 1019 mutex_enter(&state->mtx); 1020 mutex_enter(&evicted_state->mtx); 1021 1022 for (ab = list_tail(&state->list); ab; ab = ab_prev) { 1023 ab_prev = list_prev(&state->list, ab); 1024 /* prefetch buffers have a minimum lifespan */ 1025 if (HDR_IO_IN_PROGRESS(ab) || 1026 (ab->b_flags & (ARC_PREFETCH|ARC_INDIRECT) && 1027 lbolt - ab->b_arc_access < arc_min_prefetch_lifespan)) { 1028 skipped++; 1029 continue; 1030 } 1031 /* "lookahead" for better eviction candidate */ 1032 if (recycle && ab->b_size != bytes && 1033 ab_prev && ab_prev->b_size == bytes) 1034 continue; 1035 hash_lock = HDR_LOCK(ab); 1036 have_lock = MUTEX_HELD(hash_lock); 1037 if (have_lock || mutex_tryenter(hash_lock)) { 1038 ASSERT3U(refcount_count(&ab->b_refcnt), ==, 0); 1039 ASSERT(ab->b_datacnt > 0); 1040 while (ab->b_buf) { 1041 arc_buf_t *buf = ab->b_buf; 1042 if (buf->b_data) { 1043 bytes_evicted += ab->b_size; 1044 if (recycle && ab->b_size == bytes) { 1045 stolen = buf->b_data; 1046 recycle = FALSE; 1047 } 1048 } 1049 if (buf->b_efunc) { 1050 mutex_enter(&arc_eviction_mtx); 1051 arc_buf_destroy(buf, 1052 buf->b_data == stolen, FALSE); 1053 ab->b_buf = buf->b_next; 1054 buf->b_hdr = &arc_eviction_hdr; 1055 buf->b_next = arc_eviction_list; 1056 arc_eviction_list = buf; 1057 mutex_exit(&arc_eviction_mtx); 1058 } else { 1059 arc_buf_destroy(buf, 1060 buf->b_data == stolen, TRUE); 1061 } 1062 } 1063 ASSERT(ab->b_datacnt == 0); 1064 arc_change_state(evicted_state, ab, hash_lock); 1065 ASSERT(HDR_IN_HASH_TABLE(ab)); 1066 ab->b_flags = ARC_IN_HASH_TABLE; 1067 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, ab); 1068 if (!have_lock) 1069 mutex_exit(hash_lock); 1070 if (bytes >= 0 && bytes_evicted >= bytes) 1071 break; 1072 } else { 1073 missed += 1; 1074 } 1075 } 1076 mutex_exit(&evicted_state->mtx); 1077 mutex_exit(&state->mtx); 1078 1079 if (bytes_evicted < bytes) 1080 dprintf("only evicted %lld bytes from %x", 1081 (longlong_t)bytes_evicted, state); 1082 1083 if (skipped) 1084 atomic_add_64(&arc.evict_skip, skipped); 1085 if (missed) 1086 atomic_add_64(&arc.mutex_miss, missed); 1087 return (stolen); 1088 } 1089 1090 /* 1091 * Remove buffers from list until we've removed the specified number of 1092 * bytes. Destroy the buffers that are removed. 1093 */ 1094 static void 1095 arc_evict_ghost(arc_state_t *state, int64_t bytes) 1096 { 1097 arc_buf_hdr_t *ab, *ab_prev; 1098 kmutex_t *hash_lock; 1099 uint64_t bytes_deleted = 0; 1100 uint_t bufs_skipped = 0; 1101 1102 ASSERT(GHOST_STATE(state)); 1103 top: 1104 mutex_enter(&state->mtx); 1105 for (ab = list_tail(&state->list); ab; ab = ab_prev) { 1106 ab_prev = list_prev(&state->list, ab); 1107 hash_lock = HDR_LOCK(ab); 1108 if (mutex_tryenter(hash_lock)) { 1109 ASSERT(!HDR_IO_IN_PROGRESS(ab)); 1110 ASSERT(ab->b_buf == NULL); 1111 arc_change_state(arc.anon, ab, hash_lock); 1112 mutex_exit(hash_lock); 1113 atomic_add_64(&arc.deleted, 1); 1114 bytes_deleted += ab->b_size; 1115 arc_hdr_destroy(ab); 1116 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, ab); 1117 if (bytes >= 0 && bytes_deleted >= bytes) 1118 break; 1119 } else { 1120 if (bytes < 0) { 1121 mutex_exit(&state->mtx); 1122 mutex_enter(hash_lock); 1123 mutex_exit(hash_lock); 1124 goto top; 1125 } 1126 bufs_skipped += 1; 1127 } 1128 } 1129 mutex_exit(&state->mtx); 1130 1131 if (bufs_skipped) { 1132 atomic_add_64(&arc.mutex_miss, bufs_skipped); 1133 ASSERT(bytes >= 0); 1134 } 1135 1136 if (bytes_deleted < bytes) 1137 dprintf("only deleted %lld bytes from %p", 1138 (longlong_t)bytes_deleted, state); 1139 } 1140 1141 static void 1142 arc_adjust(void) 1143 { 1144 int64_t top_sz, mru_over, arc_over; 1145 1146 top_sz = arc.anon->size + arc.mru->size; 1147 1148 if (top_sz > arc.p && arc.mru->lsize > 0) { 1149 int64_t toevict = MIN(arc.mru->lsize, top_sz-arc.p); 1150 (void) arc_evict(arc.mru, toevict, FALSE); 1151 top_sz = arc.anon->size + arc.mru->size; 1152 } 1153 1154 mru_over = top_sz + arc.mru_ghost->size - arc.c; 1155 1156 if (mru_over > 0) { 1157 if (arc.mru_ghost->lsize > 0) { 1158 int64_t todelete = MIN(arc.mru_ghost->lsize, mru_over); 1159 arc_evict_ghost(arc.mru_ghost, todelete); 1160 } 1161 } 1162 1163 if ((arc_over = arc.size - arc.c) > 0) { 1164 int64_t tbl_over; 1165 1166 if (arc.mfu->lsize > 0) { 1167 int64_t toevict = MIN(arc.mfu->lsize, arc_over); 1168 (void) arc_evict(arc.mfu, toevict, FALSE); 1169 } 1170 1171 tbl_over = arc.size + arc.mru_ghost->lsize + 1172 arc.mfu_ghost->lsize - arc.c*2; 1173 1174 if (tbl_over > 0 && arc.mfu_ghost->lsize > 0) { 1175 int64_t todelete = MIN(arc.mfu_ghost->lsize, tbl_over); 1176 arc_evict_ghost(arc.mfu_ghost, todelete); 1177 } 1178 } 1179 } 1180 1181 static void 1182 arc_do_user_evicts(void) 1183 { 1184 mutex_enter(&arc_eviction_mtx); 1185 while (arc_eviction_list != NULL) { 1186 arc_buf_t *buf = arc_eviction_list; 1187 arc_eviction_list = buf->b_next; 1188 buf->b_hdr = NULL; 1189 mutex_exit(&arc_eviction_mtx); 1190 1191 if (buf->b_efunc != NULL) 1192 VERIFY(buf->b_efunc(buf) == 0); 1193 1194 buf->b_efunc = NULL; 1195 buf->b_private = NULL; 1196 kmem_cache_free(buf_cache, buf); 1197 mutex_enter(&arc_eviction_mtx); 1198 } 1199 mutex_exit(&arc_eviction_mtx); 1200 } 1201 1202 /* 1203 * Flush all *evictable* data from the cache. 1204 * NOTE: this will not touch "active" (i.e. referenced) data. 1205 */ 1206 void 1207 arc_flush(void) 1208 { 1209 while (list_head(&arc.mru->list)) 1210 (void) arc_evict(arc.mru, -1, FALSE); 1211 while (list_head(&arc.mfu->list)) 1212 (void) arc_evict(arc.mfu, -1, FALSE); 1213 1214 arc_evict_ghost(arc.mru_ghost, -1); 1215 arc_evict_ghost(arc.mfu_ghost, -1); 1216 1217 mutex_enter(&arc_reclaim_thr_lock); 1218 arc_do_user_evicts(); 1219 mutex_exit(&arc_reclaim_thr_lock); 1220 ASSERT(arc_eviction_list == NULL); 1221 } 1222 1223 int arc_shrink_shift = 5; /* log2(fraction of arc to reclaim) */ 1224 1225 void 1226 arc_shrink(void) 1227 { 1228 if (arc.c > arc.c_min) { 1229 uint64_t to_free; 1230 1231 #ifdef _KERNEL 1232 to_free = MAX(arc.c >> arc_shrink_shift, ptob(needfree)); 1233 #else 1234 to_free = arc.c >> arc_shrink_shift; 1235 #endif 1236 if (arc.c > arc.c_min + to_free) 1237 atomic_add_64(&arc.c, -to_free); 1238 else 1239 arc.c = arc.c_min; 1240 1241 atomic_add_64(&arc.p, -(arc.p >> arc_shrink_shift)); 1242 if (arc.c > arc.size) 1243 arc.c = MAX(arc.size, arc.c_min); 1244 if (arc.p > arc.c) 1245 arc.p = (arc.c >> 1); 1246 ASSERT(arc.c >= arc.c_min); 1247 ASSERT((int64_t)arc.p >= 0); 1248 } 1249 1250 if (arc.size > arc.c) 1251 arc_adjust(); 1252 } 1253 1254 static int 1255 arc_reclaim_needed(void) 1256 { 1257 uint64_t extra; 1258 1259 #ifdef _KERNEL 1260 1261 if (needfree) 1262 return (1); 1263 1264 /* 1265 * take 'desfree' extra pages, so we reclaim sooner, rather than later 1266 */ 1267 extra = desfree; 1268 1269 /* 1270 * check that we're out of range of the pageout scanner. It starts to 1271 * schedule paging if freemem is less than lotsfree and needfree. 1272 * lotsfree is the high-water mark for pageout, and needfree is the 1273 * number of needed free pages. We add extra pages here to make sure 1274 * the scanner doesn't start up while we're freeing memory. 1275 */ 1276 if (freemem < lotsfree + needfree + extra) 1277 return (1); 1278 1279 /* 1280 * check to make sure that swapfs has enough space so that anon 1281 * reservations can still succeeed. anon_resvmem() checks that the 1282 * availrmem is greater than swapfs_minfree, and the number of reserved 1283 * swap pages. We also add a bit of extra here just to prevent 1284 * circumstances from getting really dire. 1285 */ 1286 if (availrmem < swapfs_minfree + swapfs_reserve + extra) 1287 return (1); 1288 1289 #if defined(__i386) 1290 /* 1291 * If we're on an i386 platform, it's possible that we'll exhaust the 1292 * kernel heap space before we ever run out of available physical 1293 * memory. Most checks of the size of the heap_area compare against 1294 * tune.t_minarmem, which is the minimum available real memory that we 1295 * can have in the system. However, this is generally fixed at 25 pages 1296 * which is so low that it's useless. In this comparison, we seek to 1297 * calculate the total heap-size, and reclaim if more than 3/4ths of the 1298 * heap is allocated. (Or, in the caclulation, if less than 1/4th is 1299 * free) 1300 */ 1301 if (btop(vmem_size(heap_arena, VMEM_FREE)) < 1302 (btop(vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC)) >> 2)) 1303 return (1); 1304 #endif 1305 1306 #else 1307 if (spa_get_random(100) == 0) 1308 return (1); 1309 #endif 1310 return (0); 1311 } 1312 1313 static void 1314 arc_kmem_reap_now(arc_reclaim_strategy_t strat) 1315 { 1316 size_t i; 1317 kmem_cache_t *prev_cache = NULL; 1318 extern kmem_cache_t *zio_buf_cache[]; 1319 1320 #ifdef _KERNEL 1321 /* 1322 * First purge some DNLC entries, in case the DNLC is using 1323 * up too much memory. 1324 */ 1325 dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent); 1326 1327 #if defined(__i386) 1328 /* 1329 * Reclaim unused memory from all kmem caches. 1330 */ 1331 kmem_reap(); 1332 #endif 1333 #endif 1334 1335 /* 1336 * An agressive reclamation will shrink the cache size as well as 1337 * reap free buffers from the arc kmem caches. 1338 */ 1339 if (strat == ARC_RECLAIM_AGGR) 1340 arc_shrink(); 1341 1342 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) { 1343 if (zio_buf_cache[i] != prev_cache) { 1344 prev_cache = zio_buf_cache[i]; 1345 kmem_cache_reap_now(zio_buf_cache[i]); 1346 } 1347 } 1348 kmem_cache_reap_now(buf_cache); 1349 kmem_cache_reap_now(hdr_cache); 1350 } 1351 1352 static void 1353 arc_reclaim_thread(void) 1354 { 1355 clock_t growtime = 0; 1356 arc_reclaim_strategy_t last_reclaim = ARC_RECLAIM_CONS; 1357 callb_cpr_t cpr; 1358 1359 CALLB_CPR_INIT(&cpr, &arc_reclaim_thr_lock, callb_generic_cpr, FTAG); 1360 1361 mutex_enter(&arc_reclaim_thr_lock); 1362 while (arc_thread_exit == 0) { 1363 if (arc_reclaim_needed()) { 1364 1365 if (arc.no_grow) { 1366 if (last_reclaim == ARC_RECLAIM_CONS) { 1367 last_reclaim = ARC_RECLAIM_AGGR; 1368 } else { 1369 last_reclaim = ARC_RECLAIM_CONS; 1370 } 1371 } else { 1372 arc.no_grow = TRUE; 1373 last_reclaim = ARC_RECLAIM_AGGR; 1374 membar_producer(); 1375 } 1376 1377 /* reset the growth delay for every reclaim */ 1378 growtime = lbolt + (arc_grow_retry * hz); 1379 ASSERT(growtime > 0); 1380 1381 arc_kmem_reap_now(last_reclaim); 1382 1383 } else if ((growtime > 0) && ((growtime - lbolt) <= 0)) { 1384 arc.no_grow = FALSE; 1385 } 1386 1387 if (arc_eviction_list != NULL) 1388 arc_do_user_evicts(); 1389 1390 /* block until needed, or one second, whichever is shorter */ 1391 CALLB_CPR_SAFE_BEGIN(&cpr); 1392 (void) cv_timedwait(&arc_reclaim_thr_cv, 1393 &arc_reclaim_thr_lock, (lbolt + hz)); 1394 CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_thr_lock); 1395 } 1396 1397 arc_thread_exit = 0; 1398 cv_broadcast(&arc_reclaim_thr_cv); 1399 CALLB_CPR_EXIT(&cpr); /* drops arc_reclaim_thr_lock */ 1400 thread_exit(); 1401 } 1402 1403 /* 1404 * Adapt arc info given the number of bytes we are trying to add and 1405 * the state that we are comming from. This function is only called 1406 * when we are adding new content to the cache. 1407 */ 1408 static void 1409 arc_adapt(int bytes, arc_state_t *state) 1410 { 1411 int mult; 1412 1413 ASSERT(bytes > 0); 1414 /* 1415 * Adapt the target size of the MRU list: 1416 * - if we just hit in the MRU ghost list, then increase 1417 * the target size of the MRU list. 1418 * - if we just hit in the MFU ghost list, then increase 1419 * the target size of the MFU list by decreasing the 1420 * target size of the MRU list. 1421 */ 1422 if (state == arc.mru_ghost) { 1423 mult = ((arc.mru_ghost->size >= arc.mfu_ghost->size) ? 1424 1 : (arc.mfu_ghost->size/arc.mru_ghost->size)); 1425 1426 arc.p = MIN(arc.c, arc.p + bytes * mult); 1427 } else if (state == arc.mfu_ghost) { 1428 mult = ((arc.mfu_ghost->size >= arc.mru_ghost->size) ? 1429 1 : (arc.mru_ghost->size/arc.mfu_ghost->size)); 1430 1431 arc.p = MAX(0, (int64_t)arc.p - bytes * mult); 1432 } 1433 ASSERT((int64_t)arc.p >= 0); 1434 1435 if (arc_reclaim_needed()) { 1436 cv_signal(&arc_reclaim_thr_cv); 1437 return; 1438 } 1439 1440 if (arc.no_grow) 1441 return; 1442 1443 if (arc.c >= arc.c_max) 1444 return; 1445 1446 /* 1447 * If we're within (2 * maxblocksize) bytes of the target 1448 * cache size, increment the target cache size 1449 */ 1450 if (arc.size > arc.c - (2ULL << SPA_MAXBLOCKSHIFT)) { 1451 atomic_add_64(&arc.c, (int64_t)bytes); 1452 if (arc.c > arc.c_max) 1453 arc.c = arc.c_max; 1454 else if (state == arc.anon) 1455 atomic_add_64(&arc.p, (int64_t)bytes); 1456 if (arc.p > arc.c) 1457 arc.p = arc.c; 1458 } 1459 ASSERT((int64_t)arc.p >= 0); 1460 } 1461 1462 /* 1463 * Check if the cache has reached its limits and eviction is required 1464 * prior to insert. 1465 */ 1466 static int 1467 arc_evict_needed() 1468 { 1469 if (arc_reclaim_needed()) 1470 return (1); 1471 1472 return (arc.size > arc.c); 1473 } 1474 1475 /* 1476 * The buffer, supplied as the first argument, needs a data block. 1477 * So, if we are at cache max, determine which cache should be victimized. 1478 * We have the following cases: 1479 * 1480 * 1. Insert for MRU, p > sizeof(arc.anon + arc.mru) -> 1481 * In this situation if we're out of space, but the resident size of the MFU is 1482 * under the limit, victimize the MFU cache to satisfy this insertion request. 1483 * 1484 * 2. Insert for MRU, p <= sizeof(arc.anon + arc.mru) -> 1485 * Here, we've used up all of the available space for the MRU, so we need to 1486 * evict from our own cache instead. Evict from the set of resident MRU 1487 * entries. 1488 * 1489 * 3. Insert for MFU (c - p) > sizeof(arc.mfu) -> 1490 * c minus p represents the MFU space in the cache, since p is the size of the 1491 * cache that is dedicated to the MRU. In this situation there's still space on 1492 * the MFU side, so the MRU side needs to be victimized. 1493 * 1494 * 4. Insert for MFU (c - p) < sizeof(arc.mfu) -> 1495 * MFU's resident set is consuming more space than it has been allotted. In 1496 * this situation, we must victimize our own cache, the MFU, for this insertion. 1497 */ 1498 static void 1499 arc_get_data_buf(arc_buf_t *buf) 1500 { 1501 arc_state_t *state = buf->b_hdr->b_state; 1502 uint64_t size = buf->b_hdr->b_size; 1503 1504 arc_adapt(size, state); 1505 1506 /* 1507 * We have not yet reached cache maximum size, 1508 * just allocate a new buffer. 1509 */ 1510 if (!arc_evict_needed()) { 1511 buf->b_data = zio_buf_alloc(size); 1512 atomic_add_64(&arc.size, size); 1513 goto out; 1514 } 1515 1516 /* 1517 * If we are prefetching from the mfu ghost list, this buffer 1518 * will end up on the mru list; so steal space from there. 1519 */ 1520 if (state == arc.mfu_ghost) 1521 state = buf->b_hdr->b_flags & ARC_PREFETCH ? arc.mru : arc.mfu; 1522 else if (state == arc.mru_ghost) 1523 state = arc.mru; 1524 1525 if (state == arc.mru || state == arc.anon) { 1526 uint64_t mru_used = arc.anon->size + arc.mru->size; 1527 state = (arc.p > mru_used) ? arc.mfu : arc.mru; 1528 } else { 1529 /* MFU cases */ 1530 uint64_t mfu_space = arc.c - arc.p; 1531 state = (mfu_space > arc.mfu->size) ? arc.mru : arc.mfu; 1532 } 1533 if ((buf->b_data = arc_evict(state, size, TRUE)) == NULL) { 1534 buf->b_data = zio_buf_alloc(size); 1535 atomic_add_64(&arc.size, size); 1536 atomic_add_64(&arc.recycle_miss, 1); 1537 } 1538 ASSERT(buf->b_data != NULL); 1539 out: 1540 /* 1541 * Update the state size. Note that ghost states have a 1542 * "ghost size" and so don't need to be updated. 1543 */ 1544 if (!GHOST_STATE(buf->b_hdr->b_state)) { 1545 arc_buf_hdr_t *hdr = buf->b_hdr; 1546 1547 atomic_add_64(&hdr->b_state->size, size); 1548 if (list_link_active(&hdr->b_arc_node)) { 1549 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 1550 atomic_add_64(&hdr->b_state->lsize, size); 1551 } 1552 } 1553 } 1554 1555 /* 1556 * This routine is called whenever a buffer is accessed. 1557 * NOTE: the hash lock is dropped in this function. 1558 */ 1559 static void 1560 arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock) 1561 { 1562 ASSERT(MUTEX_HELD(hash_lock)); 1563 1564 if (buf->b_state == arc.anon) { 1565 /* 1566 * This buffer is not in the cache, and does not 1567 * appear in our "ghost" list. Add the new buffer 1568 * to the MRU state. 1569 */ 1570 1571 ASSERT(buf->b_arc_access == 0); 1572 buf->b_arc_access = lbolt; 1573 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf); 1574 arc_change_state(arc.mru, buf, hash_lock); 1575 1576 } else if (buf->b_state == arc.mru) { 1577 /* 1578 * If this buffer is here because of a prefetch, then either: 1579 * - clear the flag if this is a "referencing" read 1580 * (any subsequent access will bump this into the MFU state). 1581 * or 1582 * - move the buffer to the head of the list if this is 1583 * another prefetch (to make it less likely to be evicted). 1584 */ 1585 if ((buf->b_flags & ARC_PREFETCH) != 0) { 1586 if (refcount_count(&buf->b_refcnt) == 0) { 1587 ASSERT(list_link_active(&buf->b_arc_node)); 1588 mutex_enter(&arc.mru->mtx); 1589 list_remove(&arc.mru->list, buf); 1590 list_insert_head(&arc.mru->list, buf); 1591 mutex_exit(&arc.mru->mtx); 1592 } else { 1593 buf->b_flags &= ~ARC_PREFETCH; 1594 atomic_add_64(&arc.mru->hits, 1); 1595 } 1596 buf->b_arc_access = lbolt; 1597 return; 1598 } 1599 1600 /* 1601 * This buffer has been "accessed" only once so far, 1602 * but it is still in the cache. Move it to the MFU 1603 * state. 1604 */ 1605 if (lbolt > buf->b_arc_access + ARC_MINTIME) { 1606 /* 1607 * More than 125ms have passed since we 1608 * instantiated this buffer. Move it to the 1609 * most frequently used state. 1610 */ 1611 buf->b_arc_access = lbolt; 1612 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 1613 arc_change_state(arc.mfu, buf, hash_lock); 1614 } 1615 atomic_add_64(&arc.mru->hits, 1); 1616 } else if (buf->b_state == arc.mru_ghost) { 1617 arc_state_t *new_state; 1618 /* 1619 * This buffer has been "accessed" recently, but 1620 * was evicted from the cache. Move it to the 1621 * MFU state. 1622 */ 1623 1624 if (buf->b_flags & ARC_PREFETCH) { 1625 new_state = arc.mru; 1626 if (refcount_count(&buf->b_refcnt) > 0) 1627 buf->b_flags &= ~ARC_PREFETCH; 1628 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf); 1629 } else { 1630 new_state = arc.mfu; 1631 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 1632 } 1633 1634 buf->b_arc_access = lbolt; 1635 arc_change_state(new_state, buf, hash_lock); 1636 1637 atomic_add_64(&arc.mru_ghost->hits, 1); 1638 } else if (buf->b_state == arc.mfu) { 1639 /* 1640 * This buffer has been accessed more than once and is 1641 * still in the cache. Keep it in the MFU state. 1642 * 1643 * NOTE: an add_reference() that occurred when we did 1644 * the arc_read() will have kicked this off the list. 1645 * If it was a prefetch, we will explicitly move it to 1646 * the head of the list now. 1647 */ 1648 if ((buf->b_flags & ARC_PREFETCH) != 0) { 1649 ASSERT(refcount_count(&buf->b_refcnt) == 0); 1650 ASSERT(list_link_active(&buf->b_arc_node)); 1651 mutex_enter(&arc.mfu->mtx); 1652 list_remove(&arc.mfu->list, buf); 1653 list_insert_head(&arc.mfu->list, buf); 1654 mutex_exit(&arc.mfu->mtx); 1655 } 1656 atomic_add_64(&arc.mfu->hits, 1); 1657 buf->b_arc_access = lbolt; 1658 } else if (buf->b_state == arc.mfu_ghost) { 1659 arc_state_t *new_state = arc.mfu; 1660 /* 1661 * This buffer has been accessed more than once but has 1662 * been evicted from the cache. Move it back to the 1663 * MFU state. 1664 */ 1665 1666 if (buf->b_flags & ARC_PREFETCH) { 1667 /* 1668 * This is a prefetch access... 1669 * move this block back to the MRU state. 1670 */ 1671 ASSERT3U(refcount_count(&buf->b_refcnt), ==, 0); 1672 new_state = arc.mru; 1673 } 1674 1675 buf->b_arc_access = lbolt; 1676 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 1677 arc_change_state(new_state, buf, hash_lock); 1678 1679 atomic_add_64(&arc.mfu_ghost->hits, 1); 1680 } else { 1681 ASSERT(!"invalid arc state"); 1682 } 1683 } 1684 1685 /* a generic arc_done_func_t which you can use */ 1686 /* ARGSUSED */ 1687 void 1688 arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg) 1689 { 1690 bcopy(buf->b_data, arg, buf->b_hdr->b_size); 1691 VERIFY(arc_buf_remove_ref(buf, arg) == 1); 1692 } 1693 1694 /* a generic arc_done_func_t which you can use */ 1695 void 1696 arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg) 1697 { 1698 arc_buf_t **bufp = arg; 1699 if (zio && zio->io_error) { 1700 VERIFY(arc_buf_remove_ref(buf, arg) == 1); 1701 *bufp = NULL; 1702 } else { 1703 *bufp = buf; 1704 } 1705 } 1706 1707 static void 1708 arc_read_done(zio_t *zio) 1709 { 1710 arc_buf_hdr_t *hdr, *found; 1711 arc_buf_t *buf; 1712 arc_buf_t *abuf; /* buffer we're assigning to callback */ 1713 kmutex_t *hash_lock; 1714 arc_callback_t *callback_list, *acb; 1715 int freeable = FALSE; 1716 1717 buf = zio->io_private; 1718 hdr = buf->b_hdr; 1719 1720 /* 1721 * The hdr was inserted into hash-table and removed from lists 1722 * prior to starting I/O. We should find this header, since 1723 * it's in the hash table, and it should be legit since it's 1724 * not possible to evict it during the I/O. The only possible 1725 * reason for it not to be found is if we were freed during the 1726 * read. 1727 */ 1728 found = buf_hash_find(zio->io_spa, &hdr->b_dva, hdr->b_birth, 1729 &hash_lock); 1730 1731 ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) && hash_lock == NULL) || 1732 (found == hdr && DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp)))); 1733 1734 /* byteswap if necessary */ 1735 callback_list = hdr->b_acb; 1736 ASSERT(callback_list != NULL); 1737 if (BP_SHOULD_BYTESWAP(zio->io_bp) && callback_list->acb_byteswap) 1738 callback_list->acb_byteswap(buf->b_data, hdr->b_size); 1739 1740 arc_cksum_compute(buf); 1741 1742 /* create copies of the data buffer for the callers */ 1743 abuf = buf; 1744 for (acb = callback_list; acb; acb = acb->acb_next) { 1745 if (acb->acb_done) { 1746 if (abuf == NULL) 1747 abuf = arc_buf_clone(buf); 1748 acb->acb_buf = abuf; 1749 abuf = NULL; 1750 } 1751 } 1752 hdr->b_acb = NULL; 1753 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 1754 ASSERT(!HDR_BUF_AVAILABLE(hdr)); 1755 if (abuf == buf) 1756 hdr->b_flags |= ARC_BUF_AVAILABLE; 1757 1758 ASSERT(refcount_is_zero(&hdr->b_refcnt) || callback_list != NULL); 1759 1760 if (zio->io_error != 0) { 1761 hdr->b_flags |= ARC_IO_ERROR; 1762 if (hdr->b_state != arc.anon) 1763 arc_change_state(arc.anon, hdr, hash_lock); 1764 if (HDR_IN_HASH_TABLE(hdr)) 1765 buf_hash_remove(hdr); 1766 freeable = refcount_is_zero(&hdr->b_refcnt); 1767 /* convert checksum errors into IO errors */ 1768 if (zio->io_error == ECKSUM) 1769 zio->io_error = EIO; 1770 } 1771 1772 /* 1773 * Broadcast before we drop the hash_lock to avoid the possibility 1774 * that the hdr (and hence the cv) might be freed before we get to 1775 * the cv_broadcast(). 1776 */ 1777 cv_broadcast(&hdr->b_cv); 1778 1779 if (hash_lock) { 1780 /* 1781 * Only call arc_access on anonymous buffers. This is because 1782 * if we've issued an I/O for an evicted buffer, we've already 1783 * called arc_access (to prevent any simultaneous readers from 1784 * getting confused). 1785 */ 1786 if (zio->io_error == 0 && hdr->b_state == arc.anon) 1787 arc_access(hdr, hash_lock); 1788 mutex_exit(hash_lock); 1789 } else { 1790 /* 1791 * This block was freed while we waited for the read to 1792 * complete. It has been removed from the hash table and 1793 * moved to the anonymous state (so that it won't show up 1794 * in the cache). 1795 */ 1796 ASSERT3P(hdr->b_state, ==, arc.anon); 1797 freeable = refcount_is_zero(&hdr->b_refcnt); 1798 } 1799 1800 /* execute each callback and free its structure */ 1801 while ((acb = callback_list) != NULL) { 1802 if (acb->acb_done) 1803 acb->acb_done(zio, acb->acb_buf, acb->acb_private); 1804 1805 if (acb->acb_zio_dummy != NULL) { 1806 acb->acb_zio_dummy->io_error = zio->io_error; 1807 zio_nowait(acb->acb_zio_dummy); 1808 } 1809 1810 callback_list = acb->acb_next; 1811 kmem_free(acb, sizeof (arc_callback_t)); 1812 } 1813 1814 if (freeable) 1815 arc_hdr_destroy(hdr); 1816 } 1817 1818 /* 1819 * "Read" the block block at the specified DVA (in bp) via the 1820 * cache. If the block is found in the cache, invoke the provided 1821 * callback immediately and return. Note that the `zio' parameter 1822 * in the callback will be NULL in this case, since no IO was 1823 * required. If the block is not in the cache pass the read request 1824 * on to the spa with a substitute callback function, so that the 1825 * requested block will be added to the cache. 1826 * 1827 * If a read request arrives for a block that has a read in-progress, 1828 * either wait for the in-progress read to complete (and return the 1829 * results); or, if this is a read with a "done" func, add a record 1830 * to the read to invoke the "done" func when the read completes, 1831 * and return; or just return. 1832 * 1833 * arc_read_done() will invoke all the requested "done" functions 1834 * for readers of this block. 1835 */ 1836 int 1837 arc_read(zio_t *pio, spa_t *spa, blkptr_t *bp, arc_byteswap_func_t *swap, 1838 arc_done_func_t *done, void *private, int priority, int flags, 1839 uint32_t *arc_flags, zbookmark_t *zb) 1840 { 1841 arc_buf_hdr_t *hdr; 1842 arc_buf_t *buf; 1843 kmutex_t *hash_lock; 1844 zio_t *rzio; 1845 1846 top: 1847 hdr = buf_hash_find(spa, BP_IDENTITY(bp), bp->blk_birth, &hash_lock); 1848 if (hdr && hdr->b_datacnt > 0) { 1849 1850 *arc_flags |= ARC_CACHED; 1851 1852 if (HDR_IO_IN_PROGRESS(hdr)) { 1853 1854 if (*arc_flags & ARC_WAIT) { 1855 cv_wait(&hdr->b_cv, hash_lock); 1856 mutex_exit(hash_lock); 1857 goto top; 1858 } 1859 ASSERT(*arc_flags & ARC_NOWAIT); 1860 1861 if (done) { 1862 arc_callback_t *acb = NULL; 1863 1864 acb = kmem_zalloc(sizeof (arc_callback_t), 1865 KM_SLEEP); 1866 acb->acb_done = done; 1867 acb->acb_private = private; 1868 acb->acb_byteswap = swap; 1869 if (pio != NULL) 1870 acb->acb_zio_dummy = zio_null(pio, 1871 spa, NULL, NULL, flags); 1872 1873 ASSERT(acb->acb_done != NULL); 1874 acb->acb_next = hdr->b_acb; 1875 hdr->b_acb = acb; 1876 add_reference(hdr, hash_lock, private); 1877 mutex_exit(hash_lock); 1878 return (0); 1879 } 1880 mutex_exit(hash_lock); 1881 return (0); 1882 } 1883 1884 ASSERT(hdr->b_state == arc.mru || hdr->b_state == arc.mfu); 1885 1886 if (done) { 1887 add_reference(hdr, hash_lock, private); 1888 /* 1889 * If this block is already in use, create a new 1890 * copy of the data so that we will be guaranteed 1891 * that arc_release() will always succeed. 1892 */ 1893 buf = hdr->b_buf; 1894 ASSERT(buf); 1895 ASSERT(buf->b_data); 1896 if (HDR_BUF_AVAILABLE(hdr)) { 1897 ASSERT(buf->b_efunc == NULL); 1898 hdr->b_flags &= ~ARC_BUF_AVAILABLE; 1899 } else { 1900 buf = arc_buf_clone(buf); 1901 } 1902 } else if (*arc_flags & ARC_PREFETCH && 1903 refcount_count(&hdr->b_refcnt) == 0) { 1904 hdr->b_flags |= ARC_PREFETCH; 1905 } 1906 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 1907 arc_access(hdr, hash_lock); 1908 mutex_exit(hash_lock); 1909 atomic_add_64(&arc.hits, 1); 1910 if (done) 1911 done(NULL, buf, private); 1912 } else { 1913 uint64_t size = BP_GET_LSIZE(bp); 1914 arc_callback_t *acb; 1915 1916 if (hdr == NULL) { 1917 /* this block is not in the cache */ 1918 arc_buf_hdr_t *exists; 1919 1920 buf = arc_buf_alloc(spa, size, private); 1921 hdr = buf->b_hdr; 1922 hdr->b_dva = *BP_IDENTITY(bp); 1923 hdr->b_birth = bp->blk_birth; 1924 hdr->b_cksum0 = bp->blk_cksum.zc_word[0]; 1925 exists = buf_hash_insert(hdr, &hash_lock); 1926 if (exists) { 1927 /* somebody beat us to the hash insert */ 1928 mutex_exit(hash_lock); 1929 bzero(&hdr->b_dva, sizeof (dva_t)); 1930 hdr->b_birth = 0; 1931 hdr->b_cksum0 = 0; 1932 (void) arc_buf_remove_ref(buf, private); 1933 goto top; /* restart the IO request */ 1934 } 1935 /* if this is a prefetch, we don't have a reference */ 1936 if (*arc_flags & ARC_PREFETCH) { 1937 (void) remove_reference(hdr, hash_lock, 1938 private); 1939 hdr->b_flags |= ARC_PREFETCH; 1940 } 1941 if (BP_GET_LEVEL(bp) > 0) 1942 hdr->b_flags |= ARC_INDIRECT; 1943 } else { 1944 /* this block is in the ghost cache */ 1945 ASSERT(GHOST_STATE(hdr->b_state)); 1946 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 1947 ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 0); 1948 ASSERT(hdr->b_buf == NULL); 1949 1950 /* if this is a prefetch, we don't have a reference */ 1951 if (*arc_flags & ARC_PREFETCH) 1952 hdr->b_flags |= ARC_PREFETCH; 1953 else 1954 add_reference(hdr, hash_lock, private); 1955 buf = kmem_cache_alloc(buf_cache, KM_SLEEP); 1956 buf->b_hdr = hdr; 1957 buf->b_data = NULL; 1958 buf->b_efunc = NULL; 1959 buf->b_private = NULL; 1960 buf->b_next = NULL; 1961 hdr->b_buf = buf; 1962 arc_get_data_buf(buf); 1963 ASSERT(hdr->b_datacnt == 0); 1964 hdr->b_datacnt = 1; 1965 1966 } 1967 1968 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP); 1969 acb->acb_done = done; 1970 acb->acb_private = private; 1971 acb->acb_byteswap = swap; 1972 1973 ASSERT(hdr->b_acb == NULL); 1974 hdr->b_acb = acb; 1975 hdr->b_flags |= ARC_IO_IN_PROGRESS; 1976 1977 /* 1978 * If the buffer has been evicted, migrate it to a present state 1979 * before issuing the I/O. Once we drop the hash-table lock, 1980 * the header will be marked as I/O in progress and have an 1981 * attached buffer. At this point, anybody who finds this 1982 * buffer ought to notice that it's legit but has a pending I/O. 1983 */ 1984 1985 if (GHOST_STATE(hdr->b_state)) 1986 arc_access(hdr, hash_lock); 1987 mutex_exit(hash_lock); 1988 1989 ASSERT3U(hdr->b_size, ==, size); 1990 DTRACE_PROBE3(arc__miss, blkptr_t *, bp, uint64_t, size, 1991 zbookmark_t *, zb); 1992 atomic_add_64(&arc.misses, 1); 1993 1994 rzio = zio_read(pio, spa, bp, buf->b_data, size, 1995 arc_read_done, buf, priority, flags, zb); 1996 1997 if (*arc_flags & ARC_WAIT) 1998 return (zio_wait(rzio)); 1999 2000 ASSERT(*arc_flags & ARC_NOWAIT); 2001 zio_nowait(rzio); 2002 } 2003 return (0); 2004 } 2005 2006 /* 2007 * arc_read() variant to support pool traversal. If the block is already 2008 * in the ARC, make a copy of it; otherwise, the caller will do the I/O. 2009 * The idea is that we don't want pool traversal filling up memory, but 2010 * if the ARC already has the data anyway, we shouldn't pay for the I/O. 2011 */ 2012 int 2013 arc_tryread(spa_t *spa, blkptr_t *bp, void *data) 2014 { 2015 arc_buf_hdr_t *hdr; 2016 kmutex_t *hash_mtx; 2017 int rc = 0; 2018 2019 hdr = buf_hash_find(spa, BP_IDENTITY(bp), bp->blk_birth, &hash_mtx); 2020 2021 if (hdr && hdr->b_datacnt > 0 && !HDR_IO_IN_PROGRESS(hdr)) { 2022 arc_buf_t *buf = hdr->b_buf; 2023 2024 ASSERT(buf); 2025 while (buf->b_data == NULL) { 2026 buf = buf->b_next; 2027 ASSERT(buf); 2028 } 2029 bcopy(buf->b_data, data, hdr->b_size); 2030 } else { 2031 rc = ENOENT; 2032 } 2033 2034 if (hash_mtx) 2035 mutex_exit(hash_mtx); 2036 2037 return (rc); 2038 } 2039 2040 void 2041 arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private) 2042 { 2043 ASSERT(buf->b_hdr != NULL); 2044 ASSERT(buf->b_hdr->b_state != arc.anon); 2045 ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt) || func == NULL); 2046 buf->b_efunc = func; 2047 buf->b_private = private; 2048 } 2049 2050 /* 2051 * This is used by the DMU to let the ARC know that a buffer is 2052 * being evicted, so the ARC should clean up. If this arc buf 2053 * is not yet in the evicted state, it will be put there. 2054 */ 2055 int 2056 arc_buf_evict(arc_buf_t *buf) 2057 { 2058 arc_buf_hdr_t *hdr; 2059 kmutex_t *hash_lock; 2060 arc_buf_t **bufp; 2061 2062 mutex_enter(&arc_eviction_mtx); 2063 hdr = buf->b_hdr; 2064 if (hdr == NULL) { 2065 /* 2066 * We are in arc_do_user_evicts(). 2067 */ 2068 ASSERT(buf->b_data == NULL); 2069 mutex_exit(&arc_eviction_mtx); 2070 return (0); 2071 } 2072 hash_lock = HDR_LOCK(hdr); 2073 mutex_exit(&arc_eviction_mtx); 2074 2075 mutex_enter(hash_lock); 2076 2077 if (buf->b_data == NULL) { 2078 /* 2079 * We are on the eviction list. 2080 */ 2081 mutex_exit(hash_lock); 2082 mutex_enter(&arc_eviction_mtx); 2083 if (buf->b_hdr == NULL) { 2084 /* 2085 * We are already in arc_do_user_evicts(). 2086 */ 2087 mutex_exit(&arc_eviction_mtx); 2088 return (0); 2089 } else { 2090 arc_buf_t copy = *buf; /* structure assignment */ 2091 /* 2092 * Process this buffer now 2093 * but let arc_do_user_evicts() do the reaping. 2094 */ 2095 buf->b_efunc = NULL; 2096 mutex_exit(&arc_eviction_mtx); 2097 VERIFY(copy.b_efunc(©) == 0); 2098 return (1); 2099 } 2100 } 2101 2102 ASSERT(buf->b_hdr == hdr); 2103 ASSERT3U(refcount_count(&hdr->b_refcnt), <, hdr->b_datacnt); 2104 ASSERT(hdr->b_state == arc.mru || hdr->b_state == arc.mfu); 2105 2106 /* 2107 * Pull this buffer off of the hdr 2108 */ 2109 bufp = &hdr->b_buf; 2110 while (*bufp != buf) 2111 bufp = &(*bufp)->b_next; 2112 *bufp = buf->b_next; 2113 2114 ASSERT(buf->b_data != NULL); 2115 arc_buf_destroy(buf, FALSE, FALSE); 2116 2117 if (hdr->b_datacnt == 0) { 2118 arc_state_t *old_state = hdr->b_state; 2119 arc_state_t *evicted_state; 2120 2121 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 2122 2123 evicted_state = 2124 (old_state == arc.mru) ? arc.mru_ghost : arc.mfu_ghost; 2125 2126 mutex_enter(&old_state->mtx); 2127 mutex_enter(&evicted_state->mtx); 2128 2129 arc_change_state(evicted_state, hdr, hash_lock); 2130 ASSERT(HDR_IN_HASH_TABLE(hdr)); 2131 hdr->b_flags = ARC_IN_HASH_TABLE; 2132 2133 mutex_exit(&evicted_state->mtx); 2134 mutex_exit(&old_state->mtx); 2135 } 2136 mutex_exit(hash_lock); 2137 2138 VERIFY(buf->b_efunc(buf) == 0); 2139 buf->b_efunc = NULL; 2140 buf->b_private = NULL; 2141 buf->b_hdr = NULL; 2142 kmem_cache_free(buf_cache, buf); 2143 return (1); 2144 } 2145 2146 /* 2147 * Release this buffer from the cache. This must be done 2148 * after a read and prior to modifying the buffer contents. 2149 * If the buffer has more than one reference, we must make 2150 * make a new hdr for the buffer. 2151 */ 2152 void 2153 arc_release(arc_buf_t *buf, void *tag) 2154 { 2155 arc_buf_hdr_t *hdr = buf->b_hdr; 2156 kmutex_t *hash_lock = HDR_LOCK(hdr); 2157 2158 /* this buffer is not on any list */ 2159 ASSERT(refcount_count(&hdr->b_refcnt) > 0); 2160 2161 if (hdr->b_state == arc.anon) { 2162 /* this buffer is already released */ 2163 ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 1); 2164 ASSERT(BUF_EMPTY(hdr)); 2165 ASSERT(buf->b_efunc == NULL); 2166 arc_buf_thaw(buf); 2167 return; 2168 } 2169 2170 mutex_enter(hash_lock); 2171 2172 /* 2173 * Do we have more than one buf? 2174 */ 2175 if (hdr->b_buf != buf || buf->b_next != NULL) { 2176 arc_buf_hdr_t *nhdr; 2177 arc_buf_t **bufp; 2178 uint64_t blksz = hdr->b_size; 2179 spa_t *spa = hdr->b_spa; 2180 2181 ASSERT(hdr->b_datacnt > 1); 2182 /* 2183 * Pull the data off of this buf and attach it to 2184 * a new anonymous buf. 2185 */ 2186 (void) remove_reference(hdr, hash_lock, tag); 2187 bufp = &hdr->b_buf; 2188 while (*bufp != buf) 2189 bufp = &(*bufp)->b_next; 2190 *bufp = (*bufp)->b_next; 2191 2192 ASSERT3U(hdr->b_state->size, >=, hdr->b_size); 2193 atomic_add_64(&hdr->b_state->size, -hdr->b_size); 2194 if (refcount_is_zero(&hdr->b_refcnt)) { 2195 ASSERT3U(hdr->b_state->lsize, >=, hdr->b_size); 2196 atomic_add_64(&hdr->b_state->lsize, -hdr->b_size); 2197 } 2198 hdr->b_datacnt -= 1; 2199 2200 mutex_exit(hash_lock); 2201 2202 nhdr = kmem_cache_alloc(hdr_cache, KM_SLEEP); 2203 nhdr->b_size = blksz; 2204 nhdr->b_spa = spa; 2205 nhdr->b_buf = buf; 2206 nhdr->b_state = arc.anon; 2207 nhdr->b_arc_access = 0; 2208 nhdr->b_flags = 0; 2209 nhdr->b_datacnt = 1; 2210 nhdr->b_freeze_cksum = 2211 kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP); 2212 *nhdr->b_freeze_cksum = *hdr->b_freeze_cksum; /* struct copy */ 2213 buf->b_hdr = nhdr; 2214 buf->b_next = NULL; 2215 (void) refcount_add(&nhdr->b_refcnt, tag); 2216 atomic_add_64(&arc.anon->size, blksz); 2217 2218 hdr = nhdr; 2219 } else { 2220 ASSERT(refcount_count(&hdr->b_refcnt) == 1); 2221 ASSERT(!list_link_active(&hdr->b_arc_node)); 2222 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 2223 arc_change_state(arc.anon, hdr, hash_lock); 2224 hdr->b_arc_access = 0; 2225 mutex_exit(hash_lock); 2226 bzero(&hdr->b_dva, sizeof (dva_t)); 2227 hdr->b_birth = 0; 2228 hdr->b_cksum0 = 0; 2229 } 2230 buf->b_efunc = NULL; 2231 buf->b_private = NULL; 2232 arc_buf_thaw(buf); 2233 } 2234 2235 int 2236 arc_released(arc_buf_t *buf) 2237 { 2238 return (buf->b_data != NULL && buf->b_hdr->b_state == arc.anon); 2239 } 2240 2241 int 2242 arc_has_callback(arc_buf_t *buf) 2243 { 2244 return (buf->b_efunc != NULL); 2245 } 2246 2247 #ifdef ZFS_DEBUG 2248 int 2249 arc_referenced(arc_buf_t *buf) 2250 { 2251 return (refcount_count(&buf->b_hdr->b_refcnt)); 2252 } 2253 #endif 2254 2255 static void 2256 arc_write_done(zio_t *zio) 2257 { 2258 arc_buf_t *buf; 2259 arc_buf_hdr_t *hdr; 2260 arc_callback_t *acb; 2261 2262 buf = zio->io_private; 2263 hdr = buf->b_hdr; 2264 acb = hdr->b_acb; 2265 hdr->b_acb = NULL; 2266 ASSERT(acb != NULL); 2267 2268 /* this buffer is on no lists and is not in the hash table */ 2269 ASSERT3P(hdr->b_state, ==, arc.anon); 2270 2271 hdr->b_dva = *BP_IDENTITY(zio->io_bp); 2272 hdr->b_birth = zio->io_bp->blk_birth; 2273 hdr->b_cksum0 = zio->io_bp->blk_cksum.zc_word[0]; 2274 /* 2275 * If the block to be written was all-zero, we may have 2276 * compressed it away. In this case no write was performed 2277 * so there will be no dva/birth-date/checksum. The buffer 2278 * must therefor remain anonymous (and uncached). 2279 */ 2280 if (!BUF_EMPTY(hdr)) { 2281 arc_buf_hdr_t *exists; 2282 kmutex_t *hash_lock; 2283 2284 arc_cksum_verify(buf); 2285 2286 exists = buf_hash_insert(hdr, &hash_lock); 2287 if (exists) { 2288 /* 2289 * This can only happen if we overwrite for 2290 * sync-to-convergence, because we remove 2291 * buffers from the hash table when we arc_free(). 2292 */ 2293 ASSERT(DVA_EQUAL(BP_IDENTITY(&zio->io_bp_orig), 2294 BP_IDENTITY(zio->io_bp))); 2295 ASSERT3U(zio->io_bp_orig.blk_birth, ==, 2296 zio->io_bp->blk_birth); 2297 2298 ASSERT(refcount_is_zero(&exists->b_refcnt)); 2299 arc_change_state(arc.anon, exists, hash_lock); 2300 mutex_exit(hash_lock); 2301 arc_hdr_destroy(exists); 2302 exists = buf_hash_insert(hdr, &hash_lock); 2303 ASSERT3P(exists, ==, NULL); 2304 } 2305 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 2306 arc_access(hdr, hash_lock); 2307 mutex_exit(hash_lock); 2308 } else if (acb->acb_done == NULL) { 2309 int destroy_hdr; 2310 /* 2311 * This is an anonymous buffer with no user callback, 2312 * destroy it if there are no active references. 2313 */ 2314 mutex_enter(&arc_eviction_mtx); 2315 destroy_hdr = refcount_is_zero(&hdr->b_refcnt); 2316 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 2317 mutex_exit(&arc_eviction_mtx); 2318 if (destroy_hdr) 2319 arc_hdr_destroy(hdr); 2320 } else { 2321 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 2322 } 2323 2324 if (acb->acb_done) { 2325 ASSERT(!refcount_is_zero(&hdr->b_refcnt)); 2326 acb->acb_done(zio, buf, acb->acb_private); 2327 } 2328 2329 kmem_free(acb, sizeof (arc_callback_t)); 2330 } 2331 2332 int 2333 arc_write(zio_t *pio, spa_t *spa, int checksum, int compress, int ncopies, 2334 uint64_t txg, blkptr_t *bp, arc_buf_t *buf, 2335 arc_done_func_t *done, void *private, int priority, int flags, 2336 uint32_t arc_flags, zbookmark_t *zb) 2337 { 2338 arc_buf_hdr_t *hdr = buf->b_hdr; 2339 arc_callback_t *acb; 2340 zio_t *rzio; 2341 2342 /* this is a private buffer - no locking required */ 2343 ASSERT3P(hdr->b_state, ==, arc.anon); 2344 ASSERT(BUF_EMPTY(hdr)); 2345 ASSERT(!HDR_IO_ERROR(hdr)); 2346 ASSERT((hdr->b_flags & ARC_IO_IN_PROGRESS) == 0); 2347 ASSERT(hdr->b_acb == 0); 2348 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP); 2349 acb->acb_done = done; 2350 acb->acb_private = private; 2351 acb->acb_byteswap = (arc_byteswap_func_t *)-1; 2352 hdr->b_acb = acb; 2353 hdr->b_flags |= ARC_IO_IN_PROGRESS; 2354 arc_cksum_compute(buf); 2355 rzio = zio_write(pio, spa, checksum, compress, ncopies, txg, bp, 2356 buf->b_data, hdr->b_size, arc_write_done, buf, priority, flags, zb); 2357 2358 if (arc_flags & ARC_WAIT) 2359 return (zio_wait(rzio)); 2360 2361 ASSERT(arc_flags & ARC_NOWAIT); 2362 zio_nowait(rzio); 2363 2364 return (0); 2365 } 2366 2367 int 2368 arc_free(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, 2369 zio_done_func_t *done, void *private, uint32_t arc_flags) 2370 { 2371 arc_buf_hdr_t *ab; 2372 kmutex_t *hash_lock; 2373 zio_t *zio; 2374 2375 /* 2376 * If this buffer is in the cache, release it, so it 2377 * can be re-used. 2378 */ 2379 ab = buf_hash_find(spa, BP_IDENTITY(bp), bp->blk_birth, &hash_lock); 2380 if (ab != NULL) { 2381 /* 2382 * The checksum of blocks to free is not always 2383 * preserved (eg. on the deadlist). However, if it is 2384 * nonzero, it should match what we have in the cache. 2385 */ 2386 ASSERT(bp->blk_cksum.zc_word[0] == 0 || 2387 ab->b_cksum0 == bp->blk_cksum.zc_word[0]); 2388 if (ab->b_state != arc.anon) 2389 arc_change_state(arc.anon, ab, hash_lock); 2390 if (HDR_IO_IN_PROGRESS(ab)) { 2391 /* 2392 * This should only happen when we prefetch. 2393 */ 2394 ASSERT(ab->b_flags & ARC_PREFETCH); 2395 ASSERT3U(ab->b_datacnt, ==, 1); 2396 ab->b_flags |= ARC_FREED_IN_READ; 2397 if (HDR_IN_HASH_TABLE(ab)) 2398 buf_hash_remove(ab); 2399 ab->b_arc_access = 0; 2400 bzero(&ab->b_dva, sizeof (dva_t)); 2401 ab->b_birth = 0; 2402 ab->b_cksum0 = 0; 2403 ab->b_buf->b_efunc = NULL; 2404 ab->b_buf->b_private = NULL; 2405 mutex_exit(hash_lock); 2406 } else if (refcount_is_zero(&ab->b_refcnt)) { 2407 mutex_exit(hash_lock); 2408 arc_hdr_destroy(ab); 2409 atomic_add_64(&arc.deleted, 1); 2410 } else { 2411 /* 2412 * We still have an active reference on this 2413 * buffer. This can happen, e.g., from 2414 * dbuf_unoverride(). 2415 */ 2416 ASSERT(!HDR_IN_HASH_TABLE(ab)); 2417 ab->b_arc_access = 0; 2418 bzero(&ab->b_dva, sizeof (dva_t)); 2419 ab->b_birth = 0; 2420 ab->b_cksum0 = 0; 2421 ab->b_buf->b_efunc = NULL; 2422 ab->b_buf->b_private = NULL; 2423 mutex_exit(hash_lock); 2424 } 2425 } 2426 2427 zio = zio_free(pio, spa, txg, bp, done, private); 2428 2429 if (arc_flags & ARC_WAIT) 2430 return (zio_wait(zio)); 2431 2432 ASSERT(arc_flags & ARC_NOWAIT); 2433 zio_nowait(zio); 2434 2435 return (0); 2436 } 2437 2438 void 2439 arc_tempreserve_clear(uint64_t tempreserve) 2440 { 2441 atomic_add_64(&arc_tempreserve, -tempreserve); 2442 ASSERT((int64_t)arc_tempreserve >= 0); 2443 } 2444 2445 int 2446 arc_tempreserve_space(uint64_t tempreserve) 2447 { 2448 #ifdef ZFS_DEBUG 2449 /* 2450 * Once in a while, fail for no reason. Everything should cope. 2451 */ 2452 if (spa_get_random(10000) == 0) { 2453 dprintf("forcing random failure\n"); 2454 return (ERESTART); 2455 } 2456 #endif 2457 if (tempreserve > arc.c/4 && !arc.no_grow) 2458 arc.c = MIN(arc.c_max, tempreserve * 4); 2459 if (tempreserve > arc.c) 2460 return (ENOMEM); 2461 2462 /* 2463 * Throttle writes when the amount of dirty data in the cache 2464 * gets too large. We try to keep the cache less than half full 2465 * of dirty blocks so that our sync times don't grow too large. 2466 * Note: if two requests come in concurrently, we might let them 2467 * both succeed, when one of them should fail. Not a huge deal. 2468 * 2469 * XXX The limit should be adjusted dynamically to keep the time 2470 * to sync a dataset fixed (around 1-5 seconds?). 2471 */ 2472 2473 if (tempreserve + arc_tempreserve + arc.anon->size > arc.c / 2 && 2474 arc_tempreserve + arc.anon->size > arc.c / 4) { 2475 dprintf("failing, arc_tempreserve=%lluK anon=%lluK " 2476 "tempreserve=%lluK arc.c=%lluK\n", 2477 arc_tempreserve>>10, arc.anon->lsize>>10, 2478 tempreserve>>10, arc.c>>10); 2479 return (ERESTART); 2480 } 2481 atomic_add_64(&arc_tempreserve, tempreserve); 2482 return (0); 2483 } 2484 2485 void 2486 arc_init(void) 2487 { 2488 mutex_init(&arc_reclaim_thr_lock, NULL, MUTEX_DEFAULT, NULL); 2489 cv_init(&arc_reclaim_thr_cv, NULL, CV_DEFAULT, NULL); 2490 2491 /* Convert seconds to clock ticks */ 2492 arc_min_prefetch_lifespan = 1 * hz; 2493 2494 /* Start out with 1/8 of all memory */ 2495 arc.c = physmem * PAGESIZE / 8; 2496 2497 #ifdef _KERNEL 2498 /* 2499 * On architectures where the physical memory can be larger 2500 * than the addressable space (intel in 32-bit mode), we may 2501 * need to limit the cache to 1/8 of VM size. 2502 */ 2503 arc.c = MIN(arc.c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8); 2504 #endif 2505 2506 /* set min cache to 1/32 of all memory, or 64MB, whichever is more */ 2507 arc.c_min = MAX(arc.c / 4, 64<<20); 2508 /* set max to 3/4 of all memory, or all but 1GB, whichever is more */ 2509 if (arc.c * 8 >= 1<<30) 2510 arc.c_max = (arc.c * 8) - (1<<30); 2511 else 2512 arc.c_max = arc.c_min; 2513 arc.c_max = MAX(arc.c * 6, arc.c_max); 2514 2515 /* 2516 * Allow the tunables to override our calculations if they are 2517 * reasonable (ie. over 64MB) 2518 */ 2519 if (zfs_arc_max > 64<<20 && zfs_arc_max < physmem * PAGESIZE) 2520 arc.c_max = zfs_arc_max; 2521 if (zfs_arc_min > 64<<20 && zfs_arc_min <= arc.c_max) 2522 arc.c_min = zfs_arc_min; 2523 2524 arc.c = arc.c_max; 2525 arc.p = (arc.c >> 1); 2526 2527 /* if kmem_flags are set, lets try to use less memory */ 2528 if (kmem_debugging()) 2529 arc.c = arc.c / 2; 2530 if (arc.c < arc.c_min) 2531 arc.c = arc.c_min; 2532 2533 arc.anon = &ARC_anon; 2534 arc.mru = &ARC_mru; 2535 arc.mru_ghost = &ARC_mru_ghost; 2536 arc.mfu = &ARC_mfu; 2537 arc.mfu_ghost = &ARC_mfu_ghost; 2538 arc.size = 0; 2539 2540 arc.hits = 0; 2541 arc.recycle_miss = 0; 2542 arc.evict_skip = 0; 2543 arc.mutex_miss = 0; 2544 2545 mutex_init(&arc.anon->mtx, NULL, MUTEX_DEFAULT, NULL); 2546 mutex_init(&arc.mru->mtx, NULL, MUTEX_DEFAULT, NULL); 2547 mutex_init(&arc.mru_ghost->mtx, NULL, MUTEX_DEFAULT, NULL); 2548 mutex_init(&arc.mfu->mtx, NULL, MUTEX_DEFAULT, NULL); 2549 mutex_init(&arc.mfu_ghost->mtx, NULL, MUTEX_DEFAULT, NULL); 2550 2551 list_create(&arc.mru->list, sizeof (arc_buf_hdr_t), 2552 offsetof(arc_buf_hdr_t, b_arc_node)); 2553 list_create(&arc.mru_ghost->list, sizeof (arc_buf_hdr_t), 2554 offsetof(arc_buf_hdr_t, b_arc_node)); 2555 list_create(&arc.mfu->list, sizeof (arc_buf_hdr_t), 2556 offsetof(arc_buf_hdr_t, b_arc_node)); 2557 list_create(&arc.mfu_ghost->list, sizeof (arc_buf_hdr_t), 2558 offsetof(arc_buf_hdr_t, b_arc_node)); 2559 2560 buf_init(); 2561 2562 arc_thread_exit = 0; 2563 arc_eviction_list = NULL; 2564 mutex_init(&arc_eviction_mtx, NULL, MUTEX_DEFAULT, NULL); 2565 bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t)); 2566 2567 (void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0, 2568 TS_RUN, minclsyspri); 2569 2570 arc_dead = FALSE; 2571 } 2572 2573 void 2574 arc_fini(void) 2575 { 2576 mutex_enter(&arc_reclaim_thr_lock); 2577 arc_thread_exit = 1; 2578 while (arc_thread_exit != 0) 2579 cv_wait(&arc_reclaim_thr_cv, &arc_reclaim_thr_lock); 2580 mutex_exit(&arc_reclaim_thr_lock); 2581 2582 arc_flush(); 2583 2584 arc_dead = TRUE; 2585 2586 mutex_destroy(&arc_eviction_mtx); 2587 mutex_destroy(&arc_reclaim_thr_lock); 2588 cv_destroy(&arc_reclaim_thr_cv); 2589 2590 list_destroy(&arc.mru->list); 2591 list_destroy(&arc.mru_ghost->list); 2592 list_destroy(&arc.mfu->list); 2593 list_destroy(&arc.mfu_ghost->list); 2594 2595 mutex_destroy(&arc.anon->mtx); 2596 mutex_destroy(&arc.mru->mtx); 2597 mutex_destroy(&arc.mru_ghost->mtx); 2598 mutex_destroy(&arc.mfu->mtx); 2599 mutex_destroy(&arc.mfu_ghost->mtx); 2600 2601 buf_fini(); 2602 } 2603