xref: /titanic_51/usr/src/uts/common/fs/zfs/arc.c (revision 310da939904e5e37a19c8a427209c0d4d9683ec8)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  */
24 
25 /*
26  * DVA-based Adjustable Replacement Cache
27  *
28  * While much of the theory of operation used here is
29  * based on the self-tuning, low overhead replacement cache
30  * presented by Megiddo and Modha at FAST 2003, there are some
31  * significant differences:
32  *
33  * 1. The Megiddo and Modha model assumes any page is evictable.
34  * Pages in its cache cannot be "locked" into memory.  This makes
35  * the eviction algorithm simple: evict the last page in the list.
36  * This also make the performance characteristics easy to reason
37  * about.  Our cache is not so simple.  At any given moment, some
38  * subset of the blocks in the cache are un-evictable because we
39  * have handed out a reference to them.  Blocks are only evictable
40  * when there are no external references active.  This makes
41  * eviction far more problematic:  we choose to evict the evictable
42  * blocks that are the "lowest" in the list.
43  *
44  * There are times when it is not possible to evict the requested
45  * space.  In these circumstances we are unable to adjust the cache
46  * size.  To prevent the cache growing unbounded at these times we
47  * implement a "cache throttle" that slows the flow of new data
48  * into the cache until we can make space available.
49  *
50  * 2. The Megiddo and Modha model assumes a fixed cache size.
51  * Pages are evicted when the cache is full and there is a cache
52  * miss.  Our model has a variable sized cache.  It grows with
53  * high use, but also tries to react to memory pressure from the
54  * operating system: decreasing its size when system memory is
55  * tight.
56  *
57  * 3. The Megiddo and Modha model assumes a fixed page size. All
58  * elements of the cache are therefor exactly the same size.  So
59  * when adjusting the cache size following a cache miss, its simply
60  * a matter of choosing a single page to evict.  In our model, we
61  * have variable sized cache blocks (rangeing from 512 bytes to
62  * 128K bytes).  We therefor choose a set of blocks to evict to make
63  * space for a cache miss that approximates as closely as possible
64  * the space used by the new block.
65  *
66  * See also:  "ARC: A Self-Tuning, Low Overhead Replacement Cache"
67  * by N. Megiddo & D. Modha, FAST 2003
68  */
69 
70 /*
71  * The locking model:
72  *
73  * A new reference to a cache buffer can be obtained in two
74  * ways: 1) via a hash table lookup using the DVA as a key,
75  * or 2) via one of the ARC lists.  The arc_read() interface
76  * uses method 1, while the internal arc algorithms for
77  * adjusting the cache use method 2.  We therefor provide two
78  * types of locks: 1) the hash table lock array, and 2) the
79  * arc list locks.
80  *
81  * Buffers do not have their own mutexs, rather they rely on the
82  * hash table mutexs for the bulk of their protection (i.e. most
83  * fields in the arc_buf_hdr_t are protected by these mutexs).
84  *
85  * buf_hash_find() returns the appropriate mutex (held) when it
86  * locates the requested buffer in the hash table.  It returns
87  * NULL for the mutex if the buffer was not in the table.
88  *
89  * buf_hash_remove() expects the appropriate hash mutex to be
90  * already held before it is invoked.
91  *
92  * Each arc state also has a mutex which is used to protect the
93  * buffer list associated with the state.  When attempting to
94  * obtain a hash table lock while holding an arc list lock you
95  * must use: mutex_tryenter() to avoid deadlock.  Also note that
96  * the active state mutex must be held before the ghost state mutex.
97  *
98  * Arc buffers may have an associated eviction callback function.
99  * This function will be invoked prior to removing the buffer (e.g.
100  * in arc_do_user_evicts()).  Note however that the data associated
101  * with the buffer may be evicted prior to the callback.  The callback
102  * must be made with *no locks held* (to prevent deadlock).  Additionally,
103  * the users of callbacks must ensure that their private data is
104  * protected from simultaneous callbacks from arc_buf_evict()
105  * and arc_do_user_evicts().
106  *
107  * Note that the majority of the performance stats are manipulated
108  * with atomic operations.
109  *
110  * The L2ARC uses the l2arc_buflist_mtx global mutex for the following:
111  *
112  *	- L2ARC buflist creation
113  *	- L2ARC buflist eviction
114  *	- L2ARC write completion, which walks L2ARC buflists
115  *	- ARC header destruction, as it removes from L2ARC buflists
116  *	- ARC header release, as it removes from L2ARC buflists
117  */
118 
119 #include <sys/spa.h>
120 #include <sys/zio.h>
121 #include <sys/zfs_context.h>
122 #include <sys/arc.h>
123 #include <sys/refcount.h>
124 #include <sys/vdev.h>
125 #include <sys/vdev_impl.h>
126 #ifdef _KERNEL
127 #include <sys/vmsystm.h>
128 #include <vm/anon.h>
129 #include <sys/fs/swapnode.h>
130 #include <sys/dnlc.h>
131 #endif
132 #include <sys/callb.h>
133 #include <sys/kstat.h>
134 #include <zfs_fletcher.h>
135 
136 static kmutex_t		arc_reclaim_thr_lock;
137 static kcondvar_t	arc_reclaim_thr_cv;	/* used to signal reclaim thr */
138 static uint8_t		arc_thread_exit;
139 
140 extern int zfs_write_limit_shift;
141 extern uint64_t zfs_write_limit_max;
142 extern kmutex_t zfs_write_limit_lock;
143 
144 #define	ARC_REDUCE_DNLC_PERCENT	3
145 uint_t arc_reduce_dnlc_percent = ARC_REDUCE_DNLC_PERCENT;
146 
147 typedef enum arc_reclaim_strategy {
148 	ARC_RECLAIM_AGGR,		/* Aggressive reclaim strategy */
149 	ARC_RECLAIM_CONS		/* Conservative reclaim strategy */
150 } arc_reclaim_strategy_t;
151 
152 /* number of seconds before growing cache again */
153 static int		arc_grow_retry = 60;
154 
155 /* shift of arc_c for calculating both min and max arc_p */
156 static int		arc_p_min_shift = 4;
157 
158 /* log2(fraction of arc to reclaim) */
159 static int		arc_shrink_shift = 5;
160 
161 /*
162  * minimum lifespan of a prefetch block in clock ticks
163  * (initialized in arc_init())
164  */
165 static int		arc_min_prefetch_lifespan;
166 
167 static int arc_dead;
168 
169 /*
170  * The arc has filled available memory and has now warmed up.
171  */
172 static boolean_t arc_warm;
173 
174 /*
175  * These tunables are for performance analysis.
176  */
177 uint64_t zfs_arc_max;
178 uint64_t zfs_arc_min;
179 uint64_t zfs_arc_meta_limit = 0;
180 int zfs_arc_grow_retry = 0;
181 int zfs_arc_shrink_shift = 0;
182 int zfs_arc_p_min_shift = 0;
183 
184 /*
185  * Note that buffers can be in one of 6 states:
186  *	ARC_anon	- anonymous (discussed below)
187  *	ARC_mru		- recently used, currently cached
188  *	ARC_mru_ghost	- recentely used, no longer in cache
189  *	ARC_mfu		- frequently used, currently cached
190  *	ARC_mfu_ghost	- frequently used, no longer in cache
191  *	ARC_l2c_only	- exists in L2ARC but not other states
192  * When there are no active references to the buffer, they are
193  * are linked onto a list in one of these arc states.  These are
194  * the only buffers that can be evicted or deleted.  Within each
195  * state there are multiple lists, one for meta-data and one for
196  * non-meta-data.  Meta-data (indirect blocks, blocks of dnodes,
197  * etc.) is tracked separately so that it can be managed more
198  * explicitly: favored over data, limited explicitly.
199  *
200  * Anonymous buffers are buffers that are not associated with
201  * a DVA.  These are buffers that hold dirty block copies
202  * before they are written to stable storage.  By definition,
203  * they are "ref'd" and are considered part of arc_mru
204  * that cannot be freed.  Generally, they will aquire a DVA
205  * as they are written and migrate onto the arc_mru list.
206  *
207  * The ARC_l2c_only state is for buffers that are in the second
208  * level ARC but no longer in any of the ARC_m* lists.  The second
209  * level ARC itself may also contain buffers that are in any of
210  * the ARC_m* states - meaning that a buffer can exist in two
211  * places.  The reason for the ARC_l2c_only state is to keep the
212  * buffer header in the hash table, so that reads that hit the
213  * second level ARC benefit from these fast lookups.
214  */
215 
216 typedef struct arc_state {
217 	list_t	arcs_list[ARC_BUFC_NUMTYPES];	/* list of evictable buffers */
218 	uint64_t arcs_lsize[ARC_BUFC_NUMTYPES];	/* amount of evictable data */
219 	uint64_t arcs_size;	/* total amount of data in this state */
220 	kmutex_t arcs_mtx;
221 } arc_state_t;
222 
223 /* The 6 states: */
224 static arc_state_t ARC_anon;
225 static arc_state_t ARC_mru;
226 static arc_state_t ARC_mru_ghost;
227 static arc_state_t ARC_mfu;
228 static arc_state_t ARC_mfu_ghost;
229 static arc_state_t ARC_l2c_only;
230 
231 typedef struct arc_stats {
232 	kstat_named_t arcstat_hits;
233 	kstat_named_t arcstat_misses;
234 	kstat_named_t arcstat_demand_data_hits;
235 	kstat_named_t arcstat_demand_data_misses;
236 	kstat_named_t arcstat_demand_metadata_hits;
237 	kstat_named_t arcstat_demand_metadata_misses;
238 	kstat_named_t arcstat_prefetch_data_hits;
239 	kstat_named_t arcstat_prefetch_data_misses;
240 	kstat_named_t arcstat_prefetch_metadata_hits;
241 	kstat_named_t arcstat_prefetch_metadata_misses;
242 	kstat_named_t arcstat_mru_hits;
243 	kstat_named_t arcstat_mru_ghost_hits;
244 	kstat_named_t arcstat_mfu_hits;
245 	kstat_named_t arcstat_mfu_ghost_hits;
246 	kstat_named_t arcstat_deleted;
247 	kstat_named_t arcstat_recycle_miss;
248 	kstat_named_t arcstat_mutex_miss;
249 	kstat_named_t arcstat_evict_skip;
250 	kstat_named_t arcstat_evict_l2_cached;
251 	kstat_named_t arcstat_evict_l2_eligible;
252 	kstat_named_t arcstat_evict_l2_ineligible;
253 	kstat_named_t arcstat_hash_elements;
254 	kstat_named_t arcstat_hash_elements_max;
255 	kstat_named_t arcstat_hash_collisions;
256 	kstat_named_t arcstat_hash_chains;
257 	kstat_named_t arcstat_hash_chain_max;
258 	kstat_named_t arcstat_p;
259 	kstat_named_t arcstat_c;
260 	kstat_named_t arcstat_c_min;
261 	kstat_named_t arcstat_c_max;
262 	kstat_named_t arcstat_size;
263 	kstat_named_t arcstat_hdr_size;
264 	kstat_named_t arcstat_data_size;
265 	kstat_named_t arcstat_other_size;
266 	kstat_named_t arcstat_l2_hits;
267 	kstat_named_t arcstat_l2_misses;
268 	kstat_named_t arcstat_l2_feeds;
269 	kstat_named_t arcstat_l2_rw_clash;
270 	kstat_named_t arcstat_l2_read_bytes;
271 	kstat_named_t arcstat_l2_write_bytes;
272 	kstat_named_t arcstat_l2_writes_sent;
273 	kstat_named_t arcstat_l2_writes_done;
274 	kstat_named_t arcstat_l2_writes_error;
275 	kstat_named_t arcstat_l2_writes_hdr_miss;
276 	kstat_named_t arcstat_l2_evict_lock_retry;
277 	kstat_named_t arcstat_l2_evict_reading;
278 	kstat_named_t arcstat_l2_free_on_write;
279 	kstat_named_t arcstat_l2_abort_lowmem;
280 	kstat_named_t arcstat_l2_cksum_bad;
281 	kstat_named_t arcstat_l2_io_error;
282 	kstat_named_t arcstat_l2_size;
283 	kstat_named_t arcstat_l2_hdr_size;
284 	kstat_named_t arcstat_memory_throttle_count;
285 } arc_stats_t;
286 
287 static arc_stats_t arc_stats = {
288 	{ "hits",			KSTAT_DATA_UINT64 },
289 	{ "misses",			KSTAT_DATA_UINT64 },
290 	{ "demand_data_hits",		KSTAT_DATA_UINT64 },
291 	{ "demand_data_misses",		KSTAT_DATA_UINT64 },
292 	{ "demand_metadata_hits",	KSTAT_DATA_UINT64 },
293 	{ "demand_metadata_misses",	KSTAT_DATA_UINT64 },
294 	{ "prefetch_data_hits",		KSTAT_DATA_UINT64 },
295 	{ "prefetch_data_misses",	KSTAT_DATA_UINT64 },
296 	{ "prefetch_metadata_hits",	KSTAT_DATA_UINT64 },
297 	{ "prefetch_metadata_misses",	KSTAT_DATA_UINT64 },
298 	{ "mru_hits",			KSTAT_DATA_UINT64 },
299 	{ "mru_ghost_hits",		KSTAT_DATA_UINT64 },
300 	{ "mfu_hits",			KSTAT_DATA_UINT64 },
301 	{ "mfu_ghost_hits",		KSTAT_DATA_UINT64 },
302 	{ "deleted",			KSTAT_DATA_UINT64 },
303 	{ "recycle_miss",		KSTAT_DATA_UINT64 },
304 	{ "mutex_miss",			KSTAT_DATA_UINT64 },
305 	{ "evict_skip",			KSTAT_DATA_UINT64 },
306 	{ "evict_l2_cached",		KSTAT_DATA_UINT64 },
307 	{ "evict_l2_eligible",		KSTAT_DATA_UINT64 },
308 	{ "evict_l2_ineligible",	KSTAT_DATA_UINT64 },
309 	{ "hash_elements",		KSTAT_DATA_UINT64 },
310 	{ "hash_elements_max",		KSTAT_DATA_UINT64 },
311 	{ "hash_collisions",		KSTAT_DATA_UINT64 },
312 	{ "hash_chains",		KSTAT_DATA_UINT64 },
313 	{ "hash_chain_max",		KSTAT_DATA_UINT64 },
314 	{ "p",				KSTAT_DATA_UINT64 },
315 	{ "c",				KSTAT_DATA_UINT64 },
316 	{ "c_min",			KSTAT_DATA_UINT64 },
317 	{ "c_max",			KSTAT_DATA_UINT64 },
318 	{ "size",			KSTAT_DATA_UINT64 },
319 	{ "hdr_size",			KSTAT_DATA_UINT64 },
320 	{ "data_size",			KSTAT_DATA_UINT64 },
321 	{ "other_size",			KSTAT_DATA_UINT64 },
322 	{ "l2_hits",			KSTAT_DATA_UINT64 },
323 	{ "l2_misses",			KSTAT_DATA_UINT64 },
324 	{ "l2_feeds",			KSTAT_DATA_UINT64 },
325 	{ "l2_rw_clash",		KSTAT_DATA_UINT64 },
326 	{ "l2_read_bytes",		KSTAT_DATA_UINT64 },
327 	{ "l2_write_bytes",		KSTAT_DATA_UINT64 },
328 	{ "l2_writes_sent",		KSTAT_DATA_UINT64 },
329 	{ "l2_writes_done",		KSTAT_DATA_UINT64 },
330 	{ "l2_writes_error",		KSTAT_DATA_UINT64 },
331 	{ "l2_writes_hdr_miss",		KSTAT_DATA_UINT64 },
332 	{ "l2_evict_lock_retry",	KSTAT_DATA_UINT64 },
333 	{ "l2_evict_reading",		KSTAT_DATA_UINT64 },
334 	{ "l2_free_on_write",		KSTAT_DATA_UINT64 },
335 	{ "l2_abort_lowmem",		KSTAT_DATA_UINT64 },
336 	{ "l2_cksum_bad",		KSTAT_DATA_UINT64 },
337 	{ "l2_io_error",		KSTAT_DATA_UINT64 },
338 	{ "l2_size",			KSTAT_DATA_UINT64 },
339 	{ "l2_hdr_size",		KSTAT_DATA_UINT64 },
340 	{ "memory_throttle_count",	KSTAT_DATA_UINT64 }
341 };
342 
343 #define	ARCSTAT(stat)	(arc_stats.stat.value.ui64)
344 
345 #define	ARCSTAT_INCR(stat, val) \
346 	atomic_add_64(&arc_stats.stat.value.ui64, (val));
347 
348 #define	ARCSTAT_BUMP(stat)	ARCSTAT_INCR(stat, 1)
349 #define	ARCSTAT_BUMPDOWN(stat)	ARCSTAT_INCR(stat, -1)
350 
351 #define	ARCSTAT_MAX(stat, val) {					\
352 	uint64_t m;							\
353 	while ((val) > (m = arc_stats.stat.value.ui64) &&		\
354 	    (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val))))	\
355 		continue;						\
356 }
357 
358 #define	ARCSTAT_MAXSTAT(stat) \
359 	ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
360 
361 /*
362  * We define a macro to allow ARC hits/misses to be easily broken down by
363  * two separate conditions, giving a total of four different subtypes for
364  * each of hits and misses (so eight statistics total).
365  */
366 #define	ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
367 	if (cond1) {							\
368 		if (cond2) {						\
369 			ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
370 		} else {						\
371 			ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
372 		}							\
373 	} else {							\
374 		if (cond2) {						\
375 			ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
376 		} else {						\
377 			ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
378 		}							\
379 	}
380 
381 kstat_t			*arc_ksp;
382 static arc_state_t	*arc_anon;
383 static arc_state_t	*arc_mru;
384 static arc_state_t	*arc_mru_ghost;
385 static arc_state_t	*arc_mfu;
386 static arc_state_t	*arc_mfu_ghost;
387 static arc_state_t	*arc_l2c_only;
388 
389 /*
390  * There are several ARC variables that are critical to export as kstats --
391  * but we don't want to have to grovel around in the kstat whenever we wish to
392  * manipulate them.  For these variables, we therefore define them to be in
393  * terms of the statistic variable.  This assures that we are not introducing
394  * the possibility of inconsistency by having shadow copies of the variables,
395  * while still allowing the code to be readable.
396  */
397 #define	arc_size	ARCSTAT(arcstat_size)	/* actual total arc size */
398 #define	arc_p		ARCSTAT(arcstat_p)	/* target size of MRU */
399 #define	arc_c		ARCSTAT(arcstat_c)	/* target size of cache */
400 #define	arc_c_min	ARCSTAT(arcstat_c_min)	/* min target cache size */
401 #define	arc_c_max	ARCSTAT(arcstat_c_max)	/* max target cache size */
402 
403 static int		arc_no_grow;	/* Don't try to grow cache size */
404 static uint64_t		arc_tempreserve;
405 static uint64_t		arc_loaned_bytes;
406 static uint64_t		arc_meta_used;
407 static uint64_t		arc_meta_limit;
408 static uint64_t		arc_meta_max = 0;
409 
410 typedef struct l2arc_buf_hdr l2arc_buf_hdr_t;
411 
412 typedef struct arc_callback arc_callback_t;
413 
414 struct arc_callback {
415 	void			*acb_private;
416 	arc_done_func_t		*acb_done;
417 	arc_buf_t		*acb_buf;
418 	zio_t			*acb_zio_dummy;
419 	arc_callback_t		*acb_next;
420 };
421 
422 typedef struct arc_write_callback arc_write_callback_t;
423 
424 struct arc_write_callback {
425 	void		*awcb_private;
426 	arc_done_func_t	*awcb_ready;
427 	arc_done_func_t	*awcb_done;
428 	arc_buf_t	*awcb_buf;
429 };
430 
431 struct arc_buf_hdr {
432 	/* protected by hash lock */
433 	dva_t			b_dva;
434 	uint64_t		b_birth;
435 	uint64_t		b_cksum0;
436 
437 	kmutex_t		b_freeze_lock;
438 	zio_cksum_t		*b_freeze_cksum;
439 	void			*b_thawed;
440 
441 	arc_buf_hdr_t		*b_hash_next;
442 	arc_buf_t		*b_buf;
443 	uint32_t		b_flags;
444 	uint32_t		b_datacnt;
445 
446 	arc_callback_t		*b_acb;
447 	kcondvar_t		b_cv;
448 
449 	/* immutable */
450 	arc_buf_contents_t	b_type;
451 	uint64_t		b_size;
452 	uint64_t		b_spa;
453 
454 	/* protected by arc state mutex */
455 	arc_state_t		*b_state;
456 	list_node_t		b_arc_node;
457 
458 	/* updated atomically */
459 	clock_t			b_arc_access;
460 
461 	/* self protecting */
462 	refcount_t		b_refcnt;
463 
464 	l2arc_buf_hdr_t		*b_l2hdr;
465 	list_node_t		b_l2node;
466 };
467 
468 static arc_buf_t *arc_eviction_list;
469 static kmutex_t arc_eviction_mtx;
470 static arc_buf_hdr_t arc_eviction_hdr;
471 static void arc_get_data_buf(arc_buf_t *buf);
472 static void arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock);
473 static int arc_evict_needed(arc_buf_contents_t type);
474 static void arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes);
475 
476 static boolean_t l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab);
477 
478 #define	GHOST_STATE(state)	\
479 	((state) == arc_mru_ghost || (state) == arc_mfu_ghost ||	\
480 	(state) == arc_l2c_only)
481 
482 /*
483  * Private ARC flags.  These flags are private ARC only flags that will show up
484  * in b_flags in the arc_hdr_buf_t.  Some flags are publicly declared, and can
485  * be passed in as arc_flags in things like arc_read.  However, these flags
486  * should never be passed and should only be set by ARC code.  When adding new
487  * public flags, make sure not to smash the private ones.
488  */
489 
490 #define	ARC_IN_HASH_TABLE	(1 << 9)	/* this buffer is hashed */
491 #define	ARC_IO_IN_PROGRESS	(1 << 10)	/* I/O in progress for buf */
492 #define	ARC_IO_ERROR		(1 << 11)	/* I/O failed for buf */
493 #define	ARC_FREED_IN_READ	(1 << 12)	/* buf freed while in read */
494 #define	ARC_BUF_AVAILABLE	(1 << 13)	/* block not in active use */
495 #define	ARC_INDIRECT		(1 << 14)	/* this is an indirect block */
496 #define	ARC_FREE_IN_PROGRESS	(1 << 15)	/* hdr about to be freed */
497 #define	ARC_L2_WRITING		(1 << 16)	/* L2ARC write in progress */
498 #define	ARC_L2_EVICTED		(1 << 17)	/* evicted during I/O */
499 #define	ARC_L2_WRITE_HEAD	(1 << 18)	/* head of write list */
500 
501 #define	HDR_IN_HASH_TABLE(hdr)	((hdr)->b_flags & ARC_IN_HASH_TABLE)
502 #define	HDR_IO_IN_PROGRESS(hdr)	((hdr)->b_flags & ARC_IO_IN_PROGRESS)
503 #define	HDR_IO_ERROR(hdr)	((hdr)->b_flags & ARC_IO_ERROR)
504 #define	HDR_PREFETCH(hdr)	((hdr)->b_flags & ARC_PREFETCH)
505 #define	HDR_FREED_IN_READ(hdr)	((hdr)->b_flags & ARC_FREED_IN_READ)
506 #define	HDR_BUF_AVAILABLE(hdr)	((hdr)->b_flags & ARC_BUF_AVAILABLE)
507 #define	HDR_FREE_IN_PROGRESS(hdr)	((hdr)->b_flags & ARC_FREE_IN_PROGRESS)
508 #define	HDR_L2CACHE(hdr)	((hdr)->b_flags & ARC_L2CACHE)
509 #define	HDR_L2_READING(hdr)	((hdr)->b_flags & ARC_IO_IN_PROGRESS &&	\
510 				    (hdr)->b_l2hdr != NULL)
511 #define	HDR_L2_WRITING(hdr)	((hdr)->b_flags & ARC_L2_WRITING)
512 #define	HDR_L2_EVICTED(hdr)	((hdr)->b_flags & ARC_L2_EVICTED)
513 #define	HDR_L2_WRITE_HEAD(hdr)	((hdr)->b_flags & ARC_L2_WRITE_HEAD)
514 
515 /*
516  * Other sizes
517  */
518 
519 #define	HDR_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
520 #define	L2HDR_SIZE ((int64_t)sizeof (l2arc_buf_hdr_t))
521 
522 /*
523  * Hash table routines
524  */
525 
526 #define	HT_LOCK_PAD	64
527 
528 struct ht_lock {
529 	kmutex_t	ht_lock;
530 #ifdef _KERNEL
531 	unsigned char	pad[(HT_LOCK_PAD - sizeof (kmutex_t))];
532 #endif
533 };
534 
535 #define	BUF_LOCKS 256
536 typedef struct buf_hash_table {
537 	uint64_t ht_mask;
538 	arc_buf_hdr_t **ht_table;
539 	struct ht_lock ht_locks[BUF_LOCKS];
540 } buf_hash_table_t;
541 
542 static buf_hash_table_t buf_hash_table;
543 
544 #define	BUF_HASH_INDEX(spa, dva, birth) \
545 	(buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
546 #define	BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
547 #define	BUF_HASH_LOCK(idx)	(&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
548 #define	HDR_LOCK(hdr) \
549 	(BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
550 
551 uint64_t zfs_crc64_table[256];
552 
553 /*
554  * Level 2 ARC
555  */
556 
557 #define	L2ARC_WRITE_SIZE	(8 * 1024 * 1024)	/* initial write max */
558 #define	L2ARC_HEADROOM		2		/* num of writes */
559 #define	L2ARC_FEED_SECS		1		/* caching interval secs */
560 #define	L2ARC_FEED_MIN_MS	200		/* min caching interval ms */
561 
562 #define	l2arc_writes_sent	ARCSTAT(arcstat_l2_writes_sent)
563 #define	l2arc_writes_done	ARCSTAT(arcstat_l2_writes_done)
564 
565 /*
566  * L2ARC Performance Tunables
567  */
568 uint64_t l2arc_write_max = L2ARC_WRITE_SIZE;	/* default max write size */
569 uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE;	/* extra write during warmup */
570 uint64_t l2arc_headroom = L2ARC_HEADROOM;	/* number of dev writes */
571 uint64_t l2arc_feed_secs = L2ARC_FEED_SECS;	/* interval seconds */
572 uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS;	/* min interval milliseconds */
573 boolean_t l2arc_noprefetch = B_TRUE;		/* don't cache prefetch bufs */
574 boolean_t l2arc_feed_again = B_TRUE;		/* turbo warmup */
575 boolean_t l2arc_norw = B_TRUE;			/* no reads during writes */
576 
577 /*
578  * L2ARC Internals
579  */
580 typedef struct l2arc_dev {
581 	vdev_t			*l2ad_vdev;	/* vdev */
582 	spa_t			*l2ad_spa;	/* spa */
583 	uint64_t		l2ad_hand;	/* next write location */
584 	uint64_t		l2ad_write;	/* desired write size, bytes */
585 	uint64_t		l2ad_boost;	/* warmup write boost, bytes */
586 	uint64_t		l2ad_start;	/* first addr on device */
587 	uint64_t		l2ad_end;	/* last addr on device */
588 	uint64_t		l2ad_evict;	/* last addr eviction reached */
589 	boolean_t		l2ad_first;	/* first sweep through */
590 	boolean_t		l2ad_writing;	/* currently writing */
591 	list_t			*l2ad_buflist;	/* buffer list */
592 	list_node_t		l2ad_node;	/* device list node */
593 } l2arc_dev_t;
594 
595 static list_t L2ARC_dev_list;			/* device list */
596 static list_t *l2arc_dev_list;			/* device list pointer */
597 static kmutex_t l2arc_dev_mtx;			/* device list mutex */
598 static l2arc_dev_t *l2arc_dev_last;		/* last device used */
599 static kmutex_t l2arc_buflist_mtx;		/* mutex for all buflists */
600 static list_t L2ARC_free_on_write;		/* free after write buf list */
601 static list_t *l2arc_free_on_write;		/* free after write list ptr */
602 static kmutex_t l2arc_free_on_write_mtx;	/* mutex for list */
603 static uint64_t l2arc_ndev;			/* number of devices */
604 
605 typedef struct l2arc_read_callback {
606 	arc_buf_t	*l2rcb_buf;		/* read buffer */
607 	spa_t		*l2rcb_spa;		/* spa */
608 	blkptr_t	l2rcb_bp;		/* original blkptr */
609 	zbookmark_t	l2rcb_zb;		/* original bookmark */
610 	int		l2rcb_flags;		/* original flags */
611 } l2arc_read_callback_t;
612 
613 typedef struct l2arc_write_callback {
614 	l2arc_dev_t	*l2wcb_dev;		/* device info */
615 	arc_buf_hdr_t	*l2wcb_head;		/* head of write buflist */
616 } l2arc_write_callback_t;
617 
618 struct l2arc_buf_hdr {
619 	/* protected by arc_buf_hdr  mutex */
620 	l2arc_dev_t	*b_dev;			/* L2ARC device */
621 	uint64_t	b_daddr;		/* disk address, offset byte */
622 };
623 
624 typedef struct l2arc_data_free {
625 	/* protected by l2arc_free_on_write_mtx */
626 	void		*l2df_data;
627 	size_t		l2df_size;
628 	void		(*l2df_func)(void *, size_t);
629 	list_node_t	l2df_list_node;
630 } l2arc_data_free_t;
631 
632 static kmutex_t l2arc_feed_thr_lock;
633 static kcondvar_t l2arc_feed_thr_cv;
634 static uint8_t l2arc_thread_exit;
635 
636 static void l2arc_read_done(zio_t *zio);
637 static void l2arc_hdr_stat_add(void);
638 static void l2arc_hdr_stat_remove(void);
639 
640 static uint64_t
641 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
642 {
643 	uint8_t *vdva = (uint8_t *)dva;
644 	uint64_t crc = -1ULL;
645 	int i;
646 
647 	ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
648 
649 	for (i = 0; i < sizeof (dva_t); i++)
650 		crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF];
651 
652 	crc ^= (spa>>8) ^ birth;
653 
654 	return (crc);
655 }
656 
657 #define	BUF_EMPTY(buf)						\
658 	((buf)->b_dva.dva_word[0] == 0 &&			\
659 	(buf)->b_dva.dva_word[1] == 0 &&			\
660 	(buf)->b_birth == 0)
661 
662 #define	BUF_EQUAL(spa, dva, birth, buf)				\
663 	((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) &&	\
664 	((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) &&	\
665 	((buf)->b_birth == birth) && ((buf)->b_spa == spa)
666 
667 static void
668 buf_discard_identity(arc_buf_hdr_t *hdr)
669 {
670 	hdr->b_dva.dva_word[0] = 0;
671 	hdr->b_dva.dva_word[1] = 0;
672 	hdr->b_birth = 0;
673 	hdr->b_cksum0 = 0;
674 }
675 
676 static arc_buf_hdr_t *
677 buf_hash_find(uint64_t spa, const dva_t *dva, uint64_t birth, kmutex_t **lockp)
678 {
679 	uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
680 	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
681 	arc_buf_hdr_t *buf;
682 
683 	mutex_enter(hash_lock);
684 	for (buf = buf_hash_table.ht_table[idx]; buf != NULL;
685 	    buf = buf->b_hash_next) {
686 		if (BUF_EQUAL(spa, dva, birth, buf)) {
687 			*lockp = hash_lock;
688 			return (buf);
689 		}
690 	}
691 	mutex_exit(hash_lock);
692 	*lockp = NULL;
693 	return (NULL);
694 }
695 
696 /*
697  * Insert an entry into the hash table.  If there is already an element
698  * equal to elem in the hash table, then the already existing element
699  * will be returned and the new element will not be inserted.
700  * Otherwise returns NULL.
701  */
702 static arc_buf_hdr_t *
703 buf_hash_insert(arc_buf_hdr_t *buf, kmutex_t **lockp)
704 {
705 	uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
706 	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
707 	arc_buf_hdr_t *fbuf;
708 	uint32_t i;
709 
710 	ASSERT(!HDR_IN_HASH_TABLE(buf));
711 	*lockp = hash_lock;
712 	mutex_enter(hash_lock);
713 	for (fbuf = buf_hash_table.ht_table[idx], i = 0; fbuf != NULL;
714 	    fbuf = fbuf->b_hash_next, i++) {
715 		if (BUF_EQUAL(buf->b_spa, &buf->b_dva, buf->b_birth, fbuf))
716 			return (fbuf);
717 	}
718 
719 	buf->b_hash_next = buf_hash_table.ht_table[idx];
720 	buf_hash_table.ht_table[idx] = buf;
721 	buf->b_flags |= ARC_IN_HASH_TABLE;
722 
723 	/* collect some hash table performance data */
724 	if (i > 0) {
725 		ARCSTAT_BUMP(arcstat_hash_collisions);
726 		if (i == 1)
727 			ARCSTAT_BUMP(arcstat_hash_chains);
728 
729 		ARCSTAT_MAX(arcstat_hash_chain_max, i);
730 	}
731 
732 	ARCSTAT_BUMP(arcstat_hash_elements);
733 	ARCSTAT_MAXSTAT(arcstat_hash_elements);
734 
735 	return (NULL);
736 }
737 
738 static void
739 buf_hash_remove(arc_buf_hdr_t *buf)
740 {
741 	arc_buf_hdr_t *fbuf, **bufp;
742 	uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
743 
744 	ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
745 	ASSERT(HDR_IN_HASH_TABLE(buf));
746 
747 	bufp = &buf_hash_table.ht_table[idx];
748 	while ((fbuf = *bufp) != buf) {
749 		ASSERT(fbuf != NULL);
750 		bufp = &fbuf->b_hash_next;
751 	}
752 	*bufp = buf->b_hash_next;
753 	buf->b_hash_next = NULL;
754 	buf->b_flags &= ~ARC_IN_HASH_TABLE;
755 
756 	/* collect some hash table performance data */
757 	ARCSTAT_BUMPDOWN(arcstat_hash_elements);
758 
759 	if (buf_hash_table.ht_table[idx] &&
760 	    buf_hash_table.ht_table[idx]->b_hash_next == NULL)
761 		ARCSTAT_BUMPDOWN(arcstat_hash_chains);
762 }
763 
764 /*
765  * Global data structures and functions for the buf kmem cache.
766  */
767 static kmem_cache_t *hdr_cache;
768 static kmem_cache_t *buf_cache;
769 
770 static void
771 buf_fini(void)
772 {
773 	int i;
774 
775 	kmem_free(buf_hash_table.ht_table,
776 	    (buf_hash_table.ht_mask + 1) * sizeof (void *));
777 	for (i = 0; i < BUF_LOCKS; i++)
778 		mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
779 	kmem_cache_destroy(hdr_cache);
780 	kmem_cache_destroy(buf_cache);
781 }
782 
783 /*
784  * Constructor callback - called when the cache is empty
785  * and a new buf is requested.
786  */
787 /* ARGSUSED */
788 static int
789 hdr_cons(void *vbuf, void *unused, int kmflag)
790 {
791 	arc_buf_hdr_t *buf = vbuf;
792 
793 	bzero(buf, sizeof (arc_buf_hdr_t));
794 	refcount_create(&buf->b_refcnt);
795 	cv_init(&buf->b_cv, NULL, CV_DEFAULT, NULL);
796 	mutex_init(&buf->b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
797 	arc_space_consume(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS);
798 
799 	return (0);
800 }
801 
802 /* ARGSUSED */
803 static int
804 buf_cons(void *vbuf, void *unused, int kmflag)
805 {
806 	arc_buf_t *buf = vbuf;
807 
808 	bzero(buf, sizeof (arc_buf_t));
809 	mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL);
810 	rw_init(&buf->b_data_lock, NULL, RW_DEFAULT, NULL);
811 	arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
812 
813 	return (0);
814 }
815 
816 /*
817  * Destructor callback - called when a cached buf is
818  * no longer required.
819  */
820 /* ARGSUSED */
821 static void
822 hdr_dest(void *vbuf, void *unused)
823 {
824 	arc_buf_hdr_t *buf = vbuf;
825 
826 	ASSERT(BUF_EMPTY(buf));
827 	refcount_destroy(&buf->b_refcnt);
828 	cv_destroy(&buf->b_cv);
829 	mutex_destroy(&buf->b_freeze_lock);
830 	arc_space_return(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS);
831 }
832 
833 /* ARGSUSED */
834 static void
835 buf_dest(void *vbuf, void *unused)
836 {
837 	arc_buf_t *buf = vbuf;
838 
839 	mutex_destroy(&buf->b_evict_lock);
840 	rw_destroy(&buf->b_data_lock);
841 	arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
842 }
843 
844 /*
845  * Reclaim callback -- invoked when memory is low.
846  */
847 /* ARGSUSED */
848 static void
849 hdr_recl(void *unused)
850 {
851 	dprintf("hdr_recl called\n");
852 	/*
853 	 * umem calls the reclaim func when we destroy the buf cache,
854 	 * which is after we do arc_fini().
855 	 */
856 	if (!arc_dead)
857 		cv_signal(&arc_reclaim_thr_cv);
858 }
859 
860 static void
861 buf_init(void)
862 {
863 	uint64_t *ct;
864 	uint64_t hsize = 1ULL << 12;
865 	int i, j;
866 
867 	/*
868 	 * The hash table is big enough to fill all of physical memory
869 	 * with an average 64K block size.  The table will take up
870 	 * totalmem*sizeof(void*)/64K (eg. 128KB/GB with 8-byte pointers).
871 	 */
872 	while (hsize * 65536 < physmem * PAGESIZE)
873 		hsize <<= 1;
874 retry:
875 	buf_hash_table.ht_mask = hsize - 1;
876 	buf_hash_table.ht_table =
877 	    kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
878 	if (buf_hash_table.ht_table == NULL) {
879 		ASSERT(hsize > (1ULL << 8));
880 		hsize >>= 1;
881 		goto retry;
882 	}
883 
884 	hdr_cache = kmem_cache_create("arc_buf_hdr_t", sizeof (arc_buf_hdr_t),
885 	    0, hdr_cons, hdr_dest, hdr_recl, NULL, NULL, 0);
886 	buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
887 	    0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
888 
889 	for (i = 0; i < 256; i++)
890 		for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
891 			*ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
892 
893 	for (i = 0; i < BUF_LOCKS; i++) {
894 		mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
895 		    NULL, MUTEX_DEFAULT, NULL);
896 	}
897 }
898 
899 #define	ARC_MINTIME	(hz>>4) /* 62 ms */
900 
901 static void
902 arc_cksum_verify(arc_buf_t *buf)
903 {
904 	zio_cksum_t zc;
905 
906 	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
907 		return;
908 
909 	mutex_enter(&buf->b_hdr->b_freeze_lock);
910 	if (buf->b_hdr->b_freeze_cksum == NULL ||
911 	    (buf->b_hdr->b_flags & ARC_IO_ERROR)) {
912 		mutex_exit(&buf->b_hdr->b_freeze_lock);
913 		return;
914 	}
915 	fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
916 	if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc))
917 		panic("buffer modified while frozen!");
918 	mutex_exit(&buf->b_hdr->b_freeze_lock);
919 }
920 
921 static int
922 arc_cksum_equal(arc_buf_t *buf)
923 {
924 	zio_cksum_t zc;
925 	int equal;
926 
927 	mutex_enter(&buf->b_hdr->b_freeze_lock);
928 	fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
929 	equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc);
930 	mutex_exit(&buf->b_hdr->b_freeze_lock);
931 
932 	return (equal);
933 }
934 
935 static void
936 arc_cksum_compute(arc_buf_t *buf, boolean_t force)
937 {
938 	if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY))
939 		return;
940 
941 	mutex_enter(&buf->b_hdr->b_freeze_lock);
942 	if (buf->b_hdr->b_freeze_cksum != NULL) {
943 		mutex_exit(&buf->b_hdr->b_freeze_lock);
944 		return;
945 	}
946 	buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP);
947 	fletcher_2_native(buf->b_data, buf->b_hdr->b_size,
948 	    buf->b_hdr->b_freeze_cksum);
949 	mutex_exit(&buf->b_hdr->b_freeze_lock);
950 }
951 
952 void
953 arc_buf_thaw(arc_buf_t *buf)
954 {
955 	kmutex_t *hash_lock;
956 
957 	hash_lock = HDR_LOCK(buf->b_hdr);
958 	mutex_enter(hash_lock);
959 
960 	if (zfs_flags & ZFS_DEBUG_MODIFY) {
961 		if (buf->b_hdr->b_state != arc_anon)
962 			panic("modifying non-anon buffer!");
963 		if (buf->b_hdr->b_flags & ARC_IO_IN_PROGRESS)
964 			panic("modifying buffer while i/o in progress!");
965 		arc_cksum_verify(buf);
966 	}
967 
968 	mutex_enter(&buf->b_hdr->b_freeze_lock);
969 	if (buf->b_hdr->b_freeze_cksum != NULL) {
970 		kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t));
971 		buf->b_hdr->b_freeze_cksum = NULL;
972 	}
973 
974 	if (zfs_flags & ZFS_DEBUG_MODIFY) {
975 		if (buf->b_hdr->b_thawed)
976 			kmem_free(buf->b_hdr->b_thawed, 1);
977 		buf->b_hdr->b_thawed = kmem_alloc(1, KM_SLEEP);
978 	}
979 
980 	mutex_exit(&buf->b_hdr->b_freeze_lock);
981 	mutex_exit(hash_lock);
982 }
983 
984 void
985 arc_buf_freeze(arc_buf_t *buf)
986 {
987 	kmutex_t *hash_lock;
988 
989 	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
990 		return;
991 
992 	hash_lock = HDR_LOCK(buf->b_hdr);
993 	mutex_enter(hash_lock);
994 
995 	ASSERT(buf->b_hdr->b_freeze_cksum != NULL ||
996 	    buf->b_hdr->b_state == arc_anon);
997 	arc_cksum_compute(buf, B_FALSE);
998 	mutex_exit(hash_lock);
999 }
1000 
1001 static void
1002 add_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
1003 {
1004 	ASSERT(MUTEX_HELD(hash_lock));
1005 
1006 	if ((refcount_add(&ab->b_refcnt, tag) == 1) &&
1007 	    (ab->b_state != arc_anon)) {
1008 		uint64_t delta = ab->b_size * ab->b_datacnt;
1009 		list_t *list = &ab->b_state->arcs_list[ab->b_type];
1010 		uint64_t *size = &ab->b_state->arcs_lsize[ab->b_type];
1011 
1012 		ASSERT(!MUTEX_HELD(&ab->b_state->arcs_mtx));
1013 		mutex_enter(&ab->b_state->arcs_mtx);
1014 		ASSERT(list_link_active(&ab->b_arc_node));
1015 		list_remove(list, ab);
1016 		if (GHOST_STATE(ab->b_state)) {
1017 			ASSERT3U(ab->b_datacnt, ==, 0);
1018 			ASSERT3P(ab->b_buf, ==, NULL);
1019 			delta = ab->b_size;
1020 		}
1021 		ASSERT(delta > 0);
1022 		ASSERT3U(*size, >=, delta);
1023 		atomic_add_64(size, -delta);
1024 		mutex_exit(&ab->b_state->arcs_mtx);
1025 		/* remove the prefetch flag if we get a reference */
1026 		if (ab->b_flags & ARC_PREFETCH)
1027 			ab->b_flags &= ~ARC_PREFETCH;
1028 	}
1029 }
1030 
1031 static int
1032 remove_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
1033 {
1034 	int cnt;
1035 	arc_state_t *state = ab->b_state;
1036 
1037 	ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
1038 	ASSERT(!GHOST_STATE(state));
1039 
1040 	if (((cnt = refcount_remove(&ab->b_refcnt, tag)) == 0) &&
1041 	    (state != arc_anon)) {
1042 		uint64_t *size = &state->arcs_lsize[ab->b_type];
1043 
1044 		ASSERT(!MUTEX_HELD(&state->arcs_mtx));
1045 		mutex_enter(&state->arcs_mtx);
1046 		ASSERT(!list_link_active(&ab->b_arc_node));
1047 		list_insert_head(&state->arcs_list[ab->b_type], ab);
1048 		ASSERT(ab->b_datacnt > 0);
1049 		atomic_add_64(size, ab->b_size * ab->b_datacnt);
1050 		mutex_exit(&state->arcs_mtx);
1051 	}
1052 	return (cnt);
1053 }
1054 
1055 /*
1056  * Move the supplied buffer to the indicated state.  The mutex
1057  * for the buffer must be held by the caller.
1058  */
1059 static void
1060 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *ab, kmutex_t *hash_lock)
1061 {
1062 	arc_state_t *old_state = ab->b_state;
1063 	int64_t refcnt = refcount_count(&ab->b_refcnt);
1064 	uint64_t from_delta, to_delta;
1065 
1066 	ASSERT(MUTEX_HELD(hash_lock));
1067 	ASSERT(new_state != old_state);
1068 	ASSERT(refcnt == 0 || ab->b_datacnt > 0);
1069 	ASSERT(ab->b_datacnt == 0 || !GHOST_STATE(new_state));
1070 	ASSERT(ab->b_datacnt <= 1 || old_state != arc_anon);
1071 
1072 	from_delta = to_delta = ab->b_datacnt * ab->b_size;
1073 
1074 	/*
1075 	 * If this buffer is evictable, transfer it from the
1076 	 * old state list to the new state list.
1077 	 */
1078 	if (refcnt == 0) {
1079 		if (old_state != arc_anon) {
1080 			int use_mutex = !MUTEX_HELD(&old_state->arcs_mtx);
1081 			uint64_t *size = &old_state->arcs_lsize[ab->b_type];
1082 
1083 			if (use_mutex)
1084 				mutex_enter(&old_state->arcs_mtx);
1085 
1086 			ASSERT(list_link_active(&ab->b_arc_node));
1087 			list_remove(&old_state->arcs_list[ab->b_type], ab);
1088 
1089 			/*
1090 			 * If prefetching out of the ghost cache,
1091 			 * we will have a non-zero datacnt.
1092 			 */
1093 			if (GHOST_STATE(old_state) && ab->b_datacnt == 0) {
1094 				/* ghost elements have a ghost size */
1095 				ASSERT(ab->b_buf == NULL);
1096 				from_delta = ab->b_size;
1097 			}
1098 			ASSERT3U(*size, >=, from_delta);
1099 			atomic_add_64(size, -from_delta);
1100 
1101 			if (use_mutex)
1102 				mutex_exit(&old_state->arcs_mtx);
1103 		}
1104 		if (new_state != arc_anon) {
1105 			int use_mutex = !MUTEX_HELD(&new_state->arcs_mtx);
1106 			uint64_t *size = &new_state->arcs_lsize[ab->b_type];
1107 
1108 			if (use_mutex)
1109 				mutex_enter(&new_state->arcs_mtx);
1110 
1111 			list_insert_head(&new_state->arcs_list[ab->b_type], ab);
1112 
1113 			/* ghost elements have a ghost size */
1114 			if (GHOST_STATE(new_state)) {
1115 				ASSERT(ab->b_datacnt == 0);
1116 				ASSERT(ab->b_buf == NULL);
1117 				to_delta = ab->b_size;
1118 			}
1119 			atomic_add_64(size, to_delta);
1120 
1121 			if (use_mutex)
1122 				mutex_exit(&new_state->arcs_mtx);
1123 		}
1124 	}
1125 
1126 	ASSERT(!BUF_EMPTY(ab));
1127 	if (new_state == arc_anon && HDR_IN_HASH_TABLE(ab))
1128 		buf_hash_remove(ab);
1129 
1130 	/* adjust state sizes */
1131 	if (to_delta)
1132 		atomic_add_64(&new_state->arcs_size, to_delta);
1133 	if (from_delta) {
1134 		ASSERT3U(old_state->arcs_size, >=, from_delta);
1135 		atomic_add_64(&old_state->arcs_size, -from_delta);
1136 	}
1137 	ab->b_state = new_state;
1138 
1139 	/* adjust l2arc hdr stats */
1140 	if (new_state == arc_l2c_only)
1141 		l2arc_hdr_stat_add();
1142 	else if (old_state == arc_l2c_only)
1143 		l2arc_hdr_stat_remove();
1144 }
1145 
1146 void
1147 arc_space_consume(uint64_t space, arc_space_type_t type)
1148 {
1149 	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1150 
1151 	switch (type) {
1152 	case ARC_SPACE_DATA:
1153 		ARCSTAT_INCR(arcstat_data_size, space);
1154 		break;
1155 	case ARC_SPACE_OTHER:
1156 		ARCSTAT_INCR(arcstat_other_size, space);
1157 		break;
1158 	case ARC_SPACE_HDRS:
1159 		ARCSTAT_INCR(arcstat_hdr_size, space);
1160 		break;
1161 	case ARC_SPACE_L2HDRS:
1162 		ARCSTAT_INCR(arcstat_l2_hdr_size, space);
1163 		break;
1164 	}
1165 
1166 	atomic_add_64(&arc_meta_used, space);
1167 	atomic_add_64(&arc_size, space);
1168 }
1169 
1170 void
1171 arc_space_return(uint64_t space, arc_space_type_t type)
1172 {
1173 	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1174 
1175 	switch (type) {
1176 	case ARC_SPACE_DATA:
1177 		ARCSTAT_INCR(arcstat_data_size, -space);
1178 		break;
1179 	case ARC_SPACE_OTHER:
1180 		ARCSTAT_INCR(arcstat_other_size, -space);
1181 		break;
1182 	case ARC_SPACE_HDRS:
1183 		ARCSTAT_INCR(arcstat_hdr_size, -space);
1184 		break;
1185 	case ARC_SPACE_L2HDRS:
1186 		ARCSTAT_INCR(arcstat_l2_hdr_size, -space);
1187 		break;
1188 	}
1189 
1190 	ASSERT(arc_meta_used >= space);
1191 	if (arc_meta_max < arc_meta_used)
1192 		arc_meta_max = arc_meta_used;
1193 	atomic_add_64(&arc_meta_used, -space);
1194 	ASSERT(arc_size >= space);
1195 	atomic_add_64(&arc_size, -space);
1196 }
1197 
1198 void *
1199 arc_data_buf_alloc(uint64_t size)
1200 {
1201 	if (arc_evict_needed(ARC_BUFC_DATA))
1202 		cv_signal(&arc_reclaim_thr_cv);
1203 	atomic_add_64(&arc_size, size);
1204 	return (zio_data_buf_alloc(size));
1205 }
1206 
1207 void
1208 arc_data_buf_free(void *buf, uint64_t size)
1209 {
1210 	zio_data_buf_free(buf, size);
1211 	ASSERT(arc_size >= size);
1212 	atomic_add_64(&arc_size, -size);
1213 }
1214 
1215 arc_buf_t *
1216 arc_buf_alloc(spa_t *spa, int size, void *tag, arc_buf_contents_t type)
1217 {
1218 	arc_buf_hdr_t *hdr;
1219 	arc_buf_t *buf;
1220 
1221 	ASSERT3U(size, >, 0);
1222 	hdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
1223 	ASSERT(BUF_EMPTY(hdr));
1224 	hdr->b_size = size;
1225 	hdr->b_type = type;
1226 	hdr->b_spa = spa_guid(spa);
1227 	hdr->b_state = arc_anon;
1228 	hdr->b_arc_access = 0;
1229 	buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1230 	buf->b_hdr = hdr;
1231 	buf->b_data = NULL;
1232 	buf->b_efunc = NULL;
1233 	buf->b_private = NULL;
1234 	buf->b_next = NULL;
1235 	hdr->b_buf = buf;
1236 	arc_get_data_buf(buf);
1237 	hdr->b_datacnt = 1;
1238 	hdr->b_flags = 0;
1239 	ASSERT(refcount_is_zero(&hdr->b_refcnt));
1240 	(void) refcount_add(&hdr->b_refcnt, tag);
1241 
1242 	return (buf);
1243 }
1244 
1245 static char *arc_onloan_tag = "onloan";
1246 
1247 /*
1248  * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
1249  * flight data by arc_tempreserve_space() until they are "returned". Loaned
1250  * buffers must be returned to the arc before they can be used by the DMU or
1251  * freed.
1252  */
1253 arc_buf_t *
1254 arc_loan_buf(spa_t *spa, int size)
1255 {
1256 	arc_buf_t *buf;
1257 
1258 	buf = arc_buf_alloc(spa, size, arc_onloan_tag, ARC_BUFC_DATA);
1259 
1260 	atomic_add_64(&arc_loaned_bytes, size);
1261 	return (buf);
1262 }
1263 
1264 /*
1265  * Return a loaned arc buffer to the arc.
1266  */
1267 void
1268 arc_return_buf(arc_buf_t *buf, void *tag)
1269 {
1270 	arc_buf_hdr_t *hdr = buf->b_hdr;
1271 
1272 	ASSERT(buf->b_data != NULL);
1273 	(void) refcount_add(&hdr->b_refcnt, tag);
1274 	(void) refcount_remove(&hdr->b_refcnt, arc_onloan_tag);
1275 
1276 	atomic_add_64(&arc_loaned_bytes, -hdr->b_size);
1277 }
1278 
1279 /* Detach an arc_buf from a dbuf (tag) */
1280 void
1281 arc_loan_inuse_buf(arc_buf_t *buf, void *tag)
1282 {
1283 	arc_buf_hdr_t *hdr;
1284 
1285 	ASSERT(buf->b_data != NULL);
1286 	hdr = buf->b_hdr;
1287 	(void) refcount_add(&hdr->b_refcnt, arc_onloan_tag);
1288 	(void) refcount_remove(&hdr->b_refcnt, tag);
1289 	buf->b_efunc = NULL;
1290 	buf->b_private = NULL;
1291 
1292 	atomic_add_64(&arc_loaned_bytes, hdr->b_size);
1293 }
1294 
1295 static arc_buf_t *
1296 arc_buf_clone(arc_buf_t *from)
1297 {
1298 	arc_buf_t *buf;
1299 	arc_buf_hdr_t *hdr = from->b_hdr;
1300 	uint64_t size = hdr->b_size;
1301 
1302 	ASSERT(hdr->b_state != arc_anon);
1303 
1304 	buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1305 	buf->b_hdr = hdr;
1306 	buf->b_data = NULL;
1307 	buf->b_efunc = NULL;
1308 	buf->b_private = NULL;
1309 	buf->b_next = hdr->b_buf;
1310 	hdr->b_buf = buf;
1311 	arc_get_data_buf(buf);
1312 	bcopy(from->b_data, buf->b_data, size);
1313 	hdr->b_datacnt += 1;
1314 	return (buf);
1315 }
1316 
1317 void
1318 arc_buf_add_ref(arc_buf_t *buf, void* tag)
1319 {
1320 	arc_buf_hdr_t *hdr;
1321 	kmutex_t *hash_lock;
1322 
1323 	/*
1324 	 * Check to see if this buffer is evicted.  Callers
1325 	 * must verify b_data != NULL to know if the add_ref
1326 	 * was successful.
1327 	 */
1328 	mutex_enter(&buf->b_evict_lock);
1329 	if (buf->b_data == NULL) {
1330 		mutex_exit(&buf->b_evict_lock);
1331 		return;
1332 	}
1333 	hash_lock = HDR_LOCK(buf->b_hdr);
1334 	mutex_enter(hash_lock);
1335 	hdr = buf->b_hdr;
1336 	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1337 	mutex_exit(&buf->b_evict_lock);
1338 
1339 	ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
1340 	add_reference(hdr, hash_lock, tag);
1341 	DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
1342 	arc_access(hdr, hash_lock);
1343 	mutex_exit(hash_lock);
1344 	ARCSTAT_BUMP(arcstat_hits);
1345 	ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
1346 	    demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
1347 	    data, metadata, hits);
1348 }
1349 
1350 /*
1351  * Free the arc data buffer.  If it is an l2arc write in progress,
1352  * the buffer is placed on l2arc_free_on_write to be freed later.
1353  */
1354 static void
1355 arc_buf_data_free(arc_buf_hdr_t *hdr, void (*free_func)(void *, size_t),
1356     void *data, size_t size)
1357 {
1358 	if (HDR_L2_WRITING(hdr)) {
1359 		l2arc_data_free_t *df;
1360 		df = kmem_alloc(sizeof (l2arc_data_free_t), KM_SLEEP);
1361 		df->l2df_data = data;
1362 		df->l2df_size = size;
1363 		df->l2df_func = free_func;
1364 		mutex_enter(&l2arc_free_on_write_mtx);
1365 		list_insert_head(l2arc_free_on_write, df);
1366 		mutex_exit(&l2arc_free_on_write_mtx);
1367 		ARCSTAT_BUMP(arcstat_l2_free_on_write);
1368 	} else {
1369 		free_func(data, size);
1370 	}
1371 }
1372 
1373 static void
1374 arc_buf_destroy(arc_buf_t *buf, boolean_t recycle, boolean_t all)
1375 {
1376 	arc_buf_t **bufp;
1377 
1378 	/* free up data associated with the buf */
1379 	if (buf->b_data) {
1380 		arc_state_t *state = buf->b_hdr->b_state;
1381 		uint64_t size = buf->b_hdr->b_size;
1382 		arc_buf_contents_t type = buf->b_hdr->b_type;
1383 
1384 		arc_cksum_verify(buf);
1385 
1386 		if (!recycle) {
1387 			if (type == ARC_BUFC_METADATA) {
1388 				arc_buf_data_free(buf->b_hdr, zio_buf_free,
1389 				    buf->b_data, size);
1390 				arc_space_return(size, ARC_SPACE_DATA);
1391 			} else {
1392 				ASSERT(type == ARC_BUFC_DATA);
1393 				arc_buf_data_free(buf->b_hdr,
1394 				    zio_data_buf_free, buf->b_data, size);
1395 				ARCSTAT_INCR(arcstat_data_size, -size);
1396 				atomic_add_64(&arc_size, -size);
1397 			}
1398 		}
1399 		if (list_link_active(&buf->b_hdr->b_arc_node)) {
1400 			uint64_t *cnt = &state->arcs_lsize[type];
1401 
1402 			ASSERT(refcount_is_zero(&buf->b_hdr->b_refcnt));
1403 			ASSERT(state != arc_anon);
1404 
1405 			ASSERT3U(*cnt, >=, size);
1406 			atomic_add_64(cnt, -size);
1407 		}
1408 		ASSERT3U(state->arcs_size, >=, size);
1409 		atomic_add_64(&state->arcs_size, -size);
1410 		buf->b_data = NULL;
1411 		ASSERT(buf->b_hdr->b_datacnt > 0);
1412 		buf->b_hdr->b_datacnt -= 1;
1413 	}
1414 
1415 	/* only remove the buf if requested */
1416 	if (!all)
1417 		return;
1418 
1419 	/* remove the buf from the hdr list */
1420 	for (bufp = &buf->b_hdr->b_buf; *bufp != buf; bufp = &(*bufp)->b_next)
1421 		continue;
1422 	*bufp = buf->b_next;
1423 	buf->b_next = NULL;
1424 
1425 	ASSERT(buf->b_efunc == NULL);
1426 
1427 	/* clean up the buf */
1428 	buf->b_hdr = NULL;
1429 	kmem_cache_free(buf_cache, buf);
1430 }
1431 
1432 static void
1433 arc_hdr_destroy(arc_buf_hdr_t *hdr)
1434 {
1435 	ASSERT(refcount_is_zero(&hdr->b_refcnt));
1436 	ASSERT3P(hdr->b_state, ==, arc_anon);
1437 	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
1438 	l2arc_buf_hdr_t *l2hdr = hdr->b_l2hdr;
1439 
1440 	if (l2hdr != NULL) {
1441 		boolean_t buflist_held = MUTEX_HELD(&l2arc_buflist_mtx);
1442 		/*
1443 		 * To prevent arc_free() and l2arc_evict() from
1444 		 * attempting to free the same buffer at the same time,
1445 		 * a FREE_IN_PROGRESS flag is given to arc_free() to
1446 		 * give it priority.  l2arc_evict() can't destroy this
1447 		 * header while we are waiting on l2arc_buflist_mtx.
1448 		 *
1449 		 * The hdr may be removed from l2ad_buflist before we
1450 		 * grab l2arc_buflist_mtx, so b_l2hdr is rechecked.
1451 		 */
1452 		if (!buflist_held) {
1453 			mutex_enter(&l2arc_buflist_mtx);
1454 			l2hdr = hdr->b_l2hdr;
1455 		}
1456 
1457 		if (l2hdr != NULL) {
1458 			list_remove(l2hdr->b_dev->l2ad_buflist, hdr);
1459 			ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
1460 			kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t));
1461 			if (hdr->b_state == arc_l2c_only)
1462 				l2arc_hdr_stat_remove();
1463 			hdr->b_l2hdr = NULL;
1464 		}
1465 
1466 		if (!buflist_held)
1467 			mutex_exit(&l2arc_buflist_mtx);
1468 	}
1469 
1470 	if (!BUF_EMPTY(hdr)) {
1471 		ASSERT(!HDR_IN_HASH_TABLE(hdr));
1472 		buf_discard_identity(hdr);
1473 	}
1474 	while (hdr->b_buf) {
1475 		arc_buf_t *buf = hdr->b_buf;
1476 
1477 		if (buf->b_efunc) {
1478 			mutex_enter(&arc_eviction_mtx);
1479 			mutex_enter(&buf->b_evict_lock);
1480 			ASSERT(buf->b_hdr != NULL);
1481 			arc_buf_destroy(hdr->b_buf, FALSE, FALSE);
1482 			hdr->b_buf = buf->b_next;
1483 			buf->b_hdr = &arc_eviction_hdr;
1484 			buf->b_next = arc_eviction_list;
1485 			arc_eviction_list = buf;
1486 			mutex_exit(&buf->b_evict_lock);
1487 			mutex_exit(&arc_eviction_mtx);
1488 		} else {
1489 			arc_buf_destroy(hdr->b_buf, FALSE, TRUE);
1490 		}
1491 	}
1492 	if (hdr->b_freeze_cksum != NULL) {
1493 		kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1494 		hdr->b_freeze_cksum = NULL;
1495 	}
1496 	if (hdr->b_thawed) {
1497 		kmem_free(hdr->b_thawed, 1);
1498 		hdr->b_thawed = NULL;
1499 	}
1500 
1501 	ASSERT(!list_link_active(&hdr->b_arc_node));
1502 	ASSERT3P(hdr->b_hash_next, ==, NULL);
1503 	ASSERT3P(hdr->b_acb, ==, NULL);
1504 	kmem_cache_free(hdr_cache, hdr);
1505 }
1506 
1507 void
1508 arc_buf_free(arc_buf_t *buf, void *tag)
1509 {
1510 	arc_buf_hdr_t *hdr = buf->b_hdr;
1511 	int hashed = hdr->b_state != arc_anon;
1512 
1513 	ASSERT(buf->b_efunc == NULL);
1514 	ASSERT(buf->b_data != NULL);
1515 
1516 	if (hashed) {
1517 		kmutex_t *hash_lock = HDR_LOCK(hdr);
1518 
1519 		mutex_enter(hash_lock);
1520 		hdr = buf->b_hdr;
1521 		ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1522 
1523 		(void) remove_reference(hdr, hash_lock, tag);
1524 		if (hdr->b_datacnt > 1) {
1525 			arc_buf_destroy(buf, FALSE, TRUE);
1526 		} else {
1527 			ASSERT(buf == hdr->b_buf);
1528 			ASSERT(buf->b_efunc == NULL);
1529 			hdr->b_flags |= ARC_BUF_AVAILABLE;
1530 		}
1531 		mutex_exit(hash_lock);
1532 	} else if (HDR_IO_IN_PROGRESS(hdr)) {
1533 		int destroy_hdr;
1534 		/*
1535 		 * We are in the middle of an async write.  Don't destroy
1536 		 * this buffer unless the write completes before we finish
1537 		 * decrementing the reference count.
1538 		 */
1539 		mutex_enter(&arc_eviction_mtx);
1540 		(void) remove_reference(hdr, NULL, tag);
1541 		ASSERT(refcount_is_zero(&hdr->b_refcnt));
1542 		destroy_hdr = !HDR_IO_IN_PROGRESS(hdr);
1543 		mutex_exit(&arc_eviction_mtx);
1544 		if (destroy_hdr)
1545 			arc_hdr_destroy(hdr);
1546 	} else {
1547 		if (remove_reference(hdr, NULL, tag) > 0)
1548 			arc_buf_destroy(buf, FALSE, TRUE);
1549 		else
1550 			arc_hdr_destroy(hdr);
1551 	}
1552 }
1553 
1554 int
1555 arc_buf_remove_ref(arc_buf_t *buf, void* tag)
1556 {
1557 	arc_buf_hdr_t *hdr = buf->b_hdr;
1558 	kmutex_t *hash_lock = HDR_LOCK(hdr);
1559 	int no_callback = (buf->b_efunc == NULL);
1560 
1561 	if (hdr->b_state == arc_anon) {
1562 		ASSERT(hdr->b_datacnt == 1);
1563 		arc_buf_free(buf, tag);
1564 		return (no_callback);
1565 	}
1566 
1567 	mutex_enter(hash_lock);
1568 	hdr = buf->b_hdr;
1569 	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1570 	ASSERT(hdr->b_state != arc_anon);
1571 	ASSERT(buf->b_data != NULL);
1572 
1573 	(void) remove_reference(hdr, hash_lock, tag);
1574 	if (hdr->b_datacnt > 1) {
1575 		if (no_callback)
1576 			arc_buf_destroy(buf, FALSE, TRUE);
1577 	} else if (no_callback) {
1578 		ASSERT(hdr->b_buf == buf && buf->b_next == NULL);
1579 		ASSERT(buf->b_efunc == NULL);
1580 		hdr->b_flags |= ARC_BUF_AVAILABLE;
1581 	}
1582 	ASSERT(no_callback || hdr->b_datacnt > 1 ||
1583 	    refcount_is_zero(&hdr->b_refcnt));
1584 	mutex_exit(hash_lock);
1585 	return (no_callback);
1586 }
1587 
1588 int
1589 arc_buf_size(arc_buf_t *buf)
1590 {
1591 	return (buf->b_hdr->b_size);
1592 }
1593 
1594 /*
1595  * Evict buffers from list until we've removed the specified number of
1596  * bytes.  Move the removed buffers to the appropriate evict state.
1597  * If the recycle flag is set, then attempt to "recycle" a buffer:
1598  * - look for a buffer to evict that is `bytes' long.
1599  * - return the data block from this buffer rather than freeing it.
1600  * This flag is used by callers that are trying to make space for a
1601  * new buffer in a full arc cache.
1602  *
1603  * This function makes a "best effort".  It skips over any buffers
1604  * it can't get a hash_lock on, and so may not catch all candidates.
1605  * It may also return without evicting as much space as requested.
1606  */
1607 static void *
1608 arc_evict(arc_state_t *state, uint64_t spa, int64_t bytes, boolean_t recycle,
1609     arc_buf_contents_t type)
1610 {
1611 	arc_state_t *evicted_state;
1612 	uint64_t bytes_evicted = 0, skipped = 0, missed = 0;
1613 	arc_buf_hdr_t *ab, *ab_prev = NULL;
1614 	list_t *list = &state->arcs_list[type];
1615 	kmutex_t *hash_lock;
1616 	boolean_t have_lock;
1617 	void *stolen = NULL;
1618 
1619 	ASSERT(state == arc_mru || state == arc_mfu);
1620 
1621 	evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
1622 
1623 	mutex_enter(&state->arcs_mtx);
1624 	mutex_enter(&evicted_state->arcs_mtx);
1625 
1626 	for (ab = list_tail(list); ab; ab = ab_prev) {
1627 		ab_prev = list_prev(list, ab);
1628 		/* prefetch buffers have a minimum lifespan */
1629 		if (HDR_IO_IN_PROGRESS(ab) ||
1630 		    (spa && ab->b_spa != spa) ||
1631 		    (ab->b_flags & (ARC_PREFETCH|ARC_INDIRECT) &&
1632 		    ddi_get_lbolt() - ab->b_arc_access <
1633 		    arc_min_prefetch_lifespan)) {
1634 			skipped++;
1635 			continue;
1636 		}
1637 		/* "lookahead" for better eviction candidate */
1638 		if (recycle && ab->b_size != bytes &&
1639 		    ab_prev && ab_prev->b_size == bytes)
1640 			continue;
1641 		hash_lock = HDR_LOCK(ab);
1642 		have_lock = MUTEX_HELD(hash_lock);
1643 		if (have_lock || mutex_tryenter(hash_lock)) {
1644 			ASSERT3U(refcount_count(&ab->b_refcnt), ==, 0);
1645 			ASSERT(ab->b_datacnt > 0);
1646 			while (ab->b_buf) {
1647 				arc_buf_t *buf = ab->b_buf;
1648 				if (!mutex_tryenter(&buf->b_evict_lock)) {
1649 					missed += 1;
1650 					break;
1651 				}
1652 				if (buf->b_data) {
1653 					bytes_evicted += ab->b_size;
1654 					if (recycle && ab->b_type == type &&
1655 					    ab->b_size == bytes &&
1656 					    !HDR_L2_WRITING(ab)) {
1657 						stolen = buf->b_data;
1658 						recycle = FALSE;
1659 					}
1660 				}
1661 				if (buf->b_efunc) {
1662 					mutex_enter(&arc_eviction_mtx);
1663 					arc_buf_destroy(buf,
1664 					    buf->b_data == stolen, FALSE);
1665 					ab->b_buf = buf->b_next;
1666 					buf->b_hdr = &arc_eviction_hdr;
1667 					buf->b_next = arc_eviction_list;
1668 					arc_eviction_list = buf;
1669 					mutex_exit(&arc_eviction_mtx);
1670 					mutex_exit(&buf->b_evict_lock);
1671 				} else {
1672 					mutex_exit(&buf->b_evict_lock);
1673 					arc_buf_destroy(buf,
1674 					    buf->b_data == stolen, TRUE);
1675 				}
1676 			}
1677 
1678 			if (ab->b_l2hdr) {
1679 				ARCSTAT_INCR(arcstat_evict_l2_cached,
1680 				    ab->b_size);
1681 			} else {
1682 				if (l2arc_write_eligible(ab->b_spa, ab)) {
1683 					ARCSTAT_INCR(arcstat_evict_l2_eligible,
1684 					    ab->b_size);
1685 				} else {
1686 					ARCSTAT_INCR(
1687 					    arcstat_evict_l2_ineligible,
1688 					    ab->b_size);
1689 				}
1690 			}
1691 
1692 			if (ab->b_datacnt == 0) {
1693 				arc_change_state(evicted_state, ab, hash_lock);
1694 				ASSERT(HDR_IN_HASH_TABLE(ab));
1695 				ab->b_flags |= ARC_IN_HASH_TABLE;
1696 				ab->b_flags &= ~ARC_BUF_AVAILABLE;
1697 				DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, ab);
1698 			}
1699 			if (!have_lock)
1700 				mutex_exit(hash_lock);
1701 			if (bytes >= 0 && bytes_evicted >= bytes)
1702 				break;
1703 		} else {
1704 			missed += 1;
1705 		}
1706 	}
1707 
1708 	mutex_exit(&evicted_state->arcs_mtx);
1709 	mutex_exit(&state->arcs_mtx);
1710 
1711 	if (bytes_evicted < bytes)
1712 		dprintf("only evicted %lld bytes from %x",
1713 		    (longlong_t)bytes_evicted, state);
1714 
1715 	if (skipped)
1716 		ARCSTAT_INCR(arcstat_evict_skip, skipped);
1717 
1718 	if (missed)
1719 		ARCSTAT_INCR(arcstat_mutex_miss, missed);
1720 
1721 	/*
1722 	 * We have just evicted some date into the ghost state, make
1723 	 * sure we also adjust the ghost state size if necessary.
1724 	 */
1725 	if (arc_no_grow &&
1726 	    arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size > arc_c) {
1727 		int64_t mru_over = arc_anon->arcs_size + arc_mru->arcs_size +
1728 		    arc_mru_ghost->arcs_size - arc_c;
1729 
1730 		if (mru_over > 0 && arc_mru_ghost->arcs_lsize[type] > 0) {
1731 			int64_t todelete =
1732 			    MIN(arc_mru_ghost->arcs_lsize[type], mru_over);
1733 			arc_evict_ghost(arc_mru_ghost, NULL, todelete);
1734 		} else if (arc_mfu_ghost->arcs_lsize[type] > 0) {
1735 			int64_t todelete = MIN(arc_mfu_ghost->arcs_lsize[type],
1736 			    arc_mru_ghost->arcs_size +
1737 			    arc_mfu_ghost->arcs_size - arc_c);
1738 			arc_evict_ghost(arc_mfu_ghost, NULL, todelete);
1739 		}
1740 	}
1741 
1742 	return (stolen);
1743 }
1744 
1745 /*
1746  * Remove buffers from list until we've removed the specified number of
1747  * bytes.  Destroy the buffers that are removed.
1748  */
1749 static void
1750 arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes)
1751 {
1752 	arc_buf_hdr_t *ab, *ab_prev;
1753 	list_t *list = &state->arcs_list[ARC_BUFC_DATA];
1754 	kmutex_t *hash_lock;
1755 	uint64_t bytes_deleted = 0;
1756 	uint64_t bufs_skipped = 0;
1757 
1758 	ASSERT(GHOST_STATE(state));
1759 top:
1760 	mutex_enter(&state->arcs_mtx);
1761 	for (ab = list_tail(list); ab; ab = ab_prev) {
1762 		ab_prev = list_prev(list, ab);
1763 		if (spa && ab->b_spa != spa)
1764 			continue;
1765 		hash_lock = HDR_LOCK(ab);
1766 		/* caller may be trying to modify this buffer, skip it */
1767 		if (MUTEX_HELD(hash_lock))
1768 			continue;
1769 		if (mutex_tryenter(hash_lock)) {
1770 			ASSERT(!HDR_IO_IN_PROGRESS(ab));
1771 			ASSERT(ab->b_buf == NULL);
1772 			ARCSTAT_BUMP(arcstat_deleted);
1773 			bytes_deleted += ab->b_size;
1774 
1775 			if (ab->b_l2hdr != NULL) {
1776 				/*
1777 				 * This buffer is cached on the 2nd Level ARC;
1778 				 * don't destroy the header.
1779 				 */
1780 				arc_change_state(arc_l2c_only, ab, hash_lock);
1781 				mutex_exit(hash_lock);
1782 			} else {
1783 				arc_change_state(arc_anon, ab, hash_lock);
1784 				mutex_exit(hash_lock);
1785 				arc_hdr_destroy(ab);
1786 			}
1787 
1788 			DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, ab);
1789 			if (bytes >= 0 && bytes_deleted >= bytes)
1790 				break;
1791 		} else {
1792 			if (bytes < 0) {
1793 				mutex_exit(&state->arcs_mtx);
1794 				mutex_enter(hash_lock);
1795 				mutex_exit(hash_lock);
1796 				goto top;
1797 			}
1798 			bufs_skipped += 1;
1799 		}
1800 	}
1801 	mutex_exit(&state->arcs_mtx);
1802 
1803 	if (list == &state->arcs_list[ARC_BUFC_DATA] &&
1804 	    (bytes < 0 || bytes_deleted < bytes)) {
1805 		list = &state->arcs_list[ARC_BUFC_METADATA];
1806 		goto top;
1807 	}
1808 
1809 	if (bufs_skipped) {
1810 		ARCSTAT_INCR(arcstat_mutex_miss, bufs_skipped);
1811 		ASSERT(bytes >= 0);
1812 	}
1813 
1814 	if (bytes_deleted < bytes)
1815 		dprintf("only deleted %lld bytes from %p",
1816 		    (longlong_t)bytes_deleted, state);
1817 }
1818 
1819 static void
1820 arc_adjust(void)
1821 {
1822 	int64_t adjustment, delta;
1823 
1824 	/*
1825 	 * Adjust MRU size
1826 	 */
1827 
1828 	adjustment = MIN(arc_size - arc_c,
1829 	    arc_anon->arcs_size + arc_mru->arcs_size + arc_meta_used - arc_p);
1830 
1831 	if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_DATA] > 0) {
1832 		delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_DATA], adjustment);
1833 		(void) arc_evict(arc_mru, NULL, delta, FALSE, ARC_BUFC_DATA);
1834 		adjustment -= delta;
1835 	}
1836 
1837 	if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_METADATA] > 0) {
1838 		delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_METADATA], adjustment);
1839 		(void) arc_evict(arc_mru, NULL, delta, FALSE,
1840 		    ARC_BUFC_METADATA);
1841 	}
1842 
1843 	/*
1844 	 * Adjust MFU size
1845 	 */
1846 
1847 	adjustment = arc_size - arc_c;
1848 
1849 	if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_DATA] > 0) {
1850 		delta = MIN(adjustment, arc_mfu->arcs_lsize[ARC_BUFC_DATA]);
1851 		(void) arc_evict(arc_mfu, NULL, delta, FALSE, ARC_BUFC_DATA);
1852 		adjustment -= delta;
1853 	}
1854 
1855 	if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_METADATA] > 0) {
1856 		int64_t delta = MIN(adjustment,
1857 		    arc_mfu->arcs_lsize[ARC_BUFC_METADATA]);
1858 		(void) arc_evict(arc_mfu, NULL, delta, FALSE,
1859 		    ARC_BUFC_METADATA);
1860 	}
1861 
1862 	/*
1863 	 * Adjust ghost lists
1864 	 */
1865 
1866 	adjustment = arc_mru->arcs_size + arc_mru_ghost->arcs_size - arc_c;
1867 
1868 	if (adjustment > 0 && arc_mru_ghost->arcs_size > 0) {
1869 		delta = MIN(arc_mru_ghost->arcs_size, adjustment);
1870 		arc_evict_ghost(arc_mru_ghost, NULL, delta);
1871 	}
1872 
1873 	adjustment =
1874 	    arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size - arc_c;
1875 
1876 	if (adjustment > 0 && arc_mfu_ghost->arcs_size > 0) {
1877 		delta = MIN(arc_mfu_ghost->arcs_size, adjustment);
1878 		arc_evict_ghost(arc_mfu_ghost, NULL, delta);
1879 	}
1880 }
1881 
1882 static void
1883 arc_do_user_evicts(void)
1884 {
1885 	mutex_enter(&arc_eviction_mtx);
1886 	while (arc_eviction_list != NULL) {
1887 		arc_buf_t *buf = arc_eviction_list;
1888 		arc_eviction_list = buf->b_next;
1889 		mutex_enter(&buf->b_evict_lock);
1890 		buf->b_hdr = NULL;
1891 		mutex_exit(&buf->b_evict_lock);
1892 		mutex_exit(&arc_eviction_mtx);
1893 
1894 		if (buf->b_efunc != NULL)
1895 			VERIFY(buf->b_efunc(buf) == 0);
1896 
1897 		buf->b_efunc = NULL;
1898 		buf->b_private = NULL;
1899 		kmem_cache_free(buf_cache, buf);
1900 		mutex_enter(&arc_eviction_mtx);
1901 	}
1902 	mutex_exit(&arc_eviction_mtx);
1903 }
1904 
1905 /*
1906  * Flush all *evictable* data from the cache for the given spa.
1907  * NOTE: this will not touch "active" (i.e. referenced) data.
1908  */
1909 void
1910 arc_flush(spa_t *spa)
1911 {
1912 	uint64_t guid = 0;
1913 
1914 	if (spa)
1915 		guid = spa_guid(spa);
1916 
1917 	while (list_head(&arc_mru->arcs_list[ARC_BUFC_DATA])) {
1918 		(void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_DATA);
1919 		if (spa)
1920 			break;
1921 	}
1922 	while (list_head(&arc_mru->arcs_list[ARC_BUFC_METADATA])) {
1923 		(void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_METADATA);
1924 		if (spa)
1925 			break;
1926 	}
1927 	while (list_head(&arc_mfu->arcs_list[ARC_BUFC_DATA])) {
1928 		(void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_DATA);
1929 		if (spa)
1930 			break;
1931 	}
1932 	while (list_head(&arc_mfu->arcs_list[ARC_BUFC_METADATA])) {
1933 		(void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_METADATA);
1934 		if (spa)
1935 			break;
1936 	}
1937 
1938 	arc_evict_ghost(arc_mru_ghost, guid, -1);
1939 	arc_evict_ghost(arc_mfu_ghost, guid, -1);
1940 
1941 	mutex_enter(&arc_reclaim_thr_lock);
1942 	arc_do_user_evicts();
1943 	mutex_exit(&arc_reclaim_thr_lock);
1944 	ASSERT(spa || arc_eviction_list == NULL);
1945 }
1946 
1947 void
1948 arc_shrink(void)
1949 {
1950 	if (arc_c > arc_c_min) {
1951 		uint64_t to_free;
1952 
1953 #ifdef _KERNEL
1954 		to_free = MAX(arc_c >> arc_shrink_shift, ptob(needfree));
1955 #else
1956 		to_free = arc_c >> arc_shrink_shift;
1957 #endif
1958 		if (arc_c > arc_c_min + to_free)
1959 			atomic_add_64(&arc_c, -to_free);
1960 		else
1961 			arc_c = arc_c_min;
1962 
1963 		atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
1964 		if (arc_c > arc_size)
1965 			arc_c = MAX(arc_size, arc_c_min);
1966 		if (arc_p > arc_c)
1967 			arc_p = (arc_c >> 1);
1968 		ASSERT(arc_c >= arc_c_min);
1969 		ASSERT((int64_t)arc_p >= 0);
1970 	}
1971 
1972 	if (arc_size > arc_c)
1973 		arc_adjust();
1974 }
1975 
1976 static int
1977 arc_reclaim_needed(void)
1978 {
1979 	uint64_t extra;
1980 
1981 #ifdef _KERNEL
1982 
1983 	if (needfree)
1984 		return (1);
1985 
1986 	/*
1987 	 * take 'desfree' extra pages, so we reclaim sooner, rather than later
1988 	 */
1989 	extra = desfree;
1990 
1991 	/*
1992 	 * check that we're out of range of the pageout scanner.  It starts to
1993 	 * schedule paging if freemem is less than lotsfree and needfree.
1994 	 * lotsfree is the high-water mark for pageout, and needfree is the
1995 	 * number of needed free pages.  We add extra pages here to make sure
1996 	 * the scanner doesn't start up while we're freeing memory.
1997 	 */
1998 	if (freemem < lotsfree + needfree + extra)
1999 		return (1);
2000 
2001 	/*
2002 	 * check to make sure that swapfs has enough space so that anon
2003 	 * reservations can still succeed. anon_resvmem() checks that the
2004 	 * availrmem is greater than swapfs_minfree, and the number of reserved
2005 	 * swap pages.  We also add a bit of extra here just to prevent
2006 	 * circumstances from getting really dire.
2007 	 */
2008 	if (availrmem < swapfs_minfree + swapfs_reserve + extra)
2009 		return (1);
2010 
2011 #if defined(__i386)
2012 	/*
2013 	 * If we're on an i386 platform, it's possible that we'll exhaust the
2014 	 * kernel heap space before we ever run out of available physical
2015 	 * memory.  Most checks of the size of the heap_area compare against
2016 	 * tune.t_minarmem, which is the minimum available real memory that we
2017 	 * can have in the system.  However, this is generally fixed at 25 pages
2018 	 * which is so low that it's useless.  In this comparison, we seek to
2019 	 * calculate the total heap-size, and reclaim if more than 3/4ths of the
2020 	 * heap is allocated.  (Or, in the calculation, if less than 1/4th is
2021 	 * free)
2022 	 */
2023 	if (btop(vmem_size(heap_arena, VMEM_FREE)) <
2024 	    (btop(vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC)) >> 2))
2025 		return (1);
2026 #endif
2027 
2028 #else
2029 	if (spa_get_random(100) == 0)
2030 		return (1);
2031 #endif
2032 	return (0);
2033 }
2034 
2035 static void
2036 arc_kmem_reap_now(arc_reclaim_strategy_t strat)
2037 {
2038 	size_t			i;
2039 	kmem_cache_t		*prev_cache = NULL;
2040 	kmem_cache_t		*prev_data_cache = NULL;
2041 	extern kmem_cache_t	*zio_buf_cache[];
2042 	extern kmem_cache_t	*zio_data_buf_cache[];
2043 
2044 #ifdef _KERNEL
2045 	if (arc_meta_used >= arc_meta_limit) {
2046 		/*
2047 		 * We are exceeding our meta-data cache limit.
2048 		 * Purge some DNLC entries to release holds on meta-data.
2049 		 */
2050 		dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent);
2051 	}
2052 #if defined(__i386)
2053 	/*
2054 	 * Reclaim unused memory from all kmem caches.
2055 	 */
2056 	kmem_reap();
2057 #endif
2058 #endif
2059 
2060 	/*
2061 	 * An aggressive reclamation will shrink the cache size as well as
2062 	 * reap free buffers from the arc kmem caches.
2063 	 */
2064 	if (strat == ARC_RECLAIM_AGGR)
2065 		arc_shrink();
2066 
2067 	for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
2068 		if (zio_buf_cache[i] != prev_cache) {
2069 			prev_cache = zio_buf_cache[i];
2070 			kmem_cache_reap_now(zio_buf_cache[i]);
2071 		}
2072 		if (zio_data_buf_cache[i] != prev_data_cache) {
2073 			prev_data_cache = zio_data_buf_cache[i];
2074 			kmem_cache_reap_now(zio_data_buf_cache[i]);
2075 		}
2076 	}
2077 	kmem_cache_reap_now(buf_cache);
2078 	kmem_cache_reap_now(hdr_cache);
2079 }
2080 
2081 static void
2082 arc_reclaim_thread(void)
2083 {
2084 	clock_t			growtime = 0;
2085 	arc_reclaim_strategy_t	last_reclaim = ARC_RECLAIM_CONS;
2086 	callb_cpr_t		cpr;
2087 
2088 	CALLB_CPR_INIT(&cpr, &arc_reclaim_thr_lock, callb_generic_cpr, FTAG);
2089 
2090 	mutex_enter(&arc_reclaim_thr_lock);
2091 	while (arc_thread_exit == 0) {
2092 		if (arc_reclaim_needed()) {
2093 
2094 			if (arc_no_grow) {
2095 				if (last_reclaim == ARC_RECLAIM_CONS) {
2096 					last_reclaim = ARC_RECLAIM_AGGR;
2097 				} else {
2098 					last_reclaim = ARC_RECLAIM_CONS;
2099 				}
2100 			} else {
2101 				arc_no_grow = TRUE;
2102 				last_reclaim = ARC_RECLAIM_AGGR;
2103 				membar_producer();
2104 			}
2105 
2106 			/* reset the growth delay for every reclaim */
2107 			growtime = ddi_get_lbolt() + (arc_grow_retry * hz);
2108 
2109 			arc_kmem_reap_now(last_reclaim);
2110 			arc_warm = B_TRUE;
2111 
2112 		} else if (arc_no_grow && ddi_get_lbolt() >= growtime) {
2113 			arc_no_grow = FALSE;
2114 		}
2115 
2116 		if (2 * arc_c < arc_size +
2117 		    arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size)
2118 			arc_adjust();
2119 
2120 		if (arc_eviction_list != NULL)
2121 			arc_do_user_evicts();
2122 
2123 		/* block until needed, or one second, whichever is shorter */
2124 		CALLB_CPR_SAFE_BEGIN(&cpr);
2125 		(void) cv_timedwait(&arc_reclaim_thr_cv,
2126 		    &arc_reclaim_thr_lock, (ddi_get_lbolt() + hz));
2127 		CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_thr_lock);
2128 	}
2129 
2130 	arc_thread_exit = 0;
2131 	cv_broadcast(&arc_reclaim_thr_cv);
2132 	CALLB_CPR_EXIT(&cpr);		/* drops arc_reclaim_thr_lock */
2133 	thread_exit();
2134 }
2135 
2136 /*
2137  * Adapt arc info given the number of bytes we are trying to add and
2138  * the state that we are comming from.  This function is only called
2139  * when we are adding new content to the cache.
2140  */
2141 static void
2142 arc_adapt(int bytes, arc_state_t *state)
2143 {
2144 	int mult;
2145 	uint64_t arc_p_min = (arc_c >> arc_p_min_shift);
2146 
2147 	if (state == arc_l2c_only)
2148 		return;
2149 
2150 	ASSERT(bytes > 0);
2151 	/*
2152 	 * Adapt the target size of the MRU list:
2153 	 *	- if we just hit in the MRU ghost list, then increase
2154 	 *	  the target size of the MRU list.
2155 	 *	- if we just hit in the MFU ghost list, then increase
2156 	 *	  the target size of the MFU list by decreasing the
2157 	 *	  target size of the MRU list.
2158 	 */
2159 	if (state == arc_mru_ghost) {
2160 		mult = ((arc_mru_ghost->arcs_size >= arc_mfu_ghost->arcs_size) ?
2161 		    1 : (arc_mfu_ghost->arcs_size/arc_mru_ghost->arcs_size));
2162 
2163 		arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult);
2164 	} else if (state == arc_mfu_ghost) {
2165 		uint64_t delta;
2166 
2167 		mult = ((arc_mfu_ghost->arcs_size >= arc_mru_ghost->arcs_size) ?
2168 		    1 : (arc_mru_ghost->arcs_size/arc_mfu_ghost->arcs_size));
2169 
2170 		delta = MIN(bytes * mult, arc_p);
2171 		arc_p = MAX(arc_p_min, arc_p - delta);
2172 	}
2173 	ASSERT((int64_t)arc_p >= 0);
2174 
2175 	if (arc_reclaim_needed()) {
2176 		cv_signal(&arc_reclaim_thr_cv);
2177 		return;
2178 	}
2179 
2180 	if (arc_no_grow)
2181 		return;
2182 
2183 	if (arc_c >= arc_c_max)
2184 		return;
2185 
2186 	/*
2187 	 * If we're within (2 * maxblocksize) bytes of the target
2188 	 * cache size, increment the target cache size
2189 	 */
2190 	if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
2191 		atomic_add_64(&arc_c, (int64_t)bytes);
2192 		if (arc_c > arc_c_max)
2193 			arc_c = arc_c_max;
2194 		else if (state == arc_anon)
2195 			atomic_add_64(&arc_p, (int64_t)bytes);
2196 		if (arc_p > arc_c)
2197 			arc_p = arc_c;
2198 	}
2199 	ASSERT((int64_t)arc_p >= 0);
2200 }
2201 
2202 /*
2203  * Check if the cache has reached its limits and eviction is required
2204  * prior to insert.
2205  */
2206 static int
2207 arc_evict_needed(arc_buf_contents_t type)
2208 {
2209 	if (type == ARC_BUFC_METADATA && arc_meta_used >= arc_meta_limit)
2210 		return (1);
2211 
2212 #ifdef _KERNEL
2213 	/*
2214 	 * If zio data pages are being allocated out of a separate heap segment,
2215 	 * then enforce that the size of available vmem for this area remains
2216 	 * above about 1/32nd free.
2217 	 */
2218 	if (type == ARC_BUFC_DATA && zio_arena != NULL &&
2219 	    vmem_size(zio_arena, VMEM_FREE) <
2220 	    (vmem_size(zio_arena, VMEM_ALLOC) >> 5))
2221 		return (1);
2222 #endif
2223 
2224 	if (arc_reclaim_needed())
2225 		return (1);
2226 
2227 	return (arc_size > arc_c);
2228 }
2229 
2230 /*
2231  * The buffer, supplied as the first argument, needs a data block.
2232  * So, if we are at cache max, determine which cache should be victimized.
2233  * We have the following cases:
2234  *
2235  * 1. Insert for MRU, p > sizeof(arc_anon + arc_mru) ->
2236  * In this situation if we're out of space, but the resident size of the MFU is
2237  * under the limit, victimize the MFU cache to satisfy this insertion request.
2238  *
2239  * 2. Insert for MRU, p <= sizeof(arc_anon + arc_mru) ->
2240  * Here, we've used up all of the available space for the MRU, so we need to
2241  * evict from our own cache instead.  Evict from the set of resident MRU
2242  * entries.
2243  *
2244  * 3. Insert for MFU (c - p) > sizeof(arc_mfu) ->
2245  * c minus p represents the MFU space in the cache, since p is the size of the
2246  * cache that is dedicated to the MRU.  In this situation there's still space on
2247  * the MFU side, so the MRU side needs to be victimized.
2248  *
2249  * 4. Insert for MFU (c - p) < sizeof(arc_mfu) ->
2250  * MFU's resident set is consuming more space than it has been allotted.  In
2251  * this situation, we must victimize our own cache, the MFU, for this insertion.
2252  */
2253 static void
2254 arc_get_data_buf(arc_buf_t *buf)
2255 {
2256 	arc_state_t		*state = buf->b_hdr->b_state;
2257 	uint64_t		size = buf->b_hdr->b_size;
2258 	arc_buf_contents_t	type = buf->b_hdr->b_type;
2259 
2260 	arc_adapt(size, state);
2261 
2262 	/*
2263 	 * We have not yet reached cache maximum size,
2264 	 * just allocate a new buffer.
2265 	 */
2266 	if (!arc_evict_needed(type)) {
2267 		if (type == ARC_BUFC_METADATA) {
2268 			buf->b_data = zio_buf_alloc(size);
2269 			arc_space_consume(size, ARC_SPACE_DATA);
2270 		} else {
2271 			ASSERT(type == ARC_BUFC_DATA);
2272 			buf->b_data = zio_data_buf_alloc(size);
2273 			ARCSTAT_INCR(arcstat_data_size, size);
2274 			atomic_add_64(&arc_size, size);
2275 		}
2276 		goto out;
2277 	}
2278 
2279 	/*
2280 	 * If we are prefetching from the mfu ghost list, this buffer
2281 	 * will end up on the mru list; so steal space from there.
2282 	 */
2283 	if (state == arc_mfu_ghost)
2284 		state = buf->b_hdr->b_flags & ARC_PREFETCH ? arc_mru : arc_mfu;
2285 	else if (state == arc_mru_ghost)
2286 		state = arc_mru;
2287 
2288 	if (state == arc_mru || state == arc_anon) {
2289 		uint64_t mru_used = arc_anon->arcs_size + arc_mru->arcs_size;
2290 		state = (arc_mfu->arcs_lsize[type] >= size &&
2291 		    arc_p > mru_used) ? arc_mfu : arc_mru;
2292 	} else {
2293 		/* MFU cases */
2294 		uint64_t mfu_space = arc_c - arc_p;
2295 		state =  (arc_mru->arcs_lsize[type] >= size &&
2296 		    mfu_space > arc_mfu->arcs_size) ? arc_mru : arc_mfu;
2297 	}
2298 	if ((buf->b_data = arc_evict(state, NULL, size, TRUE, type)) == NULL) {
2299 		if (type == ARC_BUFC_METADATA) {
2300 			buf->b_data = zio_buf_alloc(size);
2301 			arc_space_consume(size, ARC_SPACE_DATA);
2302 		} else {
2303 			ASSERT(type == ARC_BUFC_DATA);
2304 			buf->b_data = zio_data_buf_alloc(size);
2305 			ARCSTAT_INCR(arcstat_data_size, size);
2306 			atomic_add_64(&arc_size, size);
2307 		}
2308 		ARCSTAT_BUMP(arcstat_recycle_miss);
2309 	}
2310 	ASSERT(buf->b_data != NULL);
2311 out:
2312 	/*
2313 	 * Update the state size.  Note that ghost states have a
2314 	 * "ghost size" and so don't need to be updated.
2315 	 */
2316 	if (!GHOST_STATE(buf->b_hdr->b_state)) {
2317 		arc_buf_hdr_t *hdr = buf->b_hdr;
2318 
2319 		atomic_add_64(&hdr->b_state->arcs_size, size);
2320 		if (list_link_active(&hdr->b_arc_node)) {
2321 			ASSERT(refcount_is_zero(&hdr->b_refcnt));
2322 			atomic_add_64(&hdr->b_state->arcs_lsize[type], size);
2323 		}
2324 		/*
2325 		 * If we are growing the cache, and we are adding anonymous
2326 		 * data, and we have outgrown arc_p, update arc_p
2327 		 */
2328 		if (arc_size < arc_c && hdr->b_state == arc_anon &&
2329 		    arc_anon->arcs_size + arc_mru->arcs_size > arc_p)
2330 			arc_p = MIN(arc_c, arc_p + size);
2331 	}
2332 }
2333 
2334 /*
2335  * This routine is called whenever a buffer is accessed.
2336  * NOTE: the hash lock is dropped in this function.
2337  */
2338 static void
2339 arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock)
2340 {
2341 	clock_t now;
2342 
2343 	ASSERT(MUTEX_HELD(hash_lock));
2344 
2345 	if (buf->b_state == arc_anon) {
2346 		/*
2347 		 * This buffer is not in the cache, and does not
2348 		 * appear in our "ghost" list.  Add the new buffer
2349 		 * to the MRU state.
2350 		 */
2351 
2352 		ASSERT(buf->b_arc_access == 0);
2353 		buf->b_arc_access = ddi_get_lbolt();
2354 		DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
2355 		arc_change_state(arc_mru, buf, hash_lock);
2356 
2357 	} else if (buf->b_state == arc_mru) {
2358 		now = ddi_get_lbolt();
2359 
2360 		/*
2361 		 * If this buffer is here because of a prefetch, then either:
2362 		 * - clear the flag if this is a "referencing" read
2363 		 *   (any subsequent access will bump this into the MFU state).
2364 		 * or
2365 		 * - move the buffer to the head of the list if this is
2366 		 *   another prefetch (to make it less likely to be evicted).
2367 		 */
2368 		if ((buf->b_flags & ARC_PREFETCH) != 0) {
2369 			if (refcount_count(&buf->b_refcnt) == 0) {
2370 				ASSERT(list_link_active(&buf->b_arc_node));
2371 			} else {
2372 				buf->b_flags &= ~ARC_PREFETCH;
2373 				ARCSTAT_BUMP(arcstat_mru_hits);
2374 			}
2375 			buf->b_arc_access = now;
2376 			return;
2377 		}
2378 
2379 		/*
2380 		 * This buffer has been "accessed" only once so far,
2381 		 * but it is still in the cache. Move it to the MFU
2382 		 * state.
2383 		 */
2384 		if (now > buf->b_arc_access + ARC_MINTIME) {
2385 			/*
2386 			 * More than 125ms have passed since we
2387 			 * instantiated this buffer.  Move it to the
2388 			 * most frequently used state.
2389 			 */
2390 			buf->b_arc_access = now;
2391 			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2392 			arc_change_state(arc_mfu, buf, hash_lock);
2393 		}
2394 		ARCSTAT_BUMP(arcstat_mru_hits);
2395 	} else if (buf->b_state == arc_mru_ghost) {
2396 		arc_state_t	*new_state;
2397 		/*
2398 		 * This buffer has been "accessed" recently, but
2399 		 * was evicted from the cache.  Move it to the
2400 		 * MFU state.
2401 		 */
2402 
2403 		if (buf->b_flags & ARC_PREFETCH) {
2404 			new_state = arc_mru;
2405 			if (refcount_count(&buf->b_refcnt) > 0)
2406 				buf->b_flags &= ~ARC_PREFETCH;
2407 			DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
2408 		} else {
2409 			new_state = arc_mfu;
2410 			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2411 		}
2412 
2413 		buf->b_arc_access = ddi_get_lbolt();
2414 		arc_change_state(new_state, buf, hash_lock);
2415 
2416 		ARCSTAT_BUMP(arcstat_mru_ghost_hits);
2417 	} else if (buf->b_state == arc_mfu) {
2418 		/*
2419 		 * This buffer has been accessed more than once and is
2420 		 * still in the cache.  Keep it in the MFU state.
2421 		 *
2422 		 * NOTE: an add_reference() that occurred when we did
2423 		 * the arc_read() will have kicked this off the list.
2424 		 * If it was a prefetch, we will explicitly move it to
2425 		 * the head of the list now.
2426 		 */
2427 		if ((buf->b_flags & ARC_PREFETCH) != 0) {
2428 			ASSERT(refcount_count(&buf->b_refcnt) == 0);
2429 			ASSERT(list_link_active(&buf->b_arc_node));
2430 		}
2431 		ARCSTAT_BUMP(arcstat_mfu_hits);
2432 		buf->b_arc_access = ddi_get_lbolt();
2433 	} else if (buf->b_state == arc_mfu_ghost) {
2434 		arc_state_t	*new_state = arc_mfu;
2435 		/*
2436 		 * This buffer has been accessed more than once but has
2437 		 * been evicted from the cache.  Move it back to the
2438 		 * MFU state.
2439 		 */
2440 
2441 		if (buf->b_flags & ARC_PREFETCH) {
2442 			/*
2443 			 * This is a prefetch access...
2444 			 * move this block back to the MRU state.
2445 			 */
2446 			ASSERT3U(refcount_count(&buf->b_refcnt), ==, 0);
2447 			new_state = arc_mru;
2448 		}
2449 
2450 		buf->b_arc_access = ddi_get_lbolt();
2451 		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2452 		arc_change_state(new_state, buf, hash_lock);
2453 
2454 		ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
2455 	} else if (buf->b_state == arc_l2c_only) {
2456 		/*
2457 		 * This buffer is on the 2nd Level ARC.
2458 		 */
2459 
2460 		buf->b_arc_access = ddi_get_lbolt();
2461 		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2462 		arc_change_state(arc_mfu, buf, hash_lock);
2463 	} else {
2464 		ASSERT(!"invalid arc state");
2465 	}
2466 }
2467 
2468 /* a generic arc_done_func_t which you can use */
2469 /* ARGSUSED */
2470 void
2471 arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)
2472 {
2473 	if (zio == NULL || zio->io_error == 0)
2474 		bcopy(buf->b_data, arg, buf->b_hdr->b_size);
2475 	VERIFY(arc_buf_remove_ref(buf, arg) == 1);
2476 }
2477 
2478 /* a generic arc_done_func_t */
2479 void
2480 arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg)
2481 {
2482 	arc_buf_t **bufp = arg;
2483 	if (zio && zio->io_error) {
2484 		VERIFY(arc_buf_remove_ref(buf, arg) == 1);
2485 		*bufp = NULL;
2486 	} else {
2487 		*bufp = buf;
2488 		ASSERT(buf->b_data);
2489 	}
2490 }
2491 
2492 static void
2493 arc_read_done(zio_t *zio)
2494 {
2495 	arc_buf_hdr_t	*hdr, *found;
2496 	arc_buf_t	*buf;
2497 	arc_buf_t	*abuf;	/* buffer we're assigning to callback */
2498 	kmutex_t	*hash_lock;
2499 	arc_callback_t	*callback_list, *acb;
2500 	int		freeable = FALSE;
2501 
2502 	buf = zio->io_private;
2503 	hdr = buf->b_hdr;
2504 
2505 	/*
2506 	 * The hdr was inserted into hash-table and removed from lists
2507 	 * prior to starting I/O.  We should find this header, since
2508 	 * it's in the hash table, and it should be legit since it's
2509 	 * not possible to evict it during the I/O.  The only possible
2510 	 * reason for it not to be found is if we were freed during the
2511 	 * read.
2512 	 */
2513 	found = buf_hash_find(hdr->b_spa, &hdr->b_dva, hdr->b_birth,
2514 	    &hash_lock);
2515 
2516 	ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) && hash_lock == NULL) ||
2517 	    (found == hdr && DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
2518 	    (found == hdr && HDR_L2_READING(hdr)));
2519 
2520 	hdr->b_flags &= ~ARC_L2_EVICTED;
2521 	if (l2arc_noprefetch && (hdr->b_flags & ARC_PREFETCH))
2522 		hdr->b_flags &= ~ARC_L2CACHE;
2523 
2524 	/* byteswap if necessary */
2525 	callback_list = hdr->b_acb;
2526 	ASSERT(callback_list != NULL);
2527 	if (BP_SHOULD_BYTESWAP(zio->io_bp) && zio->io_error == 0) {
2528 		arc_byteswap_func_t *func = BP_GET_LEVEL(zio->io_bp) > 0 ?
2529 		    byteswap_uint64_array :
2530 		    dmu_ot[BP_GET_TYPE(zio->io_bp)].ot_byteswap;
2531 		func(buf->b_data, hdr->b_size);
2532 	}
2533 
2534 	arc_cksum_compute(buf, B_FALSE);
2535 
2536 	if (hash_lock && zio->io_error == 0 && hdr->b_state == arc_anon) {
2537 		/*
2538 		 * Only call arc_access on anonymous buffers.  This is because
2539 		 * if we've issued an I/O for an evicted buffer, we've already
2540 		 * called arc_access (to prevent any simultaneous readers from
2541 		 * getting confused).
2542 		 */
2543 		arc_access(hdr, hash_lock);
2544 	}
2545 
2546 	/* create copies of the data buffer for the callers */
2547 	abuf = buf;
2548 	for (acb = callback_list; acb; acb = acb->acb_next) {
2549 		if (acb->acb_done) {
2550 			if (abuf == NULL)
2551 				abuf = arc_buf_clone(buf);
2552 			acb->acb_buf = abuf;
2553 			abuf = NULL;
2554 		}
2555 	}
2556 	hdr->b_acb = NULL;
2557 	hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
2558 	ASSERT(!HDR_BUF_AVAILABLE(hdr));
2559 	if (abuf == buf) {
2560 		ASSERT(buf->b_efunc == NULL);
2561 		ASSERT(hdr->b_datacnt == 1);
2562 		hdr->b_flags |= ARC_BUF_AVAILABLE;
2563 	}
2564 
2565 	ASSERT(refcount_is_zero(&hdr->b_refcnt) || callback_list != NULL);
2566 
2567 	if (zio->io_error != 0) {
2568 		hdr->b_flags |= ARC_IO_ERROR;
2569 		if (hdr->b_state != arc_anon)
2570 			arc_change_state(arc_anon, hdr, hash_lock);
2571 		if (HDR_IN_HASH_TABLE(hdr))
2572 			buf_hash_remove(hdr);
2573 		freeable = refcount_is_zero(&hdr->b_refcnt);
2574 	}
2575 
2576 	/*
2577 	 * Broadcast before we drop the hash_lock to avoid the possibility
2578 	 * that the hdr (and hence the cv) might be freed before we get to
2579 	 * the cv_broadcast().
2580 	 */
2581 	cv_broadcast(&hdr->b_cv);
2582 
2583 	if (hash_lock) {
2584 		mutex_exit(hash_lock);
2585 	} else {
2586 		/*
2587 		 * This block was freed while we waited for the read to
2588 		 * complete.  It has been removed from the hash table and
2589 		 * moved to the anonymous state (so that it won't show up
2590 		 * in the cache).
2591 		 */
2592 		ASSERT3P(hdr->b_state, ==, arc_anon);
2593 		freeable = refcount_is_zero(&hdr->b_refcnt);
2594 	}
2595 
2596 	/* execute each callback and free its structure */
2597 	while ((acb = callback_list) != NULL) {
2598 		if (acb->acb_done)
2599 			acb->acb_done(zio, acb->acb_buf, acb->acb_private);
2600 
2601 		if (acb->acb_zio_dummy != NULL) {
2602 			acb->acb_zio_dummy->io_error = zio->io_error;
2603 			zio_nowait(acb->acb_zio_dummy);
2604 		}
2605 
2606 		callback_list = acb->acb_next;
2607 		kmem_free(acb, sizeof (arc_callback_t));
2608 	}
2609 
2610 	if (freeable)
2611 		arc_hdr_destroy(hdr);
2612 }
2613 
2614 /*
2615  * "Read" the block block at the specified DVA (in bp) via the
2616  * cache.  If the block is found in the cache, invoke the provided
2617  * callback immediately and return.  Note that the `zio' parameter
2618  * in the callback will be NULL in this case, since no IO was
2619  * required.  If the block is not in the cache pass the read request
2620  * on to the spa with a substitute callback function, so that the
2621  * requested block will be added to the cache.
2622  *
2623  * If a read request arrives for a block that has a read in-progress,
2624  * either wait for the in-progress read to complete (and return the
2625  * results); or, if this is a read with a "done" func, add a record
2626  * to the read to invoke the "done" func when the read completes,
2627  * and return; or just return.
2628  *
2629  * arc_read_done() will invoke all the requested "done" functions
2630  * for readers of this block.
2631  *
2632  * Normal callers should use arc_read and pass the arc buffer and offset
2633  * for the bp.  But if you know you don't need locking, you can use
2634  * arc_read_bp.
2635  */
2636 int
2637 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_buf_t *pbuf,
2638     arc_done_func_t *done, void *private, int priority, int zio_flags,
2639     uint32_t *arc_flags, const zbookmark_t *zb)
2640 {
2641 	int err;
2642 
2643 	if (pbuf == NULL) {
2644 		/*
2645 		 * XXX This happens from traverse callback funcs, for
2646 		 * the objset_phys_t block.
2647 		 */
2648 		return (arc_read_nolock(pio, spa, bp, done, private, priority,
2649 		    zio_flags, arc_flags, zb));
2650 	}
2651 
2652 	ASSERT(!refcount_is_zero(&pbuf->b_hdr->b_refcnt));
2653 	ASSERT3U((char *)bp - (char *)pbuf->b_data, <, pbuf->b_hdr->b_size);
2654 	rw_enter(&pbuf->b_data_lock, RW_READER);
2655 
2656 	err = arc_read_nolock(pio, spa, bp, done, private, priority,
2657 	    zio_flags, arc_flags, zb);
2658 	rw_exit(&pbuf->b_data_lock);
2659 
2660 	return (err);
2661 }
2662 
2663 int
2664 arc_read_nolock(zio_t *pio, spa_t *spa, const blkptr_t *bp,
2665     arc_done_func_t *done, void *private, int priority, int zio_flags,
2666     uint32_t *arc_flags, const zbookmark_t *zb)
2667 {
2668 	arc_buf_hdr_t *hdr;
2669 	arc_buf_t *buf;
2670 	kmutex_t *hash_lock;
2671 	zio_t *rzio;
2672 	uint64_t guid = spa_guid(spa);
2673 
2674 top:
2675 	hdr = buf_hash_find(guid, BP_IDENTITY(bp), BP_PHYSICAL_BIRTH(bp),
2676 	    &hash_lock);
2677 	if (hdr && hdr->b_datacnt > 0) {
2678 
2679 		*arc_flags |= ARC_CACHED;
2680 
2681 		if (HDR_IO_IN_PROGRESS(hdr)) {
2682 
2683 			if (*arc_flags & ARC_WAIT) {
2684 				cv_wait(&hdr->b_cv, hash_lock);
2685 				mutex_exit(hash_lock);
2686 				goto top;
2687 			}
2688 			ASSERT(*arc_flags & ARC_NOWAIT);
2689 
2690 			if (done) {
2691 				arc_callback_t	*acb = NULL;
2692 
2693 				acb = kmem_zalloc(sizeof (arc_callback_t),
2694 				    KM_SLEEP);
2695 				acb->acb_done = done;
2696 				acb->acb_private = private;
2697 				if (pio != NULL)
2698 					acb->acb_zio_dummy = zio_null(pio,
2699 					    spa, NULL, NULL, NULL, zio_flags);
2700 
2701 				ASSERT(acb->acb_done != NULL);
2702 				acb->acb_next = hdr->b_acb;
2703 				hdr->b_acb = acb;
2704 				add_reference(hdr, hash_lock, private);
2705 				mutex_exit(hash_lock);
2706 				return (0);
2707 			}
2708 			mutex_exit(hash_lock);
2709 			return (0);
2710 		}
2711 
2712 		ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
2713 
2714 		if (done) {
2715 			add_reference(hdr, hash_lock, private);
2716 			/*
2717 			 * If this block is already in use, create a new
2718 			 * copy of the data so that we will be guaranteed
2719 			 * that arc_release() will always succeed.
2720 			 */
2721 			buf = hdr->b_buf;
2722 			ASSERT(buf);
2723 			ASSERT(buf->b_data);
2724 			if (HDR_BUF_AVAILABLE(hdr)) {
2725 				ASSERT(buf->b_efunc == NULL);
2726 				hdr->b_flags &= ~ARC_BUF_AVAILABLE;
2727 			} else {
2728 				buf = arc_buf_clone(buf);
2729 			}
2730 
2731 		} else if (*arc_flags & ARC_PREFETCH &&
2732 		    refcount_count(&hdr->b_refcnt) == 0) {
2733 			hdr->b_flags |= ARC_PREFETCH;
2734 		}
2735 		DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
2736 		arc_access(hdr, hash_lock);
2737 		if (*arc_flags & ARC_L2CACHE)
2738 			hdr->b_flags |= ARC_L2CACHE;
2739 		mutex_exit(hash_lock);
2740 		ARCSTAT_BUMP(arcstat_hits);
2741 		ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
2742 		    demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
2743 		    data, metadata, hits);
2744 
2745 		if (done)
2746 			done(NULL, buf, private);
2747 	} else {
2748 		uint64_t size = BP_GET_LSIZE(bp);
2749 		arc_callback_t	*acb;
2750 		vdev_t *vd = NULL;
2751 		uint64_t addr;
2752 		boolean_t devw = B_FALSE;
2753 
2754 		if (hdr == NULL) {
2755 			/* this block is not in the cache */
2756 			arc_buf_hdr_t	*exists;
2757 			arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
2758 			buf = arc_buf_alloc(spa, size, private, type);
2759 			hdr = buf->b_hdr;
2760 			hdr->b_dva = *BP_IDENTITY(bp);
2761 			hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
2762 			hdr->b_cksum0 = bp->blk_cksum.zc_word[0];
2763 			exists = buf_hash_insert(hdr, &hash_lock);
2764 			if (exists) {
2765 				/* somebody beat us to the hash insert */
2766 				mutex_exit(hash_lock);
2767 				buf_discard_identity(hdr);
2768 				(void) arc_buf_remove_ref(buf, private);
2769 				goto top; /* restart the IO request */
2770 			}
2771 			/* if this is a prefetch, we don't have a reference */
2772 			if (*arc_flags & ARC_PREFETCH) {
2773 				(void) remove_reference(hdr, hash_lock,
2774 				    private);
2775 				hdr->b_flags |= ARC_PREFETCH;
2776 			}
2777 			if (*arc_flags & ARC_L2CACHE)
2778 				hdr->b_flags |= ARC_L2CACHE;
2779 			if (BP_GET_LEVEL(bp) > 0)
2780 				hdr->b_flags |= ARC_INDIRECT;
2781 		} else {
2782 			/* this block is in the ghost cache */
2783 			ASSERT(GHOST_STATE(hdr->b_state));
2784 			ASSERT(!HDR_IO_IN_PROGRESS(hdr));
2785 			ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 0);
2786 			ASSERT(hdr->b_buf == NULL);
2787 
2788 			/* if this is a prefetch, we don't have a reference */
2789 			if (*arc_flags & ARC_PREFETCH)
2790 				hdr->b_flags |= ARC_PREFETCH;
2791 			else
2792 				add_reference(hdr, hash_lock, private);
2793 			if (*arc_flags & ARC_L2CACHE)
2794 				hdr->b_flags |= ARC_L2CACHE;
2795 			buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
2796 			buf->b_hdr = hdr;
2797 			buf->b_data = NULL;
2798 			buf->b_efunc = NULL;
2799 			buf->b_private = NULL;
2800 			buf->b_next = NULL;
2801 			hdr->b_buf = buf;
2802 			ASSERT(hdr->b_datacnt == 0);
2803 			hdr->b_datacnt = 1;
2804 			arc_get_data_buf(buf);
2805 			arc_access(hdr, hash_lock);
2806 		}
2807 
2808 		ASSERT(!GHOST_STATE(hdr->b_state));
2809 
2810 		acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
2811 		acb->acb_done = done;
2812 		acb->acb_private = private;
2813 
2814 		ASSERT(hdr->b_acb == NULL);
2815 		hdr->b_acb = acb;
2816 		hdr->b_flags |= ARC_IO_IN_PROGRESS;
2817 
2818 		if (HDR_L2CACHE(hdr) && hdr->b_l2hdr != NULL &&
2819 		    (vd = hdr->b_l2hdr->b_dev->l2ad_vdev) != NULL) {
2820 			devw = hdr->b_l2hdr->b_dev->l2ad_writing;
2821 			addr = hdr->b_l2hdr->b_daddr;
2822 			/*
2823 			 * Lock out device removal.
2824 			 */
2825 			if (vdev_is_dead(vd) ||
2826 			    !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
2827 				vd = NULL;
2828 		}
2829 
2830 		mutex_exit(hash_lock);
2831 
2832 		ASSERT3U(hdr->b_size, ==, size);
2833 		DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp,
2834 		    uint64_t, size, zbookmark_t *, zb);
2835 		ARCSTAT_BUMP(arcstat_misses);
2836 		ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
2837 		    demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
2838 		    data, metadata, misses);
2839 
2840 		if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
2841 			/*
2842 			 * Read from the L2ARC if the following are true:
2843 			 * 1. The L2ARC vdev was previously cached.
2844 			 * 2. This buffer still has L2ARC metadata.
2845 			 * 3. This buffer isn't currently writing to the L2ARC.
2846 			 * 4. The L2ARC entry wasn't evicted, which may
2847 			 *    also have invalidated the vdev.
2848 			 * 5. This isn't prefetch and l2arc_noprefetch is set.
2849 			 */
2850 			if (hdr->b_l2hdr != NULL &&
2851 			    !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
2852 			    !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
2853 				l2arc_read_callback_t *cb;
2854 
2855 				DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
2856 				ARCSTAT_BUMP(arcstat_l2_hits);
2857 
2858 				cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
2859 				    KM_SLEEP);
2860 				cb->l2rcb_buf = buf;
2861 				cb->l2rcb_spa = spa;
2862 				cb->l2rcb_bp = *bp;
2863 				cb->l2rcb_zb = *zb;
2864 				cb->l2rcb_flags = zio_flags;
2865 
2866 				/*
2867 				 * l2arc read.  The SCL_L2ARC lock will be
2868 				 * released by l2arc_read_done().
2869 				 */
2870 				rzio = zio_read_phys(pio, vd, addr, size,
2871 				    buf->b_data, ZIO_CHECKSUM_OFF,
2872 				    l2arc_read_done, cb, priority, zio_flags |
2873 				    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL |
2874 				    ZIO_FLAG_DONT_PROPAGATE |
2875 				    ZIO_FLAG_DONT_RETRY, B_FALSE);
2876 				DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
2877 				    zio_t *, rzio);
2878 				ARCSTAT_INCR(arcstat_l2_read_bytes, size);
2879 
2880 				if (*arc_flags & ARC_NOWAIT) {
2881 					zio_nowait(rzio);
2882 					return (0);
2883 				}
2884 
2885 				ASSERT(*arc_flags & ARC_WAIT);
2886 				if (zio_wait(rzio) == 0)
2887 					return (0);
2888 
2889 				/* l2arc read error; goto zio_read() */
2890 			} else {
2891 				DTRACE_PROBE1(l2arc__miss,
2892 				    arc_buf_hdr_t *, hdr);
2893 				ARCSTAT_BUMP(arcstat_l2_misses);
2894 				if (HDR_L2_WRITING(hdr))
2895 					ARCSTAT_BUMP(arcstat_l2_rw_clash);
2896 				spa_config_exit(spa, SCL_L2ARC, vd);
2897 			}
2898 		} else {
2899 			if (vd != NULL)
2900 				spa_config_exit(spa, SCL_L2ARC, vd);
2901 			if (l2arc_ndev != 0) {
2902 				DTRACE_PROBE1(l2arc__miss,
2903 				    arc_buf_hdr_t *, hdr);
2904 				ARCSTAT_BUMP(arcstat_l2_misses);
2905 			}
2906 		}
2907 
2908 		rzio = zio_read(pio, spa, bp, buf->b_data, size,
2909 		    arc_read_done, buf, priority, zio_flags, zb);
2910 
2911 		if (*arc_flags & ARC_WAIT)
2912 			return (zio_wait(rzio));
2913 
2914 		ASSERT(*arc_flags & ARC_NOWAIT);
2915 		zio_nowait(rzio);
2916 	}
2917 	return (0);
2918 }
2919 
2920 void
2921 arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private)
2922 {
2923 	ASSERT(buf->b_hdr != NULL);
2924 	ASSERT(buf->b_hdr->b_state != arc_anon);
2925 	ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt) || func == NULL);
2926 	ASSERT(buf->b_efunc == NULL);
2927 	ASSERT(!HDR_BUF_AVAILABLE(buf->b_hdr));
2928 
2929 	buf->b_efunc = func;
2930 	buf->b_private = private;
2931 }
2932 
2933 /*
2934  * This is used by the DMU to let the ARC know that a buffer is
2935  * being evicted, so the ARC should clean up.  If this arc buf
2936  * is not yet in the evicted state, it will be put there.
2937  */
2938 int
2939 arc_buf_evict(arc_buf_t *buf)
2940 {
2941 	arc_buf_hdr_t *hdr;
2942 	kmutex_t *hash_lock;
2943 	arc_buf_t **bufp;
2944 
2945 	mutex_enter(&buf->b_evict_lock);
2946 	hdr = buf->b_hdr;
2947 	if (hdr == NULL) {
2948 		/*
2949 		 * We are in arc_do_user_evicts().
2950 		 */
2951 		ASSERT(buf->b_data == NULL);
2952 		mutex_exit(&buf->b_evict_lock);
2953 		return (0);
2954 	} else if (buf->b_data == NULL) {
2955 		arc_buf_t copy = *buf; /* structure assignment */
2956 		/*
2957 		 * We are on the eviction list; process this buffer now
2958 		 * but let arc_do_user_evicts() do the reaping.
2959 		 */
2960 		buf->b_efunc = NULL;
2961 		mutex_exit(&buf->b_evict_lock);
2962 		VERIFY(copy.b_efunc(&copy) == 0);
2963 		return (1);
2964 	}
2965 	hash_lock = HDR_LOCK(hdr);
2966 	mutex_enter(hash_lock);
2967 	hdr = buf->b_hdr;
2968 	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
2969 
2970 	ASSERT3U(refcount_count(&hdr->b_refcnt), <, hdr->b_datacnt);
2971 	ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
2972 
2973 	/*
2974 	 * Pull this buffer off of the hdr
2975 	 */
2976 	bufp = &hdr->b_buf;
2977 	while (*bufp != buf)
2978 		bufp = &(*bufp)->b_next;
2979 	*bufp = buf->b_next;
2980 
2981 	ASSERT(buf->b_data != NULL);
2982 	arc_buf_destroy(buf, FALSE, FALSE);
2983 
2984 	if (hdr->b_datacnt == 0) {
2985 		arc_state_t *old_state = hdr->b_state;
2986 		arc_state_t *evicted_state;
2987 
2988 		ASSERT(hdr->b_buf == NULL);
2989 		ASSERT(refcount_is_zero(&hdr->b_refcnt));
2990 
2991 		evicted_state =
2992 		    (old_state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
2993 
2994 		mutex_enter(&old_state->arcs_mtx);
2995 		mutex_enter(&evicted_state->arcs_mtx);
2996 
2997 		arc_change_state(evicted_state, hdr, hash_lock);
2998 		ASSERT(HDR_IN_HASH_TABLE(hdr));
2999 		hdr->b_flags |= ARC_IN_HASH_TABLE;
3000 		hdr->b_flags &= ~ARC_BUF_AVAILABLE;
3001 
3002 		mutex_exit(&evicted_state->arcs_mtx);
3003 		mutex_exit(&old_state->arcs_mtx);
3004 	}
3005 	mutex_exit(hash_lock);
3006 	mutex_exit(&buf->b_evict_lock);
3007 
3008 	VERIFY(buf->b_efunc(buf) == 0);
3009 	buf->b_efunc = NULL;
3010 	buf->b_private = NULL;
3011 	buf->b_hdr = NULL;
3012 	buf->b_next = NULL;
3013 	kmem_cache_free(buf_cache, buf);
3014 	return (1);
3015 }
3016 
3017 /*
3018  * Release this buffer from the cache.  This must be done
3019  * after a read and prior to modifying the buffer contents.
3020  * If the buffer has more than one reference, we must make
3021  * a new hdr for the buffer.
3022  */
3023 void
3024 arc_release(arc_buf_t *buf, void *tag)
3025 {
3026 	arc_buf_hdr_t *hdr;
3027 	kmutex_t *hash_lock = NULL;
3028 	l2arc_buf_hdr_t *l2hdr;
3029 	uint64_t buf_size;
3030 
3031 	/*
3032 	 * It would be nice to assert that if it's DMU metadata (level >
3033 	 * 0 || it's the dnode file), then it must be syncing context.
3034 	 * But we don't know that information at this level.
3035 	 */
3036 
3037 	mutex_enter(&buf->b_evict_lock);
3038 	hdr = buf->b_hdr;
3039 
3040 	/* this buffer is not on any list */
3041 	ASSERT(refcount_count(&hdr->b_refcnt) > 0);
3042 
3043 	if (hdr->b_state == arc_anon) {
3044 		/* this buffer is already released */
3045 		ASSERT(buf->b_efunc == NULL);
3046 	} else {
3047 		hash_lock = HDR_LOCK(hdr);
3048 		mutex_enter(hash_lock);
3049 		hdr = buf->b_hdr;
3050 		ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
3051 	}
3052 
3053 	l2hdr = hdr->b_l2hdr;
3054 	if (l2hdr) {
3055 		mutex_enter(&l2arc_buflist_mtx);
3056 		hdr->b_l2hdr = NULL;
3057 		buf_size = hdr->b_size;
3058 	}
3059 
3060 	/*
3061 	 * Do we have more than one buf?
3062 	 */
3063 	if (hdr->b_datacnt > 1) {
3064 		arc_buf_hdr_t *nhdr;
3065 		arc_buf_t **bufp;
3066 		uint64_t blksz = hdr->b_size;
3067 		uint64_t spa = hdr->b_spa;
3068 		arc_buf_contents_t type = hdr->b_type;
3069 		uint32_t flags = hdr->b_flags;
3070 
3071 		ASSERT(hdr->b_buf != buf || buf->b_next != NULL);
3072 		/*
3073 		 * Pull the data off of this hdr and attach it to
3074 		 * a new anonymous hdr.
3075 		 */
3076 		(void) remove_reference(hdr, hash_lock, tag);
3077 		bufp = &hdr->b_buf;
3078 		while (*bufp != buf)
3079 			bufp = &(*bufp)->b_next;
3080 		*bufp = buf->b_next;
3081 		buf->b_next = NULL;
3082 
3083 		ASSERT3U(hdr->b_state->arcs_size, >=, hdr->b_size);
3084 		atomic_add_64(&hdr->b_state->arcs_size, -hdr->b_size);
3085 		if (refcount_is_zero(&hdr->b_refcnt)) {
3086 			uint64_t *size = &hdr->b_state->arcs_lsize[hdr->b_type];
3087 			ASSERT3U(*size, >=, hdr->b_size);
3088 			atomic_add_64(size, -hdr->b_size);
3089 		}
3090 		hdr->b_datacnt -= 1;
3091 		arc_cksum_verify(buf);
3092 
3093 		mutex_exit(hash_lock);
3094 
3095 		nhdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
3096 		nhdr->b_size = blksz;
3097 		nhdr->b_spa = spa;
3098 		nhdr->b_type = type;
3099 		nhdr->b_buf = buf;
3100 		nhdr->b_state = arc_anon;
3101 		nhdr->b_arc_access = 0;
3102 		nhdr->b_flags = flags & ARC_L2_WRITING;
3103 		nhdr->b_l2hdr = NULL;
3104 		nhdr->b_datacnt = 1;
3105 		nhdr->b_freeze_cksum = NULL;
3106 		(void) refcount_add(&nhdr->b_refcnt, tag);
3107 		buf->b_hdr = nhdr;
3108 		mutex_exit(&buf->b_evict_lock);
3109 		atomic_add_64(&arc_anon->arcs_size, blksz);
3110 	} else {
3111 		mutex_exit(&buf->b_evict_lock);
3112 		ASSERT(refcount_count(&hdr->b_refcnt) == 1);
3113 		ASSERT(!list_link_active(&hdr->b_arc_node));
3114 		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3115 		if (hdr->b_state != arc_anon)
3116 			arc_change_state(arc_anon, hdr, hash_lock);
3117 		hdr->b_arc_access = 0;
3118 		if (hash_lock)
3119 			mutex_exit(hash_lock);
3120 
3121 		buf_discard_identity(hdr);
3122 		arc_buf_thaw(buf);
3123 	}
3124 	buf->b_efunc = NULL;
3125 	buf->b_private = NULL;
3126 
3127 	if (l2hdr) {
3128 		list_remove(l2hdr->b_dev->l2ad_buflist, hdr);
3129 		kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t));
3130 		ARCSTAT_INCR(arcstat_l2_size, -buf_size);
3131 		mutex_exit(&l2arc_buflist_mtx);
3132 	}
3133 }
3134 
3135 /*
3136  * Release this buffer.  If it does not match the provided BP, fill it
3137  * with that block's contents.
3138  */
3139 /* ARGSUSED */
3140 int
3141 arc_release_bp(arc_buf_t *buf, void *tag, blkptr_t *bp, spa_t *spa,
3142     zbookmark_t *zb)
3143 {
3144 	arc_release(buf, tag);
3145 	return (0);
3146 }
3147 
3148 int
3149 arc_released(arc_buf_t *buf)
3150 {
3151 	int released;
3152 
3153 	mutex_enter(&buf->b_evict_lock);
3154 	released = (buf->b_data != NULL && buf->b_hdr->b_state == arc_anon);
3155 	mutex_exit(&buf->b_evict_lock);
3156 	return (released);
3157 }
3158 
3159 int
3160 arc_has_callback(arc_buf_t *buf)
3161 {
3162 	int callback;
3163 
3164 	mutex_enter(&buf->b_evict_lock);
3165 	callback = (buf->b_efunc != NULL);
3166 	mutex_exit(&buf->b_evict_lock);
3167 	return (callback);
3168 }
3169 
3170 #ifdef ZFS_DEBUG
3171 int
3172 arc_referenced(arc_buf_t *buf)
3173 {
3174 	int referenced;
3175 
3176 	mutex_enter(&buf->b_evict_lock);
3177 	referenced = (refcount_count(&buf->b_hdr->b_refcnt));
3178 	mutex_exit(&buf->b_evict_lock);
3179 	return (referenced);
3180 }
3181 #endif
3182 
3183 static void
3184 arc_write_ready(zio_t *zio)
3185 {
3186 	arc_write_callback_t *callback = zio->io_private;
3187 	arc_buf_t *buf = callback->awcb_buf;
3188 	arc_buf_hdr_t *hdr = buf->b_hdr;
3189 
3190 	ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt));
3191 	callback->awcb_ready(zio, buf, callback->awcb_private);
3192 
3193 	/*
3194 	 * If the IO is already in progress, then this is a re-write
3195 	 * attempt, so we need to thaw and re-compute the cksum.
3196 	 * It is the responsibility of the callback to handle the
3197 	 * accounting for any re-write attempt.
3198 	 */
3199 	if (HDR_IO_IN_PROGRESS(hdr)) {
3200 		mutex_enter(&hdr->b_freeze_lock);
3201 		if (hdr->b_freeze_cksum != NULL) {
3202 			kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
3203 			hdr->b_freeze_cksum = NULL;
3204 		}
3205 		mutex_exit(&hdr->b_freeze_lock);
3206 	}
3207 	arc_cksum_compute(buf, B_FALSE);
3208 	hdr->b_flags |= ARC_IO_IN_PROGRESS;
3209 }
3210 
3211 static void
3212 arc_write_done(zio_t *zio)
3213 {
3214 	arc_write_callback_t *callback = zio->io_private;
3215 	arc_buf_t *buf = callback->awcb_buf;
3216 	arc_buf_hdr_t *hdr = buf->b_hdr;
3217 
3218 	ASSERT(hdr->b_acb == NULL);
3219 
3220 	if (zio->io_error == 0) {
3221 		hdr->b_dva = *BP_IDENTITY(zio->io_bp);
3222 		hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
3223 		hdr->b_cksum0 = zio->io_bp->blk_cksum.zc_word[0];
3224 	} else {
3225 		ASSERT(BUF_EMPTY(hdr));
3226 	}
3227 
3228 	/*
3229 	 * If the block to be written was all-zero, we may have
3230 	 * compressed it away.  In this case no write was performed
3231 	 * so there will be no dva/birth/checksum.  The buffer must
3232 	 * therefore remain anonymous (and uncached).
3233 	 */
3234 	if (!BUF_EMPTY(hdr)) {
3235 		arc_buf_hdr_t *exists;
3236 		kmutex_t *hash_lock;
3237 
3238 		ASSERT(zio->io_error == 0);
3239 
3240 		arc_cksum_verify(buf);
3241 
3242 		exists = buf_hash_insert(hdr, &hash_lock);
3243 		if (exists) {
3244 			/*
3245 			 * This can only happen if we overwrite for
3246 			 * sync-to-convergence, because we remove
3247 			 * buffers from the hash table when we arc_free().
3248 			 */
3249 			if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
3250 				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
3251 					panic("bad overwrite, hdr=%p exists=%p",
3252 					    (void *)hdr, (void *)exists);
3253 				ASSERT(refcount_is_zero(&exists->b_refcnt));
3254 				arc_change_state(arc_anon, exists, hash_lock);
3255 				mutex_exit(hash_lock);
3256 				arc_hdr_destroy(exists);
3257 				exists = buf_hash_insert(hdr, &hash_lock);
3258 				ASSERT3P(exists, ==, NULL);
3259 			} else {
3260 				/* Dedup */
3261 				ASSERT(hdr->b_datacnt == 1);
3262 				ASSERT(hdr->b_state == arc_anon);
3263 				ASSERT(BP_GET_DEDUP(zio->io_bp));
3264 				ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
3265 			}
3266 		}
3267 		hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
3268 		/* if it's not anon, we are doing a scrub */
3269 		if (!exists && hdr->b_state == arc_anon)
3270 			arc_access(hdr, hash_lock);
3271 		mutex_exit(hash_lock);
3272 	} else {
3273 		hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
3274 	}
3275 
3276 	ASSERT(!refcount_is_zero(&hdr->b_refcnt));
3277 	callback->awcb_done(zio, buf, callback->awcb_private);
3278 
3279 	kmem_free(callback, sizeof (arc_write_callback_t));
3280 }
3281 
3282 zio_t *
3283 arc_write(zio_t *pio, spa_t *spa, uint64_t txg,
3284     blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, const zio_prop_t *zp,
3285     arc_done_func_t *ready, arc_done_func_t *done, void *private,
3286     int priority, int zio_flags, const zbookmark_t *zb)
3287 {
3288 	arc_buf_hdr_t *hdr = buf->b_hdr;
3289 	arc_write_callback_t *callback;
3290 	zio_t *zio;
3291 
3292 	ASSERT(ready != NULL);
3293 	ASSERT(done != NULL);
3294 	ASSERT(!HDR_IO_ERROR(hdr));
3295 	ASSERT((hdr->b_flags & ARC_IO_IN_PROGRESS) == 0);
3296 	ASSERT(hdr->b_acb == NULL);
3297 	if (l2arc)
3298 		hdr->b_flags |= ARC_L2CACHE;
3299 	callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
3300 	callback->awcb_ready = ready;
3301 	callback->awcb_done = done;
3302 	callback->awcb_private = private;
3303 	callback->awcb_buf = buf;
3304 
3305 	zio = zio_write(pio, spa, txg, bp, buf->b_data, hdr->b_size, zp,
3306 	    arc_write_ready, arc_write_done, callback, priority, zio_flags, zb);
3307 
3308 	return (zio);
3309 }
3310 
3311 void
3312 arc_free(spa_t *spa, const blkptr_t *bp)
3313 {
3314 	arc_buf_hdr_t *ab;
3315 	kmutex_t *hash_lock;
3316 	uint64_t guid = spa_guid(spa);
3317 
3318 	/*
3319 	 * If this buffer is in the cache, release it, so it can be re-used.
3320 	 */
3321 	ab = buf_hash_find(guid, BP_IDENTITY(bp), BP_PHYSICAL_BIRTH(bp),
3322 	    &hash_lock);
3323 	if (ab != NULL) {
3324 		if (ab->b_state != arc_anon)
3325 			arc_change_state(arc_anon, ab, hash_lock);
3326 		if (HDR_IO_IN_PROGRESS(ab)) {
3327 			/*
3328 			 * This should only happen when we prefetch.
3329 			 */
3330 			ASSERT(ab->b_flags & ARC_PREFETCH);
3331 			ASSERT3U(ab->b_datacnt, ==, 1);
3332 			ab->b_flags |= ARC_FREED_IN_READ;
3333 			if (HDR_IN_HASH_TABLE(ab))
3334 				buf_hash_remove(ab);
3335 			ab->b_arc_access = 0;
3336 			buf_discard_identity(ab);
3337 			ab->b_buf->b_efunc = NULL;
3338 			ab->b_buf->b_private = NULL;
3339 			mutex_exit(hash_lock);
3340 		} else {
3341 			ASSERT(refcount_is_zero(&ab->b_refcnt));
3342 			ab->b_flags |= ARC_FREE_IN_PROGRESS;
3343 			mutex_exit(hash_lock);
3344 			arc_hdr_destroy(ab);
3345 			ARCSTAT_BUMP(arcstat_deleted);
3346 		}
3347 	}
3348 }
3349 
3350 static int
3351 arc_memory_throttle(uint64_t reserve, uint64_t inflight_data, uint64_t txg)
3352 {
3353 #ifdef _KERNEL
3354 	uint64_t available_memory = ptob(freemem);
3355 	static uint64_t page_load = 0;
3356 	static uint64_t last_txg = 0;
3357 
3358 #if defined(__i386)
3359 	available_memory =
3360 	    MIN(available_memory, vmem_size(heap_arena, VMEM_FREE));
3361 #endif
3362 	if (available_memory >= zfs_write_limit_max)
3363 		return (0);
3364 
3365 	if (txg > last_txg) {
3366 		last_txg = txg;
3367 		page_load = 0;
3368 	}
3369 	/*
3370 	 * If we are in pageout, we know that memory is already tight,
3371 	 * the arc is already going to be evicting, so we just want to
3372 	 * continue to let page writes occur as quickly as possible.
3373 	 */
3374 	if (curproc == proc_pageout) {
3375 		if (page_load > MAX(ptob(minfree), available_memory) / 4)
3376 			return (ERESTART);
3377 		/* Note: reserve is inflated, so we deflate */
3378 		page_load += reserve / 8;
3379 		return (0);
3380 	} else if (page_load > 0 && arc_reclaim_needed()) {
3381 		/* memory is low, delay before restarting */
3382 		ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
3383 		return (EAGAIN);
3384 	}
3385 	page_load = 0;
3386 
3387 	if (arc_size > arc_c_min) {
3388 		uint64_t evictable_memory =
3389 		    arc_mru->arcs_lsize[ARC_BUFC_DATA] +
3390 		    arc_mru->arcs_lsize[ARC_BUFC_METADATA] +
3391 		    arc_mfu->arcs_lsize[ARC_BUFC_DATA] +
3392 		    arc_mfu->arcs_lsize[ARC_BUFC_METADATA];
3393 		available_memory += MIN(evictable_memory, arc_size - arc_c_min);
3394 	}
3395 
3396 	if (inflight_data > available_memory / 4) {
3397 		ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
3398 		return (ERESTART);
3399 	}
3400 #endif
3401 	return (0);
3402 }
3403 
3404 void
3405 arc_tempreserve_clear(uint64_t reserve)
3406 {
3407 	atomic_add_64(&arc_tempreserve, -reserve);
3408 	ASSERT((int64_t)arc_tempreserve >= 0);
3409 }
3410 
3411 int
3412 arc_tempreserve_space(uint64_t reserve, uint64_t txg)
3413 {
3414 	int error;
3415 	uint64_t anon_size;
3416 
3417 #ifdef ZFS_DEBUG
3418 	/*
3419 	 * Once in a while, fail for no reason.  Everything should cope.
3420 	 */
3421 	if (spa_get_random(10000) == 0) {
3422 		dprintf("forcing random failure\n");
3423 		return (ERESTART);
3424 	}
3425 #endif
3426 	if (reserve > arc_c/4 && !arc_no_grow)
3427 		arc_c = MIN(arc_c_max, reserve * 4);
3428 	if (reserve > arc_c)
3429 		return (ENOMEM);
3430 
3431 	/*
3432 	 * Don't count loaned bufs as in flight dirty data to prevent long
3433 	 * network delays from blocking transactions that are ready to be
3434 	 * assigned to a txg.
3435 	 */
3436 	anon_size = MAX((int64_t)(arc_anon->arcs_size - arc_loaned_bytes), 0);
3437 
3438 	/*
3439 	 * Writes will, almost always, require additional memory allocations
3440 	 * in order to compress/encrypt/etc the data.  We therefor need to
3441 	 * make sure that there is sufficient available memory for this.
3442 	 */
3443 	if (error = arc_memory_throttle(reserve, anon_size, txg))
3444 		return (error);
3445 
3446 	/*
3447 	 * Throttle writes when the amount of dirty data in the cache
3448 	 * gets too large.  We try to keep the cache less than half full
3449 	 * of dirty blocks so that our sync times don't grow too large.
3450 	 * Note: if two requests come in concurrently, we might let them
3451 	 * both succeed, when one of them should fail.  Not a huge deal.
3452 	 */
3453 
3454 	if (reserve + arc_tempreserve + anon_size > arc_c / 2 &&
3455 	    anon_size > arc_c / 4) {
3456 		dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
3457 		    "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
3458 		    arc_tempreserve>>10,
3459 		    arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10,
3460 		    arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10,
3461 		    reserve>>10, arc_c>>10);
3462 		return (ERESTART);
3463 	}
3464 	atomic_add_64(&arc_tempreserve, reserve);
3465 	return (0);
3466 }
3467 
3468 void
3469 arc_init(void)
3470 {
3471 	mutex_init(&arc_reclaim_thr_lock, NULL, MUTEX_DEFAULT, NULL);
3472 	cv_init(&arc_reclaim_thr_cv, NULL, CV_DEFAULT, NULL);
3473 
3474 	/* Convert seconds to clock ticks */
3475 	arc_min_prefetch_lifespan = 1 * hz;
3476 
3477 	/* Start out with 1/8 of all memory */
3478 	arc_c = physmem * PAGESIZE / 8;
3479 
3480 #ifdef _KERNEL
3481 	/*
3482 	 * On architectures where the physical memory can be larger
3483 	 * than the addressable space (intel in 32-bit mode), we may
3484 	 * need to limit the cache to 1/8 of VM size.
3485 	 */
3486 	arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8);
3487 #endif
3488 
3489 	/* set min cache to 1/32 of all memory, or 64MB, whichever is more */
3490 	arc_c_min = MAX(arc_c / 4, 64<<20);
3491 	/* set max to 3/4 of all memory, or all but 1GB, whichever is more */
3492 	if (arc_c * 8 >= 1<<30)
3493 		arc_c_max = (arc_c * 8) - (1<<30);
3494 	else
3495 		arc_c_max = arc_c_min;
3496 	arc_c_max = MAX(arc_c * 6, arc_c_max);
3497 
3498 	/*
3499 	 * Allow the tunables to override our calculations if they are
3500 	 * reasonable (ie. over 64MB)
3501 	 */
3502 	if (zfs_arc_max > 64<<20 && zfs_arc_max < physmem * PAGESIZE)
3503 		arc_c_max = zfs_arc_max;
3504 	if (zfs_arc_min > 64<<20 && zfs_arc_min <= arc_c_max)
3505 		arc_c_min = zfs_arc_min;
3506 
3507 	arc_c = arc_c_max;
3508 	arc_p = (arc_c >> 1);
3509 
3510 	/* limit meta-data to 1/4 of the arc capacity */
3511 	arc_meta_limit = arc_c_max / 4;
3512 
3513 	/* Allow the tunable to override if it is reasonable */
3514 	if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max)
3515 		arc_meta_limit = zfs_arc_meta_limit;
3516 
3517 	if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0)
3518 		arc_c_min = arc_meta_limit / 2;
3519 
3520 	if (zfs_arc_grow_retry > 0)
3521 		arc_grow_retry = zfs_arc_grow_retry;
3522 
3523 	if (zfs_arc_shrink_shift > 0)
3524 		arc_shrink_shift = zfs_arc_shrink_shift;
3525 
3526 	if (zfs_arc_p_min_shift > 0)
3527 		arc_p_min_shift = zfs_arc_p_min_shift;
3528 
3529 	/* if kmem_flags are set, lets try to use less memory */
3530 	if (kmem_debugging())
3531 		arc_c = arc_c / 2;
3532 	if (arc_c < arc_c_min)
3533 		arc_c = arc_c_min;
3534 
3535 	arc_anon = &ARC_anon;
3536 	arc_mru = &ARC_mru;
3537 	arc_mru_ghost = &ARC_mru_ghost;
3538 	arc_mfu = &ARC_mfu;
3539 	arc_mfu_ghost = &ARC_mfu_ghost;
3540 	arc_l2c_only = &ARC_l2c_only;
3541 	arc_size = 0;
3542 
3543 	mutex_init(&arc_anon->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3544 	mutex_init(&arc_mru->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3545 	mutex_init(&arc_mru_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3546 	mutex_init(&arc_mfu->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3547 	mutex_init(&arc_mfu_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3548 	mutex_init(&arc_l2c_only->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3549 
3550 	list_create(&arc_mru->arcs_list[ARC_BUFC_METADATA],
3551 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3552 	list_create(&arc_mru->arcs_list[ARC_BUFC_DATA],
3553 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3554 	list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA],
3555 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3556 	list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA],
3557 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3558 	list_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA],
3559 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3560 	list_create(&arc_mfu->arcs_list[ARC_BUFC_DATA],
3561 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3562 	list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA],
3563 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3564 	list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA],
3565 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3566 	list_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA],
3567 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3568 	list_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA],
3569 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3570 
3571 	buf_init();
3572 
3573 	arc_thread_exit = 0;
3574 	arc_eviction_list = NULL;
3575 	mutex_init(&arc_eviction_mtx, NULL, MUTEX_DEFAULT, NULL);
3576 	bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t));
3577 
3578 	arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
3579 	    sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
3580 
3581 	if (arc_ksp != NULL) {
3582 		arc_ksp->ks_data = &arc_stats;
3583 		kstat_install(arc_ksp);
3584 	}
3585 
3586 	(void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0,
3587 	    TS_RUN, minclsyspri);
3588 
3589 	arc_dead = FALSE;
3590 	arc_warm = B_FALSE;
3591 
3592 	if (zfs_write_limit_max == 0)
3593 		zfs_write_limit_max = ptob(physmem) >> zfs_write_limit_shift;
3594 	else
3595 		zfs_write_limit_shift = 0;
3596 	mutex_init(&zfs_write_limit_lock, NULL, MUTEX_DEFAULT, NULL);
3597 }
3598 
3599 void
3600 arc_fini(void)
3601 {
3602 	mutex_enter(&arc_reclaim_thr_lock);
3603 	arc_thread_exit = 1;
3604 	while (arc_thread_exit != 0)
3605 		cv_wait(&arc_reclaim_thr_cv, &arc_reclaim_thr_lock);
3606 	mutex_exit(&arc_reclaim_thr_lock);
3607 
3608 	arc_flush(NULL);
3609 
3610 	arc_dead = TRUE;
3611 
3612 	if (arc_ksp != NULL) {
3613 		kstat_delete(arc_ksp);
3614 		arc_ksp = NULL;
3615 	}
3616 
3617 	mutex_destroy(&arc_eviction_mtx);
3618 	mutex_destroy(&arc_reclaim_thr_lock);
3619 	cv_destroy(&arc_reclaim_thr_cv);
3620 
3621 	list_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]);
3622 	list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
3623 	list_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]);
3624 	list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
3625 	list_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]);
3626 	list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
3627 	list_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]);
3628 	list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
3629 
3630 	mutex_destroy(&arc_anon->arcs_mtx);
3631 	mutex_destroy(&arc_mru->arcs_mtx);
3632 	mutex_destroy(&arc_mru_ghost->arcs_mtx);
3633 	mutex_destroy(&arc_mfu->arcs_mtx);
3634 	mutex_destroy(&arc_mfu_ghost->arcs_mtx);
3635 	mutex_destroy(&arc_l2c_only->arcs_mtx);
3636 
3637 	mutex_destroy(&zfs_write_limit_lock);
3638 
3639 	buf_fini();
3640 
3641 	ASSERT(arc_loaned_bytes == 0);
3642 }
3643 
3644 /*
3645  * Level 2 ARC
3646  *
3647  * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
3648  * It uses dedicated storage devices to hold cached data, which are populated
3649  * using large infrequent writes.  The main role of this cache is to boost
3650  * the performance of random read workloads.  The intended L2ARC devices
3651  * include short-stroked disks, solid state disks, and other media with
3652  * substantially faster read latency than disk.
3653  *
3654  *                 +-----------------------+
3655  *                 |         ARC           |
3656  *                 +-----------------------+
3657  *                    |         ^     ^
3658  *                    |         |     |
3659  *      l2arc_feed_thread()    arc_read()
3660  *                    |         |     |
3661  *                    |  l2arc read   |
3662  *                    V         |     |
3663  *               +---------------+    |
3664  *               |     L2ARC     |    |
3665  *               +---------------+    |
3666  *                   |    ^           |
3667  *          l2arc_write() |           |
3668  *                   |    |           |
3669  *                   V    |           |
3670  *                 +-------+      +-------+
3671  *                 | vdev  |      | vdev  |
3672  *                 | cache |      | cache |
3673  *                 +-------+      +-------+
3674  *                 +=========+     .-----.
3675  *                 :  L2ARC  :    |-_____-|
3676  *                 : devices :    | Disks |
3677  *                 +=========+    `-_____-'
3678  *
3679  * Read requests are satisfied from the following sources, in order:
3680  *
3681  *	1) ARC
3682  *	2) vdev cache of L2ARC devices
3683  *	3) L2ARC devices
3684  *	4) vdev cache of disks
3685  *	5) disks
3686  *
3687  * Some L2ARC device types exhibit extremely slow write performance.
3688  * To accommodate for this there are some significant differences between
3689  * the L2ARC and traditional cache design:
3690  *
3691  * 1. There is no eviction path from the ARC to the L2ARC.  Evictions from
3692  * the ARC behave as usual, freeing buffers and placing headers on ghost
3693  * lists.  The ARC does not send buffers to the L2ARC during eviction as
3694  * this would add inflated write latencies for all ARC memory pressure.
3695  *
3696  * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
3697  * It does this by periodically scanning buffers from the eviction-end of
3698  * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
3699  * not already there.  It scans until a headroom of buffers is satisfied,
3700  * which itself is a buffer for ARC eviction.  The thread that does this is
3701  * l2arc_feed_thread(), illustrated below; example sizes are included to
3702  * provide a better sense of ratio than this diagram:
3703  *
3704  *	       head -->                        tail
3705  *	        +---------------------+----------+
3706  *	ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->.   # already on L2ARC
3707  *	        +---------------------+----------+   |   o L2ARC eligible
3708  *	ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->|   : ARC buffer
3709  *	        +---------------------+----------+   |
3710  *	             15.9 Gbytes      ^ 32 Mbytes    |
3711  *	                           headroom          |
3712  *	                                      l2arc_feed_thread()
3713  *	                                             |
3714  *	                 l2arc write hand <--[oooo]--'
3715  *	                         |           8 Mbyte
3716  *	                         |          write max
3717  *	                         V
3718  *		  +==============================+
3719  *	L2ARC dev |####|#|###|###|    |####| ... |
3720  *	          +==============================+
3721  *	                     32 Gbytes
3722  *
3723  * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
3724  * evicted, then the L2ARC has cached a buffer much sooner than it probably
3725  * needed to, potentially wasting L2ARC device bandwidth and storage.  It is
3726  * safe to say that this is an uncommon case, since buffers at the end of
3727  * the ARC lists have moved there due to inactivity.
3728  *
3729  * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
3730  * then the L2ARC simply misses copying some buffers.  This serves as a
3731  * pressure valve to prevent heavy read workloads from both stalling the ARC
3732  * with waits and clogging the L2ARC with writes.  This also helps prevent
3733  * the potential for the L2ARC to churn if it attempts to cache content too
3734  * quickly, such as during backups of the entire pool.
3735  *
3736  * 5. After system boot and before the ARC has filled main memory, there are
3737  * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
3738  * lists can remain mostly static.  Instead of searching from tail of these
3739  * lists as pictured, the l2arc_feed_thread() will search from the list heads
3740  * for eligible buffers, greatly increasing its chance of finding them.
3741  *
3742  * The L2ARC device write speed is also boosted during this time so that
3743  * the L2ARC warms up faster.  Since there have been no ARC evictions yet,
3744  * there are no L2ARC reads, and no fear of degrading read performance
3745  * through increased writes.
3746  *
3747  * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
3748  * the vdev queue can aggregate them into larger and fewer writes.  Each
3749  * device is written to in a rotor fashion, sweeping writes through
3750  * available space then repeating.
3751  *
3752  * 7. The L2ARC does not store dirty content.  It never needs to flush
3753  * write buffers back to disk based storage.
3754  *
3755  * 8. If an ARC buffer is written (and dirtied) which also exists in the
3756  * L2ARC, the now stale L2ARC buffer is immediately dropped.
3757  *
3758  * The performance of the L2ARC can be tweaked by a number of tunables, which
3759  * may be necessary for different workloads:
3760  *
3761  *	l2arc_write_max		max write bytes per interval
3762  *	l2arc_write_boost	extra write bytes during device warmup
3763  *	l2arc_noprefetch	skip caching prefetched buffers
3764  *	l2arc_headroom		number of max device writes to precache
3765  *	l2arc_feed_secs		seconds between L2ARC writing
3766  *
3767  * Tunables may be removed or added as future performance improvements are
3768  * integrated, and also may become zpool properties.
3769  *
3770  * There are three key functions that control how the L2ARC warms up:
3771  *
3772  *	l2arc_write_eligible()	check if a buffer is eligible to cache
3773  *	l2arc_write_size()	calculate how much to write
3774  *	l2arc_write_interval()	calculate sleep delay between writes
3775  *
3776  * These three functions determine what to write, how much, and how quickly
3777  * to send writes.
3778  */
3779 
3780 static boolean_t
3781 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab)
3782 {
3783 	/*
3784 	 * A buffer is *not* eligible for the L2ARC if it:
3785 	 * 1. belongs to a different spa.
3786 	 * 2. is already cached on the L2ARC.
3787 	 * 3. has an I/O in progress (it may be an incomplete read).
3788 	 * 4. is flagged not eligible (zfs property).
3789 	 */
3790 	if (ab->b_spa != spa_guid || ab->b_l2hdr != NULL ||
3791 	    HDR_IO_IN_PROGRESS(ab) || !HDR_L2CACHE(ab))
3792 		return (B_FALSE);
3793 
3794 	return (B_TRUE);
3795 }
3796 
3797 static uint64_t
3798 l2arc_write_size(l2arc_dev_t *dev)
3799 {
3800 	uint64_t size;
3801 
3802 	size = dev->l2ad_write;
3803 
3804 	if (arc_warm == B_FALSE)
3805 		size += dev->l2ad_boost;
3806 
3807 	return (size);
3808 
3809 }
3810 
3811 static clock_t
3812 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
3813 {
3814 	clock_t interval, next, now;
3815 
3816 	/*
3817 	 * If the ARC lists are busy, increase our write rate; if the
3818 	 * lists are stale, idle back.  This is achieved by checking
3819 	 * how much we previously wrote - if it was more than half of
3820 	 * what we wanted, schedule the next write much sooner.
3821 	 */
3822 	if (l2arc_feed_again && wrote > (wanted / 2))
3823 		interval = (hz * l2arc_feed_min_ms) / 1000;
3824 	else
3825 		interval = hz * l2arc_feed_secs;
3826 
3827 	now = ddi_get_lbolt();
3828 	next = MAX(now, MIN(now + interval, began + interval));
3829 
3830 	return (next);
3831 }
3832 
3833 static void
3834 l2arc_hdr_stat_add(void)
3835 {
3836 	ARCSTAT_INCR(arcstat_l2_hdr_size, HDR_SIZE + L2HDR_SIZE);
3837 	ARCSTAT_INCR(arcstat_hdr_size, -HDR_SIZE);
3838 }
3839 
3840 static void
3841 l2arc_hdr_stat_remove(void)
3842 {
3843 	ARCSTAT_INCR(arcstat_l2_hdr_size, -(HDR_SIZE + L2HDR_SIZE));
3844 	ARCSTAT_INCR(arcstat_hdr_size, HDR_SIZE);
3845 }
3846 
3847 /*
3848  * Cycle through L2ARC devices.  This is how L2ARC load balances.
3849  * If a device is returned, this also returns holding the spa config lock.
3850  */
3851 static l2arc_dev_t *
3852 l2arc_dev_get_next(void)
3853 {
3854 	l2arc_dev_t *first, *next = NULL;
3855 
3856 	/*
3857 	 * Lock out the removal of spas (spa_namespace_lock), then removal
3858 	 * of cache devices (l2arc_dev_mtx).  Once a device has been selected,
3859 	 * both locks will be dropped and a spa config lock held instead.
3860 	 */
3861 	mutex_enter(&spa_namespace_lock);
3862 	mutex_enter(&l2arc_dev_mtx);
3863 
3864 	/* if there are no vdevs, there is nothing to do */
3865 	if (l2arc_ndev == 0)
3866 		goto out;
3867 
3868 	first = NULL;
3869 	next = l2arc_dev_last;
3870 	do {
3871 		/* loop around the list looking for a non-faulted vdev */
3872 		if (next == NULL) {
3873 			next = list_head(l2arc_dev_list);
3874 		} else {
3875 			next = list_next(l2arc_dev_list, next);
3876 			if (next == NULL)
3877 				next = list_head(l2arc_dev_list);
3878 		}
3879 
3880 		/* if we have come back to the start, bail out */
3881 		if (first == NULL)
3882 			first = next;
3883 		else if (next == first)
3884 			break;
3885 
3886 	} while (vdev_is_dead(next->l2ad_vdev));
3887 
3888 	/* if we were unable to find any usable vdevs, return NULL */
3889 	if (vdev_is_dead(next->l2ad_vdev))
3890 		next = NULL;
3891 
3892 	l2arc_dev_last = next;
3893 
3894 out:
3895 	mutex_exit(&l2arc_dev_mtx);
3896 
3897 	/*
3898 	 * Grab the config lock to prevent the 'next' device from being
3899 	 * removed while we are writing to it.
3900 	 */
3901 	if (next != NULL)
3902 		spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
3903 	mutex_exit(&spa_namespace_lock);
3904 
3905 	return (next);
3906 }
3907 
3908 /*
3909  * Free buffers that were tagged for destruction.
3910  */
3911 static void
3912 l2arc_do_free_on_write()
3913 {
3914 	list_t *buflist;
3915 	l2arc_data_free_t *df, *df_prev;
3916 
3917 	mutex_enter(&l2arc_free_on_write_mtx);
3918 	buflist = l2arc_free_on_write;
3919 
3920 	for (df = list_tail(buflist); df; df = df_prev) {
3921 		df_prev = list_prev(buflist, df);
3922 		ASSERT(df->l2df_data != NULL);
3923 		ASSERT(df->l2df_func != NULL);
3924 		df->l2df_func(df->l2df_data, df->l2df_size);
3925 		list_remove(buflist, df);
3926 		kmem_free(df, sizeof (l2arc_data_free_t));
3927 	}
3928 
3929 	mutex_exit(&l2arc_free_on_write_mtx);
3930 }
3931 
3932 /*
3933  * A write to a cache device has completed.  Update all headers to allow
3934  * reads from these buffers to begin.
3935  */
3936 static void
3937 l2arc_write_done(zio_t *zio)
3938 {
3939 	l2arc_write_callback_t *cb;
3940 	l2arc_dev_t *dev;
3941 	list_t *buflist;
3942 	arc_buf_hdr_t *head, *ab, *ab_prev;
3943 	l2arc_buf_hdr_t *abl2;
3944 	kmutex_t *hash_lock;
3945 
3946 	cb = zio->io_private;
3947 	ASSERT(cb != NULL);
3948 	dev = cb->l2wcb_dev;
3949 	ASSERT(dev != NULL);
3950 	head = cb->l2wcb_head;
3951 	ASSERT(head != NULL);
3952 	buflist = dev->l2ad_buflist;
3953 	ASSERT(buflist != NULL);
3954 	DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
3955 	    l2arc_write_callback_t *, cb);
3956 
3957 	if (zio->io_error != 0)
3958 		ARCSTAT_BUMP(arcstat_l2_writes_error);
3959 
3960 	mutex_enter(&l2arc_buflist_mtx);
3961 
3962 	/*
3963 	 * All writes completed, or an error was hit.
3964 	 */
3965 	for (ab = list_prev(buflist, head); ab; ab = ab_prev) {
3966 		ab_prev = list_prev(buflist, ab);
3967 
3968 		hash_lock = HDR_LOCK(ab);
3969 		if (!mutex_tryenter(hash_lock)) {
3970 			/*
3971 			 * This buffer misses out.  It may be in a stage
3972 			 * of eviction.  Its ARC_L2_WRITING flag will be
3973 			 * left set, denying reads to this buffer.
3974 			 */
3975 			ARCSTAT_BUMP(arcstat_l2_writes_hdr_miss);
3976 			continue;
3977 		}
3978 
3979 		if (zio->io_error != 0) {
3980 			/*
3981 			 * Error - drop L2ARC entry.
3982 			 */
3983 			list_remove(buflist, ab);
3984 			abl2 = ab->b_l2hdr;
3985 			ab->b_l2hdr = NULL;
3986 			kmem_free(abl2, sizeof (l2arc_buf_hdr_t));
3987 			ARCSTAT_INCR(arcstat_l2_size, -ab->b_size);
3988 		}
3989 
3990 		/*
3991 		 * Allow ARC to begin reads to this L2ARC entry.
3992 		 */
3993 		ab->b_flags &= ~ARC_L2_WRITING;
3994 
3995 		mutex_exit(hash_lock);
3996 	}
3997 
3998 	atomic_inc_64(&l2arc_writes_done);
3999 	list_remove(buflist, head);
4000 	kmem_cache_free(hdr_cache, head);
4001 	mutex_exit(&l2arc_buflist_mtx);
4002 
4003 	l2arc_do_free_on_write();
4004 
4005 	kmem_free(cb, sizeof (l2arc_write_callback_t));
4006 }
4007 
4008 /*
4009  * A read to a cache device completed.  Validate buffer contents before
4010  * handing over to the regular ARC routines.
4011  */
4012 static void
4013 l2arc_read_done(zio_t *zio)
4014 {
4015 	l2arc_read_callback_t *cb;
4016 	arc_buf_hdr_t *hdr;
4017 	arc_buf_t *buf;
4018 	kmutex_t *hash_lock;
4019 	int equal;
4020 
4021 	ASSERT(zio->io_vd != NULL);
4022 	ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
4023 
4024 	spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
4025 
4026 	cb = zio->io_private;
4027 	ASSERT(cb != NULL);
4028 	buf = cb->l2rcb_buf;
4029 	ASSERT(buf != NULL);
4030 
4031 	hash_lock = HDR_LOCK(buf->b_hdr);
4032 	mutex_enter(hash_lock);
4033 	hdr = buf->b_hdr;
4034 	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
4035 
4036 	/*
4037 	 * Check this survived the L2ARC journey.
4038 	 */
4039 	equal = arc_cksum_equal(buf);
4040 	if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) {
4041 		mutex_exit(hash_lock);
4042 		zio->io_private = buf;
4043 		zio->io_bp_copy = cb->l2rcb_bp;	/* XXX fix in L2ARC 2.0	*/
4044 		zio->io_bp = &zio->io_bp_copy;	/* XXX fix in L2ARC 2.0	*/
4045 		arc_read_done(zio);
4046 	} else {
4047 		mutex_exit(hash_lock);
4048 		/*
4049 		 * Buffer didn't survive caching.  Increment stats and
4050 		 * reissue to the original storage device.
4051 		 */
4052 		if (zio->io_error != 0) {
4053 			ARCSTAT_BUMP(arcstat_l2_io_error);
4054 		} else {
4055 			zio->io_error = EIO;
4056 		}
4057 		if (!equal)
4058 			ARCSTAT_BUMP(arcstat_l2_cksum_bad);
4059 
4060 		/*
4061 		 * If there's no waiter, issue an async i/o to the primary
4062 		 * storage now.  If there *is* a waiter, the caller must
4063 		 * issue the i/o in a context where it's OK to block.
4064 		 */
4065 		if (zio->io_waiter == NULL) {
4066 			zio_t *pio = zio_unique_parent(zio);
4067 
4068 			ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
4069 
4070 			zio_nowait(zio_read(pio, cb->l2rcb_spa, &cb->l2rcb_bp,
4071 			    buf->b_data, zio->io_size, arc_read_done, buf,
4072 			    zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb));
4073 		}
4074 	}
4075 
4076 	kmem_free(cb, sizeof (l2arc_read_callback_t));
4077 }
4078 
4079 /*
4080  * This is the list priority from which the L2ARC will search for pages to
4081  * cache.  This is used within loops (0..3) to cycle through lists in the
4082  * desired order.  This order can have a significant effect on cache
4083  * performance.
4084  *
4085  * Currently the metadata lists are hit first, MFU then MRU, followed by
4086  * the data lists.  This function returns a locked list, and also returns
4087  * the lock pointer.
4088  */
4089 static list_t *
4090 l2arc_list_locked(int list_num, kmutex_t **lock)
4091 {
4092 	list_t *list;
4093 
4094 	ASSERT(list_num >= 0 && list_num <= 3);
4095 
4096 	switch (list_num) {
4097 	case 0:
4098 		list = &arc_mfu->arcs_list[ARC_BUFC_METADATA];
4099 		*lock = &arc_mfu->arcs_mtx;
4100 		break;
4101 	case 1:
4102 		list = &arc_mru->arcs_list[ARC_BUFC_METADATA];
4103 		*lock = &arc_mru->arcs_mtx;
4104 		break;
4105 	case 2:
4106 		list = &arc_mfu->arcs_list[ARC_BUFC_DATA];
4107 		*lock = &arc_mfu->arcs_mtx;
4108 		break;
4109 	case 3:
4110 		list = &arc_mru->arcs_list[ARC_BUFC_DATA];
4111 		*lock = &arc_mru->arcs_mtx;
4112 		break;
4113 	}
4114 
4115 	ASSERT(!(MUTEX_HELD(*lock)));
4116 	mutex_enter(*lock);
4117 	return (list);
4118 }
4119 
4120 /*
4121  * Evict buffers from the device write hand to the distance specified in
4122  * bytes.  This distance may span populated buffers, it may span nothing.
4123  * This is clearing a region on the L2ARC device ready for writing.
4124  * If the 'all' boolean is set, every buffer is evicted.
4125  */
4126 static void
4127 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
4128 {
4129 	list_t *buflist;
4130 	l2arc_buf_hdr_t *abl2;
4131 	arc_buf_hdr_t *ab, *ab_prev;
4132 	kmutex_t *hash_lock;
4133 	uint64_t taddr;
4134 
4135 	buflist = dev->l2ad_buflist;
4136 
4137 	if (buflist == NULL)
4138 		return;
4139 
4140 	if (!all && dev->l2ad_first) {
4141 		/*
4142 		 * This is the first sweep through the device.  There is
4143 		 * nothing to evict.
4144 		 */
4145 		return;
4146 	}
4147 
4148 	if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) {
4149 		/*
4150 		 * When nearing the end of the device, evict to the end
4151 		 * before the device write hand jumps to the start.
4152 		 */
4153 		taddr = dev->l2ad_end;
4154 	} else {
4155 		taddr = dev->l2ad_hand + distance;
4156 	}
4157 	DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
4158 	    uint64_t, taddr, boolean_t, all);
4159 
4160 top:
4161 	mutex_enter(&l2arc_buflist_mtx);
4162 	for (ab = list_tail(buflist); ab; ab = ab_prev) {
4163 		ab_prev = list_prev(buflist, ab);
4164 
4165 		hash_lock = HDR_LOCK(ab);
4166 		if (!mutex_tryenter(hash_lock)) {
4167 			/*
4168 			 * Missed the hash lock.  Retry.
4169 			 */
4170 			ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
4171 			mutex_exit(&l2arc_buflist_mtx);
4172 			mutex_enter(hash_lock);
4173 			mutex_exit(hash_lock);
4174 			goto top;
4175 		}
4176 
4177 		if (HDR_L2_WRITE_HEAD(ab)) {
4178 			/*
4179 			 * We hit a write head node.  Leave it for
4180 			 * l2arc_write_done().
4181 			 */
4182 			list_remove(buflist, ab);
4183 			mutex_exit(hash_lock);
4184 			continue;
4185 		}
4186 
4187 		if (!all && ab->b_l2hdr != NULL &&
4188 		    (ab->b_l2hdr->b_daddr > taddr ||
4189 		    ab->b_l2hdr->b_daddr < dev->l2ad_hand)) {
4190 			/*
4191 			 * We've evicted to the target address,
4192 			 * or the end of the device.
4193 			 */
4194 			mutex_exit(hash_lock);
4195 			break;
4196 		}
4197 
4198 		if (HDR_FREE_IN_PROGRESS(ab)) {
4199 			/*
4200 			 * Already on the path to destruction.
4201 			 */
4202 			mutex_exit(hash_lock);
4203 			continue;
4204 		}
4205 
4206 		if (ab->b_state == arc_l2c_only) {
4207 			ASSERT(!HDR_L2_READING(ab));
4208 			/*
4209 			 * This doesn't exist in the ARC.  Destroy.
4210 			 * arc_hdr_destroy() will call list_remove()
4211 			 * and decrement arcstat_l2_size.
4212 			 */
4213 			arc_change_state(arc_anon, ab, hash_lock);
4214 			arc_hdr_destroy(ab);
4215 		} else {
4216 			/*
4217 			 * Invalidate issued or about to be issued
4218 			 * reads, since we may be about to write
4219 			 * over this location.
4220 			 */
4221 			if (HDR_L2_READING(ab)) {
4222 				ARCSTAT_BUMP(arcstat_l2_evict_reading);
4223 				ab->b_flags |= ARC_L2_EVICTED;
4224 			}
4225 
4226 			/*
4227 			 * Tell ARC this no longer exists in L2ARC.
4228 			 */
4229 			if (ab->b_l2hdr != NULL) {
4230 				abl2 = ab->b_l2hdr;
4231 				ab->b_l2hdr = NULL;
4232 				kmem_free(abl2, sizeof (l2arc_buf_hdr_t));
4233 				ARCSTAT_INCR(arcstat_l2_size, -ab->b_size);
4234 			}
4235 			list_remove(buflist, ab);
4236 
4237 			/*
4238 			 * This may have been leftover after a
4239 			 * failed write.
4240 			 */
4241 			ab->b_flags &= ~ARC_L2_WRITING;
4242 		}
4243 		mutex_exit(hash_lock);
4244 	}
4245 	mutex_exit(&l2arc_buflist_mtx);
4246 
4247 	vdev_space_update(dev->l2ad_vdev, -(taddr - dev->l2ad_evict), 0, 0);
4248 	dev->l2ad_evict = taddr;
4249 }
4250 
4251 /*
4252  * Find and write ARC buffers to the L2ARC device.
4253  *
4254  * An ARC_L2_WRITING flag is set so that the L2ARC buffers are not valid
4255  * for reading until they have completed writing.
4256  */
4257 static uint64_t
4258 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz)
4259 {
4260 	arc_buf_hdr_t *ab, *ab_prev, *head;
4261 	l2arc_buf_hdr_t *hdrl2;
4262 	list_t *list;
4263 	uint64_t passed_sz, write_sz, buf_sz, headroom;
4264 	void *buf_data;
4265 	kmutex_t *hash_lock, *list_lock;
4266 	boolean_t have_lock, full;
4267 	l2arc_write_callback_t *cb;
4268 	zio_t *pio, *wzio;
4269 	uint64_t guid = spa_guid(spa);
4270 
4271 	ASSERT(dev->l2ad_vdev != NULL);
4272 
4273 	pio = NULL;
4274 	write_sz = 0;
4275 	full = B_FALSE;
4276 	head = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
4277 	head->b_flags |= ARC_L2_WRITE_HEAD;
4278 
4279 	/*
4280 	 * Copy buffers for L2ARC writing.
4281 	 */
4282 	mutex_enter(&l2arc_buflist_mtx);
4283 	for (int try = 0; try <= 3; try++) {
4284 		list = l2arc_list_locked(try, &list_lock);
4285 		passed_sz = 0;
4286 
4287 		/*
4288 		 * L2ARC fast warmup.
4289 		 *
4290 		 * Until the ARC is warm and starts to evict, read from the
4291 		 * head of the ARC lists rather than the tail.
4292 		 */
4293 		headroom = target_sz * l2arc_headroom;
4294 		if (arc_warm == B_FALSE)
4295 			ab = list_head(list);
4296 		else
4297 			ab = list_tail(list);
4298 
4299 		for (; ab; ab = ab_prev) {
4300 			if (arc_warm == B_FALSE)
4301 				ab_prev = list_next(list, ab);
4302 			else
4303 				ab_prev = list_prev(list, ab);
4304 
4305 			hash_lock = HDR_LOCK(ab);
4306 			have_lock = MUTEX_HELD(hash_lock);
4307 			if (!have_lock && !mutex_tryenter(hash_lock)) {
4308 				/*
4309 				 * Skip this buffer rather than waiting.
4310 				 */
4311 				continue;
4312 			}
4313 
4314 			passed_sz += ab->b_size;
4315 			if (passed_sz > headroom) {
4316 				/*
4317 				 * Searched too far.
4318 				 */
4319 				mutex_exit(hash_lock);
4320 				break;
4321 			}
4322 
4323 			if (!l2arc_write_eligible(guid, ab)) {
4324 				mutex_exit(hash_lock);
4325 				continue;
4326 			}
4327 
4328 			if ((write_sz + ab->b_size) > target_sz) {
4329 				full = B_TRUE;
4330 				mutex_exit(hash_lock);
4331 				break;
4332 			}
4333 
4334 			if (pio == NULL) {
4335 				/*
4336 				 * Insert a dummy header on the buflist so
4337 				 * l2arc_write_done() can find where the
4338 				 * write buffers begin without searching.
4339 				 */
4340 				list_insert_head(dev->l2ad_buflist, head);
4341 
4342 				cb = kmem_alloc(
4343 				    sizeof (l2arc_write_callback_t), KM_SLEEP);
4344 				cb->l2wcb_dev = dev;
4345 				cb->l2wcb_head = head;
4346 				pio = zio_root(spa, l2arc_write_done, cb,
4347 				    ZIO_FLAG_CANFAIL);
4348 			}
4349 
4350 			/*
4351 			 * Create and add a new L2ARC header.
4352 			 */
4353 			hdrl2 = kmem_zalloc(sizeof (l2arc_buf_hdr_t), KM_SLEEP);
4354 			hdrl2->b_dev = dev;
4355 			hdrl2->b_daddr = dev->l2ad_hand;
4356 
4357 			ab->b_flags |= ARC_L2_WRITING;
4358 			ab->b_l2hdr = hdrl2;
4359 			list_insert_head(dev->l2ad_buflist, ab);
4360 			buf_data = ab->b_buf->b_data;
4361 			buf_sz = ab->b_size;
4362 
4363 			/*
4364 			 * Compute and store the buffer cksum before
4365 			 * writing.  On debug the cksum is verified first.
4366 			 */
4367 			arc_cksum_verify(ab->b_buf);
4368 			arc_cksum_compute(ab->b_buf, B_TRUE);
4369 
4370 			mutex_exit(hash_lock);
4371 
4372 			wzio = zio_write_phys(pio, dev->l2ad_vdev,
4373 			    dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF,
4374 			    NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE,
4375 			    ZIO_FLAG_CANFAIL, B_FALSE);
4376 
4377 			DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
4378 			    zio_t *, wzio);
4379 			(void) zio_nowait(wzio);
4380 
4381 			/*
4382 			 * Keep the clock hand suitably device-aligned.
4383 			 */
4384 			buf_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz);
4385 
4386 			write_sz += buf_sz;
4387 			dev->l2ad_hand += buf_sz;
4388 		}
4389 
4390 		mutex_exit(list_lock);
4391 
4392 		if (full == B_TRUE)
4393 			break;
4394 	}
4395 	mutex_exit(&l2arc_buflist_mtx);
4396 
4397 	if (pio == NULL) {
4398 		ASSERT3U(write_sz, ==, 0);
4399 		kmem_cache_free(hdr_cache, head);
4400 		return (0);
4401 	}
4402 
4403 	ASSERT3U(write_sz, <=, target_sz);
4404 	ARCSTAT_BUMP(arcstat_l2_writes_sent);
4405 	ARCSTAT_INCR(arcstat_l2_write_bytes, write_sz);
4406 	ARCSTAT_INCR(arcstat_l2_size, write_sz);
4407 	vdev_space_update(dev->l2ad_vdev, write_sz, 0, 0);
4408 
4409 	/*
4410 	 * Bump device hand to the device start if it is approaching the end.
4411 	 * l2arc_evict() will already have evicted ahead for this case.
4412 	 */
4413 	if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) {
4414 		vdev_space_update(dev->l2ad_vdev,
4415 		    dev->l2ad_end - dev->l2ad_hand, 0, 0);
4416 		dev->l2ad_hand = dev->l2ad_start;
4417 		dev->l2ad_evict = dev->l2ad_start;
4418 		dev->l2ad_first = B_FALSE;
4419 	}
4420 
4421 	dev->l2ad_writing = B_TRUE;
4422 	(void) zio_wait(pio);
4423 	dev->l2ad_writing = B_FALSE;
4424 
4425 	return (write_sz);
4426 }
4427 
4428 /*
4429  * This thread feeds the L2ARC at regular intervals.  This is the beating
4430  * heart of the L2ARC.
4431  */
4432 static void
4433 l2arc_feed_thread(void)
4434 {
4435 	callb_cpr_t cpr;
4436 	l2arc_dev_t *dev;
4437 	spa_t *spa;
4438 	uint64_t size, wrote;
4439 	clock_t begin, next = ddi_get_lbolt();
4440 
4441 	CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
4442 
4443 	mutex_enter(&l2arc_feed_thr_lock);
4444 
4445 	while (l2arc_thread_exit == 0) {
4446 		CALLB_CPR_SAFE_BEGIN(&cpr);
4447 		(void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock,
4448 		    next);
4449 		CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
4450 		next = ddi_get_lbolt() + hz;
4451 
4452 		/*
4453 		 * Quick check for L2ARC devices.
4454 		 */
4455 		mutex_enter(&l2arc_dev_mtx);
4456 		if (l2arc_ndev == 0) {
4457 			mutex_exit(&l2arc_dev_mtx);
4458 			continue;
4459 		}
4460 		mutex_exit(&l2arc_dev_mtx);
4461 		begin = ddi_get_lbolt();
4462 
4463 		/*
4464 		 * This selects the next l2arc device to write to, and in
4465 		 * doing so the next spa to feed from: dev->l2ad_spa.   This
4466 		 * will return NULL if there are now no l2arc devices or if
4467 		 * they are all faulted.
4468 		 *
4469 		 * If a device is returned, its spa's config lock is also
4470 		 * held to prevent device removal.  l2arc_dev_get_next()
4471 		 * will grab and release l2arc_dev_mtx.
4472 		 */
4473 		if ((dev = l2arc_dev_get_next()) == NULL)
4474 			continue;
4475 
4476 		spa = dev->l2ad_spa;
4477 		ASSERT(spa != NULL);
4478 
4479 		/*
4480 		 * Avoid contributing to memory pressure.
4481 		 */
4482 		if (arc_reclaim_needed()) {
4483 			ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
4484 			spa_config_exit(spa, SCL_L2ARC, dev);
4485 			continue;
4486 		}
4487 
4488 		ARCSTAT_BUMP(arcstat_l2_feeds);
4489 
4490 		size = l2arc_write_size(dev);
4491 
4492 		/*
4493 		 * Evict L2ARC buffers that will be overwritten.
4494 		 */
4495 		l2arc_evict(dev, size, B_FALSE);
4496 
4497 		/*
4498 		 * Write ARC buffers.
4499 		 */
4500 		wrote = l2arc_write_buffers(spa, dev, size);
4501 
4502 		/*
4503 		 * Calculate interval between writes.
4504 		 */
4505 		next = l2arc_write_interval(begin, size, wrote);
4506 		spa_config_exit(spa, SCL_L2ARC, dev);
4507 	}
4508 
4509 	l2arc_thread_exit = 0;
4510 	cv_broadcast(&l2arc_feed_thr_cv);
4511 	CALLB_CPR_EXIT(&cpr);		/* drops l2arc_feed_thr_lock */
4512 	thread_exit();
4513 }
4514 
4515 boolean_t
4516 l2arc_vdev_present(vdev_t *vd)
4517 {
4518 	l2arc_dev_t *dev;
4519 
4520 	mutex_enter(&l2arc_dev_mtx);
4521 	for (dev = list_head(l2arc_dev_list); dev != NULL;
4522 	    dev = list_next(l2arc_dev_list, dev)) {
4523 		if (dev->l2ad_vdev == vd)
4524 			break;
4525 	}
4526 	mutex_exit(&l2arc_dev_mtx);
4527 
4528 	return (dev != NULL);
4529 }
4530 
4531 /*
4532  * Add a vdev for use by the L2ARC.  By this point the spa has already
4533  * validated the vdev and opened it.
4534  */
4535 void
4536 l2arc_add_vdev(spa_t *spa, vdev_t *vd)
4537 {
4538 	l2arc_dev_t *adddev;
4539 
4540 	ASSERT(!l2arc_vdev_present(vd));
4541 
4542 	/*
4543 	 * Create a new l2arc device entry.
4544 	 */
4545 	adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
4546 	adddev->l2ad_spa = spa;
4547 	adddev->l2ad_vdev = vd;
4548 	adddev->l2ad_write = l2arc_write_max;
4549 	adddev->l2ad_boost = l2arc_write_boost;
4550 	adddev->l2ad_start = VDEV_LABEL_START_SIZE;
4551 	adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
4552 	adddev->l2ad_hand = adddev->l2ad_start;
4553 	adddev->l2ad_evict = adddev->l2ad_start;
4554 	adddev->l2ad_first = B_TRUE;
4555 	adddev->l2ad_writing = B_FALSE;
4556 	ASSERT3U(adddev->l2ad_write, >, 0);
4557 
4558 	/*
4559 	 * This is a list of all ARC buffers that are still valid on the
4560 	 * device.
4561 	 */
4562 	adddev->l2ad_buflist = kmem_zalloc(sizeof (list_t), KM_SLEEP);
4563 	list_create(adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
4564 	    offsetof(arc_buf_hdr_t, b_l2node));
4565 
4566 	vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
4567 
4568 	/*
4569 	 * Add device to global list
4570 	 */
4571 	mutex_enter(&l2arc_dev_mtx);
4572 	list_insert_head(l2arc_dev_list, adddev);
4573 	atomic_inc_64(&l2arc_ndev);
4574 	mutex_exit(&l2arc_dev_mtx);
4575 }
4576 
4577 /*
4578  * Remove a vdev from the L2ARC.
4579  */
4580 void
4581 l2arc_remove_vdev(vdev_t *vd)
4582 {
4583 	l2arc_dev_t *dev, *nextdev, *remdev = NULL;
4584 
4585 	/*
4586 	 * Find the device by vdev
4587 	 */
4588 	mutex_enter(&l2arc_dev_mtx);
4589 	for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
4590 		nextdev = list_next(l2arc_dev_list, dev);
4591 		if (vd == dev->l2ad_vdev) {
4592 			remdev = dev;
4593 			break;
4594 		}
4595 	}
4596 	ASSERT(remdev != NULL);
4597 
4598 	/*
4599 	 * Remove device from global list
4600 	 */
4601 	list_remove(l2arc_dev_list, remdev);
4602 	l2arc_dev_last = NULL;		/* may have been invalidated */
4603 	atomic_dec_64(&l2arc_ndev);
4604 	mutex_exit(&l2arc_dev_mtx);
4605 
4606 	/*
4607 	 * Clear all buflists and ARC references.  L2ARC device flush.
4608 	 */
4609 	l2arc_evict(remdev, 0, B_TRUE);
4610 	list_destroy(remdev->l2ad_buflist);
4611 	kmem_free(remdev->l2ad_buflist, sizeof (list_t));
4612 	kmem_free(remdev, sizeof (l2arc_dev_t));
4613 }
4614 
4615 void
4616 l2arc_init(void)
4617 {
4618 	l2arc_thread_exit = 0;
4619 	l2arc_ndev = 0;
4620 	l2arc_writes_sent = 0;
4621 	l2arc_writes_done = 0;
4622 
4623 	mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
4624 	cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
4625 	mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
4626 	mutex_init(&l2arc_buflist_mtx, NULL, MUTEX_DEFAULT, NULL);
4627 	mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
4628 
4629 	l2arc_dev_list = &L2ARC_dev_list;
4630 	l2arc_free_on_write = &L2ARC_free_on_write;
4631 	list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
4632 	    offsetof(l2arc_dev_t, l2ad_node));
4633 	list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
4634 	    offsetof(l2arc_data_free_t, l2df_list_node));
4635 }
4636 
4637 void
4638 l2arc_fini(void)
4639 {
4640 	/*
4641 	 * This is called from dmu_fini(), which is called from spa_fini();
4642 	 * Because of this, we can assume that all l2arc devices have
4643 	 * already been removed when the pools themselves were removed.
4644 	 */
4645 
4646 	l2arc_do_free_on_write();
4647 
4648 	mutex_destroy(&l2arc_feed_thr_lock);
4649 	cv_destroy(&l2arc_feed_thr_cv);
4650 	mutex_destroy(&l2arc_dev_mtx);
4651 	mutex_destroy(&l2arc_buflist_mtx);
4652 	mutex_destroy(&l2arc_free_on_write_mtx);
4653 
4654 	list_destroy(l2arc_dev_list);
4655 	list_destroy(l2arc_free_on_write);
4656 }
4657 
4658 void
4659 l2arc_start(void)
4660 {
4661 	if (!(spa_mode_global & FWRITE))
4662 		return;
4663 
4664 	(void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
4665 	    TS_RUN, minclsyspri);
4666 }
4667 
4668 void
4669 l2arc_stop(void)
4670 {
4671 	if (!(spa_mode_global & FWRITE))
4672 		return;
4673 
4674 	mutex_enter(&l2arc_feed_thr_lock);
4675 	cv_signal(&l2arc_feed_thr_cv);	/* kick thread out of startup */
4676 	l2arc_thread_exit = 1;
4677 	while (l2arc_thread_exit != 0)
4678 		cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
4679 	mutex_exit(&l2arc_feed_thr_lock);
4680 }
4681