xref: /titanic_51/usr/src/uts/common/fs/zfs/arc.c (revision 2c20fda2feee4850b7ec4297e4120bc72c2bac09)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * DVA-based Adjustable Replacement Cache
30  *
31  * While much of the theory of operation used here is
32  * based on the self-tuning, low overhead replacement cache
33  * presented by Megiddo and Modha at FAST 2003, there are some
34  * significant differences:
35  *
36  * 1. The Megiddo and Modha model assumes any page is evictable.
37  * Pages in its cache cannot be "locked" into memory.  This makes
38  * the eviction algorithm simple: evict the last page in the list.
39  * This also make the performance characteristics easy to reason
40  * about.  Our cache is not so simple.  At any given moment, some
41  * subset of the blocks in the cache are un-evictable because we
42  * have handed out a reference to them.  Blocks are only evictable
43  * when there are no external references active.  This makes
44  * eviction far more problematic:  we choose to evict the evictable
45  * blocks that are the "lowest" in the list.
46  *
47  * There are times when it is not possible to evict the requested
48  * space.  In these circumstances we are unable to adjust the cache
49  * size.  To prevent the cache growing unbounded at these times we
50  * implement a "cache throttle" that slows the flow of new data
51  * into the cache until we can make space available.
52  *
53  * 2. The Megiddo and Modha model assumes a fixed cache size.
54  * Pages are evicted when the cache is full and there is a cache
55  * miss.  Our model has a variable sized cache.  It grows with
56  * high use, but also tries to react to memory pressure from the
57  * operating system: decreasing its size when system memory is
58  * tight.
59  *
60  * 3. The Megiddo and Modha model assumes a fixed page size. All
61  * elements of the cache are therefor exactly the same size.  So
62  * when adjusting the cache size following a cache miss, its simply
63  * a matter of choosing a single page to evict.  In our model, we
64  * have variable sized cache blocks (rangeing from 512 bytes to
65  * 128K bytes).  We therefor choose a set of blocks to evict to make
66  * space for a cache miss that approximates as closely as possible
67  * the space used by the new block.
68  *
69  * See also:  "ARC: A Self-Tuning, Low Overhead Replacement Cache"
70  * by N. Megiddo & D. Modha, FAST 2003
71  */
72 
73 /*
74  * The locking model:
75  *
76  * A new reference to a cache buffer can be obtained in two
77  * ways: 1) via a hash table lookup using the DVA as a key,
78  * or 2) via one of the ARC lists.  The arc_read() interface
79  * uses method 1, while the internal arc algorithms for
80  * adjusting the cache use method 2.  We therefor provide two
81  * types of locks: 1) the hash table lock array, and 2) the
82  * arc list locks.
83  *
84  * Buffers do not have their own mutexs, rather they rely on the
85  * hash table mutexs for the bulk of their protection (i.e. most
86  * fields in the arc_buf_hdr_t are protected by these mutexs).
87  *
88  * buf_hash_find() returns the appropriate mutex (held) when it
89  * locates the requested buffer in the hash table.  It returns
90  * NULL for the mutex if the buffer was not in the table.
91  *
92  * buf_hash_remove() expects the appropriate hash mutex to be
93  * already held before it is invoked.
94  *
95  * Each arc state also has a mutex which is used to protect the
96  * buffer list associated with the state.  When attempting to
97  * obtain a hash table lock while holding an arc list lock you
98  * must use: mutex_tryenter() to avoid deadlock.  Also note that
99  * the active state mutex must be held before the ghost state mutex.
100  *
101  * Arc buffers may have an associated eviction callback function.
102  * This function will be invoked prior to removing the buffer (e.g.
103  * in arc_do_user_evicts()).  Note however that the data associated
104  * with the buffer may be evicted prior to the callback.  The callback
105  * must be made with *no locks held* (to prevent deadlock).  Additionally,
106  * the users of callbacks must ensure that their private data is
107  * protected from simultaneous callbacks from arc_buf_evict()
108  * and arc_do_user_evicts().
109  *
110  * Note that the majority of the performance stats are manipulated
111  * with atomic operations.
112  *
113  * The L2ARC uses the l2arc_buflist_mtx global mutex for the following:
114  *
115  *	- L2ARC buflist creation
116  *	- L2ARC buflist eviction
117  *	- L2ARC write completion, which walks L2ARC buflists
118  *	- ARC header destruction, as it removes from L2ARC buflists
119  *	- ARC header release, as it removes from L2ARC buflists
120  */
121 
122 #include <sys/spa.h>
123 #include <sys/zio.h>
124 #include <sys/zio_checksum.h>
125 #include <sys/zfs_context.h>
126 #include <sys/arc.h>
127 #include <sys/refcount.h>
128 #include <sys/vdev.h>
129 #ifdef _KERNEL
130 #include <sys/vmsystm.h>
131 #include <vm/anon.h>
132 #include <sys/fs/swapnode.h>
133 #include <sys/dnlc.h>
134 #endif
135 #include <sys/callb.h>
136 #include <sys/kstat.h>
137 
138 static kmutex_t		arc_reclaim_thr_lock;
139 static kcondvar_t	arc_reclaim_thr_cv;	/* used to signal reclaim thr */
140 static uint8_t		arc_thread_exit;
141 
142 extern int zfs_write_limit_shift;
143 extern uint64_t zfs_write_limit_max;
144 extern uint64_t zfs_write_limit_inflated;
145 
146 #define	ARC_REDUCE_DNLC_PERCENT	3
147 uint_t arc_reduce_dnlc_percent = ARC_REDUCE_DNLC_PERCENT;
148 
149 typedef enum arc_reclaim_strategy {
150 	ARC_RECLAIM_AGGR,		/* Aggressive reclaim strategy */
151 	ARC_RECLAIM_CONS		/* Conservative reclaim strategy */
152 } arc_reclaim_strategy_t;
153 
154 /* number of seconds before growing cache again */
155 static int		arc_grow_retry = 60;
156 
157 /*
158  * minimum lifespan of a prefetch block in clock ticks
159  * (initialized in arc_init())
160  */
161 static int		arc_min_prefetch_lifespan;
162 
163 static int arc_dead;
164 
165 /*
166  * The arc has filled available memory and has now warmed up.
167  */
168 static boolean_t arc_warm;
169 
170 /*
171  * These tunables are for performance analysis.
172  */
173 uint64_t zfs_arc_max;
174 uint64_t zfs_arc_min;
175 uint64_t zfs_arc_meta_limit = 0;
176 int zfs_mdcomp_disable = 0;
177 
178 /*
179  * Note that buffers can be in one of 6 states:
180  *	ARC_anon	- anonymous (discussed below)
181  *	ARC_mru		- recently used, currently cached
182  *	ARC_mru_ghost	- recentely used, no longer in cache
183  *	ARC_mfu		- frequently used, currently cached
184  *	ARC_mfu_ghost	- frequently used, no longer in cache
185  *	ARC_l2c_only	- exists in L2ARC but not other states
186  * When there are no active references to the buffer, they are
187  * are linked onto a list in one of these arc states.  These are
188  * the only buffers that can be evicted or deleted.  Within each
189  * state there are multiple lists, one for meta-data and one for
190  * non-meta-data.  Meta-data (indirect blocks, blocks of dnodes,
191  * etc.) is tracked separately so that it can be managed more
192  * explicitly: favored over data, limited explicitly.
193  *
194  * Anonymous buffers are buffers that are not associated with
195  * a DVA.  These are buffers that hold dirty block copies
196  * before they are written to stable storage.  By definition,
197  * they are "ref'd" and are considered part of arc_mru
198  * that cannot be freed.  Generally, they will aquire a DVA
199  * as they are written and migrate onto the arc_mru list.
200  *
201  * The ARC_l2c_only state is for buffers that are in the second
202  * level ARC but no longer in any of the ARC_m* lists.  The second
203  * level ARC itself may also contain buffers that are in any of
204  * the ARC_m* states - meaning that a buffer can exist in two
205  * places.  The reason for the ARC_l2c_only state is to keep the
206  * buffer header in the hash table, so that reads that hit the
207  * second level ARC benefit from these fast lookups.
208  */
209 
210 typedef struct arc_state {
211 	list_t	arcs_list[ARC_BUFC_NUMTYPES];	/* list of evictable buffers */
212 	uint64_t arcs_lsize[ARC_BUFC_NUMTYPES];	/* amount of evictable data */
213 	uint64_t arcs_size;	/* total amount of data in this state */
214 	kmutex_t arcs_mtx;
215 } arc_state_t;
216 
217 /* The 6 states: */
218 static arc_state_t ARC_anon;
219 static arc_state_t ARC_mru;
220 static arc_state_t ARC_mru_ghost;
221 static arc_state_t ARC_mfu;
222 static arc_state_t ARC_mfu_ghost;
223 static arc_state_t ARC_l2c_only;
224 
225 typedef struct arc_stats {
226 	kstat_named_t arcstat_hits;
227 	kstat_named_t arcstat_misses;
228 	kstat_named_t arcstat_demand_data_hits;
229 	kstat_named_t arcstat_demand_data_misses;
230 	kstat_named_t arcstat_demand_metadata_hits;
231 	kstat_named_t arcstat_demand_metadata_misses;
232 	kstat_named_t arcstat_prefetch_data_hits;
233 	kstat_named_t arcstat_prefetch_data_misses;
234 	kstat_named_t arcstat_prefetch_metadata_hits;
235 	kstat_named_t arcstat_prefetch_metadata_misses;
236 	kstat_named_t arcstat_mru_hits;
237 	kstat_named_t arcstat_mru_ghost_hits;
238 	kstat_named_t arcstat_mfu_hits;
239 	kstat_named_t arcstat_mfu_ghost_hits;
240 	kstat_named_t arcstat_deleted;
241 	kstat_named_t arcstat_recycle_miss;
242 	kstat_named_t arcstat_mutex_miss;
243 	kstat_named_t arcstat_evict_skip;
244 	kstat_named_t arcstat_hash_elements;
245 	kstat_named_t arcstat_hash_elements_max;
246 	kstat_named_t arcstat_hash_collisions;
247 	kstat_named_t arcstat_hash_chains;
248 	kstat_named_t arcstat_hash_chain_max;
249 	kstat_named_t arcstat_p;
250 	kstat_named_t arcstat_c;
251 	kstat_named_t arcstat_c_min;
252 	kstat_named_t arcstat_c_max;
253 	kstat_named_t arcstat_size;
254 	kstat_named_t arcstat_hdr_size;
255 	kstat_named_t arcstat_l2_hits;
256 	kstat_named_t arcstat_l2_misses;
257 	kstat_named_t arcstat_l2_feeds;
258 	kstat_named_t arcstat_l2_rw_clash;
259 	kstat_named_t arcstat_l2_writes_sent;
260 	kstat_named_t arcstat_l2_writes_done;
261 	kstat_named_t arcstat_l2_writes_error;
262 	kstat_named_t arcstat_l2_writes_hdr_miss;
263 	kstat_named_t arcstat_l2_evict_lock_retry;
264 	kstat_named_t arcstat_l2_evict_reading;
265 	kstat_named_t arcstat_l2_free_on_write;
266 	kstat_named_t arcstat_l2_abort_lowmem;
267 	kstat_named_t arcstat_l2_cksum_bad;
268 	kstat_named_t arcstat_l2_io_error;
269 	kstat_named_t arcstat_l2_size;
270 	kstat_named_t arcstat_l2_hdr_size;
271 	kstat_named_t arcstat_memory_throttle_count;
272 } arc_stats_t;
273 
274 static arc_stats_t arc_stats = {
275 	{ "hits",			KSTAT_DATA_UINT64 },
276 	{ "misses",			KSTAT_DATA_UINT64 },
277 	{ "demand_data_hits",		KSTAT_DATA_UINT64 },
278 	{ "demand_data_misses",		KSTAT_DATA_UINT64 },
279 	{ "demand_metadata_hits",	KSTAT_DATA_UINT64 },
280 	{ "demand_metadata_misses",	KSTAT_DATA_UINT64 },
281 	{ "prefetch_data_hits",		KSTAT_DATA_UINT64 },
282 	{ "prefetch_data_misses",	KSTAT_DATA_UINT64 },
283 	{ "prefetch_metadata_hits",	KSTAT_DATA_UINT64 },
284 	{ "prefetch_metadata_misses",	KSTAT_DATA_UINT64 },
285 	{ "mru_hits",			KSTAT_DATA_UINT64 },
286 	{ "mru_ghost_hits",		KSTAT_DATA_UINT64 },
287 	{ "mfu_hits",			KSTAT_DATA_UINT64 },
288 	{ "mfu_ghost_hits",		KSTAT_DATA_UINT64 },
289 	{ "deleted",			KSTAT_DATA_UINT64 },
290 	{ "recycle_miss",		KSTAT_DATA_UINT64 },
291 	{ "mutex_miss",			KSTAT_DATA_UINT64 },
292 	{ "evict_skip",			KSTAT_DATA_UINT64 },
293 	{ "hash_elements",		KSTAT_DATA_UINT64 },
294 	{ "hash_elements_max",		KSTAT_DATA_UINT64 },
295 	{ "hash_collisions",		KSTAT_DATA_UINT64 },
296 	{ "hash_chains",		KSTAT_DATA_UINT64 },
297 	{ "hash_chain_max",		KSTAT_DATA_UINT64 },
298 	{ "p",				KSTAT_DATA_UINT64 },
299 	{ "c",				KSTAT_DATA_UINT64 },
300 	{ "c_min",			KSTAT_DATA_UINT64 },
301 	{ "c_max",			KSTAT_DATA_UINT64 },
302 	{ "size",			KSTAT_DATA_UINT64 },
303 	{ "hdr_size",			KSTAT_DATA_UINT64 },
304 	{ "l2_hits",			KSTAT_DATA_UINT64 },
305 	{ "l2_misses",			KSTAT_DATA_UINT64 },
306 	{ "l2_feeds",			KSTAT_DATA_UINT64 },
307 	{ "l2_rw_clash",		KSTAT_DATA_UINT64 },
308 	{ "l2_writes_sent",		KSTAT_DATA_UINT64 },
309 	{ "l2_writes_done",		KSTAT_DATA_UINT64 },
310 	{ "l2_writes_error",		KSTAT_DATA_UINT64 },
311 	{ "l2_writes_hdr_miss",		KSTAT_DATA_UINT64 },
312 	{ "l2_evict_lock_retry",	KSTAT_DATA_UINT64 },
313 	{ "l2_evict_reading",		KSTAT_DATA_UINT64 },
314 	{ "l2_free_on_write",		KSTAT_DATA_UINT64 },
315 	{ "l2_abort_lowmem",		KSTAT_DATA_UINT64 },
316 	{ "l2_cksum_bad",		KSTAT_DATA_UINT64 },
317 	{ "l2_io_error",		KSTAT_DATA_UINT64 },
318 	{ "l2_size",			KSTAT_DATA_UINT64 },
319 	{ "l2_hdr_size",		KSTAT_DATA_UINT64 },
320 	{ "memory_throttle_count",	KSTAT_DATA_UINT64 }
321 };
322 
323 #define	ARCSTAT(stat)	(arc_stats.stat.value.ui64)
324 
325 #define	ARCSTAT_INCR(stat, val) \
326 	atomic_add_64(&arc_stats.stat.value.ui64, (val));
327 
328 #define	ARCSTAT_BUMP(stat) 	ARCSTAT_INCR(stat, 1)
329 #define	ARCSTAT_BUMPDOWN(stat)	ARCSTAT_INCR(stat, -1)
330 
331 #define	ARCSTAT_MAX(stat, val) {					\
332 	uint64_t m;							\
333 	while ((val) > (m = arc_stats.stat.value.ui64) &&		\
334 	    (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val))))	\
335 		continue;						\
336 }
337 
338 #define	ARCSTAT_MAXSTAT(stat) \
339 	ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
340 
341 /*
342  * We define a macro to allow ARC hits/misses to be easily broken down by
343  * two separate conditions, giving a total of four different subtypes for
344  * each of hits and misses (so eight statistics total).
345  */
346 #define	ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
347 	if (cond1) {							\
348 		if (cond2) {						\
349 			ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
350 		} else {						\
351 			ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
352 		}							\
353 	} else {							\
354 		if (cond2) {						\
355 			ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
356 		} else {						\
357 			ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
358 		}							\
359 	}
360 
361 kstat_t			*arc_ksp;
362 static arc_state_t 	*arc_anon;
363 static arc_state_t	*arc_mru;
364 static arc_state_t	*arc_mru_ghost;
365 static arc_state_t	*arc_mfu;
366 static arc_state_t	*arc_mfu_ghost;
367 static arc_state_t	*arc_l2c_only;
368 
369 /*
370  * There are several ARC variables that are critical to export as kstats --
371  * but we don't want to have to grovel around in the kstat whenever we wish to
372  * manipulate them.  For these variables, we therefore define them to be in
373  * terms of the statistic variable.  This assures that we are not introducing
374  * the possibility of inconsistency by having shadow copies of the variables,
375  * while still allowing the code to be readable.
376  */
377 #define	arc_size	ARCSTAT(arcstat_size)	/* actual total arc size */
378 #define	arc_p		ARCSTAT(arcstat_p)	/* target size of MRU */
379 #define	arc_c		ARCSTAT(arcstat_c)	/* target size of cache */
380 #define	arc_c_min	ARCSTAT(arcstat_c_min)	/* min target cache size */
381 #define	arc_c_max	ARCSTAT(arcstat_c_max)	/* max target cache size */
382 
383 static int		arc_no_grow;	/* Don't try to grow cache size */
384 static uint64_t		arc_tempreserve;
385 static uint64_t		arc_meta_used;
386 static uint64_t		arc_meta_limit;
387 static uint64_t		arc_meta_max = 0;
388 
389 typedef struct l2arc_buf_hdr l2arc_buf_hdr_t;
390 
391 typedef struct arc_callback arc_callback_t;
392 
393 struct arc_callback {
394 	void			*acb_private;
395 	arc_done_func_t		*acb_done;
396 	arc_buf_t		*acb_buf;
397 	zio_t			*acb_zio_dummy;
398 	arc_callback_t		*acb_next;
399 };
400 
401 typedef struct arc_write_callback arc_write_callback_t;
402 
403 struct arc_write_callback {
404 	void		*awcb_private;
405 	arc_done_func_t	*awcb_ready;
406 	arc_done_func_t	*awcb_done;
407 	arc_buf_t	*awcb_buf;
408 };
409 
410 struct arc_buf_hdr {
411 	/* protected by hash lock */
412 	dva_t			b_dva;
413 	uint64_t		b_birth;
414 	uint64_t		b_cksum0;
415 
416 	kmutex_t		b_freeze_lock;
417 	zio_cksum_t		*b_freeze_cksum;
418 
419 	arc_buf_hdr_t		*b_hash_next;
420 	arc_buf_t		*b_buf;
421 	uint32_t		b_flags;
422 	uint32_t		b_datacnt;
423 
424 	arc_callback_t		*b_acb;
425 	kcondvar_t		b_cv;
426 
427 	/* immutable */
428 	arc_buf_contents_t	b_type;
429 	uint64_t		b_size;
430 	spa_t			*b_spa;
431 
432 	/* protected by arc state mutex */
433 	arc_state_t		*b_state;
434 	list_node_t		b_arc_node;
435 
436 	/* updated atomically */
437 	clock_t			b_arc_access;
438 
439 	/* self protecting */
440 	refcount_t		b_refcnt;
441 
442 	l2arc_buf_hdr_t		*b_l2hdr;
443 	list_node_t		b_l2node;
444 	/*
445 	 * scrub code can lockout access to the buf while it changes
446 	 * bp's contained within it.
447 	 */
448 	krwlock_t		b_datalock;
449 };
450 
451 static arc_buf_t *arc_eviction_list;
452 static kmutex_t arc_eviction_mtx;
453 static arc_buf_hdr_t arc_eviction_hdr;
454 static void arc_get_data_buf(arc_buf_t *buf);
455 static void arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock);
456 static int arc_evict_needed(arc_buf_contents_t type);
457 static void arc_evict_ghost(arc_state_t *state, spa_t *spa, int64_t bytes);
458 
459 #define	GHOST_STATE(state)	\
460 	((state) == arc_mru_ghost || (state) == arc_mfu_ghost ||	\
461 	(state) == arc_l2c_only)
462 
463 /*
464  * Private ARC flags.  These flags are private ARC only flags that will show up
465  * in b_flags in the arc_hdr_buf_t.  Some flags are publicly declared, and can
466  * be passed in as arc_flags in things like arc_read.  However, these flags
467  * should never be passed and should only be set by ARC code.  When adding new
468  * public flags, make sure not to smash the private ones.
469  */
470 
471 #define	ARC_IN_HASH_TABLE	(1 << 9)	/* this buffer is hashed */
472 #define	ARC_IO_IN_PROGRESS	(1 << 10)	/* I/O in progress for buf */
473 #define	ARC_IO_ERROR		(1 << 11)	/* I/O failed for buf */
474 #define	ARC_FREED_IN_READ	(1 << 12)	/* buf freed while in read */
475 #define	ARC_BUF_AVAILABLE	(1 << 13)	/* block not in active use */
476 #define	ARC_INDIRECT		(1 << 14)	/* this is an indirect block */
477 #define	ARC_FREE_IN_PROGRESS	(1 << 15)	/* hdr about to be freed */
478 #define	ARC_L2_WRITING		(1 << 16)	/* L2ARC write in progress */
479 #define	ARC_L2_EVICTED		(1 << 17)	/* evicted during I/O */
480 #define	ARC_L2_WRITE_HEAD	(1 << 18)	/* head of write list */
481 #define	ARC_STORED		(1 << 19)	/* has been store()d to */
482 
483 #define	HDR_IN_HASH_TABLE(hdr)	((hdr)->b_flags & ARC_IN_HASH_TABLE)
484 #define	HDR_IO_IN_PROGRESS(hdr)	((hdr)->b_flags & ARC_IO_IN_PROGRESS)
485 #define	HDR_IO_ERROR(hdr)	((hdr)->b_flags & ARC_IO_ERROR)
486 #define	HDR_FREED_IN_READ(hdr)	((hdr)->b_flags & ARC_FREED_IN_READ)
487 #define	HDR_BUF_AVAILABLE(hdr)	((hdr)->b_flags & ARC_BUF_AVAILABLE)
488 #define	HDR_FREE_IN_PROGRESS(hdr)	((hdr)->b_flags & ARC_FREE_IN_PROGRESS)
489 #define	HDR_L2CACHE(hdr)	((hdr)->b_flags & ARC_L2CACHE)
490 #define	HDR_L2_READING(hdr)	((hdr)->b_flags & ARC_IO_IN_PROGRESS &&	\
491 				    (hdr)->b_l2hdr != NULL)
492 #define	HDR_L2_WRITING(hdr)	((hdr)->b_flags & ARC_L2_WRITING)
493 #define	HDR_L2_EVICTED(hdr)	((hdr)->b_flags & ARC_L2_EVICTED)
494 #define	HDR_L2_WRITE_HEAD(hdr)	((hdr)->b_flags & ARC_L2_WRITE_HEAD)
495 
496 /*
497  * Other sizes
498  */
499 
500 #define	HDR_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
501 #define	L2HDR_SIZE ((int64_t)sizeof (l2arc_buf_hdr_t))
502 
503 /*
504  * Hash table routines
505  */
506 
507 #define	HT_LOCK_PAD	64
508 
509 struct ht_lock {
510 	kmutex_t	ht_lock;
511 #ifdef _KERNEL
512 	unsigned char	pad[(HT_LOCK_PAD - sizeof (kmutex_t))];
513 #endif
514 };
515 
516 #define	BUF_LOCKS 256
517 typedef struct buf_hash_table {
518 	uint64_t ht_mask;
519 	arc_buf_hdr_t **ht_table;
520 	struct ht_lock ht_locks[BUF_LOCKS];
521 } buf_hash_table_t;
522 
523 static buf_hash_table_t buf_hash_table;
524 
525 #define	BUF_HASH_INDEX(spa, dva, birth) \
526 	(buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
527 #define	BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
528 #define	BUF_HASH_LOCK(idx)	(&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
529 #define	HDR_LOCK(buf) \
530 	(BUF_HASH_LOCK(BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth)))
531 
532 uint64_t zfs_crc64_table[256];
533 
534 /*
535  * Level 2 ARC
536  */
537 
538 #define	L2ARC_WRITE_SIZE	(8 * 1024 * 1024)	/* initial write max */
539 #define	L2ARC_HEADROOM		4		/* num of writes */
540 #define	L2ARC_FEED_SECS		1		/* caching interval */
541 
542 #define	l2arc_writes_sent	ARCSTAT(arcstat_l2_writes_sent)
543 #define	l2arc_writes_done	ARCSTAT(arcstat_l2_writes_done)
544 
545 /*
546  * L2ARC Performance Tunables
547  */
548 uint64_t l2arc_write_max = L2ARC_WRITE_SIZE;	/* default max write size */
549 uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE;	/* extra write during warmup */
550 uint64_t l2arc_headroom = L2ARC_HEADROOM;	/* number of dev writes */
551 uint64_t l2arc_feed_secs = L2ARC_FEED_SECS;	/* interval seconds */
552 boolean_t l2arc_noprefetch = B_TRUE;		/* don't cache prefetch bufs */
553 
554 /*
555  * L2ARC Internals
556  */
557 typedef struct l2arc_dev {
558 	vdev_t			*l2ad_vdev;	/* vdev */
559 	spa_t			*l2ad_spa;	/* spa */
560 	uint64_t		l2ad_hand;	/* next write location */
561 	uint64_t		l2ad_write;	/* desired write size, bytes */
562 	uint64_t		l2ad_boost;	/* warmup write boost, bytes */
563 	uint64_t		l2ad_start;	/* first addr on device */
564 	uint64_t		l2ad_end;	/* last addr on device */
565 	uint64_t		l2ad_evict;	/* last addr eviction reached */
566 	boolean_t		l2ad_first;	/* first sweep through */
567 	list_t			*l2ad_buflist;	/* buffer list */
568 	list_node_t		l2ad_node;	/* device list node */
569 } l2arc_dev_t;
570 
571 static list_t L2ARC_dev_list;			/* device list */
572 static list_t *l2arc_dev_list;			/* device list pointer */
573 static kmutex_t l2arc_dev_mtx;			/* device list mutex */
574 static l2arc_dev_t *l2arc_dev_last;		/* last device used */
575 static kmutex_t l2arc_buflist_mtx;		/* mutex for all buflists */
576 static list_t L2ARC_free_on_write;		/* free after write buf list */
577 static list_t *l2arc_free_on_write;		/* free after write list ptr */
578 static kmutex_t l2arc_free_on_write_mtx;	/* mutex for list */
579 static uint64_t l2arc_ndev;			/* number of devices */
580 
581 typedef struct l2arc_read_callback {
582 	arc_buf_t	*l2rcb_buf;		/* read buffer */
583 	spa_t		*l2rcb_spa;		/* spa */
584 	blkptr_t	l2rcb_bp;		/* original blkptr */
585 	zbookmark_t	l2rcb_zb;		/* original bookmark */
586 	int		l2rcb_flags;		/* original flags */
587 } l2arc_read_callback_t;
588 
589 typedef struct l2arc_write_callback {
590 	l2arc_dev_t	*l2wcb_dev;		/* device info */
591 	arc_buf_hdr_t	*l2wcb_head;		/* head of write buflist */
592 } l2arc_write_callback_t;
593 
594 struct l2arc_buf_hdr {
595 	/* protected by arc_buf_hdr  mutex */
596 	l2arc_dev_t	*b_dev;			/* L2ARC device */
597 	daddr_t		b_daddr;		/* disk address, offset byte */
598 };
599 
600 typedef struct l2arc_data_free {
601 	/* protected by l2arc_free_on_write_mtx */
602 	void		*l2df_data;
603 	size_t		l2df_size;
604 	void		(*l2df_func)(void *, size_t);
605 	list_node_t	l2df_list_node;
606 } l2arc_data_free_t;
607 
608 static kmutex_t l2arc_feed_thr_lock;
609 static kcondvar_t l2arc_feed_thr_cv;
610 static uint8_t l2arc_thread_exit;
611 
612 static void l2arc_read_done(zio_t *zio);
613 static void l2arc_hdr_stat_add(void);
614 static void l2arc_hdr_stat_remove(void);
615 
616 static uint64_t
617 buf_hash(spa_t *spa, const dva_t *dva, uint64_t birth)
618 {
619 	uintptr_t spav = (uintptr_t)spa;
620 	uint8_t *vdva = (uint8_t *)dva;
621 	uint64_t crc = -1ULL;
622 	int i;
623 
624 	ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
625 
626 	for (i = 0; i < sizeof (dva_t); i++)
627 		crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF];
628 
629 	crc ^= (spav>>8) ^ birth;
630 
631 	return (crc);
632 }
633 
634 #define	BUF_EMPTY(buf)						\
635 	((buf)->b_dva.dva_word[0] == 0 &&			\
636 	(buf)->b_dva.dva_word[1] == 0 &&			\
637 	(buf)->b_birth == 0)
638 
639 #define	BUF_EQUAL(spa, dva, birth, buf)				\
640 	((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) &&	\
641 	((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) &&	\
642 	((buf)->b_birth == birth) && ((buf)->b_spa == spa)
643 
644 static arc_buf_hdr_t *
645 buf_hash_find(spa_t *spa, const dva_t *dva, uint64_t birth, kmutex_t **lockp)
646 {
647 	uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
648 	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
649 	arc_buf_hdr_t *buf;
650 
651 	mutex_enter(hash_lock);
652 	for (buf = buf_hash_table.ht_table[idx]; buf != NULL;
653 	    buf = buf->b_hash_next) {
654 		if (BUF_EQUAL(spa, dva, birth, buf)) {
655 			*lockp = hash_lock;
656 			return (buf);
657 		}
658 	}
659 	mutex_exit(hash_lock);
660 	*lockp = NULL;
661 	return (NULL);
662 }
663 
664 /*
665  * Insert an entry into the hash table.  If there is already an element
666  * equal to elem in the hash table, then the already existing element
667  * will be returned and the new element will not be inserted.
668  * Otherwise returns NULL.
669  */
670 static arc_buf_hdr_t *
671 buf_hash_insert(arc_buf_hdr_t *buf, kmutex_t **lockp)
672 {
673 	uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
674 	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
675 	arc_buf_hdr_t *fbuf;
676 	uint32_t i;
677 
678 	ASSERT(!HDR_IN_HASH_TABLE(buf));
679 	*lockp = hash_lock;
680 	mutex_enter(hash_lock);
681 	for (fbuf = buf_hash_table.ht_table[idx], i = 0; fbuf != NULL;
682 	    fbuf = fbuf->b_hash_next, i++) {
683 		if (BUF_EQUAL(buf->b_spa, &buf->b_dva, buf->b_birth, fbuf))
684 			return (fbuf);
685 	}
686 
687 	buf->b_hash_next = buf_hash_table.ht_table[idx];
688 	buf_hash_table.ht_table[idx] = buf;
689 	buf->b_flags |= ARC_IN_HASH_TABLE;
690 
691 	/* collect some hash table performance data */
692 	if (i > 0) {
693 		ARCSTAT_BUMP(arcstat_hash_collisions);
694 		if (i == 1)
695 			ARCSTAT_BUMP(arcstat_hash_chains);
696 
697 		ARCSTAT_MAX(arcstat_hash_chain_max, i);
698 	}
699 
700 	ARCSTAT_BUMP(arcstat_hash_elements);
701 	ARCSTAT_MAXSTAT(arcstat_hash_elements);
702 
703 	return (NULL);
704 }
705 
706 static void
707 buf_hash_remove(arc_buf_hdr_t *buf)
708 {
709 	arc_buf_hdr_t *fbuf, **bufp;
710 	uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
711 
712 	ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
713 	ASSERT(HDR_IN_HASH_TABLE(buf));
714 
715 	bufp = &buf_hash_table.ht_table[idx];
716 	while ((fbuf = *bufp) != buf) {
717 		ASSERT(fbuf != NULL);
718 		bufp = &fbuf->b_hash_next;
719 	}
720 	*bufp = buf->b_hash_next;
721 	buf->b_hash_next = NULL;
722 	buf->b_flags &= ~ARC_IN_HASH_TABLE;
723 
724 	/* collect some hash table performance data */
725 	ARCSTAT_BUMPDOWN(arcstat_hash_elements);
726 
727 	if (buf_hash_table.ht_table[idx] &&
728 	    buf_hash_table.ht_table[idx]->b_hash_next == NULL)
729 		ARCSTAT_BUMPDOWN(arcstat_hash_chains);
730 }
731 
732 /*
733  * Global data structures and functions for the buf kmem cache.
734  */
735 static kmem_cache_t *hdr_cache;
736 static kmem_cache_t *buf_cache;
737 
738 static void
739 buf_fini(void)
740 {
741 	int i;
742 
743 	kmem_free(buf_hash_table.ht_table,
744 	    (buf_hash_table.ht_mask + 1) * sizeof (void *));
745 	for (i = 0; i < BUF_LOCKS; i++)
746 		mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
747 	kmem_cache_destroy(hdr_cache);
748 	kmem_cache_destroy(buf_cache);
749 }
750 
751 /*
752  * Constructor callback - called when the cache is empty
753  * and a new buf is requested.
754  */
755 /* ARGSUSED */
756 static int
757 hdr_cons(void *vbuf, void *unused, int kmflag)
758 {
759 	arc_buf_hdr_t *buf = vbuf;
760 
761 	bzero(buf, sizeof (arc_buf_hdr_t));
762 	refcount_create(&buf->b_refcnt);
763 	cv_init(&buf->b_cv, NULL, CV_DEFAULT, NULL);
764 	mutex_init(&buf->b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
765 	rw_init(&buf->b_datalock, NULL, RW_DEFAULT, NULL);
766 
767 	ARCSTAT_INCR(arcstat_hdr_size, HDR_SIZE);
768 	return (0);
769 }
770 
771 /*
772  * Destructor callback - called when a cached buf is
773  * no longer required.
774  */
775 /* ARGSUSED */
776 static void
777 hdr_dest(void *vbuf, void *unused)
778 {
779 	arc_buf_hdr_t *buf = vbuf;
780 
781 	refcount_destroy(&buf->b_refcnt);
782 	cv_destroy(&buf->b_cv);
783 	mutex_destroy(&buf->b_freeze_lock);
784 	rw_destroy(&buf->b_datalock);
785 
786 	ARCSTAT_INCR(arcstat_hdr_size, -HDR_SIZE);
787 }
788 
789 /*
790  * Reclaim callback -- invoked when memory is low.
791  */
792 /* ARGSUSED */
793 static void
794 hdr_recl(void *unused)
795 {
796 	dprintf("hdr_recl called\n");
797 	/*
798 	 * umem calls the reclaim func when we destroy the buf cache,
799 	 * which is after we do arc_fini().
800 	 */
801 	if (!arc_dead)
802 		cv_signal(&arc_reclaim_thr_cv);
803 }
804 
805 static void
806 buf_init(void)
807 {
808 	uint64_t *ct;
809 	uint64_t hsize = 1ULL << 12;
810 	int i, j;
811 
812 	/*
813 	 * The hash table is big enough to fill all of physical memory
814 	 * with an average 64K block size.  The table will take up
815 	 * totalmem*sizeof(void*)/64K (eg. 128KB/GB with 8-byte pointers).
816 	 */
817 	while (hsize * 65536 < physmem * PAGESIZE)
818 		hsize <<= 1;
819 retry:
820 	buf_hash_table.ht_mask = hsize - 1;
821 	buf_hash_table.ht_table =
822 	    kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
823 	if (buf_hash_table.ht_table == NULL) {
824 		ASSERT(hsize > (1ULL << 8));
825 		hsize >>= 1;
826 		goto retry;
827 	}
828 
829 	hdr_cache = kmem_cache_create("arc_buf_hdr_t", sizeof (arc_buf_hdr_t),
830 	    0, hdr_cons, hdr_dest, hdr_recl, NULL, NULL, 0);
831 	buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
832 	    0, NULL, NULL, NULL, NULL, NULL, 0);
833 
834 	for (i = 0; i < 256; i++)
835 		for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
836 			*ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
837 
838 	for (i = 0; i < BUF_LOCKS; i++) {
839 		mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
840 		    NULL, MUTEX_DEFAULT, NULL);
841 	}
842 }
843 
844 #define	ARC_MINTIME	(hz>>4) /* 62 ms */
845 
846 static void
847 arc_cksum_verify(arc_buf_t *buf)
848 {
849 	zio_cksum_t zc;
850 
851 	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
852 		return;
853 
854 	mutex_enter(&buf->b_hdr->b_freeze_lock);
855 	if (buf->b_hdr->b_freeze_cksum == NULL ||
856 	    (buf->b_hdr->b_flags & ARC_IO_ERROR)) {
857 		mutex_exit(&buf->b_hdr->b_freeze_lock);
858 		return;
859 	}
860 	fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
861 	if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc))
862 		panic("buffer modified while frozen!");
863 	mutex_exit(&buf->b_hdr->b_freeze_lock);
864 }
865 
866 static int
867 arc_cksum_equal(arc_buf_t *buf)
868 {
869 	zio_cksum_t zc;
870 	int equal;
871 
872 	mutex_enter(&buf->b_hdr->b_freeze_lock);
873 	fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
874 	equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc);
875 	mutex_exit(&buf->b_hdr->b_freeze_lock);
876 
877 	return (equal);
878 }
879 
880 static void
881 arc_cksum_compute(arc_buf_t *buf, boolean_t force)
882 {
883 	if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY))
884 		return;
885 
886 	mutex_enter(&buf->b_hdr->b_freeze_lock);
887 	if (buf->b_hdr->b_freeze_cksum != NULL) {
888 		mutex_exit(&buf->b_hdr->b_freeze_lock);
889 		return;
890 	}
891 	buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP);
892 	fletcher_2_native(buf->b_data, buf->b_hdr->b_size,
893 	    buf->b_hdr->b_freeze_cksum);
894 	mutex_exit(&buf->b_hdr->b_freeze_lock);
895 }
896 
897 void
898 arc_buf_thaw(arc_buf_t *buf)
899 {
900 	if (zfs_flags & ZFS_DEBUG_MODIFY) {
901 		if (buf->b_hdr->b_state != arc_anon)
902 			panic("modifying non-anon buffer!");
903 		if (buf->b_hdr->b_flags & ARC_IO_IN_PROGRESS)
904 			panic("modifying buffer while i/o in progress!");
905 		arc_cksum_verify(buf);
906 	}
907 
908 	mutex_enter(&buf->b_hdr->b_freeze_lock);
909 	if (buf->b_hdr->b_freeze_cksum != NULL) {
910 		kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t));
911 		buf->b_hdr->b_freeze_cksum = NULL;
912 	}
913 	mutex_exit(&buf->b_hdr->b_freeze_lock);
914 }
915 
916 void
917 arc_buf_freeze(arc_buf_t *buf)
918 {
919 	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
920 		return;
921 
922 	ASSERT(buf->b_hdr->b_freeze_cksum != NULL ||
923 	    buf->b_hdr->b_state == arc_anon);
924 	arc_cksum_compute(buf, B_FALSE);
925 }
926 
927 static void
928 add_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
929 {
930 	ASSERT(MUTEX_HELD(hash_lock));
931 
932 	if ((refcount_add(&ab->b_refcnt, tag) == 1) &&
933 	    (ab->b_state != arc_anon)) {
934 		uint64_t delta = ab->b_size * ab->b_datacnt;
935 		list_t *list = &ab->b_state->arcs_list[ab->b_type];
936 		uint64_t *size = &ab->b_state->arcs_lsize[ab->b_type];
937 
938 		ASSERT(!MUTEX_HELD(&ab->b_state->arcs_mtx));
939 		mutex_enter(&ab->b_state->arcs_mtx);
940 		ASSERT(list_link_active(&ab->b_arc_node));
941 		list_remove(list, ab);
942 		if (GHOST_STATE(ab->b_state)) {
943 			ASSERT3U(ab->b_datacnt, ==, 0);
944 			ASSERT3P(ab->b_buf, ==, NULL);
945 			delta = ab->b_size;
946 		}
947 		ASSERT(delta > 0);
948 		ASSERT3U(*size, >=, delta);
949 		atomic_add_64(size, -delta);
950 		mutex_exit(&ab->b_state->arcs_mtx);
951 		/* remove the prefetch flag if we get a reference */
952 		if (ab->b_flags & ARC_PREFETCH)
953 			ab->b_flags &= ~ARC_PREFETCH;
954 	}
955 }
956 
957 static int
958 remove_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
959 {
960 	int cnt;
961 	arc_state_t *state = ab->b_state;
962 
963 	ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
964 	ASSERT(!GHOST_STATE(state));
965 
966 	if (((cnt = refcount_remove(&ab->b_refcnt, tag)) == 0) &&
967 	    (state != arc_anon)) {
968 		uint64_t *size = &state->arcs_lsize[ab->b_type];
969 
970 		ASSERT(!MUTEX_HELD(&state->arcs_mtx));
971 		mutex_enter(&state->arcs_mtx);
972 		ASSERT(!list_link_active(&ab->b_arc_node));
973 		list_insert_head(&state->arcs_list[ab->b_type], ab);
974 		ASSERT(ab->b_datacnt > 0);
975 		atomic_add_64(size, ab->b_size * ab->b_datacnt);
976 		mutex_exit(&state->arcs_mtx);
977 	}
978 	return (cnt);
979 }
980 
981 /*
982  * Move the supplied buffer to the indicated state.  The mutex
983  * for the buffer must be held by the caller.
984  */
985 static void
986 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *ab, kmutex_t *hash_lock)
987 {
988 	arc_state_t *old_state = ab->b_state;
989 	int64_t refcnt = refcount_count(&ab->b_refcnt);
990 	uint64_t from_delta, to_delta;
991 
992 	ASSERT(MUTEX_HELD(hash_lock));
993 	ASSERT(new_state != old_state);
994 	ASSERT(refcnt == 0 || ab->b_datacnt > 0);
995 	ASSERT(ab->b_datacnt == 0 || !GHOST_STATE(new_state));
996 
997 	from_delta = to_delta = ab->b_datacnt * ab->b_size;
998 
999 	/*
1000 	 * If this buffer is evictable, transfer it from the
1001 	 * old state list to the new state list.
1002 	 */
1003 	if (refcnt == 0) {
1004 		if (old_state != arc_anon) {
1005 			int use_mutex = !MUTEX_HELD(&old_state->arcs_mtx);
1006 			uint64_t *size = &old_state->arcs_lsize[ab->b_type];
1007 
1008 			if (use_mutex)
1009 				mutex_enter(&old_state->arcs_mtx);
1010 
1011 			ASSERT(list_link_active(&ab->b_arc_node));
1012 			list_remove(&old_state->arcs_list[ab->b_type], ab);
1013 
1014 			/*
1015 			 * If prefetching out of the ghost cache,
1016 			 * we will have a non-null datacnt.
1017 			 */
1018 			if (GHOST_STATE(old_state) && ab->b_datacnt == 0) {
1019 				/* ghost elements have a ghost size */
1020 				ASSERT(ab->b_buf == NULL);
1021 				from_delta = ab->b_size;
1022 			}
1023 			ASSERT3U(*size, >=, from_delta);
1024 			atomic_add_64(size, -from_delta);
1025 
1026 			if (use_mutex)
1027 				mutex_exit(&old_state->arcs_mtx);
1028 		}
1029 		if (new_state != arc_anon) {
1030 			int use_mutex = !MUTEX_HELD(&new_state->arcs_mtx);
1031 			uint64_t *size = &new_state->arcs_lsize[ab->b_type];
1032 
1033 			if (use_mutex)
1034 				mutex_enter(&new_state->arcs_mtx);
1035 
1036 			list_insert_head(&new_state->arcs_list[ab->b_type], ab);
1037 
1038 			/* ghost elements have a ghost size */
1039 			if (GHOST_STATE(new_state)) {
1040 				ASSERT(ab->b_datacnt == 0);
1041 				ASSERT(ab->b_buf == NULL);
1042 				to_delta = ab->b_size;
1043 			}
1044 			atomic_add_64(size, to_delta);
1045 
1046 			if (use_mutex)
1047 				mutex_exit(&new_state->arcs_mtx);
1048 		}
1049 	}
1050 
1051 	ASSERT(!BUF_EMPTY(ab));
1052 	if (new_state == arc_anon) {
1053 		buf_hash_remove(ab);
1054 	}
1055 
1056 	/* adjust state sizes */
1057 	if (to_delta)
1058 		atomic_add_64(&new_state->arcs_size, to_delta);
1059 	if (from_delta) {
1060 		ASSERT3U(old_state->arcs_size, >=, from_delta);
1061 		atomic_add_64(&old_state->arcs_size, -from_delta);
1062 	}
1063 	ab->b_state = new_state;
1064 
1065 	/* adjust l2arc hdr stats */
1066 	if (new_state == arc_l2c_only)
1067 		l2arc_hdr_stat_add();
1068 	else if (old_state == arc_l2c_only)
1069 		l2arc_hdr_stat_remove();
1070 }
1071 
1072 void
1073 arc_space_consume(uint64_t space)
1074 {
1075 	atomic_add_64(&arc_meta_used, space);
1076 	atomic_add_64(&arc_size, space);
1077 }
1078 
1079 void
1080 arc_space_return(uint64_t space)
1081 {
1082 	ASSERT(arc_meta_used >= space);
1083 	if (arc_meta_max < arc_meta_used)
1084 		arc_meta_max = arc_meta_used;
1085 	atomic_add_64(&arc_meta_used, -space);
1086 	ASSERT(arc_size >= space);
1087 	atomic_add_64(&arc_size, -space);
1088 }
1089 
1090 void *
1091 arc_data_buf_alloc(uint64_t size)
1092 {
1093 	if (arc_evict_needed(ARC_BUFC_DATA))
1094 		cv_signal(&arc_reclaim_thr_cv);
1095 	atomic_add_64(&arc_size, size);
1096 	return (zio_data_buf_alloc(size));
1097 }
1098 
1099 void
1100 arc_data_buf_free(void *buf, uint64_t size)
1101 {
1102 	zio_data_buf_free(buf, size);
1103 	ASSERT(arc_size >= size);
1104 	atomic_add_64(&arc_size, -size);
1105 }
1106 
1107 arc_buf_t *
1108 arc_buf_alloc(spa_t *spa, int size, void *tag, arc_buf_contents_t type)
1109 {
1110 	arc_buf_hdr_t *hdr;
1111 	arc_buf_t *buf;
1112 
1113 	ASSERT3U(size, >, 0);
1114 	hdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
1115 	ASSERT(BUF_EMPTY(hdr));
1116 	hdr->b_size = size;
1117 	hdr->b_type = type;
1118 	hdr->b_spa = spa;
1119 	hdr->b_state = arc_anon;
1120 	hdr->b_arc_access = 0;
1121 	buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1122 	buf->b_hdr = hdr;
1123 	buf->b_data = NULL;
1124 	buf->b_efunc = NULL;
1125 	buf->b_private = NULL;
1126 	buf->b_next = NULL;
1127 	hdr->b_buf = buf;
1128 	arc_get_data_buf(buf);
1129 	hdr->b_datacnt = 1;
1130 	hdr->b_flags = 0;
1131 	ASSERT(refcount_is_zero(&hdr->b_refcnt));
1132 	(void) refcount_add(&hdr->b_refcnt, tag);
1133 
1134 	return (buf);
1135 }
1136 
1137 static arc_buf_t *
1138 arc_buf_clone(arc_buf_t *from)
1139 {
1140 	arc_buf_t *buf;
1141 	arc_buf_hdr_t *hdr = from->b_hdr;
1142 	uint64_t size = hdr->b_size;
1143 
1144 	buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1145 	buf->b_hdr = hdr;
1146 	buf->b_data = NULL;
1147 	buf->b_efunc = NULL;
1148 	buf->b_private = NULL;
1149 	buf->b_next = hdr->b_buf;
1150 	hdr->b_buf = buf;
1151 	arc_get_data_buf(buf);
1152 	bcopy(from->b_data, buf->b_data, size);
1153 	hdr->b_datacnt += 1;
1154 	return (buf);
1155 }
1156 
1157 void
1158 arc_buf_add_ref(arc_buf_t *buf, void* tag)
1159 {
1160 	arc_buf_hdr_t *hdr;
1161 	kmutex_t *hash_lock;
1162 
1163 	/*
1164 	 * Check to see if this buffer is currently being evicted via
1165 	 * arc_do_user_evicts().
1166 	 */
1167 	mutex_enter(&arc_eviction_mtx);
1168 	hdr = buf->b_hdr;
1169 	if (hdr == NULL) {
1170 		mutex_exit(&arc_eviction_mtx);
1171 		return;
1172 	}
1173 	hash_lock = HDR_LOCK(hdr);
1174 	mutex_exit(&arc_eviction_mtx);
1175 
1176 	mutex_enter(hash_lock);
1177 	if (buf->b_data == NULL) {
1178 		/*
1179 		 * This buffer is evicted.
1180 		 */
1181 		mutex_exit(hash_lock);
1182 		return;
1183 	}
1184 
1185 	ASSERT(buf->b_hdr == hdr);
1186 	ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
1187 	add_reference(hdr, hash_lock, tag);
1188 	arc_access(hdr, hash_lock);
1189 	mutex_exit(hash_lock);
1190 	ARCSTAT_BUMP(arcstat_hits);
1191 	ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
1192 	    demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
1193 	    data, metadata, hits);
1194 }
1195 
1196 /*
1197  * Free the arc data buffer.  If it is an l2arc write in progress,
1198  * the buffer is placed on l2arc_free_on_write to be freed later.
1199  */
1200 static void
1201 arc_buf_data_free(arc_buf_hdr_t *hdr, void (*free_func)(void *, size_t),
1202     void *data, size_t size)
1203 {
1204 	if (HDR_L2_WRITING(hdr)) {
1205 		l2arc_data_free_t *df;
1206 		df = kmem_alloc(sizeof (l2arc_data_free_t), KM_SLEEP);
1207 		df->l2df_data = data;
1208 		df->l2df_size = size;
1209 		df->l2df_func = free_func;
1210 		mutex_enter(&l2arc_free_on_write_mtx);
1211 		list_insert_head(l2arc_free_on_write, df);
1212 		mutex_exit(&l2arc_free_on_write_mtx);
1213 		ARCSTAT_BUMP(arcstat_l2_free_on_write);
1214 	} else {
1215 		free_func(data, size);
1216 	}
1217 }
1218 
1219 static void
1220 arc_buf_destroy(arc_buf_t *buf, boolean_t recycle, boolean_t all)
1221 {
1222 	arc_buf_t **bufp;
1223 
1224 	/* free up data associated with the buf */
1225 	if (buf->b_data) {
1226 		arc_state_t *state = buf->b_hdr->b_state;
1227 		uint64_t size = buf->b_hdr->b_size;
1228 		arc_buf_contents_t type = buf->b_hdr->b_type;
1229 
1230 		arc_cksum_verify(buf);
1231 		if (!recycle) {
1232 			if (type == ARC_BUFC_METADATA) {
1233 				arc_buf_data_free(buf->b_hdr, zio_buf_free,
1234 				    buf->b_data, size);
1235 				arc_space_return(size);
1236 			} else {
1237 				ASSERT(type == ARC_BUFC_DATA);
1238 				arc_buf_data_free(buf->b_hdr,
1239 				    zio_data_buf_free, buf->b_data, size);
1240 				atomic_add_64(&arc_size, -size);
1241 			}
1242 		}
1243 		if (list_link_active(&buf->b_hdr->b_arc_node)) {
1244 			uint64_t *cnt = &state->arcs_lsize[type];
1245 
1246 			ASSERT(refcount_is_zero(&buf->b_hdr->b_refcnt));
1247 			ASSERT(state != arc_anon);
1248 
1249 			ASSERT3U(*cnt, >=, size);
1250 			atomic_add_64(cnt, -size);
1251 		}
1252 		ASSERT3U(state->arcs_size, >=, size);
1253 		atomic_add_64(&state->arcs_size, -size);
1254 		buf->b_data = NULL;
1255 		ASSERT(buf->b_hdr->b_datacnt > 0);
1256 		buf->b_hdr->b_datacnt -= 1;
1257 	}
1258 
1259 	/* only remove the buf if requested */
1260 	if (!all)
1261 		return;
1262 
1263 	/* remove the buf from the hdr list */
1264 	for (bufp = &buf->b_hdr->b_buf; *bufp != buf; bufp = &(*bufp)->b_next)
1265 		continue;
1266 	*bufp = buf->b_next;
1267 
1268 	ASSERT(buf->b_efunc == NULL);
1269 
1270 	/* clean up the buf */
1271 	buf->b_hdr = NULL;
1272 	kmem_cache_free(buf_cache, buf);
1273 }
1274 
1275 static void
1276 arc_hdr_destroy(arc_buf_hdr_t *hdr)
1277 {
1278 	ASSERT(refcount_is_zero(&hdr->b_refcnt));
1279 	ASSERT3P(hdr->b_state, ==, arc_anon);
1280 	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
1281 	ASSERT(!(hdr->b_flags & ARC_STORED));
1282 
1283 	if (hdr->b_l2hdr != NULL) {
1284 		if (!MUTEX_HELD(&l2arc_buflist_mtx)) {
1285 			/*
1286 			 * To prevent arc_free() and l2arc_evict() from
1287 			 * attempting to free the same buffer at the same time,
1288 			 * a FREE_IN_PROGRESS flag is given to arc_free() to
1289 			 * give it priority.  l2arc_evict() can't destroy this
1290 			 * header while we are waiting on l2arc_buflist_mtx.
1291 			 */
1292 			mutex_enter(&l2arc_buflist_mtx);
1293 			ASSERT(hdr->b_l2hdr != NULL);
1294 
1295 			list_remove(hdr->b_l2hdr->b_dev->l2ad_buflist, hdr);
1296 			mutex_exit(&l2arc_buflist_mtx);
1297 		} else {
1298 			list_remove(hdr->b_l2hdr->b_dev->l2ad_buflist, hdr);
1299 		}
1300 		ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
1301 		kmem_free(hdr->b_l2hdr, sizeof (l2arc_buf_hdr_t));
1302 		if (hdr->b_state == arc_l2c_only)
1303 			l2arc_hdr_stat_remove();
1304 		hdr->b_l2hdr = NULL;
1305 	}
1306 
1307 	if (!BUF_EMPTY(hdr)) {
1308 		ASSERT(!HDR_IN_HASH_TABLE(hdr));
1309 		bzero(&hdr->b_dva, sizeof (dva_t));
1310 		hdr->b_birth = 0;
1311 		hdr->b_cksum0 = 0;
1312 	}
1313 	while (hdr->b_buf) {
1314 		arc_buf_t *buf = hdr->b_buf;
1315 
1316 		if (buf->b_efunc) {
1317 			mutex_enter(&arc_eviction_mtx);
1318 			ASSERT(buf->b_hdr != NULL);
1319 			arc_buf_destroy(hdr->b_buf, FALSE, FALSE);
1320 			hdr->b_buf = buf->b_next;
1321 			buf->b_hdr = &arc_eviction_hdr;
1322 			buf->b_next = arc_eviction_list;
1323 			arc_eviction_list = buf;
1324 			mutex_exit(&arc_eviction_mtx);
1325 		} else {
1326 			arc_buf_destroy(hdr->b_buf, FALSE, TRUE);
1327 		}
1328 	}
1329 	if (hdr->b_freeze_cksum != NULL) {
1330 		kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1331 		hdr->b_freeze_cksum = NULL;
1332 	}
1333 
1334 	ASSERT(!list_link_active(&hdr->b_arc_node));
1335 	ASSERT3P(hdr->b_hash_next, ==, NULL);
1336 	ASSERT3P(hdr->b_acb, ==, NULL);
1337 	kmem_cache_free(hdr_cache, hdr);
1338 }
1339 
1340 void
1341 arc_buf_free(arc_buf_t *buf, void *tag)
1342 {
1343 	arc_buf_hdr_t *hdr = buf->b_hdr;
1344 	int hashed = hdr->b_state != arc_anon;
1345 
1346 	ASSERT(buf->b_efunc == NULL);
1347 	ASSERT(buf->b_data != NULL);
1348 
1349 	if (hashed) {
1350 		kmutex_t *hash_lock = HDR_LOCK(hdr);
1351 
1352 		mutex_enter(hash_lock);
1353 		(void) remove_reference(hdr, hash_lock, tag);
1354 		if (hdr->b_datacnt > 1)
1355 			arc_buf_destroy(buf, FALSE, TRUE);
1356 		else
1357 			hdr->b_flags |= ARC_BUF_AVAILABLE;
1358 		mutex_exit(hash_lock);
1359 	} else if (HDR_IO_IN_PROGRESS(hdr)) {
1360 		int destroy_hdr;
1361 		/*
1362 		 * We are in the middle of an async write.  Don't destroy
1363 		 * this buffer unless the write completes before we finish
1364 		 * decrementing the reference count.
1365 		 */
1366 		mutex_enter(&arc_eviction_mtx);
1367 		(void) remove_reference(hdr, NULL, tag);
1368 		ASSERT(refcount_is_zero(&hdr->b_refcnt));
1369 		destroy_hdr = !HDR_IO_IN_PROGRESS(hdr);
1370 		mutex_exit(&arc_eviction_mtx);
1371 		if (destroy_hdr)
1372 			arc_hdr_destroy(hdr);
1373 	} else {
1374 		if (remove_reference(hdr, NULL, tag) > 0) {
1375 			ASSERT(HDR_IO_ERROR(hdr));
1376 			arc_buf_destroy(buf, FALSE, TRUE);
1377 		} else {
1378 			arc_hdr_destroy(hdr);
1379 		}
1380 	}
1381 }
1382 
1383 int
1384 arc_buf_remove_ref(arc_buf_t *buf, void* tag)
1385 {
1386 	arc_buf_hdr_t *hdr = buf->b_hdr;
1387 	kmutex_t *hash_lock = HDR_LOCK(hdr);
1388 	int no_callback = (buf->b_efunc == NULL);
1389 
1390 	if (hdr->b_state == arc_anon) {
1391 		arc_buf_free(buf, tag);
1392 		return (no_callback);
1393 	}
1394 
1395 	mutex_enter(hash_lock);
1396 	ASSERT(hdr->b_state != arc_anon);
1397 	ASSERT(buf->b_data != NULL);
1398 
1399 	(void) remove_reference(hdr, hash_lock, tag);
1400 	if (hdr->b_datacnt > 1) {
1401 		if (no_callback)
1402 			arc_buf_destroy(buf, FALSE, TRUE);
1403 	} else if (no_callback) {
1404 		ASSERT(hdr->b_buf == buf && buf->b_next == NULL);
1405 		hdr->b_flags |= ARC_BUF_AVAILABLE;
1406 	}
1407 	ASSERT(no_callback || hdr->b_datacnt > 1 ||
1408 	    refcount_is_zero(&hdr->b_refcnt));
1409 	mutex_exit(hash_lock);
1410 	return (no_callback);
1411 }
1412 
1413 int
1414 arc_buf_size(arc_buf_t *buf)
1415 {
1416 	return (buf->b_hdr->b_size);
1417 }
1418 
1419 /*
1420  * Evict buffers from list until we've removed the specified number of
1421  * bytes.  Move the removed buffers to the appropriate evict state.
1422  * If the recycle flag is set, then attempt to "recycle" a buffer:
1423  * - look for a buffer to evict that is `bytes' long.
1424  * - return the data block from this buffer rather than freeing it.
1425  * This flag is used by callers that are trying to make space for a
1426  * new buffer in a full arc cache.
1427  *
1428  * This function makes a "best effort".  It skips over any buffers
1429  * it can't get a hash_lock on, and so may not catch all candidates.
1430  * It may also return without evicting as much space as requested.
1431  */
1432 static void *
1433 arc_evict(arc_state_t *state, spa_t *spa, int64_t bytes, boolean_t recycle,
1434     arc_buf_contents_t type)
1435 {
1436 	arc_state_t *evicted_state;
1437 	uint64_t bytes_evicted = 0, skipped = 0, missed = 0;
1438 	arc_buf_hdr_t *ab, *ab_prev = NULL;
1439 	list_t *list = &state->arcs_list[type];
1440 	kmutex_t *hash_lock;
1441 	boolean_t have_lock;
1442 	void *stolen = NULL;
1443 
1444 	ASSERT(state == arc_mru || state == arc_mfu);
1445 
1446 	evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
1447 
1448 	mutex_enter(&state->arcs_mtx);
1449 	mutex_enter(&evicted_state->arcs_mtx);
1450 
1451 	for (ab = list_tail(list); ab; ab = ab_prev) {
1452 		ab_prev = list_prev(list, ab);
1453 		/* prefetch buffers have a minimum lifespan */
1454 		if (HDR_IO_IN_PROGRESS(ab) ||
1455 		    (spa && ab->b_spa != spa) ||
1456 		    (ab->b_flags & (ARC_PREFETCH|ARC_INDIRECT) &&
1457 		    lbolt - ab->b_arc_access < arc_min_prefetch_lifespan)) {
1458 			skipped++;
1459 			continue;
1460 		}
1461 		/* "lookahead" for better eviction candidate */
1462 		if (recycle && ab->b_size != bytes &&
1463 		    ab_prev && ab_prev->b_size == bytes)
1464 			continue;
1465 		hash_lock = HDR_LOCK(ab);
1466 		have_lock = MUTEX_HELD(hash_lock);
1467 		if (have_lock || mutex_tryenter(hash_lock)) {
1468 			ASSERT3U(refcount_count(&ab->b_refcnt), ==, 0);
1469 			ASSERT(ab->b_datacnt > 0);
1470 			while (ab->b_buf) {
1471 				arc_buf_t *buf = ab->b_buf;
1472 				if (buf->b_data) {
1473 					bytes_evicted += ab->b_size;
1474 					if (recycle && ab->b_type == type &&
1475 					    ab->b_size == bytes &&
1476 					    !HDR_L2_WRITING(ab)) {
1477 						stolen = buf->b_data;
1478 						recycle = FALSE;
1479 					}
1480 				}
1481 				if (buf->b_efunc) {
1482 					mutex_enter(&arc_eviction_mtx);
1483 					arc_buf_destroy(buf,
1484 					    buf->b_data == stolen, FALSE);
1485 					ab->b_buf = buf->b_next;
1486 					buf->b_hdr = &arc_eviction_hdr;
1487 					buf->b_next = arc_eviction_list;
1488 					arc_eviction_list = buf;
1489 					mutex_exit(&arc_eviction_mtx);
1490 				} else {
1491 					arc_buf_destroy(buf,
1492 					    buf->b_data == stolen, TRUE);
1493 				}
1494 			}
1495 			ASSERT(ab->b_datacnt == 0);
1496 			arc_change_state(evicted_state, ab, hash_lock);
1497 			ASSERT(HDR_IN_HASH_TABLE(ab));
1498 			ab->b_flags |= ARC_IN_HASH_TABLE;
1499 			ab->b_flags &= ~ARC_BUF_AVAILABLE;
1500 			DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, ab);
1501 			if (!have_lock)
1502 				mutex_exit(hash_lock);
1503 			if (bytes >= 0 && bytes_evicted >= bytes)
1504 				break;
1505 		} else {
1506 			missed += 1;
1507 		}
1508 	}
1509 
1510 	mutex_exit(&evicted_state->arcs_mtx);
1511 	mutex_exit(&state->arcs_mtx);
1512 
1513 	if (bytes_evicted < bytes)
1514 		dprintf("only evicted %lld bytes from %x",
1515 		    (longlong_t)bytes_evicted, state);
1516 
1517 	if (skipped)
1518 		ARCSTAT_INCR(arcstat_evict_skip, skipped);
1519 
1520 	if (missed)
1521 		ARCSTAT_INCR(arcstat_mutex_miss, missed);
1522 
1523 	/*
1524 	 * We have just evicted some date into the ghost state, make
1525 	 * sure we also adjust the ghost state size if necessary.
1526 	 */
1527 	if (arc_no_grow &&
1528 	    arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size > arc_c) {
1529 		int64_t mru_over = arc_anon->arcs_size + arc_mru->arcs_size +
1530 		    arc_mru_ghost->arcs_size - arc_c;
1531 
1532 		if (mru_over > 0 && arc_mru_ghost->arcs_lsize[type] > 0) {
1533 			int64_t todelete =
1534 			    MIN(arc_mru_ghost->arcs_lsize[type], mru_over);
1535 			arc_evict_ghost(arc_mru_ghost, NULL, todelete);
1536 		} else if (arc_mfu_ghost->arcs_lsize[type] > 0) {
1537 			int64_t todelete = MIN(arc_mfu_ghost->arcs_lsize[type],
1538 			    arc_mru_ghost->arcs_size +
1539 			    arc_mfu_ghost->arcs_size - arc_c);
1540 			arc_evict_ghost(arc_mfu_ghost, NULL, todelete);
1541 		}
1542 	}
1543 
1544 	return (stolen);
1545 }
1546 
1547 /*
1548  * Remove buffers from list until we've removed the specified number of
1549  * bytes.  Destroy the buffers that are removed.
1550  */
1551 static void
1552 arc_evict_ghost(arc_state_t *state, spa_t *spa, int64_t bytes)
1553 {
1554 	arc_buf_hdr_t *ab, *ab_prev;
1555 	list_t *list = &state->arcs_list[ARC_BUFC_DATA];
1556 	kmutex_t *hash_lock;
1557 	uint64_t bytes_deleted = 0;
1558 	uint64_t bufs_skipped = 0;
1559 
1560 	ASSERT(GHOST_STATE(state));
1561 top:
1562 	mutex_enter(&state->arcs_mtx);
1563 	for (ab = list_tail(list); ab; ab = ab_prev) {
1564 		ab_prev = list_prev(list, ab);
1565 		if (spa && ab->b_spa != spa)
1566 			continue;
1567 		hash_lock = HDR_LOCK(ab);
1568 		if (mutex_tryenter(hash_lock)) {
1569 			ASSERT(!HDR_IO_IN_PROGRESS(ab));
1570 			ASSERT(ab->b_buf == NULL);
1571 			ARCSTAT_BUMP(arcstat_deleted);
1572 			bytes_deleted += ab->b_size;
1573 
1574 			if (ab->b_l2hdr != NULL) {
1575 				/*
1576 				 * This buffer is cached on the 2nd Level ARC;
1577 				 * don't destroy the header.
1578 				 */
1579 				arc_change_state(arc_l2c_only, ab, hash_lock);
1580 				mutex_exit(hash_lock);
1581 			} else {
1582 				arc_change_state(arc_anon, ab, hash_lock);
1583 				mutex_exit(hash_lock);
1584 				arc_hdr_destroy(ab);
1585 			}
1586 
1587 			DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, ab);
1588 			if (bytes >= 0 && bytes_deleted >= bytes)
1589 				break;
1590 		} else {
1591 			if (bytes < 0) {
1592 				mutex_exit(&state->arcs_mtx);
1593 				mutex_enter(hash_lock);
1594 				mutex_exit(hash_lock);
1595 				goto top;
1596 			}
1597 			bufs_skipped += 1;
1598 		}
1599 	}
1600 	mutex_exit(&state->arcs_mtx);
1601 
1602 	if (list == &state->arcs_list[ARC_BUFC_DATA] &&
1603 	    (bytes < 0 || bytes_deleted < bytes)) {
1604 		list = &state->arcs_list[ARC_BUFC_METADATA];
1605 		goto top;
1606 	}
1607 
1608 	if (bufs_skipped) {
1609 		ARCSTAT_INCR(arcstat_mutex_miss, bufs_skipped);
1610 		ASSERT(bytes >= 0);
1611 	}
1612 
1613 	if (bytes_deleted < bytes)
1614 		dprintf("only deleted %lld bytes from %p",
1615 		    (longlong_t)bytes_deleted, state);
1616 }
1617 
1618 static void
1619 arc_adjust(void)
1620 {
1621 	int64_t top_sz, mru_over, arc_over, todelete;
1622 
1623 	top_sz = arc_anon->arcs_size + arc_mru->arcs_size + arc_meta_used;
1624 
1625 	if (top_sz > arc_p && arc_mru->arcs_lsize[ARC_BUFC_DATA] > 0) {
1626 		int64_t toevict =
1627 		    MIN(arc_mru->arcs_lsize[ARC_BUFC_DATA], top_sz - arc_p);
1628 		(void) arc_evict(arc_mru, NULL, toevict, FALSE, ARC_BUFC_DATA);
1629 		top_sz = arc_anon->arcs_size + arc_mru->arcs_size;
1630 	}
1631 
1632 	if (top_sz > arc_p && arc_mru->arcs_lsize[ARC_BUFC_METADATA] > 0) {
1633 		int64_t toevict =
1634 		    MIN(arc_mru->arcs_lsize[ARC_BUFC_METADATA], top_sz - arc_p);
1635 		(void) arc_evict(arc_mru, NULL, toevict, FALSE,
1636 		    ARC_BUFC_METADATA);
1637 		top_sz = arc_anon->arcs_size + arc_mru->arcs_size;
1638 	}
1639 
1640 	mru_over = top_sz + arc_mru_ghost->arcs_size - arc_c;
1641 
1642 	if (mru_over > 0) {
1643 		if (arc_mru_ghost->arcs_size > 0) {
1644 			todelete = MIN(arc_mru_ghost->arcs_size, mru_over);
1645 			arc_evict_ghost(arc_mru_ghost, NULL, todelete);
1646 		}
1647 	}
1648 
1649 	if ((arc_over = arc_size - arc_c) > 0) {
1650 		int64_t tbl_over;
1651 
1652 		if (arc_mfu->arcs_lsize[ARC_BUFC_DATA] > 0) {
1653 			int64_t toevict =
1654 			    MIN(arc_mfu->arcs_lsize[ARC_BUFC_DATA], arc_over);
1655 			(void) arc_evict(arc_mfu, NULL, toevict, FALSE,
1656 			    ARC_BUFC_DATA);
1657 			arc_over = arc_size - arc_c;
1658 		}
1659 
1660 		if (arc_over > 0 &&
1661 		    arc_mfu->arcs_lsize[ARC_BUFC_METADATA] > 0) {
1662 			int64_t toevict =
1663 			    MIN(arc_mfu->arcs_lsize[ARC_BUFC_METADATA],
1664 			    arc_over);
1665 			(void) arc_evict(arc_mfu, NULL, toevict, FALSE,
1666 			    ARC_BUFC_METADATA);
1667 		}
1668 
1669 		tbl_over = arc_size + arc_mru_ghost->arcs_size +
1670 		    arc_mfu_ghost->arcs_size - arc_c * 2;
1671 
1672 		if (tbl_over > 0 && arc_mfu_ghost->arcs_size > 0) {
1673 			todelete = MIN(arc_mfu_ghost->arcs_size, tbl_over);
1674 			arc_evict_ghost(arc_mfu_ghost, NULL, todelete);
1675 		}
1676 	}
1677 }
1678 
1679 static void
1680 arc_do_user_evicts(void)
1681 {
1682 	mutex_enter(&arc_eviction_mtx);
1683 	while (arc_eviction_list != NULL) {
1684 		arc_buf_t *buf = arc_eviction_list;
1685 		arc_eviction_list = buf->b_next;
1686 		buf->b_hdr = NULL;
1687 		mutex_exit(&arc_eviction_mtx);
1688 
1689 		if (buf->b_efunc != NULL)
1690 			VERIFY(buf->b_efunc(buf) == 0);
1691 
1692 		buf->b_efunc = NULL;
1693 		buf->b_private = NULL;
1694 		kmem_cache_free(buf_cache, buf);
1695 		mutex_enter(&arc_eviction_mtx);
1696 	}
1697 	mutex_exit(&arc_eviction_mtx);
1698 }
1699 
1700 /*
1701  * Flush all *evictable* data from the cache for the given spa.
1702  * NOTE: this will not touch "active" (i.e. referenced) data.
1703  */
1704 void
1705 arc_flush(spa_t *spa)
1706 {
1707 	while (list_head(&arc_mru->arcs_list[ARC_BUFC_DATA])) {
1708 		(void) arc_evict(arc_mru, spa, -1, FALSE, ARC_BUFC_DATA);
1709 		if (spa)
1710 			break;
1711 	}
1712 	while (list_head(&arc_mru->arcs_list[ARC_BUFC_METADATA])) {
1713 		(void) arc_evict(arc_mru, spa, -1, FALSE, ARC_BUFC_METADATA);
1714 		if (spa)
1715 			break;
1716 	}
1717 	while (list_head(&arc_mfu->arcs_list[ARC_BUFC_DATA])) {
1718 		(void) arc_evict(arc_mfu, spa, -1, FALSE, ARC_BUFC_DATA);
1719 		if (spa)
1720 			break;
1721 	}
1722 	while (list_head(&arc_mfu->arcs_list[ARC_BUFC_METADATA])) {
1723 		(void) arc_evict(arc_mfu, spa, -1, FALSE, ARC_BUFC_METADATA);
1724 		if (spa)
1725 			break;
1726 	}
1727 
1728 	arc_evict_ghost(arc_mru_ghost, spa, -1);
1729 	arc_evict_ghost(arc_mfu_ghost, spa, -1);
1730 
1731 	mutex_enter(&arc_reclaim_thr_lock);
1732 	arc_do_user_evicts();
1733 	mutex_exit(&arc_reclaim_thr_lock);
1734 	ASSERT(spa || arc_eviction_list == NULL);
1735 }
1736 
1737 int arc_shrink_shift = 5;		/* log2(fraction of arc to reclaim) */
1738 
1739 void
1740 arc_shrink(void)
1741 {
1742 	if (arc_c > arc_c_min) {
1743 		uint64_t to_free;
1744 
1745 #ifdef _KERNEL
1746 		to_free = MAX(arc_c >> arc_shrink_shift, ptob(needfree));
1747 #else
1748 		to_free = arc_c >> arc_shrink_shift;
1749 #endif
1750 		if (arc_c > arc_c_min + to_free)
1751 			atomic_add_64(&arc_c, -to_free);
1752 		else
1753 			arc_c = arc_c_min;
1754 
1755 		atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
1756 		if (arc_c > arc_size)
1757 			arc_c = MAX(arc_size, arc_c_min);
1758 		if (arc_p > arc_c)
1759 			arc_p = (arc_c >> 1);
1760 		ASSERT(arc_c >= arc_c_min);
1761 		ASSERT((int64_t)arc_p >= 0);
1762 	}
1763 
1764 	if (arc_size > arc_c)
1765 		arc_adjust();
1766 }
1767 
1768 static int
1769 arc_reclaim_needed(void)
1770 {
1771 	uint64_t extra;
1772 
1773 #ifdef _KERNEL
1774 
1775 	if (needfree)
1776 		return (1);
1777 
1778 	/*
1779 	 * take 'desfree' extra pages, so we reclaim sooner, rather than later
1780 	 */
1781 	extra = desfree;
1782 
1783 	/*
1784 	 * check that we're out of range of the pageout scanner.  It starts to
1785 	 * schedule paging if freemem is less than lotsfree and needfree.
1786 	 * lotsfree is the high-water mark for pageout, and needfree is the
1787 	 * number of needed free pages.  We add extra pages here to make sure
1788 	 * the scanner doesn't start up while we're freeing memory.
1789 	 */
1790 	if (freemem < lotsfree + needfree + extra)
1791 		return (1);
1792 
1793 	/*
1794 	 * check to make sure that swapfs has enough space so that anon
1795 	 * reservations can still succeed. anon_resvmem() checks that the
1796 	 * availrmem is greater than swapfs_minfree, and the number of reserved
1797 	 * swap pages.  We also add a bit of extra here just to prevent
1798 	 * circumstances from getting really dire.
1799 	 */
1800 	if (availrmem < swapfs_minfree + swapfs_reserve + extra)
1801 		return (1);
1802 
1803 #if defined(__i386)
1804 	/*
1805 	 * If we're on an i386 platform, it's possible that we'll exhaust the
1806 	 * kernel heap space before we ever run out of available physical
1807 	 * memory.  Most checks of the size of the heap_area compare against
1808 	 * tune.t_minarmem, which is the minimum available real memory that we
1809 	 * can have in the system.  However, this is generally fixed at 25 pages
1810 	 * which is so low that it's useless.  In this comparison, we seek to
1811 	 * calculate the total heap-size, and reclaim if more than 3/4ths of the
1812 	 * heap is allocated.  (Or, in the calculation, if less than 1/4th is
1813 	 * free)
1814 	 */
1815 	if (btop(vmem_size(heap_arena, VMEM_FREE)) <
1816 	    (btop(vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC)) >> 2))
1817 		return (1);
1818 #endif
1819 
1820 #else
1821 	if (spa_get_random(100) == 0)
1822 		return (1);
1823 #endif
1824 	return (0);
1825 }
1826 
1827 static void
1828 arc_kmem_reap_now(arc_reclaim_strategy_t strat)
1829 {
1830 	size_t			i;
1831 	kmem_cache_t		*prev_cache = NULL;
1832 	kmem_cache_t		*prev_data_cache = NULL;
1833 	extern kmem_cache_t	*zio_buf_cache[];
1834 	extern kmem_cache_t	*zio_data_buf_cache[];
1835 
1836 #ifdef _KERNEL
1837 	if (arc_meta_used >= arc_meta_limit) {
1838 		/*
1839 		 * We are exceeding our meta-data cache limit.
1840 		 * Purge some DNLC entries to release holds on meta-data.
1841 		 */
1842 		dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent);
1843 	}
1844 #if defined(__i386)
1845 	/*
1846 	 * Reclaim unused memory from all kmem caches.
1847 	 */
1848 	kmem_reap();
1849 #endif
1850 #endif
1851 
1852 	/*
1853 	 * An aggressive reclamation will shrink the cache size as well as
1854 	 * reap free buffers from the arc kmem caches.
1855 	 */
1856 	if (strat == ARC_RECLAIM_AGGR)
1857 		arc_shrink();
1858 
1859 	for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
1860 		if (zio_buf_cache[i] != prev_cache) {
1861 			prev_cache = zio_buf_cache[i];
1862 			kmem_cache_reap_now(zio_buf_cache[i]);
1863 		}
1864 		if (zio_data_buf_cache[i] != prev_data_cache) {
1865 			prev_data_cache = zio_data_buf_cache[i];
1866 			kmem_cache_reap_now(zio_data_buf_cache[i]);
1867 		}
1868 	}
1869 	kmem_cache_reap_now(buf_cache);
1870 	kmem_cache_reap_now(hdr_cache);
1871 }
1872 
1873 static void
1874 arc_reclaim_thread(void)
1875 {
1876 	clock_t			growtime = 0;
1877 	arc_reclaim_strategy_t	last_reclaim = ARC_RECLAIM_CONS;
1878 	callb_cpr_t		cpr;
1879 
1880 	CALLB_CPR_INIT(&cpr, &arc_reclaim_thr_lock, callb_generic_cpr, FTAG);
1881 
1882 	mutex_enter(&arc_reclaim_thr_lock);
1883 	while (arc_thread_exit == 0) {
1884 		if (arc_reclaim_needed()) {
1885 
1886 			if (arc_no_grow) {
1887 				if (last_reclaim == ARC_RECLAIM_CONS) {
1888 					last_reclaim = ARC_RECLAIM_AGGR;
1889 				} else {
1890 					last_reclaim = ARC_RECLAIM_CONS;
1891 				}
1892 			} else {
1893 				arc_no_grow = TRUE;
1894 				last_reclaim = ARC_RECLAIM_AGGR;
1895 				membar_producer();
1896 			}
1897 
1898 			/* reset the growth delay for every reclaim */
1899 			growtime = lbolt + (arc_grow_retry * hz);
1900 
1901 			arc_kmem_reap_now(last_reclaim);
1902 			arc_warm = B_TRUE;
1903 
1904 		} else if (arc_no_grow && lbolt >= growtime) {
1905 			arc_no_grow = FALSE;
1906 		}
1907 
1908 		if (2 * arc_c < arc_size +
1909 		    arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size)
1910 			arc_adjust();
1911 
1912 		if (arc_eviction_list != NULL)
1913 			arc_do_user_evicts();
1914 
1915 		/* block until needed, or one second, whichever is shorter */
1916 		CALLB_CPR_SAFE_BEGIN(&cpr);
1917 		(void) cv_timedwait(&arc_reclaim_thr_cv,
1918 		    &arc_reclaim_thr_lock, (lbolt + hz));
1919 		CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_thr_lock);
1920 	}
1921 
1922 	arc_thread_exit = 0;
1923 	cv_broadcast(&arc_reclaim_thr_cv);
1924 	CALLB_CPR_EXIT(&cpr);		/* drops arc_reclaim_thr_lock */
1925 	thread_exit();
1926 }
1927 
1928 /*
1929  * Adapt arc info given the number of bytes we are trying to add and
1930  * the state that we are comming from.  This function is only called
1931  * when we are adding new content to the cache.
1932  */
1933 static void
1934 arc_adapt(int bytes, arc_state_t *state)
1935 {
1936 	int mult;
1937 
1938 	if (state == arc_l2c_only)
1939 		return;
1940 
1941 	ASSERT(bytes > 0);
1942 	/*
1943 	 * Adapt the target size of the MRU list:
1944 	 *	- if we just hit in the MRU ghost list, then increase
1945 	 *	  the target size of the MRU list.
1946 	 *	- if we just hit in the MFU ghost list, then increase
1947 	 *	  the target size of the MFU list by decreasing the
1948 	 *	  target size of the MRU list.
1949 	 */
1950 	if (state == arc_mru_ghost) {
1951 		mult = ((arc_mru_ghost->arcs_size >= arc_mfu_ghost->arcs_size) ?
1952 		    1 : (arc_mfu_ghost->arcs_size/arc_mru_ghost->arcs_size));
1953 
1954 		arc_p = MIN(arc_c, arc_p + bytes * mult);
1955 	} else if (state == arc_mfu_ghost) {
1956 		mult = ((arc_mfu_ghost->arcs_size >= arc_mru_ghost->arcs_size) ?
1957 		    1 : (arc_mru_ghost->arcs_size/arc_mfu_ghost->arcs_size));
1958 
1959 		arc_p = MAX(0, (int64_t)arc_p - bytes * mult);
1960 	}
1961 	ASSERT((int64_t)arc_p >= 0);
1962 
1963 	if (arc_reclaim_needed()) {
1964 		cv_signal(&arc_reclaim_thr_cv);
1965 		return;
1966 	}
1967 
1968 	if (arc_no_grow)
1969 		return;
1970 
1971 	if (arc_c >= arc_c_max)
1972 		return;
1973 
1974 	/*
1975 	 * If we're within (2 * maxblocksize) bytes of the target
1976 	 * cache size, increment the target cache size
1977 	 */
1978 	if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
1979 		atomic_add_64(&arc_c, (int64_t)bytes);
1980 		if (arc_c > arc_c_max)
1981 			arc_c = arc_c_max;
1982 		else if (state == arc_anon)
1983 			atomic_add_64(&arc_p, (int64_t)bytes);
1984 		if (arc_p > arc_c)
1985 			arc_p = arc_c;
1986 	}
1987 	ASSERT((int64_t)arc_p >= 0);
1988 }
1989 
1990 /*
1991  * Check if the cache has reached its limits and eviction is required
1992  * prior to insert.
1993  */
1994 static int
1995 arc_evict_needed(arc_buf_contents_t type)
1996 {
1997 	if (type == ARC_BUFC_METADATA && arc_meta_used >= arc_meta_limit)
1998 		return (1);
1999 
2000 #ifdef _KERNEL
2001 	/*
2002 	 * If zio data pages are being allocated out of a separate heap segment,
2003 	 * then enforce that the size of available vmem for this area remains
2004 	 * above about 1/32nd free.
2005 	 */
2006 	if (type == ARC_BUFC_DATA && zio_arena != NULL &&
2007 	    vmem_size(zio_arena, VMEM_FREE) <
2008 	    (vmem_size(zio_arena, VMEM_ALLOC) >> 5))
2009 		return (1);
2010 #endif
2011 
2012 	if (arc_reclaim_needed())
2013 		return (1);
2014 
2015 	return (arc_size > arc_c);
2016 }
2017 
2018 /*
2019  * The buffer, supplied as the first argument, needs a data block.
2020  * So, if we are at cache max, determine which cache should be victimized.
2021  * We have the following cases:
2022  *
2023  * 1. Insert for MRU, p > sizeof(arc_anon + arc_mru) ->
2024  * In this situation if we're out of space, but the resident size of the MFU is
2025  * under the limit, victimize the MFU cache to satisfy this insertion request.
2026  *
2027  * 2. Insert for MRU, p <= sizeof(arc_anon + arc_mru) ->
2028  * Here, we've used up all of the available space for the MRU, so we need to
2029  * evict from our own cache instead.  Evict from the set of resident MRU
2030  * entries.
2031  *
2032  * 3. Insert for MFU (c - p) > sizeof(arc_mfu) ->
2033  * c minus p represents the MFU space in the cache, since p is the size of the
2034  * cache that is dedicated to the MRU.  In this situation there's still space on
2035  * the MFU side, so the MRU side needs to be victimized.
2036  *
2037  * 4. Insert for MFU (c - p) < sizeof(arc_mfu) ->
2038  * MFU's resident set is consuming more space than it has been allotted.  In
2039  * this situation, we must victimize our own cache, the MFU, for this insertion.
2040  */
2041 static void
2042 arc_get_data_buf(arc_buf_t *buf)
2043 {
2044 	arc_state_t		*state = buf->b_hdr->b_state;
2045 	uint64_t		size = buf->b_hdr->b_size;
2046 	arc_buf_contents_t	type = buf->b_hdr->b_type;
2047 
2048 	arc_adapt(size, state);
2049 
2050 	/*
2051 	 * We have not yet reached cache maximum size,
2052 	 * just allocate a new buffer.
2053 	 */
2054 	if (!arc_evict_needed(type)) {
2055 		if (type == ARC_BUFC_METADATA) {
2056 			buf->b_data = zio_buf_alloc(size);
2057 			arc_space_consume(size);
2058 		} else {
2059 			ASSERT(type == ARC_BUFC_DATA);
2060 			buf->b_data = zio_data_buf_alloc(size);
2061 			atomic_add_64(&arc_size, size);
2062 		}
2063 		goto out;
2064 	}
2065 
2066 	/*
2067 	 * If we are prefetching from the mfu ghost list, this buffer
2068 	 * will end up on the mru list; so steal space from there.
2069 	 */
2070 	if (state == arc_mfu_ghost)
2071 		state = buf->b_hdr->b_flags & ARC_PREFETCH ? arc_mru : arc_mfu;
2072 	else if (state == arc_mru_ghost)
2073 		state = arc_mru;
2074 
2075 	if (state == arc_mru || state == arc_anon) {
2076 		uint64_t mru_used = arc_anon->arcs_size + arc_mru->arcs_size;
2077 		state = (arc_mfu->arcs_lsize[type] > 0 &&
2078 		    arc_p > mru_used) ? arc_mfu : arc_mru;
2079 	} else {
2080 		/* MFU cases */
2081 		uint64_t mfu_space = arc_c - arc_p;
2082 		state =  (arc_mru->arcs_lsize[type] > 0 &&
2083 		    mfu_space > arc_mfu->arcs_size) ? arc_mru : arc_mfu;
2084 	}
2085 	if ((buf->b_data = arc_evict(state, NULL, size, TRUE, type)) == NULL) {
2086 		if (type == ARC_BUFC_METADATA) {
2087 			buf->b_data = zio_buf_alloc(size);
2088 			arc_space_consume(size);
2089 		} else {
2090 			ASSERT(type == ARC_BUFC_DATA);
2091 			buf->b_data = zio_data_buf_alloc(size);
2092 			atomic_add_64(&arc_size, size);
2093 		}
2094 		ARCSTAT_BUMP(arcstat_recycle_miss);
2095 	}
2096 	ASSERT(buf->b_data != NULL);
2097 out:
2098 	/*
2099 	 * Update the state size.  Note that ghost states have a
2100 	 * "ghost size" and so don't need to be updated.
2101 	 */
2102 	if (!GHOST_STATE(buf->b_hdr->b_state)) {
2103 		arc_buf_hdr_t *hdr = buf->b_hdr;
2104 
2105 		atomic_add_64(&hdr->b_state->arcs_size, size);
2106 		if (list_link_active(&hdr->b_arc_node)) {
2107 			ASSERT(refcount_is_zero(&hdr->b_refcnt));
2108 			atomic_add_64(&hdr->b_state->arcs_lsize[type], size);
2109 		}
2110 		/*
2111 		 * If we are growing the cache, and we are adding anonymous
2112 		 * data, and we have outgrown arc_p, update arc_p
2113 		 */
2114 		if (arc_size < arc_c && hdr->b_state == arc_anon &&
2115 		    arc_anon->arcs_size + arc_mru->arcs_size > arc_p)
2116 			arc_p = MIN(arc_c, arc_p + size);
2117 	}
2118 }
2119 
2120 /*
2121  * This routine is called whenever a buffer is accessed.
2122  * NOTE: the hash lock is dropped in this function.
2123  */
2124 static void
2125 arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock)
2126 {
2127 	ASSERT(MUTEX_HELD(hash_lock));
2128 
2129 	if (buf->b_state == arc_anon) {
2130 		/*
2131 		 * This buffer is not in the cache, and does not
2132 		 * appear in our "ghost" list.  Add the new buffer
2133 		 * to the MRU state.
2134 		 */
2135 
2136 		ASSERT(buf->b_arc_access == 0);
2137 		buf->b_arc_access = lbolt;
2138 		DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
2139 		arc_change_state(arc_mru, buf, hash_lock);
2140 
2141 	} else if (buf->b_state == arc_mru) {
2142 		/*
2143 		 * If this buffer is here because of a prefetch, then either:
2144 		 * - clear the flag if this is a "referencing" read
2145 		 *   (any subsequent access will bump this into the MFU state).
2146 		 * or
2147 		 * - move the buffer to the head of the list if this is
2148 		 *   another prefetch (to make it less likely to be evicted).
2149 		 */
2150 		if ((buf->b_flags & ARC_PREFETCH) != 0) {
2151 			if (refcount_count(&buf->b_refcnt) == 0) {
2152 				ASSERT(list_link_active(&buf->b_arc_node));
2153 			} else {
2154 				buf->b_flags &= ~ARC_PREFETCH;
2155 				ARCSTAT_BUMP(arcstat_mru_hits);
2156 			}
2157 			buf->b_arc_access = lbolt;
2158 			return;
2159 		}
2160 
2161 		/*
2162 		 * This buffer has been "accessed" only once so far,
2163 		 * but it is still in the cache. Move it to the MFU
2164 		 * state.
2165 		 */
2166 		if (lbolt > buf->b_arc_access + ARC_MINTIME) {
2167 			/*
2168 			 * More than 125ms have passed since we
2169 			 * instantiated this buffer.  Move it to the
2170 			 * most frequently used state.
2171 			 */
2172 			buf->b_arc_access = lbolt;
2173 			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2174 			arc_change_state(arc_mfu, buf, hash_lock);
2175 		}
2176 		ARCSTAT_BUMP(arcstat_mru_hits);
2177 	} else if (buf->b_state == arc_mru_ghost) {
2178 		arc_state_t	*new_state;
2179 		/*
2180 		 * This buffer has been "accessed" recently, but
2181 		 * was evicted from the cache.  Move it to the
2182 		 * MFU state.
2183 		 */
2184 
2185 		if (buf->b_flags & ARC_PREFETCH) {
2186 			new_state = arc_mru;
2187 			if (refcount_count(&buf->b_refcnt) > 0)
2188 				buf->b_flags &= ~ARC_PREFETCH;
2189 			DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
2190 		} else {
2191 			new_state = arc_mfu;
2192 			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2193 		}
2194 
2195 		buf->b_arc_access = lbolt;
2196 		arc_change_state(new_state, buf, hash_lock);
2197 
2198 		ARCSTAT_BUMP(arcstat_mru_ghost_hits);
2199 	} else if (buf->b_state == arc_mfu) {
2200 		/*
2201 		 * This buffer has been accessed more than once and is
2202 		 * still in the cache.  Keep it in the MFU state.
2203 		 *
2204 		 * NOTE: an add_reference() that occurred when we did
2205 		 * the arc_read() will have kicked this off the list.
2206 		 * If it was a prefetch, we will explicitly move it to
2207 		 * the head of the list now.
2208 		 */
2209 		if ((buf->b_flags & ARC_PREFETCH) != 0) {
2210 			ASSERT(refcount_count(&buf->b_refcnt) == 0);
2211 			ASSERT(list_link_active(&buf->b_arc_node));
2212 		}
2213 		ARCSTAT_BUMP(arcstat_mfu_hits);
2214 		buf->b_arc_access = lbolt;
2215 	} else if (buf->b_state == arc_mfu_ghost) {
2216 		arc_state_t	*new_state = arc_mfu;
2217 		/*
2218 		 * This buffer has been accessed more than once but has
2219 		 * been evicted from the cache.  Move it back to the
2220 		 * MFU state.
2221 		 */
2222 
2223 		if (buf->b_flags & ARC_PREFETCH) {
2224 			/*
2225 			 * This is a prefetch access...
2226 			 * move this block back to the MRU state.
2227 			 */
2228 			ASSERT3U(refcount_count(&buf->b_refcnt), ==, 0);
2229 			new_state = arc_mru;
2230 		}
2231 
2232 		buf->b_arc_access = lbolt;
2233 		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2234 		arc_change_state(new_state, buf, hash_lock);
2235 
2236 		ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
2237 	} else if (buf->b_state == arc_l2c_only) {
2238 		/*
2239 		 * This buffer is on the 2nd Level ARC.
2240 		 */
2241 
2242 		buf->b_arc_access = lbolt;
2243 		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2244 		arc_change_state(arc_mfu, buf, hash_lock);
2245 	} else {
2246 		ASSERT(!"invalid arc state");
2247 	}
2248 }
2249 
2250 /* a generic arc_done_func_t which you can use */
2251 /* ARGSUSED */
2252 void
2253 arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)
2254 {
2255 	bcopy(buf->b_data, arg, buf->b_hdr->b_size);
2256 	VERIFY(arc_buf_remove_ref(buf, arg) == 1);
2257 }
2258 
2259 /* a generic arc_done_func_t */
2260 void
2261 arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg)
2262 {
2263 	arc_buf_t **bufp = arg;
2264 	if (zio && zio->io_error) {
2265 		VERIFY(arc_buf_remove_ref(buf, arg) == 1);
2266 		*bufp = NULL;
2267 	} else {
2268 		*bufp = buf;
2269 	}
2270 }
2271 
2272 static void
2273 arc_read_done(zio_t *zio)
2274 {
2275 	arc_buf_hdr_t	*hdr, *found;
2276 	arc_buf_t	*buf;
2277 	arc_buf_t	*abuf;	/* buffer we're assigning to callback */
2278 	kmutex_t	*hash_lock;
2279 	arc_callback_t	*callback_list, *acb;
2280 	int		freeable = FALSE;
2281 
2282 	buf = zio->io_private;
2283 	hdr = buf->b_hdr;
2284 
2285 	/*
2286 	 * The hdr was inserted into hash-table and removed from lists
2287 	 * prior to starting I/O.  We should find this header, since
2288 	 * it's in the hash table, and it should be legit since it's
2289 	 * not possible to evict it during the I/O.  The only possible
2290 	 * reason for it not to be found is if we were freed during the
2291 	 * read.
2292 	 */
2293 	found = buf_hash_find(zio->io_spa, &hdr->b_dva, hdr->b_birth,
2294 	    &hash_lock);
2295 
2296 	ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) && hash_lock == NULL) ||
2297 	    (found == hdr && DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
2298 	    (found == hdr && HDR_L2_READING(hdr)));
2299 
2300 	hdr->b_flags &= ~ARC_L2_EVICTED;
2301 	if (l2arc_noprefetch && (hdr->b_flags & ARC_PREFETCH))
2302 		hdr->b_flags &= ~ARC_L2CACHE;
2303 
2304 	/* byteswap if necessary */
2305 	callback_list = hdr->b_acb;
2306 	ASSERT(callback_list != NULL);
2307 	if (BP_SHOULD_BYTESWAP(zio->io_bp)) {
2308 		arc_byteswap_func_t *func = BP_GET_LEVEL(zio->io_bp) > 0 ?
2309 		    byteswap_uint64_array :
2310 		    dmu_ot[BP_GET_TYPE(zio->io_bp)].ot_byteswap;
2311 		func(buf->b_data, hdr->b_size);
2312 	}
2313 
2314 	arc_cksum_compute(buf, B_FALSE);
2315 
2316 	/* create copies of the data buffer for the callers */
2317 	abuf = buf;
2318 	for (acb = callback_list; acb; acb = acb->acb_next) {
2319 		if (acb->acb_done) {
2320 			if (abuf == NULL)
2321 				abuf = arc_buf_clone(buf);
2322 			acb->acb_buf = abuf;
2323 			abuf = NULL;
2324 		}
2325 	}
2326 	hdr->b_acb = NULL;
2327 	hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
2328 	ASSERT(!HDR_BUF_AVAILABLE(hdr));
2329 	if (abuf == buf)
2330 		hdr->b_flags |= ARC_BUF_AVAILABLE;
2331 
2332 	ASSERT(refcount_is_zero(&hdr->b_refcnt) || callback_list != NULL);
2333 
2334 	if (zio->io_error != 0) {
2335 		hdr->b_flags |= ARC_IO_ERROR;
2336 		if (hdr->b_state != arc_anon)
2337 			arc_change_state(arc_anon, hdr, hash_lock);
2338 		if (HDR_IN_HASH_TABLE(hdr))
2339 			buf_hash_remove(hdr);
2340 		freeable = refcount_is_zero(&hdr->b_refcnt);
2341 		/* convert checksum errors into IO errors */
2342 		if (zio->io_error == ECKSUM)
2343 			zio->io_error = EIO;
2344 	}
2345 
2346 	/*
2347 	 * Broadcast before we drop the hash_lock to avoid the possibility
2348 	 * that the hdr (and hence the cv) might be freed before we get to
2349 	 * the cv_broadcast().
2350 	 */
2351 	cv_broadcast(&hdr->b_cv);
2352 
2353 	if (hash_lock) {
2354 		/*
2355 		 * Only call arc_access on anonymous buffers.  This is because
2356 		 * if we've issued an I/O for an evicted buffer, we've already
2357 		 * called arc_access (to prevent any simultaneous readers from
2358 		 * getting confused).
2359 		 */
2360 		if (zio->io_error == 0 && hdr->b_state == arc_anon)
2361 			arc_access(hdr, hash_lock);
2362 		mutex_exit(hash_lock);
2363 	} else {
2364 		/*
2365 		 * This block was freed while we waited for the read to
2366 		 * complete.  It has been removed from the hash table and
2367 		 * moved to the anonymous state (so that it won't show up
2368 		 * in the cache).
2369 		 */
2370 		ASSERT3P(hdr->b_state, ==, arc_anon);
2371 		freeable = refcount_is_zero(&hdr->b_refcnt);
2372 	}
2373 
2374 	/* execute each callback and free its structure */
2375 	while ((acb = callback_list) != NULL) {
2376 		if (acb->acb_done)
2377 			acb->acb_done(zio, acb->acb_buf, acb->acb_private);
2378 
2379 		if (acb->acb_zio_dummy != NULL) {
2380 			acb->acb_zio_dummy->io_error = zio->io_error;
2381 			zio_nowait(acb->acb_zio_dummy);
2382 		}
2383 
2384 		callback_list = acb->acb_next;
2385 		kmem_free(acb, sizeof (arc_callback_t));
2386 	}
2387 
2388 	if (freeable)
2389 		arc_hdr_destroy(hdr);
2390 }
2391 
2392 /*
2393  * "Read" the block block at the specified DVA (in bp) via the
2394  * cache.  If the block is found in the cache, invoke the provided
2395  * callback immediately and return.  Note that the `zio' parameter
2396  * in the callback will be NULL in this case, since no IO was
2397  * required.  If the block is not in the cache pass the read request
2398  * on to the spa with a substitute callback function, so that the
2399  * requested block will be added to the cache.
2400  *
2401  * If a read request arrives for a block that has a read in-progress,
2402  * either wait for the in-progress read to complete (and return the
2403  * results); or, if this is a read with a "done" func, add a record
2404  * to the read to invoke the "done" func when the read completes,
2405  * and return; or just return.
2406  *
2407  * arc_read_done() will invoke all the requested "done" functions
2408  * for readers of this block.
2409  *
2410  * Normal callers should use arc_read and pass the arc buffer and offset
2411  * for the bp.  But if you know you don't need locking, you can use
2412  * arc_read_bp.
2413  */
2414 int
2415 arc_read(zio_t *pio, spa_t *spa, blkptr_t *bp, arc_buf_t *pbuf,
2416     arc_done_func_t *done, void *private, int priority, int zio_flags,
2417     uint32_t *arc_flags, const zbookmark_t *zb)
2418 {
2419 	int err;
2420 
2421 	ASSERT(!refcount_is_zero(&pbuf->b_hdr->b_refcnt));
2422 	ASSERT3U((char *)bp - (char *)pbuf->b_data, <, pbuf->b_hdr->b_size);
2423 	rw_enter(&pbuf->b_hdr->b_datalock, RW_READER);
2424 
2425 	err = arc_read_nolock(pio, spa, bp, done, private, priority,
2426 	    zio_flags, arc_flags, zb);
2427 
2428 	rw_exit(&pbuf->b_hdr->b_datalock);
2429 	return (err);
2430 }
2431 
2432 int
2433 arc_read_nolock(zio_t *pio, spa_t *spa, blkptr_t *bp,
2434     arc_done_func_t *done, void *private, int priority, int zio_flags,
2435     uint32_t *arc_flags, const zbookmark_t *zb)
2436 {
2437 	arc_buf_hdr_t *hdr;
2438 	arc_buf_t *buf;
2439 	kmutex_t *hash_lock;
2440 	zio_t *rzio;
2441 
2442 top:
2443 	hdr = buf_hash_find(spa, BP_IDENTITY(bp), bp->blk_birth, &hash_lock);
2444 	if (hdr && hdr->b_datacnt > 0) {
2445 
2446 		*arc_flags |= ARC_CACHED;
2447 
2448 		if (HDR_IO_IN_PROGRESS(hdr)) {
2449 
2450 			if (*arc_flags & ARC_WAIT) {
2451 				cv_wait(&hdr->b_cv, hash_lock);
2452 				mutex_exit(hash_lock);
2453 				goto top;
2454 			}
2455 			ASSERT(*arc_flags & ARC_NOWAIT);
2456 
2457 			if (done) {
2458 				arc_callback_t	*acb = NULL;
2459 
2460 				acb = kmem_zalloc(sizeof (arc_callback_t),
2461 				    KM_SLEEP);
2462 				acb->acb_done = done;
2463 				acb->acb_private = private;
2464 				if (pio != NULL)
2465 					acb->acb_zio_dummy = zio_null(pio,
2466 					    spa, NULL, NULL, zio_flags);
2467 
2468 				ASSERT(acb->acb_done != NULL);
2469 				acb->acb_next = hdr->b_acb;
2470 				hdr->b_acb = acb;
2471 				add_reference(hdr, hash_lock, private);
2472 				mutex_exit(hash_lock);
2473 				return (0);
2474 			}
2475 			mutex_exit(hash_lock);
2476 			return (0);
2477 		}
2478 
2479 		ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
2480 
2481 		if (done) {
2482 			add_reference(hdr, hash_lock, private);
2483 			/*
2484 			 * If this block is already in use, create a new
2485 			 * copy of the data so that we will be guaranteed
2486 			 * that arc_release() will always succeed.
2487 			 */
2488 			buf = hdr->b_buf;
2489 			ASSERT(buf);
2490 			ASSERT(buf->b_data);
2491 			if (HDR_BUF_AVAILABLE(hdr)) {
2492 				ASSERT(buf->b_efunc == NULL);
2493 				hdr->b_flags &= ~ARC_BUF_AVAILABLE;
2494 			} else {
2495 				buf = arc_buf_clone(buf);
2496 			}
2497 		} else if (*arc_flags & ARC_PREFETCH &&
2498 		    refcount_count(&hdr->b_refcnt) == 0) {
2499 			hdr->b_flags |= ARC_PREFETCH;
2500 		}
2501 		DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
2502 		arc_access(hdr, hash_lock);
2503 		if (*arc_flags & ARC_L2CACHE)
2504 			hdr->b_flags |= ARC_L2CACHE;
2505 		mutex_exit(hash_lock);
2506 		ARCSTAT_BUMP(arcstat_hits);
2507 		ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
2508 		    demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
2509 		    data, metadata, hits);
2510 
2511 		if (done)
2512 			done(NULL, buf, private);
2513 	} else {
2514 		uint64_t size = BP_GET_LSIZE(bp);
2515 		arc_callback_t	*acb;
2516 		vdev_t *vd = NULL;
2517 		daddr_t addr;
2518 
2519 		if (hdr == NULL) {
2520 			/* this block is not in the cache */
2521 			arc_buf_hdr_t	*exists;
2522 			arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
2523 			buf = arc_buf_alloc(spa, size, private, type);
2524 			hdr = buf->b_hdr;
2525 			hdr->b_dva = *BP_IDENTITY(bp);
2526 			hdr->b_birth = bp->blk_birth;
2527 			hdr->b_cksum0 = bp->blk_cksum.zc_word[0];
2528 			exists = buf_hash_insert(hdr, &hash_lock);
2529 			if (exists) {
2530 				/* somebody beat us to the hash insert */
2531 				mutex_exit(hash_lock);
2532 				bzero(&hdr->b_dva, sizeof (dva_t));
2533 				hdr->b_birth = 0;
2534 				hdr->b_cksum0 = 0;
2535 				(void) arc_buf_remove_ref(buf, private);
2536 				goto top; /* restart the IO request */
2537 			}
2538 			/* if this is a prefetch, we don't have a reference */
2539 			if (*arc_flags & ARC_PREFETCH) {
2540 				(void) remove_reference(hdr, hash_lock,
2541 				    private);
2542 				hdr->b_flags |= ARC_PREFETCH;
2543 			}
2544 			if (*arc_flags & ARC_L2CACHE)
2545 				hdr->b_flags |= ARC_L2CACHE;
2546 			if (BP_GET_LEVEL(bp) > 0)
2547 				hdr->b_flags |= ARC_INDIRECT;
2548 		} else {
2549 			/* this block is in the ghost cache */
2550 			ASSERT(GHOST_STATE(hdr->b_state));
2551 			ASSERT(!HDR_IO_IN_PROGRESS(hdr));
2552 			ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 0);
2553 			ASSERT(hdr->b_buf == NULL);
2554 
2555 			/* if this is a prefetch, we don't have a reference */
2556 			if (*arc_flags & ARC_PREFETCH)
2557 				hdr->b_flags |= ARC_PREFETCH;
2558 			else
2559 				add_reference(hdr, hash_lock, private);
2560 			if (*arc_flags & ARC_L2CACHE)
2561 				hdr->b_flags |= ARC_L2CACHE;
2562 			buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
2563 			buf->b_hdr = hdr;
2564 			buf->b_data = NULL;
2565 			buf->b_efunc = NULL;
2566 			buf->b_private = NULL;
2567 			buf->b_next = NULL;
2568 			hdr->b_buf = buf;
2569 			arc_get_data_buf(buf);
2570 			ASSERT(hdr->b_datacnt == 0);
2571 			hdr->b_datacnt = 1;
2572 
2573 		}
2574 
2575 		acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
2576 		acb->acb_done = done;
2577 		acb->acb_private = private;
2578 
2579 		ASSERT(hdr->b_acb == NULL);
2580 		hdr->b_acb = acb;
2581 		hdr->b_flags |= ARC_IO_IN_PROGRESS;
2582 
2583 		/*
2584 		 * If the buffer has been evicted, migrate it to a present state
2585 		 * before issuing the I/O.  Once we drop the hash-table lock,
2586 		 * the header will be marked as I/O in progress and have an
2587 		 * attached buffer.  At this point, anybody who finds this
2588 		 * buffer ought to notice that it's legit but has a pending I/O.
2589 		 */
2590 
2591 		if (GHOST_STATE(hdr->b_state))
2592 			arc_access(hdr, hash_lock);
2593 
2594 		if (hdr->b_l2hdr != NULL) {
2595 			vd = hdr->b_l2hdr->b_dev->l2ad_vdev;
2596 			addr = hdr->b_l2hdr->b_daddr;
2597 		}
2598 
2599 		mutex_exit(hash_lock);
2600 
2601 		ASSERT3U(hdr->b_size, ==, size);
2602 		DTRACE_PROBE3(arc__miss, blkptr_t *, bp, uint64_t, size,
2603 		    zbookmark_t *, zb);
2604 		ARCSTAT_BUMP(arcstat_misses);
2605 		ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
2606 		    demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
2607 		    data, metadata, misses);
2608 
2609 		if (l2arc_ndev != 0 && HDR_L2CACHE(hdr)) {
2610 			/*
2611 			 * Lock out device removal.
2612 			 */
2613 			spa_config_enter(spa, RW_READER, FTAG);
2614 
2615 			/*
2616 			 * Read from the L2ARC if the following are true:
2617 			 * 1. The L2ARC vdev was previously cached.
2618 			 * 2. This buffer still has L2ARC metadata.
2619 			 * 3. This buffer isn't currently writing to the L2ARC.
2620 			 * 4. The L2ARC entry wasn't evicted, which may
2621 			 *    also have invalidated the vdev.
2622 			 */
2623 			if (vd != NULL && hdr->b_l2hdr != NULL &&
2624 			    !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr)) {
2625 				l2arc_read_callback_t *cb;
2626 
2627 				if (vdev_is_dead(vd))
2628 					goto l2skip;
2629 
2630 				DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
2631 				ARCSTAT_BUMP(arcstat_l2_hits);
2632 
2633 				cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
2634 				    KM_SLEEP);
2635 				cb->l2rcb_buf = buf;
2636 				cb->l2rcb_spa = spa;
2637 				cb->l2rcb_bp = *bp;
2638 				cb->l2rcb_zb = *zb;
2639 				cb->l2rcb_flags = zio_flags;
2640 
2641 				/*
2642 				 * l2arc read.
2643 				 */
2644 				rzio = zio_read_phys(pio, vd, addr, size,
2645 				    buf->b_data, ZIO_CHECKSUM_OFF,
2646 				    l2arc_read_done, cb, priority, zio_flags |
2647 				    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL,
2648 				    B_FALSE);
2649 				DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
2650 				    zio_t *, rzio);
2651 				spa_config_exit(spa, FTAG);
2652 
2653 				if (*arc_flags & ARC_NOWAIT) {
2654 					zio_nowait(rzio);
2655 					return (0);
2656 				}
2657 
2658 				ASSERT(*arc_flags & ARC_WAIT);
2659 				if (zio_wait(rzio) == 0)
2660 					return (0);
2661 
2662 				/* l2arc read error; goto zio_read() */
2663 			} else {
2664 				DTRACE_PROBE1(l2arc__miss,
2665 				    arc_buf_hdr_t *, hdr);
2666 				ARCSTAT_BUMP(arcstat_l2_misses);
2667 				if (HDR_L2_WRITING(hdr))
2668 					ARCSTAT_BUMP(arcstat_l2_rw_clash);
2669 l2skip:
2670 				spa_config_exit(spa, FTAG);
2671 			}
2672 		}
2673 
2674 		rzio = zio_read(pio, spa, bp, buf->b_data, size,
2675 		    arc_read_done, buf, priority, zio_flags, zb);
2676 
2677 		if (*arc_flags & ARC_WAIT)
2678 			return (zio_wait(rzio));
2679 
2680 		ASSERT(*arc_flags & ARC_NOWAIT);
2681 		zio_nowait(rzio);
2682 	}
2683 	return (0);
2684 }
2685 
2686 /*
2687  * arc_read() variant to support pool traversal.  If the block is already
2688  * in the ARC, make a copy of it; otherwise, the caller will do the I/O.
2689  * The idea is that we don't want pool traversal filling up memory, but
2690  * if the ARC already has the data anyway, we shouldn't pay for the I/O.
2691  */
2692 int
2693 arc_tryread(spa_t *spa, blkptr_t *bp, void *data)
2694 {
2695 	arc_buf_hdr_t *hdr;
2696 	kmutex_t *hash_mtx;
2697 	int rc = 0;
2698 
2699 	hdr = buf_hash_find(spa, BP_IDENTITY(bp), bp->blk_birth, &hash_mtx);
2700 
2701 	if (hdr && hdr->b_datacnt > 0 && !HDR_IO_IN_PROGRESS(hdr)) {
2702 		arc_buf_t *buf = hdr->b_buf;
2703 
2704 		ASSERT(buf);
2705 		while (buf->b_data == NULL) {
2706 			buf = buf->b_next;
2707 			ASSERT(buf);
2708 		}
2709 		bcopy(buf->b_data, data, hdr->b_size);
2710 	} else {
2711 		rc = ENOENT;
2712 	}
2713 
2714 	if (hash_mtx)
2715 		mutex_exit(hash_mtx);
2716 
2717 	return (rc);
2718 }
2719 
2720 void
2721 arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private)
2722 {
2723 	ASSERT(buf->b_hdr != NULL);
2724 	ASSERT(buf->b_hdr->b_state != arc_anon);
2725 	ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt) || func == NULL);
2726 	buf->b_efunc = func;
2727 	buf->b_private = private;
2728 }
2729 
2730 /*
2731  * This is used by the DMU to let the ARC know that a buffer is
2732  * being evicted, so the ARC should clean up.  If this arc buf
2733  * is not yet in the evicted state, it will be put there.
2734  */
2735 int
2736 arc_buf_evict(arc_buf_t *buf)
2737 {
2738 	arc_buf_hdr_t *hdr;
2739 	kmutex_t *hash_lock;
2740 	arc_buf_t **bufp;
2741 
2742 	mutex_enter(&arc_eviction_mtx);
2743 	hdr = buf->b_hdr;
2744 	if (hdr == NULL) {
2745 		/*
2746 		 * We are in arc_do_user_evicts().
2747 		 */
2748 		ASSERT(buf->b_data == NULL);
2749 		mutex_exit(&arc_eviction_mtx);
2750 		return (0);
2751 	}
2752 	hash_lock = HDR_LOCK(hdr);
2753 	mutex_exit(&arc_eviction_mtx);
2754 
2755 	mutex_enter(hash_lock);
2756 
2757 	if (buf->b_data == NULL) {
2758 		/*
2759 		 * We are on the eviction list.
2760 		 */
2761 		mutex_exit(hash_lock);
2762 		mutex_enter(&arc_eviction_mtx);
2763 		if (buf->b_hdr == NULL) {
2764 			/*
2765 			 * We are already in arc_do_user_evicts().
2766 			 */
2767 			mutex_exit(&arc_eviction_mtx);
2768 			return (0);
2769 		} else {
2770 			arc_buf_t copy = *buf; /* structure assignment */
2771 			/*
2772 			 * Process this buffer now
2773 			 * but let arc_do_user_evicts() do the reaping.
2774 			 */
2775 			buf->b_efunc = NULL;
2776 			mutex_exit(&arc_eviction_mtx);
2777 			VERIFY(copy.b_efunc(&copy) == 0);
2778 			return (1);
2779 		}
2780 	}
2781 
2782 	ASSERT(buf->b_hdr == hdr);
2783 	ASSERT3U(refcount_count(&hdr->b_refcnt), <, hdr->b_datacnt);
2784 	ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
2785 
2786 	/*
2787 	 * Pull this buffer off of the hdr
2788 	 */
2789 	bufp = &hdr->b_buf;
2790 	while (*bufp != buf)
2791 		bufp = &(*bufp)->b_next;
2792 	*bufp = buf->b_next;
2793 
2794 	ASSERT(buf->b_data != NULL);
2795 	arc_buf_destroy(buf, FALSE, FALSE);
2796 
2797 	if (hdr->b_datacnt == 0) {
2798 		arc_state_t *old_state = hdr->b_state;
2799 		arc_state_t *evicted_state;
2800 
2801 		ASSERT(refcount_is_zero(&hdr->b_refcnt));
2802 
2803 		evicted_state =
2804 		    (old_state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
2805 
2806 		mutex_enter(&old_state->arcs_mtx);
2807 		mutex_enter(&evicted_state->arcs_mtx);
2808 
2809 		arc_change_state(evicted_state, hdr, hash_lock);
2810 		ASSERT(HDR_IN_HASH_TABLE(hdr));
2811 		hdr->b_flags |= ARC_IN_HASH_TABLE;
2812 		hdr->b_flags &= ~ARC_BUF_AVAILABLE;
2813 
2814 		mutex_exit(&evicted_state->arcs_mtx);
2815 		mutex_exit(&old_state->arcs_mtx);
2816 	}
2817 	mutex_exit(hash_lock);
2818 
2819 	VERIFY(buf->b_efunc(buf) == 0);
2820 	buf->b_efunc = NULL;
2821 	buf->b_private = NULL;
2822 	buf->b_hdr = NULL;
2823 	kmem_cache_free(buf_cache, buf);
2824 	return (1);
2825 }
2826 
2827 /*
2828  * Release this buffer from the cache.  This must be done
2829  * after a read and prior to modifying the buffer contents.
2830  * If the buffer has more than one reference, we must make
2831  * a new hdr for the buffer.
2832  */
2833 void
2834 arc_release(arc_buf_t *buf, void *tag)
2835 {
2836 	arc_buf_hdr_t *hdr = buf->b_hdr;
2837 	kmutex_t *hash_lock = HDR_LOCK(hdr);
2838 	l2arc_buf_hdr_t *l2hdr = NULL;
2839 	uint64_t buf_size;
2840 
2841 	/* this buffer is not on any list */
2842 	ASSERT(refcount_count(&hdr->b_refcnt) > 0);
2843 	ASSERT(!(hdr->b_flags & ARC_STORED));
2844 
2845 	if (hdr->b_state == arc_anon) {
2846 		/* this buffer is already released */
2847 		ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 1);
2848 		ASSERT(BUF_EMPTY(hdr));
2849 		ASSERT(buf->b_efunc == NULL);
2850 		arc_buf_thaw(buf);
2851 		return;
2852 	}
2853 
2854 	mutex_enter(hash_lock);
2855 
2856 	/*
2857 	 * Do we have more than one buf?
2858 	 */
2859 	if (hdr->b_buf != buf || buf->b_next != NULL) {
2860 		arc_buf_hdr_t *nhdr;
2861 		arc_buf_t **bufp;
2862 		uint64_t blksz = hdr->b_size;
2863 		spa_t *spa = hdr->b_spa;
2864 		arc_buf_contents_t type = hdr->b_type;
2865 		uint32_t flags = hdr->b_flags;
2866 
2867 		ASSERT(hdr->b_datacnt > 1);
2868 		/*
2869 		 * Pull the data off of this buf and attach it to
2870 		 * a new anonymous buf.
2871 		 */
2872 		(void) remove_reference(hdr, hash_lock, tag);
2873 		bufp = &hdr->b_buf;
2874 		while (*bufp != buf)
2875 			bufp = &(*bufp)->b_next;
2876 		*bufp = (*bufp)->b_next;
2877 		buf->b_next = NULL;
2878 
2879 		ASSERT3U(hdr->b_state->arcs_size, >=, hdr->b_size);
2880 		atomic_add_64(&hdr->b_state->arcs_size, -hdr->b_size);
2881 		if (refcount_is_zero(&hdr->b_refcnt)) {
2882 			uint64_t *size = &hdr->b_state->arcs_lsize[hdr->b_type];
2883 			ASSERT3U(*size, >=, hdr->b_size);
2884 			atomic_add_64(size, -hdr->b_size);
2885 		}
2886 		hdr->b_datacnt -= 1;
2887 		if (hdr->b_l2hdr != NULL) {
2888 			mutex_enter(&l2arc_buflist_mtx);
2889 			l2hdr = hdr->b_l2hdr;
2890 			hdr->b_l2hdr = NULL;
2891 			buf_size = hdr->b_size;
2892 		}
2893 		arc_cksum_verify(buf);
2894 
2895 		mutex_exit(hash_lock);
2896 
2897 		nhdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
2898 		nhdr->b_size = blksz;
2899 		nhdr->b_spa = spa;
2900 		nhdr->b_type = type;
2901 		nhdr->b_buf = buf;
2902 		nhdr->b_state = arc_anon;
2903 		nhdr->b_arc_access = 0;
2904 		nhdr->b_flags = flags & ARC_L2_WRITING;
2905 		nhdr->b_l2hdr = NULL;
2906 		nhdr->b_datacnt = 1;
2907 		nhdr->b_freeze_cksum = NULL;
2908 		(void) refcount_add(&nhdr->b_refcnt, tag);
2909 		buf->b_hdr = nhdr;
2910 		atomic_add_64(&arc_anon->arcs_size, blksz);
2911 	} else {
2912 		ASSERT(refcount_count(&hdr->b_refcnt) == 1);
2913 		ASSERT(!list_link_active(&hdr->b_arc_node));
2914 		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
2915 		arc_change_state(arc_anon, hdr, hash_lock);
2916 		hdr->b_arc_access = 0;
2917 		if (hdr->b_l2hdr != NULL) {
2918 			mutex_enter(&l2arc_buflist_mtx);
2919 			l2hdr = hdr->b_l2hdr;
2920 			hdr->b_l2hdr = NULL;
2921 			buf_size = hdr->b_size;
2922 		}
2923 		mutex_exit(hash_lock);
2924 
2925 		bzero(&hdr->b_dva, sizeof (dva_t));
2926 		hdr->b_birth = 0;
2927 		hdr->b_cksum0 = 0;
2928 		arc_buf_thaw(buf);
2929 	}
2930 	buf->b_efunc = NULL;
2931 	buf->b_private = NULL;
2932 
2933 	if (l2hdr) {
2934 		list_remove(l2hdr->b_dev->l2ad_buflist, hdr);
2935 		kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t));
2936 		ARCSTAT_INCR(arcstat_l2_size, -buf_size);
2937 	}
2938 	if (MUTEX_HELD(&l2arc_buflist_mtx))
2939 		mutex_exit(&l2arc_buflist_mtx);
2940 }
2941 
2942 int
2943 arc_released(arc_buf_t *buf)
2944 {
2945 	return (buf->b_data != NULL && buf->b_hdr->b_state == arc_anon);
2946 }
2947 
2948 int
2949 arc_has_callback(arc_buf_t *buf)
2950 {
2951 	return (buf->b_efunc != NULL);
2952 }
2953 
2954 #ifdef ZFS_DEBUG
2955 int
2956 arc_referenced(arc_buf_t *buf)
2957 {
2958 	return (refcount_count(&buf->b_hdr->b_refcnt));
2959 }
2960 #endif
2961 
2962 static void
2963 arc_write_ready(zio_t *zio)
2964 {
2965 	arc_write_callback_t *callback = zio->io_private;
2966 	arc_buf_t *buf = callback->awcb_buf;
2967 	arc_buf_hdr_t *hdr = buf->b_hdr;
2968 
2969 	if (zio->io_error == 0 && callback->awcb_ready) {
2970 		ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt));
2971 		callback->awcb_ready(zio, buf, callback->awcb_private);
2972 	}
2973 	/*
2974 	 * If the IO is already in progress, then this is a re-write
2975 	 * attempt, so we need to thaw and re-compute the cksum. It is
2976 	 * the responsibility of the callback to handle the freeing
2977 	 * and accounting for any re-write attempt. If we don't have a
2978 	 * callback registered then simply free the block here.
2979 	 */
2980 	if (HDR_IO_IN_PROGRESS(hdr)) {
2981 		if (!BP_IS_HOLE(&zio->io_bp_orig) &&
2982 		    callback->awcb_ready == NULL) {
2983 			zio_nowait(zio_free(zio, zio->io_spa, zio->io_txg,
2984 			    &zio->io_bp_orig, NULL, NULL));
2985 		}
2986 		mutex_enter(&hdr->b_freeze_lock);
2987 		if (hdr->b_freeze_cksum != NULL) {
2988 			kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
2989 			hdr->b_freeze_cksum = NULL;
2990 		}
2991 		mutex_exit(&hdr->b_freeze_lock);
2992 	}
2993 	arc_cksum_compute(buf, B_FALSE);
2994 	hdr->b_flags |= ARC_IO_IN_PROGRESS;
2995 }
2996 
2997 static void
2998 arc_write_done(zio_t *zio)
2999 {
3000 	arc_write_callback_t *callback = zio->io_private;
3001 	arc_buf_t *buf = callback->awcb_buf;
3002 	arc_buf_hdr_t *hdr = buf->b_hdr;
3003 
3004 	hdr->b_acb = NULL;
3005 
3006 	hdr->b_dva = *BP_IDENTITY(zio->io_bp);
3007 	hdr->b_birth = zio->io_bp->blk_birth;
3008 	hdr->b_cksum0 = zio->io_bp->blk_cksum.zc_word[0];
3009 	/*
3010 	 * If the block to be written was all-zero, we may have
3011 	 * compressed it away.  In this case no write was performed
3012 	 * so there will be no dva/birth-date/checksum.  The buffer
3013 	 * must therefor remain anonymous (and uncached).
3014 	 */
3015 	if (!BUF_EMPTY(hdr)) {
3016 		arc_buf_hdr_t *exists;
3017 		kmutex_t *hash_lock;
3018 
3019 		arc_cksum_verify(buf);
3020 
3021 		exists = buf_hash_insert(hdr, &hash_lock);
3022 		if (exists) {
3023 			/*
3024 			 * This can only happen if we overwrite for
3025 			 * sync-to-convergence, because we remove
3026 			 * buffers from the hash table when we arc_free().
3027 			 */
3028 			ASSERT(DVA_EQUAL(BP_IDENTITY(&zio->io_bp_orig),
3029 			    BP_IDENTITY(zio->io_bp)));
3030 			ASSERT3U(zio->io_bp_orig.blk_birth, ==,
3031 			    zio->io_bp->blk_birth);
3032 
3033 			ASSERT(refcount_is_zero(&exists->b_refcnt));
3034 			arc_change_state(arc_anon, exists, hash_lock);
3035 			mutex_exit(hash_lock);
3036 			arc_hdr_destroy(exists);
3037 			exists = buf_hash_insert(hdr, &hash_lock);
3038 			ASSERT3P(exists, ==, NULL);
3039 		}
3040 		hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
3041 		/* if it's not anon, we are doing a scrub */
3042 		if (hdr->b_state == arc_anon)
3043 			arc_access(hdr, hash_lock);
3044 		mutex_exit(hash_lock);
3045 	} else if (callback->awcb_done == NULL) {
3046 		int destroy_hdr;
3047 		/*
3048 		 * This is an anonymous buffer with no user callback,
3049 		 * destroy it if there are no active references.
3050 		 */
3051 		mutex_enter(&arc_eviction_mtx);
3052 		destroy_hdr = refcount_is_zero(&hdr->b_refcnt);
3053 		hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
3054 		mutex_exit(&arc_eviction_mtx);
3055 		if (destroy_hdr)
3056 			arc_hdr_destroy(hdr);
3057 	} else {
3058 		hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
3059 	}
3060 	hdr->b_flags &= ~ARC_STORED;
3061 
3062 	if (callback->awcb_done) {
3063 		ASSERT(!refcount_is_zero(&hdr->b_refcnt));
3064 		callback->awcb_done(zio, buf, callback->awcb_private);
3065 	}
3066 
3067 	kmem_free(callback, sizeof (arc_write_callback_t));
3068 }
3069 
3070 static void
3071 write_policy(spa_t *spa, const writeprops_t *wp,
3072     int *cksump, int *compp, int *copiesp)
3073 {
3074 	int copies = wp->wp_copies;
3075 	boolean_t ismd = (wp->wp_level > 0 || dmu_ot[wp->wp_type].ot_metadata);
3076 
3077 	/* Determine copies setting */
3078 	if (ismd)
3079 		copies++;
3080 	*copiesp = MIN(copies, spa_max_replication(spa));
3081 
3082 	/* Determine checksum setting */
3083 	if (ismd) {
3084 		/*
3085 		 * Metadata always gets checksummed.  If the data
3086 		 * checksum is multi-bit correctable, and it's not a
3087 		 * ZBT-style checksum, then it's suitable for metadata
3088 		 * as well.  Otherwise, the metadata checksum defaults
3089 		 * to fletcher4.
3090 		 */
3091 		if (zio_checksum_table[wp->wp_oschecksum].ci_correctable &&
3092 		    !zio_checksum_table[wp->wp_oschecksum].ci_zbt)
3093 			*cksump = wp->wp_oschecksum;
3094 		else
3095 			*cksump = ZIO_CHECKSUM_FLETCHER_4;
3096 	} else {
3097 		*cksump = zio_checksum_select(wp->wp_dnchecksum,
3098 		    wp->wp_oschecksum);
3099 	}
3100 
3101 	/* Determine compression setting */
3102 	if (ismd) {
3103 		/*
3104 		 * XXX -- we should design a compression algorithm
3105 		 * that specializes in arrays of bps.
3106 		 */
3107 		*compp = zfs_mdcomp_disable ? ZIO_COMPRESS_EMPTY :
3108 		    ZIO_COMPRESS_LZJB;
3109 	} else {
3110 		*compp = zio_compress_select(wp->wp_dncompress,
3111 		    wp->wp_oscompress);
3112 	}
3113 }
3114 
3115 zio_t *
3116 arc_write(zio_t *pio, spa_t *spa, const writeprops_t *wp,
3117     boolean_t l2arc, uint64_t txg, blkptr_t *bp, arc_buf_t *buf,
3118     arc_done_func_t *ready, arc_done_func_t *done, void *private, int priority,
3119     int zio_flags, const zbookmark_t *zb)
3120 {
3121 	arc_buf_hdr_t *hdr = buf->b_hdr;
3122 	arc_write_callback_t *callback;
3123 	zio_t	*zio;
3124 	int cksum, comp, copies;
3125 
3126 	ASSERT(!HDR_IO_ERROR(hdr));
3127 	ASSERT((hdr->b_flags & ARC_IO_IN_PROGRESS) == 0);
3128 	ASSERT(hdr->b_acb == 0);
3129 	if (l2arc)
3130 		hdr->b_flags |= ARC_L2CACHE;
3131 	callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
3132 	callback->awcb_ready = ready;
3133 	callback->awcb_done = done;
3134 	callback->awcb_private = private;
3135 	callback->awcb_buf = buf;
3136 
3137 	write_policy(spa, wp, &cksum, &comp, &copies);
3138 	zio = zio_write(pio, spa, cksum, comp, copies, txg, bp,
3139 	    buf->b_data, hdr->b_size, arc_write_ready, arc_write_done,
3140 	    callback, priority, zio_flags, zb);
3141 
3142 	return (zio);
3143 }
3144 
3145 int
3146 arc_free(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
3147     zio_done_func_t *done, void *private, uint32_t arc_flags)
3148 {
3149 	arc_buf_hdr_t *ab;
3150 	kmutex_t *hash_lock;
3151 	zio_t	*zio;
3152 
3153 	/*
3154 	 * If this buffer is in the cache, release it, so it
3155 	 * can be re-used.
3156 	 */
3157 	ab = buf_hash_find(spa, BP_IDENTITY(bp), bp->blk_birth, &hash_lock);
3158 	if (ab != NULL) {
3159 		/*
3160 		 * The checksum of blocks to free is not always
3161 		 * preserved (eg. on the deadlist).  However, if it is
3162 		 * nonzero, it should match what we have in the cache.
3163 		 */
3164 		ASSERT(bp->blk_cksum.zc_word[0] == 0 ||
3165 		    ab->b_cksum0 == bp->blk_cksum.zc_word[0]);
3166 		if (ab->b_state != arc_anon)
3167 			arc_change_state(arc_anon, ab, hash_lock);
3168 		if (HDR_IO_IN_PROGRESS(ab)) {
3169 			/*
3170 			 * This should only happen when we prefetch.
3171 			 */
3172 			ASSERT(ab->b_flags & ARC_PREFETCH);
3173 			ASSERT3U(ab->b_datacnt, ==, 1);
3174 			ab->b_flags |= ARC_FREED_IN_READ;
3175 			if (HDR_IN_HASH_TABLE(ab))
3176 				buf_hash_remove(ab);
3177 			ab->b_arc_access = 0;
3178 			bzero(&ab->b_dva, sizeof (dva_t));
3179 			ab->b_birth = 0;
3180 			ab->b_cksum0 = 0;
3181 			ab->b_buf->b_efunc = NULL;
3182 			ab->b_buf->b_private = NULL;
3183 			mutex_exit(hash_lock);
3184 		} else if (refcount_is_zero(&ab->b_refcnt)) {
3185 			ab->b_flags |= ARC_FREE_IN_PROGRESS;
3186 			mutex_exit(hash_lock);
3187 			arc_hdr_destroy(ab);
3188 			ARCSTAT_BUMP(arcstat_deleted);
3189 		} else {
3190 			/*
3191 			 * We still have an active reference on this
3192 			 * buffer.  This can happen, e.g., from
3193 			 * dbuf_unoverride().
3194 			 */
3195 			ASSERT(!HDR_IN_HASH_TABLE(ab));
3196 			ab->b_arc_access = 0;
3197 			bzero(&ab->b_dva, sizeof (dva_t));
3198 			ab->b_birth = 0;
3199 			ab->b_cksum0 = 0;
3200 			ab->b_buf->b_efunc = NULL;
3201 			ab->b_buf->b_private = NULL;
3202 			mutex_exit(hash_lock);
3203 		}
3204 	}
3205 
3206 	zio = zio_free(pio, spa, txg, bp, done, private);
3207 
3208 	if (arc_flags & ARC_WAIT)
3209 		return (zio_wait(zio));
3210 
3211 	ASSERT(arc_flags & ARC_NOWAIT);
3212 	zio_nowait(zio);
3213 
3214 	return (0);
3215 }
3216 
3217 static int
3218 arc_memory_throttle(uint64_t reserve, uint64_t txg)
3219 {
3220 #ifdef _KERNEL
3221 	uint64_t inflight_data = arc_anon->arcs_size;
3222 	uint64_t available_memory = ptob(freemem);
3223 	static uint64_t page_load = 0;
3224 	static uint64_t last_txg = 0;
3225 
3226 #if defined(__i386)
3227 	available_memory =
3228 	    MIN(available_memory, vmem_size(heap_arena, VMEM_FREE));
3229 #endif
3230 	if (available_memory >= zfs_write_limit_max)
3231 		return (0);
3232 
3233 	if (txg > last_txg) {
3234 		last_txg = txg;
3235 		page_load = 0;
3236 	}
3237 	/*
3238 	 * If we are in pageout, we know that memory is already tight,
3239 	 * the arc is already going to be evicting, so we just want to
3240 	 * continue to let page writes occur as quickly as possible.
3241 	 */
3242 	if (curproc == proc_pageout) {
3243 		if (page_load > MAX(ptob(minfree), available_memory) / 4)
3244 			return (ERESTART);
3245 		/* Note: reserve is inflated, so we deflate */
3246 		page_load += reserve / 8;
3247 		return (0);
3248 	} else if (page_load > 0 && arc_reclaim_needed()) {
3249 		/* memory is low, delay before restarting */
3250 		ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
3251 		return (EAGAIN);
3252 	}
3253 	page_load = 0;
3254 
3255 	if (arc_size > arc_c_min) {
3256 		uint64_t evictable_memory =
3257 		    arc_mru->arcs_lsize[ARC_BUFC_DATA] +
3258 		    arc_mru->arcs_lsize[ARC_BUFC_METADATA] +
3259 		    arc_mfu->arcs_lsize[ARC_BUFC_DATA] +
3260 		    arc_mfu->arcs_lsize[ARC_BUFC_METADATA];
3261 		available_memory += MIN(evictable_memory, arc_size - arc_c_min);
3262 	}
3263 
3264 	if (inflight_data > available_memory / 4) {
3265 		ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
3266 		return (ERESTART);
3267 	}
3268 #endif
3269 	return (0);
3270 }
3271 
3272 void
3273 arc_tempreserve_clear(uint64_t reserve)
3274 {
3275 	atomic_add_64(&arc_tempreserve, -reserve);
3276 	ASSERT((int64_t)arc_tempreserve >= 0);
3277 }
3278 
3279 int
3280 arc_tempreserve_space(uint64_t reserve, uint64_t txg)
3281 {
3282 	int error;
3283 
3284 #ifdef ZFS_DEBUG
3285 	/*
3286 	 * Once in a while, fail for no reason.  Everything should cope.
3287 	 */
3288 	if (spa_get_random(10000) == 0) {
3289 		dprintf("forcing random failure\n");
3290 		return (ERESTART);
3291 	}
3292 #endif
3293 	if (reserve > arc_c/4 && !arc_no_grow)
3294 		arc_c = MIN(arc_c_max, reserve * 4);
3295 	if (reserve > arc_c)
3296 		return (ENOMEM);
3297 
3298 	/*
3299 	 * Writes will, almost always, require additional memory allocations
3300 	 * in order to compress/encrypt/etc the data.  We therefor need to
3301 	 * make sure that there is sufficient available memory for this.
3302 	 */
3303 	if (error = arc_memory_throttle(reserve, txg))
3304 		return (error);
3305 
3306 	/*
3307 	 * Throttle writes when the amount of dirty data in the cache
3308 	 * gets too large.  We try to keep the cache less than half full
3309 	 * of dirty blocks so that our sync times don't grow too large.
3310 	 * Note: if two requests come in concurrently, we might let them
3311 	 * both succeed, when one of them should fail.  Not a huge deal.
3312 	 */
3313 	if (reserve + arc_tempreserve + arc_anon->arcs_size > arc_c / 2 &&
3314 	    arc_anon->arcs_size > arc_c / 4) {
3315 		dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
3316 		    "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
3317 		    arc_tempreserve>>10,
3318 		    arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10,
3319 		    arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10,
3320 		    reserve>>10, arc_c>>10);
3321 		return (ERESTART);
3322 	}
3323 	atomic_add_64(&arc_tempreserve, reserve);
3324 	return (0);
3325 }
3326 
3327 void
3328 arc_init(void)
3329 {
3330 	mutex_init(&arc_reclaim_thr_lock, NULL, MUTEX_DEFAULT, NULL);
3331 	cv_init(&arc_reclaim_thr_cv, NULL, CV_DEFAULT, NULL);
3332 
3333 	/* Convert seconds to clock ticks */
3334 	arc_min_prefetch_lifespan = 1 * hz;
3335 
3336 	/* Start out with 1/8 of all memory */
3337 	arc_c = physmem * PAGESIZE / 8;
3338 
3339 #ifdef _KERNEL
3340 	/*
3341 	 * On architectures where the physical memory can be larger
3342 	 * than the addressable space (intel in 32-bit mode), we may
3343 	 * need to limit the cache to 1/8 of VM size.
3344 	 */
3345 	arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8);
3346 #endif
3347 
3348 	/* set min cache to 1/32 of all memory, or 64MB, whichever is more */
3349 	arc_c_min = MAX(arc_c / 4, 64<<20);
3350 	/* set max to 3/4 of all memory, or all but 1GB, whichever is more */
3351 	if (arc_c * 8 >= 1<<30)
3352 		arc_c_max = (arc_c * 8) - (1<<30);
3353 	else
3354 		arc_c_max = arc_c_min;
3355 	arc_c_max = MAX(arc_c * 6, arc_c_max);
3356 
3357 	/*
3358 	 * Allow the tunables to override our calculations if they are
3359 	 * reasonable (ie. over 64MB)
3360 	 */
3361 	if (zfs_arc_max > 64<<20 && zfs_arc_max < physmem * PAGESIZE)
3362 		arc_c_max = zfs_arc_max;
3363 	if (zfs_arc_min > 64<<20 && zfs_arc_min <= arc_c_max)
3364 		arc_c_min = zfs_arc_min;
3365 
3366 	arc_c = arc_c_max;
3367 	arc_p = (arc_c >> 1);
3368 
3369 	/* limit meta-data to 1/4 of the arc capacity */
3370 	arc_meta_limit = arc_c_max / 4;
3371 
3372 	/* Allow the tunable to override if it is reasonable */
3373 	if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max)
3374 		arc_meta_limit = zfs_arc_meta_limit;
3375 
3376 	if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0)
3377 		arc_c_min = arc_meta_limit / 2;
3378 
3379 	/* if kmem_flags are set, lets try to use less memory */
3380 	if (kmem_debugging())
3381 		arc_c = arc_c / 2;
3382 	if (arc_c < arc_c_min)
3383 		arc_c = arc_c_min;
3384 
3385 	arc_anon = &ARC_anon;
3386 	arc_mru = &ARC_mru;
3387 	arc_mru_ghost = &ARC_mru_ghost;
3388 	arc_mfu = &ARC_mfu;
3389 	arc_mfu_ghost = &ARC_mfu_ghost;
3390 	arc_l2c_only = &ARC_l2c_only;
3391 	arc_size = 0;
3392 
3393 	mutex_init(&arc_anon->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3394 	mutex_init(&arc_mru->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3395 	mutex_init(&arc_mru_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3396 	mutex_init(&arc_mfu->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3397 	mutex_init(&arc_mfu_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3398 	mutex_init(&arc_l2c_only->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3399 
3400 	list_create(&arc_mru->arcs_list[ARC_BUFC_METADATA],
3401 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3402 	list_create(&arc_mru->arcs_list[ARC_BUFC_DATA],
3403 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3404 	list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA],
3405 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3406 	list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA],
3407 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3408 	list_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA],
3409 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3410 	list_create(&arc_mfu->arcs_list[ARC_BUFC_DATA],
3411 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3412 	list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA],
3413 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3414 	list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA],
3415 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3416 	list_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA],
3417 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3418 	list_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA],
3419 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3420 
3421 	buf_init();
3422 
3423 	arc_thread_exit = 0;
3424 	arc_eviction_list = NULL;
3425 	mutex_init(&arc_eviction_mtx, NULL, MUTEX_DEFAULT, NULL);
3426 	bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t));
3427 
3428 	arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
3429 	    sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
3430 
3431 	if (arc_ksp != NULL) {
3432 		arc_ksp->ks_data = &arc_stats;
3433 		kstat_install(arc_ksp);
3434 	}
3435 
3436 	(void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0,
3437 	    TS_RUN, minclsyspri);
3438 
3439 	arc_dead = FALSE;
3440 	arc_warm = B_FALSE;
3441 
3442 	if (zfs_write_limit_max == 0)
3443 		zfs_write_limit_max = physmem * PAGESIZE >>
3444 		    zfs_write_limit_shift;
3445 	else
3446 		zfs_write_limit_shift = 0;
3447 }
3448 
3449 void
3450 arc_fini(void)
3451 {
3452 	mutex_enter(&arc_reclaim_thr_lock);
3453 	arc_thread_exit = 1;
3454 	while (arc_thread_exit != 0)
3455 		cv_wait(&arc_reclaim_thr_cv, &arc_reclaim_thr_lock);
3456 	mutex_exit(&arc_reclaim_thr_lock);
3457 
3458 	arc_flush(NULL);
3459 
3460 	arc_dead = TRUE;
3461 
3462 	if (arc_ksp != NULL) {
3463 		kstat_delete(arc_ksp);
3464 		arc_ksp = NULL;
3465 	}
3466 
3467 	mutex_destroy(&arc_eviction_mtx);
3468 	mutex_destroy(&arc_reclaim_thr_lock);
3469 	cv_destroy(&arc_reclaim_thr_cv);
3470 
3471 	list_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]);
3472 	list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
3473 	list_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]);
3474 	list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
3475 	list_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]);
3476 	list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
3477 	list_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]);
3478 	list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
3479 
3480 	mutex_destroy(&arc_anon->arcs_mtx);
3481 	mutex_destroy(&arc_mru->arcs_mtx);
3482 	mutex_destroy(&arc_mru_ghost->arcs_mtx);
3483 	mutex_destroy(&arc_mfu->arcs_mtx);
3484 	mutex_destroy(&arc_mfu_ghost->arcs_mtx);
3485 
3486 	buf_fini();
3487 }
3488 
3489 /*
3490  * Level 2 ARC
3491  *
3492  * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
3493  * It uses dedicated storage devices to hold cached data, which are populated
3494  * using large infrequent writes.  The main role of this cache is to boost
3495  * the performance of random read workloads.  The intended L2ARC devices
3496  * include short-stroked disks, solid state disks, and other media with
3497  * substantially faster read latency than disk.
3498  *
3499  *                 +-----------------------+
3500  *                 |         ARC           |
3501  *                 +-----------------------+
3502  *                    |         ^     ^
3503  *                    |         |     |
3504  *      l2arc_feed_thread()    arc_read()
3505  *                    |         |     |
3506  *                    |  l2arc read   |
3507  *                    V         |     |
3508  *               +---------------+    |
3509  *               |     L2ARC     |    |
3510  *               +---------------+    |
3511  *                   |    ^           |
3512  *          l2arc_write() |           |
3513  *                   |    |           |
3514  *                   V    |           |
3515  *                 +-------+      +-------+
3516  *                 | vdev  |      | vdev  |
3517  *                 | cache |      | cache |
3518  *                 +-------+      +-------+
3519  *                 +=========+     .-----.
3520  *                 :  L2ARC  :    |-_____-|
3521  *                 : devices :    | Disks |
3522  *                 +=========+    `-_____-'
3523  *
3524  * Read requests are satisfied from the following sources, in order:
3525  *
3526  *	1) ARC
3527  *	2) vdev cache of L2ARC devices
3528  *	3) L2ARC devices
3529  *	4) vdev cache of disks
3530  *	5) disks
3531  *
3532  * Some L2ARC device types exhibit extremely slow write performance.
3533  * To accommodate for this there are some significant differences between
3534  * the L2ARC and traditional cache design:
3535  *
3536  * 1. There is no eviction path from the ARC to the L2ARC.  Evictions from
3537  * the ARC behave as usual, freeing buffers and placing headers on ghost
3538  * lists.  The ARC does not send buffers to the L2ARC during eviction as
3539  * this would add inflated write latencies for all ARC memory pressure.
3540  *
3541  * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
3542  * It does this by periodically scanning buffers from the eviction-end of
3543  * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
3544  * not already there.  It scans until a headroom of buffers is satisfied,
3545  * which itself is a buffer for ARC eviction.  The thread that does this is
3546  * l2arc_feed_thread(), illustrated below; example sizes are included to
3547  * provide a better sense of ratio than this diagram:
3548  *
3549  *	       head -->                        tail
3550  *	        +---------------------+----------+
3551  *	ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->.   # already on L2ARC
3552  *	        +---------------------+----------+   |   o L2ARC eligible
3553  *	ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->|   : ARC buffer
3554  *	        +---------------------+----------+   |
3555  *	             15.9 Gbytes      ^ 32 Mbytes    |
3556  *	                           headroom          |
3557  *	                                      l2arc_feed_thread()
3558  *	                                             |
3559  *	                 l2arc write hand <--[oooo]--'
3560  *	                         |           8 Mbyte
3561  *	                         |          write max
3562  *	                         V
3563  *		  +==============================+
3564  *	L2ARC dev |####|#|###|###|    |####| ... |
3565  *	          +==============================+
3566  *	                     32 Gbytes
3567  *
3568  * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
3569  * evicted, then the L2ARC has cached a buffer much sooner than it probably
3570  * needed to, potentially wasting L2ARC device bandwidth and storage.  It is
3571  * safe to say that this is an uncommon case, since buffers at the end of
3572  * the ARC lists have moved there due to inactivity.
3573  *
3574  * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
3575  * then the L2ARC simply misses copying some buffers.  This serves as a
3576  * pressure valve to prevent heavy read workloads from both stalling the ARC
3577  * with waits and clogging the L2ARC with writes.  This also helps prevent
3578  * the potential for the L2ARC to churn if it attempts to cache content too
3579  * quickly, such as during backups of the entire pool.
3580  *
3581  * 5. After system boot and before the ARC has filled main memory, there are
3582  * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
3583  * lists can remain mostly static.  Instead of searching from tail of these
3584  * lists as pictured, the l2arc_feed_thread() will search from the list heads
3585  * for eligible buffers, greatly increasing its chance of finding them.
3586  *
3587  * The L2ARC device write speed is also boosted during this time so that
3588  * the L2ARC warms up faster.  Since there have been no ARC evictions yet,
3589  * there are no L2ARC reads, and no fear of degrading read performance
3590  * through increased writes.
3591  *
3592  * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
3593  * the vdev queue can aggregate them into larger and fewer writes.  Each
3594  * device is written to in a rotor fashion, sweeping writes through
3595  * available space then repeating.
3596  *
3597  * 7. The L2ARC does not store dirty content.  It never needs to flush
3598  * write buffers back to disk based storage.
3599  *
3600  * 8. If an ARC buffer is written (and dirtied) which also exists in the
3601  * L2ARC, the now stale L2ARC buffer is immediately dropped.
3602  *
3603  * The performance of the L2ARC can be tweaked by a number of tunables, which
3604  * may be necessary for different workloads:
3605  *
3606  *	l2arc_write_max		max write bytes per interval
3607  *	l2arc_write_boost	extra write bytes during device warmup
3608  *	l2arc_noprefetch	skip caching prefetched buffers
3609  *	l2arc_headroom		number of max device writes to precache
3610  *	l2arc_feed_secs		seconds between L2ARC writing
3611  *
3612  * Tunables may be removed or added as future performance improvements are
3613  * integrated, and also may become zpool properties.
3614  */
3615 
3616 static void
3617 l2arc_hdr_stat_add(void)
3618 {
3619 	ARCSTAT_INCR(arcstat_l2_hdr_size, HDR_SIZE + L2HDR_SIZE);
3620 	ARCSTAT_INCR(arcstat_hdr_size, -HDR_SIZE);
3621 }
3622 
3623 static void
3624 l2arc_hdr_stat_remove(void)
3625 {
3626 	ARCSTAT_INCR(arcstat_l2_hdr_size, -(HDR_SIZE + L2HDR_SIZE));
3627 	ARCSTAT_INCR(arcstat_hdr_size, HDR_SIZE);
3628 }
3629 
3630 /*
3631  * Cycle through L2ARC devices.  This is how L2ARC load balances.
3632  * If a device is returned, this also returns holding the spa config lock.
3633  */
3634 static l2arc_dev_t *
3635 l2arc_dev_get_next(void)
3636 {
3637 	l2arc_dev_t *first, *next = NULL;
3638 
3639 	/*
3640 	 * Lock out the removal of spas (spa_namespace_lock), then removal
3641 	 * of cache devices (l2arc_dev_mtx).  Once a device has been selected,
3642 	 * both locks will be dropped and a spa config lock held instead.
3643 	 */
3644 	mutex_enter(&spa_namespace_lock);
3645 	mutex_enter(&l2arc_dev_mtx);
3646 
3647 	/* if there are no vdevs, there is nothing to do */
3648 	if (l2arc_ndev == 0)
3649 		goto out;
3650 
3651 	first = NULL;
3652 	next = l2arc_dev_last;
3653 	do {
3654 		/* loop around the list looking for a non-faulted vdev */
3655 		if (next == NULL) {
3656 			next = list_head(l2arc_dev_list);
3657 		} else {
3658 			next = list_next(l2arc_dev_list, next);
3659 			if (next == NULL)
3660 				next = list_head(l2arc_dev_list);
3661 		}
3662 
3663 		/* if we have come back to the start, bail out */
3664 		if (first == NULL)
3665 			first = next;
3666 		else if (next == first)
3667 			break;
3668 
3669 	} while (vdev_is_dead(next->l2ad_vdev));
3670 
3671 	/* if we were unable to find any usable vdevs, return NULL */
3672 	if (vdev_is_dead(next->l2ad_vdev))
3673 		next = NULL;
3674 
3675 	l2arc_dev_last = next;
3676 
3677 out:
3678 	mutex_exit(&l2arc_dev_mtx);
3679 
3680 	/*
3681 	 * Grab the config lock to prevent the 'next' device from being
3682 	 * removed while we are writing to it.
3683 	 */
3684 	if (next != NULL)
3685 		spa_config_enter(next->l2ad_spa, RW_READER, next);
3686 	mutex_exit(&spa_namespace_lock);
3687 
3688 	return (next);
3689 }
3690 
3691 /*
3692  * Free buffers that were tagged for destruction.
3693  */
3694 static void
3695 l2arc_do_free_on_write()
3696 {
3697 	list_t *buflist;
3698 	l2arc_data_free_t *df, *df_prev;
3699 
3700 	mutex_enter(&l2arc_free_on_write_mtx);
3701 	buflist = l2arc_free_on_write;
3702 
3703 	for (df = list_tail(buflist); df; df = df_prev) {
3704 		df_prev = list_prev(buflist, df);
3705 		ASSERT(df->l2df_data != NULL);
3706 		ASSERT(df->l2df_func != NULL);
3707 		df->l2df_func(df->l2df_data, df->l2df_size);
3708 		list_remove(buflist, df);
3709 		kmem_free(df, sizeof (l2arc_data_free_t));
3710 	}
3711 
3712 	mutex_exit(&l2arc_free_on_write_mtx);
3713 }
3714 
3715 /*
3716  * A write to a cache device has completed.  Update all headers to allow
3717  * reads from these buffers to begin.
3718  */
3719 static void
3720 l2arc_write_done(zio_t *zio)
3721 {
3722 	l2arc_write_callback_t *cb;
3723 	l2arc_dev_t *dev;
3724 	list_t *buflist;
3725 	arc_buf_hdr_t *head, *ab, *ab_prev;
3726 	l2arc_buf_hdr_t *abl2;
3727 	kmutex_t *hash_lock;
3728 
3729 	cb = zio->io_private;
3730 	ASSERT(cb != NULL);
3731 	dev = cb->l2wcb_dev;
3732 	ASSERT(dev != NULL);
3733 	head = cb->l2wcb_head;
3734 	ASSERT(head != NULL);
3735 	buflist = dev->l2ad_buflist;
3736 	ASSERT(buflist != NULL);
3737 	DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
3738 	    l2arc_write_callback_t *, cb);
3739 
3740 	if (zio->io_error != 0)
3741 		ARCSTAT_BUMP(arcstat_l2_writes_error);
3742 
3743 	mutex_enter(&l2arc_buflist_mtx);
3744 
3745 	/*
3746 	 * All writes completed, or an error was hit.
3747 	 */
3748 	for (ab = list_prev(buflist, head); ab; ab = ab_prev) {
3749 		ab_prev = list_prev(buflist, ab);
3750 
3751 		hash_lock = HDR_LOCK(ab);
3752 		if (!mutex_tryenter(hash_lock)) {
3753 			/*
3754 			 * This buffer misses out.  It may be in a stage
3755 			 * of eviction.  Its ARC_L2_WRITING flag will be
3756 			 * left set, denying reads to this buffer.
3757 			 */
3758 			ARCSTAT_BUMP(arcstat_l2_writes_hdr_miss);
3759 			continue;
3760 		}
3761 
3762 		if (zio->io_error != 0) {
3763 			/*
3764 			 * Error - drop L2ARC entry.
3765 			 */
3766 			list_remove(buflist, ab);
3767 			abl2 = ab->b_l2hdr;
3768 			ab->b_l2hdr = NULL;
3769 			kmem_free(abl2, sizeof (l2arc_buf_hdr_t));
3770 			ARCSTAT_INCR(arcstat_l2_size, -ab->b_size);
3771 		}
3772 
3773 		/*
3774 		 * Allow ARC to begin reads to this L2ARC entry.
3775 		 */
3776 		ab->b_flags &= ~ARC_L2_WRITING;
3777 
3778 		mutex_exit(hash_lock);
3779 	}
3780 
3781 	atomic_inc_64(&l2arc_writes_done);
3782 	list_remove(buflist, head);
3783 	kmem_cache_free(hdr_cache, head);
3784 	mutex_exit(&l2arc_buflist_mtx);
3785 
3786 	l2arc_do_free_on_write();
3787 
3788 	kmem_free(cb, sizeof (l2arc_write_callback_t));
3789 }
3790 
3791 /*
3792  * A read to a cache device completed.  Validate buffer contents before
3793  * handing over to the regular ARC routines.
3794  */
3795 static void
3796 l2arc_read_done(zio_t *zio)
3797 {
3798 	l2arc_read_callback_t *cb;
3799 	arc_buf_hdr_t *hdr;
3800 	arc_buf_t *buf;
3801 	zio_t *rzio;
3802 	kmutex_t *hash_lock;
3803 	int equal;
3804 
3805 	cb = zio->io_private;
3806 	ASSERT(cb != NULL);
3807 	buf = cb->l2rcb_buf;
3808 	ASSERT(buf != NULL);
3809 	hdr = buf->b_hdr;
3810 	ASSERT(hdr != NULL);
3811 
3812 	hash_lock = HDR_LOCK(hdr);
3813 	mutex_enter(hash_lock);
3814 
3815 	/*
3816 	 * Check this survived the L2ARC journey.
3817 	 */
3818 	equal = arc_cksum_equal(buf);
3819 	if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) {
3820 		mutex_exit(hash_lock);
3821 		zio->io_private = buf;
3822 		arc_read_done(zio);
3823 	} else {
3824 		mutex_exit(hash_lock);
3825 		/*
3826 		 * Buffer didn't survive caching.  Increment stats and
3827 		 * reissue to the original storage device.
3828 		 */
3829 		if (zio->io_error != 0) {
3830 			ARCSTAT_BUMP(arcstat_l2_io_error);
3831 		} else {
3832 			zio->io_error = EIO;
3833 		}
3834 		if (!equal)
3835 			ARCSTAT_BUMP(arcstat_l2_cksum_bad);
3836 
3837 		if (zio->io_waiter == NULL) {
3838 			/*
3839 			 * Let the resent I/O call arc_read_done() instead.
3840 			 */
3841 			zio->io_done = NULL;
3842 			zio->io_flags &= ~ZIO_FLAG_DONT_CACHE;
3843 
3844 			rzio = zio_read(NULL, cb->l2rcb_spa, &cb->l2rcb_bp,
3845 			    buf->b_data, zio->io_size, arc_read_done, buf,
3846 			    zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb);
3847 
3848 			(void) zio_nowait(rzio);
3849 		}
3850 	}
3851 
3852 	kmem_free(cb, sizeof (l2arc_read_callback_t));
3853 }
3854 
3855 /*
3856  * This is the list priority from which the L2ARC will search for pages to
3857  * cache.  This is used within loops (0..3) to cycle through lists in the
3858  * desired order.  This order can have a significant effect on cache
3859  * performance.
3860  *
3861  * Currently the metadata lists are hit first, MFU then MRU, followed by
3862  * the data lists.  This function returns a locked list, and also returns
3863  * the lock pointer.
3864  */
3865 static list_t *
3866 l2arc_list_locked(int list_num, kmutex_t **lock)
3867 {
3868 	list_t *list;
3869 
3870 	ASSERT(list_num >= 0 && list_num <= 3);
3871 
3872 	switch (list_num) {
3873 	case 0:
3874 		list = &arc_mfu->arcs_list[ARC_BUFC_METADATA];
3875 		*lock = &arc_mfu->arcs_mtx;
3876 		break;
3877 	case 1:
3878 		list = &arc_mru->arcs_list[ARC_BUFC_METADATA];
3879 		*lock = &arc_mru->arcs_mtx;
3880 		break;
3881 	case 2:
3882 		list = &arc_mfu->arcs_list[ARC_BUFC_DATA];
3883 		*lock = &arc_mfu->arcs_mtx;
3884 		break;
3885 	case 3:
3886 		list = &arc_mru->arcs_list[ARC_BUFC_DATA];
3887 		*lock = &arc_mru->arcs_mtx;
3888 		break;
3889 	}
3890 
3891 	ASSERT(!(MUTEX_HELD(*lock)));
3892 	mutex_enter(*lock);
3893 	return (list);
3894 }
3895 
3896 /*
3897  * Evict buffers from the device write hand to the distance specified in
3898  * bytes.  This distance may span populated buffers, it may span nothing.
3899  * This is clearing a region on the L2ARC device ready for writing.
3900  * If the 'all' boolean is set, every buffer is evicted.
3901  */
3902 static void
3903 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
3904 {
3905 	list_t *buflist;
3906 	l2arc_buf_hdr_t *abl2;
3907 	arc_buf_hdr_t *ab, *ab_prev;
3908 	kmutex_t *hash_lock;
3909 	uint64_t taddr;
3910 
3911 	buflist = dev->l2ad_buflist;
3912 
3913 	if (buflist == NULL)
3914 		return;
3915 
3916 	if (!all && dev->l2ad_first) {
3917 		/*
3918 		 * This is the first sweep through the device.  There is
3919 		 * nothing to evict.
3920 		 */
3921 		return;
3922 	}
3923 
3924 	if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) {
3925 		/*
3926 		 * When nearing the end of the device, evict to the end
3927 		 * before the device write hand jumps to the start.
3928 		 */
3929 		taddr = dev->l2ad_end;
3930 	} else {
3931 		taddr = dev->l2ad_hand + distance;
3932 	}
3933 	DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
3934 	    uint64_t, taddr, boolean_t, all);
3935 
3936 top:
3937 	mutex_enter(&l2arc_buflist_mtx);
3938 	for (ab = list_tail(buflist); ab; ab = ab_prev) {
3939 		ab_prev = list_prev(buflist, ab);
3940 
3941 		hash_lock = HDR_LOCK(ab);
3942 		if (!mutex_tryenter(hash_lock)) {
3943 			/*
3944 			 * Missed the hash lock.  Retry.
3945 			 */
3946 			ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
3947 			mutex_exit(&l2arc_buflist_mtx);
3948 			mutex_enter(hash_lock);
3949 			mutex_exit(hash_lock);
3950 			goto top;
3951 		}
3952 
3953 		if (HDR_L2_WRITE_HEAD(ab)) {
3954 			/*
3955 			 * We hit a write head node.  Leave it for
3956 			 * l2arc_write_done().
3957 			 */
3958 			list_remove(buflist, ab);
3959 			mutex_exit(hash_lock);
3960 			continue;
3961 		}
3962 
3963 		if (!all && ab->b_l2hdr != NULL &&
3964 		    (ab->b_l2hdr->b_daddr > taddr ||
3965 		    ab->b_l2hdr->b_daddr < dev->l2ad_hand)) {
3966 			/*
3967 			 * We've evicted to the target address,
3968 			 * or the end of the device.
3969 			 */
3970 			mutex_exit(hash_lock);
3971 			break;
3972 		}
3973 
3974 		if (HDR_FREE_IN_PROGRESS(ab)) {
3975 			/*
3976 			 * Already on the path to destruction.
3977 			 */
3978 			mutex_exit(hash_lock);
3979 			continue;
3980 		}
3981 
3982 		if (ab->b_state == arc_l2c_only) {
3983 			ASSERT(!HDR_L2_READING(ab));
3984 			/*
3985 			 * This doesn't exist in the ARC.  Destroy.
3986 			 * arc_hdr_destroy() will call list_remove()
3987 			 * and decrement arcstat_l2_size.
3988 			 */
3989 			arc_change_state(arc_anon, ab, hash_lock);
3990 			arc_hdr_destroy(ab);
3991 		} else {
3992 			/*
3993 			 * Invalidate issued or about to be issued
3994 			 * reads, since we may be about to write
3995 			 * over this location.
3996 			 */
3997 			if (HDR_L2_READING(ab)) {
3998 				ARCSTAT_BUMP(arcstat_l2_evict_reading);
3999 				ab->b_flags |= ARC_L2_EVICTED;
4000 			}
4001 
4002 			/*
4003 			 * Tell ARC this no longer exists in L2ARC.
4004 			 */
4005 			if (ab->b_l2hdr != NULL) {
4006 				abl2 = ab->b_l2hdr;
4007 				ab->b_l2hdr = NULL;
4008 				kmem_free(abl2, sizeof (l2arc_buf_hdr_t));
4009 				ARCSTAT_INCR(arcstat_l2_size, -ab->b_size);
4010 			}
4011 			list_remove(buflist, ab);
4012 
4013 			/*
4014 			 * This may have been leftover after a
4015 			 * failed write.
4016 			 */
4017 			ab->b_flags &= ~ARC_L2_WRITING;
4018 		}
4019 		mutex_exit(hash_lock);
4020 	}
4021 	mutex_exit(&l2arc_buflist_mtx);
4022 
4023 	spa_l2cache_space_update(dev->l2ad_vdev, 0, -(taddr - dev->l2ad_evict));
4024 	dev->l2ad_evict = taddr;
4025 }
4026 
4027 /*
4028  * Find and write ARC buffers to the L2ARC device.
4029  *
4030  * An ARC_L2_WRITING flag is set so that the L2ARC buffers are not valid
4031  * for reading until they have completed writing.
4032  */
4033 static void
4034 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz)
4035 {
4036 	arc_buf_hdr_t *ab, *ab_prev, *head;
4037 	l2arc_buf_hdr_t *hdrl2;
4038 	list_t *list;
4039 	uint64_t passed_sz, write_sz, buf_sz, headroom;
4040 	void *buf_data;
4041 	kmutex_t *hash_lock, *list_lock;
4042 	boolean_t have_lock, full;
4043 	l2arc_write_callback_t *cb;
4044 	zio_t *pio, *wzio;
4045 
4046 	ASSERT(dev->l2ad_vdev != NULL);
4047 
4048 	pio = NULL;
4049 	write_sz = 0;
4050 	full = B_FALSE;
4051 	head = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
4052 	head->b_flags |= ARC_L2_WRITE_HEAD;
4053 
4054 	/*
4055 	 * Copy buffers for L2ARC writing.
4056 	 */
4057 	mutex_enter(&l2arc_buflist_mtx);
4058 	for (int try = 0; try <= 3; try++) {
4059 		list = l2arc_list_locked(try, &list_lock);
4060 		passed_sz = 0;
4061 
4062 		/*
4063 		 * L2ARC fast warmup.
4064 		 *
4065 		 * Until the ARC is warm and starts to evict, read from the
4066 		 * head of the ARC lists rather than the tail.
4067 		 */
4068 		headroom = target_sz * l2arc_headroom;
4069 		if (arc_warm == B_FALSE)
4070 			ab = list_head(list);
4071 		else
4072 			ab = list_tail(list);
4073 
4074 		for (; ab; ab = ab_prev) {
4075 			if (arc_warm == B_FALSE)
4076 				ab_prev = list_next(list, ab);
4077 			else
4078 				ab_prev = list_prev(list, ab);
4079 
4080 			hash_lock = HDR_LOCK(ab);
4081 			have_lock = MUTEX_HELD(hash_lock);
4082 			if (!have_lock && !mutex_tryenter(hash_lock)) {
4083 				/*
4084 				 * Skip this buffer rather than waiting.
4085 				 */
4086 				continue;
4087 			}
4088 
4089 			passed_sz += ab->b_size;
4090 			if (passed_sz > headroom) {
4091 				/*
4092 				 * Searched too far.
4093 				 */
4094 				mutex_exit(hash_lock);
4095 				break;
4096 			}
4097 
4098 			if (ab->b_spa != spa) {
4099 				mutex_exit(hash_lock);
4100 				continue;
4101 			}
4102 
4103 			if (ab->b_l2hdr != NULL) {
4104 				/*
4105 				 * Already in L2ARC.
4106 				 */
4107 				mutex_exit(hash_lock);
4108 				continue;
4109 			}
4110 
4111 			if (HDR_IO_IN_PROGRESS(ab) || !HDR_L2CACHE(ab)) {
4112 				mutex_exit(hash_lock);
4113 				continue;
4114 			}
4115 
4116 			if ((write_sz + ab->b_size) > target_sz) {
4117 				full = B_TRUE;
4118 				mutex_exit(hash_lock);
4119 				break;
4120 			}
4121 
4122 			if (ab->b_buf == NULL) {
4123 				DTRACE_PROBE1(l2arc__buf__null, void *, ab);
4124 				mutex_exit(hash_lock);
4125 				continue;
4126 			}
4127 
4128 			if (pio == NULL) {
4129 				/*
4130 				 * Insert a dummy header on the buflist so
4131 				 * l2arc_write_done() can find where the
4132 				 * write buffers begin without searching.
4133 				 */
4134 				list_insert_head(dev->l2ad_buflist, head);
4135 
4136 				cb = kmem_alloc(
4137 				    sizeof (l2arc_write_callback_t), KM_SLEEP);
4138 				cb->l2wcb_dev = dev;
4139 				cb->l2wcb_head = head;
4140 				pio = zio_root(spa, l2arc_write_done, cb,
4141 				    ZIO_FLAG_CANFAIL);
4142 			}
4143 
4144 			/*
4145 			 * Create and add a new L2ARC header.
4146 			 */
4147 			hdrl2 = kmem_zalloc(sizeof (l2arc_buf_hdr_t), KM_SLEEP);
4148 			hdrl2->b_dev = dev;
4149 			hdrl2->b_daddr = dev->l2ad_hand;
4150 
4151 			ab->b_flags |= ARC_L2_WRITING;
4152 			ab->b_l2hdr = hdrl2;
4153 			list_insert_head(dev->l2ad_buflist, ab);
4154 			buf_data = ab->b_buf->b_data;
4155 			buf_sz = ab->b_size;
4156 
4157 			/*
4158 			 * Compute and store the buffer cksum before
4159 			 * writing.  On debug the cksum is verified first.
4160 			 */
4161 			arc_cksum_verify(ab->b_buf);
4162 			arc_cksum_compute(ab->b_buf, B_TRUE);
4163 
4164 			mutex_exit(hash_lock);
4165 
4166 			wzio = zio_write_phys(pio, dev->l2ad_vdev,
4167 			    dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF,
4168 			    NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE,
4169 			    ZIO_FLAG_CANFAIL, B_FALSE);
4170 
4171 			DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
4172 			    zio_t *, wzio);
4173 			(void) zio_nowait(wzio);
4174 
4175 			write_sz += buf_sz;
4176 			dev->l2ad_hand += buf_sz;
4177 		}
4178 
4179 		mutex_exit(list_lock);
4180 
4181 		if (full == B_TRUE)
4182 			break;
4183 	}
4184 	mutex_exit(&l2arc_buflist_mtx);
4185 
4186 	if (pio == NULL) {
4187 		ASSERT3U(write_sz, ==, 0);
4188 		kmem_cache_free(hdr_cache, head);
4189 		return;
4190 	}
4191 
4192 	ASSERT3U(write_sz, <=, target_sz);
4193 	ARCSTAT_BUMP(arcstat_l2_writes_sent);
4194 	ARCSTAT_INCR(arcstat_l2_size, write_sz);
4195 	spa_l2cache_space_update(dev->l2ad_vdev, 0, write_sz);
4196 
4197 	/*
4198 	 * Bump device hand to the device start if it is approaching the end.
4199 	 * l2arc_evict() will already have evicted ahead for this case.
4200 	 */
4201 	if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) {
4202 		spa_l2cache_space_update(dev->l2ad_vdev, 0,
4203 		    dev->l2ad_end - dev->l2ad_hand);
4204 		dev->l2ad_hand = dev->l2ad_start;
4205 		dev->l2ad_evict = dev->l2ad_start;
4206 		dev->l2ad_first = B_FALSE;
4207 	}
4208 
4209 	(void) zio_wait(pio);
4210 }
4211 
4212 /*
4213  * This thread feeds the L2ARC at regular intervals.  This is the beating
4214  * heart of the L2ARC.
4215  */
4216 static void
4217 l2arc_feed_thread(void)
4218 {
4219 	callb_cpr_t cpr;
4220 	l2arc_dev_t *dev;
4221 	spa_t *spa;
4222 	uint64_t size;
4223 
4224 	CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
4225 
4226 	mutex_enter(&l2arc_feed_thr_lock);
4227 
4228 	while (l2arc_thread_exit == 0) {
4229 		/*
4230 		 * Pause for l2arc_feed_secs seconds between writes.
4231 		 */
4232 		CALLB_CPR_SAFE_BEGIN(&cpr);
4233 		(void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock,
4234 		    lbolt + (hz * l2arc_feed_secs));
4235 		CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
4236 
4237 		/*
4238 		 * Quick check for L2ARC devices.
4239 		 */
4240 		mutex_enter(&l2arc_dev_mtx);
4241 		if (l2arc_ndev == 0) {
4242 			mutex_exit(&l2arc_dev_mtx);
4243 			continue;
4244 		}
4245 		mutex_exit(&l2arc_dev_mtx);
4246 
4247 		/*
4248 		 * This selects the next l2arc device to write to, and in
4249 		 * doing so the next spa to feed from: dev->l2ad_spa.   This
4250 		 * will return NULL if there are now no l2arc devices or if
4251 		 * they are all faulted.
4252 		 *
4253 		 * If a device is returned, its spa's config lock is also
4254 		 * held to prevent device removal.  l2arc_dev_get_next()
4255 		 * will grab and release l2arc_dev_mtx.
4256 		 */
4257 		if ((dev = l2arc_dev_get_next()) == NULL)
4258 			continue;
4259 
4260 		spa = dev->l2ad_spa;
4261 		ASSERT(spa != NULL);
4262 
4263 		/*
4264 		 * Avoid contributing to memory pressure.
4265 		 */
4266 		if (arc_reclaim_needed()) {
4267 			ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
4268 			spa_config_exit(spa, dev);
4269 			continue;
4270 		}
4271 
4272 		ARCSTAT_BUMP(arcstat_l2_feeds);
4273 
4274 		size = dev->l2ad_write;
4275 		if (arc_warm == B_FALSE)
4276 			size += dev->l2ad_boost;
4277 
4278 		/*
4279 		 * Evict L2ARC buffers that will be overwritten.
4280 		 */
4281 		l2arc_evict(dev, size, B_FALSE);
4282 
4283 		/*
4284 		 * Write ARC buffers.
4285 		 */
4286 		l2arc_write_buffers(spa, dev, size);
4287 		spa_config_exit(spa, dev);
4288 	}
4289 
4290 	l2arc_thread_exit = 0;
4291 	cv_broadcast(&l2arc_feed_thr_cv);
4292 	CALLB_CPR_EXIT(&cpr);		/* drops l2arc_feed_thr_lock */
4293 	thread_exit();
4294 }
4295 
4296 boolean_t
4297 l2arc_vdev_present(vdev_t *vd)
4298 {
4299 	l2arc_dev_t *dev;
4300 
4301 	mutex_enter(&l2arc_dev_mtx);
4302 	for (dev = list_head(l2arc_dev_list); dev != NULL;
4303 	    dev = list_next(l2arc_dev_list, dev)) {
4304 		if (dev->l2ad_vdev == vd)
4305 			break;
4306 	}
4307 	mutex_exit(&l2arc_dev_mtx);
4308 
4309 	return (dev != NULL);
4310 }
4311 
4312 /*
4313  * Add a vdev for use by the L2ARC.  By this point the spa has already
4314  * validated the vdev and opened it.
4315  */
4316 void
4317 l2arc_add_vdev(spa_t *spa, vdev_t *vd, uint64_t start, uint64_t end)
4318 {
4319 	l2arc_dev_t *adddev;
4320 
4321 	ASSERT(!l2arc_vdev_present(vd));
4322 
4323 	/*
4324 	 * Create a new l2arc device entry.
4325 	 */
4326 	adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
4327 	adddev->l2ad_spa = spa;
4328 	adddev->l2ad_vdev = vd;
4329 	adddev->l2ad_write = l2arc_write_max;
4330 	adddev->l2ad_boost = l2arc_write_boost;
4331 	adddev->l2ad_start = start;
4332 	adddev->l2ad_end = end;
4333 	adddev->l2ad_hand = adddev->l2ad_start;
4334 	adddev->l2ad_evict = adddev->l2ad_start;
4335 	adddev->l2ad_first = B_TRUE;
4336 	ASSERT3U(adddev->l2ad_write, >, 0);
4337 
4338 	/*
4339 	 * This is a list of all ARC buffers that are still valid on the
4340 	 * device.
4341 	 */
4342 	adddev->l2ad_buflist = kmem_zalloc(sizeof (list_t), KM_SLEEP);
4343 	list_create(adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
4344 	    offsetof(arc_buf_hdr_t, b_l2node));
4345 
4346 	spa_l2cache_space_update(vd, adddev->l2ad_end - adddev->l2ad_hand, 0);
4347 
4348 	/*
4349 	 * Add device to global list
4350 	 */
4351 	mutex_enter(&l2arc_dev_mtx);
4352 	list_insert_head(l2arc_dev_list, adddev);
4353 	atomic_inc_64(&l2arc_ndev);
4354 	mutex_exit(&l2arc_dev_mtx);
4355 }
4356 
4357 /*
4358  * Remove a vdev from the L2ARC.
4359  */
4360 void
4361 l2arc_remove_vdev(vdev_t *vd)
4362 {
4363 	l2arc_dev_t *dev, *nextdev, *remdev = NULL;
4364 
4365 	/*
4366 	 * Find the device by vdev
4367 	 */
4368 	mutex_enter(&l2arc_dev_mtx);
4369 	for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
4370 		nextdev = list_next(l2arc_dev_list, dev);
4371 		if (vd == dev->l2ad_vdev) {
4372 			remdev = dev;
4373 			break;
4374 		}
4375 	}
4376 	ASSERT(remdev != NULL);
4377 
4378 	/*
4379 	 * Remove device from global list
4380 	 */
4381 	list_remove(l2arc_dev_list, remdev);
4382 	l2arc_dev_last = NULL;		/* may have been invalidated */
4383 	atomic_dec_64(&l2arc_ndev);
4384 	mutex_exit(&l2arc_dev_mtx);
4385 
4386 	/*
4387 	 * Clear all buflists and ARC references.  L2ARC device flush.
4388 	 */
4389 	l2arc_evict(remdev, 0, B_TRUE);
4390 	list_destroy(remdev->l2ad_buflist);
4391 	kmem_free(remdev->l2ad_buflist, sizeof (list_t));
4392 	kmem_free(remdev, sizeof (l2arc_dev_t));
4393 }
4394 
4395 void
4396 l2arc_init()
4397 {
4398 	l2arc_thread_exit = 0;
4399 	l2arc_ndev = 0;
4400 	l2arc_writes_sent = 0;
4401 	l2arc_writes_done = 0;
4402 
4403 	mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
4404 	cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
4405 	mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
4406 	mutex_init(&l2arc_buflist_mtx, NULL, MUTEX_DEFAULT, NULL);
4407 	mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
4408 
4409 	l2arc_dev_list = &L2ARC_dev_list;
4410 	l2arc_free_on_write = &L2ARC_free_on_write;
4411 	list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
4412 	    offsetof(l2arc_dev_t, l2ad_node));
4413 	list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
4414 	    offsetof(l2arc_data_free_t, l2df_list_node));
4415 
4416 	(void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
4417 	    TS_RUN, minclsyspri);
4418 }
4419 
4420 void
4421 l2arc_fini()
4422 {
4423 	/*
4424 	 * This is called from dmu_fini(), which is called from spa_fini();
4425 	 * Because of this, we can assume that all l2arc devices have
4426 	 * already been removed when the pools themselves were removed.
4427 	 */
4428 
4429 	mutex_enter(&l2arc_feed_thr_lock);
4430 	cv_signal(&l2arc_feed_thr_cv);	/* kick thread out of startup */
4431 	l2arc_thread_exit = 1;
4432 	while (l2arc_thread_exit != 0)
4433 		cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
4434 	mutex_exit(&l2arc_feed_thr_lock);
4435 
4436 	l2arc_do_free_on_write();
4437 
4438 	mutex_destroy(&l2arc_feed_thr_lock);
4439 	cv_destroy(&l2arc_feed_thr_cv);
4440 	mutex_destroy(&l2arc_dev_mtx);
4441 	mutex_destroy(&l2arc_buflist_mtx);
4442 	mutex_destroy(&l2arc_free_on_write_mtx);
4443 
4444 	list_destroy(l2arc_dev_list);
4445 	list_destroy(l2arc_free_on_write);
4446 }
4447