xref: /titanic_51/usr/src/uts/common/fs/vnode.c (revision 83fcdc8cfa9b16b358b13c5dd920d71bbaf4a8b5)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*	Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T	*/
28 /*	  All Rights Reserved  	*/
29 
30 /*
31  * University Copyright- Copyright (c) 1982, 1986, 1988
32  * The Regents of the University of California
33  * All Rights Reserved
34  *
35  * University Acknowledgment- Portions of this document are derived from
36  * software developed by the University of California, Berkeley, and its
37  * contributors.
38  */
39 
40 
41 #pragma ident	"%Z%%M%	%I%	%E% SMI"
42 
43 #include <sys/types.h>
44 #include <sys/param.h>
45 #include <sys/t_lock.h>
46 #include <sys/errno.h>
47 #include <sys/cred.h>
48 #include <sys/user.h>
49 #include <sys/uio.h>
50 #include <sys/file.h>
51 #include <sys/pathname.h>
52 #include <sys/vfs.h>
53 #include <sys/vnode.h>
54 #include <sys/rwstlock.h>
55 #include <sys/fem.h>
56 #include <sys/stat.h>
57 #include <sys/mode.h>
58 #include <sys/conf.h>
59 #include <sys/sysmacros.h>
60 #include <sys/cmn_err.h>
61 #include <sys/systm.h>
62 #include <sys/kmem.h>
63 #include <sys/debug.h>
64 #include <c2/audit.h>
65 #include <sys/acl.h>
66 #include <sys/nbmlock.h>
67 #include <sys/fcntl.h>
68 #include <fs/fs_subr.h>
69 
70 /* Determine if this vnode is a file that is read-only */
71 #define	ISROFILE(vp)	\
72 	((vp)->v_type != VCHR && (vp)->v_type != VBLK && \
73 	    (vp)->v_type != VFIFO && vn_is_readonly(vp))
74 
75 /* Tunable via /etc/system; used only by admin/install */
76 int nfs_global_client_only;
77 
78 /*
79  * Convert stat(2) formats to vnode types and vice versa.  (Knows about
80  * numerical order of S_IFMT and vnode types.)
81  */
82 enum vtype iftovt_tab[] = {
83 	VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
84 	VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VNON
85 };
86 
87 ushort_t vttoif_tab[] = {
88 	0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK, S_IFIFO,
89 	S_IFDOOR, 0, S_IFSOCK, S_IFPORT, 0
90 };
91 
92 /*
93  * The system vnode cache.
94  */
95 
96 kmem_cache_t *vn_cache;
97 
98 
99 /*
100  * Vnode operations vector.
101  */
102 
103 static const fs_operation_trans_def_t vn_ops_table[] = {
104 	VOPNAME_OPEN, offsetof(struct vnodeops, vop_open),
105 	    fs_nosys, fs_nosys,
106 
107 	VOPNAME_CLOSE, offsetof(struct vnodeops, vop_close),
108 	    fs_nosys, fs_nosys,
109 
110 	VOPNAME_READ, offsetof(struct vnodeops, vop_read),
111 	    fs_nosys, fs_nosys,
112 
113 	VOPNAME_WRITE, offsetof(struct vnodeops, vop_write),
114 	    fs_nosys, fs_nosys,
115 
116 	VOPNAME_IOCTL, offsetof(struct vnodeops, vop_ioctl),
117 	    fs_nosys, fs_nosys,
118 
119 	VOPNAME_SETFL, offsetof(struct vnodeops, vop_setfl),
120 	    fs_setfl, fs_nosys,
121 
122 	VOPNAME_GETATTR, offsetof(struct vnodeops, vop_getattr),
123 	    fs_nosys, fs_nosys,
124 
125 	VOPNAME_SETATTR, offsetof(struct vnodeops, vop_setattr),
126 	    fs_nosys, fs_nosys,
127 
128 	VOPNAME_ACCESS, offsetof(struct vnodeops, vop_access),
129 	    fs_nosys, fs_nosys,
130 
131 	VOPNAME_LOOKUP, offsetof(struct vnodeops, vop_lookup),
132 	    fs_nosys, fs_nosys,
133 
134 	VOPNAME_CREATE, offsetof(struct vnodeops, vop_create),
135 	    fs_nosys, fs_nosys,
136 
137 	VOPNAME_REMOVE, offsetof(struct vnodeops, vop_remove),
138 	    fs_nosys, fs_nosys,
139 
140 	VOPNAME_LINK, offsetof(struct vnodeops, vop_link),
141 	    fs_nosys, fs_nosys,
142 
143 	VOPNAME_RENAME, offsetof(struct vnodeops, vop_rename),
144 	    fs_nosys, fs_nosys,
145 
146 	VOPNAME_MKDIR, offsetof(struct vnodeops, vop_mkdir),
147 	    fs_nosys, fs_nosys,
148 
149 	VOPNAME_RMDIR, offsetof(struct vnodeops, vop_rmdir),
150 	    fs_nosys, fs_nosys,
151 
152 	VOPNAME_READDIR, offsetof(struct vnodeops, vop_readdir),
153 	    fs_nosys, fs_nosys,
154 
155 	VOPNAME_SYMLINK, offsetof(struct vnodeops, vop_symlink),
156 	    fs_nosys, fs_nosys,
157 
158 	VOPNAME_READLINK, offsetof(struct vnodeops, vop_readlink),
159 	    fs_nosys, fs_nosys,
160 
161 	VOPNAME_FSYNC, offsetof(struct vnodeops, vop_fsync),
162 	    fs_nosys, fs_nosys,
163 
164 	VOPNAME_INACTIVE, offsetof(struct vnodeops, vop_inactive),
165 	    fs_nosys, fs_nosys,
166 
167 	VOPNAME_FID, offsetof(struct vnodeops, vop_fid),
168 	    fs_nosys, fs_nosys,
169 
170 	VOPNAME_RWLOCK, offsetof(struct vnodeops, vop_rwlock),
171 	    fs_rwlock, fs_rwlock,
172 
173 	VOPNAME_RWUNLOCK, offsetof(struct vnodeops, vop_rwunlock),
174 	    (fs_generic_func_p) fs_rwunlock,
175 	    (fs_generic_func_p) fs_rwunlock,	/* no errors allowed */
176 
177 	VOPNAME_SEEK, offsetof(struct vnodeops, vop_seek),
178 	    fs_nosys, fs_nosys,
179 
180 	VOPNAME_CMP, offsetof(struct vnodeops, vop_cmp),
181 	    fs_cmp, fs_cmp,		/* no errors allowed */
182 
183 	VOPNAME_FRLOCK, offsetof(struct vnodeops, vop_frlock),
184 	    fs_frlock, fs_nosys,
185 
186 	VOPNAME_SPACE, offsetof(struct vnodeops, vop_space),
187 	    fs_nosys, fs_nosys,
188 
189 	VOPNAME_REALVP, offsetof(struct vnodeops, vop_realvp),
190 	    fs_nosys, fs_nosys,
191 
192 	VOPNAME_GETPAGE, offsetof(struct vnodeops, vop_getpage),
193 	    fs_nosys, fs_nosys,
194 
195 	VOPNAME_PUTPAGE, offsetof(struct vnodeops, vop_putpage),
196 	    fs_nosys, fs_nosys,
197 
198 	VOPNAME_MAP, offsetof(struct vnodeops, vop_map),
199 	    (fs_generic_func_p) fs_nosys_map,
200 	    (fs_generic_func_p) fs_nosys_map,
201 
202 	VOPNAME_ADDMAP, offsetof(struct vnodeops, vop_addmap),
203 	    (fs_generic_func_p) fs_nosys_addmap,
204 	    (fs_generic_func_p) fs_nosys_addmap,
205 
206 	VOPNAME_DELMAP, offsetof(struct vnodeops, vop_delmap),
207 	    fs_nosys, fs_nosys,
208 
209 	VOPNAME_POLL, offsetof(struct vnodeops, vop_poll),
210 	    (fs_generic_func_p) fs_poll, (fs_generic_func_p) fs_nosys_poll,
211 
212 	VOPNAME_DUMP, offsetof(struct vnodeops, vop_dump),
213 	    fs_nosys, fs_nosys,
214 
215 	VOPNAME_PATHCONF, offsetof(struct vnodeops, vop_pathconf),
216 	    fs_pathconf, fs_nosys,
217 
218 	VOPNAME_PAGEIO, offsetof(struct vnodeops, vop_pageio),
219 	    fs_nosys, fs_nosys,
220 
221 	VOPNAME_DUMPCTL, offsetof(struct vnodeops, vop_dumpctl),
222 	    fs_nosys, fs_nosys,
223 
224 	VOPNAME_DISPOSE, offsetof(struct vnodeops, vop_dispose),
225 	    (fs_generic_func_p) fs_dispose,
226 	    (fs_generic_func_p) fs_nodispose,
227 
228 	VOPNAME_SETSECATTR, offsetof(struct vnodeops, vop_setsecattr),
229 	    fs_nosys, fs_nosys,
230 
231 	VOPNAME_GETSECATTR, offsetof(struct vnodeops, vop_getsecattr),
232 	    fs_fab_acl, fs_nosys,
233 
234 	VOPNAME_SHRLOCK, offsetof(struct vnodeops, vop_shrlock),
235 	    fs_shrlock, fs_nosys,
236 
237 	VOPNAME_VNEVENT, offsetof(struct vnodeops, vop_vnevent),
238 	    (fs_generic_func_p) fs_vnevent_nosupport,
239 	    (fs_generic_func_p) fs_vnevent_nosupport,
240 
241 	NULL, 0, NULL, NULL
242 };
243 
244 
245 /*
246  * Read or write a vnode.  Called from kernel code.
247  */
248 int
249 vn_rdwr(
250 	enum uio_rw rw,
251 	struct vnode *vp,
252 	caddr_t base,
253 	ssize_t len,
254 	offset_t offset,
255 	enum uio_seg seg,
256 	int ioflag,
257 	rlim64_t ulimit,	/* meaningful only if rw is UIO_WRITE */
258 	cred_t *cr,
259 	ssize_t *residp)
260 {
261 	struct uio uio;
262 	struct iovec iov;
263 	int error;
264 	int in_crit = 0;
265 
266 	if (rw == UIO_WRITE && ISROFILE(vp))
267 		return (EROFS);
268 
269 	if (len < 0)
270 		return (EIO);
271 
272 	iov.iov_base = base;
273 	iov.iov_len = len;
274 	uio.uio_iov = &iov;
275 	uio.uio_iovcnt = 1;
276 	uio.uio_loffset = offset;
277 	uio.uio_segflg = (short)seg;
278 	uio.uio_resid = len;
279 	uio.uio_llimit = ulimit;
280 
281 	/*
282 	 * We have to enter the critical region before calling VOP_RWLOCK
283 	 * to avoid a deadlock with ufs.
284 	 */
285 	if (nbl_need_check(vp)) {
286 		int svmand;
287 
288 		nbl_start_crit(vp, RW_READER);
289 		in_crit = 1;
290 		error = nbl_svmand(vp, cr, &svmand);
291 		if (error != 0)
292 			goto done;
293 		if (nbl_conflict(vp, rw == UIO_WRITE ? NBL_WRITE : NBL_READ,
294 		    uio.uio_offset, uio.uio_resid, svmand)) {
295 			error = EACCES;
296 			goto done;
297 		}
298 	}
299 
300 	(void) VOP_RWLOCK(vp,
301 		rw == UIO_WRITE ? V_WRITELOCK_TRUE : V_WRITELOCK_FALSE, NULL);
302 	if (rw == UIO_WRITE) {
303 		uio.uio_fmode = FWRITE;
304 		uio.uio_extflg = UIO_COPY_DEFAULT;
305 		error = VOP_WRITE(vp, &uio, ioflag, cr, NULL);
306 	} else {
307 		uio.uio_fmode = FREAD;
308 		uio.uio_extflg = UIO_COPY_CACHED;
309 		error = VOP_READ(vp, &uio, ioflag, cr, NULL);
310 	}
311 	VOP_RWUNLOCK(vp, rw == UIO_WRITE ? V_WRITELOCK_TRUE : V_WRITELOCK_FALSE,
312 									NULL);
313 	if (residp)
314 		*residp = uio.uio_resid;
315 	else if (uio.uio_resid)
316 		error = EIO;
317 
318 done:
319 	if (in_crit)
320 		nbl_end_crit(vp);
321 	return (error);
322 }
323 
324 /*
325  * Release a vnode.  Call VOP_INACTIVE on last reference or
326  * decrement reference count.
327  *
328  * To avoid race conditions, the v_count is left at 1 for
329  * the call to VOP_INACTIVE. This prevents another thread
330  * from reclaiming and releasing the vnode *before* the
331  * VOP_INACTIVE routine has a chance to destroy the vnode.
332  * We can't have more than 1 thread calling VOP_INACTIVE
333  * on a vnode.
334  */
335 void
336 vn_rele(vnode_t *vp)
337 {
338 	if (vp->v_count == 0)
339 		cmn_err(CE_PANIC, "vn_rele: vnode ref count 0");
340 	mutex_enter(&vp->v_lock);
341 	if (vp->v_count == 1) {
342 		mutex_exit(&vp->v_lock);
343 		VOP_INACTIVE(vp, CRED());
344 	} else {
345 		vp->v_count--;
346 		mutex_exit(&vp->v_lock);
347 	}
348 }
349 
350 /*
351  * Like vn_rele() except that it clears v_stream under v_lock.
352  * This is used by sockfs when it dismantels the association between
353  * the sockfs node and the vnode in the underlaying file system.
354  * v_lock has to be held to prevent a thread coming through the lookupname
355  * path from accessing a stream head that is going away.
356  */
357 void
358 vn_rele_stream(vnode_t *vp)
359 {
360 	if (vp->v_count == 0)
361 		cmn_err(CE_PANIC, "vn_rele: vnode ref count 0");
362 	mutex_enter(&vp->v_lock);
363 	vp->v_stream = NULL;
364 	if (vp->v_count == 1) {
365 		mutex_exit(&vp->v_lock);
366 		VOP_INACTIVE(vp, CRED());
367 	} else {
368 		vp->v_count--;
369 		mutex_exit(&vp->v_lock);
370 	}
371 }
372 
373 int
374 vn_open(
375 	char *pnamep,
376 	enum uio_seg seg,
377 	int filemode,
378 	int createmode,
379 	struct vnode **vpp,
380 	enum create crwhy,
381 	mode_t umask)
382 {
383 	return (vn_openat(pnamep, seg, filemode,
384 			createmode, vpp, crwhy, umask, NULL));
385 }
386 
387 
388 /*
389  * Open/create a vnode.
390  * This may be callable by the kernel, the only known use
391  * of user context being that the current user credentials
392  * are used for permissions.  crwhy is defined iff filemode & FCREAT.
393  */
394 int
395 vn_openat(
396 	char *pnamep,
397 	enum uio_seg seg,
398 	int filemode,
399 	int createmode,
400 	struct vnode **vpp,
401 	enum create crwhy,
402 	mode_t umask,
403 	struct vnode *startvp)
404 {
405 	struct vnode *vp;
406 	int mode;
407 	int error;
408 	int in_crit = 0;
409 	struct vattr vattr;
410 	enum symfollow follow;
411 
412 	mode = 0;
413 	if (filemode & FREAD)
414 		mode |= VREAD;
415 	if (filemode & (FWRITE|FTRUNC))
416 		mode |= VWRITE;
417 
418 	/* symlink interpretation */
419 	if (filemode & FNOFOLLOW)
420 		follow = NO_FOLLOW;
421 	else
422 		follow = FOLLOW;
423 
424 top:
425 	if (filemode & FCREAT) {
426 		enum vcexcl excl;
427 
428 		/*
429 		 * Wish to create a file.
430 		 */
431 		vattr.va_type = VREG;
432 		vattr.va_mode = createmode;
433 		vattr.va_mask = AT_TYPE|AT_MODE;
434 		if (filemode & FTRUNC) {
435 			vattr.va_size = 0;
436 			vattr.va_mask |= AT_SIZE;
437 		}
438 		if (filemode & FEXCL)
439 			excl = EXCL;
440 		else
441 			excl = NONEXCL;
442 
443 		if (error =
444 		    vn_createat(pnamep, seg, &vattr, excl, mode, &vp, crwhy,
445 					(filemode & ~(FTRUNC|FEXCL)),
446 						umask, startvp))
447 			return (error);
448 	} else {
449 		/*
450 		 * Wish to open a file.  Just look it up.
451 		 */
452 		if (error = lookupnameat(pnamep, seg, follow,
453 		    NULLVPP, &vp, startvp)) {
454 			if (error == ESTALE)
455 				goto top;
456 			return (error);
457 		}
458 
459 		/*
460 		 * Get the attributes to check whether file is large.
461 		 * We do this only if the FOFFMAX flag is not set and
462 		 * only for regular files.
463 		 */
464 
465 		if (!(filemode & FOFFMAX) && (vp->v_type == VREG)) {
466 			vattr.va_mask = AT_SIZE;
467 			if ((error = VOP_GETATTR(vp, &vattr, 0, CRED()))) {
468 				goto out;
469 			}
470 			if (vattr.va_size > (u_offset_t)MAXOFF32_T) {
471 				/*
472 				 * Large File API - regular open fails
473 				 * if FOFFMAX flag is set in file mode
474 				 */
475 				error = EOVERFLOW;
476 				goto out;
477 			}
478 		}
479 		/*
480 		 * Can't write directories, active texts, or
481 		 * read-only filesystems.  Can't truncate files
482 		 * on which mandatory locking is in effect.
483 		 */
484 		if (filemode & (FWRITE|FTRUNC)) {
485 			/*
486 			 * Allow writable directory if VDIROPEN flag is set.
487 			 */
488 			if (vp->v_type == VDIR && !(vp->v_flag & VDIROPEN)) {
489 				error = EISDIR;
490 				goto out;
491 			}
492 			if (ISROFILE(vp)) {
493 				error = EROFS;
494 				goto out;
495 			}
496 			/*
497 			 * Can't truncate files on which mandatory locking
498 			 * or non-blocking mandatory locking is in effect.
499 			 */
500 			if (filemode & FTRUNC) {
501 				vnode_t *rvp;
502 
503 				if (VOP_REALVP(vp, &rvp) != 0)
504 					rvp = vp;
505 				if (nbl_need_check(vp)) {
506 					nbl_start_crit(vp, RW_READER);
507 					in_crit = 1;
508 					vattr.va_mask = AT_MODE|AT_SIZE;
509 					if ((error = VOP_GETATTR(vp, &vattr, 0,
510 					    CRED())) == 0) {
511 						if (rvp->v_filocks != NULL)
512 							if (MANDLOCK(vp,
513 							    vattr.va_mode))
514 								error = EAGAIN;
515 						if (!error) {
516 							if (nbl_conflict(vp,
517 							    NBL_WRITE, 0,
518 							    vattr.va_size, 0))
519 								error = EACCES;
520 						}
521 					}
522 				} else if (rvp->v_filocks != NULL) {
523 					vattr.va_mask = AT_MODE;
524 					if ((error = VOP_GETATTR(vp, &vattr,
525 					    0, CRED())) == 0 && MANDLOCK(vp,
526 					    vattr.va_mode))
527 						error = EAGAIN;
528 				}
529 			}
530 			if (error)
531 				goto out;
532 		}
533 		/*
534 		 * Check permissions.
535 		 */
536 		if (error = VOP_ACCESS(vp, mode, 0, CRED()))
537 			goto out;
538 	}
539 
540 	/*
541 	 * Do remaining checks for FNOFOLLOW and FNOLINKS.
542 	 */
543 	if ((filemode & FNOFOLLOW) && vp->v_type == VLNK) {
544 		error = EINVAL;
545 		goto out;
546 	}
547 	if (filemode & FNOLINKS) {
548 		vattr.va_mask = AT_NLINK;
549 		if ((error = VOP_GETATTR(vp, &vattr, 0, CRED()))) {
550 			goto out;
551 		}
552 		if (vattr.va_nlink != 1) {
553 			error = EMLINK;
554 			goto out;
555 		}
556 	}
557 
558 	/*
559 	 * Opening a socket corresponding to the AF_UNIX pathname
560 	 * in the filesystem name space is not supported.
561 	 * However, VSOCK nodes in namefs are supported in order
562 	 * to make fattach work for sockets.
563 	 *
564 	 * XXX This uses VOP_REALVP to distinguish between
565 	 * an unopened namefs node (where VOP_REALVP returns a
566 	 * different VSOCK vnode) and a VSOCK created by vn_create
567 	 * in some file system (where VOP_REALVP would never return
568 	 * a different vnode).
569 	 */
570 	if (vp->v_type == VSOCK) {
571 		struct vnode *nvp;
572 
573 		error = VOP_REALVP(vp, &nvp);
574 		if (error != 0 || nvp == NULL || nvp == vp ||
575 		    nvp->v_type != VSOCK) {
576 			error = EOPNOTSUPP;
577 			goto out;
578 		}
579 	}
580 	/*
581 	 * Do opening protocol.
582 	 */
583 	error = VOP_OPEN(&vp, filemode, CRED());
584 	/*
585 	 * Truncate if required.
586 	 */
587 	if (error == 0 && (filemode & FTRUNC) && !(filemode & FCREAT)) {
588 		vattr.va_size = 0;
589 		vattr.va_mask = AT_SIZE;
590 		if ((error = VOP_SETATTR(vp, &vattr, 0, CRED(), NULL)) != 0)
591 			(void) VOP_CLOSE(vp, filemode, 1, (offset_t)0, CRED());
592 	}
593 out:
594 	ASSERT(vp->v_count > 0);
595 
596 	if (in_crit) {
597 		nbl_end_crit(vp);
598 		in_crit = 0;
599 	}
600 	if (error) {
601 		/*
602 		 * The following clause was added to handle a problem
603 		 * with NFS consistency.  It is possible that a lookup
604 		 * of the file to be opened succeeded, but the file
605 		 * itself doesn't actually exist on the server.  This
606 		 * is chiefly due to the DNLC containing an entry for
607 		 * the file which has been removed on the server.  In
608 		 * this case, we just start over.  If there was some
609 		 * other cause for the ESTALE error, then the lookup
610 		 * of the file will fail and the error will be returned
611 		 * above instead of looping around from here.
612 		 */
613 		VN_RELE(vp);
614 		if (error == ESTALE)
615 			goto top;
616 	} else
617 		*vpp = vp;
618 	return (error);
619 }
620 
621 int
622 vn_create(
623 	char *pnamep,
624 	enum uio_seg seg,
625 	struct vattr *vap,
626 	enum vcexcl excl,
627 	int mode,
628 	struct vnode **vpp,
629 	enum create why,
630 	int flag,
631 	mode_t umask)
632 {
633 	return (vn_createat(pnamep, seg, vap, excl, mode, vpp,
634 			why, flag, umask, NULL));
635 }
636 
637 /*
638  * Create a vnode (makenode).
639  */
640 int
641 vn_createat(
642 	char *pnamep,
643 	enum uio_seg seg,
644 	struct vattr *vap,
645 	enum vcexcl excl,
646 	int mode,
647 	struct vnode **vpp,
648 	enum create why,
649 	int flag,
650 	mode_t umask,
651 	struct vnode *startvp)
652 {
653 	struct vnode *dvp;	/* ptr to parent dir vnode */
654 	struct vnode *vp = NULL;
655 	struct pathname pn;
656 	int error;
657 	int in_crit = 0;
658 	struct vattr vattr;
659 	enum symfollow follow;
660 
661 	ASSERT((vap->va_mask & (AT_TYPE|AT_MODE)) == (AT_TYPE|AT_MODE));
662 
663 	/* symlink interpretation */
664 	if ((flag & FNOFOLLOW) || excl == EXCL)
665 		follow = NO_FOLLOW;
666 	else
667 		follow = FOLLOW;
668 	flag &= ~(FNOFOLLOW|FNOLINKS);
669 
670 top:
671 	/*
672 	 * Lookup directory.
673 	 * If new object is a file, call lower level to create it.
674 	 * Note that it is up to the lower level to enforce exclusive
675 	 * creation, if the file is already there.
676 	 * This allows the lower level to do whatever
677 	 * locking or protocol that is needed to prevent races.
678 	 * If the new object is directory call lower level to make
679 	 * the new directory, with "." and "..".
680 	 */
681 	if (error = pn_get(pnamep, seg, &pn))
682 		return (error);
683 #ifdef  C2_AUDIT
684 	if (audit_active)
685 		audit_vncreate_start();
686 #endif /* C2_AUDIT */
687 	dvp = NULL;
688 	*vpp = NULL;
689 	/*
690 	 * lookup will find the parent directory for the vnode.
691 	 * When it is done the pn holds the name of the entry
692 	 * in the directory.
693 	 * If this is a non-exclusive create we also find the node itself.
694 	 */
695 	error = lookuppnat(&pn, NULL, follow, &dvp,
696 	    (excl == EXCL) ? NULLVPP : vpp, startvp);
697 	if (error) {
698 		pn_free(&pn);
699 		if (error == ESTALE)
700 			goto top;
701 		if (why == CRMKDIR && error == EINVAL)
702 			error = EEXIST;		/* SVID */
703 		return (error);
704 	}
705 
706 	if (why != CRMKNOD)
707 		vap->va_mode &= ~VSVTX;
708 
709 	/*
710 	 * If default ACLs are defined for the directory don't apply the
711 	 * umask if umask is passed.
712 	 */
713 
714 	if (umask) {
715 
716 		vsecattr_t vsec;
717 
718 		vsec.vsa_aclcnt = 0;
719 		vsec.vsa_aclentp = NULL;
720 		vsec.vsa_dfaclcnt = 0;
721 		vsec.vsa_dfaclentp = NULL;
722 		vsec.vsa_mask = VSA_DFACLCNT;
723 		if (error = VOP_GETSECATTR(dvp, &vsec, 0, CRED())) {
724 			if (*vpp != NULL)
725 				VN_RELE(*vpp);
726 			goto out;
727 		}
728 
729 		/*
730 		 * Apply the umask if no default ACLs.
731 		 */
732 		if (vsec.vsa_dfaclcnt == 0)
733 			vap->va_mode &= ~umask;
734 
735 		/*
736 		 * VOP_GETSECATTR() may have allocated memory for ACLs we
737 		 * didn't request, so double-check and free it if necessary.
738 		 */
739 		if (vsec.vsa_aclcnt && vsec.vsa_aclentp != NULL)
740 			kmem_free((caddr_t)vsec.vsa_aclentp,
741 				vsec.vsa_aclcnt * sizeof (aclent_t));
742 		if (vsec.vsa_dfaclcnt && vsec.vsa_dfaclentp != NULL)
743 			kmem_free((caddr_t)vsec.vsa_dfaclentp,
744 				vsec.vsa_dfaclcnt * sizeof (aclent_t));
745 	}
746 
747 	/*
748 	 * In general we want to generate EROFS if the file system is
749 	 * readonly.  However, POSIX (IEEE Std. 1003.1) section 5.3.1
750 	 * documents the open system call, and it says that O_CREAT has no
751 	 * effect if the file already exists.  Bug 1119649 states
752 	 * that open(path, O_CREAT, ...) fails when attempting to open an
753 	 * existing file on a read only file system.  Thus, the first part
754 	 * of the following if statement has 3 checks:
755 	 *	if the file exists &&
756 	 *		it is being open with write access &&
757 	 *		the file system is read only
758 	 *	then generate EROFS
759 	 */
760 	if ((*vpp != NULL && (mode & VWRITE) && ISROFILE(*vpp)) ||
761 	    (*vpp == NULL && dvp->v_vfsp->vfs_flag & VFS_RDONLY)) {
762 		if (*vpp)
763 			VN_RELE(*vpp);
764 		error = EROFS;
765 	} else if (excl == NONEXCL && *vpp != NULL) {
766 		vnode_t *rvp;
767 
768 		/*
769 		 * File already exists.  If a mandatory lock has been
770 		 * applied, return error.
771 		 */
772 		vp = *vpp;
773 		if (VOP_REALVP(vp, &rvp) != 0)
774 			rvp = vp;
775 		if ((vap->va_mask & AT_SIZE) && nbl_need_check(vp)) {
776 			nbl_start_crit(vp, RW_READER);
777 			in_crit = 1;
778 		}
779 		if (rvp->v_filocks != NULL || rvp->v_shrlocks != NULL) {
780 			vattr.va_mask = AT_MODE|AT_SIZE;
781 			if (error = VOP_GETATTR(vp, &vattr, 0, CRED())) {
782 				goto out;
783 			}
784 			if (MANDLOCK(vp, vattr.va_mode)) {
785 				error = EAGAIN;
786 				goto out;
787 			}
788 			/*
789 			 * File cannot be truncated if non-blocking mandatory
790 			 * locks are currently on the file.
791 			 */
792 			if ((vap->va_mask & AT_SIZE) && in_crit) {
793 				u_offset_t offset;
794 				ssize_t length;
795 
796 				offset = vap->va_size > vattr.va_size ?
797 						vattr.va_size : vap->va_size;
798 				length = vap->va_size > vattr.va_size ?
799 						vap->va_size - vattr.va_size :
800 						vattr.va_size - vap->va_size;
801 				if (nbl_conflict(vp, NBL_WRITE, offset,
802 						length, 0)) {
803 					error = EACCES;
804 					goto out;
805 				}
806 			}
807 		}
808 
809 		/*
810 		 * If the file is the root of a VFS, we've crossed a
811 		 * mount point and the "containing" directory that we
812 		 * acquired above (dvp) is irrelevant because it's in
813 		 * a different file system.  We apply VOP_CREATE to the
814 		 * target itself instead of to the containing directory
815 		 * and supply a null path name to indicate (conventionally)
816 		 * the node itself as the "component" of interest.
817 		 *
818 		 * The intercession of the file system is necessary to
819 		 * ensure that the appropriate permission checks are
820 		 * done.
821 		 */
822 		if (vp->v_flag & VROOT) {
823 			ASSERT(why != CRMKDIR);
824 			error =
825 			    VOP_CREATE(vp, "", vap, excl, mode, vpp, CRED(),
826 				    flag);
827 			/*
828 			 * If the create succeeded, it will have created
829 			 * a new reference to the vnode.  Give up the
830 			 * original reference.  The assertion should not
831 			 * get triggered because NBMAND locks only apply to
832 			 * VREG files.  And if in_crit is non-zero for some
833 			 * reason, detect that here, rather than when we
834 			 * deference a null vp.
835 			 */
836 			ASSERT(in_crit == 0);
837 			VN_RELE(vp);
838 			vp = NULL;
839 			goto out;
840 		}
841 
842 		/*
843 		 * Large File API - non-large open (FOFFMAX flag not set)
844 		 * of regular file fails if the file size exceeds MAXOFF32_T.
845 		 */
846 		if (why != CRMKDIR &&
847 		    !(flag & FOFFMAX) &&
848 		    (vp->v_type == VREG)) {
849 			vattr.va_mask = AT_SIZE;
850 			if ((error = VOP_GETATTR(vp, &vattr, 0, CRED()))) {
851 				goto out;
852 			}
853 			if ((vattr.va_size > (u_offset_t)MAXOFF32_T)) {
854 				error = EOVERFLOW;
855 				goto out;
856 			}
857 		}
858 	}
859 
860 	if (error == 0) {
861 		/*
862 		 * Call mkdir() if specified, otherwise create().
863 		 */
864 		int must_be_dir = pn_fixslash(&pn);	/* trailing '/'? */
865 
866 		if (why == CRMKDIR)
867 			error = VOP_MKDIR(dvp, pn.pn_path, vap, vpp, CRED());
868 		else if (!must_be_dir)
869 			error = VOP_CREATE(dvp, pn.pn_path, vap,
870 			    excl, mode, vpp, CRED(), flag);
871 		else
872 			error = ENOTDIR;
873 	}
874 
875 out:
876 
877 #ifdef C2_AUDIT
878 	if (audit_active)
879 		audit_vncreate_finish(*vpp, error);
880 #endif  /* C2_AUDIT */
881 	if (in_crit) {
882 		nbl_end_crit(vp);
883 		in_crit = 0;
884 	}
885 	if (vp != NULL) {
886 		VN_RELE(vp);
887 		vp = NULL;
888 	}
889 	pn_free(&pn);
890 	VN_RELE(dvp);
891 	/*
892 	 * The following clause was added to handle a problem
893 	 * with NFS consistency.  It is possible that a lookup
894 	 * of the file to be created succeeded, but the file
895 	 * itself doesn't actually exist on the server.  This
896 	 * is chiefly due to the DNLC containing an entry for
897 	 * the file which has been removed on the server.  In
898 	 * this case, we just start over.  If there was some
899 	 * other cause for the ESTALE error, then the lookup
900 	 * of the file will fail and the error will be returned
901 	 * above instead of looping around from here.
902 	 */
903 	if (error == ESTALE)
904 		goto top;
905 	return (error);
906 }
907 
908 int
909 vn_link(char *from, char *to, enum uio_seg seg)
910 {
911 	struct vnode *fvp;		/* from vnode ptr */
912 	struct vnode *tdvp;		/* to directory vnode ptr */
913 	struct pathname pn;
914 	int error;
915 	struct vattr vattr;
916 	dev_t fsid;
917 
918 top:
919 	fvp = tdvp = NULL;
920 	if (error = pn_get(to, seg, &pn))
921 		return (error);
922 	if (error = lookupname(from, seg, NO_FOLLOW, NULLVPP, &fvp))
923 		goto out;
924 	if (error = lookuppn(&pn, NULL, NO_FOLLOW, &tdvp, NULLVPP))
925 		goto out;
926 	/*
927 	 * Make sure both source vnode and target directory vnode are
928 	 * in the same vfs and that it is writeable.
929 	 */
930 	vattr.va_mask = AT_FSID;
931 	if (error = VOP_GETATTR(fvp, &vattr, 0, CRED()))
932 		goto out;
933 	fsid = vattr.va_fsid;
934 	vattr.va_mask = AT_FSID;
935 	if (error = VOP_GETATTR(tdvp, &vattr, 0, CRED()))
936 		goto out;
937 	if (fsid != vattr.va_fsid) {
938 		error = EXDEV;
939 		goto out;
940 	}
941 	if (tdvp->v_vfsp->vfs_flag & VFS_RDONLY) {
942 		error = EROFS;
943 		goto out;
944 	}
945 	/*
946 	 * Do the link.
947 	 */
948 	(void) pn_fixslash(&pn);
949 	error = VOP_LINK(tdvp, fvp, pn.pn_path, CRED());
950 out:
951 	pn_free(&pn);
952 	if (fvp)
953 		VN_RELE(fvp);
954 	if (tdvp)
955 		VN_RELE(tdvp);
956 	if (error == ESTALE)
957 		goto top;
958 	return (error);
959 }
960 
961 int
962 vn_rename(char *from, char *to, enum uio_seg seg)
963 {
964 	return (vn_renameat(NULL, from, NULL, to, seg));
965 }
966 
967 int
968 vn_renameat(vnode_t *fdvp, char *fname, vnode_t *tdvp,
969 		char *tname, enum uio_seg seg)
970 {
971 	int error;
972 	struct vattr vattr;
973 	struct pathname fpn;		/* from pathname */
974 	struct pathname tpn;		/* to pathname */
975 	dev_t fsid;
976 	int in_crit = 0;
977 	vnode_t *fromvp, *fvp;
978 	vnode_t *tovp;
979 
980 top:
981 	fvp = fromvp = tovp = NULL;
982 	/*
983 	 * Get to and from pathnames.
984 	 */
985 	if (error = pn_get(fname, seg, &fpn))
986 		return (error);
987 	if (error = pn_get(tname, seg, &tpn)) {
988 		pn_free(&fpn);
989 		return (error);
990 	}
991 
992 	/*
993 	 * First we need to resolve the correct directories
994 	 * The passed in directories may only be a starting point,
995 	 * but we need the real directories the file(s) live in.
996 	 * For example the fname may be something like usr/lib/sparc
997 	 * and we were passed in the / directory, but we need to
998 	 * use the lib directory for the rename.
999 	 */
1000 
1001 #ifdef  C2_AUDIT
1002 	if (audit_active)
1003 		audit_setfsat_path(1);
1004 #endif /* C2_AUDIT */
1005 	/*
1006 	 * Lookup to and from directories.
1007 	 */
1008 	if (error = lookuppnat(&fpn, NULL, NO_FOLLOW, &fromvp, &fvp, fdvp)) {
1009 		goto out;
1010 	}
1011 
1012 	/*
1013 	 * Make sure there is an entry.
1014 	 */
1015 	if (fvp == NULL) {
1016 		error = ENOENT;
1017 		goto out;
1018 	}
1019 
1020 #ifdef  C2_AUDIT
1021 	if (audit_active)
1022 		audit_setfsat_path(3);
1023 #endif /* C2_AUDIT */
1024 	if (error = lookuppnat(&tpn, NULL, NO_FOLLOW, &tovp, NULLVPP, tdvp)) {
1025 		goto out;
1026 	}
1027 
1028 	/*
1029 	 * Make sure both the from vnode directory and the to directory
1030 	 * are in the same vfs and the to directory is writable.
1031 	 * We check fsid's, not vfs pointers, so loopback fs works.
1032 	 */
1033 	if (fromvp != tovp) {
1034 		vattr.va_mask = AT_FSID;
1035 		if (error = VOP_GETATTR(fromvp, &vattr, 0, CRED()))
1036 			goto out;
1037 		fsid = vattr.va_fsid;
1038 		vattr.va_mask = AT_FSID;
1039 		if (error = VOP_GETATTR(tovp, &vattr, 0, CRED()))
1040 			goto out;
1041 		if (fsid != vattr.va_fsid) {
1042 			error = EXDEV;
1043 			goto out;
1044 		}
1045 	}
1046 
1047 	if (tovp->v_vfsp->vfs_flag & VFS_RDONLY) {
1048 		error = EROFS;
1049 		goto out;
1050 	}
1051 
1052 	if (nbl_need_check(fvp)) {
1053 		nbl_start_crit(fvp, RW_READER);
1054 		in_crit = 1;
1055 		if (nbl_conflict(fvp, NBL_RENAME, 0, 0, 0)) {
1056 			error = EACCES;
1057 			goto out;
1058 		}
1059 	}
1060 
1061 	/*
1062 	 * Do the rename.
1063 	 */
1064 	(void) pn_fixslash(&tpn);
1065 	error = VOP_RENAME(fromvp, fpn.pn_path, tovp, tpn.pn_path, CRED());
1066 
1067 out:
1068 	pn_free(&fpn);
1069 	pn_free(&tpn);
1070 	if (in_crit) {
1071 		nbl_end_crit(fvp);
1072 		in_crit = 0;
1073 	}
1074 	if (fromvp)
1075 		VN_RELE(fromvp);
1076 	if (tovp)
1077 		VN_RELE(tovp);
1078 	if (fvp)
1079 		VN_RELE(fvp);
1080 	if (error == ESTALE)
1081 		goto top;
1082 	return (error);
1083 }
1084 
1085 /*
1086  * Remove a file or directory.
1087  */
1088 int
1089 vn_remove(char *fnamep, enum uio_seg seg, enum rm dirflag)
1090 {
1091 	return (vn_removeat(NULL, fnamep, seg, dirflag));
1092 }
1093 
1094 int
1095 vn_removeat(vnode_t *startvp, char *fnamep, enum uio_seg seg, enum rm dirflag)
1096 {
1097 	struct vnode *vp;		/* entry vnode */
1098 	struct vnode *dvp;		/* ptr to parent dir vnode */
1099 	struct vnode *coveredvp;
1100 	struct pathname pn;		/* name of entry */
1101 	enum vtype vtype;
1102 	int error;
1103 	struct vfs *vfsp;
1104 	struct vfs *dvfsp;	/* ptr to parent dir vfs */
1105 	int in_crit = 0;
1106 
1107 top:
1108 	if (error = pn_get(fnamep, seg, &pn))
1109 		return (error);
1110 	dvp = vp = NULL;
1111 	if (error = lookuppnat(&pn, NULL, NO_FOLLOW, &dvp, &vp, startvp)) {
1112 		pn_free(&pn);
1113 		if (error == ESTALE)
1114 			goto top;
1115 		return (error);
1116 	}
1117 
1118 	/*
1119 	 * Make sure there is an entry.
1120 	 */
1121 	if (vp == NULL) {
1122 		error = ENOENT;
1123 		goto out;
1124 	}
1125 
1126 	vfsp = vp->v_vfsp;
1127 	dvfsp = dvp->v_vfsp;
1128 
1129 	/*
1130 	 * If the named file is the root of a mounted filesystem, fail,
1131 	 * unless it's marked unlinkable.  In that case, unmount the
1132 	 * filesystem and proceed to unlink the covered vnode.  (If the
1133 	 * covered vnode is a directory, use rmdir instead of unlink,
1134 	 * to avoid file system corruption.)
1135 	 */
1136 	if (vp->v_flag & VROOT) {
1137 		if (vfsp->vfs_flag & VFS_UNLINKABLE) {
1138 			if (dirflag == RMDIRECTORY) {
1139 				/*
1140 				 * User called rmdir(2) on a file that has
1141 				 * been namefs mounted on top of.  Since
1142 				 * namefs doesn't allow directories to
1143 				 * be mounted on other files we know
1144 				 * vp is not of type VDIR so fail to operation.
1145 				 */
1146 				error = ENOTDIR;
1147 				goto out;
1148 			}
1149 			coveredvp = vfsp->vfs_vnodecovered;
1150 			VN_HOLD(coveredvp);
1151 			VN_RELE(vp);
1152 			vp = NULL;
1153 			if ((error = vn_vfswlock(coveredvp)) == 0)
1154 				error = dounmount(vfsp, 0, CRED());
1155 			/*
1156 			 * Unmounted the namefs file system; now get
1157 			 * the object it was mounted over.
1158 			 */
1159 			vp = coveredvp;
1160 			/*
1161 			 * If namefs was mounted over a directory, then
1162 			 * we want to use rmdir() instead of unlink().
1163 			 */
1164 			if (vp->v_type == VDIR)
1165 				dirflag = RMDIRECTORY;
1166 		} else
1167 			error = EBUSY;
1168 
1169 		if (error)
1170 			goto out;
1171 	}
1172 
1173 	/*
1174 	 * Make sure filesystem is writeable.
1175 	 * We check the parent directory's vfs in case this is an lofs vnode.
1176 	 */
1177 	if (dvfsp && dvfsp->vfs_flag & VFS_RDONLY) {
1178 		error = EROFS;
1179 		goto out;
1180 	}
1181 
1182 	vtype = vp->v_type;
1183 
1184 	/*
1185 	 * If there is the possibility of an nbmand share reservation, make
1186 	 * sure it's okay to remove the file.  Keep a reference to the
1187 	 * vnode, so that we can exit the nbl critical region after
1188 	 * calling VOP_REMOVE.
1189 	 * If there is no possibility of an nbmand share reservation,
1190 	 * release the vnode reference now.  Filesystems like NFS may
1191 	 * behave differently if there is an extra reference, so get rid of
1192 	 * this one.  Fortunately, we can't have nbmand mounts on NFS
1193 	 * filesystems.
1194 	 */
1195 	if (nbl_need_check(vp)) {
1196 		nbl_start_crit(vp, RW_READER);
1197 		in_crit = 1;
1198 		if (nbl_conflict(vp, NBL_REMOVE, 0, 0, 0)) {
1199 			error = EACCES;
1200 			goto out;
1201 		}
1202 	} else {
1203 		VN_RELE(vp);
1204 		vp = NULL;
1205 	}
1206 
1207 	if (dirflag == RMDIRECTORY) {
1208 		/*
1209 		 * Caller is using rmdir(2), which can only be applied to
1210 		 * directories.
1211 		 */
1212 		if (vtype != VDIR) {
1213 			error = ENOTDIR;
1214 		} else {
1215 			vnode_t *cwd;
1216 			proc_t *pp = curproc;
1217 
1218 			mutex_enter(&pp->p_lock);
1219 			cwd = PTOU(pp)->u_cdir;
1220 			VN_HOLD(cwd);
1221 			mutex_exit(&pp->p_lock);
1222 			error = VOP_RMDIR(dvp, pn.pn_path, cwd, CRED());
1223 			VN_RELE(cwd);
1224 		}
1225 	} else {
1226 		/*
1227 		 * Unlink(2) can be applied to anything.
1228 		 */
1229 		error = VOP_REMOVE(dvp, pn.pn_path, CRED());
1230 	}
1231 
1232 out:
1233 	pn_free(&pn);
1234 	if (in_crit) {
1235 		nbl_end_crit(vp);
1236 		in_crit = 0;
1237 	}
1238 	if (vp != NULL)
1239 		VN_RELE(vp);
1240 	if (dvp != NULL)
1241 		VN_RELE(dvp);
1242 	if (error == ESTALE)
1243 		goto top;
1244 	return (error);
1245 }
1246 
1247 /*
1248  * Utility function to compare equality of vnodes.
1249  * Compare the underlying real vnodes, if there are underlying vnodes.
1250  * This is a more thorough comparison than the VN_CMP() macro provides.
1251  */
1252 int
1253 vn_compare(vnode_t *vp1, vnode_t *vp2)
1254 {
1255 	vnode_t *realvp;
1256 
1257 	if (vp1 != NULL && VOP_REALVP(vp1, &realvp) == 0)
1258 		vp1 = realvp;
1259 	if (vp2 != NULL && VOP_REALVP(vp2, &realvp) == 0)
1260 		vp2 = realvp;
1261 	return (VN_CMP(vp1, vp2));
1262 }
1263 
1264 /*
1265  * The number of locks to hash into.  This value must be a power
1266  * of 2 minus 1 and should probably also be prime.
1267  */
1268 #define	NUM_BUCKETS	1023
1269 
1270 struct  vn_vfslocks_bucket {
1271 	kmutex_t vb_lock;
1272 	vn_vfslocks_entry_t *vb_list;
1273 	char pad[64 - sizeof (kmutex_t) - sizeof (void *)];
1274 };
1275 
1276 /*
1277  * Total number of buckets will be NUM_BUCKETS + 1 .
1278  */
1279 
1280 #pragma	align	64(vn_vfslocks_buckets)
1281 static	struct vn_vfslocks_bucket	vn_vfslocks_buckets[NUM_BUCKETS + 1];
1282 
1283 #define	VN_VFSLOCKS_SHIFT	9
1284 
1285 #define	VN_VFSLOCKS_HASH(vfsvpptr)	\
1286 	((((intptr_t)(vfsvpptr)) >> VN_VFSLOCKS_SHIFT) & NUM_BUCKETS)
1287 
1288 /*
1289  * vn_vfslocks_getlock() uses an HASH scheme to generate
1290  * rwstlock using vfs/vnode pointer passed to it.
1291  *
1292  * vn_vfslocks_rele() releases a reference in the
1293  * HASH table which allows the entry allocated by
1294  * vn_vfslocks_getlock() to be freed at a later
1295  * stage when the refcount drops to zero.
1296  */
1297 
1298 vn_vfslocks_entry_t *
1299 vn_vfslocks_getlock(void *vfsvpptr)
1300 {
1301 	struct vn_vfslocks_bucket *bp;
1302 	vn_vfslocks_entry_t *vep;
1303 	vn_vfslocks_entry_t *tvep;
1304 
1305 	ASSERT(vfsvpptr != NULL);
1306 	bp = &vn_vfslocks_buckets[VN_VFSLOCKS_HASH(vfsvpptr)];
1307 
1308 	mutex_enter(&bp->vb_lock);
1309 	for (vep = bp->vb_list; vep != NULL; vep = vep->ve_next) {
1310 		if (vep->ve_vpvfs == vfsvpptr) {
1311 			vep->ve_refcnt++;
1312 			mutex_exit(&bp->vb_lock);
1313 			return (vep);
1314 		}
1315 	}
1316 	mutex_exit(&bp->vb_lock);
1317 	vep = kmem_alloc(sizeof (*vep), KM_SLEEP);
1318 	rwst_init(&vep->ve_lock, NULL, RW_DEFAULT, NULL);
1319 	vep->ve_vpvfs = (char *)vfsvpptr;
1320 	vep->ve_refcnt = 1;
1321 	mutex_enter(&bp->vb_lock);
1322 	for (tvep = bp->vb_list; tvep != NULL; tvep = tvep->ve_next) {
1323 		if (tvep->ve_vpvfs == vfsvpptr) {
1324 			tvep->ve_refcnt++;
1325 			mutex_exit(&bp->vb_lock);
1326 
1327 			/*
1328 			 * There is already an entry in the hash
1329 			 * destroy what we just allocated.
1330 			 */
1331 			rwst_destroy(&vep->ve_lock);
1332 			kmem_free(vep, sizeof (*vep));
1333 			return (tvep);
1334 		}
1335 	}
1336 	vep->ve_next = bp->vb_list;
1337 	bp->vb_list = vep;
1338 	mutex_exit(&bp->vb_lock);
1339 	return (vep);
1340 }
1341 
1342 void
1343 vn_vfslocks_rele(vn_vfslocks_entry_t *vepent)
1344 {
1345 	struct vn_vfslocks_bucket *bp;
1346 	vn_vfslocks_entry_t *vep;
1347 	vn_vfslocks_entry_t *pvep;
1348 
1349 	ASSERT(vepent != NULL);
1350 	ASSERT(vepent->ve_vpvfs != NULL);
1351 
1352 	bp = &vn_vfslocks_buckets[VN_VFSLOCKS_HASH(vepent->ve_vpvfs)];
1353 
1354 	mutex_enter(&bp->vb_lock);
1355 	vepent->ve_refcnt--;
1356 
1357 	if ((int32_t)vepent->ve_refcnt < 0)
1358 		cmn_err(CE_PANIC, "vn_vfslocks_rele: refcount negative");
1359 
1360 	if (vepent->ve_refcnt == 0) {
1361 		for (vep = bp->vb_list; vep != NULL; vep = vep->ve_next) {
1362 			if (vep->ve_vpvfs == vepent->ve_vpvfs) {
1363 				if (bp->vb_list == vep)
1364 					bp->vb_list = vep->ve_next;
1365 				else {
1366 					/* LINTED */
1367 					pvep->ve_next = vep->ve_next;
1368 				}
1369 				mutex_exit(&bp->vb_lock);
1370 				rwst_destroy(&vep->ve_lock);
1371 				kmem_free(vep, sizeof (*vep));
1372 				return;
1373 			}
1374 			pvep = vep;
1375 		}
1376 		cmn_err(CE_PANIC, "vn_vfslocks_rele: vp/vfs not found");
1377 	}
1378 	mutex_exit(&bp->vb_lock);
1379 }
1380 
1381 /*
1382  * vn_vfswlock_wait is used to implement a lock which is logically a writers
1383  * lock protecting the v_vfsmountedhere field.
1384  * vn_vfswlock_wait has been modified to be similar to vn_vfswlock,
1385  * except that it blocks to acquire the lock VVFSLOCK.
1386  *
1387  * traverse() and routines re-implementing part of traverse (e.g. autofs)
1388  * need to hold this lock. mount(), vn_rename(), vn_remove() and so on
1389  * need the non-blocking version of the writers lock i.e. vn_vfswlock
1390  */
1391 int
1392 vn_vfswlock_wait(vnode_t *vp)
1393 {
1394 	int retval;
1395 	vn_vfslocks_entry_t *vpvfsentry;
1396 	ASSERT(vp != NULL);
1397 
1398 	vpvfsentry = vn_vfslocks_getlock(vp);
1399 	retval = rwst_enter_sig(&vpvfsentry->ve_lock, RW_WRITER);
1400 
1401 	if (retval == EINTR) {
1402 		vn_vfslocks_rele(vpvfsentry);
1403 		return (EINTR);
1404 	}
1405 	return (retval);
1406 }
1407 
1408 int
1409 vn_vfsrlock_wait(vnode_t *vp)
1410 {
1411 	int retval;
1412 	vn_vfslocks_entry_t *vpvfsentry;
1413 	ASSERT(vp != NULL);
1414 
1415 	vpvfsentry = vn_vfslocks_getlock(vp);
1416 	retval = rwst_enter_sig(&vpvfsentry->ve_lock, RW_READER);
1417 
1418 	if (retval == EINTR) {
1419 		vn_vfslocks_rele(vpvfsentry);
1420 		return (EINTR);
1421 	}
1422 
1423 	return (retval);
1424 }
1425 
1426 
1427 /*
1428  * vn_vfswlock is used to implement a lock which is logically a writers lock
1429  * protecting the v_vfsmountedhere field.
1430  */
1431 int
1432 vn_vfswlock(vnode_t *vp)
1433 {
1434 	vn_vfslocks_entry_t *vpvfsentry;
1435 
1436 	/*
1437 	 * If vp is NULL then somebody is trying to lock the covered vnode
1438 	 * of /.  (vfs_vnodecovered is NULL for /).  This situation will
1439 	 * only happen when unmounting /.  Since that operation will fail
1440 	 * anyway, return EBUSY here instead of in VFS_UNMOUNT.
1441 	 */
1442 	if (vp == NULL)
1443 		return (EBUSY);
1444 
1445 	vpvfsentry = vn_vfslocks_getlock(vp);
1446 
1447 	if (rwst_tryenter(&vpvfsentry->ve_lock, RW_WRITER))
1448 		return (0);
1449 
1450 	vn_vfslocks_rele(vpvfsentry);
1451 	return (EBUSY);
1452 }
1453 
1454 int
1455 vn_vfsrlock(vnode_t *vp)
1456 {
1457 	vn_vfslocks_entry_t *vpvfsentry;
1458 
1459 	/*
1460 	 * If vp is NULL then somebody is trying to lock the covered vnode
1461 	 * of /.  (vfs_vnodecovered is NULL for /).  This situation will
1462 	 * only happen when unmounting /.  Since that operation will fail
1463 	 * anyway, return EBUSY here instead of in VFS_UNMOUNT.
1464 	 */
1465 	if (vp == NULL)
1466 		return (EBUSY);
1467 
1468 	vpvfsentry = vn_vfslocks_getlock(vp);
1469 
1470 	if (rwst_tryenter(&vpvfsentry->ve_lock, RW_READER))
1471 		return (0);
1472 
1473 	vn_vfslocks_rele(vpvfsentry);
1474 	return (EBUSY);
1475 }
1476 
1477 void
1478 vn_vfsunlock(vnode_t *vp)
1479 {
1480 	vn_vfslocks_entry_t *vpvfsentry;
1481 
1482 	/*
1483 	 * ve_refcnt needs to be decremented twice.
1484 	 * 1. To release refernce after a call to vn_vfslocks_getlock()
1485 	 * 2. To release the reference from the locking routines like
1486 	 *    vn_vfsrlock/vn_vfswlock etc,.
1487 	 */
1488 	vpvfsentry = vn_vfslocks_getlock(vp);
1489 	vn_vfslocks_rele(vpvfsentry);
1490 
1491 	rwst_exit(&vpvfsentry->ve_lock);
1492 	vn_vfslocks_rele(vpvfsentry);
1493 }
1494 
1495 int
1496 vn_vfswlock_held(vnode_t *vp)
1497 {
1498 	int held;
1499 	vn_vfslocks_entry_t *vpvfsentry;
1500 
1501 	ASSERT(vp != NULL);
1502 
1503 	vpvfsentry = vn_vfslocks_getlock(vp);
1504 	held = rwst_lock_held(&vpvfsentry->ve_lock, RW_WRITER);
1505 
1506 	vn_vfslocks_rele(vpvfsentry);
1507 	return (held);
1508 }
1509 
1510 
1511 int
1512 vn_make_ops(
1513 	const char *name,			/* Name of file system */
1514 	const fs_operation_def_t *templ,	/* Operation specification */
1515 	vnodeops_t **actual)			/* Return the vnodeops */
1516 {
1517 	int unused_ops;
1518 	int error;
1519 
1520 	*actual = (vnodeops_t *)kmem_alloc(sizeof (vnodeops_t), KM_SLEEP);
1521 
1522 	(*actual)->vnop_name = name;
1523 
1524 	error = fs_build_vector(*actual, &unused_ops, vn_ops_table, templ);
1525 	if (error) {
1526 		kmem_free(*actual, sizeof (vnodeops_t));
1527 	}
1528 
1529 #if DEBUG
1530 	if (unused_ops != 0)
1531 		cmn_err(CE_WARN, "vn_make_ops: %s: %d operations supplied "
1532 		    "but not used", name, unused_ops);
1533 #endif
1534 
1535 	return (error);
1536 }
1537 
1538 /*
1539  * Free the vnodeops created as a result of vn_make_ops()
1540  */
1541 void
1542 vn_freevnodeops(vnodeops_t *vnops)
1543 {
1544 	kmem_free(vnops, sizeof (vnodeops_t));
1545 }
1546 
1547 /*
1548  * Vnode cache.
1549  */
1550 
1551 /* ARGSUSED */
1552 static int
1553 vn_cache_constructor(void *buf, void *cdrarg, int kmflags)
1554 {
1555 	struct vnode *vp;
1556 
1557 	vp = buf;
1558 
1559 	mutex_init(&vp->v_lock, NULL, MUTEX_DEFAULT, NULL);
1560 	cv_init(&vp->v_cv, NULL, CV_DEFAULT, NULL);
1561 	rw_init(&vp->v_nbllock, NULL, RW_DEFAULT, NULL);
1562 	rw_init(&vp->v_mslock, NULL, RW_DEFAULT, NULL);
1563 
1564 	vp->v_femhead = NULL;	/* Must be done before vn_reinit() */
1565 	vp->v_path = NULL;
1566 	vp->v_mpssdata = NULL;
1567 
1568 	return (0);
1569 }
1570 
1571 /* ARGSUSED */
1572 static void
1573 vn_cache_destructor(void *buf, void *cdrarg)
1574 {
1575 	struct vnode *vp;
1576 
1577 	vp = buf;
1578 
1579 	rw_destroy(&vp->v_mslock);
1580 	rw_destroy(&vp->v_nbllock);
1581 	cv_destroy(&vp->v_cv);
1582 	mutex_destroy(&vp->v_lock);
1583 }
1584 
1585 void
1586 vn_create_cache(void)
1587 {
1588 	vn_cache = kmem_cache_create("vn_cache", sizeof (struct vnode), 64,
1589 	    vn_cache_constructor, vn_cache_destructor, NULL, NULL,
1590 	    NULL, 0);
1591 }
1592 
1593 void
1594 vn_destroy_cache(void)
1595 {
1596 	kmem_cache_destroy(vn_cache);
1597 }
1598 
1599 /*
1600  * Used by file systems when fs-specific nodes (e.g., ufs inodes) are
1601  * cached by the file system and vnodes remain associated.
1602  */
1603 void
1604 vn_recycle(vnode_t *vp)
1605 {
1606 	ASSERT(vp->v_pages == NULL);
1607 
1608 	/*
1609 	 * XXX - This really belongs in vn_reinit(), but we have some issues
1610 	 * with the counts.  Best to have it here for clean initialization.
1611 	 */
1612 	vp->v_rdcnt = 0;
1613 	vp->v_wrcnt = 0;
1614 	vp->v_mmap_read = 0;
1615 	vp->v_mmap_write = 0;
1616 
1617 	/*
1618 	 * If FEM was in use, make sure everything gets cleaned up
1619 	 * NOTE: vp->v_femhead is initialized to NULL in the vnode
1620 	 * constructor.
1621 	 */
1622 	if (vp->v_femhead) {
1623 		/* XXX - There should be a free_femhead() that does all this */
1624 		ASSERT(vp->v_femhead->femh_list == NULL);
1625 		mutex_destroy(&vp->v_femhead->femh_lock);
1626 		kmem_free(vp->v_femhead, sizeof (*(vp->v_femhead)));
1627 		vp->v_femhead = NULL;
1628 	}
1629 	if (vp->v_path) {
1630 		kmem_free(vp->v_path, strlen(vp->v_path) + 1);
1631 		vp->v_path = NULL;
1632 	}
1633 	vp->v_mpssdata = NULL;
1634 }
1635 
1636 /*
1637  * Used to reset the vnode fields including those that are directly accessible
1638  * as well as those which require an accessor function.
1639  *
1640  * Does not initialize:
1641  *	synchronization objects: v_lock, v_nbllock, v_cv
1642  *	v_data (since FS-nodes and vnodes point to each other and should
1643  *		be updated simultaneously)
1644  *	v_op (in case someone needs to make a VOP call on this object)
1645  */
1646 void
1647 vn_reinit(vnode_t *vp)
1648 {
1649 	vp->v_count = 1;
1650 	vp->v_vfsp = NULL;
1651 	vp->v_stream = NULL;
1652 	vp->v_vfsmountedhere = NULL;
1653 	vp->v_flag = 0;
1654 	vp->v_type = VNON;
1655 	vp->v_rdev = NODEV;
1656 
1657 	vp->v_filocks = NULL;
1658 	vp->v_shrlocks = NULL;
1659 	vp->v_pages = NULL;
1660 	vp->v_npages = 0;
1661 	vp->v_msnpages = 0;
1662 	vp->v_scanfront = NULL;
1663 	vp->v_scanback = NULL;
1664 
1665 	vp->v_locality = NULL;
1666 	vp->v_scantime = 0;
1667 	vp->v_mset = 0;
1668 	vp->v_msflags = 0;
1669 	vp->v_msnext = NULL;
1670 	vp->v_msprev = NULL;
1671 
1672 	/* Handles v_femhead, v_path, and the r/w/map counts */
1673 	vn_recycle(vp);
1674 }
1675 
1676 vnode_t *
1677 vn_alloc(int kmflag)
1678 {
1679 	vnode_t *vp;
1680 
1681 	vp = kmem_cache_alloc(vn_cache, kmflag);
1682 
1683 	if (vp != NULL) {
1684 		vp->v_femhead = NULL;	/* Must be done before vn_reinit() */
1685 		vn_reinit(vp);
1686 	}
1687 
1688 	return (vp);
1689 }
1690 
1691 void
1692 vn_free(vnode_t *vp)
1693 {
1694 	/*
1695 	 * Some file systems call vn_free() with v_count of zero,
1696 	 * some with v_count of 1.  In any case, the value should
1697 	 * never be anything else.
1698 	 */
1699 	ASSERT((vp->v_count == 0) || (vp->v_count == 1));
1700 	if (vp->v_path != NULL) {
1701 		kmem_free(vp->v_path, strlen(vp->v_path) + 1);
1702 		vp->v_path = NULL;
1703 	}
1704 
1705 	/* If FEM was in use, make sure everything gets cleaned up */
1706 	if (vp->v_femhead) {
1707 		/* XXX - There should be a free_femhead() that does all this */
1708 		ASSERT(vp->v_femhead->femh_list == NULL);
1709 		mutex_destroy(&vp->v_femhead->femh_lock);
1710 		kmem_free(vp->v_femhead, sizeof (*(vp->v_femhead)));
1711 		vp->v_femhead = NULL;
1712 	}
1713 	vp->v_mpssdata = NULL;
1714 	kmem_cache_free(vn_cache, vp);
1715 }
1716 
1717 /*
1718  * vnode status changes, should define better states than 1, 0.
1719  */
1720 void
1721 vn_reclaim(vnode_t *vp)
1722 {
1723 	vfs_t   *vfsp = vp->v_vfsp;
1724 
1725 	if (vfsp == NULL || vfsp->vfs_femhead == NULL) {
1726 		return;
1727 	}
1728 	(void) VFS_VNSTATE(vfsp, vp, VNTRANS_RECLAIMED);
1729 }
1730 
1731 void
1732 vn_idle(vnode_t *vp)
1733 {
1734 	vfs_t   *vfsp = vp->v_vfsp;
1735 
1736 	if (vfsp == NULL || vfsp->vfs_femhead == NULL) {
1737 		return;
1738 	}
1739 	(void) VFS_VNSTATE(vfsp, vp, VNTRANS_IDLED);
1740 }
1741 void
1742 vn_exists(vnode_t *vp)
1743 {
1744 	vfs_t   *vfsp = vp->v_vfsp;
1745 
1746 	if (vfsp == NULL || vfsp->vfs_femhead == NULL) {
1747 		return;
1748 	}
1749 	(void) VFS_VNSTATE(vfsp, vp, VNTRANS_EXISTS);
1750 }
1751 
1752 void
1753 vn_invalid(vnode_t *vp)
1754 {
1755 	vfs_t   *vfsp = vp->v_vfsp;
1756 
1757 	if (vfsp == NULL || vfsp->vfs_femhead == NULL) {
1758 		return;
1759 	}
1760 	(void) VFS_VNSTATE(vfsp, vp, VNTRANS_DESTROYED);
1761 }
1762 
1763 /* Vnode event notification */
1764 
1765 int
1766 vnevent_support(vnode_t *vp)
1767 {
1768 	if (vp == NULL)
1769 		return (EINVAL);
1770 
1771 	return (VOP_VNEVENT(vp, VE_SUPPORT));
1772 }
1773 
1774 void
1775 vnevent_rename_src(vnode_t *vp)
1776 {
1777 	if (vp == NULL || vp->v_femhead == NULL) {
1778 		return;
1779 	}
1780 	(void) VOP_VNEVENT(vp, VE_RENAME_SRC);
1781 }
1782 
1783 void
1784 vnevent_rename_dest(vnode_t *vp)
1785 {
1786 	if (vp == NULL || vp->v_femhead == NULL) {
1787 		return;
1788 	}
1789 	(void) VOP_VNEVENT(vp, VE_RENAME_DEST);
1790 }
1791 
1792 void
1793 vnevent_remove(vnode_t *vp)
1794 {
1795 	if (vp == NULL || vp->v_femhead == NULL) {
1796 		return;
1797 	}
1798 	(void) VOP_VNEVENT(vp, VE_REMOVE);
1799 }
1800 
1801 void
1802 vnevent_rmdir(vnode_t *vp)
1803 {
1804 	if (vp == NULL || vp->v_femhead == NULL) {
1805 		return;
1806 	}
1807 	(void) VOP_VNEVENT(vp, VE_RMDIR);
1808 }
1809 
1810 /*
1811  * Vnode accessors.
1812  */
1813 
1814 int
1815 vn_is_readonly(vnode_t *vp)
1816 {
1817 	return (vp->v_vfsp->vfs_flag & VFS_RDONLY);
1818 }
1819 
1820 int
1821 vn_has_flocks(vnode_t *vp)
1822 {
1823 	return (vp->v_filocks != NULL);
1824 }
1825 
1826 int
1827 vn_has_mandatory_locks(vnode_t *vp, int mode)
1828 {
1829 	return ((vp->v_filocks != NULL) && (MANDLOCK(vp, mode)));
1830 }
1831 
1832 int
1833 vn_has_cached_data(vnode_t *vp)
1834 {
1835 	return (vp->v_pages != NULL);
1836 }
1837 
1838 /*
1839  * Return 0 if the vnode in question shouldn't be permitted into a zone via
1840  * zone_enter(2).
1841  */
1842 int
1843 vn_can_change_zones(vnode_t *vp)
1844 {
1845 	struct vfssw *vswp;
1846 	int allow = 1;
1847 	vnode_t *rvp;
1848 
1849 	if (nfs_global_client_only != 0)
1850 		return (1);
1851 
1852 	/*
1853 	 * We always want to look at the underlying vnode if there is one.
1854 	 */
1855 	if (VOP_REALVP(vp, &rvp) != 0)
1856 		rvp = vp;
1857 	/*
1858 	 * Some pseudo filesystems (including doorfs) don't actually register
1859 	 * their vfsops_t, so the following may return NULL; we happily let
1860 	 * such vnodes switch zones.
1861 	 */
1862 	vswp = vfs_getvfsswbyvfsops(vfs_getops(rvp->v_vfsp));
1863 	if (vswp != NULL) {
1864 		if (vswp->vsw_flag & VSW_NOTZONESAFE)
1865 			allow = 0;
1866 		vfs_unrefvfssw(vswp);
1867 	}
1868 	return (allow);
1869 }
1870 
1871 /*
1872  * Return nonzero if the vnode is a mount point, zero if not.
1873  */
1874 int
1875 vn_ismntpt(vnode_t *vp)
1876 {
1877 	return (vp->v_vfsmountedhere != NULL);
1878 }
1879 
1880 /* Retrieve the vfs (if any) mounted on this vnode */
1881 vfs_t *
1882 vn_mountedvfs(vnode_t *vp)
1883 {
1884 	return (vp->v_vfsmountedhere);
1885 }
1886 
1887 /*
1888  * vn_is_opened() checks whether a particular file is opened and
1889  * whether the open is for read and/or write.
1890  *
1891  * Vnode counts are only kept on regular files (v_type=VREG).
1892  */
1893 int
1894 vn_is_opened(
1895 	vnode_t *vp,
1896 	v_mode_t mode)
1897 {
1898 
1899 	ASSERT(vp != NULL);
1900 
1901 	switch (mode) {
1902 	case V_WRITE:
1903 		if (vp->v_wrcnt)
1904 			return (V_TRUE);
1905 		break;
1906 	case V_RDANDWR:
1907 		if (vp->v_rdcnt && vp->v_wrcnt)
1908 			return (V_TRUE);
1909 		break;
1910 	case V_RDORWR:
1911 		if (vp->v_rdcnt || vp->v_wrcnt)
1912 			return (V_TRUE);
1913 		break;
1914 	case V_READ:
1915 		if (vp->v_rdcnt)
1916 			return (V_TRUE);
1917 		break;
1918 	}
1919 
1920 	return (V_FALSE);
1921 }
1922 
1923 /*
1924  * vn_is_mapped() checks whether a particular file is mapped and whether
1925  * the file is mapped read and/or write.
1926  */
1927 int
1928 vn_is_mapped(
1929 	vnode_t *vp,
1930 	v_mode_t mode)
1931 {
1932 
1933 	ASSERT(vp != NULL);
1934 
1935 #if !defined(_LP64)
1936 	switch (mode) {
1937 	/*
1938 	 * The atomic_add_64_nv functions force atomicity in the
1939 	 * case of 32 bit architectures. Otherwise the 64 bit values
1940 	 * require two fetches. The value of the fields may be
1941 	 * (potentially) changed between the first fetch and the
1942 	 * second
1943 	 */
1944 	case V_WRITE:
1945 		if (atomic_add_64_nv((&(vp->v_mmap_write)), 0))
1946 			return (V_TRUE);
1947 		break;
1948 	case V_RDANDWR:
1949 		if ((atomic_add_64_nv((&(vp->v_mmap_read)), 0)) &&
1950 		    (atomic_add_64_nv((&(vp->v_mmap_write)), 0)))
1951 			return (V_TRUE);
1952 		break;
1953 	case V_RDORWR:
1954 		if ((atomic_add_64_nv((&(vp->v_mmap_read)), 0)) ||
1955 		    (atomic_add_64_nv((&(vp->v_mmap_write)), 0)))
1956 			return (V_TRUE);
1957 		break;
1958 	case V_READ:
1959 		if (atomic_add_64_nv((&(vp->v_mmap_read)), 0))
1960 			return (V_TRUE);
1961 		break;
1962 	}
1963 #else
1964 	switch (mode) {
1965 	case V_WRITE:
1966 		if (vp->v_mmap_write)
1967 			return (V_TRUE);
1968 		break;
1969 	case V_RDANDWR:
1970 		if (vp->v_mmap_read && vp->v_mmap_write)
1971 			return (V_TRUE);
1972 		break;
1973 	case V_RDORWR:
1974 		if (vp->v_mmap_read || vp->v_mmap_write)
1975 			return (V_TRUE);
1976 		break;
1977 	case V_READ:
1978 		if (vp->v_mmap_read)
1979 			return (V_TRUE);
1980 		break;
1981 	}
1982 #endif
1983 
1984 	return (V_FALSE);
1985 }
1986 
1987 /*
1988  * Set the operations vector for a vnode.
1989  *
1990  * FEM ensures that the v_femhead pointer is filled in before the
1991  * v_op pointer is changed.  This means that if the v_femhead pointer
1992  * is NULL, and the v_op field hasn't changed since before which checked
1993  * the v_femhead pointer; then our update is ok - we are not racing with
1994  * FEM.
1995  */
1996 void
1997 vn_setops(vnode_t *vp, vnodeops_t *vnodeops)
1998 {
1999 	vnodeops_t	*op;
2000 
2001 	ASSERT(vp != NULL);
2002 	ASSERT(vnodeops != NULL);
2003 
2004 	op = vp->v_op;
2005 	membar_consumer();
2006 	/*
2007 	 * If vp->v_femhead == NULL, then we'll call casptr() to do the
2008 	 * compare-and-swap on vp->v_op.  If either fails, then FEM is
2009 	 * in effect on the vnode and we need to have FEM deal with it.
2010 	 */
2011 	if (vp->v_femhead != NULL || casptr(&vp->v_op, op, vnodeops) != op) {
2012 		fem_setvnops(vp, vnodeops);
2013 	}
2014 }
2015 
2016 /*
2017  * Retrieve the operations vector for a vnode
2018  * As with vn_setops(above); make sure we aren't racing with FEM.
2019  * FEM sets the v_op to a special, internal, vnodeops that wouldn't
2020  * make sense to the callers of this routine.
2021  */
2022 vnodeops_t *
2023 vn_getops(vnode_t *vp)
2024 {
2025 	vnodeops_t	*op;
2026 
2027 	ASSERT(vp != NULL);
2028 
2029 	op = vp->v_op;
2030 	membar_consumer();
2031 	if (vp->v_femhead == NULL && op == vp->v_op) {
2032 		return (op);
2033 	} else {
2034 		return (fem_getvnops(vp));
2035 	}
2036 }
2037 
2038 /*
2039  * Returns non-zero (1) if the vnodeops matches that of the vnode.
2040  * Returns zero (0) if not.
2041  */
2042 int
2043 vn_matchops(vnode_t *vp, vnodeops_t *vnodeops)
2044 {
2045 	return (vn_getops(vp) == vnodeops);
2046 }
2047 
2048 /*
2049  * Returns non-zero (1) if the specified operation matches the
2050  * corresponding operation for that the vnode.
2051  * Returns zero (0) if not.
2052  */
2053 
2054 #define	MATCHNAME(n1, n2) (((n1)[0] == (n2)[0]) && (strcmp((n1), (n2)) == 0))
2055 
2056 int
2057 vn_matchopval(vnode_t *vp, char *vopname, fs_generic_func_p funcp)
2058 {
2059 	const fs_operation_trans_def_t *otdp;
2060 	fs_generic_func_p *loc = NULL;
2061 	vnodeops_t	*vop = vn_getops(vp);
2062 
2063 	ASSERT(vopname != NULL);
2064 
2065 	for (otdp = vn_ops_table; otdp->name != NULL; otdp++) {
2066 		if (MATCHNAME(otdp->name, vopname)) {
2067 			loc = (fs_generic_func_p *)((char *)(vop)
2068 							+ otdp->offset);
2069 			break;
2070 		}
2071 	}
2072 
2073 	return ((loc != NULL) && (*loc == funcp));
2074 }
2075 
2076 /*
2077  * fs_new_caller_id() needs to return a unique ID on a given local system.
2078  * The IDs do not need to survive across reboots.  These are primarily
2079  * used so that (FEM) monitors can detect particular callers (such as
2080  * the NFS server) to a given vnode/vfs operation.
2081  */
2082 u_longlong_t
2083 fs_new_caller_id()
2084 {
2085 	static uint64_t next_caller_id = 0LL; /* First call returns 1 */
2086 
2087 	return ((u_longlong_t)atomic_add_64_nv(&next_caller_id, 1));
2088 }
2089 
2090 /*
2091  * Given a starting vnode and a path, updates the path in the target vnode in
2092  * a safe manner.  If the vnode already has path information embedded, then the
2093  * cached path is left untouched.
2094  */
2095 void
2096 vn_setpath(vnode_t *rootvp, struct vnode *startvp, struct vnode *vp,
2097     const char *path, size_t plen)
2098 {
2099 	char	*rpath;
2100 	vnode_t	*base;
2101 	size_t	rpathlen, rpathalloc;
2102 	int	doslash = 1;
2103 
2104 	if (*path == '/') {
2105 		base = rootvp;
2106 		path++;
2107 		plen--;
2108 	} else {
2109 		base = startvp;
2110 	}
2111 
2112 	/*
2113 	 * We cannot grab base->v_lock while we hold vp->v_lock because of
2114 	 * the potential for deadlock.
2115 	 */
2116 	mutex_enter(&base->v_lock);
2117 	if (base->v_path == NULL) {
2118 		mutex_exit(&base->v_lock);
2119 		return;
2120 	}
2121 
2122 	rpathlen = strlen(base->v_path);
2123 	rpathalloc = rpathlen + plen + 1;
2124 	/* Avoid adding a slash if there's already one there */
2125 	if (base->v_path[rpathlen-1] == '/')
2126 		doslash = 0;
2127 	else
2128 		rpathalloc++;
2129 
2130 	/*
2131 	 * We don't want to call kmem_alloc(KM_SLEEP) with kernel locks held,
2132 	 * so we must do this dance.  If, by chance, something changes the path,
2133 	 * just give up since there is no real harm.
2134 	 */
2135 	mutex_exit(&base->v_lock);
2136 
2137 	rpath = kmem_alloc(rpathalloc, KM_SLEEP);
2138 
2139 	mutex_enter(&base->v_lock);
2140 	if (base->v_path == NULL || strlen(base->v_path) != rpathlen) {
2141 		mutex_exit(&base->v_lock);
2142 		kmem_free(rpath, rpathalloc);
2143 		return;
2144 	}
2145 	bcopy(base->v_path, rpath, rpathlen);
2146 	mutex_exit(&base->v_lock);
2147 
2148 	if (doslash)
2149 		rpath[rpathlen++] = '/';
2150 	bcopy(path, rpath + rpathlen, plen);
2151 	rpath[rpathlen + plen] = '\0';
2152 
2153 	mutex_enter(&vp->v_lock);
2154 	if (vp->v_path != NULL) {
2155 		mutex_exit(&vp->v_lock);
2156 		kmem_free(rpath, rpathalloc);
2157 	} else {
2158 		vp->v_path = rpath;
2159 		mutex_exit(&vp->v_lock);
2160 	}
2161 }
2162 
2163 /*
2164  * Sets the path to the vnode to be the given string, regardless of current
2165  * context.  The string must be a complete path from rootdir.  This is only used
2166  * by fsop_root() for setting the path based on the mountpoint.
2167  */
2168 void
2169 vn_setpath_str(struct vnode *vp, const char *str, size_t len)
2170 {
2171 	char *buf = kmem_alloc(len + 1, KM_SLEEP);
2172 
2173 	mutex_enter(&vp->v_lock);
2174 	if (vp->v_path != NULL) {
2175 		mutex_exit(&vp->v_lock);
2176 		kmem_free(buf, len + 1);
2177 		return;
2178 	}
2179 
2180 	vp->v_path = buf;
2181 	bcopy(str, vp->v_path, len);
2182 	vp->v_path[len] = '\0';
2183 
2184 	mutex_exit(&vp->v_lock);
2185 }
2186 
2187 /*
2188  * Similar to vn_setpath_str(), this function sets the path of the destination
2189  * vnode to the be the same as the source vnode.
2190  */
2191 void
2192 vn_copypath(struct vnode *src, struct vnode *dst)
2193 {
2194 	char *buf;
2195 	int alloc;
2196 
2197 	mutex_enter(&src->v_lock);
2198 	if (src->v_path == NULL) {
2199 		mutex_exit(&src->v_lock);
2200 		return;
2201 	}
2202 	alloc = strlen(src->v_path) + 1;
2203 
2204 	/* avoid kmem_alloc() with lock held */
2205 	mutex_exit(&src->v_lock);
2206 	buf = kmem_alloc(alloc, KM_SLEEP);
2207 	mutex_enter(&src->v_lock);
2208 	if (src->v_path == NULL || strlen(src->v_path) + 1 != alloc) {
2209 		mutex_exit(&src->v_lock);
2210 		kmem_free(buf, alloc);
2211 		return;
2212 	}
2213 	bcopy(src->v_path, buf, alloc);
2214 	mutex_exit(&src->v_lock);
2215 
2216 	mutex_enter(&dst->v_lock);
2217 	if (dst->v_path != NULL) {
2218 		mutex_exit(&dst->v_lock);
2219 		kmem_free(buf, alloc);
2220 		return;
2221 	}
2222 	dst->v_path = buf;
2223 	mutex_exit(&dst->v_lock);
2224 }
2225 
2226 /*
2227  * XXX Private interface for segvn routines that handle vnode
2228  * large page segments.
2229  *
2230  * return 1 if vp's file system VOP_PAGEIO() implementation
2231  * can be safely used instead of VOP_GETPAGE() for handling
2232  * pagefaults against regular non swap files. VOP_PAGEIO()
2233  * interface is considered safe here if its implementation
2234  * is very close to VOP_GETPAGE() implementation.
2235  * e.g. It zero's out the part of the page beyond EOF. Doesn't
2236  * panic if there're file holes but instead returns an error.
2237  * Doesn't assume file won't be changed by user writes, etc.
2238  *
2239  * return 0 otherwise.
2240  *
2241  * For now allow segvn to only use VOP_PAGEIO() with ufs and nfs.
2242  */
2243 int
2244 vn_vmpss_usepageio(vnode_t *vp)
2245 {
2246 	vfs_t   *vfsp = vp->v_vfsp;
2247 	char *fsname = vfssw[vfsp->vfs_fstype].vsw_name;
2248 	char *pageio_ok_fss[] = {"ufs", "nfs", NULL};
2249 	char **fsok = pageio_ok_fss;
2250 
2251 	if (fsname == NULL) {
2252 		return (0);
2253 	}
2254 
2255 	for (; *fsok; fsok++) {
2256 		if (strcmp(*fsok, fsname) == 0) {
2257 			return (1);
2258 		}
2259 	}
2260 	return (0);
2261 }
2262 
2263 /* VOP_XXX() macros call the corresponding fop_xxx() function */
2264 
2265 int
2266 fop_open(
2267 	vnode_t **vpp,
2268 	int mode,
2269 	cred_t *cr)
2270 {
2271 	int ret;
2272 	vnode_t *vp = *vpp;
2273 
2274 	VN_HOLD(vp);
2275 	/*
2276 	 * Adding to the vnode counts before calling open
2277 	 * avoids the need for a mutex. It circumvents a race
2278 	 * condition where a query made on the vnode counts results in a
2279 	 * false negative. The inquirer goes away believing the file is
2280 	 * not open when there is an open on the file already under way.
2281 	 *
2282 	 * The counts are meant to prevent NFS from granting a delegation
2283 	 * when it would be dangerous to do so.
2284 	 *
2285 	 * The vnode counts are only kept on regular files
2286 	 */
2287 	if ((*vpp)->v_type == VREG) {
2288 		if (mode & FREAD)
2289 			atomic_add_32(&((*vpp)->v_rdcnt), 1);
2290 		if (mode & FWRITE)
2291 			atomic_add_32(&((*vpp)->v_wrcnt), 1);
2292 	}
2293 
2294 	ret = (*(*(vpp))->v_op->vop_open)(vpp, mode, cr);
2295 
2296 	if (ret) {
2297 		/*
2298 		 * Use the saved vp just in case the vnode ptr got trashed
2299 		 * by the error.
2300 		 */
2301 		if ((vp->v_type == VREG) && (mode & FREAD))
2302 			atomic_add_32(&(vp->v_rdcnt), -1);
2303 		if ((vp->v_type == VREG) && (mode & FWRITE))
2304 			atomic_add_32(&(vp->v_wrcnt), -1);
2305 	} else {
2306 		/*
2307 		 * Some filesystems will return a different vnode,
2308 		 * but the same path was still used to open it.
2309 		 * So if we do change the vnode and need to
2310 		 * copy over the path, do so here, rather than special
2311 		 * casing each filesystem. Adjust the vnode counts to
2312 		 * reflect the vnode switch.
2313 		 */
2314 
2315 		if (*vpp != vp && *vpp != NULL) {
2316 			vn_copypath(vp, *vpp);
2317 			if (((*vpp)->v_type == VREG) && (mode & FREAD))
2318 				atomic_add_32(&((*vpp)->v_rdcnt), 1);
2319 			if ((vp->v_type == VREG) && (mode & FREAD))
2320 				atomic_add_32(&(vp->v_rdcnt), -1);
2321 			if (((*vpp)->v_type == VREG) && (mode & FWRITE))
2322 				atomic_add_32(&((*vpp)->v_wrcnt), 1);
2323 			if ((vp->v_type == VREG) && (mode & FWRITE))
2324 				atomic_add_32(&(vp->v_wrcnt), -1);
2325 		}
2326 	}
2327 	VN_RELE(vp);
2328 	return (ret);
2329 }
2330 
2331 int
2332 fop_close(
2333 	vnode_t *vp,
2334 	int flag,
2335 	int count,
2336 	offset_t offset,
2337 	cred_t *cr)
2338 {
2339 	int error;
2340 	error = (*(vp)->v_op->vop_close)(vp, flag, count, offset, cr);
2341 	/*
2342 	 * Check passed in count to handle possible dups. Vnode counts are only
2343 	 * kept on regular files
2344 	 */
2345 	if ((vp->v_type == VREG) && (count == 1))  {
2346 		if (flag & FREAD) {
2347 			ASSERT(vp->v_rdcnt > 0);
2348 			atomic_add_32(&(vp->v_rdcnt), -1);
2349 		}
2350 		if (flag & FWRITE) {
2351 			ASSERT(vp->v_wrcnt > 0);
2352 			atomic_add_32(&(vp->v_wrcnt), -1);
2353 		}
2354 	}
2355 	return (error);
2356 }
2357 
2358 int
2359 fop_read(
2360 	vnode_t *vp,
2361 	uio_t *uiop,
2362 	int ioflag,
2363 	cred_t *cr,
2364 	struct caller_context *ct)
2365 {
2366 	return (*(vp)->v_op->vop_read)(vp, uiop, ioflag, cr, ct);
2367 }
2368 
2369 int
2370 fop_write(
2371 	vnode_t *vp,
2372 	uio_t *uiop,
2373 	int ioflag,
2374 	cred_t *cr,
2375 	struct caller_context *ct)
2376 {
2377 	return (*(vp)->v_op->vop_write)(vp, uiop, ioflag, cr, ct);
2378 }
2379 
2380 int
2381 fop_ioctl(
2382 	vnode_t *vp,
2383 	int cmd,
2384 	intptr_t arg,
2385 	int flag,
2386 	cred_t *cr,
2387 	int *rvalp)
2388 {
2389 	return (*(vp)->v_op->vop_ioctl)(vp, cmd, arg, flag, cr, rvalp);
2390 }
2391 
2392 int
2393 fop_setfl(
2394 	vnode_t *vp,
2395 	int oflags,
2396 	int nflags,
2397 	cred_t *cr)
2398 {
2399 	return (*(vp)->v_op->vop_setfl)(vp, oflags, nflags, cr);
2400 }
2401 
2402 int
2403 fop_getattr(
2404 	vnode_t *vp,
2405 	vattr_t *vap,
2406 	int flags,
2407 	cred_t *cr)
2408 {
2409 	return (*(vp)->v_op->vop_getattr)(vp, vap, flags, cr);
2410 }
2411 
2412 int
2413 fop_setattr(
2414 	vnode_t *vp,
2415 	vattr_t *vap,
2416 	int flags,
2417 	cred_t *cr,
2418 	caller_context_t *ct)
2419 {
2420 	return (*(vp)->v_op->vop_setattr)(vp, vap, flags, cr, ct);
2421 }
2422 
2423 int
2424 fop_access(
2425 	vnode_t *vp,
2426 	int mode,
2427 	int flags,
2428 	cred_t *cr)
2429 {
2430 	return (*(vp)->v_op->vop_access)(vp, mode, flags, cr);
2431 }
2432 
2433 int
2434 fop_lookup(
2435 	vnode_t *dvp,
2436 	char *nm,
2437 	vnode_t **vpp,
2438 	pathname_t *pnp,
2439 	int flags,
2440 	vnode_t *rdir,
2441 	cred_t *cr)
2442 {
2443 	int ret;
2444 
2445 	ret = (*(dvp)->v_op->vop_lookup)(dvp, nm, vpp, pnp, flags, rdir, cr);
2446 	if (ret == 0 && *vpp && (*vpp)->v_path == NULL)
2447 		vn_setpath(rootdir, dvp, *vpp, nm, strlen(nm));
2448 
2449 	return (ret);
2450 }
2451 
2452 int
2453 fop_create(
2454 	vnode_t *dvp,
2455 	char *name,
2456 	vattr_t *vap,
2457 	vcexcl_t excl,
2458 	int mode,
2459 	vnode_t **vpp,
2460 	cred_t *cr,
2461 	int flag)
2462 {
2463 	int ret;
2464 
2465 	ret = (*(dvp)->v_op->vop_create)
2466 				(dvp, name, vap, excl, mode, vpp, cr, flag);
2467 	if (ret == 0 && *vpp && (*vpp)->v_path == NULL)
2468 		vn_setpath(rootdir, dvp, *vpp, name, strlen(name));
2469 
2470 	return (ret);
2471 }
2472 
2473 int
2474 fop_remove(
2475 	vnode_t *dvp,
2476 	char *nm,
2477 	cred_t *cr)
2478 {
2479 	return (*(dvp)->v_op->vop_remove)(dvp, nm, cr);
2480 }
2481 
2482 int
2483 fop_link(
2484 	vnode_t *tdvp,
2485 	vnode_t *svp,
2486 	char *tnm,
2487 	cred_t *cr)
2488 {
2489 	return (*(tdvp)->v_op->vop_link)(tdvp, svp, tnm, cr);
2490 }
2491 
2492 int
2493 fop_rename(
2494 	vnode_t *sdvp,
2495 	char *snm,
2496 	vnode_t *tdvp,
2497 	char *tnm,
2498 	cred_t *cr)
2499 {
2500 	return (*(sdvp)->v_op->vop_rename)(sdvp, snm, tdvp, tnm, cr);
2501 }
2502 
2503 int
2504 fop_mkdir(
2505 	vnode_t *dvp,
2506 	char *dirname,
2507 	vattr_t *vap,
2508 	vnode_t **vpp,
2509 	cred_t *cr)
2510 {
2511 	int ret;
2512 
2513 	ret = (*(dvp)->v_op->vop_mkdir)(dvp, dirname, vap, vpp, cr);
2514 	if (ret == 0 && *vpp && (*vpp)->v_path == NULL)
2515 		vn_setpath(rootdir, dvp, *vpp, dirname, strlen(dirname));
2516 
2517 	return (ret);
2518 }
2519 
2520 int
2521 fop_rmdir(
2522 	vnode_t *dvp,
2523 	char *nm,
2524 	vnode_t *cdir,
2525 	cred_t *cr)
2526 {
2527 	return (*(dvp)->v_op->vop_rmdir)(dvp, nm, cdir, cr);
2528 }
2529 
2530 int
2531 fop_readdir(
2532 	vnode_t *vp,
2533 	uio_t *uiop,
2534 	cred_t *cr,
2535 	int *eofp)
2536 {
2537 	return (*(vp)->v_op->vop_readdir)(vp, uiop, cr, eofp);
2538 }
2539 
2540 int
2541 fop_symlink(
2542 	vnode_t *dvp,
2543 	char *linkname,
2544 	vattr_t *vap,
2545 	char *target,
2546 	cred_t *cr)
2547 {
2548 	return (*(dvp)->v_op->vop_symlink) (dvp, linkname, vap, target, cr);
2549 }
2550 
2551 int
2552 fop_readlink(
2553 	vnode_t *vp,
2554 	uio_t *uiop,
2555 	cred_t *cr)
2556 {
2557 	return (*(vp)->v_op->vop_readlink)(vp, uiop, cr);
2558 }
2559 
2560 int
2561 fop_fsync(
2562 	vnode_t *vp,
2563 	int syncflag,
2564 	cred_t *cr)
2565 {
2566 	return (*(vp)->v_op->vop_fsync)(vp, syncflag, cr);
2567 }
2568 
2569 void
2570 fop_inactive(
2571 	vnode_t *vp,
2572 	cred_t *cr)
2573 {
2574 	(*(vp)->v_op->vop_inactive)(vp, cr);
2575 }
2576 
2577 int
2578 fop_fid(
2579 	vnode_t *vp,
2580 	fid_t *fidp)
2581 {
2582 	return (*(vp)->v_op->vop_fid)(vp, fidp);
2583 }
2584 
2585 int
2586 fop_rwlock(
2587 	vnode_t *vp,
2588 	int write_lock,
2589 	caller_context_t *ct)
2590 {
2591 	return ((*(vp)->v_op->vop_rwlock)(vp, write_lock, ct));
2592 }
2593 
2594 void
2595 fop_rwunlock(
2596 	vnode_t *vp,
2597 	int write_lock,
2598 	caller_context_t *ct)
2599 {
2600 	(*(vp)->v_op->vop_rwunlock)(vp, write_lock, ct);
2601 }
2602 
2603 int
2604 fop_seek(
2605 	vnode_t *vp,
2606 	offset_t ooff,
2607 	offset_t *noffp)
2608 {
2609 	return (*(vp)->v_op->vop_seek)(vp, ooff, noffp);
2610 }
2611 
2612 int
2613 fop_cmp(
2614 	vnode_t *vp1,
2615 	vnode_t *vp2)
2616 {
2617 	return (*(vp1)->v_op->vop_cmp)(vp1, vp2);
2618 }
2619 
2620 int
2621 fop_frlock(
2622 	vnode_t *vp,
2623 	int cmd,
2624 	flock64_t *bfp,
2625 	int flag,
2626 	offset_t offset,
2627 	struct flk_callback *flk_cbp,
2628 	cred_t *cr)
2629 {
2630 	return (*(vp)->v_op->vop_frlock)
2631 				(vp, cmd, bfp, flag, offset, flk_cbp, cr);
2632 }
2633 
2634 int
2635 fop_space(
2636 	vnode_t *vp,
2637 	int cmd,
2638 	flock64_t *bfp,
2639 	int flag,
2640 	offset_t offset,
2641 	cred_t *cr,
2642 	caller_context_t *ct)
2643 {
2644 	return (*(vp)->v_op->vop_space)(vp, cmd, bfp, flag, offset, cr, ct);
2645 }
2646 
2647 int
2648 fop_realvp(
2649 	vnode_t *vp,
2650 	vnode_t **vpp)
2651 {
2652 	return (*(vp)->v_op->vop_realvp)(vp, vpp);
2653 }
2654 
2655 int
2656 fop_getpage(
2657 	vnode_t *vp,
2658 	offset_t off,
2659 	size_t len,
2660 	uint_t *protp,
2661 	page_t **plarr,
2662 	size_t plsz,
2663 	struct seg *seg,
2664 	caddr_t addr,
2665 	enum seg_rw rw,
2666 	cred_t *cr)
2667 {
2668 	return (*(vp)->v_op->vop_getpage)
2669 			(vp, off, len, protp, plarr, plsz, seg, addr, rw, cr);
2670 }
2671 
2672 int
2673 fop_putpage(
2674 	vnode_t *vp,
2675 	offset_t off,
2676 	size_t len,
2677 	int flags,
2678 	cred_t *cr)
2679 {
2680 	return (*(vp)->v_op->vop_putpage)(vp, off, len, flags, cr);
2681 }
2682 
2683 int
2684 fop_map(
2685 	vnode_t *vp,
2686 	offset_t off,
2687 	struct as *as,
2688 	caddr_t *addrp,
2689 	size_t len,
2690 	uchar_t prot,
2691 	uchar_t maxprot,
2692 	uint_t flags,
2693 	cred_t *cr)
2694 {
2695 	return (*(vp)->v_op->vop_map)
2696 			(vp, off, as, addrp, len, prot, maxprot, flags, cr);
2697 }
2698 
2699 int
2700 fop_addmap(
2701 	vnode_t *vp,
2702 	offset_t off,
2703 	struct as *as,
2704 	caddr_t addr,
2705 	size_t len,
2706 	uchar_t prot,
2707 	uchar_t maxprot,
2708 	uint_t flags,
2709 	cred_t *cr)
2710 {
2711 	int error;
2712 	u_longlong_t delta;
2713 
2714 	error = (*(vp)->v_op->vop_addmap)
2715 			(vp, off, as, addr, len, prot, maxprot, flags, cr);
2716 
2717 	if ((!error) && (vp->v_type == VREG)) {
2718 		delta = (u_longlong_t)btopr(len);
2719 		/*
2720 		 * If file is declared MAP_PRIVATE, it can't be written back
2721 		 * even if open for write. Handle as read.
2722 		 */
2723 		if (flags & MAP_PRIVATE) {
2724 			atomic_add_64((uint64_t *)(&(vp->v_mmap_read)),
2725 				(int64_t)delta);
2726 		} else {
2727 			/*
2728 			 * atomic_add_64 forces the fetch of a 64 bit value to
2729 			 * be atomic on 32 bit machines
2730 			 */
2731 			if (maxprot & PROT_WRITE)
2732 				atomic_add_64((uint64_t *)(&(vp->v_mmap_write)),
2733 					(int64_t)delta);
2734 			if (maxprot & PROT_READ)
2735 				atomic_add_64((uint64_t *)(&(vp->v_mmap_read)),
2736 					(int64_t)delta);
2737 			if (maxprot & PROT_EXEC)
2738 				atomic_add_64((uint64_t *)(&(vp->v_mmap_read)),
2739 					(int64_t)delta);
2740 		}
2741 	}
2742 	return (error);
2743 }
2744 
2745 int
2746 fop_delmap(
2747 	vnode_t *vp,
2748 	offset_t off,
2749 	struct as *as,
2750 	caddr_t addr,
2751 	size_t len,
2752 	uint_t prot,
2753 	uint_t maxprot,
2754 	uint_t flags,
2755 	cred_t *cr)
2756 {
2757 	int error;
2758 	u_longlong_t delta;
2759 	error = (*(vp)->v_op->vop_delmap)
2760 		(vp, off, as, addr, len, prot, maxprot, flags, cr);
2761 
2762 	/*
2763 	 * NFS calls into delmap twice, the first time
2764 	 * it simply establishes a callback mechanism and returns EAGAIN
2765 	 * while the real work is being done upon the second invocation.
2766 	 * We have to detect this here and only decrement the counts upon
2767 	 * the second delmap request.
2768 	 */
2769 	if ((error != EAGAIN) && (vp->v_type == VREG)) {
2770 
2771 		delta = (u_longlong_t)btopr(len);
2772 
2773 		if (flags & MAP_PRIVATE) {
2774 			atomic_add_64((uint64_t *)(&(vp->v_mmap_read)),
2775 				(int64_t)(-delta));
2776 		} else {
2777 			/*
2778 			 * atomic_add_64 forces the fetch of a 64 bit value
2779 			 * to be atomic on 32 bit machines
2780 			 */
2781 			if (maxprot & PROT_WRITE)
2782 				atomic_add_64((uint64_t *)(&(vp->v_mmap_write)),
2783 					(int64_t)(-delta));
2784 			if (maxprot & PROT_READ)
2785 				atomic_add_64((uint64_t *)(&(vp->v_mmap_read)),
2786 					(int64_t)(-delta));
2787 			if (maxprot & PROT_EXEC)
2788 				atomic_add_64((uint64_t *)(&(vp->v_mmap_read)),
2789 					(int64_t)(-delta));
2790 		}
2791 	}
2792 	return (error);
2793 }
2794 
2795 
2796 int
2797 fop_poll(
2798 	vnode_t *vp,
2799 	short events,
2800 	int anyyet,
2801 	short *reventsp,
2802 	struct pollhead **phpp)
2803 {
2804 	return (*(vp)->v_op->vop_poll)(vp, events, anyyet, reventsp, phpp);
2805 }
2806 
2807 int
2808 fop_dump(
2809 	vnode_t *vp,
2810 	caddr_t addr,
2811 	int lbdn,
2812 	int dblks)
2813 {
2814 	return (*(vp)->v_op->vop_dump)(vp, addr, lbdn, dblks);
2815 }
2816 
2817 int
2818 fop_pathconf(
2819 	vnode_t *vp,
2820 	int cmd,
2821 	ulong_t *valp,
2822 	cred_t *cr)
2823 {
2824 	return (*(vp)->v_op->vop_pathconf)(vp, cmd, valp, cr);
2825 }
2826 
2827 int
2828 fop_pageio(
2829 	vnode_t *vp,
2830 	struct page *pp,
2831 	u_offset_t io_off,
2832 	size_t io_len,
2833 	int flags,
2834 	cred_t *cr)
2835 {
2836 	return (*(vp)->v_op->vop_pageio)(vp, pp, io_off, io_len, flags, cr);
2837 }
2838 
2839 int
2840 fop_dumpctl(
2841 	vnode_t *vp,
2842 	int action,
2843 	int *blkp)
2844 {
2845 	return (*(vp)->v_op->vop_dumpctl)(vp, action, blkp);
2846 }
2847 
2848 void
2849 fop_dispose(
2850 	vnode_t *vp,
2851 	page_t *pp,
2852 	int flag,
2853 	int dn,
2854 	cred_t *cr)
2855 {
2856 	(*(vp)->v_op->vop_dispose)(vp, pp, flag, dn, cr);
2857 }
2858 
2859 int
2860 fop_setsecattr(
2861 	vnode_t *vp,
2862 	vsecattr_t *vsap,
2863 	int flag,
2864 	cred_t *cr)
2865 {
2866 	return (*(vp)->v_op->vop_setsecattr) (vp, vsap, flag, cr);
2867 }
2868 
2869 int
2870 fop_getsecattr(
2871 	vnode_t *vp,
2872 	vsecattr_t *vsap,
2873 	int flag,
2874 	cred_t *cr)
2875 {
2876 	return (*(vp)->v_op->vop_getsecattr) (vp, vsap, flag, cr);
2877 }
2878 
2879 int
2880 fop_shrlock(
2881 	vnode_t *vp,
2882 	int cmd,
2883 	struct shrlock *shr,
2884 	int flag,
2885 	cred_t *cr)
2886 {
2887 	return (*(vp)->v_op->vop_shrlock)(vp, cmd, shr, flag, cr);
2888 }
2889 
2890 int
2891 fop_vnevent(vnode_t *vp, vnevent_t vnevent)
2892 {
2893 	return (*(vp)->v_op->vop_vnevent)(vp, vnevent);
2894 }
2895