1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */ 27 /* All Rights Reserved */ 28 29 /* 30 * University Copyright- Copyright (c) 1982, 1986, 1988 31 * The Regents of the University of California 32 * All Rights Reserved 33 * 34 * University Acknowledgment- Portions of this document are derived from 35 * software developed by the University of California, Berkeley, and its 36 * contributors. 37 */ 38 39 40 #pragma ident "%Z%%M% %I% %E% SMI" 41 42 #include <sys/types.h> 43 #include <sys/param.h> 44 #include <sys/t_lock.h> 45 #include <sys/errno.h> 46 #include <sys/cred.h> 47 #include <sys/user.h> 48 #include <sys/uio.h> 49 #include <sys/file.h> 50 #include <sys/pathname.h> 51 #include <sys/vfs.h> 52 #include <sys/vnode.h> 53 #include <sys/rwstlock.h> 54 #include <sys/fem.h> 55 #include <sys/stat.h> 56 #include <sys/mode.h> 57 #include <sys/conf.h> 58 #include <sys/sysmacros.h> 59 #include <sys/cmn_err.h> 60 #include <sys/systm.h> 61 #include <sys/kmem.h> 62 #include <sys/debug.h> 63 #include <c2/audit.h> 64 #include <sys/acl.h> 65 #include <sys/nbmlock.h> 66 #include <sys/fcntl.h> 67 #include <fs/fs_subr.h> 68 69 /* Determine if this vnode is a file that is read-only */ 70 #define ISROFILE(vp) \ 71 ((vp)->v_type != VCHR && (vp)->v_type != VBLK && \ 72 (vp)->v_type != VFIFO && vn_is_readonly(vp)) 73 74 /* Tunable via /etc/system; used only by admin/install */ 75 int nfs_global_client_only; 76 77 /* 78 * Array of vopstats_t for per-FS-type vopstats. This array has the same 79 * number of entries as and parallel to the vfssw table. (Arguably, it could 80 * be part of the vfssw table.) Once it's initialized, it's accessed using 81 * the same fstype index that is used to index into the vfssw table. 82 */ 83 vopstats_t **vopstats_fstype; 84 85 /* vopstats initialization template used for fast initialization via bcopy() */ 86 static vopstats_t *vs_templatep; 87 88 /* Kmem cache handle for vsk_anchor_t allocations */ 89 kmem_cache_t *vsk_anchor_cache; 90 91 /* 92 * Root of AVL tree for the kstats associated with vopstats. Lock protects 93 * updates to vsktat_tree. 94 */ 95 avl_tree_t vskstat_tree; 96 kmutex_t vskstat_tree_lock; 97 98 /* Global variable which enables/disables the vopstats collection */ 99 int vopstats_enabled = 1; 100 101 /* 102 * The following is the common set of actions needed to update the 103 * vopstats structure from a vnode op. Both VOPSTATS_UPDATE() and 104 * VOPSTATS_UPDATE_IO() do almost the same thing, except for the 105 * recording of the bytes transferred. Since the code is similar 106 * but small, it is nearly a duplicate. Consequently any changes 107 * to one may need to be reflected in the other. 108 * Rundown of the variables: 109 * vp - Pointer to the vnode 110 * counter - Partial name structure member to update in vopstats for counts 111 * bytecounter - Partial name structure member to update in vopstats for bytes 112 * bytesval - Value to update in vopstats for bytes 113 * fstype - Index into vsanchor_fstype[], same as index into vfssw[] 114 * vsp - Pointer to vopstats structure (either in vfs or vsanchor_fstype[i]) 115 */ 116 117 #define VOPSTATS_UPDATE(vp, counter) { \ 118 vfs_t *vfsp = (vp)->v_vfsp; \ 119 if (vfsp && vfsp->vfs_implp && \ 120 (vfsp->vfs_flag & VFS_STATS) && (vp)->v_type != VBAD) { \ 121 vopstats_t *vsp = &vfsp->vfs_vopstats; \ 122 uint64_t *stataddr = &(vsp->n##counter.value.ui64); \ 123 extern void __dtrace_probe___fsinfo_##counter(vnode_t *, \ 124 size_t, uint64_t *); \ 125 __dtrace_probe___fsinfo_##counter(vp, 0, stataddr); \ 126 (*stataddr)++; \ 127 if ((vsp = vfsp->vfs_fstypevsp) != NULL) { \ 128 vsp->n##counter.value.ui64++; \ 129 } \ 130 } \ 131 } 132 133 #define VOPSTATS_UPDATE_IO(vp, counter, bytecounter, bytesval) { \ 134 vfs_t *vfsp = (vp)->v_vfsp; \ 135 if (vfsp && vfsp->vfs_implp && \ 136 (vfsp->vfs_flag & VFS_STATS) && (vp)->v_type != VBAD) { \ 137 vopstats_t *vsp = &vfsp->vfs_vopstats; \ 138 uint64_t *stataddr = &(vsp->n##counter.value.ui64); \ 139 extern void __dtrace_probe___fsinfo_##counter(vnode_t *, \ 140 size_t, uint64_t *); \ 141 __dtrace_probe___fsinfo_##counter(vp, bytesval, stataddr); \ 142 (*stataddr)++; \ 143 vsp->bytecounter.value.ui64 += bytesval; \ 144 if ((vsp = vfsp->vfs_fstypevsp) != NULL) { \ 145 vsp->n##counter.value.ui64++; \ 146 vsp->bytecounter.value.ui64 += bytesval; \ 147 } \ 148 } \ 149 } 150 151 /* 152 * Convert stat(2) formats to vnode types and vice versa. (Knows about 153 * numerical order of S_IFMT and vnode types.) 154 */ 155 enum vtype iftovt_tab[] = { 156 VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON, 157 VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VNON 158 }; 159 160 ushort_t vttoif_tab[] = { 161 0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK, S_IFIFO, 162 S_IFDOOR, 0, S_IFSOCK, S_IFPORT, 0 163 }; 164 165 /* 166 * The system vnode cache. 167 */ 168 169 kmem_cache_t *vn_cache; 170 171 172 /* 173 * Vnode operations vector. 174 */ 175 176 static const fs_operation_trans_def_t vn_ops_table[] = { 177 VOPNAME_OPEN, offsetof(struct vnodeops, vop_open), 178 fs_nosys, fs_nosys, 179 180 VOPNAME_CLOSE, offsetof(struct vnodeops, vop_close), 181 fs_nosys, fs_nosys, 182 183 VOPNAME_READ, offsetof(struct vnodeops, vop_read), 184 fs_nosys, fs_nosys, 185 186 VOPNAME_WRITE, offsetof(struct vnodeops, vop_write), 187 fs_nosys, fs_nosys, 188 189 VOPNAME_IOCTL, offsetof(struct vnodeops, vop_ioctl), 190 fs_nosys, fs_nosys, 191 192 VOPNAME_SETFL, offsetof(struct vnodeops, vop_setfl), 193 fs_setfl, fs_nosys, 194 195 VOPNAME_GETATTR, offsetof(struct vnodeops, vop_getattr), 196 fs_nosys, fs_nosys, 197 198 VOPNAME_SETATTR, offsetof(struct vnodeops, vop_setattr), 199 fs_nosys, fs_nosys, 200 201 VOPNAME_ACCESS, offsetof(struct vnodeops, vop_access), 202 fs_nosys, fs_nosys, 203 204 VOPNAME_LOOKUP, offsetof(struct vnodeops, vop_lookup), 205 fs_nosys, fs_nosys, 206 207 VOPNAME_CREATE, offsetof(struct vnodeops, vop_create), 208 fs_nosys, fs_nosys, 209 210 VOPNAME_REMOVE, offsetof(struct vnodeops, vop_remove), 211 fs_nosys, fs_nosys, 212 213 VOPNAME_LINK, offsetof(struct vnodeops, vop_link), 214 fs_nosys, fs_nosys, 215 216 VOPNAME_RENAME, offsetof(struct vnodeops, vop_rename), 217 fs_nosys, fs_nosys, 218 219 VOPNAME_MKDIR, offsetof(struct vnodeops, vop_mkdir), 220 fs_nosys, fs_nosys, 221 222 VOPNAME_RMDIR, offsetof(struct vnodeops, vop_rmdir), 223 fs_nosys, fs_nosys, 224 225 VOPNAME_READDIR, offsetof(struct vnodeops, vop_readdir), 226 fs_nosys, fs_nosys, 227 228 VOPNAME_SYMLINK, offsetof(struct vnodeops, vop_symlink), 229 fs_nosys, fs_nosys, 230 231 VOPNAME_READLINK, offsetof(struct vnodeops, vop_readlink), 232 fs_nosys, fs_nosys, 233 234 VOPNAME_FSYNC, offsetof(struct vnodeops, vop_fsync), 235 fs_nosys, fs_nosys, 236 237 VOPNAME_INACTIVE, offsetof(struct vnodeops, vop_inactive), 238 fs_nosys, fs_nosys, 239 240 VOPNAME_FID, offsetof(struct vnodeops, vop_fid), 241 fs_nosys, fs_nosys, 242 243 VOPNAME_RWLOCK, offsetof(struct vnodeops, vop_rwlock), 244 fs_rwlock, fs_rwlock, 245 246 VOPNAME_RWUNLOCK, offsetof(struct vnodeops, vop_rwunlock), 247 (fs_generic_func_p) fs_rwunlock, 248 (fs_generic_func_p) fs_rwunlock, /* no errors allowed */ 249 250 VOPNAME_SEEK, offsetof(struct vnodeops, vop_seek), 251 fs_nosys, fs_nosys, 252 253 VOPNAME_CMP, offsetof(struct vnodeops, vop_cmp), 254 fs_cmp, fs_cmp, /* no errors allowed */ 255 256 VOPNAME_FRLOCK, offsetof(struct vnodeops, vop_frlock), 257 fs_frlock, fs_nosys, 258 259 VOPNAME_SPACE, offsetof(struct vnodeops, vop_space), 260 fs_nosys, fs_nosys, 261 262 VOPNAME_REALVP, offsetof(struct vnodeops, vop_realvp), 263 fs_nosys, fs_nosys, 264 265 VOPNAME_GETPAGE, offsetof(struct vnodeops, vop_getpage), 266 fs_nosys, fs_nosys, 267 268 VOPNAME_PUTPAGE, offsetof(struct vnodeops, vop_putpage), 269 fs_nosys, fs_nosys, 270 271 VOPNAME_MAP, offsetof(struct vnodeops, vop_map), 272 (fs_generic_func_p) fs_nosys_map, 273 (fs_generic_func_p) fs_nosys_map, 274 275 VOPNAME_ADDMAP, offsetof(struct vnodeops, vop_addmap), 276 (fs_generic_func_p) fs_nosys_addmap, 277 (fs_generic_func_p) fs_nosys_addmap, 278 279 VOPNAME_DELMAP, offsetof(struct vnodeops, vop_delmap), 280 fs_nosys, fs_nosys, 281 282 VOPNAME_POLL, offsetof(struct vnodeops, vop_poll), 283 (fs_generic_func_p) fs_poll, (fs_generic_func_p) fs_nosys_poll, 284 285 VOPNAME_DUMP, offsetof(struct vnodeops, vop_dump), 286 fs_nosys, fs_nosys, 287 288 VOPNAME_PATHCONF, offsetof(struct vnodeops, vop_pathconf), 289 fs_pathconf, fs_nosys, 290 291 VOPNAME_PAGEIO, offsetof(struct vnodeops, vop_pageio), 292 fs_nosys, fs_nosys, 293 294 VOPNAME_DUMPCTL, offsetof(struct vnodeops, vop_dumpctl), 295 fs_nosys, fs_nosys, 296 297 VOPNAME_DISPOSE, offsetof(struct vnodeops, vop_dispose), 298 (fs_generic_func_p) fs_dispose, 299 (fs_generic_func_p) fs_nodispose, 300 301 VOPNAME_SETSECATTR, offsetof(struct vnodeops, vop_setsecattr), 302 fs_nosys, fs_nosys, 303 304 VOPNAME_GETSECATTR, offsetof(struct vnodeops, vop_getsecattr), 305 fs_fab_acl, fs_nosys, 306 307 VOPNAME_SHRLOCK, offsetof(struct vnodeops, vop_shrlock), 308 fs_shrlock, fs_nosys, 309 310 VOPNAME_VNEVENT, offsetof(struct vnodeops, vop_vnevent), 311 (fs_generic_func_p) fs_vnevent_nosupport, 312 (fs_generic_func_p) fs_vnevent_nosupport, 313 314 NULL, 0, NULL, NULL 315 }; 316 317 /* 318 * Used by the AVL routines to compare two vsk_anchor_t structures in the tree. 319 * We use the f_fsid reported by VFS_STATVFS() since we use that for the 320 * kstat name. 321 */ 322 static int 323 vska_compar(const void *n1, const void *n2) 324 { 325 int ret; 326 ulong_t p1 = ((vsk_anchor_t *)n1)->vsk_fsid; 327 ulong_t p2 = ((vsk_anchor_t *)n2)->vsk_fsid; 328 329 if (p1 < p2) { 330 ret = -1; 331 } else if (p1 > p2) { 332 ret = 1; 333 } else { 334 ret = 0; 335 } 336 337 return (ret); 338 } 339 340 /* 341 * Used to create a single template which will be bcopy()ed to a newly 342 * allocated vsanchor_combo_t structure in new_vsanchor(), below. 343 */ 344 static vopstats_t * 345 create_vopstats_template() 346 { 347 vopstats_t *vsp; 348 349 vsp = kmem_alloc(sizeof (vopstats_t), KM_SLEEP); 350 bzero(vsp, sizeof (*vsp)); /* Start fresh */ 351 352 /* VOP_OPEN */ 353 kstat_named_init(&vsp->nopen, "nopen", KSTAT_DATA_UINT64); 354 /* VOP_CLOSE */ 355 kstat_named_init(&vsp->nclose, "nclose", KSTAT_DATA_UINT64); 356 /* VOP_READ I/O */ 357 kstat_named_init(&vsp->nread, "nread", KSTAT_DATA_UINT64); 358 kstat_named_init(&vsp->read_bytes, "read_bytes", KSTAT_DATA_UINT64); 359 /* VOP_WRITE I/O */ 360 kstat_named_init(&vsp->nwrite, "nwrite", KSTAT_DATA_UINT64); 361 kstat_named_init(&vsp->write_bytes, "write_bytes", KSTAT_DATA_UINT64); 362 /* VOP_IOCTL */ 363 kstat_named_init(&vsp->nioctl, "nioctl", KSTAT_DATA_UINT64); 364 /* VOP_SETFL */ 365 kstat_named_init(&vsp->nsetfl, "nsetfl", KSTAT_DATA_UINT64); 366 /* VOP_GETATTR */ 367 kstat_named_init(&vsp->ngetattr, "ngetattr", KSTAT_DATA_UINT64); 368 /* VOP_SETATTR */ 369 kstat_named_init(&vsp->nsetattr, "nsetattr", KSTAT_DATA_UINT64); 370 /* VOP_ACCESS */ 371 kstat_named_init(&vsp->naccess, "naccess", KSTAT_DATA_UINT64); 372 /* VOP_LOOKUP */ 373 kstat_named_init(&vsp->nlookup, "nlookup", KSTAT_DATA_UINT64); 374 /* VOP_CREATE */ 375 kstat_named_init(&vsp->ncreate, "ncreate", KSTAT_DATA_UINT64); 376 /* VOP_REMOVE */ 377 kstat_named_init(&vsp->nremove, "nremove", KSTAT_DATA_UINT64); 378 /* VOP_LINK */ 379 kstat_named_init(&vsp->nlink, "nlink", KSTAT_DATA_UINT64); 380 /* VOP_RENAME */ 381 kstat_named_init(&vsp->nrename, "nrename", KSTAT_DATA_UINT64); 382 /* VOP_MKDIR */ 383 kstat_named_init(&vsp->nmkdir, "nmkdir", KSTAT_DATA_UINT64); 384 /* VOP_RMDIR */ 385 kstat_named_init(&vsp->nrmdir, "nrmdir", KSTAT_DATA_UINT64); 386 /* VOP_READDIR I/O */ 387 kstat_named_init(&vsp->nreaddir, "nreaddir", KSTAT_DATA_UINT64); 388 kstat_named_init(&vsp->readdir_bytes, "readdir_bytes", 389 KSTAT_DATA_UINT64); 390 /* VOP_SYMLINK */ 391 kstat_named_init(&vsp->nsymlink, "nsymlink", KSTAT_DATA_UINT64); 392 /* VOP_READLINK */ 393 kstat_named_init(&vsp->nreadlink, "nreadlink", KSTAT_DATA_UINT64); 394 /* VOP_FSYNC */ 395 kstat_named_init(&vsp->nfsync, "nfsync", KSTAT_DATA_UINT64); 396 /* VOP_INACTIVE */ 397 kstat_named_init(&vsp->ninactive, "ninactive", KSTAT_DATA_UINT64); 398 /* VOP_FID */ 399 kstat_named_init(&vsp->nfid, "nfid", KSTAT_DATA_UINT64); 400 /* VOP_RWLOCK */ 401 kstat_named_init(&vsp->nrwlock, "nrwlock", KSTAT_DATA_UINT64); 402 /* VOP_RWUNLOCK */ 403 kstat_named_init(&vsp->nrwunlock, "nrwunlock", KSTAT_DATA_UINT64); 404 /* VOP_SEEK */ 405 kstat_named_init(&vsp->nseek, "nseek", KSTAT_DATA_UINT64); 406 /* VOP_CMP */ 407 kstat_named_init(&vsp->ncmp, "ncmp", KSTAT_DATA_UINT64); 408 /* VOP_FRLOCK */ 409 kstat_named_init(&vsp->nfrlock, "nfrlock", KSTAT_DATA_UINT64); 410 /* VOP_SPACE */ 411 kstat_named_init(&vsp->nspace, "nspace", KSTAT_DATA_UINT64); 412 /* VOP_REALVP */ 413 kstat_named_init(&vsp->nrealvp, "nrealvp", KSTAT_DATA_UINT64); 414 /* VOP_GETPAGE */ 415 kstat_named_init(&vsp->ngetpage, "ngetpage", KSTAT_DATA_UINT64); 416 /* VOP_PUTPAGE */ 417 kstat_named_init(&vsp->nputpage, "nputpage", KSTAT_DATA_UINT64); 418 /* VOP_MAP */ 419 kstat_named_init(&vsp->nmap, "nmap", KSTAT_DATA_UINT64); 420 /* VOP_ADDMAP */ 421 kstat_named_init(&vsp->naddmap, "naddmap", KSTAT_DATA_UINT64); 422 /* VOP_DELMAP */ 423 kstat_named_init(&vsp->ndelmap, "ndelmap", KSTAT_DATA_UINT64); 424 /* VOP_POLL */ 425 kstat_named_init(&vsp->npoll, "npoll", KSTAT_DATA_UINT64); 426 /* VOP_DUMP */ 427 kstat_named_init(&vsp->ndump, "ndump", KSTAT_DATA_UINT64); 428 /* VOP_PATHCONF */ 429 kstat_named_init(&vsp->npathconf, "npathconf", KSTAT_DATA_UINT64); 430 /* VOP_PAGEIO */ 431 kstat_named_init(&vsp->npageio, "npageio", KSTAT_DATA_UINT64); 432 /* VOP_DUMPCTL */ 433 kstat_named_init(&vsp->ndumpctl, "ndumpctl", KSTAT_DATA_UINT64); 434 /* VOP_DISPOSE */ 435 kstat_named_init(&vsp->ndispose, "ndispose", KSTAT_DATA_UINT64); 436 /* VOP_SETSECATTR */ 437 kstat_named_init(&vsp->nsetsecattr, "nsetsecattr", KSTAT_DATA_UINT64); 438 /* VOP_GETSECATTR */ 439 kstat_named_init(&vsp->ngetsecattr, "ngetsecattr", KSTAT_DATA_UINT64); 440 /* VOP_SHRLOCK */ 441 kstat_named_init(&vsp->nshrlock, "nshrlock", KSTAT_DATA_UINT64); 442 /* VOP_VNEVENT */ 443 kstat_named_init(&vsp->nvnevent, "nvnevent", KSTAT_DATA_UINT64); 444 445 return (vsp); 446 } 447 448 /* 449 * Creates a kstat structure associated with a vopstats structure. 450 */ 451 kstat_t * 452 new_vskstat(char *ksname, vopstats_t *vsp) 453 { 454 kstat_t *ksp; 455 456 if (!vopstats_enabled) { 457 return (NULL); 458 } 459 460 ksp = kstat_create("unix", 0, ksname, "misc", KSTAT_TYPE_NAMED, 461 sizeof (vopstats_t)/sizeof (kstat_named_t), 462 KSTAT_FLAG_VIRTUAL|KSTAT_FLAG_WRITABLE); 463 if (ksp) { 464 ksp->ks_data = vsp; 465 kstat_install(ksp); 466 } 467 468 return (ksp); 469 } 470 471 /* 472 * Called from vfsinit() to initialize the support mechanisms for vopstats 473 */ 474 void 475 vopstats_startup() 476 { 477 if (!vopstats_enabled) 478 return; 479 480 /* 481 * Creates the AVL tree which holds per-vfs vopstat anchors. This 482 * is necessary since we need to check if a kstat exists before we 483 * attempt to create it. Also, initialize its lock. 484 */ 485 avl_create(&vskstat_tree, vska_compar, sizeof (vsk_anchor_t), 486 offsetof(vsk_anchor_t, vsk_node)); 487 mutex_init(&vskstat_tree_lock, NULL, MUTEX_DEFAULT, NULL); 488 489 vsk_anchor_cache = kmem_cache_create("vsk_anchor_cache", 490 sizeof (vsk_anchor_t), sizeof (uintptr_t), NULL, NULL, NULL, 491 NULL, NULL, 0); 492 493 /* 494 * Set up the array of pointers for the vopstats-by-FS-type. 495 * The entries will be allocated/initialized as each file system 496 * goes through modload/mod_installfs. 497 */ 498 vopstats_fstype = (vopstats_t **)kmem_zalloc( 499 (sizeof (vopstats_t *) * nfstype), KM_SLEEP); 500 501 /* Set up the global vopstats initialization template */ 502 vs_templatep = create_vopstats_template(); 503 } 504 505 /* 506 * We need to have the all of the counters zeroed. 507 * The initialization of the vopstats_t includes on the order of 508 * 50 calls to kstat_named_init(). Rather that do that on every call, 509 * we do it once in a template (vs_templatep) then bcopy it over. 510 */ 511 void 512 initialize_vopstats(vopstats_t *vsp) 513 { 514 if (vsp == NULL) 515 return; 516 517 bcopy(vs_templatep, vsp, sizeof (vopstats_t)); 518 } 519 520 /* 521 * If possible, determine which vopstats by fstype to use and 522 * return a pointer to the caller. 523 */ 524 vopstats_t * 525 get_fstype_vopstats(vfs_t *vfsp, struct vfssw *vswp) 526 { 527 int fstype = 0; /* Index into vfssw[] */ 528 vopstats_t *vsp = NULL; 529 530 if (vfsp == NULL || (vfsp->vfs_flag & VFS_STATS) == 0 || 531 !vopstats_enabled) 532 return (NULL); 533 /* 534 * Set up the fstype. We go to so much trouble because all versions 535 * of NFS use the same fstype in their vfs even though they have 536 * distinct entries in the vfssw[] table. 537 * NOTE: A special vfs (e.g., EIO_vfs) may not have an entry. 538 */ 539 if (vswp) { 540 fstype = vswp - vfssw; /* Gets us the index */ 541 } else { 542 fstype = vfsp->vfs_fstype; 543 } 544 545 /* 546 * Point to the per-fstype vopstats. The only valid values are 547 * non-zero positive values less than the number of vfssw[] table 548 * entries. 549 */ 550 if (fstype > 0 && fstype < nfstype) { 551 vsp = vopstats_fstype[fstype]; 552 } 553 554 return (vsp); 555 } 556 557 /* 558 * Generate a kstat name, create the kstat structure, and allocate a 559 * vsk_anchor_t to hold it together. Return the pointer to the vsk_anchor_t 560 * to the caller. This must only be called from a mount. 561 */ 562 vsk_anchor_t * 563 get_vskstat_anchor(vfs_t *vfsp) 564 { 565 char kstatstr[KSTAT_STRLEN]; /* kstat name for vopstats */ 566 statvfs64_t statvfsbuf; /* Needed to find f_fsid */ 567 vsk_anchor_t *vskp = NULL; /* vfs <--> kstat anchor */ 568 kstat_t *ksp; /* Ptr to new kstat */ 569 avl_index_t where; /* Location in the AVL tree */ 570 571 if (vfsp == NULL || vfsp->vfs_implp == NULL || 572 (vfsp->vfs_flag & VFS_STATS) == 0 || !vopstats_enabled) 573 return (NULL); 574 575 /* Need to get the fsid to build a kstat name */ 576 if (VFS_STATVFS(vfsp, &statvfsbuf) == 0) { 577 /* Create a name for our kstats based on fsid */ 578 (void) snprintf(kstatstr, KSTAT_STRLEN, "%s%lx", 579 VOPSTATS_STR, statvfsbuf.f_fsid); 580 581 /* Allocate and initialize the vsk_anchor_t */ 582 vskp = kmem_cache_alloc(vsk_anchor_cache, KM_SLEEP); 583 bzero(vskp, sizeof (*vskp)); 584 vskp->vsk_fsid = statvfsbuf.f_fsid; 585 586 mutex_enter(&vskstat_tree_lock); 587 if (avl_find(&vskstat_tree, vskp, &where) == NULL) { 588 avl_insert(&vskstat_tree, vskp, where); 589 mutex_exit(&vskstat_tree_lock); 590 591 /* 592 * Now that we've got the anchor in the AVL 593 * tree, we can create the kstat. 594 */ 595 ksp = new_vskstat(kstatstr, &vfsp->vfs_vopstats); 596 if (ksp) { 597 vskp->vsk_ksp = ksp; 598 } 599 } else { 600 /* Oops, found one! Release memory and lock. */ 601 mutex_exit(&vskstat_tree_lock); 602 kmem_cache_free(vsk_anchor_cache, vskp); 603 vskp = NULL; 604 } 605 } 606 return (vskp); 607 } 608 609 /* 610 * We're in the process of tearing down the vfs and need to cleanup 611 * the data structures associated with the vopstats. Must only be called 612 * from dounmount(). 613 */ 614 void 615 teardown_vopstats(vfs_t *vfsp) 616 { 617 vsk_anchor_t *vskap; 618 avl_index_t where; 619 620 if (vfsp == NULL || vfsp->vfs_implp == NULL || 621 (vfsp->vfs_flag & VFS_STATS) == 0 || !vopstats_enabled) 622 return; 623 624 /* This is a safe check since VFS_STATS must be set (see above) */ 625 if ((vskap = vfsp->vfs_vskap) == NULL) 626 return; 627 628 /* Whack the pointer right away */ 629 vfsp->vfs_vskap = NULL; 630 631 /* Lock the tree, remove the node, and delete the kstat */ 632 mutex_enter(&vskstat_tree_lock); 633 if (avl_find(&vskstat_tree, vskap, &where)) { 634 avl_remove(&vskstat_tree, vskap); 635 } 636 637 if (vskap->vsk_ksp) { 638 kstat_delete(vskap->vsk_ksp); 639 } 640 mutex_exit(&vskstat_tree_lock); 641 642 kmem_cache_free(vsk_anchor_cache, vskap); 643 } 644 645 /* 646 * Read or write a vnode. Called from kernel code. 647 */ 648 int 649 vn_rdwr( 650 enum uio_rw rw, 651 struct vnode *vp, 652 caddr_t base, 653 ssize_t len, 654 offset_t offset, 655 enum uio_seg seg, 656 int ioflag, 657 rlim64_t ulimit, /* meaningful only if rw is UIO_WRITE */ 658 cred_t *cr, 659 ssize_t *residp) 660 { 661 struct uio uio; 662 struct iovec iov; 663 int error; 664 int in_crit = 0; 665 666 if (rw == UIO_WRITE && ISROFILE(vp)) 667 return (EROFS); 668 669 if (len < 0) 670 return (EIO); 671 672 iov.iov_base = base; 673 iov.iov_len = len; 674 uio.uio_iov = &iov; 675 uio.uio_iovcnt = 1; 676 uio.uio_loffset = offset; 677 uio.uio_segflg = (short)seg; 678 uio.uio_resid = len; 679 uio.uio_llimit = ulimit; 680 681 /* 682 * We have to enter the critical region before calling VOP_RWLOCK 683 * to avoid a deadlock with ufs. 684 */ 685 if (nbl_need_check(vp)) { 686 int svmand; 687 688 nbl_start_crit(vp, RW_READER); 689 in_crit = 1; 690 error = nbl_svmand(vp, cr, &svmand); 691 if (error != 0) 692 goto done; 693 if (nbl_conflict(vp, rw == UIO_WRITE ? NBL_WRITE : NBL_READ, 694 uio.uio_offset, uio.uio_resid, svmand)) { 695 error = EACCES; 696 goto done; 697 } 698 } 699 700 (void) VOP_RWLOCK(vp, 701 rw == UIO_WRITE ? V_WRITELOCK_TRUE : V_WRITELOCK_FALSE, NULL); 702 if (rw == UIO_WRITE) { 703 uio.uio_fmode = FWRITE; 704 uio.uio_extflg = UIO_COPY_DEFAULT; 705 error = VOP_WRITE(vp, &uio, ioflag, cr, NULL); 706 } else { 707 uio.uio_fmode = FREAD; 708 uio.uio_extflg = UIO_COPY_CACHED; 709 error = VOP_READ(vp, &uio, ioflag, cr, NULL); 710 } 711 VOP_RWUNLOCK(vp, rw == UIO_WRITE ? V_WRITELOCK_TRUE : V_WRITELOCK_FALSE, 712 NULL); 713 if (residp) 714 *residp = uio.uio_resid; 715 else if (uio.uio_resid) 716 error = EIO; 717 718 done: 719 if (in_crit) 720 nbl_end_crit(vp); 721 return (error); 722 } 723 724 /* 725 * Release a vnode. Call VOP_INACTIVE on last reference or 726 * decrement reference count. 727 * 728 * To avoid race conditions, the v_count is left at 1 for 729 * the call to VOP_INACTIVE. This prevents another thread 730 * from reclaiming and releasing the vnode *before* the 731 * VOP_INACTIVE routine has a chance to destroy the vnode. 732 * We can't have more than 1 thread calling VOP_INACTIVE 733 * on a vnode. 734 */ 735 void 736 vn_rele(vnode_t *vp) 737 { 738 if (vp->v_count == 0) 739 cmn_err(CE_PANIC, "vn_rele: vnode ref count 0"); 740 mutex_enter(&vp->v_lock); 741 if (vp->v_count == 1) { 742 mutex_exit(&vp->v_lock); 743 VOP_INACTIVE(vp, CRED()); 744 } else { 745 vp->v_count--; 746 mutex_exit(&vp->v_lock); 747 } 748 } 749 750 /* 751 * Like vn_rele() except that it clears v_stream under v_lock. 752 * This is used by sockfs when it dismantels the association between 753 * the sockfs node and the vnode in the underlaying file system. 754 * v_lock has to be held to prevent a thread coming through the lookupname 755 * path from accessing a stream head that is going away. 756 */ 757 void 758 vn_rele_stream(vnode_t *vp) 759 { 760 if (vp->v_count == 0) 761 cmn_err(CE_PANIC, "vn_rele: vnode ref count 0"); 762 mutex_enter(&vp->v_lock); 763 vp->v_stream = NULL; 764 if (vp->v_count == 1) { 765 mutex_exit(&vp->v_lock); 766 VOP_INACTIVE(vp, CRED()); 767 } else { 768 vp->v_count--; 769 mutex_exit(&vp->v_lock); 770 } 771 } 772 773 int 774 vn_open( 775 char *pnamep, 776 enum uio_seg seg, 777 int filemode, 778 int createmode, 779 struct vnode **vpp, 780 enum create crwhy, 781 mode_t umask) 782 { 783 return (vn_openat(pnamep, seg, filemode, 784 createmode, vpp, crwhy, umask, NULL)); 785 } 786 787 788 /* 789 * Open/create a vnode. 790 * This may be callable by the kernel, the only known use 791 * of user context being that the current user credentials 792 * are used for permissions. crwhy is defined iff filemode & FCREAT. 793 */ 794 int 795 vn_openat( 796 char *pnamep, 797 enum uio_seg seg, 798 int filemode, 799 int createmode, 800 struct vnode **vpp, 801 enum create crwhy, 802 mode_t umask, 803 struct vnode *startvp) 804 { 805 struct vnode *vp; 806 int mode; 807 int error; 808 int in_crit = 0; 809 struct vattr vattr; 810 enum symfollow follow; 811 812 mode = 0; 813 if (filemode & FREAD) 814 mode |= VREAD; 815 if (filemode & (FWRITE|FTRUNC)) 816 mode |= VWRITE; 817 818 /* symlink interpretation */ 819 if (filemode & FNOFOLLOW) 820 follow = NO_FOLLOW; 821 else 822 follow = FOLLOW; 823 824 top: 825 if (filemode & FCREAT) { 826 enum vcexcl excl; 827 828 /* 829 * Wish to create a file. 830 */ 831 vattr.va_type = VREG; 832 vattr.va_mode = createmode; 833 vattr.va_mask = AT_TYPE|AT_MODE; 834 if (filemode & FTRUNC) { 835 vattr.va_size = 0; 836 vattr.va_mask |= AT_SIZE; 837 } 838 if (filemode & FEXCL) 839 excl = EXCL; 840 else 841 excl = NONEXCL; 842 843 if (error = 844 vn_createat(pnamep, seg, &vattr, excl, mode, &vp, crwhy, 845 (filemode & ~(FTRUNC|FEXCL)), 846 umask, startvp)) 847 return (error); 848 } else { 849 /* 850 * Wish to open a file. Just look it up. 851 */ 852 if (error = lookupnameat(pnamep, seg, follow, 853 NULLVPP, &vp, startvp)) { 854 if (error == ESTALE) 855 goto top; 856 return (error); 857 } 858 859 /* 860 * Get the attributes to check whether file is large. 861 * We do this only if the FOFFMAX flag is not set and 862 * only for regular files. 863 */ 864 865 if (!(filemode & FOFFMAX) && (vp->v_type == VREG)) { 866 vattr.va_mask = AT_SIZE; 867 if ((error = VOP_GETATTR(vp, &vattr, 0, CRED()))) { 868 goto out; 869 } 870 if (vattr.va_size > (u_offset_t)MAXOFF32_T) { 871 /* 872 * Large File API - regular open fails 873 * if FOFFMAX flag is set in file mode 874 */ 875 error = EOVERFLOW; 876 goto out; 877 } 878 } 879 /* 880 * Can't write directories, active texts, or 881 * read-only filesystems. Can't truncate files 882 * on which mandatory locking is in effect. 883 */ 884 if (filemode & (FWRITE|FTRUNC)) { 885 /* 886 * Allow writable directory if VDIROPEN flag is set. 887 */ 888 if (vp->v_type == VDIR && !(vp->v_flag & VDIROPEN)) { 889 error = EISDIR; 890 goto out; 891 } 892 if (ISROFILE(vp)) { 893 error = EROFS; 894 goto out; 895 } 896 /* 897 * Can't truncate files on which mandatory locking 898 * or non-blocking mandatory locking is in effect. 899 */ 900 if (filemode & FTRUNC) { 901 vnode_t *rvp; 902 903 if (VOP_REALVP(vp, &rvp) != 0) 904 rvp = vp; 905 if (nbl_need_check(vp)) { 906 nbl_start_crit(vp, RW_READER); 907 in_crit = 1; 908 vattr.va_mask = AT_MODE|AT_SIZE; 909 if ((error = VOP_GETATTR(vp, &vattr, 0, 910 CRED())) == 0) { 911 if (rvp->v_filocks != NULL) 912 if (MANDLOCK(vp, 913 vattr.va_mode)) 914 error = EAGAIN; 915 if (!error) { 916 if (nbl_conflict(vp, 917 NBL_WRITE, 0, 918 vattr.va_size, 0)) 919 error = EACCES; 920 } 921 } 922 } else if (rvp->v_filocks != NULL) { 923 vattr.va_mask = AT_MODE; 924 if ((error = VOP_GETATTR(vp, &vattr, 925 0, CRED())) == 0 && MANDLOCK(vp, 926 vattr.va_mode)) 927 error = EAGAIN; 928 } 929 } 930 if (error) 931 goto out; 932 } 933 /* 934 * Check permissions. 935 */ 936 if (error = VOP_ACCESS(vp, mode, 0, CRED())) 937 goto out; 938 } 939 940 /* 941 * Do remaining checks for FNOFOLLOW and FNOLINKS. 942 */ 943 if ((filemode & FNOFOLLOW) && vp->v_type == VLNK) { 944 error = EINVAL; 945 goto out; 946 } 947 if (filemode & FNOLINKS) { 948 vattr.va_mask = AT_NLINK; 949 if ((error = VOP_GETATTR(vp, &vattr, 0, CRED()))) { 950 goto out; 951 } 952 if (vattr.va_nlink != 1) { 953 error = EMLINK; 954 goto out; 955 } 956 } 957 958 /* 959 * Opening a socket corresponding to the AF_UNIX pathname 960 * in the filesystem name space is not supported. 961 * However, VSOCK nodes in namefs are supported in order 962 * to make fattach work for sockets. 963 * 964 * XXX This uses VOP_REALVP to distinguish between 965 * an unopened namefs node (where VOP_REALVP returns a 966 * different VSOCK vnode) and a VSOCK created by vn_create 967 * in some file system (where VOP_REALVP would never return 968 * a different vnode). 969 */ 970 if (vp->v_type == VSOCK) { 971 struct vnode *nvp; 972 973 error = VOP_REALVP(vp, &nvp); 974 if (error != 0 || nvp == NULL || nvp == vp || 975 nvp->v_type != VSOCK) { 976 error = EOPNOTSUPP; 977 goto out; 978 } 979 } 980 /* 981 * Do opening protocol. 982 */ 983 error = VOP_OPEN(&vp, filemode, CRED()); 984 /* 985 * Truncate if required. 986 */ 987 if (error == 0 && (filemode & FTRUNC) && !(filemode & FCREAT)) { 988 vattr.va_size = 0; 989 vattr.va_mask = AT_SIZE; 990 if ((error = VOP_SETATTR(vp, &vattr, 0, CRED(), NULL)) != 0) 991 (void) VOP_CLOSE(vp, filemode, 1, (offset_t)0, CRED()); 992 } 993 out: 994 ASSERT(vp->v_count > 0); 995 996 if (in_crit) { 997 nbl_end_crit(vp); 998 in_crit = 0; 999 } 1000 if (error) { 1001 /* 1002 * The following clause was added to handle a problem 1003 * with NFS consistency. It is possible that a lookup 1004 * of the file to be opened succeeded, but the file 1005 * itself doesn't actually exist on the server. This 1006 * is chiefly due to the DNLC containing an entry for 1007 * the file which has been removed on the server. In 1008 * this case, we just start over. If there was some 1009 * other cause for the ESTALE error, then the lookup 1010 * of the file will fail and the error will be returned 1011 * above instead of looping around from here. 1012 */ 1013 VN_RELE(vp); 1014 if (error == ESTALE) 1015 goto top; 1016 } else 1017 *vpp = vp; 1018 return (error); 1019 } 1020 1021 int 1022 vn_create( 1023 char *pnamep, 1024 enum uio_seg seg, 1025 struct vattr *vap, 1026 enum vcexcl excl, 1027 int mode, 1028 struct vnode **vpp, 1029 enum create why, 1030 int flag, 1031 mode_t umask) 1032 { 1033 return (vn_createat(pnamep, seg, vap, excl, mode, vpp, 1034 why, flag, umask, NULL)); 1035 } 1036 1037 /* 1038 * Create a vnode (makenode). 1039 */ 1040 int 1041 vn_createat( 1042 char *pnamep, 1043 enum uio_seg seg, 1044 struct vattr *vap, 1045 enum vcexcl excl, 1046 int mode, 1047 struct vnode **vpp, 1048 enum create why, 1049 int flag, 1050 mode_t umask, 1051 struct vnode *startvp) 1052 { 1053 struct vnode *dvp; /* ptr to parent dir vnode */ 1054 struct vnode *vp = NULL; 1055 struct pathname pn; 1056 int error; 1057 int in_crit = 0; 1058 struct vattr vattr; 1059 enum symfollow follow; 1060 1061 ASSERT((vap->va_mask & (AT_TYPE|AT_MODE)) == (AT_TYPE|AT_MODE)); 1062 1063 /* symlink interpretation */ 1064 if ((flag & FNOFOLLOW) || excl == EXCL) 1065 follow = NO_FOLLOW; 1066 else 1067 follow = FOLLOW; 1068 flag &= ~(FNOFOLLOW|FNOLINKS); 1069 1070 top: 1071 /* 1072 * Lookup directory. 1073 * If new object is a file, call lower level to create it. 1074 * Note that it is up to the lower level to enforce exclusive 1075 * creation, if the file is already there. 1076 * This allows the lower level to do whatever 1077 * locking or protocol that is needed to prevent races. 1078 * If the new object is directory call lower level to make 1079 * the new directory, with "." and "..". 1080 */ 1081 if (error = pn_get(pnamep, seg, &pn)) 1082 return (error); 1083 #ifdef C2_AUDIT 1084 if (audit_active) 1085 audit_vncreate_start(); 1086 #endif /* C2_AUDIT */ 1087 dvp = NULL; 1088 *vpp = NULL; 1089 /* 1090 * lookup will find the parent directory for the vnode. 1091 * When it is done the pn holds the name of the entry 1092 * in the directory. 1093 * If this is a non-exclusive create we also find the node itself. 1094 */ 1095 error = lookuppnat(&pn, NULL, follow, &dvp, 1096 (excl == EXCL) ? NULLVPP : vpp, startvp); 1097 if (error) { 1098 pn_free(&pn); 1099 if (error == ESTALE) 1100 goto top; 1101 if (why == CRMKDIR && error == EINVAL) 1102 error = EEXIST; /* SVID */ 1103 return (error); 1104 } 1105 1106 if (why != CRMKNOD) 1107 vap->va_mode &= ~VSVTX; 1108 1109 /* 1110 * If default ACLs are defined for the directory don't apply the 1111 * umask if umask is passed. 1112 */ 1113 1114 if (umask) { 1115 1116 vsecattr_t vsec; 1117 1118 vsec.vsa_aclcnt = 0; 1119 vsec.vsa_aclentp = NULL; 1120 vsec.vsa_dfaclcnt = 0; 1121 vsec.vsa_dfaclentp = NULL; 1122 vsec.vsa_mask = VSA_DFACLCNT; 1123 error = VOP_GETSECATTR(dvp, &vsec, 0, CRED()); 1124 /* 1125 * If error is ENOSYS then treat it as no error 1126 * Don't want to force all file systems to support 1127 * aclent_t style of ACL's. 1128 */ 1129 if (error == ENOSYS) 1130 error = 0; 1131 if (error) { 1132 if (*vpp != NULL) 1133 VN_RELE(*vpp); 1134 goto out; 1135 } else { 1136 /* 1137 * Apply the umask if no default ACLs. 1138 */ 1139 if (vsec.vsa_dfaclcnt == 0) 1140 vap->va_mode &= ~umask; 1141 1142 /* 1143 * VOP_GETSECATTR() may have allocated memory for 1144 * ACLs we didn't request, so double-check and 1145 * free it if necessary. 1146 */ 1147 if (vsec.vsa_aclcnt && vsec.vsa_aclentp != NULL) 1148 kmem_free((caddr_t)vsec.vsa_aclentp, 1149 vsec.vsa_aclcnt * sizeof (aclent_t)); 1150 if (vsec.vsa_dfaclcnt && vsec.vsa_dfaclentp != NULL) 1151 kmem_free((caddr_t)vsec.vsa_dfaclentp, 1152 vsec.vsa_dfaclcnt * sizeof (aclent_t)); 1153 } 1154 } 1155 1156 /* 1157 * In general we want to generate EROFS if the file system is 1158 * readonly. However, POSIX (IEEE Std. 1003.1) section 5.3.1 1159 * documents the open system call, and it says that O_CREAT has no 1160 * effect if the file already exists. Bug 1119649 states 1161 * that open(path, O_CREAT, ...) fails when attempting to open an 1162 * existing file on a read only file system. Thus, the first part 1163 * of the following if statement has 3 checks: 1164 * if the file exists && 1165 * it is being open with write access && 1166 * the file system is read only 1167 * then generate EROFS 1168 */ 1169 if ((*vpp != NULL && (mode & VWRITE) && ISROFILE(*vpp)) || 1170 (*vpp == NULL && dvp->v_vfsp->vfs_flag & VFS_RDONLY)) { 1171 if (*vpp) 1172 VN_RELE(*vpp); 1173 error = EROFS; 1174 } else if (excl == NONEXCL && *vpp != NULL) { 1175 vnode_t *rvp; 1176 1177 /* 1178 * File already exists. If a mandatory lock has been 1179 * applied, return error. 1180 */ 1181 vp = *vpp; 1182 if (VOP_REALVP(vp, &rvp) != 0) 1183 rvp = vp; 1184 if ((vap->va_mask & AT_SIZE) && nbl_need_check(vp)) { 1185 nbl_start_crit(vp, RW_READER); 1186 in_crit = 1; 1187 } 1188 if (rvp->v_filocks != NULL || rvp->v_shrlocks != NULL) { 1189 vattr.va_mask = AT_MODE|AT_SIZE; 1190 if (error = VOP_GETATTR(vp, &vattr, 0, CRED())) { 1191 goto out; 1192 } 1193 if (MANDLOCK(vp, vattr.va_mode)) { 1194 error = EAGAIN; 1195 goto out; 1196 } 1197 /* 1198 * File cannot be truncated if non-blocking mandatory 1199 * locks are currently on the file. 1200 */ 1201 if ((vap->va_mask & AT_SIZE) && in_crit) { 1202 u_offset_t offset; 1203 ssize_t length; 1204 1205 offset = vap->va_size > vattr.va_size ? 1206 vattr.va_size : vap->va_size; 1207 length = vap->va_size > vattr.va_size ? 1208 vap->va_size - vattr.va_size : 1209 vattr.va_size - vap->va_size; 1210 if (nbl_conflict(vp, NBL_WRITE, offset, 1211 length, 0)) { 1212 error = EACCES; 1213 goto out; 1214 } 1215 } 1216 } 1217 1218 /* 1219 * If the file is the root of a VFS, we've crossed a 1220 * mount point and the "containing" directory that we 1221 * acquired above (dvp) is irrelevant because it's in 1222 * a different file system. We apply VOP_CREATE to the 1223 * target itself instead of to the containing directory 1224 * and supply a null path name to indicate (conventionally) 1225 * the node itself as the "component" of interest. 1226 * 1227 * The intercession of the file system is necessary to 1228 * ensure that the appropriate permission checks are 1229 * done. 1230 */ 1231 if (vp->v_flag & VROOT) { 1232 ASSERT(why != CRMKDIR); 1233 error = 1234 VOP_CREATE(vp, "", vap, excl, mode, vpp, CRED(), 1235 flag); 1236 /* 1237 * If the create succeeded, it will have created 1238 * a new reference to the vnode. Give up the 1239 * original reference. The assertion should not 1240 * get triggered because NBMAND locks only apply to 1241 * VREG files. And if in_crit is non-zero for some 1242 * reason, detect that here, rather than when we 1243 * deference a null vp. 1244 */ 1245 ASSERT(in_crit == 0); 1246 VN_RELE(vp); 1247 vp = NULL; 1248 goto out; 1249 } 1250 1251 /* 1252 * Large File API - non-large open (FOFFMAX flag not set) 1253 * of regular file fails if the file size exceeds MAXOFF32_T. 1254 */ 1255 if (why != CRMKDIR && 1256 !(flag & FOFFMAX) && 1257 (vp->v_type == VREG)) { 1258 vattr.va_mask = AT_SIZE; 1259 if ((error = VOP_GETATTR(vp, &vattr, 0, CRED()))) { 1260 goto out; 1261 } 1262 if ((vattr.va_size > (u_offset_t)MAXOFF32_T)) { 1263 error = EOVERFLOW; 1264 goto out; 1265 } 1266 } 1267 } 1268 1269 if (error == 0) { 1270 /* 1271 * Call mkdir() if specified, otherwise create(). 1272 */ 1273 int must_be_dir = pn_fixslash(&pn); /* trailing '/'? */ 1274 1275 if (why == CRMKDIR) 1276 error = VOP_MKDIR(dvp, pn.pn_path, vap, vpp, CRED()); 1277 else if (!must_be_dir) 1278 error = VOP_CREATE(dvp, pn.pn_path, vap, 1279 excl, mode, vpp, CRED(), flag); 1280 else 1281 error = ENOTDIR; 1282 } 1283 1284 out: 1285 1286 #ifdef C2_AUDIT 1287 if (audit_active) 1288 audit_vncreate_finish(*vpp, error); 1289 #endif /* C2_AUDIT */ 1290 if (in_crit) { 1291 nbl_end_crit(vp); 1292 in_crit = 0; 1293 } 1294 if (vp != NULL) { 1295 VN_RELE(vp); 1296 vp = NULL; 1297 } 1298 pn_free(&pn); 1299 VN_RELE(dvp); 1300 /* 1301 * The following clause was added to handle a problem 1302 * with NFS consistency. It is possible that a lookup 1303 * of the file to be created succeeded, but the file 1304 * itself doesn't actually exist on the server. This 1305 * is chiefly due to the DNLC containing an entry for 1306 * the file which has been removed on the server. In 1307 * this case, we just start over. If there was some 1308 * other cause for the ESTALE error, then the lookup 1309 * of the file will fail and the error will be returned 1310 * above instead of looping around from here. 1311 */ 1312 if (error == ESTALE) 1313 goto top; 1314 return (error); 1315 } 1316 1317 int 1318 vn_link(char *from, char *to, enum uio_seg seg) 1319 { 1320 struct vnode *fvp; /* from vnode ptr */ 1321 struct vnode *tdvp; /* to directory vnode ptr */ 1322 struct pathname pn; 1323 int error; 1324 struct vattr vattr; 1325 dev_t fsid; 1326 1327 top: 1328 fvp = tdvp = NULL; 1329 if (error = pn_get(to, seg, &pn)) 1330 return (error); 1331 if (error = lookupname(from, seg, NO_FOLLOW, NULLVPP, &fvp)) 1332 goto out; 1333 if (error = lookuppn(&pn, NULL, NO_FOLLOW, &tdvp, NULLVPP)) 1334 goto out; 1335 /* 1336 * Make sure both source vnode and target directory vnode are 1337 * in the same vfs and that it is writeable. 1338 */ 1339 vattr.va_mask = AT_FSID; 1340 if (error = VOP_GETATTR(fvp, &vattr, 0, CRED())) 1341 goto out; 1342 fsid = vattr.va_fsid; 1343 vattr.va_mask = AT_FSID; 1344 if (error = VOP_GETATTR(tdvp, &vattr, 0, CRED())) 1345 goto out; 1346 if (fsid != vattr.va_fsid) { 1347 error = EXDEV; 1348 goto out; 1349 } 1350 if (tdvp->v_vfsp->vfs_flag & VFS_RDONLY) { 1351 error = EROFS; 1352 goto out; 1353 } 1354 /* 1355 * Do the link. 1356 */ 1357 (void) pn_fixslash(&pn); 1358 error = VOP_LINK(tdvp, fvp, pn.pn_path, CRED()); 1359 out: 1360 pn_free(&pn); 1361 if (fvp) 1362 VN_RELE(fvp); 1363 if (tdvp) 1364 VN_RELE(tdvp); 1365 if (error == ESTALE) 1366 goto top; 1367 return (error); 1368 } 1369 1370 int 1371 vn_rename(char *from, char *to, enum uio_seg seg) 1372 { 1373 return (vn_renameat(NULL, from, NULL, to, seg)); 1374 } 1375 1376 int 1377 vn_renameat(vnode_t *fdvp, char *fname, vnode_t *tdvp, 1378 char *tname, enum uio_seg seg) 1379 { 1380 int error; 1381 struct vattr vattr; 1382 struct pathname fpn; /* from pathname */ 1383 struct pathname tpn; /* to pathname */ 1384 dev_t fsid; 1385 int in_crit = 0; 1386 vnode_t *fromvp, *fvp; 1387 vnode_t *tovp; 1388 1389 top: 1390 fvp = fromvp = tovp = NULL; 1391 /* 1392 * Get to and from pathnames. 1393 */ 1394 if (error = pn_get(fname, seg, &fpn)) 1395 return (error); 1396 if (error = pn_get(tname, seg, &tpn)) { 1397 pn_free(&fpn); 1398 return (error); 1399 } 1400 1401 /* 1402 * First we need to resolve the correct directories 1403 * The passed in directories may only be a starting point, 1404 * but we need the real directories the file(s) live in. 1405 * For example the fname may be something like usr/lib/sparc 1406 * and we were passed in the / directory, but we need to 1407 * use the lib directory for the rename. 1408 */ 1409 1410 #ifdef C2_AUDIT 1411 if (audit_active) 1412 audit_setfsat_path(1); 1413 #endif /* C2_AUDIT */ 1414 /* 1415 * Lookup to and from directories. 1416 */ 1417 if (error = lookuppnat(&fpn, NULL, NO_FOLLOW, &fromvp, &fvp, fdvp)) { 1418 goto out; 1419 } 1420 1421 /* 1422 * Make sure there is an entry. 1423 */ 1424 if (fvp == NULL) { 1425 error = ENOENT; 1426 goto out; 1427 } 1428 1429 #ifdef C2_AUDIT 1430 if (audit_active) 1431 audit_setfsat_path(3); 1432 #endif /* C2_AUDIT */ 1433 if (error = lookuppnat(&tpn, NULL, NO_FOLLOW, &tovp, NULLVPP, tdvp)) { 1434 goto out; 1435 } 1436 1437 /* 1438 * Make sure both the from vnode directory and the to directory 1439 * are in the same vfs and the to directory is writable. 1440 * We check fsid's, not vfs pointers, so loopback fs works. 1441 */ 1442 if (fromvp != tovp) { 1443 vattr.va_mask = AT_FSID; 1444 if (error = VOP_GETATTR(fromvp, &vattr, 0, CRED())) 1445 goto out; 1446 fsid = vattr.va_fsid; 1447 vattr.va_mask = AT_FSID; 1448 if (error = VOP_GETATTR(tovp, &vattr, 0, CRED())) 1449 goto out; 1450 if (fsid != vattr.va_fsid) { 1451 error = EXDEV; 1452 goto out; 1453 } 1454 } 1455 1456 if (tovp->v_vfsp->vfs_flag & VFS_RDONLY) { 1457 error = EROFS; 1458 goto out; 1459 } 1460 1461 if (nbl_need_check(fvp)) { 1462 nbl_start_crit(fvp, RW_READER); 1463 in_crit = 1; 1464 if (nbl_conflict(fvp, NBL_RENAME, 0, 0, 0)) { 1465 error = EACCES; 1466 goto out; 1467 } 1468 } 1469 1470 /* 1471 * Do the rename. 1472 */ 1473 (void) pn_fixslash(&tpn); 1474 error = VOP_RENAME(fromvp, fpn.pn_path, tovp, tpn.pn_path, CRED()); 1475 1476 out: 1477 pn_free(&fpn); 1478 pn_free(&tpn); 1479 if (in_crit) { 1480 nbl_end_crit(fvp); 1481 in_crit = 0; 1482 } 1483 if (fromvp) 1484 VN_RELE(fromvp); 1485 if (tovp) 1486 VN_RELE(tovp); 1487 if (fvp) 1488 VN_RELE(fvp); 1489 if (error == ESTALE) 1490 goto top; 1491 return (error); 1492 } 1493 1494 /* 1495 * Remove a file or directory. 1496 */ 1497 int 1498 vn_remove(char *fnamep, enum uio_seg seg, enum rm dirflag) 1499 { 1500 return (vn_removeat(NULL, fnamep, seg, dirflag)); 1501 } 1502 1503 int 1504 vn_removeat(vnode_t *startvp, char *fnamep, enum uio_seg seg, enum rm dirflag) 1505 { 1506 struct vnode *vp; /* entry vnode */ 1507 struct vnode *dvp; /* ptr to parent dir vnode */ 1508 struct vnode *coveredvp; 1509 struct pathname pn; /* name of entry */ 1510 enum vtype vtype; 1511 int error; 1512 struct vfs *vfsp; 1513 struct vfs *dvfsp; /* ptr to parent dir vfs */ 1514 int in_crit = 0; 1515 1516 top: 1517 if (error = pn_get(fnamep, seg, &pn)) 1518 return (error); 1519 dvp = vp = NULL; 1520 if (error = lookuppnat(&pn, NULL, NO_FOLLOW, &dvp, &vp, startvp)) { 1521 pn_free(&pn); 1522 if (error == ESTALE) 1523 goto top; 1524 return (error); 1525 } 1526 1527 /* 1528 * Make sure there is an entry. 1529 */ 1530 if (vp == NULL) { 1531 error = ENOENT; 1532 goto out; 1533 } 1534 1535 vfsp = vp->v_vfsp; 1536 dvfsp = dvp->v_vfsp; 1537 1538 /* 1539 * If the named file is the root of a mounted filesystem, fail, 1540 * unless it's marked unlinkable. In that case, unmount the 1541 * filesystem and proceed to unlink the covered vnode. (If the 1542 * covered vnode is a directory, use rmdir instead of unlink, 1543 * to avoid file system corruption.) 1544 */ 1545 if (vp->v_flag & VROOT) { 1546 if (vfsp->vfs_flag & VFS_UNLINKABLE) { 1547 if (dirflag == RMDIRECTORY) { 1548 /* 1549 * User called rmdir(2) on a file that has 1550 * been namefs mounted on top of. Since 1551 * namefs doesn't allow directories to 1552 * be mounted on other files we know 1553 * vp is not of type VDIR so fail to operation. 1554 */ 1555 error = ENOTDIR; 1556 goto out; 1557 } 1558 coveredvp = vfsp->vfs_vnodecovered; 1559 VN_HOLD(coveredvp); 1560 VN_RELE(vp); 1561 vp = NULL; 1562 if ((error = vn_vfswlock(coveredvp)) == 0) 1563 error = dounmount(vfsp, 0, CRED()); 1564 /* 1565 * Unmounted the namefs file system; now get 1566 * the object it was mounted over. 1567 */ 1568 vp = coveredvp; 1569 /* 1570 * If namefs was mounted over a directory, then 1571 * we want to use rmdir() instead of unlink(). 1572 */ 1573 if (vp->v_type == VDIR) 1574 dirflag = RMDIRECTORY; 1575 } else 1576 error = EBUSY; 1577 1578 if (error) 1579 goto out; 1580 } 1581 1582 /* 1583 * Make sure filesystem is writeable. 1584 * We check the parent directory's vfs in case this is an lofs vnode. 1585 */ 1586 if (dvfsp && dvfsp->vfs_flag & VFS_RDONLY) { 1587 error = EROFS; 1588 goto out; 1589 } 1590 1591 vtype = vp->v_type; 1592 1593 /* 1594 * If there is the possibility of an nbmand share reservation, make 1595 * sure it's okay to remove the file. Keep a reference to the 1596 * vnode, so that we can exit the nbl critical region after 1597 * calling VOP_REMOVE. 1598 * If there is no possibility of an nbmand share reservation, 1599 * release the vnode reference now. Filesystems like NFS may 1600 * behave differently if there is an extra reference, so get rid of 1601 * this one. Fortunately, we can't have nbmand mounts on NFS 1602 * filesystems. 1603 */ 1604 if (nbl_need_check(vp)) { 1605 nbl_start_crit(vp, RW_READER); 1606 in_crit = 1; 1607 if (nbl_conflict(vp, NBL_REMOVE, 0, 0, 0)) { 1608 error = EACCES; 1609 goto out; 1610 } 1611 } else { 1612 VN_RELE(vp); 1613 vp = NULL; 1614 } 1615 1616 if (dirflag == RMDIRECTORY) { 1617 /* 1618 * Caller is using rmdir(2), which can only be applied to 1619 * directories. 1620 */ 1621 if (vtype != VDIR) { 1622 error = ENOTDIR; 1623 } else { 1624 vnode_t *cwd; 1625 proc_t *pp = curproc; 1626 1627 mutex_enter(&pp->p_lock); 1628 cwd = PTOU(pp)->u_cdir; 1629 VN_HOLD(cwd); 1630 mutex_exit(&pp->p_lock); 1631 error = VOP_RMDIR(dvp, pn.pn_path, cwd, CRED()); 1632 VN_RELE(cwd); 1633 } 1634 } else { 1635 /* 1636 * Unlink(2) can be applied to anything. 1637 */ 1638 error = VOP_REMOVE(dvp, pn.pn_path, CRED()); 1639 } 1640 1641 out: 1642 pn_free(&pn); 1643 if (in_crit) { 1644 nbl_end_crit(vp); 1645 in_crit = 0; 1646 } 1647 if (vp != NULL) 1648 VN_RELE(vp); 1649 if (dvp != NULL) 1650 VN_RELE(dvp); 1651 if (error == ESTALE) 1652 goto top; 1653 return (error); 1654 } 1655 1656 /* 1657 * Utility function to compare equality of vnodes. 1658 * Compare the underlying real vnodes, if there are underlying vnodes. 1659 * This is a more thorough comparison than the VN_CMP() macro provides. 1660 */ 1661 int 1662 vn_compare(vnode_t *vp1, vnode_t *vp2) 1663 { 1664 vnode_t *realvp; 1665 1666 if (vp1 != NULL && VOP_REALVP(vp1, &realvp) == 0) 1667 vp1 = realvp; 1668 if (vp2 != NULL && VOP_REALVP(vp2, &realvp) == 0) 1669 vp2 = realvp; 1670 return (VN_CMP(vp1, vp2)); 1671 } 1672 1673 /* 1674 * The number of locks to hash into. This value must be a power 1675 * of 2 minus 1 and should probably also be prime. 1676 */ 1677 #define NUM_BUCKETS 1023 1678 1679 struct vn_vfslocks_bucket { 1680 kmutex_t vb_lock; 1681 vn_vfslocks_entry_t *vb_list; 1682 char pad[64 - sizeof (kmutex_t) - sizeof (void *)]; 1683 }; 1684 1685 /* 1686 * Total number of buckets will be NUM_BUCKETS + 1 . 1687 */ 1688 1689 #pragma align 64(vn_vfslocks_buckets) 1690 static struct vn_vfslocks_bucket vn_vfslocks_buckets[NUM_BUCKETS + 1]; 1691 1692 #define VN_VFSLOCKS_SHIFT 9 1693 1694 #define VN_VFSLOCKS_HASH(vfsvpptr) \ 1695 ((((intptr_t)(vfsvpptr)) >> VN_VFSLOCKS_SHIFT) & NUM_BUCKETS) 1696 1697 /* 1698 * vn_vfslocks_getlock() uses an HASH scheme to generate 1699 * rwstlock using vfs/vnode pointer passed to it. 1700 * 1701 * vn_vfslocks_rele() releases a reference in the 1702 * HASH table which allows the entry allocated by 1703 * vn_vfslocks_getlock() to be freed at a later 1704 * stage when the refcount drops to zero. 1705 */ 1706 1707 vn_vfslocks_entry_t * 1708 vn_vfslocks_getlock(void *vfsvpptr) 1709 { 1710 struct vn_vfslocks_bucket *bp; 1711 vn_vfslocks_entry_t *vep; 1712 vn_vfslocks_entry_t *tvep; 1713 1714 ASSERT(vfsvpptr != NULL); 1715 bp = &vn_vfslocks_buckets[VN_VFSLOCKS_HASH(vfsvpptr)]; 1716 1717 mutex_enter(&bp->vb_lock); 1718 for (vep = bp->vb_list; vep != NULL; vep = vep->ve_next) { 1719 if (vep->ve_vpvfs == vfsvpptr) { 1720 vep->ve_refcnt++; 1721 mutex_exit(&bp->vb_lock); 1722 return (vep); 1723 } 1724 } 1725 mutex_exit(&bp->vb_lock); 1726 vep = kmem_alloc(sizeof (*vep), KM_SLEEP); 1727 rwst_init(&vep->ve_lock, NULL, RW_DEFAULT, NULL); 1728 vep->ve_vpvfs = (char *)vfsvpptr; 1729 vep->ve_refcnt = 1; 1730 mutex_enter(&bp->vb_lock); 1731 for (tvep = bp->vb_list; tvep != NULL; tvep = tvep->ve_next) { 1732 if (tvep->ve_vpvfs == vfsvpptr) { 1733 tvep->ve_refcnt++; 1734 mutex_exit(&bp->vb_lock); 1735 1736 /* 1737 * There is already an entry in the hash 1738 * destroy what we just allocated. 1739 */ 1740 rwst_destroy(&vep->ve_lock); 1741 kmem_free(vep, sizeof (*vep)); 1742 return (tvep); 1743 } 1744 } 1745 vep->ve_next = bp->vb_list; 1746 bp->vb_list = vep; 1747 mutex_exit(&bp->vb_lock); 1748 return (vep); 1749 } 1750 1751 void 1752 vn_vfslocks_rele(vn_vfslocks_entry_t *vepent) 1753 { 1754 struct vn_vfslocks_bucket *bp; 1755 vn_vfslocks_entry_t *vep; 1756 vn_vfslocks_entry_t *pvep; 1757 1758 ASSERT(vepent != NULL); 1759 ASSERT(vepent->ve_vpvfs != NULL); 1760 1761 bp = &vn_vfslocks_buckets[VN_VFSLOCKS_HASH(vepent->ve_vpvfs)]; 1762 1763 mutex_enter(&bp->vb_lock); 1764 vepent->ve_refcnt--; 1765 1766 if ((int32_t)vepent->ve_refcnt < 0) 1767 cmn_err(CE_PANIC, "vn_vfslocks_rele: refcount negative"); 1768 1769 if (vepent->ve_refcnt == 0) { 1770 for (vep = bp->vb_list; vep != NULL; vep = vep->ve_next) { 1771 if (vep->ve_vpvfs == vepent->ve_vpvfs) { 1772 if (bp->vb_list == vep) 1773 bp->vb_list = vep->ve_next; 1774 else { 1775 /* LINTED */ 1776 pvep->ve_next = vep->ve_next; 1777 } 1778 mutex_exit(&bp->vb_lock); 1779 rwst_destroy(&vep->ve_lock); 1780 kmem_free(vep, sizeof (*vep)); 1781 return; 1782 } 1783 pvep = vep; 1784 } 1785 cmn_err(CE_PANIC, "vn_vfslocks_rele: vp/vfs not found"); 1786 } 1787 mutex_exit(&bp->vb_lock); 1788 } 1789 1790 /* 1791 * vn_vfswlock_wait is used to implement a lock which is logically a writers 1792 * lock protecting the v_vfsmountedhere field. 1793 * vn_vfswlock_wait has been modified to be similar to vn_vfswlock, 1794 * except that it blocks to acquire the lock VVFSLOCK. 1795 * 1796 * traverse() and routines re-implementing part of traverse (e.g. autofs) 1797 * need to hold this lock. mount(), vn_rename(), vn_remove() and so on 1798 * need the non-blocking version of the writers lock i.e. vn_vfswlock 1799 */ 1800 int 1801 vn_vfswlock_wait(vnode_t *vp) 1802 { 1803 int retval; 1804 vn_vfslocks_entry_t *vpvfsentry; 1805 ASSERT(vp != NULL); 1806 1807 vpvfsentry = vn_vfslocks_getlock(vp); 1808 retval = rwst_enter_sig(&vpvfsentry->ve_lock, RW_WRITER); 1809 1810 if (retval == EINTR) { 1811 vn_vfslocks_rele(vpvfsentry); 1812 return (EINTR); 1813 } 1814 return (retval); 1815 } 1816 1817 int 1818 vn_vfsrlock_wait(vnode_t *vp) 1819 { 1820 int retval; 1821 vn_vfslocks_entry_t *vpvfsentry; 1822 ASSERT(vp != NULL); 1823 1824 vpvfsentry = vn_vfslocks_getlock(vp); 1825 retval = rwst_enter_sig(&vpvfsentry->ve_lock, RW_READER); 1826 1827 if (retval == EINTR) { 1828 vn_vfslocks_rele(vpvfsentry); 1829 return (EINTR); 1830 } 1831 1832 return (retval); 1833 } 1834 1835 1836 /* 1837 * vn_vfswlock is used to implement a lock which is logically a writers lock 1838 * protecting the v_vfsmountedhere field. 1839 */ 1840 int 1841 vn_vfswlock(vnode_t *vp) 1842 { 1843 vn_vfslocks_entry_t *vpvfsentry; 1844 1845 /* 1846 * If vp is NULL then somebody is trying to lock the covered vnode 1847 * of /. (vfs_vnodecovered is NULL for /). This situation will 1848 * only happen when unmounting /. Since that operation will fail 1849 * anyway, return EBUSY here instead of in VFS_UNMOUNT. 1850 */ 1851 if (vp == NULL) 1852 return (EBUSY); 1853 1854 vpvfsentry = vn_vfslocks_getlock(vp); 1855 1856 if (rwst_tryenter(&vpvfsentry->ve_lock, RW_WRITER)) 1857 return (0); 1858 1859 vn_vfslocks_rele(vpvfsentry); 1860 return (EBUSY); 1861 } 1862 1863 int 1864 vn_vfsrlock(vnode_t *vp) 1865 { 1866 vn_vfslocks_entry_t *vpvfsentry; 1867 1868 /* 1869 * If vp is NULL then somebody is trying to lock the covered vnode 1870 * of /. (vfs_vnodecovered is NULL for /). This situation will 1871 * only happen when unmounting /. Since that operation will fail 1872 * anyway, return EBUSY here instead of in VFS_UNMOUNT. 1873 */ 1874 if (vp == NULL) 1875 return (EBUSY); 1876 1877 vpvfsentry = vn_vfslocks_getlock(vp); 1878 1879 if (rwst_tryenter(&vpvfsentry->ve_lock, RW_READER)) 1880 return (0); 1881 1882 vn_vfslocks_rele(vpvfsentry); 1883 return (EBUSY); 1884 } 1885 1886 void 1887 vn_vfsunlock(vnode_t *vp) 1888 { 1889 vn_vfslocks_entry_t *vpvfsentry; 1890 1891 /* 1892 * ve_refcnt needs to be decremented twice. 1893 * 1. To release refernce after a call to vn_vfslocks_getlock() 1894 * 2. To release the reference from the locking routines like 1895 * vn_vfsrlock/vn_vfswlock etc,. 1896 */ 1897 vpvfsentry = vn_vfslocks_getlock(vp); 1898 vn_vfslocks_rele(vpvfsentry); 1899 1900 rwst_exit(&vpvfsentry->ve_lock); 1901 vn_vfslocks_rele(vpvfsentry); 1902 } 1903 1904 int 1905 vn_vfswlock_held(vnode_t *vp) 1906 { 1907 int held; 1908 vn_vfslocks_entry_t *vpvfsentry; 1909 1910 ASSERT(vp != NULL); 1911 1912 vpvfsentry = vn_vfslocks_getlock(vp); 1913 held = rwst_lock_held(&vpvfsentry->ve_lock, RW_WRITER); 1914 1915 vn_vfslocks_rele(vpvfsentry); 1916 return (held); 1917 } 1918 1919 1920 int 1921 vn_make_ops( 1922 const char *name, /* Name of file system */ 1923 const fs_operation_def_t *templ, /* Operation specification */ 1924 vnodeops_t **actual) /* Return the vnodeops */ 1925 { 1926 int unused_ops; 1927 int error; 1928 1929 *actual = (vnodeops_t *)kmem_alloc(sizeof (vnodeops_t), KM_SLEEP); 1930 1931 (*actual)->vnop_name = name; 1932 1933 error = fs_build_vector(*actual, &unused_ops, vn_ops_table, templ); 1934 if (error) { 1935 kmem_free(*actual, sizeof (vnodeops_t)); 1936 } 1937 1938 #if DEBUG 1939 if (unused_ops != 0) 1940 cmn_err(CE_WARN, "vn_make_ops: %s: %d operations supplied " 1941 "but not used", name, unused_ops); 1942 #endif 1943 1944 return (error); 1945 } 1946 1947 /* 1948 * Free the vnodeops created as a result of vn_make_ops() 1949 */ 1950 void 1951 vn_freevnodeops(vnodeops_t *vnops) 1952 { 1953 kmem_free(vnops, sizeof (vnodeops_t)); 1954 } 1955 1956 /* 1957 * Vnode cache. 1958 */ 1959 1960 /* ARGSUSED */ 1961 static int 1962 vn_cache_constructor(void *buf, void *cdrarg, int kmflags) 1963 { 1964 struct vnode *vp; 1965 1966 vp = buf; 1967 1968 mutex_init(&vp->v_lock, NULL, MUTEX_DEFAULT, NULL); 1969 cv_init(&vp->v_cv, NULL, CV_DEFAULT, NULL); 1970 rw_init(&vp->v_nbllock, NULL, RW_DEFAULT, NULL); 1971 rw_init(&vp->v_mslock, NULL, RW_DEFAULT, NULL); 1972 1973 vp->v_femhead = NULL; /* Must be done before vn_reinit() */ 1974 vp->v_path = NULL; 1975 vp->v_mpssdata = NULL; 1976 1977 return (0); 1978 } 1979 1980 /* ARGSUSED */ 1981 static void 1982 vn_cache_destructor(void *buf, void *cdrarg) 1983 { 1984 struct vnode *vp; 1985 1986 vp = buf; 1987 1988 rw_destroy(&vp->v_mslock); 1989 rw_destroy(&vp->v_nbllock); 1990 cv_destroy(&vp->v_cv); 1991 mutex_destroy(&vp->v_lock); 1992 } 1993 1994 void 1995 vn_create_cache(void) 1996 { 1997 vn_cache = kmem_cache_create("vn_cache", sizeof (struct vnode), 64, 1998 vn_cache_constructor, vn_cache_destructor, NULL, NULL, 1999 NULL, 0); 2000 } 2001 2002 void 2003 vn_destroy_cache(void) 2004 { 2005 kmem_cache_destroy(vn_cache); 2006 } 2007 2008 /* 2009 * Used by file systems when fs-specific nodes (e.g., ufs inodes) are 2010 * cached by the file system and vnodes remain associated. 2011 */ 2012 void 2013 vn_recycle(vnode_t *vp) 2014 { 2015 ASSERT(vp->v_pages == NULL); 2016 2017 /* 2018 * XXX - This really belongs in vn_reinit(), but we have some issues 2019 * with the counts. Best to have it here for clean initialization. 2020 */ 2021 vp->v_rdcnt = 0; 2022 vp->v_wrcnt = 0; 2023 vp->v_mmap_read = 0; 2024 vp->v_mmap_write = 0; 2025 2026 /* 2027 * If FEM was in use, make sure everything gets cleaned up 2028 * NOTE: vp->v_femhead is initialized to NULL in the vnode 2029 * constructor. 2030 */ 2031 if (vp->v_femhead) { 2032 /* XXX - There should be a free_femhead() that does all this */ 2033 ASSERT(vp->v_femhead->femh_list == NULL); 2034 mutex_destroy(&vp->v_femhead->femh_lock); 2035 kmem_free(vp->v_femhead, sizeof (*(vp->v_femhead))); 2036 vp->v_femhead = NULL; 2037 } 2038 if (vp->v_path) { 2039 kmem_free(vp->v_path, strlen(vp->v_path) + 1); 2040 vp->v_path = NULL; 2041 } 2042 vp->v_mpssdata = NULL; 2043 } 2044 2045 /* 2046 * Used to reset the vnode fields including those that are directly accessible 2047 * as well as those which require an accessor function. 2048 * 2049 * Does not initialize: 2050 * synchronization objects: v_lock, v_nbllock, v_cv 2051 * v_data (since FS-nodes and vnodes point to each other and should 2052 * be updated simultaneously) 2053 * v_op (in case someone needs to make a VOP call on this object) 2054 */ 2055 void 2056 vn_reinit(vnode_t *vp) 2057 { 2058 vp->v_count = 1; 2059 vp->v_vfsp = NULL; 2060 vp->v_stream = NULL; 2061 vp->v_vfsmountedhere = NULL; 2062 vp->v_flag = 0; 2063 vp->v_type = VNON; 2064 vp->v_rdev = NODEV; 2065 2066 vp->v_filocks = NULL; 2067 vp->v_shrlocks = NULL; 2068 vp->v_pages = NULL; 2069 vp->v_npages = 0; 2070 vp->v_msnpages = 0; 2071 vp->v_scanfront = NULL; 2072 vp->v_scanback = NULL; 2073 2074 vp->v_locality = NULL; 2075 vp->v_scantime = 0; 2076 vp->v_mset = 0; 2077 vp->v_msflags = 0; 2078 vp->v_msnext = NULL; 2079 vp->v_msprev = NULL; 2080 2081 /* Handles v_femhead, v_path, and the r/w/map counts */ 2082 vn_recycle(vp); 2083 } 2084 2085 vnode_t * 2086 vn_alloc(int kmflag) 2087 { 2088 vnode_t *vp; 2089 2090 vp = kmem_cache_alloc(vn_cache, kmflag); 2091 2092 if (vp != NULL) { 2093 vp->v_femhead = NULL; /* Must be done before vn_reinit() */ 2094 vn_reinit(vp); 2095 } 2096 2097 return (vp); 2098 } 2099 2100 void 2101 vn_free(vnode_t *vp) 2102 { 2103 /* 2104 * Some file systems call vn_free() with v_count of zero, 2105 * some with v_count of 1. In any case, the value should 2106 * never be anything else. 2107 */ 2108 ASSERT((vp->v_count == 0) || (vp->v_count == 1)); 2109 if (vp->v_path != NULL) { 2110 kmem_free(vp->v_path, strlen(vp->v_path) + 1); 2111 vp->v_path = NULL; 2112 } 2113 2114 /* If FEM was in use, make sure everything gets cleaned up */ 2115 if (vp->v_femhead) { 2116 /* XXX - There should be a free_femhead() that does all this */ 2117 ASSERT(vp->v_femhead->femh_list == NULL); 2118 mutex_destroy(&vp->v_femhead->femh_lock); 2119 kmem_free(vp->v_femhead, sizeof (*(vp->v_femhead))); 2120 vp->v_femhead = NULL; 2121 } 2122 vp->v_mpssdata = NULL; 2123 kmem_cache_free(vn_cache, vp); 2124 } 2125 2126 /* 2127 * vnode status changes, should define better states than 1, 0. 2128 */ 2129 void 2130 vn_reclaim(vnode_t *vp) 2131 { 2132 vfs_t *vfsp = vp->v_vfsp; 2133 2134 if (vfsp == NULL || 2135 vfsp->vfs_implp == NULL || vfsp->vfs_femhead == NULL) { 2136 return; 2137 } 2138 (void) VFS_VNSTATE(vfsp, vp, VNTRANS_RECLAIMED); 2139 } 2140 2141 void 2142 vn_idle(vnode_t *vp) 2143 { 2144 vfs_t *vfsp = vp->v_vfsp; 2145 2146 if (vfsp == NULL || 2147 vfsp->vfs_implp == NULL || vfsp->vfs_femhead == NULL) { 2148 return; 2149 } 2150 (void) VFS_VNSTATE(vfsp, vp, VNTRANS_IDLED); 2151 } 2152 void 2153 vn_exists(vnode_t *vp) 2154 { 2155 vfs_t *vfsp = vp->v_vfsp; 2156 2157 if (vfsp == NULL || 2158 vfsp->vfs_implp == NULL || vfsp->vfs_femhead == NULL) { 2159 return; 2160 } 2161 (void) VFS_VNSTATE(vfsp, vp, VNTRANS_EXISTS); 2162 } 2163 2164 void 2165 vn_invalid(vnode_t *vp) 2166 { 2167 vfs_t *vfsp = vp->v_vfsp; 2168 2169 if (vfsp == NULL || 2170 vfsp->vfs_implp == NULL || vfsp->vfs_femhead == NULL) { 2171 return; 2172 } 2173 (void) VFS_VNSTATE(vfsp, vp, VNTRANS_DESTROYED); 2174 } 2175 2176 /* Vnode event notification */ 2177 2178 int 2179 vnevent_support(vnode_t *vp) 2180 { 2181 if (vp == NULL) 2182 return (EINVAL); 2183 2184 return (VOP_VNEVENT(vp, VE_SUPPORT)); 2185 } 2186 2187 void 2188 vnevent_rename_src(vnode_t *vp) 2189 { 2190 if (vp == NULL || vp->v_femhead == NULL) { 2191 return; 2192 } 2193 (void) VOP_VNEVENT(vp, VE_RENAME_SRC); 2194 } 2195 2196 void 2197 vnevent_rename_dest(vnode_t *vp) 2198 { 2199 if (vp == NULL || vp->v_femhead == NULL) { 2200 return; 2201 } 2202 (void) VOP_VNEVENT(vp, VE_RENAME_DEST); 2203 } 2204 2205 void 2206 vnevent_remove(vnode_t *vp) 2207 { 2208 if (vp == NULL || vp->v_femhead == NULL) { 2209 return; 2210 } 2211 (void) VOP_VNEVENT(vp, VE_REMOVE); 2212 } 2213 2214 void 2215 vnevent_rmdir(vnode_t *vp) 2216 { 2217 if (vp == NULL || vp->v_femhead == NULL) { 2218 return; 2219 } 2220 (void) VOP_VNEVENT(vp, VE_RMDIR); 2221 } 2222 2223 /* 2224 * Vnode accessors. 2225 */ 2226 2227 int 2228 vn_is_readonly(vnode_t *vp) 2229 { 2230 return (vp->v_vfsp->vfs_flag & VFS_RDONLY); 2231 } 2232 2233 int 2234 vn_has_flocks(vnode_t *vp) 2235 { 2236 return (vp->v_filocks != NULL); 2237 } 2238 2239 int 2240 vn_has_mandatory_locks(vnode_t *vp, int mode) 2241 { 2242 return ((vp->v_filocks != NULL) && (MANDLOCK(vp, mode))); 2243 } 2244 2245 int 2246 vn_has_cached_data(vnode_t *vp) 2247 { 2248 return (vp->v_pages != NULL); 2249 } 2250 2251 /* 2252 * Return 0 if the vnode in question shouldn't be permitted into a zone via 2253 * zone_enter(2). 2254 */ 2255 int 2256 vn_can_change_zones(vnode_t *vp) 2257 { 2258 struct vfssw *vswp; 2259 int allow = 1; 2260 vnode_t *rvp; 2261 2262 if (nfs_global_client_only != 0) 2263 return (1); 2264 2265 /* 2266 * We always want to look at the underlying vnode if there is one. 2267 */ 2268 if (VOP_REALVP(vp, &rvp) != 0) 2269 rvp = vp; 2270 /* 2271 * Some pseudo filesystems (including doorfs) don't actually register 2272 * their vfsops_t, so the following may return NULL; we happily let 2273 * such vnodes switch zones. 2274 */ 2275 vswp = vfs_getvfsswbyvfsops(vfs_getops(rvp->v_vfsp)); 2276 if (vswp != NULL) { 2277 if (vswp->vsw_flag & VSW_NOTZONESAFE) 2278 allow = 0; 2279 vfs_unrefvfssw(vswp); 2280 } 2281 return (allow); 2282 } 2283 2284 /* 2285 * Return nonzero if the vnode is a mount point, zero if not. 2286 */ 2287 int 2288 vn_ismntpt(vnode_t *vp) 2289 { 2290 return (vp->v_vfsmountedhere != NULL); 2291 } 2292 2293 /* Retrieve the vfs (if any) mounted on this vnode */ 2294 vfs_t * 2295 vn_mountedvfs(vnode_t *vp) 2296 { 2297 return (vp->v_vfsmountedhere); 2298 } 2299 2300 /* 2301 * vn_is_opened() checks whether a particular file is opened and 2302 * whether the open is for read and/or write. 2303 * 2304 * Vnode counts are only kept on regular files (v_type=VREG). 2305 */ 2306 int 2307 vn_is_opened( 2308 vnode_t *vp, 2309 v_mode_t mode) 2310 { 2311 2312 ASSERT(vp != NULL); 2313 2314 switch (mode) { 2315 case V_WRITE: 2316 if (vp->v_wrcnt) 2317 return (V_TRUE); 2318 break; 2319 case V_RDANDWR: 2320 if (vp->v_rdcnt && vp->v_wrcnt) 2321 return (V_TRUE); 2322 break; 2323 case V_RDORWR: 2324 if (vp->v_rdcnt || vp->v_wrcnt) 2325 return (V_TRUE); 2326 break; 2327 case V_READ: 2328 if (vp->v_rdcnt) 2329 return (V_TRUE); 2330 break; 2331 } 2332 2333 return (V_FALSE); 2334 } 2335 2336 /* 2337 * vn_is_mapped() checks whether a particular file is mapped and whether 2338 * the file is mapped read and/or write. 2339 */ 2340 int 2341 vn_is_mapped( 2342 vnode_t *vp, 2343 v_mode_t mode) 2344 { 2345 2346 ASSERT(vp != NULL); 2347 2348 #if !defined(_LP64) 2349 switch (mode) { 2350 /* 2351 * The atomic_add_64_nv functions force atomicity in the 2352 * case of 32 bit architectures. Otherwise the 64 bit values 2353 * require two fetches. The value of the fields may be 2354 * (potentially) changed between the first fetch and the 2355 * second 2356 */ 2357 case V_WRITE: 2358 if (atomic_add_64_nv((&(vp->v_mmap_write)), 0)) 2359 return (V_TRUE); 2360 break; 2361 case V_RDANDWR: 2362 if ((atomic_add_64_nv((&(vp->v_mmap_read)), 0)) && 2363 (atomic_add_64_nv((&(vp->v_mmap_write)), 0))) 2364 return (V_TRUE); 2365 break; 2366 case V_RDORWR: 2367 if ((atomic_add_64_nv((&(vp->v_mmap_read)), 0)) || 2368 (atomic_add_64_nv((&(vp->v_mmap_write)), 0))) 2369 return (V_TRUE); 2370 break; 2371 case V_READ: 2372 if (atomic_add_64_nv((&(vp->v_mmap_read)), 0)) 2373 return (V_TRUE); 2374 break; 2375 } 2376 #else 2377 switch (mode) { 2378 case V_WRITE: 2379 if (vp->v_mmap_write) 2380 return (V_TRUE); 2381 break; 2382 case V_RDANDWR: 2383 if (vp->v_mmap_read && vp->v_mmap_write) 2384 return (V_TRUE); 2385 break; 2386 case V_RDORWR: 2387 if (vp->v_mmap_read || vp->v_mmap_write) 2388 return (V_TRUE); 2389 break; 2390 case V_READ: 2391 if (vp->v_mmap_read) 2392 return (V_TRUE); 2393 break; 2394 } 2395 #endif 2396 2397 return (V_FALSE); 2398 } 2399 2400 /* 2401 * Set the operations vector for a vnode. 2402 * 2403 * FEM ensures that the v_femhead pointer is filled in before the 2404 * v_op pointer is changed. This means that if the v_femhead pointer 2405 * is NULL, and the v_op field hasn't changed since before which checked 2406 * the v_femhead pointer; then our update is ok - we are not racing with 2407 * FEM. 2408 */ 2409 void 2410 vn_setops(vnode_t *vp, vnodeops_t *vnodeops) 2411 { 2412 vnodeops_t *op; 2413 2414 ASSERT(vp != NULL); 2415 ASSERT(vnodeops != NULL); 2416 2417 op = vp->v_op; 2418 membar_consumer(); 2419 /* 2420 * If vp->v_femhead == NULL, then we'll call casptr() to do the 2421 * compare-and-swap on vp->v_op. If either fails, then FEM is 2422 * in effect on the vnode and we need to have FEM deal with it. 2423 */ 2424 if (vp->v_femhead != NULL || casptr(&vp->v_op, op, vnodeops) != op) { 2425 fem_setvnops(vp, vnodeops); 2426 } 2427 } 2428 2429 /* 2430 * Retrieve the operations vector for a vnode 2431 * As with vn_setops(above); make sure we aren't racing with FEM. 2432 * FEM sets the v_op to a special, internal, vnodeops that wouldn't 2433 * make sense to the callers of this routine. 2434 */ 2435 vnodeops_t * 2436 vn_getops(vnode_t *vp) 2437 { 2438 vnodeops_t *op; 2439 2440 ASSERT(vp != NULL); 2441 2442 op = vp->v_op; 2443 membar_consumer(); 2444 if (vp->v_femhead == NULL && op == vp->v_op) { 2445 return (op); 2446 } else { 2447 return (fem_getvnops(vp)); 2448 } 2449 } 2450 2451 /* 2452 * Returns non-zero (1) if the vnodeops matches that of the vnode. 2453 * Returns zero (0) if not. 2454 */ 2455 int 2456 vn_matchops(vnode_t *vp, vnodeops_t *vnodeops) 2457 { 2458 return (vn_getops(vp) == vnodeops); 2459 } 2460 2461 /* 2462 * Returns non-zero (1) if the specified operation matches the 2463 * corresponding operation for that the vnode. 2464 * Returns zero (0) if not. 2465 */ 2466 2467 #define MATCHNAME(n1, n2) (((n1)[0] == (n2)[0]) && (strcmp((n1), (n2)) == 0)) 2468 2469 int 2470 vn_matchopval(vnode_t *vp, char *vopname, fs_generic_func_p funcp) 2471 { 2472 const fs_operation_trans_def_t *otdp; 2473 fs_generic_func_p *loc = NULL; 2474 vnodeops_t *vop = vn_getops(vp); 2475 2476 ASSERT(vopname != NULL); 2477 2478 for (otdp = vn_ops_table; otdp->name != NULL; otdp++) { 2479 if (MATCHNAME(otdp->name, vopname)) { 2480 loc = (fs_generic_func_p *)((char *)(vop) 2481 + otdp->offset); 2482 break; 2483 } 2484 } 2485 2486 return ((loc != NULL) && (*loc == funcp)); 2487 } 2488 2489 /* 2490 * fs_new_caller_id() needs to return a unique ID on a given local system. 2491 * The IDs do not need to survive across reboots. These are primarily 2492 * used so that (FEM) monitors can detect particular callers (such as 2493 * the NFS server) to a given vnode/vfs operation. 2494 */ 2495 u_longlong_t 2496 fs_new_caller_id() 2497 { 2498 static uint64_t next_caller_id = 0LL; /* First call returns 1 */ 2499 2500 return ((u_longlong_t)atomic_add_64_nv(&next_caller_id, 1)); 2501 } 2502 2503 /* 2504 * Given a starting vnode and a path, updates the path in the target vnode in 2505 * a safe manner. If the vnode already has path information embedded, then the 2506 * cached path is left untouched. 2507 */ 2508 void 2509 vn_setpath(vnode_t *rootvp, struct vnode *startvp, struct vnode *vp, 2510 const char *path, size_t plen) 2511 { 2512 char *rpath; 2513 vnode_t *base; 2514 size_t rpathlen, rpathalloc; 2515 int doslash = 1; 2516 2517 if (*path == '/') { 2518 base = rootvp; 2519 path++; 2520 plen--; 2521 } else { 2522 base = startvp; 2523 } 2524 2525 /* 2526 * We cannot grab base->v_lock while we hold vp->v_lock because of 2527 * the potential for deadlock. 2528 */ 2529 mutex_enter(&base->v_lock); 2530 if (base->v_path == NULL) { 2531 mutex_exit(&base->v_lock); 2532 return; 2533 } 2534 2535 rpathlen = strlen(base->v_path); 2536 rpathalloc = rpathlen + plen + 1; 2537 /* Avoid adding a slash if there's already one there */ 2538 if (base->v_path[rpathlen-1] == '/') 2539 doslash = 0; 2540 else 2541 rpathalloc++; 2542 2543 /* 2544 * We don't want to call kmem_alloc(KM_SLEEP) with kernel locks held, 2545 * so we must do this dance. If, by chance, something changes the path, 2546 * just give up since there is no real harm. 2547 */ 2548 mutex_exit(&base->v_lock); 2549 2550 rpath = kmem_alloc(rpathalloc, KM_SLEEP); 2551 2552 mutex_enter(&base->v_lock); 2553 if (base->v_path == NULL || strlen(base->v_path) != rpathlen) { 2554 mutex_exit(&base->v_lock); 2555 kmem_free(rpath, rpathalloc); 2556 return; 2557 } 2558 bcopy(base->v_path, rpath, rpathlen); 2559 mutex_exit(&base->v_lock); 2560 2561 if (doslash) 2562 rpath[rpathlen++] = '/'; 2563 bcopy(path, rpath + rpathlen, plen); 2564 rpath[rpathlen + plen] = '\0'; 2565 2566 mutex_enter(&vp->v_lock); 2567 if (vp->v_path != NULL) { 2568 mutex_exit(&vp->v_lock); 2569 kmem_free(rpath, rpathalloc); 2570 } else { 2571 vp->v_path = rpath; 2572 mutex_exit(&vp->v_lock); 2573 } 2574 } 2575 2576 /* 2577 * Sets the path to the vnode to be the given string, regardless of current 2578 * context. The string must be a complete path from rootdir. This is only used 2579 * by fsop_root() for setting the path based on the mountpoint. 2580 */ 2581 void 2582 vn_setpath_str(struct vnode *vp, const char *str, size_t len) 2583 { 2584 char *buf = kmem_alloc(len + 1, KM_SLEEP); 2585 2586 mutex_enter(&vp->v_lock); 2587 if (vp->v_path != NULL) { 2588 mutex_exit(&vp->v_lock); 2589 kmem_free(buf, len + 1); 2590 return; 2591 } 2592 2593 vp->v_path = buf; 2594 bcopy(str, vp->v_path, len); 2595 vp->v_path[len] = '\0'; 2596 2597 mutex_exit(&vp->v_lock); 2598 } 2599 2600 /* 2601 * Similar to vn_setpath_str(), this function sets the path of the destination 2602 * vnode to the be the same as the source vnode. 2603 */ 2604 void 2605 vn_copypath(struct vnode *src, struct vnode *dst) 2606 { 2607 char *buf; 2608 int alloc; 2609 2610 mutex_enter(&src->v_lock); 2611 if (src->v_path == NULL) { 2612 mutex_exit(&src->v_lock); 2613 return; 2614 } 2615 alloc = strlen(src->v_path) + 1; 2616 2617 /* avoid kmem_alloc() with lock held */ 2618 mutex_exit(&src->v_lock); 2619 buf = kmem_alloc(alloc, KM_SLEEP); 2620 mutex_enter(&src->v_lock); 2621 if (src->v_path == NULL || strlen(src->v_path) + 1 != alloc) { 2622 mutex_exit(&src->v_lock); 2623 kmem_free(buf, alloc); 2624 return; 2625 } 2626 bcopy(src->v_path, buf, alloc); 2627 mutex_exit(&src->v_lock); 2628 2629 mutex_enter(&dst->v_lock); 2630 if (dst->v_path != NULL) { 2631 mutex_exit(&dst->v_lock); 2632 kmem_free(buf, alloc); 2633 return; 2634 } 2635 dst->v_path = buf; 2636 mutex_exit(&dst->v_lock); 2637 } 2638 2639 /* 2640 * XXX Private interface for segvn routines that handle vnode 2641 * large page segments. 2642 * 2643 * return 1 if vp's file system VOP_PAGEIO() implementation 2644 * can be safely used instead of VOP_GETPAGE() for handling 2645 * pagefaults against regular non swap files. VOP_PAGEIO() 2646 * interface is considered safe here if its implementation 2647 * is very close to VOP_GETPAGE() implementation. 2648 * e.g. It zero's out the part of the page beyond EOF. Doesn't 2649 * panic if there're file holes but instead returns an error. 2650 * Doesn't assume file won't be changed by user writes, etc. 2651 * 2652 * return 0 otherwise. 2653 * 2654 * For now allow segvn to only use VOP_PAGEIO() with ufs and nfs. 2655 */ 2656 int 2657 vn_vmpss_usepageio(vnode_t *vp) 2658 { 2659 vfs_t *vfsp = vp->v_vfsp; 2660 char *fsname = vfssw[vfsp->vfs_fstype].vsw_name; 2661 char *pageio_ok_fss[] = {"ufs", "nfs", NULL}; 2662 char **fsok = pageio_ok_fss; 2663 2664 if (fsname == NULL) { 2665 return (0); 2666 } 2667 2668 for (; *fsok; fsok++) { 2669 if (strcmp(*fsok, fsname) == 0) { 2670 return (1); 2671 } 2672 } 2673 return (0); 2674 } 2675 2676 /* VOP_XXX() macros call the corresponding fop_xxx() function */ 2677 2678 int 2679 fop_open( 2680 vnode_t **vpp, 2681 int mode, 2682 cred_t *cr) 2683 { 2684 int ret; 2685 vnode_t *vp = *vpp; 2686 2687 VN_HOLD(vp); 2688 /* 2689 * Adding to the vnode counts before calling open 2690 * avoids the need for a mutex. It circumvents a race 2691 * condition where a query made on the vnode counts results in a 2692 * false negative. The inquirer goes away believing the file is 2693 * not open when there is an open on the file already under way. 2694 * 2695 * The counts are meant to prevent NFS from granting a delegation 2696 * when it would be dangerous to do so. 2697 * 2698 * The vnode counts are only kept on regular files 2699 */ 2700 if ((*vpp)->v_type == VREG) { 2701 if (mode & FREAD) 2702 atomic_add_32(&((*vpp)->v_rdcnt), 1); 2703 if (mode & FWRITE) 2704 atomic_add_32(&((*vpp)->v_wrcnt), 1); 2705 } 2706 2707 ret = (*(*(vpp))->v_op->vop_open)(vpp, mode, cr); 2708 2709 if (ret) { 2710 /* 2711 * Use the saved vp just in case the vnode ptr got trashed 2712 * by the error. 2713 */ 2714 VOPSTATS_UPDATE(vp, open); 2715 if ((vp->v_type == VREG) && (mode & FREAD)) 2716 atomic_add_32(&(vp->v_rdcnt), -1); 2717 if ((vp->v_type == VREG) && (mode & FWRITE)) 2718 atomic_add_32(&(vp->v_wrcnt), -1); 2719 } else { 2720 /* 2721 * Some filesystems will return a different vnode, 2722 * but the same path was still used to open it. 2723 * So if we do change the vnode and need to 2724 * copy over the path, do so here, rather than special 2725 * casing each filesystem. Adjust the vnode counts to 2726 * reflect the vnode switch. 2727 */ 2728 VOPSTATS_UPDATE(*vpp, open); 2729 if (*vpp != vp && *vpp != NULL) { 2730 vn_copypath(vp, *vpp); 2731 if (((*vpp)->v_type == VREG) && (mode & FREAD)) 2732 atomic_add_32(&((*vpp)->v_rdcnt), 1); 2733 if ((vp->v_type == VREG) && (mode & FREAD)) 2734 atomic_add_32(&(vp->v_rdcnt), -1); 2735 if (((*vpp)->v_type == VREG) && (mode & FWRITE)) 2736 atomic_add_32(&((*vpp)->v_wrcnt), 1); 2737 if ((vp->v_type == VREG) && (mode & FWRITE)) 2738 atomic_add_32(&(vp->v_wrcnt), -1); 2739 } 2740 } 2741 VN_RELE(vp); 2742 return (ret); 2743 } 2744 2745 int 2746 fop_close( 2747 vnode_t *vp, 2748 int flag, 2749 int count, 2750 offset_t offset, 2751 cred_t *cr) 2752 { 2753 int err; 2754 2755 err = (*(vp)->v_op->vop_close)(vp, flag, count, offset, cr); 2756 VOPSTATS_UPDATE(vp, close); 2757 /* 2758 * Check passed in count to handle possible dups. Vnode counts are only 2759 * kept on regular files 2760 */ 2761 if ((vp->v_type == VREG) && (count == 1)) { 2762 if (flag & FREAD) { 2763 ASSERT(vp->v_rdcnt > 0); 2764 atomic_add_32(&(vp->v_rdcnt), -1); 2765 } 2766 if (flag & FWRITE) { 2767 ASSERT(vp->v_wrcnt > 0); 2768 atomic_add_32(&(vp->v_wrcnt), -1); 2769 } 2770 } 2771 return (err); 2772 } 2773 2774 int 2775 fop_read( 2776 vnode_t *vp, 2777 uio_t *uiop, 2778 int ioflag, 2779 cred_t *cr, 2780 struct caller_context *ct) 2781 { 2782 int err; 2783 ssize_t resid_start = uiop->uio_resid; 2784 2785 err = (*(vp)->v_op->vop_read)(vp, uiop, ioflag, cr, ct); 2786 VOPSTATS_UPDATE_IO(vp, read, 2787 read_bytes, (resid_start - uiop->uio_resid)); 2788 return (err); 2789 } 2790 2791 int 2792 fop_write( 2793 vnode_t *vp, 2794 uio_t *uiop, 2795 int ioflag, 2796 cred_t *cr, 2797 struct caller_context *ct) 2798 { 2799 int err; 2800 ssize_t resid_start = uiop->uio_resid; 2801 2802 err = (*(vp)->v_op->vop_write)(vp, uiop, ioflag, cr, ct); 2803 VOPSTATS_UPDATE_IO(vp, write, 2804 write_bytes, (resid_start - uiop->uio_resid)); 2805 return (err); 2806 } 2807 2808 int 2809 fop_ioctl( 2810 vnode_t *vp, 2811 int cmd, 2812 intptr_t arg, 2813 int flag, 2814 cred_t *cr, 2815 int *rvalp) 2816 { 2817 int err; 2818 2819 err = (*(vp)->v_op->vop_ioctl)(vp, cmd, arg, flag, cr, rvalp); 2820 VOPSTATS_UPDATE(vp, ioctl); 2821 return (err); 2822 } 2823 2824 int 2825 fop_setfl( 2826 vnode_t *vp, 2827 int oflags, 2828 int nflags, 2829 cred_t *cr) 2830 { 2831 int err; 2832 2833 err = (*(vp)->v_op->vop_setfl)(vp, oflags, nflags, cr); 2834 VOPSTATS_UPDATE(vp, setfl); 2835 return (err); 2836 } 2837 2838 int 2839 fop_getattr( 2840 vnode_t *vp, 2841 vattr_t *vap, 2842 int flags, 2843 cred_t *cr) 2844 { 2845 int err; 2846 2847 err = (*(vp)->v_op->vop_getattr)(vp, vap, flags, cr); 2848 VOPSTATS_UPDATE(vp, getattr); 2849 return (err); 2850 } 2851 2852 int 2853 fop_setattr( 2854 vnode_t *vp, 2855 vattr_t *vap, 2856 int flags, 2857 cred_t *cr, 2858 caller_context_t *ct) 2859 { 2860 int err; 2861 2862 err = (*(vp)->v_op->vop_setattr)(vp, vap, flags, cr, ct); 2863 VOPSTATS_UPDATE(vp, setattr); 2864 return (err); 2865 } 2866 2867 int 2868 fop_access( 2869 vnode_t *vp, 2870 int mode, 2871 int flags, 2872 cred_t *cr) 2873 { 2874 int err; 2875 2876 err = (*(vp)->v_op->vop_access)(vp, mode, flags, cr); 2877 VOPSTATS_UPDATE(vp, access); 2878 return (err); 2879 } 2880 2881 int 2882 fop_lookup( 2883 vnode_t *dvp, 2884 char *nm, 2885 vnode_t **vpp, 2886 pathname_t *pnp, 2887 int flags, 2888 vnode_t *rdir, 2889 cred_t *cr) 2890 { 2891 int ret; 2892 2893 ret = (*(dvp)->v_op->vop_lookup)(dvp, nm, vpp, pnp, flags, rdir, cr); 2894 if (ret == 0 && *vpp) { 2895 VOPSTATS_UPDATE(*vpp, lookup); 2896 if ((*vpp)->v_path == NULL) { 2897 vn_setpath(rootdir, dvp, *vpp, nm, strlen(nm)); 2898 } 2899 } 2900 2901 return (ret); 2902 } 2903 2904 int 2905 fop_create( 2906 vnode_t *dvp, 2907 char *name, 2908 vattr_t *vap, 2909 vcexcl_t excl, 2910 int mode, 2911 vnode_t **vpp, 2912 cred_t *cr, 2913 int flag) 2914 { 2915 int ret; 2916 2917 ret = (*(dvp)->v_op->vop_create) 2918 (dvp, name, vap, excl, mode, vpp, cr, flag); 2919 if (ret == 0 && *vpp) { 2920 VOPSTATS_UPDATE(*vpp, create); 2921 if ((*vpp)->v_path == NULL) { 2922 vn_setpath(rootdir, dvp, *vpp, name, strlen(name)); 2923 } 2924 } 2925 2926 return (ret); 2927 } 2928 2929 int 2930 fop_remove( 2931 vnode_t *dvp, 2932 char *nm, 2933 cred_t *cr) 2934 { 2935 int err; 2936 2937 err = (*(dvp)->v_op->vop_remove)(dvp, nm, cr); 2938 VOPSTATS_UPDATE(dvp, remove); 2939 return (err); 2940 } 2941 2942 int 2943 fop_link( 2944 vnode_t *tdvp, 2945 vnode_t *svp, 2946 char *tnm, 2947 cred_t *cr) 2948 { 2949 int err; 2950 2951 err = (*(tdvp)->v_op->vop_link)(tdvp, svp, tnm, cr); 2952 VOPSTATS_UPDATE(tdvp, link); 2953 return (err); 2954 } 2955 2956 int 2957 fop_rename( 2958 vnode_t *sdvp, 2959 char *snm, 2960 vnode_t *tdvp, 2961 char *tnm, 2962 cred_t *cr) 2963 { 2964 int err; 2965 2966 err = (*(sdvp)->v_op->vop_rename)(sdvp, snm, tdvp, tnm, cr); 2967 VOPSTATS_UPDATE(sdvp, rename); 2968 return (err); 2969 } 2970 2971 int 2972 fop_mkdir( 2973 vnode_t *dvp, 2974 char *dirname, 2975 vattr_t *vap, 2976 vnode_t **vpp, 2977 cred_t *cr) 2978 { 2979 int ret; 2980 2981 ret = (*(dvp)->v_op->vop_mkdir)(dvp, dirname, vap, vpp, cr); 2982 if (ret == 0 && *vpp) { 2983 VOPSTATS_UPDATE(*vpp, mkdir); 2984 if ((*vpp)->v_path == NULL) { 2985 vn_setpath(rootdir, dvp, *vpp, dirname, 2986 strlen(dirname)); 2987 } 2988 } 2989 2990 return (ret); 2991 } 2992 2993 int 2994 fop_rmdir( 2995 vnode_t *dvp, 2996 char *nm, 2997 vnode_t *cdir, 2998 cred_t *cr) 2999 { 3000 int err; 3001 3002 err = (*(dvp)->v_op->vop_rmdir)(dvp, nm, cdir, cr); 3003 VOPSTATS_UPDATE(dvp, rmdir); 3004 return (err); 3005 } 3006 3007 int 3008 fop_readdir( 3009 vnode_t *vp, 3010 uio_t *uiop, 3011 cred_t *cr, 3012 int *eofp) 3013 { 3014 int err; 3015 ssize_t resid_start = uiop->uio_resid; 3016 3017 err = (*(vp)->v_op->vop_readdir)(vp, uiop, cr, eofp); 3018 VOPSTATS_UPDATE_IO(vp, readdir, 3019 readdir_bytes, (resid_start - uiop->uio_resid)); 3020 return (err); 3021 } 3022 3023 int 3024 fop_symlink( 3025 vnode_t *dvp, 3026 char *linkname, 3027 vattr_t *vap, 3028 char *target, 3029 cred_t *cr) 3030 { 3031 int err; 3032 3033 err = (*(dvp)->v_op->vop_symlink) (dvp, linkname, vap, target, cr); 3034 VOPSTATS_UPDATE(dvp, symlink); 3035 return (err); 3036 } 3037 3038 int 3039 fop_readlink( 3040 vnode_t *vp, 3041 uio_t *uiop, 3042 cred_t *cr) 3043 { 3044 int err; 3045 3046 err = (*(vp)->v_op->vop_readlink)(vp, uiop, cr); 3047 VOPSTATS_UPDATE(vp, readlink); 3048 return (err); 3049 } 3050 3051 int 3052 fop_fsync( 3053 vnode_t *vp, 3054 int syncflag, 3055 cred_t *cr) 3056 { 3057 int err; 3058 3059 err = (*(vp)->v_op->vop_fsync)(vp, syncflag, cr); 3060 VOPSTATS_UPDATE(vp, fsync); 3061 return (err); 3062 } 3063 3064 void 3065 fop_inactive( 3066 vnode_t *vp, 3067 cred_t *cr) 3068 { 3069 /* Need to update stats before vop call since we may lose the vnode */ 3070 VOPSTATS_UPDATE(vp, inactive); 3071 (*(vp)->v_op->vop_inactive)(vp, cr); 3072 } 3073 3074 int 3075 fop_fid( 3076 vnode_t *vp, 3077 fid_t *fidp) 3078 { 3079 int err; 3080 3081 err = (*(vp)->v_op->vop_fid)(vp, fidp); 3082 VOPSTATS_UPDATE(vp, fid); 3083 return (err); 3084 } 3085 3086 int 3087 fop_rwlock( 3088 vnode_t *vp, 3089 int write_lock, 3090 caller_context_t *ct) 3091 { 3092 int ret; 3093 3094 ret = ((*(vp)->v_op->vop_rwlock)(vp, write_lock, ct)); 3095 VOPSTATS_UPDATE(vp, rwlock); 3096 return (ret); 3097 } 3098 3099 void 3100 fop_rwunlock( 3101 vnode_t *vp, 3102 int write_lock, 3103 caller_context_t *ct) 3104 { 3105 (*(vp)->v_op->vop_rwunlock)(vp, write_lock, ct); 3106 VOPSTATS_UPDATE(vp, rwunlock); 3107 } 3108 3109 int 3110 fop_seek( 3111 vnode_t *vp, 3112 offset_t ooff, 3113 offset_t *noffp) 3114 { 3115 int err; 3116 3117 err = (*(vp)->v_op->vop_seek)(vp, ooff, noffp); 3118 VOPSTATS_UPDATE(vp, seek); 3119 return (err); 3120 } 3121 3122 int 3123 fop_cmp( 3124 vnode_t *vp1, 3125 vnode_t *vp2) 3126 { 3127 int err; 3128 3129 err = (*(vp1)->v_op->vop_cmp)(vp1, vp2); 3130 VOPSTATS_UPDATE(vp1, cmp); 3131 return (err); 3132 } 3133 3134 int 3135 fop_frlock( 3136 vnode_t *vp, 3137 int cmd, 3138 flock64_t *bfp, 3139 int flag, 3140 offset_t offset, 3141 struct flk_callback *flk_cbp, 3142 cred_t *cr) 3143 { 3144 int err; 3145 3146 err = (*(vp)->v_op->vop_frlock) 3147 (vp, cmd, bfp, flag, offset, flk_cbp, cr); 3148 VOPSTATS_UPDATE(vp, frlock); 3149 return (err); 3150 } 3151 3152 int 3153 fop_space( 3154 vnode_t *vp, 3155 int cmd, 3156 flock64_t *bfp, 3157 int flag, 3158 offset_t offset, 3159 cred_t *cr, 3160 caller_context_t *ct) 3161 { 3162 int err; 3163 3164 err = (*(vp)->v_op->vop_space)(vp, cmd, bfp, flag, offset, cr, ct); 3165 VOPSTATS_UPDATE(vp, space); 3166 return (err); 3167 } 3168 3169 int 3170 fop_realvp( 3171 vnode_t *vp, 3172 vnode_t **vpp) 3173 { 3174 int err; 3175 3176 err = (*(vp)->v_op->vop_realvp)(vp, vpp); 3177 VOPSTATS_UPDATE(vp, realvp); 3178 return (err); 3179 } 3180 3181 int 3182 fop_getpage( 3183 vnode_t *vp, 3184 offset_t off, 3185 size_t len, 3186 uint_t *protp, 3187 page_t **plarr, 3188 size_t plsz, 3189 struct seg *seg, 3190 caddr_t addr, 3191 enum seg_rw rw, 3192 cred_t *cr) 3193 { 3194 int err; 3195 3196 err = (*(vp)->v_op->vop_getpage) 3197 (vp, off, len, protp, plarr, plsz, seg, addr, rw, cr); 3198 VOPSTATS_UPDATE(vp, getpage); 3199 return (err); 3200 } 3201 3202 int 3203 fop_putpage( 3204 vnode_t *vp, 3205 offset_t off, 3206 size_t len, 3207 int flags, 3208 cred_t *cr) 3209 { 3210 int err; 3211 3212 err = (*(vp)->v_op->vop_putpage)(vp, off, len, flags, cr); 3213 VOPSTATS_UPDATE(vp, putpage); 3214 return (err); 3215 } 3216 3217 int 3218 fop_map( 3219 vnode_t *vp, 3220 offset_t off, 3221 struct as *as, 3222 caddr_t *addrp, 3223 size_t len, 3224 uchar_t prot, 3225 uchar_t maxprot, 3226 uint_t flags, 3227 cred_t *cr) 3228 { 3229 int err; 3230 3231 err = (*(vp)->v_op->vop_map) 3232 (vp, off, as, addrp, len, prot, maxprot, flags, cr); 3233 VOPSTATS_UPDATE(vp, map); 3234 return (err); 3235 } 3236 3237 int 3238 fop_addmap( 3239 vnode_t *vp, 3240 offset_t off, 3241 struct as *as, 3242 caddr_t addr, 3243 size_t len, 3244 uchar_t prot, 3245 uchar_t maxprot, 3246 uint_t flags, 3247 cred_t *cr) 3248 { 3249 int error; 3250 u_longlong_t delta; 3251 3252 error = (*(vp)->v_op->vop_addmap) 3253 (vp, off, as, addr, len, prot, maxprot, flags, cr); 3254 3255 if ((!error) && (vp->v_type == VREG)) { 3256 delta = (u_longlong_t)btopr(len); 3257 /* 3258 * If file is declared MAP_PRIVATE, it can't be written back 3259 * even if open for write. Handle as read. 3260 */ 3261 if (flags & MAP_PRIVATE) { 3262 atomic_add_64((uint64_t *)(&(vp->v_mmap_read)), 3263 (int64_t)delta); 3264 } else { 3265 /* 3266 * atomic_add_64 forces the fetch of a 64 bit value to 3267 * be atomic on 32 bit machines 3268 */ 3269 if (maxprot & PROT_WRITE) 3270 atomic_add_64((uint64_t *)(&(vp->v_mmap_write)), 3271 (int64_t)delta); 3272 if (maxprot & PROT_READ) 3273 atomic_add_64((uint64_t *)(&(vp->v_mmap_read)), 3274 (int64_t)delta); 3275 if (maxprot & PROT_EXEC) 3276 atomic_add_64((uint64_t *)(&(vp->v_mmap_read)), 3277 (int64_t)delta); 3278 } 3279 } 3280 VOPSTATS_UPDATE(vp, addmap); 3281 return (error); 3282 } 3283 3284 int 3285 fop_delmap( 3286 vnode_t *vp, 3287 offset_t off, 3288 struct as *as, 3289 caddr_t addr, 3290 size_t len, 3291 uint_t prot, 3292 uint_t maxprot, 3293 uint_t flags, 3294 cred_t *cr) 3295 { 3296 int error; 3297 u_longlong_t delta; 3298 error = (*(vp)->v_op->vop_delmap) 3299 (vp, off, as, addr, len, prot, maxprot, flags, cr); 3300 3301 /* 3302 * NFS calls into delmap twice, the first time 3303 * it simply establishes a callback mechanism and returns EAGAIN 3304 * while the real work is being done upon the second invocation. 3305 * We have to detect this here and only decrement the counts upon 3306 * the second delmap request. 3307 */ 3308 if ((error != EAGAIN) && (vp->v_type == VREG)) { 3309 3310 delta = (u_longlong_t)btopr(len); 3311 3312 if (flags & MAP_PRIVATE) { 3313 atomic_add_64((uint64_t *)(&(vp->v_mmap_read)), 3314 (int64_t)(-delta)); 3315 } else { 3316 /* 3317 * atomic_add_64 forces the fetch of a 64 bit value 3318 * to be atomic on 32 bit machines 3319 */ 3320 if (maxprot & PROT_WRITE) 3321 atomic_add_64((uint64_t *)(&(vp->v_mmap_write)), 3322 (int64_t)(-delta)); 3323 if (maxprot & PROT_READ) 3324 atomic_add_64((uint64_t *)(&(vp->v_mmap_read)), 3325 (int64_t)(-delta)); 3326 if (maxprot & PROT_EXEC) 3327 atomic_add_64((uint64_t *)(&(vp->v_mmap_read)), 3328 (int64_t)(-delta)); 3329 } 3330 } 3331 VOPSTATS_UPDATE(vp, delmap); 3332 return (error); 3333 } 3334 3335 3336 int 3337 fop_poll( 3338 vnode_t *vp, 3339 short events, 3340 int anyyet, 3341 short *reventsp, 3342 struct pollhead **phpp) 3343 { 3344 int err; 3345 3346 err = (*(vp)->v_op->vop_poll)(vp, events, anyyet, reventsp, phpp); 3347 VOPSTATS_UPDATE(vp, poll); 3348 return (err); 3349 } 3350 3351 int 3352 fop_dump( 3353 vnode_t *vp, 3354 caddr_t addr, 3355 int lbdn, 3356 int dblks) 3357 { 3358 int err; 3359 3360 err = (*(vp)->v_op->vop_dump)(vp, addr, lbdn, dblks); 3361 VOPSTATS_UPDATE(vp, dump); 3362 return (err); 3363 } 3364 3365 int 3366 fop_pathconf( 3367 vnode_t *vp, 3368 int cmd, 3369 ulong_t *valp, 3370 cred_t *cr) 3371 { 3372 int err; 3373 3374 err = (*(vp)->v_op->vop_pathconf)(vp, cmd, valp, cr); 3375 VOPSTATS_UPDATE(vp, pathconf); 3376 return (err); 3377 } 3378 3379 int 3380 fop_pageio( 3381 vnode_t *vp, 3382 struct page *pp, 3383 u_offset_t io_off, 3384 size_t io_len, 3385 int flags, 3386 cred_t *cr) 3387 { 3388 int err; 3389 3390 err = (*(vp)->v_op->vop_pageio)(vp, pp, io_off, io_len, flags, cr); 3391 VOPSTATS_UPDATE(vp, pageio); 3392 return (err); 3393 } 3394 3395 int 3396 fop_dumpctl( 3397 vnode_t *vp, 3398 int action, 3399 int *blkp) 3400 { 3401 int err; 3402 err = (*(vp)->v_op->vop_dumpctl)(vp, action, blkp); 3403 VOPSTATS_UPDATE(vp, dumpctl); 3404 return (err); 3405 } 3406 3407 void 3408 fop_dispose( 3409 vnode_t *vp, 3410 page_t *pp, 3411 int flag, 3412 int dn, 3413 cred_t *cr) 3414 { 3415 /* Must do stats first since it's possible to lose the vnode */ 3416 VOPSTATS_UPDATE(vp, dispose); 3417 (*(vp)->v_op->vop_dispose)(vp, pp, flag, dn, cr); 3418 } 3419 3420 int 3421 fop_setsecattr( 3422 vnode_t *vp, 3423 vsecattr_t *vsap, 3424 int flag, 3425 cred_t *cr) 3426 { 3427 int err; 3428 3429 err = (*(vp)->v_op->vop_setsecattr) (vp, vsap, flag, cr); 3430 VOPSTATS_UPDATE(vp, setsecattr); 3431 return (err); 3432 } 3433 3434 int 3435 fop_getsecattr( 3436 vnode_t *vp, 3437 vsecattr_t *vsap, 3438 int flag, 3439 cred_t *cr) 3440 { 3441 int err; 3442 3443 err = (*(vp)->v_op->vop_getsecattr) (vp, vsap, flag, cr); 3444 VOPSTATS_UPDATE(vp, getsecattr); 3445 return (err); 3446 } 3447 3448 int 3449 fop_shrlock( 3450 vnode_t *vp, 3451 int cmd, 3452 struct shrlock *shr, 3453 int flag, 3454 cred_t *cr) 3455 { 3456 int err; 3457 3458 err = (*(vp)->v_op->vop_shrlock)(vp, cmd, shr, flag, cr); 3459 VOPSTATS_UPDATE(vp, shrlock); 3460 return (err); 3461 } 3462 3463 int 3464 fop_vnevent(vnode_t *vp, vnevent_t vnevent) 3465 { 3466 int err; 3467 3468 err = (*(vp)->v_op->vop_vnevent)(vp, vnevent); 3469 VOPSTATS_UPDATE(vp, vnevent); 3470 return (err); 3471 } 3472