1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */ 27 /* All Rights Reserved */ 28 29 /* 30 * University Copyright- Copyright (c) 1982, 1986, 1988 31 * The Regents of the University of California 32 * All Rights Reserved 33 * 34 * University Acknowledgment- Portions of this document are derived from 35 * software developed by the University of California, Berkeley, and its 36 * contributors. 37 */ 38 39 40 #pragma ident "%Z%%M% %I% %E% SMI" 41 42 #include <sys/types.h> 43 #include <sys/param.h> 44 #include <sys/t_lock.h> 45 #include <sys/errno.h> 46 #include <sys/cred.h> 47 #include <sys/user.h> 48 #include <sys/uio.h> 49 #include <sys/file.h> 50 #include <sys/pathname.h> 51 #include <sys/vfs.h> 52 #include <sys/vnode.h> 53 #include <sys/rwstlock.h> 54 #include <sys/fem.h> 55 #include <sys/stat.h> 56 #include <sys/mode.h> 57 #include <sys/conf.h> 58 #include <sys/sysmacros.h> 59 #include <sys/cmn_err.h> 60 #include <sys/systm.h> 61 #include <sys/kmem.h> 62 #include <sys/debug.h> 63 #include <c2/audit.h> 64 #include <sys/acl.h> 65 #include <sys/nbmlock.h> 66 #include <sys/fcntl.h> 67 #include <fs/fs_subr.h> 68 69 /* Determine if this vnode is a file that is read-only */ 70 #define ISROFILE(vp) \ 71 ((vp)->v_type != VCHR && (vp)->v_type != VBLK && \ 72 (vp)->v_type != VFIFO && vn_is_readonly(vp)) 73 74 /* Tunable via /etc/system; used only by admin/install */ 75 int nfs_global_client_only; 76 77 /* 78 * Array of vopstats_t for per-FS-type vopstats. This array has the same 79 * number of entries as and parallel to the vfssw table. (Arguably, it could 80 * be part of the vfssw table.) Once it's initialized, it's accessed using 81 * the same fstype index that is used to index into the vfssw table. 82 */ 83 vopstats_t **vopstats_fstype; 84 85 /* vopstats initialization template used for fast initialization via bcopy() */ 86 static vopstats_t *vs_templatep; 87 88 /* Kmem cache handle for vsk_anchor_t allocations */ 89 kmem_cache_t *vsk_anchor_cache; 90 91 /* 92 * Root of AVL tree for the kstats associated with vopstats. Lock protects 93 * updates to vsktat_tree. 94 */ 95 avl_tree_t vskstat_tree; 96 kmutex_t vskstat_tree_lock; 97 98 /* Global variable which enables/disables the vopstats collection */ 99 int vopstats_enabled = 1; 100 101 /* 102 * The following is the common set of actions needed to update the 103 * vopstats structure from a vnode op. Both VOPSTATS_UPDATE() and 104 * VOPSTATS_UPDATE_IO() do almost the same thing, except for the 105 * recording of the bytes transferred. Since the code is similar 106 * but small, it is nearly a duplicate. Consequently any changes 107 * to one may need to be reflected in the other. 108 * Rundown of the variables: 109 * vp - Pointer to the vnode 110 * counter - Partial name structure member to update in vopstats for counts 111 * bytecounter - Partial name structure member to update in vopstats for bytes 112 * bytesval - Value to update in vopstats for bytes 113 * fstype - Index into vsanchor_fstype[], same as index into vfssw[] 114 * vsp - Pointer to vopstats structure (either in vfs or vsanchor_fstype[i]) 115 */ 116 117 #define VOPSTATS_UPDATE(vp, counter) { \ 118 vfs_t *vfsp = (vp)->v_vfsp; \ 119 if (vfsp && (vfsp->vfs_flag & VFS_STATS) && (vp)->v_type != VBAD) { \ 120 vopstats_t *vsp = &vfsp->vfs_vopstats; \ 121 uint64_t *stataddr = &(vsp->n##counter.value.ui64); \ 122 extern void __dtrace_probe___fsinfo_##counter(vnode_t *, \ 123 size_t, uint64_t *); \ 124 __dtrace_probe___fsinfo_##counter(vp, 0, stataddr); \ 125 (*stataddr)++; \ 126 if ((vsp = vfsp->vfs_fstypevsp) != NULL) { \ 127 vsp->n##counter.value.ui64++; \ 128 } \ 129 } \ 130 } 131 132 #define VOPSTATS_UPDATE_IO(vp, counter, bytecounter, bytesval) { \ 133 vfs_t *vfsp = (vp)->v_vfsp; \ 134 if (vfsp && (vfsp->vfs_flag & VFS_STATS) && (vp)->v_type != VBAD) { \ 135 vopstats_t *vsp = &vfsp->vfs_vopstats; \ 136 uint64_t *stataddr = &(vsp->n##counter.value.ui64); \ 137 extern void __dtrace_probe___fsinfo_##counter(vnode_t *, \ 138 size_t, uint64_t *); \ 139 __dtrace_probe___fsinfo_##counter(vp, bytesval, stataddr); \ 140 (*stataddr)++; \ 141 vsp->bytecounter.value.ui64 += bytesval; \ 142 if ((vsp = vfsp->vfs_fstypevsp) != NULL) { \ 143 vsp->n##counter.value.ui64++; \ 144 vsp->bytecounter.value.ui64 += bytesval; \ 145 } \ 146 } \ 147 } 148 149 /* 150 * Convert stat(2) formats to vnode types and vice versa. (Knows about 151 * numerical order of S_IFMT and vnode types.) 152 */ 153 enum vtype iftovt_tab[] = { 154 VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON, 155 VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VNON 156 }; 157 158 ushort_t vttoif_tab[] = { 159 0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK, S_IFIFO, 160 S_IFDOOR, 0, S_IFSOCK, S_IFPORT, 0 161 }; 162 163 /* 164 * The system vnode cache. 165 */ 166 167 kmem_cache_t *vn_cache; 168 169 170 /* 171 * Vnode operations vector. 172 */ 173 174 static const fs_operation_trans_def_t vn_ops_table[] = { 175 VOPNAME_OPEN, offsetof(struct vnodeops, vop_open), 176 fs_nosys, fs_nosys, 177 178 VOPNAME_CLOSE, offsetof(struct vnodeops, vop_close), 179 fs_nosys, fs_nosys, 180 181 VOPNAME_READ, offsetof(struct vnodeops, vop_read), 182 fs_nosys, fs_nosys, 183 184 VOPNAME_WRITE, offsetof(struct vnodeops, vop_write), 185 fs_nosys, fs_nosys, 186 187 VOPNAME_IOCTL, offsetof(struct vnodeops, vop_ioctl), 188 fs_nosys, fs_nosys, 189 190 VOPNAME_SETFL, offsetof(struct vnodeops, vop_setfl), 191 fs_setfl, fs_nosys, 192 193 VOPNAME_GETATTR, offsetof(struct vnodeops, vop_getattr), 194 fs_nosys, fs_nosys, 195 196 VOPNAME_SETATTR, offsetof(struct vnodeops, vop_setattr), 197 fs_nosys, fs_nosys, 198 199 VOPNAME_ACCESS, offsetof(struct vnodeops, vop_access), 200 fs_nosys, fs_nosys, 201 202 VOPNAME_LOOKUP, offsetof(struct vnodeops, vop_lookup), 203 fs_nosys, fs_nosys, 204 205 VOPNAME_CREATE, offsetof(struct vnodeops, vop_create), 206 fs_nosys, fs_nosys, 207 208 VOPNAME_REMOVE, offsetof(struct vnodeops, vop_remove), 209 fs_nosys, fs_nosys, 210 211 VOPNAME_LINK, offsetof(struct vnodeops, vop_link), 212 fs_nosys, fs_nosys, 213 214 VOPNAME_RENAME, offsetof(struct vnodeops, vop_rename), 215 fs_nosys, fs_nosys, 216 217 VOPNAME_MKDIR, offsetof(struct vnodeops, vop_mkdir), 218 fs_nosys, fs_nosys, 219 220 VOPNAME_RMDIR, offsetof(struct vnodeops, vop_rmdir), 221 fs_nosys, fs_nosys, 222 223 VOPNAME_READDIR, offsetof(struct vnodeops, vop_readdir), 224 fs_nosys, fs_nosys, 225 226 VOPNAME_SYMLINK, offsetof(struct vnodeops, vop_symlink), 227 fs_nosys, fs_nosys, 228 229 VOPNAME_READLINK, offsetof(struct vnodeops, vop_readlink), 230 fs_nosys, fs_nosys, 231 232 VOPNAME_FSYNC, offsetof(struct vnodeops, vop_fsync), 233 fs_nosys, fs_nosys, 234 235 VOPNAME_INACTIVE, offsetof(struct vnodeops, vop_inactive), 236 fs_nosys, fs_nosys, 237 238 VOPNAME_FID, offsetof(struct vnodeops, vop_fid), 239 fs_nosys, fs_nosys, 240 241 VOPNAME_RWLOCK, offsetof(struct vnodeops, vop_rwlock), 242 fs_rwlock, fs_rwlock, 243 244 VOPNAME_RWUNLOCK, offsetof(struct vnodeops, vop_rwunlock), 245 (fs_generic_func_p) fs_rwunlock, 246 (fs_generic_func_p) fs_rwunlock, /* no errors allowed */ 247 248 VOPNAME_SEEK, offsetof(struct vnodeops, vop_seek), 249 fs_nosys, fs_nosys, 250 251 VOPNAME_CMP, offsetof(struct vnodeops, vop_cmp), 252 fs_cmp, fs_cmp, /* no errors allowed */ 253 254 VOPNAME_FRLOCK, offsetof(struct vnodeops, vop_frlock), 255 fs_frlock, fs_nosys, 256 257 VOPNAME_SPACE, offsetof(struct vnodeops, vop_space), 258 fs_nosys, fs_nosys, 259 260 VOPNAME_REALVP, offsetof(struct vnodeops, vop_realvp), 261 fs_nosys, fs_nosys, 262 263 VOPNAME_GETPAGE, offsetof(struct vnodeops, vop_getpage), 264 fs_nosys, fs_nosys, 265 266 VOPNAME_PUTPAGE, offsetof(struct vnodeops, vop_putpage), 267 fs_nosys, fs_nosys, 268 269 VOPNAME_MAP, offsetof(struct vnodeops, vop_map), 270 (fs_generic_func_p) fs_nosys_map, 271 (fs_generic_func_p) fs_nosys_map, 272 273 VOPNAME_ADDMAP, offsetof(struct vnodeops, vop_addmap), 274 (fs_generic_func_p) fs_nosys_addmap, 275 (fs_generic_func_p) fs_nosys_addmap, 276 277 VOPNAME_DELMAP, offsetof(struct vnodeops, vop_delmap), 278 fs_nosys, fs_nosys, 279 280 VOPNAME_POLL, offsetof(struct vnodeops, vop_poll), 281 (fs_generic_func_p) fs_poll, (fs_generic_func_p) fs_nosys_poll, 282 283 VOPNAME_DUMP, offsetof(struct vnodeops, vop_dump), 284 fs_nosys, fs_nosys, 285 286 VOPNAME_PATHCONF, offsetof(struct vnodeops, vop_pathconf), 287 fs_pathconf, fs_nosys, 288 289 VOPNAME_PAGEIO, offsetof(struct vnodeops, vop_pageio), 290 fs_nosys, fs_nosys, 291 292 VOPNAME_DUMPCTL, offsetof(struct vnodeops, vop_dumpctl), 293 fs_nosys, fs_nosys, 294 295 VOPNAME_DISPOSE, offsetof(struct vnodeops, vop_dispose), 296 (fs_generic_func_p) fs_dispose, 297 (fs_generic_func_p) fs_nodispose, 298 299 VOPNAME_SETSECATTR, offsetof(struct vnodeops, vop_setsecattr), 300 fs_nosys, fs_nosys, 301 302 VOPNAME_GETSECATTR, offsetof(struct vnodeops, vop_getsecattr), 303 fs_fab_acl, fs_nosys, 304 305 VOPNAME_SHRLOCK, offsetof(struct vnodeops, vop_shrlock), 306 fs_shrlock, fs_nosys, 307 308 VOPNAME_VNEVENT, offsetof(struct vnodeops, vop_vnevent), 309 (fs_generic_func_p) fs_vnevent_nosupport, 310 (fs_generic_func_p) fs_vnevent_nosupport, 311 312 NULL, 0, NULL, NULL 313 }; 314 315 /* 316 * Used by the AVL routines to compare two vsk_anchor_t structures in the tree. 317 * We use the f_fsid reported by VFS_STATVFS() since we use that for the 318 * kstat name. 319 */ 320 static int 321 vska_compar(const void *n1, const void *n2) 322 { 323 int ret; 324 ulong_t p1 = ((vsk_anchor_t *)n1)->vsk_fsid; 325 ulong_t p2 = ((vsk_anchor_t *)n2)->vsk_fsid; 326 327 if (p1 < p2) { 328 ret = -1; 329 } else if (p1 > p2) { 330 ret = 1; 331 } else { 332 ret = 0; 333 } 334 335 return (ret); 336 } 337 338 /* 339 * Used to create a single template which will be bcopy()ed to a newly 340 * allocated vsanchor_combo_t structure in new_vsanchor(), below. 341 */ 342 static vopstats_t * 343 create_vopstats_template() 344 { 345 vopstats_t *vsp; 346 347 vsp = kmem_alloc(sizeof (vopstats_t), KM_SLEEP); 348 bzero(vsp, sizeof (*vsp)); /* Start fresh */ 349 350 /* VOP_OPEN */ 351 kstat_named_init(&vsp->nopen, "nopen", KSTAT_DATA_UINT64); 352 /* VOP_CLOSE */ 353 kstat_named_init(&vsp->nclose, "nclose", KSTAT_DATA_UINT64); 354 /* VOP_READ I/O */ 355 kstat_named_init(&vsp->nread, "nread", KSTAT_DATA_UINT64); 356 kstat_named_init(&vsp->read_bytes, "read_bytes", KSTAT_DATA_UINT64); 357 /* VOP_WRITE I/O */ 358 kstat_named_init(&vsp->nwrite, "nwrite", KSTAT_DATA_UINT64); 359 kstat_named_init(&vsp->write_bytes, "write_bytes", KSTAT_DATA_UINT64); 360 /* VOP_IOCTL */ 361 kstat_named_init(&vsp->nioctl, "nioctl", KSTAT_DATA_UINT64); 362 /* VOP_SETFL */ 363 kstat_named_init(&vsp->nsetfl, "nsetfl", KSTAT_DATA_UINT64); 364 /* VOP_GETATTR */ 365 kstat_named_init(&vsp->ngetattr, "ngetattr", KSTAT_DATA_UINT64); 366 /* VOP_SETATTR */ 367 kstat_named_init(&vsp->nsetattr, "nsetattr", KSTAT_DATA_UINT64); 368 /* VOP_ACCESS */ 369 kstat_named_init(&vsp->naccess, "naccess", KSTAT_DATA_UINT64); 370 /* VOP_LOOKUP */ 371 kstat_named_init(&vsp->nlookup, "nlookup", KSTAT_DATA_UINT64); 372 /* VOP_CREATE */ 373 kstat_named_init(&vsp->ncreate, "ncreate", KSTAT_DATA_UINT64); 374 /* VOP_REMOVE */ 375 kstat_named_init(&vsp->nremove, "nremove", KSTAT_DATA_UINT64); 376 /* VOP_LINK */ 377 kstat_named_init(&vsp->nlink, "nlink", KSTAT_DATA_UINT64); 378 /* VOP_RENAME */ 379 kstat_named_init(&vsp->nrename, "nrename", KSTAT_DATA_UINT64); 380 /* VOP_MKDIR */ 381 kstat_named_init(&vsp->nmkdir, "nmkdir", KSTAT_DATA_UINT64); 382 /* VOP_RMDIR */ 383 kstat_named_init(&vsp->nrmdir, "nrmdir", KSTAT_DATA_UINT64); 384 /* VOP_READDIR I/O */ 385 kstat_named_init(&vsp->nreaddir, "nreaddir", KSTAT_DATA_UINT64); 386 kstat_named_init(&vsp->readdir_bytes, "readdir_bytes", 387 KSTAT_DATA_UINT64); 388 /* VOP_SYMLINK */ 389 kstat_named_init(&vsp->nsymlink, "nsymlink", KSTAT_DATA_UINT64); 390 /* VOP_READLINK */ 391 kstat_named_init(&vsp->nreadlink, "nreadlink", KSTAT_DATA_UINT64); 392 /* VOP_FSYNC */ 393 kstat_named_init(&vsp->nfsync, "nfsync", KSTAT_DATA_UINT64); 394 /* VOP_INACTIVE */ 395 kstat_named_init(&vsp->ninactive, "ninactive", KSTAT_DATA_UINT64); 396 /* VOP_FID */ 397 kstat_named_init(&vsp->nfid, "nfid", KSTAT_DATA_UINT64); 398 /* VOP_RWLOCK */ 399 kstat_named_init(&vsp->nrwlock, "nrwlock", KSTAT_DATA_UINT64); 400 /* VOP_RWUNLOCK */ 401 kstat_named_init(&vsp->nrwunlock, "nrwunlock", KSTAT_DATA_UINT64); 402 /* VOP_SEEK */ 403 kstat_named_init(&vsp->nseek, "nseek", KSTAT_DATA_UINT64); 404 /* VOP_CMP */ 405 kstat_named_init(&vsp->ncmp, "ncmp", KSTAT_DATA_UINT64); 406 /* VOP_FRLOCK */ 407 kstat_named_init(&vsp->nfrlock, "nfrlock", KSTAT_DATA_UINT64); 408 /* VOP_SPACE */ 409 kstat_named_init(&vsp->nspace, "nspace", KSTAT_DATA_UINT64); 410 /* VOP_REALVP */ 411 kstat_named_init(&vsp->nrealvp, "nrealvp", KSTAT_DATA_UINT64); 412 /* VOP_GETPAGE */ 413 kstat_named_init(&vsp->ngetpage, "ngetpage", KSTAT_DATA_UINT64); 414 /* VOP_PUTPAGE */ 415 kstat_named_init(&vsp->nputpage, "nputpage", KSTAT_DATA_UINT64); 416 /* VOP_MAP */ 417 kstat_named_init(&vsp->nmap, "nmap", KSTAT_DATA_UINT64); 418 /* VOP_ADDMAP */ 419 kstat_named_init(&vsp->naddmap, "naddmap", KSTAT_DATA_UINT64); 420 /* VOP_DELMAP */ 421 kstat_named_init(&vsp->ndelmap, "ndelmap", KSTAT_DATA_UINT64); 422 /* VOP_POLL */ 423 kstat_named_init(&vsp->npoll, "npoll", KSTAT_DATA_UINT64); 424 /* VOP_DUMP */ 425 kstat_named_init(&vsp->ndump, "ndump", KSTAT_DATA_UINT64); 426 /* VOP_PATHCONF */ 427 kstat_named_init(&vsp->npathconf, "npathconf", KSTAT_DATA_UINT64); 428 /* VOP_PAGEIO */ 429 kstat_named_init(&vsp->npageio, "npageio", KSTAT_DATA_UINT64); 430 /* VOP_DUMPCTL */ 431 kstat_named_init(&vsp->ndumpctl, "ndumpctl", KSTAT_DATA_UINT64); 432 /* VOP_DISPOSE */ 433 kstat_named_init(&vsp->ndispose, "ndispose", KSTAT_DATA_UINT64); 434 /* VOP_SETSECATTR */ 435 kstat_named_init(&vsp->nsetsecattr, "nsetsecattr", KSTAT_DATA_UINT64); 436 /* VOP_GETSECATTR */ 437 kstat_named_init(&vsp->ngetsecattr, "ngetsecattr", KSTAT_DATA_UINT64); 438 /* VOP_SHRLOCK */ 439 kstat_named_init(&vsp->nshrlock, "nshrlock", KSTAT_DATA_UINT64); 440 /* VOP_VNEVENT */ 441 kstat_named_init(&vsp->nvnevent, "nvnevent", KSTAT_DATA_UINT64); 442 443 return (vsp); 444 } 445 446 /* 447 * Creates a kstat structure associated with a vopstats structure. 448 */ 449 kstat_t * 450 new_vskstat(char *ksname, vopstats_t *vsp) 451 { 452 kstat_t *ksp; 453 454 if (!vopstats_enabled) { 455 return (NULL); 456 } 457 458 ksp = kstat_create("unix", 0, ksname, "misc", KSTAT_TYPE_NAMED, 459 sizeof (vopstats_t)/sizeof (kstat_named_t), 460 KSTAT_FLAG_VIRTUAL|KSTAT_FLAG_WRITABLE); 461 if (ksp) { 462 ksp->ks_data = vsp; 463 kstat_install(ksp); 464 } 465 466 return (ksp); 467 } 468 469 /* 470 * Called from vfsinit() to initialize the support mechanisms for vopstats 471 */ 472 void 473 vopstats_startup() 474 { 475 if (!vopstats_enabled) 476 return; 477 478 /* 479 * Creates the AVL tree which holds per-vfs vopstat anchors. This 480 * is necessary since we need to check if a kstat exists before we 481 * attempt to create it. Also, initialize its lock. 482 */ 483 avl_create(&vskstat_tree, vska_compar, sizeof (vsk_anchor_t), 484 offsetof(vsk_anchor_t, vsk_node)); 485 mutex_init(&vskstat_tree_lock, NULL, MUTEX_DEFAULT, NULL); 486 487 vsk_anchor_cache = kmem_cache_create("vsk_anchor_cache", 488 sizeof (vsk_anchor_t), sizeof (uintptr_t), NULL, NULL, NULL, 489 NULL, NULL, 0); 490 491 /* 492 * Set up the array of pointers for the vopstats-by-FS-type. 493 * The entries will be allocated/initialized as each file system 494 * goes through modload/mod_installfs. 495 */ 496 vopstats_fstype = (vopstats_t **)kmem_zalloc( 497 (sizeof (vopstats_t *) * nfstype), KM_SLEEP); 498 499 /* Set up the global vopstats initialization template */ 500 vs_templatep = create_vopstats_template(); 501 } 502 503 /* 504 * We need to have the all of the counters zeroed. 505 * The initialization of the vopstats_t includes on the order of 506 * 50 calls to kstat_named_init(). Rather that do that on every call, 507 * we do it once in a template (vs_templatep) then bcopy it over. 508 */ 509 void 510 initialize_vopstats(vopstats_t *vsp) 511 { 512 if (vsp == NULL) 513 return; 514 515 bcopy(vs_templatep, vsp, sizeof (vopstats_t)); 516 } 517 518 /* 519 * If possible, determine which vopstats by fstype to use and 520 * return a pointer to the caller. 521 */ 522 vopstats_t * 523 get_fstype_vopstats(vfs_t *vfsp, struct vfssw *vswp) 524 { 525 int fstype = 0; /* Index into vfssw[] */ 526 vopstats_t *vsp = NULL; 527 528 if (vfsp == NULL || (vfsp->vfs_flag & VFS_STATS) == 0 || 529 !vopstats_enabled) 530 return (NULL); 531 /* 532 * Set up the fstype. We go to so much trouble because all versions 533 * of NFS use the same fstype in their vfs even though they have 534 * distinct entries in the vfssw[] table. 535 * NOTE: A special vfs (e.g., EIO_vfs) may not have an entry. 536 */ 537 if (vswp) { 538 fstype = vswp - vfssw; /* Gets us the index */ 539 } else { 540 fstype = vfsp->vfs_fstype; 541 } 542 543 /* 544 * Point to the per-fstype vopstats. The only valid values are 545 * non-zero positive values less than the number of vfssw[] table 546 * entries. 547 */ 548 if (fstype > 0 && fstype < nfstype) { 549 vsp = vopstats_fstype[fstype]; 550 } 551 552 return (vsp); 553 } 554 555 /* 556 * Generate a kstat name, create the kstat structure, and allocate a 557 * vsk_anchor_t to hold it together. Return the pointer to the vsk_anchor_t 558 * to the caller. This must only be called from a mount. 559 */ 560 vsk_anchor_t * 561 get_vskstat_anchor(vfs_t *vfsp) 562 { 563 char kstatstr[KSTAT_STRLEN]; /* kstat name for vopstats */ 564 statvfs64_t statvfsbuf; /* Needed to find f_fsid */ 565 vsk_anchor_t *vskp = NULL; /* vfs <--> kstat anchor */ 566 kstat_t *ksp; /* Ptr to new kstat */ 567 avl_index_t where; /* Location in the AVL tree */ 568 569 if (vfsp == NULL || (vfsp->vfs_flag & VFS_STATS) == 0 || 570 !vopstats_enabled) 571 return (NULL); 572 573 /* Need to get the fsid to build a kstat name */ 574 if (VFS_STATVFS(vfsp, &statvfsbuf) == 0) { 575 /* Create a name for our kstats based on fsid */ 576 (void) snprintf(kstatstr, KSTAT_STRLEN, "%s%lx", 577 VOPSTATS_STR, statvfsbuf.f_fsid); 578 579 /* Allocate and initialize the vsk_anchor_t */ 580 vskp = kmem_cache_alloc(vsk_anchor_cache, KM_SLEEP); 581 bzero(vskp, sizeof (*vskp)); 582 vskp->vsk_fsid = statvfsbuf.f_fsid; 583 584 mutex_enter(&vskstat_tree_lock); 585 if (avl_find(&vskstat_tree, vskp, &where) == NULL) { 586 avl_insert(&vskstat_tree, vskp, where); 587 mutex_exit(&vskstat_tree_lock); 588 589 /* 590 * Now that we've got the anchor in the AVL 591 * tree, we can create the kstat. 592 */ 593 ksp = new_vskstat(kstatstr, &vfsp->vfs_vopstats); 594 if (ksp) { 595 vskp->vsk_ksp = ksp; 596 } 597 } else { 598 /* Oops, found one! Release memory and lock. */ 599 mutex_exit(&vskstat_tree_lock); 600 kmem_cache_free(vsk_anchor_cache, vskp); 601 vskp = NULL; 602 } 603 } 604 return (vskp); 605 } 606 607 /* 608 * We're in the process of tearing down the vfs and need to cleanup 609 * the data structures associated with the vopstats. Must only be called 610 * from dounmount(). 611 */ 612 void 613 teardown_vopstats(vfs_t *vfsp) 614 { 615 vsk_anchor_t *vskap; 616 avl_index_t where; 617 618 if (vfsp == NULL || (vfsp->vfs_flag & VFS_STATS) == 0 || 619 !vopstats_enabled) 620 return; 621 622 /* This is a safe check since VFS_STATS must be set (see above) */ 623 if ((vskap = vfsp->vfs_vskap) == NULL) 624 return; 625 626 /* Whack the pointer right away */ 627 vfsp->vfs_vskap = NULL; 628 629 /* Lock the tree, remove the node, and delete the kstat */ 630 mutex_enter(&vskstat_tree_lock); 631 if (avl_find(&vskstat_tree, vskap, &where)) { 632 avl_remove(&vskstat_tree, vskap); 633 } 634 635 if (vskap->vsk_ksp) { 636 kstat_delete(vskap->vsk_ksp); 637 } 638 mutex_exit(&vskstat_tree_lock); 639 640 kmem_cache_free(vsk_anchor_cache, vskap); 641 } 642 643 /* 644 * Read or write a vnode. Called from kernel code. 645 */ 646 int 647 vn_rdwr( 648 enum uio_rw rw, 649 struct vnode *vp, 650 caddr_t base, 651 ssize_t len, 652 offset_t offset, 653 enum uio_seg seg, 654 int ioflag, 655 rlim64_t ulimit, /* meaningful only if rw is UIO_WRITE */ 656 cred_t *cr, 657 ssize_t *residp) 658 { 659 struct uio uio; 660 struct iovec iov; 661 int error; 662 int in_crit = 0; 663 664 if (rw == UIO_WRITE && ISROFILE(vp)) 665 return (EROFS); 666 667 if (len < 0) 668 return (EIO); 669 670 iov.iov_base = base; 671 iov.iov_len = len; 672 uio.uio_iov = &iov; 673 uio.uio_iovcnt = 1; 674 uio.uio_loffset = offset; 675 uio.uio_segflg = (short)seg; 676 uio.uio_resid = len; 677 uio.uio_llimit = ulimit; 678 679 /* 680 * We have to enter the critical region before calling VOP_RWLOCK 681 * to avoid a deadlock with ufs. 682 */ 683 if (nbl_need_check(vp)) { 684 int svmand; 685 686 nbl_start_crit(vp, RW_READER); 687 in_crit = 1; 688 error = nbl_svmand(vp, cr, &svmand); 689 if (error != 0) 690 goto done; 691 if (nbl_conflict(vp, rw == UIO_WRITE ? NBL_WRITE : NBL_READ, 692 uio.uio_offset, uio.uio_resid, svmand)) { 693 error = EACCES; 694 goto done; 695 } 696 } 697 698 (void) VOP_RWLOCK(vp, 699 rw == UIO_WRITE ? V_WRITELOCK_TRUE : V_WRITELOCK_FALSE, NULL); 700 if (rw == UIO_WRITE) { 701 uio.uio_fmode = FWRITE; 702 uio.uio_extflg = UIO_COPY_DEFAULT; 703 error = VOP_WRITE(vp, &uio, ioflag, cr, NULL); 704 } else { 705 uio.uio_fmode = FREAD; 706 uio.uio_extflg = UIO_COPY_CACHED; 707 error = VOP_READ(vp, &uio, ioflag, cr, NULL); 708 } 709 VOP_RWUNLOCK(vp, rw == UIO_WRITE ? V_WRITELOCK_TRUE : V_WRITELOCK_FALSE, 710 NULL); 711 if (residp) 712 *residp = uio.uio_resid; 713 else if (uio.uio_resid) 714 error = EIO; 715 716 done: 717 if (in_crit) 718 nbl_end_crit(vp); 719 return (error); 720 } 721 722 /* 723 * Release a vnode. Call VOP_INACTIVE on last reference or 724 * decrement reference count. 725 * 726 * To avoid race conditions, the v_count is left at 1 for 727 * the call to VOP_INACTIVE. This prevents another thread 728 * from reclaiming and releasing the vnode *before* the 729 * VOP_INACTIVE routine has a chance to destroy the vnode. 730 * We can't have more than 1 thread calling VOP_INACTIVE 731 * on a vnode. 732 */ 733 void 734 vn_rele(vnode_t *vp) 735 { 736 if (vp->v_count == 0) 737 cmn_err(CE_PANIC, "vn_rele: vnode ref count 0"); 738 mutex_enter(&vp->v_lock); 739 if (vp->v_count == 1) { 740 mutex_exit(&vp->v_lock); 741 VOP_INACTIVE(vp, CRED()); 742 } else { 743 vp->v_count--; 744 mutex_exit(&vp->v_lock); 745 } 746 } 747 748 /* 749 * Like vn_rele() except that it clears v_stream under v_lock. 750 * This is used by sockfs when it dismantels the association between 751 * the sockfs node and the vnode in the underlaying file system. 752 * v_lock has to be held to prevent a thread coming through the lookupname 753 * path from accessing a stream head that is going away. 754 */ 755 void 756 vn_rele_stream(vnode_t *vp) 757 { 758 if (vp->v_count == 0) 759 cmn_err(CE_PANIC, "vn_rele: vnode ref count 0"); 760 mutex_enter(&vp->v_lock); 761 vp->v_stream = NULL; 762 if (vp->v_count == 1) { 763 mutex_exit(&vp->v_lock); 764 VOP_INACTIVE(vp, CRED()); 765 } else { 766 vp->v_count--; 767 mutex_exit(&vp->v_lock); 768 } 769 } 770 771 int 772 vn_open( 773 char *pnamep, 774 enum uio_seg seg, 775 int filemode, 776 int createmode, 777 struct vnode **vpp, 778 enum create crwhy, 779 mode_t umask) 780 { 781 return (vn_openat(pnamep, seg, filemode, 782 createmode, vpp, crwhy, umask, NULL)); 783 } 784 785 786 /* 787 * Open/create a vnode. 788 * This may be callable by the kernel, the only known use 789 * of user context being that the current user credentials 790 * are used for permissions. crwhy is defined iff filemode & FCREAT. 791 */ 792 int 793 vn_openat( 794 char *pnamep, 795 enum uio_seg seg, 796 int filemode, 797 int createmode, 798 struct vnode **vpp, 799 enum create crwhy, 800 mode_t umask, 801 struct vnode *startvp) 802 { 803 struct vnode *vp; 804 int mode; 805 int error; 806 int in_crit = 0; 807 struct vattr vattr; 808 enum symfollow follow; 809 810 mode = 0; 811 if (filemode & FREAD) 812 mode |= VREAD; 813 if (filemode & (FWRITE|FTRUNC)) 814 mode |= VWRITE; 815 816 /* symlink interpretation */ 817 if (filemode & FNOFOLLOW) 818 follow = NO_FOLLOW; 819 else 820 follow = FOLLOW; 821 822 top: 823 if (filemode & FCREAT) { 824 enum vcexcl excl; 825 826 /* 827 * Wish to create a file. 828 */ 829 vattr.va_type = VREG; 830 vattr.va_mode = createmode; 831 vattr.va_mask = AT_TYPE|AT_MODE; 832 if (filemode & FTRUNC) { 833 vattr.va_size = 0; 834 vattr.va_mask |= AT_SIZE; 835 } 836 if (filemode & FEXCL) 837 excl = EXCL; 838 else 839 excl = NONEXCL; 840 841 if (error = 842 vn_createat(pnamep, seg, &vattr, excl, mode, &vp, crwhy, 843 (filemode & ~(FTRUNC|FEXCL)), 844 umask, startvp)) 845 return (error); 846 } else { 847 /* 848 * Wish to open a file. Just look it up. 849 */ 850 if (error = lookupnameat(pnamep, seg, follow, 851 NULLVPP, &vp, startvp)) { 852 if (error == ESTALE) 853 goto top; 854 return (error); 855 } 856 857 /* 858 * Get the attributes to check whether file is large. 859 * We do this only if the FOFFMAX flag is not set and 860 * only for regular files. 861 */ 862 863 if (!(filemode & FOFFMAX) && (vp->v_type == VREG)) { 864 vattr.va_mask = AT_SIZE; 865 if ((error = VOP_GETATTR(vp, &vattr, 0, CRED()))) { 866 goto out; 867 } 868 if (vattr.va_size > (u_offset_t)MAXOFF32_T) { 869 /* 870 * Large File API - regular open fails 871 * if FOFFMAX flag is set in file mode 872 */ 873 error = EOVERFLOW; 874 goto out; 875 } 876 } 877 /* 878 * Can't write directories, active texts, or 879 * read-only filesystems. Can't truncate files 880 * on which mandatory locking is in effect. 881 */ 882 if (filemode & (FWRITE|FTRUNC)) { 883 /* 884 * Allow writable directory if VDIROPEN flag is set. 885 */ 886 if (vp->v_type == VDIR && !(vp->v_flag & VDIROPEN)) { 887 error = EISDIR; 888 goto out; 889 } 890 if (ISROFILE(vp)) { 891 error = EROFS; 892 goto out; 893 } 894 /* 895 * Can't truncate files on which mandatory locking 896 * or non-blocking mandatory locking is in effect. 897 */ 898 if (filemode & FTRUNC) { 899 vnode_t *rvp; 900 901 if (VOP_REALVP(vp, &rvp) != 0) 902 rvp = vp; 903 if (nbl_need_check(vp)) { 904 nbl_start_crit(vp, RW_READER); 905 in_crit = 1; 906 vattr.va_mask = AT_MODE|AT_SIZE; 907 if ((error = VOP_GETATTR(vp, &vattr, 0, 908 CRED())) == 0) { 909 if (rvp->v_filocks != NULL) 910 if (MANDLOCK(vp, 911 vattr.va_mode)) 912 error = EAGAIN; 913 if (!error) { 914 if (nbl_conflict(vp, 915 NBL_WRITE, 0, 916 vattr.va_size, 0)) 917 error = EACCES; 918 } 919 } 920 } else if (rvp->v_filocks != NULL) { 921 vattr.va_mask = AT_MODE; 922 if ((error = VOP_GETATTR(vp, &vattr, 923 0, CRED())) == 0 && MANDLOCK(vp, 924 vattr.va_mode)) 925 error = EAGAIN; 926 } 927 } 928 if (error) 929 goto out; 930 } 931 /* 932 * Check permissions. 933 */ 934 if (error = VOP_ACCESS(vp, mode, 0, CRED())) 935 goto out; 936 } 937 938 /* 939 * Do remaining checks for FNOFOLLOW and FNOLINKS. 940 */ 941 if ((filemode & FNOFOLLOW) && vp->v_type == VLNK) { 942 error = EINVAL; 943 goto out; 944 } 945 if (filemode & FNOLINKS) { 946 vattr.va_mask = AT_NLINK; 947 if ((error = VOP_GETATTR(vp, &vattr, 0, CRED()))) { 948 goto out; 949 } 950 if (vattr.va_nlink != 1) { 951 error = EMLINK; 952 goto out; 953 } 954 } 955 956 /* 957 * Opening a socket corresponding to the AF_UNIX pathname 958 * in the filesystem name space is not supported. 959 * However, VSOCK nodes in namefs are supported in order 960 * to make fattach work for sockets. 961 * 962 * XXX This uses VOP_REALVP to distinguish between 963 * an unopened namefs node (where VOP_REALVP returns a 964 * different VSOCK vnode) and a VSOCK created by vn_create 965 * in some file system (where VOP_REALVP would never return 966 * a different vnode). 967 */ 968 if (vp->v_type == VSOCK) { 969 struct vnode *nvp; 970 971 error = VOP_REALVP(vp, &nvp); 972 if (error != 0 || nvp == NULL || nvp == vp || 973 nvp->v_type != VSOCK) { 974 error = EOPNOTSUPP; 975 goto out; 976 } 977 } 978 /* 979 * Do opening protocol. 980 */ 981 error = VOP_OPEN(&vp, filemode, CRED()); 982 /* 983 * Truncate if required. 984 */ 985 if (error == 0 && (filemode & FTRUNC) && !(filemode & FCREAT)) { 986 vattr.va_size = 0; 987 vattr.va_mask = AT_SIZE; 988 if ((error = VOP_SETATTR(vp, &vattr, 0, CRED(), NULL)) != 0) 989 (void) VOP_CLOSE(vp, filemode, 1, (offset_t)0, CRED()); 990 } 991 out: 992 ASSERT(vp->v_count > 0); 993 994 if (in_crit) { 995 nbl_end_crit(vp); 996 in_crit = 0; 997 } 998 if (error) { 999 /* 1000 * The following clause was added to handle a problem 1001 * with NFS consistency. It is possible that a lookup 1002 * of the file to be opened succeeded, but the file 1003 * itself doesn't actually exist on the server. This 1004 * is chiefly due to the DNLC containing an entry for 1005 * the file which has been removed on the server. In 1006 * this case, we just start over. If there was some 1007 * other cause for the ESTALE error, then the lookup 1008 * of the file will fail and the error will be returned 1009 * above instead of looping around from here. 1010 */ 1011 VN_RELE(vp); 1012 if (error == ESTALE) 1013 goto top; 1014 } else 1015 *vpp = vp; 1016 return (error); 1017 } 1018 1019 int 1020 vn_create( 1021 char *pnamep, 1022 enum uio_seg seg, 1023 struct vattr *vap, 1024 enum vcexcl excl, 1025 int mode, 1026 struct vnode **vpp, 1027 enum create why, 1028 int flag, 1029 mode_t umask) 1030 { 1031 return (vn_createat(pnamep, seg, vap, excl, mode, vpp, 1032 why, flag, umask, NULL)); 1033 } 1034 1035 /* 1036 * Create a vnode (makenode). 1037 */ 1038 int 1039 vn_createat( 1040 char *pnamep, 1041 enum uio_seg seg, 1042 struct vattr *vap, 1043 enum vcexcl excl, 1044 int mode, 1045 struct vnode **vpp, 1046 enum create why, 1047 int flag, 1048 mode_t umask, 1049 struct vnode *startvp) 1050 { 1051 struct vnode *dvp; /* ptr to parent dir vnode */ 1052 struct vnode *vp = NULL; 1053 struct pathname pn; 1054 int error; 1055 int in_crit = 0; 1056 struct vattr vattr; 1057 enum symfollow follow; 1058 1059 ASSERT((vap->va_mask & (AT_TYPE|AT_MODE)) == (AT_TYPE|AT_MODE)); 1060 1061 /* symlink interpretation */ 1062 if ((flag & FNOFOLLOW) || excl == EXCL) 1063 follow = NO_FOLLOW; 1064 else 1065 follow = FOLLOW; 1066 flag &= ~(FNOFOLLOW|FNOLINKS); 1067 1068 top: 1069 /* 1070 * Lookup directory. 1071 * If new object is a file, call lower level to create it. 1072 * Note that it is up to the lower level to enforce exclusive 1073 * creation, if the file is already there. 1074 * This allows the lower level to do whatever 1075 * locking or protocol that is needed to prevent races. 1076 * If the new object is directory call lower level to make 1077 * the new directory, with "." and "..". 1078 */ 1079 if (error = pn_get(pnamep, seg, &pn)) 1080 return (error); 1081 #ifdef C2_AUDIT 1082 if (audit_active) 1083 audit_vncreate_start(); 1084 #endif /* C2_AUDIT */ 1085 dvp = NULL; 1086 *vpp = NULL; 1087 /* 1088 * lookup will find the parent directory for the vnode. 1089 * When it is done the pn holds the name of the entry 1090 * in the directory. 1091 * If this is a non-exclusive create we also find the node itself. 1092 */ 1093 error = lookuppnat(&pn, NULL, follow, &dvp, 1094 (excl == EXCL) ? NULLVPP : vpp, startvp); 1095 if (error) { 1096 pn_free(&pn); 1097 if (error == ESTALE) 1098 goto top; 1099 if (why == CRMKDIR && error == EINVAL) 1100 error = EEXIST; /* SVID */ 1101 return (error); 1102 } 1103 1104 if (why != CRMKNOD) 1105 vap->va_mode &= ~VSVTX; 1106 1107 /* 1108 * If default ACLs are defined for the directory don't apply the 1109 * umask if umask is passed. 1110 */ 1111 1112 if (umask) { 1113 1114 vsecattr_t vsec; 1115 1116 vsec.vsa_aclcnt = 0; 1117 vsec.vsa_aclentp = NULL; 1118 vsec.vsa_dfaclcnt = 0; 1119 vsec.vsa_dfaclentp = NULL; 1120 vsec.vsa_mask = VSA_DFACLCNT; 1121 error = VOP_GETSECATTR(dvp, &vsec, 0, CRED()); 1122 /* 1123 * If error is ENOSYS then treat it as no error 1124 * Don't want to force all file systems to support 1125 * aclent_t style of ACL's. 1126 */ 1127 if (error == ENOSYS) 1128 error = 0; 1129 if (error) { 1130 if (*vpp != NULL) 1131 VN_RELE(*vpp); 1132 goto out; 1133 } else { 1134 /* 1135 * Apply the umask if no default ACLs. 1136 */ 1137 if (vsec.vsa_dfaclcnt == 0) 1138 vap->va_mode &= ~umask; 1139 1140 /* 1141 * VOP_GETSECATTR() may have allocated memory for 1142 * ACLs we didn't request, so double-check and 1143 * free it if necessary. 1144 */ 1145 if (vsec.vsa_aclcnt && vsec.vsa_aclentp != NULL) 1146 kmem_free((caddr_t)vsec.vsa_aclentp, 1147 vsec.vsa_aclcnt * sizeof (aclent_t)); 1148 if (vsec.vsa_dfaclcnt && vsec.vsa_dfaclentp != NULL) 1149 kmem_free((caddr_t)vsec.vsa_dfaclentp, 1150 vsec.vsa_dfaclcnt * sizeof (aclent_t)); 1151 } 1152 } 1153 1154 /* 1155 * In general we want to generate EROFS if the file system is 1156 * readonly. However, POSIX (IEEE Std. 1003.1) section 5.3.1 1157 * documents the open system call, and it says that O_CREAT has no 1158 * effect if the file already exists. Bug 1119649 states 1159 * that open(path, O_CREAT, ...) fails when attempting to open an 1160 * existing file on a read only file system. Thus, the first part 1161 * of the following if statement has 3 checks: 1162 * if the file exists && 1163 * it is being open with write access && 1164 * the file system is read only 1165 * then generate EROFS 1166 */ 1167 if ((*vpp != NULL && (mode & VWRITE) && ISROFILE(*vpp)) || 1168 (*vpp == NULL && dvp->v_vfsp->vfs_flag & VFS_RDONLY)) { 1169 if (*vpp) 1170 VN_RELE(*vpp); 1171 error = EROFS; 1172 } else if (excl == NONEXCL && *vpp != NULL) { 1173 vnode_t *rvp; 1174 1175 /* 1176 * File already exists. If a mandatory lock has been 1177 * applied, return error. 1178 */ 1179 vp = *vpp; 1180 if (VOP_REALVP(vp, &rvp) != 0) 1181 rvp = vp; 1182 if ((vap->va_mask & AT_SIZE) && nbl_need_check(vp)) { 1183 nbl_start_crit(vp, RW_READER); 1184 in_crit = 1; 1185 } 1186 if (rvp->v_filocks != NULL || rvp->v_shrlocks != NULL) { 1187 vattr.va_mask = AT_MODE|AT_SIZE; 1188 if (error = VOP_GETATTR(vp, &vattr, 0, CRED())) { 1189 goto out; 1190 } 1191 if (MANDLOCK(vp, vattr.va_mode)) { 1192 error = EAGAIN; 1193 goto out; 1194 } 1195 /* 1196 * File cannot be truncated if non-blocking mandatory 1197 * locks are currently on the file. 1198 */ 1199 if ((vap->va_mask & AT_SIZE) && in_crit) { 1200 u_offset_t offset; 1201 ssize_t length; 1202 1203 offset = vap->va_size > vattr.va_size ? 1204 vattr.va_size : vap->va_size; 1205 length = vap->va_size > vattr.va_size ? 1206 vap->va_size - vattr.va_size : 1207 vattr.va_size - vap->va_size; 1208 if (nbl_conflict(vp, NBL_WRITE, offset, 1209 length, 0)) { 1210 error = EACCES; 1211 goto out; 1212 } 1213 } 1214 } 1215 1216 /* 1217 * If the file is the root of a VFS, we've crossed a 1218 * mount point and the "containing" directory that we 1219 * acquired above (dvp) is irrelevant because it's in 1220 * a different file system. We apply VOP_CREATE to the 1221 * target itself instead of to the containing directory 1222 * and supply a null path name to indicate (conventionally) 1223 * the node itself as the "component" of interest. 1224 * 1225 * The intercession of the file system is necessary to 1226 * ensure that the appropriate permission checks are 1227 * done. 1228 */ 1229 if (vp->v_flag & VROOT) { 1230 ASSERT(why != CRMKDIR); 1231 error = 1232 VOP_CREATE(vp, "", vap, excl, mode, vpp, CRED(), 1233 flag); 1234 /* 1235 * If the create succeeded, it will have created 1236 * a new reference to the vnode. Give up the 1237 * original reference. The assertion should not 1238 * get triggered because NBMAND locks only apply to 1239 * VREG files. And if in_crit is non-zero for some 1240 * reason, detect that here, rather than when we 1241 * deference a null vp. 1242 */ 1243 ASSERT(in_crit == 0); 1244 VN_RELE(vp); 1245 vp = NULL; 1246 goto out; 1247 } 1248 1249 /* 1250 * Large File API - non-large open (FOFFMAX flag not set) 1251 * of regular file fails if the file size exceeds MAXOFF32_T. 1252 */ 1253 if (why != CRMKDIR && 1254 !(flag & FOFFMAX) && 1255 (vp->v_type == VREG)) { 1256 vattr.va_mask = AT_SIZE; 1257 if ((error = VOP_GETATTR(vp, &vattr, 0, CRED()))) { 1258 goto out; 1259 } 1260 if ((vattr.va_size > (u_offset_t)MAXOFF32_T)) { 1261 error = EOVERFLOW; 1262 goto out; 1263 } 1264 } 1265 } 1266 1267 if (error == 0) { 1268 /* 1269 * Call mkdir() if specified, otherwise create(). 1270 */ 1271 int must_be_dir = pn_fixslash(&pn); /* trailing '/'? */ 1272 1273 if (why == CRMKDIR) 1274 error = VOP_MKDIR(dvp, pn.pn_path, vap, vpp, CRED()); 1275 else if (!must_be_dir) 1276 error = VOP_CREATE(dvp, pn.pn_path, vap, 1277 excl, mode, vpp, CRED(), flag); 1278 else 1279 error = ENOTDIR; 1280 } 1281 1282 out: 1283 1284 #ifdef C2_AUDIT 1285 if (audit_active) 1286 audit_vncreate_finish(*vpp, error); 1287 #endif /* C2_AUDIT */ 1288 if (in_crit) { 1289 nbl_end_crit(vp); 1290 in_crit = 0; 1291 } 1292 if (vp != NULL) { 1293 VN_RELE(vp); 1294 vp = NULL; 1295 } 1296 pn_free(&pn); 1297 VN_RELE(dvp); 1298 /* 1299 * The following clause was added to handle a problem 1300 * with NFS consistency. It is possible that a lookup 1301 * of the file to be created succeeded, but the file 1302 * itself doesn't actually exist on the server. This 1303 * is chiefly due to the DNLC containing an entry for 1304 * the file which has been removed on the server. In 1305 * this case, we just start over. If there was some 1306 * other cause for the ESTALE error, then the lookup 1307 * of the file will fail and the error will be returned 1308 * above instead of looping around from here. 1309 */ 1310 if (error == ESTALE) 1311 goto top; 1312 return (error); 1313 } 1314 1315 int 1316 vn_link(char *from, char *to, enum uio_seg seg) 1317 { 1318 struct vnode *fvp; /* from vnode ptr */ 1319 struct vnode *tdvp; /* to directory vnode ptr */ 1320 struct pathname pn; 1321 int error; 1322 struct vattr vattr; 1323 dev_t fsid; 1324 1325 top: 1326 fvp = tdvp = NULL; 1327 if (error = pn_get(to, seg, &pn)) 1328 return (error); 1329 if (error = lookupname(from, seg, NO_FOLLOW, NULLVPP, &fvp)) 1330 goto out; 1331 if (error = lookuppn(&pn, NULL, NO_FOLLOW, &tdvp, NULLVPP)) 1332 goto out; 1333 /* 1334 * Make sure both source vnode and target directory vnode are 1335 * in the same vfs and that it is writeable. 1336 */ 1337 vattr.va_mask = AT_FSID; 1338 if (error = VOP_GETATTR(fvp, &vattr, 0, CRED())) 1339 goto out; 1340 fsid = vattr.va_fsid; 1341 vattr.va_mask = AT_FSID; 1342 if (error = VOP_GETATTR(tdvp, &vattr, 0, CRED())) 1343 goto out; 1344 if (fsid != vattr.va_fsid) { 1345 error = EXDEV; 1346 goto out; 1347 } 1348 if (tdvp->v_vfsp->vfs_flag & VFS_RDONLY) { 1349 error = EROFS; 1350 goto out; 1351 } 1352 /* 1353 * Do the link. 1354 */ 1355 (void) pn_fixslash(&pn); 1356 error = VOP_LINK(tdvp, fvp, pn.pn_path, CRED()); 1357 out: 1358 pn_free(&pn); 1359 if (fvp) 1360 VN_RELE(fvp); 1361 if (tdvp) 1362 VN_RELE(tdvp); 1363 if (error == ESTALE) 1364 goto top; 1365 return (error); 1366 } 1367 1368 int 1369 vn_rename(char *from, char *to, enum uio_seg seg) 1370 { 1371 return (vn_renameat(NULL, from, NULL, to, seg)); 1372 } 1373 1374 int 1375 vn_renameat(vnode_t *fdvp, char *fname, vnode_t *tdvp, 1376 char *tname, enum uio_seg seg) 1377 { 1378 int error; 1379 struct vattr vattr; 1380 struct pathname fpn; /* from pathname */ 1381 struct pathname tpn; /* to pathname */ 1382 dev_t fsid; 1383 int in_crit = 0; 1384 vnode_t *fromvp, *fvp; 1385 vnode_t *tovp; 1386 1387 top: 1388 fvp = fromvp = tovp = NULL; 1389 /* 1390 * Get to and from pathnames. 1391 */ 1392 if (error = pn_get(fname, seg, &fpn)) 1393 return (error); 1394 if (error = pn_get(tname, seg, &tpn)) { 1395 pn_free(&fpn); 1396 return (error); 1397 } 1398 1399 /* 1400 * First we need to resolve the correct directories 1401 * The passed in directories may only be a starting point, 1402 * but we need the real directories the file(s) live in. 1403 * For example the fname may be something like usr/lib/sparc 1404 * and we were passed in the / directory, but we need to 1405 * use the lib directory for the rename. 1406 */ 1407 1408 #ifdef C2_AUDIT 1409 if (audit_active) 1410 audit_setfsat_path(1); 1411 #endif /* C2_AUDIT */ 1412 /* 1413 * Lookup to and from directories. 1414 */ 1415 if (error = lookuppnat(&fpn, NULL, NO_FOLLOW, &fromvp, &fvp, fdvp)) { 1416 goto out; 1417 } 1418 1419 /* 1420 * Make sure there is an entry. 1421 */ 1422 if (fvp == NULL) { 1423 error = ENOENT; 1424 goto out; 1425 } 1426 1427 #ifdef C2_AUDIT 1428 if (audit_active) 1429 audit_setfsat_path(3); 1430 #endif /* C2_AUDIT */ 1431 if (error = lookuppnat(&tpn, NULL, NO_FOLLOW, &tovp, NULLVPP, tdvp)) { 1432 goto out; 1433 } 1434 1435 /* 1436 * Make sure both the from vnode directory and the to directory 1437 * are in the same vfs and the to directory is writable. 1438 * We check fsid's, not vfs pointers, so loopback fs works. 1439 */ 1440 if (fromvp != tovp) { 1441 vattr.va_mask = AT_FSID; 1442 if (error = VOP_GETATTR(fromvp, &vattr, 0, CRED())) 1443 goto out; 1444 fsid = vattr.va_fsid; 1445 vattr.va_mask = AT_FSID; 1446 if (error = VOP_GETATTR(tovp, &vattr, 0, CRED())) 1447 goto out; 1448 if (fsid != vattr.va_fsid) { 1449 error = EXDEV; 1450 goto out; 1451 } 1452 } 1453 1454 if (tovp->v_vfsp->vfs_flag & VFS_RDONLY) { 1455 error = EROFS; 1456 goto out; 1457 } 1458 1459 if (nbl_need_check(fvp)) { 1460 nbl_start_crit(fvp, RW_READER); 1461 in_crit = 1; 1462 if (nbl_conflict(fvp, NBL_RENAME, 0, 0, 0)) { 1463 error = EACCES; 1464 goto out; 1465 } 1466 } 1467 1468 /* 1469 * Do the rename. 1470 */ 1471 (void) pn_fixslash(&tpn); 1472 error = VOP_RENAME(fromvp, fpn.pn_path, tovp, tpn.pn_path, CRED()); 1473 1474 out: 1475 pn_free(&fpn); 1476 pn_free(&tpn); 1477 if (in_crit) { 1478 nbl_end_crit(fvp); 1479 in_crit = 0; 1480 } 1481 if (fromvp) 1482 VN_RELE(fromvp); 1483 if (tovp) 1484 VN_RELE(tovp); 1485 if (fvp) 1486 VN_RELE(fvp); 1487 if (error == ESTALE) 1488 goto top; 1489 return (error); 1490 } 1491 1492 /* 1493 * Remove a file or directory. 1494 */ 1495 int 1496 vn_remove(char *fnamep, enum uio_seg seg, enum rm dirflag) 1497 { 1498 return (vn_removeat(NULL, fnamep, seg, dirflag)); 1499 } 1500 1501 int 1502 vn_removeat(vnode_t *startvp, char *fnamep, enum uio_seg seg, enum rm dirflag) 1503 { 1504 struct vnode *vp; /* entry vnode */ 1505 struct vnode *dvp; /* ptr to parent dir vnode */ 1506 struct vnode *coveredvp; 1507 struct pathname pn; /* name of entry */ 1508 enum vtype vtype; 1509 int error; 1510 struct vfs *vfsp; 1511 struct vfs *dvfsp; /* ptr to parent dir vfs */ 1512 int in_crit = 0; 1513 1514 top: 1515 if (error = pn_get(fnamep, seg, &pn)) 1516 return (error); 1517 dvp = vp = NULL; 1518 if (error = lookuppnat(&pn, NULL, NO_FOLLOW, &dvp, &vp, startvp)) { 1519 pn_free(&pn); 1520 if (error == ESTALE) 1521 goto top; 1522 return (error); 1523 } 1524 1525 /* 1526 * Make sure there is an entry. 1527 */ 1528 if (vp == NULL) { 1529 error = ENOENT; 1530 goto out; 1531 } 1532 1533 vfsp = vp->v_vfsp; 1534 dvfsp = dvp->v_vfsp; 1535 1536 /* 1537 * If the named file is the root of a mounted filesystem, fail, 1538 * unless it's marked unlinkable. In that case, unmount the 1539 * filesystem and proceed to unlink the covered vnode. (If the 1540 * covered vnode is a directory, use rmdir instead of unlink, 1541 * to avoid file system corruption.) 1542 */ 1543 if (vp->v_flag & VROOT) { 1544 if (vfsp->vfs_flag & VFS_UNLINKABLE) { 1545 if (dirflag == RMDIRECTORY) { 1546 /* 1547 * User called rmdir(2) on a file that has 1548 * been namefs mounted on top of. Since 1549 * namefs doesn't allow directories to 1550 * be mounted on other files we know 1551 * vp is not of type VDIR so fail to operation. 1552 */ 1553 error = ENOTDIR; 1554 goto out; 1555 } 1556 coveredvp = vfsp->vfs_vnodecovered; 1557 VN_HOLD(coveredvp); 1558 VN_RELE(vp); 1559 vp = NULL; 1560 if ((error = vn_vfswlock(coveredvp)) == 0) 1561 error = dounmount(vfsp, 0, CRED()); 1562 /* 1563 * Unmounted the namefs file system; now get 1564 * the object it was mounted over. 1565 */ 1566 vp = coveredvp; 1567 /* 1568 * If namefs was mounted over a directory, then 1569 * we want to use rmdir() instead of unlink(). 1570 */ 1571 if (vp->v_type == VDIR) 1572 dirflag = RMDIRECTORY; 1573 } else 1574 error = EBUSY; 1575 1576 if (error) 1577 goto out; 1578 } 1579 1580 /* 1581 * Make sure filesystem is writeable. 1582 * We check the parent directory's vfs in case this is an lofs vnode. 1583 */ 1584 if (dvfsp && dvfsp->vfs_flag & VFS_RDONLY) { 1585 error = EROFS; 1586 goto out; 1587 } 1588 1589 vtype = vp->v_type; 1590 1591 /* 1592 * If there is the possibility of an nbmand share reservation, make 1593 * sure it's okay to remove the file. Keep a reference to the 1594 * vnode, so that we can exit the nbl critical region after 1595 * calling VOP_REMOVE. 1596 * If there is no possibility of an nbmand share reservation, 1597 * release the vnode reference now. Filesystems like NFS may 1598 * behave differently if there is an extra reference, so get rid of 1599 * this one. Fortunately, we can't have nbmand mounts on NFS 1600 * filesystems. 1601 */ 1602 if (nbl_need_check(vp)) { 1603 nbl_start_crit(vp, RW_READER); 1604 in_crit = 1; 1605 if (nbl_conflict(vp, NBL_REMOVE, 0, 0, 0)) { 1606 error = EACCES; 1607 goto out; 1608 } 1609 } else { 1610 VN_RELE(vp); 1611 vp = NULL; 1612 } 1613 1614 if (dirflag == RMDIRECTORY) { 1615 /* 1616 * Caller is using rmdir(2), which can only be applied to 1617 * directories. 1618 */ 1619 if (vtype != VDIR) { 1620 error = ENOTDIR; 1621 } else { 1622 vnode_t *cwd; 1623 proc_t *pp = curproc; 1624 1625 mutex_enter(&pp->p_lock); 1626 cwd = PTOU(pp)->u_cdir; 1627 VN_HOLD(cwd); 1628 mutex_exit(&pp->p_lock); 1629 error = VOP_RMDIR(dvp, pn.pn_path, cwd, CRED()); 1630 VN_RELE(cwd); 1631 } 1632 } else { 1633 /* 1634 * Unlink(2) can be applied to anything. 1635 */ 1636 error = VOP_REMOVE(dvp, pn.pn_path, CRED()); 1637 } 1638 1639 out: 1640 pn_free(&pn); 1641 if (in_crit) { 1642 nbl_end_crit(vp); 1643 in_crit = 0; 1644 } 1645 if (vp != NULL) 1646 VN_RELE(vp); 1647 if (dvp != NULL) 1648 VN_RELE(dvp); 1649 if (error == ESTALE) 1650 goto top; 1651 return (error); 1652 } 1653 1654 /* 1655 * Utility function to compare equality of vnodes. 1656 * Compare the underlying real vnodes, if there are underlying vnodes. 1657 * This is a more thorough comparison than the VN_CMP() macro provides. 1658 */ 1659 int 1660 vn_compare(vnode_t *vp1, vnode_t *vp2) 1661 { 1662 vnode_t *realvp; 1663 1664 if (vp1 != NULL && VOP_REALVP(vp1, &realvp) == 0) 1665 vp1 = realvp; 1666 if (vp2 != NULL && VOP_REALVP(vp2, &realvp) == 0) 1667 vp2 = realvp; 1668 return (VN_CMP(vp1, vp2)); 1669 } 1670 1671 /* 1672 * The number of locks to hash into. This value must be a power 1673 * of 2 minus 1 and should probably also be prime. 1674 */ 1675 #define NUM_BUCKETS 1023 1676 1677 struct vn_vfslocks_bucket { 1678 kmutex_t vb_lock; 1679 vn_vfslocks_entry_t *vb_list; 1680 char pad[64 - sizeof (kmutex_t) - sizeof (void *)]; 1681 }; 1682 1683 /* 1684 * Total number of buckets will be NUM_BUCKETS + 1 . 1685 */ 1686 1687 #pragma align 64(vn_vfslocks_buckets) 1688 static struct vn_vfslocks_bucket vn_vfslocks_buckets[NUM_BUCKETS + 1]; 1689 1690 #define VN_VFSLOCKS_SHIFT 9 1691 1692 #define VN_VFSLOCKS_HASH(vfsvpptr) \ 1693 ((((intptr_t)(vfsvpptr)) >> VN_VFSLOCKS_SHIFT) & NUM_BUCKETS) 1694 1695 /* 1696 * vn_vfslocks_getlock() uses an HASH scheme to generate 1697 * rwstlock using vfs/vnode pointer passed to it. 1698 * 1699 * vn_vfslocks_rele() releases a reference in the 1700 * HASH table which allows the entry allocated by 1701 * vn_vfslocks_getlock() to be freed at a later 1702 * stage when the refcount drops to zero. 1703 */ 1704 1705 vn_vfslocks_entry_t * 1706 vn_vfslocks_getlock(void *vfsvpptr) 1707 { 1708 struct vn_vfslocks_bucket *bp; 1709 vn_vfslocks_entry_t *vep; 1710 vn_vfslocks_entry_t *tvep; 1711 1712 ASSERT(vfsvpptr != NULL); 1713 bp = &vn_vfslocks_buckets[VN_VFSLOCKS_HASH(vfsvpptr)]; 1714 1715 mutex_enter(&bp->vb_lock); 1716 for (vep = bp->vb_list; vep != NULL; vep = vep->ve_next) { 1717 if (vep->ve_vpvfs == vfsvpptr) { 1718 vep->ve_refcnt++; 1719 mutex_exit(&bp->vb_lock); 1720 return (vep); 1721 } 1722 } 1723 mutex_exit(&bp->vb_lock); 1724 vep = kmem_alloc(sizeof (*vep), KM_SLEEP); 1725 rwst_init(&vep->ve_lock, NULL, RW_DEFAULT, NULL); 1726 vep->ve_vpvfs = (char *)vfsvpptr; 1727 vep->ve_refcnt = 1; 1728 mutex_enter(&bp->vb_lock); 1729 for (tvep = bp->vb_list; tvep != NULL; tvep = tvep->ve_next) { 1730 if (tvep->ve_vpvfs == vfsvpptr) { 1731 tvep->ve_refcnt++; 1732 mutex_exit(&bp->vb_lock); 1733 1734 /* 1735 * There is already an entry in the hash 1736 * destroy what we just allocated. 1737 */ 1738 rwst_destroy(&vep->ve_lock); 1739 kmem_free(vep, sizeof (*vep)); 1740 return (tvep); 1741 } 1742 } 1743 vep->ve_next = bp->vb_list; 1744 bp->vb_list = vep; 1745 mutex_exit(&bp->vb_lock); 1746 return (vep); 1747 } 1748 1749 void 1750 vn_vfslocks_rele(vn_vfslocks_entry_t *vepent) 1751 { 1752 struct vn_vfslocks_bucket *bp; 1753 vn_vfslocks_entry_t *vep; 1754 vn_vfslocks_entry_t *pvep; 1755 1756 ASSERT(vepent != NULL); 1757 ASSERT(vepent->ve_vpvfs != NULL); 1758 1759 bp = &vn_vfslocks_buckets[VN_VFSLOCKS_HASH(vepent->ve_vpvfs)]; 1760 1761 mutex_enter(&bp->vb_lock); 1762 vepent->ve_refcnt--; 1763 1764 if ((int32_t)vepent->ve_refcnt < 0) 1765 cmn_err(CE_PANIC, "vn_vfslocks_rele: refcount negative"); 1766 1767 if (vepent->ve_refcnt == 0) { 1768 for (vep = bp->vb_list; vep != NULL; vep = vep->ve_next) { 1769 if (vep->ve_vpvfs == vepent->ve_vpvfs) { 1770 if (bp->vb_list == vep) 1771 bp->vb_list = vep->ve_next; 1772 else { 1773 /* LINTED */ 1774 pvep->ve_next = vep->ve_next; 1775 } 1776 mutex_exit(&bp->vb_lock); 1777 rwst_destroy(&vep->ve_lock); 1778 kmem_free(vep, sizeof (*vep)); 1779 return; 1780 } 1781 pvep = vep; 1782 } 1783 cmn_err(CE_PANIC, "vn_vfslocks_rele: vp/vfs not found"); 1784 } 1785 mutex_exit(&bp->vb_lock); 1786 } 1787 1788 /* 1789 * vn_vfswlock_wait is used to implement a lock which is logically a writers 1790 * lock protecting the v_vfsmountedhere field. 1791 * vn_vfswlock_wait has been modified to be similar to vn_vfswlock, 1792 * except that it blocks to acquire the lock VVFSLOCK. 1793 * 1794 * traverse() and routines re-implementing part of traverse (e.g. autofs) 1795 * need to hold this lock. mount(), vn_rename(), vn_remove() and so on 1796 * need the non-blocking version of the writers lock i.e. vn_vfswlock 1797 */ 1798 int 1799 vn_vfswlock_wait(vnode_t *vp) 1800 { 1801 int retval; 1802 vn_vfslocks_entry_t *vpvfsentry; 1803 ASSERT(vp != NULL); 1804 1805 vpvfsentry = vn_vfslocks_getlock(vp); 1806 retval = rwst_enter_sig(&vpvfsentry->ve_lock, RW_WRITER); 1807 1808 if (retval == EINTR) { 1809 vn_vfslocks_rele(vpvfsentry); 1810 return (EINTR); 1811 } 1812 return (retval); 1813 } 1814 1815 int 1816 vn_vfsrlock_wait(vnode_t *vp) 1817 { 1818 int retval; 1819 vn_vfslocks_entry_t *vpvfsentry; 1820 ASSERT(vp != NULL); 1821 1822 vpvfsentry = vn_vfslocks_getlock(vp); 1823 retval = rwst_enter_sig(&vpvfsentry->ve_lock, RW_READER); 1824 1825 if (retval == EINTR) { 1826 vn_vfslocks_rele(vpvfsentry); 1827 return (EINTR); 1828 } 1829 1830 return (retval); 1831 } 1832 1833 1834 /* 1835 * vn_vfswlock is used to implement a lock which is logically a writers lock 1836 * protecting the v_vfsmountedhere field. 1837 */ 1838 int 1839 vn_vfswlock(vnode_t *vp) 1840 { 1841 vn_vfslocks_entry_t *vpvfsentry; 1842 1843 /* 1844 * If vp is NULL then somebody is trying to lock the covered vnode 1845 * of /. (vfs_vnodecovered is NULL for /). This situation will 1846 * only happen when unmounting /. Since that operation will fail 1847 * anyway, return EBUSY here instead of in VFS_UNMOUNT. 1848 */ 1849 if (vp == NULL) 1850 return (EBUSY); 1851 1852 vpvfsentry = vn_vfslocks_getlock(vp); 1853 1854 if (rwst_tryenter(&vpvfsentry->ve_lock, RW_WRITER)) 1855 return (0); 1856 1857 vn_vfslocks_rele(vpvfsentry); 1858 return (EBUSY); 1859 } 1860 1861 int 1862 vn_vfsrlock(vnode_t *vp) 1863 { 1864 vn_vfslocks_entry_t *vpvfsentry; 1865 1866 /* 1867 * If vp is NULL then somebody is trying to lock the covered vnode 1868 * of /. (vfs_vnodecovered is NULL for /). This situation will 1869 * only happen when unmounting /. Since that operation will fail 1870 * anyway, return EBUSY here instead of in VFS_UNMOUNT. 1871 */ 1872 if (vp == NULL) 1873 return (EBUSY); 1874 1875 vpvfsentry = vn_vfslocks_getlock(vp); 1876 1877 if (rwst_tryenter(&vpvfsentry->ve_lock, RW_READER)) 1878 return (0); 1879 1880 vn_vfslocks_rele(vpvfsentry); 1881 return (EBUSY); 1882 } 1883 1884 void 1885 vn_vfsunlock(vnode_t *vp) 1886 { 1887 vn_vfslocks_entry_t *vpvfsentry; 1888 1889 /* 1890 * ve_refcnt needs to be decremented twice. 1891 * 1. To release refernce after a call to vn_vfslocks_getlock() 1892 * 2. To release the reference from the locking routines like 1893 * vn_vfsrlock/vn_vfswlock etc,. 1894 */ 1895 vpvfsentry = vn_vfslocks_getlock(vp); 1896 vn_vfslocks_rele(vpvfsentry); 1897 1898 rwst_exit(&vpvfsentry->ve_lock); 1899 vn_vfslocks_rele(vpvfsentry); 1900 } 1901 1902 int 1903 vn_vfswlock_held(vnode_t *vp) 1904 { 1905 int held; 1906 vn_vfslocks_entry_t *vpvfsentry; 1907 1908 ASSERT(vp != NULL); 1909 1910 vpvfsentry = vn_vfslocks_getlock(vp); 1911 held = rwst_lock_held(&vpvfsentry->ve_lock, RW_WRITER); 1912 1913 vn_vfslocks_rele(vpvfsentry); 1914 return (held); 1915 } 1916 1917 1918 int 1919 vn_make_ops( 1920 const char *name, /* Name of file system */ 1921 const fs_operation_def_t *templ, /* Operation specification */ 1922 vnodeops_t **actual) /* Return the vnodeops */ 1923 { 1924 int unused_ops; 1925 int error; 1926 1927 *actual = (vnodeops_t *)kmem_alloc(sizeof (vnodeops_t), KM_SLEEP); 1928 1929 (*actual)->vnop_name = name; 1930 1931 error = fs_build_vector(*actual, &unused_ops, vn_ops_table, templ); 1932 if (error) { 1933 kmem_free(*actual, sizeof (vnodeops_t)); 1934 } 1935 1936 #if DEBUG 1937 if (unused_ops != 0) 1938 cmn_err(CE_WARN, "vn_make_ops: %s: %d operations supplied " 1939 "but not used", name, unused_ops); 1940 #endif 1941 1942 return (error); 1943 } 1944 1945 /* 1946 * Free the vnodeops created as a result of vn_make_ops() 1947 */ 1948 void 1949 vn_freevnodeops(vnodeops_t *vnops) 1950 { 1951 kmem_free(vnops, sizeof (vnodeops_t)); 1952 } 1953 1954 /* 1955 * Vnode cache. 1956 */ 1957 1958 /* ARGSUSED */ 1959 static int 1960 vn_cache_constructor(void *buf, void *cdrarg, int kmflags) 1961 { 1962 struct vnode *vp; 1963 1964 vp = buf; 1965 1966 mutex_init(&vp->v_lock, NULL, MUTEX_DEFAULT, NULL); 1967 cv_init(&vp->v_cv, NULL, CV_DEFAULT, NULL); 1968 rw_init(&vp->v_nbllock, NULL, RW_DEFAULT, NULL); 1969 rw_init(&vp->v_mslock, NULL, RW_DEFAULT, NULL); 1970 1971 vp->v_femhead = NULL; /* Must be done before vn_reinit() */ 1972 vp->v_path = NULL; 1973 vp->v_mpssdata = NULL; 1974 1975 return (0); 1976 } 1977 1978 /* ARGSUSED */ 1979 static void 1980 vn_cache_destructor(void *buf, void *cdrarg) 1981 { 1982 struct vnode *vp; 1983 1984 vp = buf; 1985 1986 rw_destroy(&vp->v_mslock); 1987 rw_destroy(&vp->v_nbllock); 1988 cv_destroy(&vp->v_cv); 1989 mutex_destroy(&vp->v_lock); 1990 } 1991 1992 void 1993 vn_create_cache(void) 1994 { 1995 vn_cache = kmem_cache_create("vn_cache", sizeof (struct vnode), 64, 1996 vn_cache_constructor, vn_cache_destructor, NULL, NULL, 1997 NULL, 0); 1998 } 1999 2000 void 2001 vn_destroy_cache(void) 2002 { 2003 kmem_cache_destroy(vn_cache); 2004 } 2005 2006 /* 2007 * Used by file systems when fs-specific nodes (e.g., ufs inodes) are 2008 * cached by the file system and vnodes remain associated. 2009 */ 2010 void 2011 vn_recycle(vnode_t *vp) 2012 { 2013 ASSERT(vp->v_pages == NULL); 2014 2015 /* 2016 * XXX - This really belongs in vn_reinit(), but we have some issues 2017 * with the counts. Best to have it here for clean initialization. 2018 */ 2019 vp->v_rdcnt = 0; 2020 vp->v_wrcnt = 0; 2021 vp->v_mmap_read = 0; 2022 vp->v_mmap_write = 0; 2023 2024 /* 2025 * If FEM was in use, make sure everything gets cleaned up 2026 * NOTE: vp->v_femhead is initialized to NULL in the vnode 2027 * constructor. 2028 */ 2029 if (vp->v_femhead) { 2030 /* XXX - There should be a free_femhead() that does all this */ 2031 ASSERT(vp->v_femhead->femh_list == NULL); 2032 mutex_destroy(&vp->v_femhead->femh_lock); 2033 kmem_free(vp->v_femhead, sizeof (*(vp->v_femhead))); 2034 vp->v_femhead = NULL; 2035 } 2036 if (vp->v_path) { 2037 kmem_free(vp->v_path, strlen(vp->v_path) + 1); 2038 vp->v_path = NULL; 2039 } 2040 vp->v_mpssdata = NULL; 2041 } 2042 2043 /* 2044 * Used to reset the vnode fields including those that are directly accessible 2045 * as well as those which require an accessor function. 2046 * 2047 * Does not initialize: 2048 * synchronization objects: v_lock, v_nbllock, v_cv 2049 * v_data (since FS-nodes and vnodes point to each other and should 2050 * be updated simultaneously) 2051 * v_op (in case someone needs to make a VOP call on this object) 2052 */ 2053 void 2054 vn_reinit(vnode_t *vp) 2055 { 2056 vp->v_count = 1; 2057 vp->v_vfsp = NULL; 2058 vp->v_stream = NULL; 2059 vp->v_vfsmountedhere = NULL; 2060 vp->v_flag = 0; 2061 vp->v_type = VNON; 2062 vp->v_rdev = NODEV; 2063 2064 vp->v_filocks = NULL; 2065 vp->v_shrlocks = NULL; 2066 vp->v_pages = NULL; 2067 vp->v_npages = 0; 2068 vp->v_msnpages = 0; 2069 vp->v_scanfront = NULL; 2070 vp->v_scanback = NULL; 2071 2072 vp->v_locality = NULL; 2073 vp->v_scantime = 0; 2074 vp->v_mset = 0; 2075 vp->v_msflags = 0; 2076 vp->v_msnext = NULL; 2077 vp->v_msprev = NULL; 2078 2079 /* Handles v_femhead, v_path, and the r/w/map counts */ 2080 vn_recycle(vp); 2081 } 2082 2083 vnode_t * 2084 vn_alloc(int kmflag) 2085 { 2086 vnode_t *vp; 2087 2088 vp = kmem_cache_alloc(vn_cache, kmflag); 2089 2090 if (vp != NULL) { 2091 vp->v_femhead = NULL; /* Must be done before vn_reinit() */ 2092 vn_reinit(vp); 2093 } 2094 2095 return (vp); 2096 } 2097 2098 void 2099 vn_free(vnode_t *vp) 2100 { 2101 /* 2102 * Some file systems call vn_free() with v_count of zero, 2103 * some with v_count of 1. In any case, the value should 2104 * never be anything else. 2105 */ 2106 ASSERT((vp->v_count == 0) || (vp->v_count == 1)); 2107 if (vp->v_path != NULL) { 2108 kmem_free(vp->v_path, strlen(vp->v_path) + 1); 2109 vp->v_path = NULL; 2110 } 2111 2112 /* If FEM was in use, make sure everything gets cleaned up */ 2113 if (vp->v_femhead) { 2114 /* XXX - There should be a free_femhead() that does all this */ 2115 ASSERT(vp->v_femhead->femh_list == NULL); 2116 mutex_destroy(&vp->v_femhead->femh_lock); 2117 kmem_free(vp->v_femhead, sizeof (*(vp->v_femhead))); 2118 vp->v_femhead = NULL; 2119 } 2120 vp->v_mpssdata = NULL; 2121 kmem_cache_free(vn_cache, vp); 2122 } 2123 2124 /* 2125 * vnode status changes, should define better states than 1, 0. 2126 */ 2127 void 2128 vn_reclaim(vnode_t *vp) 2129 { 2130 vfs_t *vfsp = vp->v_vfsp; 2131 2132 if (vfsp == NULL || vfsp->vfs_femhead == NULL) { 2133 return; 2134 } 2135 (void) VFS_VNSTATE(vfsp, vp, VNTRANS_RECLAIMED); 2136 } 2137 2138 void 2139 vn_idle(vnode_t *vp) 2140 { 2141 vfs_t *vfsp = vp->v_vfsp; 2142 2143 if (vfsp == NULL || vfsp->vfs_femhead == NULL) { 2144 return; 2145 } 2146 (void) VFS_VNSTATE(vfsp, vp, VNTRANS_IDLED); 2147 } 2148 void 2149 vn_exists(vnode_t *vp) 2150 { 2151 vfs_t *vfsp = vp->v_vfsp; 2152 2153 if (vfsp == NULL || vfsp->vfs_femhead == NULL) { 2154 return; 2155 } 2156 (void) VFS_VNSTATE(vfsp, vp, VNTRANS_EXISTS); 2157 } 2158 2159 void 2160 vn_invalid(vnode_t *vp) 2161 { 2162 vfs_t *vfsp = vp->v_vfsp; 2163 2164 if (vfsp == NULL || vfsp->vfs_femhead == NULL) { 2165 return; 2166 } 2167 (void) VFS_VNSTATE(vfsp, vp, VNTRANS_DESTROYED); 2168 } 2169 2170 /* Vnode event notification */ 2171 2172 int 2173 vnevent_support(vnode_t *vp) 2174 { 2175 if (vp == NULL) 2176 return (EINVAL); 2177 2178 return (VOP_VNEVENT(vp, VE_SUPPORT)); 2179 } 2180 2181 void 2182 vnevent_rename_src(vnode_t *vp) 2183 { 2184 if (vp == NULL || vp->v_femhead == NULL) { 2185 return; 2186 } 2187 (void) VOP_VNEVENT(vp, VE_RENAME_SRC); 2188 } 2189 2190 void 2191 vnevent_rename_dest(vnode_t *vp) 2192 { 2193 if (vp == NULL || vp->v_femhead == NULL) { 2194 return; 2195 } 2196 (void) VOP_VNEVENT(vp, VE_RENAME_DEST); 2197 } 2198 2199 void 2200 vnevent_remove(vnode_t *vp) 2201 { 2202 if (vp == NULL || vp->v_femhead == NULL) { 2203 return; 2204 } 2205 (void) VOP_VNEVENT(vp, VE_REMOVE); 2206 } 2207 2208 void 2209 vnevent_rmdir(vnode_t *vp) 2210 { 2211 if (vp == NULL || vp->v_femhead == NULL) { 2212 return; 2213 } 2214 (void) VOP_VNEVENT(vp, VE_RMDIR); 2215 } 2216 2217 /* 2218 * Vnode accessors. 2219 */ 2220 2221 int 2222 vn_is_readonly(vnode_t *vp) 2223 { 2224 return (vp->v_vfsp->vfs_flag & VFS_RDONLY); 2225 } 2226 2227 int 2228 vn_has_flocks(vnode_t *vp) 2229 { 2230 return (vp->v_filocks != NULL); 2231 } 2232 2233 int 2234 vn_has_mandatory_locks(vnode_t *vp, int mode) 2235 { 2236 return ((vp->v_filocks != NULL) && (MANDLOCK(vp, mode))); 2237 } 2238 2239 int 2240 vn_has_cached_data(vnode_t *vp) 2241 { 2242 return (vp->v_pages != NULL); 2243 } 2244 2245 /* 2246 * Return 0 if the vnode in question shouldn't be permitted into a zone via 2247 * zone_enter(2). 2248 */ 2249 int 2250 vn_can_change_zones(vnode_t *vp) 2251 { 2252 struct vfssw *vswp; 2253 int allow = 1; 2254 vnode_t *rvp; 2255 2256 if (nfs_global_client_only != 0) 2257 return (1); 2258 2259 /* 2260 * We always want to look at the underlying vnode if there is one. 2261 */ 2262 if (VOP_REALVP(vp, &rvp) != 0) 2263 rvp = vp; 2264 /* 2265 * Some pseudo filesystems (including doorfs) don't actually register 2266 * their vfsops_t, so the following may return NULL; we happily let 2267 * such vnodes switch zones. 2268 */ 2269 vswp = vfs_getvfsswbyvfsops(vfs_getops(rvp->v_vfsp)); 2270 if (vswp != NULL) { 2271 if (vswp->vsw_flag & VSW_NOTZONESAFE) 2272 allow = 0; 2273 vfs_unrefvfssw(vswp); 2274 } 2275 return (allow); 2276 } 2277 2278 /* 2279 * Return nonzero if the vnode is a mount point, zero if not. 2280 */ 2281 int 2282 vn_ismntpt(vnode_t *vp) 2283 { 2284 return (vp->v_vfsmountedhere != NULL); 2285 } 2286 2287 /* Retrieve the vfs (if any) mounted on this vnode */ 2288 vfs_t * 2289 vn_mountedvfs(vnode_t *vp) 2290 { 2291 return (vp->v_vfsmountedhere); 2292 } 2293 2294 /* 2295 * vn_is_opened() checks whether a particular file is opened and 2296 * whether the open is for read and/or write. 2297 * 2298 * Vnode counts are only kept on regular files (v_type=VREG). 2299 */ 2300 int 2301 vn_is_opened( 2302 vnode_t *vp, 2303 v_mode_t mode) 2304 { 2305 2306 ASSERT(vp != NULL); 2307 2308 switch (mode) { 2309 case V_WRITE: 2310 if (vp->v_wrcnt) 2311 return (V_TRUE); 2312 break; 2313 case V_RDANDWR: 2314 if (vp->v_rdcnt && vp->v_wrcnt) 2315 return (V_TRUE); 2316 break; 2317 case V_RDORWR: 2318 if (vp->v_rdcnt || vp->v_wrcnt) 2319 return (V_TRUE); 2320 break; 2321 case V_READ: 2322 if (vp->v_rdcnt) 2323 return (V_TRUE); 2324 break; 2325 } 2326 2327 return (V_FALSE); 2328 } 2329 2330 /* 2331 * vn_is_mapped() checks whether a particular file is mapped and whether 2332 * the file is mapped read and/or write. 2333 */ 2334 int 2335 vn_is_mapped( 2336 vnode_t *vp, 2337 v_mode_t mode) 2338 { 2339 2340 ASSERT(vp != NULL); 2341 2342 #if !defined(_LP64) 2343 switch (mode) { 2344 /* 2345 * The atomic_add_64_nv functions force atomicity in the 2346 * case of 32 bit architectures. Otherwise the 64 bit values 2347 * require two fetches. The value of the fields may be 2348 * (potentially) changed between the first fetch and the 2349 * second 2350 */ 2351 case V_WRITE: 2352 if (atomic_add_64_nv((&(vp->v_mmap_write)), 0)) 2353 return (V_TRUE); 2354 break; 2355 case V_RDANDWR: 2356 if ((atomic_add_64_nv((&(vp->v_mmap_read)), 0)) && 2357 (atomic_add_64_nv((&(vp->v_mmap_write)), 0))) 2358 return (V_TRUE); 2359 break; 2360 case V_RDORWR: 2361 if ((atomic_add_64_nv((&(vp->v_mmap_read)), 0)) || 2362 (atomic_add_64_nv((&(vp->v_mmap_write)), 0))) 2363 return (V_TRUE); 2364 break; 2365 case V_READ: 2366 if (atomic_add_64_nv((&(vp->v_mmap_read)), 0)) 2367 return (V_TRUE); 2368 break; 2369 } 2370 #else 2371 switch (mode) { 2372 case V_WRITE: 2373 if (vp->v_mmap_write) 2374 return (V_TRUE); 2375 break; 2376 case V_RDANDWR: 2377 if (vp->v_mmap_read && vp->v_mmap_write) 2378 return (V_TRUE); 2379 break; 2380 case V_RDORWR: 2381 if (vp->v_mmap_read || vp->v_mmap_write) 2382 return (V_TRUE); 2383 break; 2384 case V_READ: 2385 if (vp->v_mmap_read) 2386 return (V_TRUE); 2387 break; 2388 } 2389 #endif 2390 2391 return (V_FALSE); 2392 } 2393 2394 /* 2395 * Set the operations vector for a vnode. 2396 * 2397 * FEM ensures that the v_femhead pointer is filled in before the 2398 * v_op pointer is changed. This means that if the v_femhead pointer 2399 * is NULL, and the v_op field hasn't changed since before which checked 2400 * the v_femhead pointer; then our update is ok - we are not racing with 2401 * FEM. 2402 */ 2403 void 2404 vn_setops(vnode_t *vp, vnodeops_t *vnodeops) 2405 { 2406 vnodeops_t *op; 2407 2408 ASSERT(vp != NULL); 2409 ASSERT(vnodeops != NULL); 2410 2411 op = vp->v_op; 2412 membar_consumer(); 2413 /* 2414 * If vp->v_femhead == NULL, then we'll call casptr() to do the 2415 * compare-and-swap on vp->v_op. If either fails, then FEM is 2416 * in effect on the vnode and we need to have FEM deal with it. 2417 */ 2418 if (vp->v_femhead != NULL || casptr(&vp->v_op, op, vnodeops) != op) { 2419 fem_setvnops(vp, vnodeops); 2420 } 2421 } 2422 2423 /* 2424 * Retrieve the operations vector for a vnode 2425 * As with vn_setops(above); make sure we aren't racing with FEM. 2426 * FEM sets the v_op to a special, internal, vnodeops that wouldn't 2427 * make sense to the callers of this routine. 2428 */ 2429 vnodeops_t * 2430 vn_getops(vnode_t *vp) 2431 { 2432 vnodeops_t *op; 2433 2434 ASSERT(vp != NULL); 2435 2436 op = vp->v_op; 2437 membar_consumer(); 2438 if (vp->v_femhead == NULL && op == vp->v_op) { 2439 return (op); 2440 } else { 2441 return (fem_getvnops(vp)); 2442 } 2443 } 2444 2445 /* 2446 * Returns non-zero (1) if the vnodeops matches that of the vnode. 2447 * Returns zero (0) if not. 2448 */ 2449 int 2450 vn_matchops(vnode_t *vp, vnodeops_t *vnodeops) 2451 { 2452 return (vn_getops(vp) == vnodeops); 2453 } 2454 2455 /* 2456 * Returns non-zero (1) if the specified operation matches the 2457 * corresponding operation for that the vnode. 2458 * Returns zero (0) if not. 2459 */ 2460 2461 #define MATCHNAME(n1, n2) (((n1)[0] == (n2)[0]) && (strcmp((n1), (n2)) == 0)) 2462 2463 int 2464 vn_matchopval(vnode_t *vp, char *vopname, fs_generic_func_p funcp) 2465 { 2466 const fs_operation_trans_def_t *otdp; 2467 fs_generic_func_p *loc = NULL; 2468 vnodeops_t *vop = vn_getops(vp); 2469 2470 ASSERT(vopname != NULL); 2471 2472 for (otdp = vn_ops_table; otdp->name != NULL; otdp++) { 2473 if (MATCHNAME(otdp->name, vopname)) { 2474 loc = (fs_generic_func_p *)((char *)(vop) 2475 + otdp->offset); 2476 break; 2477 } 2478 } 2479 2480 return ((loc != NULL) && (*loc == funcp)); 2481 } 2482 2483 /* 2484 * fs_new_caller_id() needs to return a unique ID on a given local system. 2485 * The IDs do not need to survive across reboots. These are primarily 2486 * used so that (FEM) monitors can detect particular callers (such as 2487 * the NFS server) to a given vnode/vfs operation. 2488 */ 2489 u_longlong_t 2490 fs_new_caller_id() 2491 { 2492 static uint64_t next_caller_id = 0LL; /* First call returns 1 */ 2493 2494 return ((u_longlong_t)atomic_add_64_nv(&next_caller_id, 1)); 2495 } 2496 2497 /* 2498 * Given a starting vnode and a path, updates the path in the target vnode in 2499 * a safe manner. If the vnode already has path information embedded, then the 2500 * cached path is left untouched. 2501 */ 2502 void 2503 vn_setpath(vnode_t *rootvp, struct vnode *startvp, struct vnode *vp, 2504 const char *path, size_t plen) 2505 { 2506 char *rpath; 2507 vnode_t *base; 2508 size_t rpathlen, rpathalloc; 2509 int doslash = 1; 2510 2511 if (*path == '/') { 2512 base = rootvp; 2513 path++; 2514 plen--; 2515 } else { 2516 base = startvp; 2517 } 2518 2519 /* 2520 * We cannot grab base->v_lock while we hold vp->v_lock because of 2521 * the potential for deadlock. 2522 */ 2523 mutex_enter(&base->v_lock); 2524 if (base->v_path == NULL) { 2525 mutex_exit(&base->v_lock); 2526 return; 2527 } 2528 2529 rpathlen = strlen(base->v_path); 2530 rpathalloc = rpathlen + plen + 1; 2531 /* Avoid adding a slash if there's already one there */ 2532 if (base->v_path[rpathlen-1] == '/') 2533 doslash = 0; 2534 else 2535 rpathalloc++; 2536 2537 /* 2538 * We don't want to call kmem_alloc(KM_SLEEP) with kernel locks held, 2539 * so we must do this dance. If, by chance, something changes the path, 2540 * just give up since there is no real harm. 2541 */ 2542 mutex_exit(&base->v_lock); 2543 2544 rpath = kmem_alloc(rpathalloc, KM_SLEEP); 2545 2546 mutex_enter(&base->v_lock); 2547 if (base->v_path == NULL || strlen(base->v_path) != rpathlen) { 2548 mutex_exit(&base->v_lock); 2549 kmem_free(rpath, rpathalloc); 2550 return; 2551 } 2552 bcopy(base->v_path, rpath, rpathlen); 2553 mutex_exit(&base->v_lock); 2554 2555 if (doslash) 2556 rpath[rpathlen++] = '/'; 2557 bcopy(path, rpath + rpathlen, plen); 2558 rpath[rpathlen + plen] = '\0'; 2559 2560 mutex_enter(&vp->v_lock); 2561 if (vp->v_path != NULL) { 2562 mutex_exit(&vp->v_lock); 2563 kmem_free(rpath, rpathalloc); 2564 } else { 2565 vp->v_path = rpath; 2566 mutex_exit(&vp->v_lock); 2567 } 2568 } 2569 2570 /* 2571 * Sets the path to the vnode to be the given string, regardless of current 2572 * context. The string must be a complete path from rootdir. This is only used 2573 * by fsop_root() for setting the path based on the mountpoint. 2574 */ 2575 void 2576 vn_setpath_str(struct vnode *vp, const char *str, size_t len) 2577 { 2578 char *buf = kmem_alloc(len + 1, KM_SLEEP); 2579 2580 mutex_enter(&vp->v_lock); 2581 if (vp->v_path != NULL) { 2582 mutex_exit(&vp->v_lock); 2583 kmem_free(buf, len + 1); 2584 return; 2585 } 2586 2587 vp->v_path = buf; 2588 bcopy(str, vp->v_path, len); 2589 vp->v_path[len] = '\0'; 2590 2591 mutex_exit(&vp->v_lock); 2592 } 2593 2594 /* 2595 * Similar to vn_setpath_str(), this function sets the path of the destination 2596 * vnode to the be the same as the source vnode. 2597 */ 2598 void 2599 vn_copypath(struct vnode *src, struct vnode *dst) 2600 { 2601 char *buf; 2602 int alloc; 2603 2604 mutex_enter(&src->v_lock); 2605 if (src->v_path == NULL) { 2606 mutex_exit(&src->v_lock); 2607 return; 2608 } 2609 alloc = strlen(src->v_path) + 1; 2610 2611 /* avoid kmem_alloc() with lock held */ 2612 mutex_exit(&src->v_lock); 2613 buf = kmem_alloc(alloc, KM_SLEEP); 2614 mutex_enter(&src->v_lock); 2615 if (src->v_path == NULL || strlen(src->v_path) + 1 != alloc) { 2616 mutex_exit(&src->v_lock); 2617 kmem_free(buf, alloc); 2618 return; 2619 } 2620 bcopy(src->v_path, buf, alloc); 2621 mutex_exit(&src->v_lock); 2622 2623 mutex_enter(&dst->v_lock); 2624 if (dst->v_path != NULL) { 2625 mutex_exit(&dst->v_lock); 2626 kmem_free(buf, alloc); 2627 return; 2628 } 2629 dst->v_path = buf; 2630 mutex_exit(&dst->v_lock); 2631 } 2632 2633 /* 2634 * XXX Private interface for segvn routines that handle vnode 2635 * large page segments. 2636 * 2637 * return 1 if vp's file system VOP_PAGEIO() implementation 2638 * can be safely used instead of VOP_GETPAGE() for handling 2639 * pagefaults against regular non swap files. VOP_PAGEIO() 2640 * interface is considered safe here if its implementation 2641 * is very close to VOP_GETPAGE() implementation. 2642 * e.g. It zero's out the part of the page beyond EOF. Doesn't 2643 * panic if there're file holes but instead returns an error. 2644 * Doesn't assume file won't be changed by user writes, etc. 2645 * 2646 * return 0 otherwise. 2647 * 2648 * For now allow segvn to only use VOP_PAGEIO() with ufs and nfs. 2649 */ 2650 int 2651 vn_vmpss_usepageio(vnode_t *vp) 2652 { 2653 vfs_t *vfsp = vp->v_vfsp; 2654 char *fsname = vfssw[vfsp->vfs_fstype].vsw_name; 2655 char *pageio_ok_fss[] = {"ufs", "nfs", NULL}; 2656 char **fsok = pageio_ok_fss; 2657 2658 if (fsname == NULL) { 2659 return (0); 2660 } 2661 2662 for (; *fsok; fsok++) { 2663 if (strcmp(*fsok, fsname) == 0) { 2664 return (1); 2665 } 2666 } 2667 return (0); 2668 } 2669 2670 /* VOP_XXX() macros call the corresponding fop_xxx() function */ 2671 2672 int 2673 fop_open( 2674 vnode_t **vpp, 2675 int mode, 2676 cred_t *cr) 2677 { 2678 int ret; 2679 vnode_t *vp = *vpp; 2680 2681 VN_HOLD(vp); 2682 /* 2683 * Adding to the vnode counts before calling open 2684 * avoids the need for a mutex. It circumvents a race 2685 * condition where a query made on the vnode counts results in a 2686 * false negative. The inquirer goes away believing the file is 2687 * not open when there is an open on the file already under way. 2688 * 2689 * The counts are meant to prevent NFS from granting a delegation 2690 * when it would be dangerous to do so. 2691 * 2692 * The vnode counts are only kept on regular files 2693 */ 2694 if ((*vpp)->v_type == VREG) { 2695 if (mode & FREAD) 2696 atomic_add_32(&((*vpp)->v_rdcnt), 1); 2697 if (mode & FWRITE) 2698 atomic_add_32(&((*vpp)->v_wrcnt), 1); 2699 } 2700 2701 ret = (*(*(vpp))->v_op->vop_open)(vpp, mode, cr); 2702 2703 if (ret) { 2704 /* 2705 * Use the saved vp just in case the vnode ptr got trashed 2706 * by the error. 2707 */ 2708 VOPSTATS_UPDATE(vp, open); 2709 if ((vp->v_type == VREG) && (mode & FREAD)) 2710 atomic_add_32(&(vp->v_rdcnt), -1); 2711 if ((vp->v_type == VREG) && (mode & FWRITE)) 2712 atomic_add_32(&(vp->v_wrcnt), -1); 2713 } else { 2714 /* 2715 * Some filesystems will return a different vnode, 2716 * but the same path was still used to open it. 2717 * So if we do change the vnode and need to 2718 * copy over the path, do so here, rather than special 2719 * casing each filesystem. Adjust the vnode counts to 2720 * reflect the vnode switch. 2721 */ 2722 VOPSTATS_UPDATE(*vpp, open); 2723 if (*vpp != vp && *vpp != NULL) { 2724 vn_copypath(vp, *vpp); 2725 if (((*vpp)->v_type == VREG) && (mode & FREAD)) 2726 atomic_add_32(&((*vpp)->v_rdcnt), 1); 2727 if ((vp->v_type == VREG) && (mode & FREAD)) 2728 atomic_add_32(&(vp->v_rdcnt), -1); 2729 if (((*vpp)->v_type == VREG) && (mode & FWRITE)) 2730 atomic_add_32(&((*vpp)->v_wrcnt), 1); 2731 if ((vp->v_type == VREG) && (mode & FWRITE)) 2732 atomic_add_32(&(vp->v_wrcnt), -1); 2733 } 2734 } 2735 VN_RELE(vp); 2736 return (ret); 2737 } 2738 2739 int 2740 fop_close( 2741 vnode_t *vp, 2742 int flag, 2743 int count, 2744 offset_t offset, 2745 cred_t *cr) 2746 { 2747 int err; 2748 2749 err = (*(vp)->v_op->vop_close)(vp, flag, count, offset, cr); 2750 VOPSTATS_UPDATE(vp, close); 2751 /* 2752 * Check passed in count to handle possible dups. Vnode counts are only 2753 * kept on regular files 2754 */ 2755 if ((vp->v_type == VREG) && (count == 1)) { 2756 if (flag & FREAD) { 2757 ASSERT(vp->v_rdcnt > 0); 2758 atomic_add_32(&(vp->v_rdcnt), -1); 2759 } 2760 if (flag & FWRITE) { 2761 ASSERT(vp->v_wrcnt > 0); 2762 atomic_add_32(&(vp->v_wrcnt), -1); 2763 } 2764 } 2765 return (err); 2766 } 2767 2768 int 2769 fop_read( 2770 vnode_t *vp, 2771 uio_t *uiop, 2772 int ioflag, 2773 cred_t *cr, 2774 struct caller_context *ct) 2775 { 2776 int err; 2777 ssize_t resid_start = uiop->uio_resid; 2778 2779 err = (*(vp)->v_op->vop_read)(vp, uiop, ioflag, cr, ct); 2780 VOPSTATS_UPDATE_IO(vp, read, 2781 read_bytes, (resid_start - uiop->uio_resid)); 2782 return (err); 2783 } 2784 2785 int 2786 fop_write( 2787 vnode_t *vp, 2788 uio_t *uiop, 2789 int ioflag, 2790 cred_t *cr, 2791 struct caller_context *ct) 2792 { 2793 int err; 2794 ssize_t resid_start = uiop->uio_resid; 2795 2796 err = (*(vp)->v_op->vop_write)(vp, uiop, ioflag, cr, ct); 2797 VOPSTATS_UPDATE_IO(vp, write, 2798 write_bytes, (resid_start - uiop->uio_resid)); 2799 return (err); 2800 } 2801 2802 int 2803 fop_ioctl( 2804 vnode_t *vp, 2805 int cmd, 2806 intptr_t arg, 2807 int flag, 2808 cred_t *cr, 2809 int *rvalp) 2810 { 2811 int err; 2812 2813 err = (*(vp)->v_op->vop_ioctl)(vp, cmd, arg, flag, cr, rvalp); 2814 VOPSTATS_UPDATE(vp, ioctl); 2815 return (err); 2816 } 2817 2818 int 2819 fop_setfl( 2820 vnode_t *vp, 2821 int oflags, 2822 int nflags, 2823 cred_t *cr) 2824 { 2825 int err; 2826 2827 err = (*(vp)->v_op->vop_setfl)(vp, oflags, nflags, cr); 2828 VOPSTATS_UPDATE(vp, setfl); 2829 return (err); 2830 } 2831 2832 int 2833 fop_getattr( 2834 vnode_t *vp, 2835 vattr_t *vap, 2836 int flags, 2837 cred_t *cr) 2838 { 2839 int err; 2840 2841 err = (*(vp)->v_op->vop_getattr)(vp, vap, flags, cr); 2842 VOPSTATS_UPDATE(vp, getattr); 2843 return (err); 2844 } 2845 2846 int 2847 fop_setattr( 2848 vnode_t *vp, 2849 vattr_t *vap, 2850 int flags, 2851 cred_t *cr, 2852 caller_context_t *ct) 2853 { 2854 int err; 2855 2856 err = (*(vp)->v_op->vop_setattr)(vp, vap, flags, cr, ct); 2857 VOPSTATS_UPDATE(vp, setattr); 2858 return (err); 2859 } 2860 2861 int 2862 fop_access( 2863 vnode_t *vp, 2864 int mode, 2865 int flags, 2866 cred_t *cr) 2867 { 2868 int err; 2869 2870 err = (*(vp)->v_op->vop_access)(vp, mode, flags, cr); 2871 VOPSTATS_UPDATE(vp, access); 2872 return (err); 2873 } 2874 2875 int 2876 fop_lookup( 2877 vnode_t *dvp, 2878 char *nm, 2879 vnode_t **vpp, 2880 pathname_t *pnp, 2881 int flags, 2882 vnode_t *rdir, 2883 cred_t *cr) 2884 { 2885 int ret; 2886 2887 ret = (*(dvp)->v_op->vop_lookup)(dvp, nm, vpp, pnp, flags, rdir, cr); 2888 if (ret == 0 && *vpp) { 2889 VOPSTATS_UPDATE(*vpp, lookup); 2890 if ((*vpp)->v_path == NULL) { 2891 vn_setpath(rootdir, dvp, *vpp, nm, strlen(nm)); 2892 } 2893 } 2894 2895 return (ret); 2896 } 2897 2898 int 2899 fop_create( 2900 vnode_t *dvp, 2901 char *name, 2902 vattr_t *vap, 2903 vcexcl_t excl, 2904 int mode, 2905 vnode_t **vpp, 2906 cred_t *cr, 2907 int flag) 2908 { 2909 int ret; 2910 2911 ret = (*(dvp)->v_op->vop_create) 2912 (dvp, name, vap, excl, mode, vpp, cr, flag); 2913 if (ret == 0 && *vpp) { 2914 VOPSTATS_UPDATE(*vpp, create); 2915 if ((*vpp)->v_path == NULL) { 2916 vn_setpath(rootdir, dvp, *vpp, name, strlen(name)); 2917 } 2918 } 2919 2920 return (ret); 2921 } 2922 2923 int 2924 fop_remove( 2925 vnode_t *dvp, 2926 char *nm, 2927 cred_t *cr) 2928 { 2929 int err; 2930 2931 err = (*(dvp)->v_op->vop_remove)(dvp, nm, cr); 2932 VOPSTATS_UPDATE(dvp, remove); 2933 return (err); 2934 } 2935 2936 int 2937 fop_link( 2938 vnode_t *tdvp, 2939 vnode_t *svp, 2940 char *tnm, 2941 cred_t *cr) 2942 { 2943 int err; 2944 2945 err = (*(tdvp)->v_op->vop_link)(tdvp, svp, tnm, cr); 2946 VOPSTATS_UPDATE(tdvp, link); 2947 return (err); 2948 } 2949 2950 int 2951 fop_rename( 2952 vnode_t *sdvp, 2953 char *snm, 2954 vnode_t *tdvp, 2955 char *tnm, 2956 cred_t *cr) 2957 { 2958 int err; 2959 2960 err = (*(sdvp)->v_op->vop_rename)(sdvp, snm, tdvp, tnm, cr); 2961 VOPSTATS_UPDATE(sdvp, rename); 2962 return (err); 2963 } 2964 2965 int 2966 fop_mkdir( 2967 vnode_t *dvp, 2968 char *dirname, 2969 vattr_t *vap, 2970 vnode_t **vpp, 2971 cred_t *cr) 2972 { 2973 int ret; 2974 2975 ret = (*(dvp)->v_op->vop_mkdir)(dvp, dirname, vap, vpp, cr); 2976 if (ret == 0 && *vpp) { 2977 VOPSTATS_UPDATE(*vpp, mkdir); 2978 if ((*vpp)->v_path == NULL) { 2979 vn_setpath(rootdir, dvp, *vpp, dirname, 2980 strlen(dirname)); 2981 } 2982 } 2983 2984 return (ret); 2985 } 2986 2987 int 2988 fop_rmdir( 2989 vnode_t *dvp, 2990 char *nm, 2991 vnode_t *cdir, 2992 cred_t *cr) 2993 { 2994 int err; 2995 2996 err = (*(dvp)->v_op->vop_rmdir)(dvp, nm, cdir, cr); 2997 VOPSTATS_UPDATE(dvp, rmdir); 2998 return (err); 2999 } 3000 3001 int 3002 fop_readdir( 3003 vnode_t *vp, 3004 uio_t *uiop, 3005 cred_t *cr, 3006 int *eofp) 3007 { 3008 int err; 3009 ssize_t resid_start = uiop->uio_resid; 3010 3011 err = (*(vp)->v_op->vop_readdir)(vp, uiop, cr, eofp); 3012 VOPSTATS_UPDATE_IO(vp, readdir, 3013 readdir_bytes, (resid_start - uiop->uio_resid)); 3014 return (err); 3015 } 3016 3017 int 3018 fop_symlink( 3019 vnode_t *dvp, 3020 char *linkname, 3021 vattr_t *vap, 3022 char *target, 3023 cred_t *cr) 3024 { 3025 int err; 3026 3027 err = (*(dvp)->v_op->vop_symlink) (dvp, linkname, vap, target, cr); 3028 VOPSTATS_UPDATE(dvp, symlink); 3029 return (err); 3030 } 3031 3032 int 3033 fop_readlink( 3034 vnode_t *vp, 3035 uio_t *uiop, 3036 cred_t *cr) 3037 { 3038 int err; 3039 3040 err = (*(vp)->v_op->vop_readlink)(vp, uiop, cr); 3041 VOPSTATS_UPDATE(vp, readlink); 3042 return (err); 3043 } 3044 3045 int 3046 fop_fsync( 3047 vnode_t *vp, 3048 int syncflag, 3049 cred_t *cr) 3050 { 3051 int err; 3052 3053 err = (*(vp)->v_op->vop_fsync)(vp, syncflag, cr); 3054 VOPSTATS_UPDATE(vp, fsync); 3055 return (err); 3056 } 3057 3058 void 3059 fop_inactive( 3060 vnode_t *vp, 3061 cred_t *cr) 3062 { 3063 /* Need to update stats before vop call since we may lose the vnode */ 3064 VOPSTATS_UPDATE(vp, inactive); 3065 (*(vp)->v_op->vop_inactive)(vp, cr); 3066 } 3067 3068 int 3069 fop_fid( 3070 vnode_t *vp, 3071 fid_t *fidp) 3072 { 3073 int err; 3074 3075 err = (*(vp)->v_op->vop_fid)(vp, fidp); 3076 VOPSTATS_UPDATE(vp, fid); 3077 return (err); 3078 } 3079 3080 int 3081 fop_rwlock( 3082 vnode_t *vp, 3083 int write_lock, 3084 caller_context_t *ct) 3085 { 3086 int ret; 3087 3088 ret = ((*(vp)->v_op->vop_rwlock)(vp, write_lock, ct)); 3089 VOPSTATS_UPDATE(vp, rwlock); 3090 return (ret); 3091 } 3092 3093 void 3094 fop_rwunlock( 3095 vnode_t *vp, 3096 int write_lock, 3097 caller_context_t *ct) 3098 { 3099 (*(vp)->v_op->vop_rwunlock)(vp, write_lock, ct); 3100 VOPSTATS_UPDATE(vp, rwunlock); 3101 } 3102 3103 int 3104 fop_seek( 3105 vnode_t *vp, 3106 offset_t ooff, 3107 offset_t *noffp) 3108 { 3109 int err; 3110 3111 err = (*(vp)->v_op->vop_seek)(vp, ooff, noffp); 3112 VOPSTATS_UPDATE(vp, seek); 3113 return (err); 3114 } 3115 3116 int 3117 fop_cmp( 3118 vnode_t *vp1, 3119 vnode_t *vp2) 3120 { 3121 int err; 3122 3123 err = (*(vp1)->v_op->vop_cmp)(vp1, vp2); 3124 VOPSTATS_UPDATE(vp1, cmp); 3125 return (err); 3126 } 3127 3128 int 3129 fop_frlock( 3130 vnode_t *vp, 3131 int cmd, 3132 flock64_t *bfp, 3133 int flag, 3134 offset_t offset, 3135 struct flk_callback *flk_cbp, 3136 cred_t *cr) 3137 { 3138 int err; 3139 3140 err = (*(vp)->v_op->vop_frlock) 3141 (vp, cmd, bfp, flag, offset, flk_cbp, cr); 3142 VOPSTATS_UPDATE(vp, frlock); 3143 return (err); 3144 } 3145 3146 int 3147 fop_space( 3148 vnode_t *vp, 3149 int cmd, 3150 flock64_t *bfp, 3151 int flag, 3152 offset_t offset, 3153 cred_t *cr, 3154 caller_context_t *ct) 3155 { 3156 int err; 3157 3158 err = (*(vp)->v_op->vop_space)(vp, cmd, bfp, flag, offset, cr, ct); 3159 VOPSTATS_UPDATE(vp, space); 3160 return (err); 3161 } 3162 3163 int 3164 fop_realvp( 3165 vnode_t *vp, 3166 vnode_t **vpp) 3167 { 3168 int err; 3169 3170 err = (*(vp)->v_op->vop_realvp)(vp, vpp); 3171 VOPSTATS_UPDATE(vp, realvp); 3172 return (err); 3173 } 3174 3175 int 3176 fop_getpage( 3177 vnode_t *vp, 3178 offset_t off, 3179 size_t len, 3180 uint_t *protp, 3181 page_t **plarr, 3182 size_t plsz, 3183 struct seg *seg, 3184 caddr_t addr, 3185 enum seg_rw rw, 3186 cred_t *cr) 3187 { 3188 int err; 3189 3190 err = (*(vp)->v_op->vop_getpage) 3191 (vp, off, len, protp, plarr, plsz, seg, addr, rw, cr); 3192 VOPSTATS_UPDATE(vp, getpage); 3193 return (err); 3194 } 3195 3196 int 3197 fop_putpage( 3198 vnode_t *vp, 3199 offset_t off, 3200 size_t len, 3201 int flags, 3202 cred_t *cr) 3203 { 3204 int err; 3205 3206 err = (*(vp)->v_op->vop_putpage)(vp, off, len, flags, cr); 3207 VOPSTATS_UPDATE(vp, putpage); 3208 return (err); 3209 } 3210 3211 int 3212 fop_map( 3213 vnode_t *vp, 3214 offset_t off, 3215 struct as *as, 3216 caddr_t *addrp, 3217 size_t len, 3218 uchar_t prot, 3219 uchar_t maxprot, 3220 uint_t flags, 3221 cred_t *cr) 3222 { 3223 int err; 3224 3225 err = (*(vp)->v_op->vop_map) 3226 (vp, off, as, addrp, len, prot, maxprot, flags, cr); 3227 VOPSTATS_UPDATE(vp, map); 3228 return (err); 3229 } 3230 3231 int 3232 fop_addmap( 3233 vnode_t *vp, 3234 offset_t off, 3235 struct as *as, 3236 caddr_t addr, 3237 size_t len, 3238 uchar_t prot, 3239 uchar_t maxprot, 3240 uint_t flags, 3241 cred_t *cr) 3242 { 3243 int error; 3244 u_longlong_t delta; 3245 3246 error = (*(vp)->v_op->vop_addmap) 3247 (vp, off, as, addr, len, prot, maxprot, flags, cr); 3248 3249 if ((!error) && (vp->v_type == VREG)) { 3250 delta = (u_longlong_t)btopr(len); 3251 /* 3252 * If file is declared MAP_PRIVATE, it can't be written back 3253 * even if open for write. Handle as read. 3254 */ 3255 if (flags & MAP_PRIVATE) { 3256 atomic_add_64((uint64_t *)(&(vp->v_mmap_read)), 3257 (int64_t)delta); 3258 } else { 3259 /* 3260 * atomic_add_64 forces the fetch of a 64 bit value to 3261 * be atomic on 32 bit machines 3262 */ 3263 if (maxprot & PROT_WRITE) 3264 atomic_add_64((uint64_t *)(&(vp->v_mmap_write)), 3265 (int64_t)delta); 3266 if (maxprot & PROT_READ) 3267 atomic_add_64((uint64_t *)(&(vp->v_mmap_read)), 3268 (int64_t)delta); 3269 if (maxprot & PROT_EXEC) 3270 atomic_add_64((uint64_t *)(&(vp->v_mmap_read)), 3271 (int64_t)delta); 3272 } 3273 } 3274 VOPSTATS_UPDATE(vp, addmap); 3275 return (error); 3276 } 3277 3278 int 3279 fop_delmap( 3280 vnode_t *vp, 3281 offset_t off, 3282 struct as *as, 3283 caddr_t addr, 3284 size_t len, 3285 uint_t prot, 3286 uint_t maxprot, 3287 uint_t flags, 3288 cred_t *cr) 3289 { 3290 int error; 3291 u_longlong_t delta; 3292 error = (*(vp)->v_op->vop_delmap) 3293 (vp, off, as, addr, len, prot, maxprot, flags, cr); 3294 3295 /* 3296 * NFS calls into delmap twice, the first time 3297 * it simply establishes a callback mechanism and returns EAGAIN 3298 * while the real work is being done upon the second invocation. 3299 * We have to detect this here and only decrement the counts upon 3300 * the second delmap request. 3301 */ 3302 if ((error != EAGAIN) && (vp->v_type == VREG)) { 3303 3304 delta = (u_longlong_t)btopr(len); 3305 3306 if (flags & MAP_PRIVATE) { 3307 atomic_add_64((uint64_t *)(&(vp->v_mmap_read)), 3308 (int64_t)(-delta)); 3309 } else { 3310 /* 3311 * atomic_add_64 forces the fetch of a 64 bit value 3312 * to be atomic on 32 bit machines 3313 */ 3314 if (maxprot & PROT_WRITE) 3315 atomic_add_64((uint64_t *)(&(vp->v_mmap_write)), 3316 (int64_t)(-delta)); 3317 if (maxprot & PROT_READ) 3318 atomic_add_64((uint64_t *)(&(vp->v_mmap_read)), 3319 (int64_t)(-delta)); 3320 if (maxprot & PROT_EXEC) 3321 atomic_add_64((uint64_t *)(&(vp->v_mmap_read)), 3322 (int64_t)(-delta)); 3323 } 3324 } 3325 VOPSTATS_UPDATE(vp, delmap); 3326 return (error); 3327 } 3328 3329 3330 int 3331 fop_poll( 3332 vnode_t *vp, 3333 short events, 3334 int anyyet, 3335 short *reventsp, 3336 struct pollhead **phpp) 3337 { 3338 int err; 3339 3340 err = (*(vp)->v_op->vop_poll)(vp, events, anyyet, reventsp, phpp); 3341 VOPSTATS_UPDATE(vp, poll); 3342 return (err); 3343 } 3344 3345 int 3346 fop_dump( 3347 vnode_t *vp, 3348 caddr_t addr, 3349 int lbdn, 3350 int dblks) 3351 { 3352 int err; 3353 3354 err = (*(vp)->v_op->vop_dump)(vp, addr, lbdn, dblks); 3355 VOPSTATS_UPDATE(vp, dump); 3356 return (err); 3357 } 3358 3359 int 3360 fop_pathconf( 3361 vnode_t *vp, 3362 int cmd, 3363 ulong_t *valp, 3364 cred_t *cr) 3365 { 3366 int err; 3367 3368 err = (*(vp)->v_op->vop_pathconf)(vp, cmd, valp, cr); 3369 VOPSTATS_UPDATE(vp, pathconf); 3370 return (err); 3371 } 3372 3373 int 3374 fop_pageio( 3375 vnode_t *vp, 3376 struct page *pp, 3377 u_offset_t io_off, 3378 size_t io_len, 3379 int flags, 3380 cred_t *cr) 3381 { 3382 int err; 3383 3384 err = (*(vp)->v_op->vop_pageio)(vp, pp, io_off, io_len, flags, cr); 3385 VOPSTATS_UPDATE(vp, pageio); 3386 return (err); 3387 } 3388 3389 int 3390 fop_dumpctl( 3391 vnode_t *vp, 3392 int action, 3393 int *blkp) 3394 { 3395 int err; 3396 err = (*(vp)->v_op->vop_dumpctl)(vp, action, blkp); 3397 VOPSTATS_UPDATE(vp, dumpctl); 3398 return (err); 3399 } 3400 3401 void 3402 fop_dispose( 3403 vnode_t *vp, 3404 page_t *pp, 3405 int flag, 3406 int dn, 3407 cred_t *cr) 3408 { 3409 /* Must do stats first since it's possible to lose the vnode */ 3410 VOPSTATS_UPDATE(vp, dispose); 3411 (*(vp)->v_op->vop_dispose)(vp, pp, flag, dn, cr); 3412 } 3413 3414 int 3415 fop_setsecattr( 3416 vnode_t *vp, 3417 vsecattr_t *vsap, 3418 int flag, 3419 cred_t *cr) 3420 { 3421 int err; 3422 3423 err = (*(vp)->v_op->vop_setsecattr) (vp, vsap, flag, cr); 3424 VOPSTATS_UPDATE(vp, setsecattr); 3425 return (err); 3426 } 3427 3428 int 3429 fop_getsecattr( 3430 vnode_t *vp, 3431 vsecattr_t *vsap, 3432 int flag, 3433 cred_t *cr) 3434 { 3435 int err; 3436 3437 err = (*(vp)->v_op->vop_getsecattr) (vp, vsap, flag, cr); 3438 VOPSTATS_UPDATE(vp, getsecattr); 3439 return (err); 3440 } 3441 3442 int 3443 fop_shrlock( 3444 vnode_t *vp, 3445 int cmd, 3446 struct shrlock *shr, 3447 int flag, 3448 cred_t *cr) 3449 { 3450 int err; 3451 3452 err = (*(vp)->v_op->vop_shrlock)(vp, cmd, shr, flag, cr); 3453 VOPSTATS_UPDATE(vp, shrlock); 3454 return (err); 3455 } 3456 3457 int 3458 fop_vnevent(vnode_t *vp, vnevent_t vnevent) 3459 { 3460 int err; 3461 3462 err = (*(vp)->v_op->vop_vnevent)(vp, vnevent); 3463 VOPSTATS_UPDATE(vp, vnevent); 3464 return (err); 3465 } 3466