1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */ 27 /* All Rights Reserved */ 28 29 /* 30 * University Copyright- Copyright (c) 1982, 1986, 1988 31 * The Regents of the University of California 32 * All Rights Reserved 33 * 34 * University Acknowledgment- Portions of this document are derived from 35 * software developed by the University of California, Berkeley, and its 36 * contributors. 37 */ 38 39 40 #pragma ident "%Z%%M% %I% %E% SMI" 41 42 #include <sys/types.h> 43 #include <sys/t_lock.h> 44 #include <sys/param.h> 45 #include <sys/errno.h> 46 #include <sys/user.h> 47 #include <sys/fstyp.h> 48 #include <sys/kmem.h> 49 #include <sys/systm.h> 50 #include <sys/proc.h> 51 #include <sys/mount.h> 52 #include <sys/vfs.h> 53 #include <sys/vfs_opreg.h> 54 #include <sys/fem.h> 55 #include <sys/mntent.h> 56 #include <sys/stat.h> 57 #include <sys/statvfs.h> 58 #include <sys/statfs.h> 59 #include <sys/cred.h> 60 #include <sys/vnode.h> 61 #include <sys/rwstlock.h> 62 #include <sys/dnlc.h> 63 #include <sys/file.h> 64 #include <sys/time.h> 65 #include <sys/atomic.h> 66 #include <sys/cmn_err.h> 67 #include <sys/buf.h> 68 #include <sys/swap.h> 69 #include <sys/debug.h> 70 #include <sys/vnode.h> 71 #include <sys/modctl.h> 72 #include <sys/ddi.h> 73 #include <sys/pathname.h> 74 #include <sys/bootconf.h> 75 #include <sys/dumphdr.h> 76 #include <sys/dc_ki.h> 77 #include <sys/poll.h> 78 #include <sys/sunddi.h> 79 #include <sys/sysmacros.h> 80 #include <sys/zone.h> 81 #include <sys/policy.h> 82 #include <sys/ctfs.h> 83 #include <sys/objfs.h> 84 #include <sys/console.h> 85 #include <sys/reboot.h> 86 #include <sys/attr.h> 87 #include <sys/spa.h> 88 #include <sys/lofi.h> 89 90 #include <vm/page.h> 91 92 #include <fs/fs_subr.h> 93 94 /* Private interfaces to create vopstats-related data structures */ 95 extern void initialize_vopstats(vopstats_t *); 96 extern vopstats_t *get_fstype_vopstats(struct vfs *, struct vfssw *); 97 extern vsk_anchor_t *get_vskstat_anchor(struct vfs *); 98 99 static void vfs_clearmntopt_nolock(mntopts_t *, const char *, int); 100 static void vfs_setmntopt_nolock(mntopts_t *, const char *, 101 const char *, int, int); 102 static int vfs_optionisset_nolock(const mntopts_t *, const char *, char **); 103 static void vfs_freemnttab(struct vfs *); 104 static void vfs_freeopt(mntopt_t *); 105 static void vfs_swapopttbl_nolock(mntopts_t *, mntopts_t *); 106 static void vfs_swapopttbl(mntopts_t *, mntopts_t *); 107 static void vfs_copyopttbl_extend(const mntopts_t *, mntopts_t *, int); 108 static void vfs_createopttbl_extend(mntopts_t *, const char *, 109 const mntopts_t *); 110 static char **vfs_copycancelopt_extend(char **const, int); 111 static void vfs_freecancelopt(char **); 112 static void getrootfs(char **, char **); 113 static int getmacpath(dev_info_t *, void *); 114 static void vfs_mnttabvp_setup(void); 115 116 struct ipmnt { 117 struct ipmnt *mip_next; 118 dev_t mip_dev; 119 struct vfs *mip_vfsp; 120 }; 121 122 static kmutex_t vfs_miplist_mutex; 123 static struct ipmnt *vfs_miplist = NULL; 124 static struct ipmnt *vfs_miplist_end = NULL; 125 126 static kmem_cache_t *vfs_cache; /* Pointer to VFS kmem cache */ 127 128 /* 129 * VFS global data. 130 */ 131 vnode_t *rootdir; /* pointer to root inode vnode. */ 132 vnode_t *devicesdir; /* pointer to inode of devices root */ 133 vnode_t *devdir; /* pointer to inode of dev root */ 134 135 char *server_rootpath; /* root path for diskless clients */ 136 char *server_hostname; /* hostname of diskless server */ 137 138 static struct vfs root; 139 static struct vfs devices; 140 static struct vfs dev; 141 struct vfs *rootvfs = &root; /* pointer to root vfs; head of VFS list. */ 142 rvfs_t *rvfs_list; /* array of vfs ptrs for vfs hash list */ 143 int vfshsz = 512; /* # of heads/locks in vfs hash arrays */ 144 /* must be power of 2! */ 145 timespec_t vfs_mnttab_ctime; /* mnttab created time */ 146 timespec_t vfs_mnttab_mtime; /* mnttab last modified time */ 147 char *vfs_dummyfstype = "\0"; 148 struct pollhead vfs_pollhd; /* for mnttab pollers */ 149 struct vnode *vfs_mntdummyvp; /* to fake mnttab read/write for file events */ 150 int mntfstype; /* will be set once mnt fs is mounted */ 151 152 /* 153 * Table for generic options recognized in the VFS layer and acted 154 * on at this level before parsing file system specific options. 155 * The nosuid option is stronger than any of the devices and setuid 156 * options, so those are canceled when nosuid is seen. 157 * 158 * All options which are added here need to be added to the 159 * list of standard options in usr/src/cmd/fs.d/fslib.c as well. 160 */ 161 /* 162 * VFS Mount options table 163 */ 164 static char *ro_cancel[] = { MNTOPT_RW, NULL }; 165 static char *rw_cancel[] = { MNTOPT_RO, NULL }; 166 static char *suid_cancel[] = { MNTOPT_NOSUID, NULL }; 167 static char *nosuid_cancel[] = { MNTOPT_SUID, MNTOPT_DEVICES, MNTOPT_NODEVICES, 168 MNTOPT_NOSETUID, MNTOPT_SETUID, NULL }; 169 static char *devices_cancel[] = { MNTOPT_NODEVICES, NULL }; 170 static char *nodevices_cancel[] = { MNTOPT_DEVICES, NULL }; 171 static char *setuid_cancel[] = { MNTOPT_NOSETUID, NULL }; 172 static char *nosetuid_cancel[] = { MNTOPT_SETUID, NULL }; 173 static char *nbmand_cancel[] = { MNTOPT_NONBMAND, NULL }; 174 static char *nonbmand_cancel[] = { MNTOPT_NBMAND, NULL }; 175 static char *exec_cancel[] = { MNTOPT_NOEXEC, NULL }; 176 static char *noexec_cancel[] = { MNTOPT_EXEC, NULL }; 177 178 static const mntopt_t mntopts[] = { 179 /* 180 * option name cancel options default arg flags 181 */ 182 { MNTOPT_REMOUNT, NULL, NULL, 183 MO_NODISPLAY, (void *)0 }, 184 { MNTOPT_RO, ro_cancel, NULL, 0, 185 (void *)0 }, 186 { MNTOPT_RW, rw_cancel, NULL, 0, 187 (void *)0 }, 188 { MNTOPT_SUID, suid_cancel, NULL, 0, 189 (void *)0 }, 190 { MNTOPT_NOSUID, nosuid_cancel, NULL, 0, 191 (void *)0 }, 192 { MNTOPT_DEVICES, devices_cancel, NULL, 0, 193 (void *)0 }, 194 { MNTOPT_NODEVICES, nodevices_cancel, NULL, 0, 195 (void *)0 }, 196 { MNTOPT_SETUID, setuid_cancel, NULL, 0, 197 (void *)0 }, 198 { MNTOPT_NOSETUID, nosetuid_cancel, NULL, 0, 199 (void *)0 }, 200 { MNTOPT_NBMAND, nbmand_cancel, NULL, 0, 201 (void *)0 }, 202 { MNTOPT_NONBMAND, nonbmand_cancel, NULL, 0, 203 (void *)0 }, 204 { MNTOPT_EXEC, exec_cancel, NULL, 0, 205 (void *)0 }, 206 { MNTOPT_NOEXEC, noexec_cancel, NULL, 0, 207 (void *)0 }, 208 }; 209 210 const mntopts_t vfs_mntopts = { 211 sizeof (mntopts) / sizeof (mntopt_t), 212 (mntopt_t *)&mntopts[0] 213 }; 214 215 /* 216 * File system operation dispatch functions. 217 */ 218 219 int 220 fsop_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr) 221 { 222 return (*(vfsp)->vfs_op->vfs_mount)(vfsp, mvp, uap, cr); 223 } 224 225 int 226 fsop_unmount(vfs_t *vfsp, int flag, cred_t *cr) 227 { 228 return (*(vfsp)->vfs_op->vfs_unmount)(vfsp, flag, cr); 229 } 230 231 int 232 fsop_root(vfs_t *vfsp, vnode_t **vpp) 233 { 234 refstr_t *mntpt; 235 int ret = (*(vfsp)->vfs_op->vfs_root)(vfsp, vpp); 236 /* 237 * Make sure this root has a path. With lofs, it is possible to have 238 * a NULL mountpoint. 239 */ 240 if (ret == 0 && vfsp->vfs_mntpt != NULL && (*vpp)->v_path == NULL) { 241 mntpt = vfs_getmntpoint(vfsp); 242 vn_setpath_str(*vpp, refstr_value(mntpt), 243 strlen(refstr_value(mntpt))); 244 refstr_rele(mntpt); 245 } 246 247 return (ret); 248 } 249 250 int 251 fsop_statfs(vfs_t *vfsp, statvfs64_t *sp) 252 { 253 return (*(vfsp)->vfs_op->vfs_statvfs)(vfsp, sp); 254 } 255 256 int 257 fsop_sync(vfs_t *vfsp, short flag, cred_t *cr) 258 { 259 return (*(vfsp)->vfs_op->vfs_sync)(vfsp, flag, cr); 260 } 261 262 int 263 fsop_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp) 264 { 265 /* 266 * In order to handle system attribute fids in a manner 267 * transparent to the underlying fs, we embed the fid for 268 * the sysattr parent object in the sysattr fid and tack on 269 * some extra bytes that only the sysattr layer knows about. 270 * 271 * This guarantees that sysattr fids are larger than other fids 272 * for this vfs. If the vfs supports sysattrs (implied 273 * by VFSFT_XVATTR support), we cannot have a size collision 274 * with XATTR_FIDSZ. 275 */ 276 if (vfs_has_feature(vfsp, VFSFT_XVATTR) && 277 fidp->fid_len == XATTR_FIDSZ) 278 return (xattr_dir_vget(vfsp, vpp, fidp)); 279 280 return (*(vfsp)->vfs_op->vfs_vget)(vfsp, vpp, fidp); 281 } 282 283 int 284 fsop_mountroot(vfs_t *vfsp, enum whymountroot reason) 285 { 286 return (*(vfsp)->vfs_op->vfs_mountroot)(vfsp, reason); 287 } 288 289 void 290 fsop_freefs(vfs_t *vfsp) 291 { 292 (*(vfsp)->vfs_op->vfs_freevfs)(vfsp); 293 } 294 295 int 296 fsop_vnstate(vfs_t *vfsp, vnode_t *vp, vntrans_t nstate) 297 { 298 return ((*(vfsp)->vfs_op->vfs_vnstate)(vfsp, vp, nstate)); 299 } 300 301 int 302 fsop_sync_by_kind(int fstype, short flag, cred_t *cr) 303 { 304 ASSERT((fstype >= 0) && (fstype < nfstype)); 305 306 if (ALLOCATED_VFSSW(&vfssw[fstype]) && VFS_INSTALLED(&vfssw[fstype])) 307 return (*vfssw[fstype].vsw_vfsops.vfs_sync) (NULL, flag, cr); 308 else 309 return (ENOTSUP); 310 } 311 312 /* 313 * File system initialization. vfs_setfsops() must be called from a file 314 * system's init routine. 315 */ 316 317 static int 318 fs_copyfsops(const fs_operation_def_t *template, vfsops_t *actual, 319 int *unused_ops) 320 { 321 static const fs_operation_trans_def_t vfs_ops_table[] = { 322 VFSNAME_MOUNT, offsetof(vfsops_t, vfs_mount), 323 fs_nosys, fs_nosys, 324 325 VFSNAME_UNMOUNT, offsetof(vfsops_t, vfs_unmount), 326 fs_nosys, fs_nosys, 327 328 VFSNAME_ROOT, offsetof(vfsops_t, vfs_root), 329 fs_nosys, fs_nosys, 330 331 VFSNAME_STATVFS, offsetof(vfsops_t, vfs_statvfs), 332 fs_nosys, fs_nosys, 333 334 VFSNAME_SYNC, offsetof(vfsops_t, vfs_sync), 335 (fs_generic_func_p) fs_sync, 336 (fs_generic_func_p) fs_sync, /* No errors allowed */ 337 338 VFSNAME_VGET, offsetof(vfsops_t, vfs_vget), 339 fs_nosys, fs_nosys, 340 341 VFSNAME_MOUNTROOT, offsetof(vfsops_t, vfs_mountroot), 342 fs_nosys, fs_nosys, 343 344 VFSNAME_FREEVFS, offsetof(vfsops_t, vfs_freevfs), 345 (fs_generic_func_p)fs_freevfs, 346 (fs_generic_func_p)fs_freevfs, /* Shouldn't fail */ 347 348 VFSNAME_VNSTATE, offsetof(vfsops_t, vfs_vnstate), 349 (fs_generic_func_p)fs_nosys, 350 (fs_generic_func_p)fs_nosys, 351 352 NULL, 0, NULL, NULL 353 }; 354 355 return (fs_build_vector(actual, unused_ops, vfs_ops_table, template)); 356 } 357 358 void 359 zfs_boot_init() { 360 361 if (strcmp(rootfs.bo_fstype, MNTTYPE_ZFS) == 0) 362 spa_boot_init(); 363 } 364 365 int 366 vfs_setfsops(int fstype, const fs_operation_def_t *template, vfsops_t **actual) 367 { 368 int error; 369 int unused_ops; 370 371 /* 372 * Verify that fstype refers to a valid fs. Note that 373 * 0 is valid since it's used to set "stray" ops. 374 */ 375 if ((fstype < 0) || (fstype >= nfstype)) 376 return (EINVAL); 377 378 if (!ALLOCATED_VFSSW(&vfssw[fstype])) 379 return (EINVAL); 380 381 /* Set up the operations vector. */ 382 383 error = fs_copyfsops(template, &vfssw[fstype].vsw_vfsops, &unused_ops); 384 385 if (error != 0) 386 return (error); 387 388 vfssw[fstype].vsw_flag |= VSW_INSTALLED; 389 390 if (actual != NULL) 391 *actual = &vfssw[fstype].vsw_vfsops; 392 393 #if DEBUG 394 if (unused_ops != 0) 395 cmn_err(CE_WARN, "vfs_setfsops: %s: %d operations supplied " 396 "but not used", vfssw[fstype].vsw_name, unused_ops); 397 #endif 398 399 return (0); 400 } 401 402 int 403 vfs_makefsops(const fs_operation_def_t *template, vfsops_t **actual) 404 { 405 int error; 406 int unused_ops; 407 408 *actual = (vfsops_t *)kmem_alloc(sizeof (vfsops_t), KM_SLEEP); 409 410 error = fs_copyfsops(template, *actual, &unused_ops); 411 if (error != 0) { 412 kmem_free(*actual, sizeof (vfsops_t)); 413 *actual = NULL; 414 return (error); 415 } 416 417 return (0); 418 } 419 420 /* 421 * Free a vfsops structure created as a result of vfs_makefsops(). 422 * NOTE: For a vfsops structure initialized by vfs_setfsops(), use 423 * vfs_freevfsops_by_type(). 424 */ 425 void 426 vfs_freevfsops(vfsops_t *vfsops) 427 { 428 kmem_free(vfsops, sizeof (vfsops_t)); 429 } 430 431 /* 432 * Since the vfsops structure is part of the vfssw table and wasn't 433 * really allocated, we're not really freeing anything. We keep 434 * the name for consistency with vfs_freevfsops(). We do, however, 435 * need to take care of a little bookkeeping. 436 * NOTE: For a vfsops structure created by vfs_setfsops(), use 437 * vfs_freevfsops_by_type(). 438 */ 439 int 440 vfs_freevfsops_by_type(int fstype) 441 { 442 443 /* Verify that fstype refers to a loaded fs (and not fsid 0). */ 444 if ((fstype <= 0) || (fstype >= nfstype)) 445 return (EINVAL); 446 447 WLOCK_VFSSW(); 448 if ((vfssw[fstype].vsw_flag & VSW_INSTALLED) == 0) { 449 WUNLOCK_VFSSW(); 450 return (EINVAL); 451 } 452 453 vfssw[fstype].vsw_flag &= ~VSW_INSTALLED; 454 WUNLOCK_VFSSW(); 455 456 return (0); 457 } 458 459 /* Support routines used to reference vfs_op */ 460 461 /* Set the operations vector for a vfs */ 462 void 463 vfs_setops(vfs_t *vfsp, vfsops_t *vfsops) 464 { 465 vfsops_t *op; 466 467 ASSERT(vfsp != NULL); 468 ASSERT(vfsops != NULL); 469 470 op = vfsp->vfs_op; 471 membar_consumer(); 472 if (vfsp->vfs_femhead == NULL && 473 casptr(&vfsp->vfs_op, op, vfsops) == op) { 474 return; 475 } 476 fsem_setvfsops(vfsp, vfsops); 477 } 478 479 /* Retrieve the operations vector for a vfs */ 480 vfsops_t * 481 vfs_getops(vfs_t *vfsp) 482 { 483 vfsops_t *op; 484 485 ASSERT(vfsp != NULL); 486 487 op = vfsp->vfs_op; 488 membar_consumer(); 489 if (vfsp->vfs_femhead == NULL && op == vfsp->vfs_op) { 490 return (op); 491 } else { 492 return (fsem_getvfsops(vfsp)); 493 } 494 } 495 496 /* 497 * Returns non-zero (1) if the vfsops matches that of the vfs. 498 * Returns zero (0) if not. 499 */ 500 int 501 vfs_matchops(vfs_t *vfsp, vfsops_t *vfsops) 502 { 503 return (vfs_getops(vfsp) == vfsops); 504 } 505 506 /* 507 * Returns non-zero (1) if the file system has installed a non-default, 508 * non-error vfs_sync routine. Returns zero (0) otherwise. 509 */ 510 int 511 vfs_can_sync(vfs_t *vfsp) 512 { 513 /* vfs_sync() routine is not the default/error function */ 514 return (vfs_getops(vfsp)->vfs_sync != fs_sync); 515 } 516 517 /* 518 * Initialize a vfs structure. 519 */ 520 void 521 vfs_init(vfs_t *vfsp, vfsops_t *op, void *data) 522 { 523 /* Other initialization has been moved to vfs_alloc() */ 524 vfsp->vfs_count = 0; 525 vfsp->vfs_next = vfsp; 526 vfsp->vfs_prev = vfsp; 527 vfsp->vfs_zone_next = vfsp; 528 vfsp->vfs_zone_prev = vfsp; 529 vfsp->vfs_lofi_minor = 0; 530 sema_init(&vfsp->vfs_reflock, 1, NULL, SEMA_DEFAULT, NULL); 531 vfsimpl_setup(vfsp); 532 vfsp->vfs_data = (data); 533 vfs_setops((vfsp), (op)); 534 } 535 536 /* 537 * Allocate and initialize the vfs implementation private data 538 * structure, vfs_impl_t. 539 */ 540 void 541 vfsimpl_setup(vfs_t *vfsp) 542 { 543 int i; 544 545 if (vfsp->vfs_implp != NULL) { 546 return; 547 } 548 549 vfsp->vfs_implp = kmem_alloc(sizeof (vfs_impl_t), KM_SLEEP); 550 /* Note that these are #define'd in vfs.h */ 551 vfsp->vfs_vskap = NULL; 552 vfsp->vfs_fstypevsp = NULL; 553 554 /* Set size of counted array, then zero the array */ 555 vfsp->vfs_featureset[0] = VFS_FEATURE_MAXSZ - 1; 556 for (i = 1; i < VFS_FEATURE_MAXSZ; i++) { 557 vfsp->vfs_featureset[i] = 0; 558 } 559 } 560 561 /* 562 * Release the vfs_impl_t structure, if it exists. Some unbundled 563 * filesystems may not use the newer version of vfs and thus 564 * would not contain this implementation private data structure. 565 */ 566 void 567 vfsimpl_teardown(vfs_t *vfsp) 568 { 569 vfs_impl_t *vip = vfsp->vfs_implp; 570 571 if (vip == NULL) 572 return; 573 574 kmem_free(vfsp->vfs_implp, sizeof (vfs_impl_t)); 575 vfsp->vfs_implp = NULL; 576 } 577 578 /* 579 * VFS system calls: mount, umount, syssync, statfs, fstatfs, statvfs, 580 * fstatvfs, and sysfs moved to common/syscall. 581 */ 582 583 /* 584 * Update every mounted file system. We call the vfs_sync operation of 585 * each file system type, passing it a NULL vfsp to indicate that all 586 * mounted file systems of that type should be updated. 587 */ 588 void 589 vfs_sync(int flag) 590 { 591 struct vfssw *vswp; 592 RLOCK_VFSSW(); 593 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) { 594 if (ALLOCATED_VFSSW(vswp) && VFS_INSTALLED(vswp)) { 595 vfs_refvfssw(vswp); 596 RUNLOCK_VFSSW(); 597 (void) (*vswp->vsw_vfsops.vfs_sync)(NULL, flag, 598 CRED()); 599 vfs_unrefvfssw(vswp); 600 RLOCK_VFSSW(); 601 } 602 } 603 RUNLOCK_VFSSW(); 604 } 605 606 void 607 sync(void) 608 { 609 vfs_sync(0); 610 } 611 612 /* 613 * External routines. 614 */ 615 616 krwlock_t vfssw_lock; /* lock accesses to vfssw */ 617 618 /* 619 * Lock for accessing the vfs linked list. Initialized in vfs_mountroot(), 620 * but otherwise should be accessed only via vfs_list_lock() and 621 * vfs_list_unlock(). Also used to protect the timestamp for mods to the list. 622 */ 623 static krwlock_t vfslist; 624 625 /* 626 * Mount devfs on /devices. This is done right after root is mounted 627 * to provide device access support for the system 628 */ 629 static void 630 vfs_mountdevices(void) 631 { 632 struct vfssw *vsw; 633 struct vnode *mvp; 634 struct mounta mounta = { /* fake mounta for devfs_mount() */ 635 NULL, 636 NULL, 637 MS_SYSSPACE, 638 NULL, 639 NULL, 640 0, 641 NULL, 642 0 643 }; 644 645 /* 646 * _init devfs module to fill in the vfssw 647 */ 648 if (modload("fs", "devfs") == -1) 649 panic("Cannot _init devfs module"); 650 651 /* 652 * Hold vfs 653 */ 654 RLOCK_VFSSW(); 655 vsw = vfs_getvfsswbyname("devfs"); 656 VFS_INIT(&devices, &vsw->vsw_vfsops, NULL); 657 VFS_HOLD(&devices); 658 659 /* 660 * Locate mount point 661 */ 662 if (lookupname("/devices", UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp)) 663 panic("Cannot find /devices"); 664 665 /* 666 * Perform the mount of /devices 667 */ 668 if (VFS_MOUNT(&devices, mvp, &mounta, CRED())) 669 panic("Cannot mount /devices"); 670 671 RUNLOCK_VFSSW(); 672 673 /* 674 * Set appropriate members and add to vfs list for mnttab display 675 */ 676 vfs_setresource(&devices, "/devices"); 677 vfs_setmntpoint(&devices, "/devices"); 678 679 /* 680 * Hold the root of /devices so it won't go away 681 */ 682 if (VFS_ROOT(&devices, &devicesdir)) 683 panic("vfs_mountdevices: not devices root"); 684 685 if (vfs_lock(&devices) != 0) { 686 VN_RELE(devicesdir); 687 cmn_err(CE_NOTE, "Cannot acquire vfs_lock of /devices"); 688 return; 689 } 690 691 if (vn_vfswlock(mvp) != 0) { 692 vfs_unlock(&devices); 693 VN_RELE(devicesdir); 694 cmn_err(CE_NOTE, "Cannot acquire vfswlock of /devices"); 695 return; 696 } 697 698 vfs_add(mvp, &devices, 0); 699 vn_vfsunlock(mvp); 700 vfs_unlock(&devices); 701 VN_RELE(devicesdir); 702 } 703 704 /* 705 * mount the first instance of /dev to root and remain mounted 706 */ 707 static void 708 vfs_mountdev1(void) 709 { 710 struct vfssw *vsw; 711 struct vnode *mvp; 712 struct mounta mounta = { /* fake mounta for sdev_mount() */ 713 NULL, 714 NULL, 715 MS_SYSSPACE | MS_OVERLAY, 716 NULL, 717 NULL, 718 0, 719 NULL, 720 0 721 }; 722 723 /* 724 * _init dev module to fill in the vfssw 725 */ 726 if (modload("fs", "dev") == -1) 727 cmn_err(CE_PANIC, "Cannot _init dev module\n"); 728 729 /* 730 * Hold vfs 731 */ 732 RLOCK_VFSSW(); 733 vsw = vfs_getvfsswbyname("dev"); 734 VFS_INIT(&dev, &vsw->vsw_vfsops, NULL); 735 VFS_HOLD(&dev); 736 737 /* 738 * Locate mount point 739 */ 740 if (lookupname("/dev", UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp)) 741 cmn_err(CE_PANIC, "Cannot find /dev\n"); 742 743 /* 744 * Perform the mount of /dev 745 */ 746 if (VFS_MOUNT(&dev, mvp, &mounta, CRED())) 747 cmn_err(CE_PANIC, "Cannot mount /dev 1\n"); 748 749 RUNLOCK_VFSSW(); 750 751 /* 752 * Set appropriate members and add to vfs list for mnttab display 753 */ 754 vfs_setresource(&dev, "/dev"); 755 vfs_setmntpoint(&dev, "/dev"); 756 757 /* 758 * Hold the root of /dev so it won't go away 759 */ 760 if (VFS_ROOT(&dev, &devdir)) 761 cmn_err(CE_PANIC, "vfs_mountdev1: not dev root"); 762 763 if (vfs_lock(&dev) != 0) { 764 VN_RELE(devdir); 765 cmn_err(CE_NOTE, "Cannot acquire vfs_lock of /dev"); 766 return; 767 } 768 769 if (vn_vfswlock(mvp) != 0) { 770 vfs_unlock(&dev); 771 VN_RELE(devdir); 772 cmn_err(CE_NOTE, "Cannot acquire vfswlock of /dev"); 773 return; 774 } 775 776 vfs_add(mvp, &dev, 0); 777 vn_vfsunlock(mvp); 778 vfs_unlock(&dev); 779 VN_RELE(devdir); 780 } 781 782 /* 783 * Mount required filesystem. This is done right after root is mounted. 784 */ 785 static void 786 vfs_mountfs(char *module, char *spec, char *path) 787 { 788 struct vnode *mvp; 789 struct mounta mounta; 790 vfs_t *vfsp; 791 792 mounta.flags = MS_SYSSPACE | MS_DATA; 793 mounta.fstype = module; 794 mounta.spec = spec; 795 mounta.dir = path; 796 if (lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp)) { 797 cmn_err(CE_WARN, "Cannot find %s", path); 798 return; 799 } 800 if (domount(NULL, &mounta, mvp, CRED(), &vfsp)) 801 cmn_err(CE_WARN, "Cannot mount %s", path); 802 else 803 VFS_RELE(vfsp); 804 VN_RELE(mvp); 805 } 806 807 /* 808 * vfs_mountroot is called by main() to mount the root filesystem. 809 */ 810 void 811 vfs_mountroot(void) 812 { 813 struct vnode *rvp = NULL; 814 char *path; 815 size_t plen; 816 struct vfssw *vswp; 817 818 rw_init(&vfssw_lock, NULL, RW_DEFAULT, NULL); 819 rw_init(&vfslist, NULL, RW_DEFAULT, NULL); 820 821 /* 822 * Alloc the vfs hash bucket array and locks 823 */ 824 rvfs_list = kmem_zalloc(vfshsz * sizeof (rvfs_t), KM_SLEEP); 825 826 /* 827 * Call machine-dependent routine "rootconf" to choose a root 828 * file system type. 829 */ 830 if (rootconf()) 831 panic("vfs_mountroot: cannot mount root"); 832 /* 833 * Get vnode for '/'. Set up rootdir, u.u_rdir and u.u_cdir 834 * to point to it. These are used by lookuppn() so that it 835 * knows where to start from ('/' or '.'). 836 */ 837 vfs_setmntpoint(rootvfs, "/"); 838 if (VFS_ROOT(rootvfs, &rootdir)) 839 panic("vfs_mountroot: no root vnode"); 840 PTOU(curproc)->u_cdir = rootdir; 841 VN_HOLD(PTOU(curproc)->u_cdir); 842 PTOU(curproc)->u_rdir = NULL; 843 844 /* 845 * Setup the global zone's rootvp, now that it exists. 846 */ 847 global_zone->zone_rootvp = rootdir; 848 VN_HOLD(global_zone->zone_rootvp); 849 850 /* 851 * Notify the module code that it can begin using the 852 * root filesystem instead of the boot program's services. 853 */ 854 modrootloaded = 1; 855 856 /* 857 * Special handling for a ZFS root file system. 858 */ 859 zfs_boot_init(); 860 861 /* 862 * Set up mnttab information for root 863 */ 864 vfs_setresource(rootvfs, rootfs.bo_name); 865 866 /* 867 * Notify cluster software that the root filesystem is available. 868 */ 869 clboot_mountroot(); 870 871 /* Now that we're all done with the root FS, set up its vopstats */ 872 if ((vswp = vfs_getvfsswbyvfsops(vfs_getops(rootvfs))) != NULL) { 873 /* Set flag for statistics collection */ 874 if (vswp->vsw_flag & VSW_STATS) { 875 initialize_vopstats(&rootvfs->vfs_vopstats); 876 rootvfs->vfs_flag |= VFS_STATS; 877 rootvfs->vfs_fstypevsp = 878 get_fstype_vopstats(rootvfs, vswp); 879 rootvfs->vfs_vskap = get_vskstat_anchor(rootvfs); 880 } 881 vfs_unrefvfssw(vswp); 882 } 883 884 /* 885 * Mount /devices, /dev instance 1, /system/contract, /etc/mnttab, 886 * /etc/svc/volatile, /etc/dfs/sharetab, /system/object, and /proc. 887 */ 888 vfs_mountdevices(); 889 vfs_mountdev1(); 890 891 vfs_mountfs("ctfs", "ctfs", CTFS_ROOT); 892 vfs_mountfs("proc", "/proc", "/proc"); 893 vfs_mountfs("mntfs", "/etc/mnttab", "/etc/mnttab"); 894 vfs_mountfs("tmpfs", "/etc/svc/volatile", "/etc/svc/volatile"); 895 vfs_mountfs("objfs", "objfs", OBJFS_ROOT); 896 897 if (getzoneid() == GLOBAL_ZONEID) { 898 vfs_mountfs("sharefs", "sharefs", "/etc/dfs/sharetab"); 899 } 900 901 #ifdef __sparc 902 /* 903 * This bit of magic can go away when we convert sparc to 904 * the new boot architecture based on ramdisk. 905 * 906 * Booting off a mirrored root volume: 907 * At this point, we have booted and mounted root on a 908 * single component of the mirror. Complete the boot 909 * by configuring SVM and converting the root to the 910 * dev_t of the mirrored root device. This dev_t conversion 911 * only works because the underlying device doesn't change. 912 */ 913 if (root_is_svm) { 914 if (svm_rootconf()) { 915 panic("vfs_mountroot: cannot remount root"); 916 } 917 918 /* 919 * mnttab should reflect the new root device 920 */ 921 vfs_lock_wait(rootvfs); 922 vfs_setresource(rootvfs, rootfs.bo_name); 923 vfs_unlock(rootvfs); 924 } 925 #endif /* __sparc */ 926 927 /* 928 * Look up the root device via devfs so that a dv_node is 929 * created for it. The vnode is never VN_RELE()ed. 930 * We allocate more than MAXPATHLEN so that the 931 * buffer passed to i_ddi_prompath_to_devfspath() is 932 * exactly MAXPATHLEN (the function expects a buffer 933 * of that length). 934 */ 935 plen = strlen("/devices"); 936 path = kmem_alloc(plen + MAXPATHLEN, KM_SLEEP); 937 (void) strcpy(path, "/devices"); 938 939 if (i_ddi_prompath_to_devfspath(rootfs.bo_name, path + plen) 940 != DDI_SUCCESS || 941 lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &rvp)) { 942 943 /* NUL terminate in case "path" has garbage */ 944 path[plen + MAXPATHLEN - 1] = '\0'; 945 #ifdef DEBUG 946 cmn_err(CE_WARN, "!Cannot lookup root device: %s", path); 947 #endif 948 } 949 kmem_free(path, plen + MAXPATHLEN); 950 vfs_mnttabvp_setup(); 951 } 952 953 /* 954 * If remount failed and we're in a zone we need to check for the zone 955 * root path and strip it before the call to vfs_setpath(). 956 * 957 * If strpath doesn't begin with the zone_rootpath the original 958 * strpath is returned unchanged. 959 */ 960 static const char * 961 stripzonepath(const char *strpath) 962 { 963 char *str1, *str2; 964 int i; 965 zone_t *zonep = curproc->p_zone; 966 967 if (zonep->zone_rootpath == NULL || strpath == NULL) { 968 return (NULL); 969 } 970 971 /* 972 * we check for the end of the string at one past the 973 * current position because the zone_rootpath always 974 * ends with "/" but we don't want to strip that off. 975 */ 976 str1 = zonep->zone_rootpath; 977 str2 = (char *)strpath; 978 ASSERT(str1[0] != '\0'); 979 for (i = 0; str1[i + 1] != '\0'; i++) { 980 if (str1[i] != str2[i]) 981 return ((char *)strpath); 982 } 983 return (&str2[i]); 984 } 985 986 /* 987 * Check to see if our "block device" is actually a file. If so, 988 * automatically add a lofi device, and keep track of this fact. 989 */ 990 static int 991 lofi_add(const char *fsname, struct vfs *vfsp, 992 mntopts_t *mntopts, struct mounta *uap) 993 { 994 int fromspace = (uap->flags & MS_SYSSPACE) ? 995 UIO_SYSSPACE : UIO_USERSPACE; 996 struct lofi_ioctl *li = NULL; 997 struct vnode *vp = NULL; 998 struct pathname pn = { NULL }; 999 ldi_ident_t ldi_id; 1000 ldi_handle_t ldi_hdl; 1001 vfssw_t *vfssw; 1002 int minor; 1003 int err = 0; 1004 1005 if (fsname == NULL || 1006 (vfssw = vfs_getvfssw(fsname)) == NULL) 1007 return (0); 1008 1009 if (!(vfssw->vsw_flag & VSW_CANLOFI)) { 1010 vfs_unrefvfssw(vfssw); 1011 return (0); 1012 } 1013 1014 vfs_unrefvfssw(vfssw); 1015 vfssw = NULL; 1016 1017 if (pn_get(uap->spec, fromspace, &pn) != 0) 1018 return (0); 1019 1020 if (lookupname(uap->spec, fromspace, FOLLOW, NULL, &vp) != 0) 1021 goto out; 1022 1023 if (vp->v_type != VREG) 1024 goto out; 1025 1026 /* OK, this is a lofi mount. */ 1027 1028 if ((uap->flags & (MS_REMOUNT|MS_GLOBAL)) || 1029 vfs_optionisset_nolock(mntopts, MNTOPT_SUID, NULL) || 1030 vfs_optionisset_nolock(mntopts, MNTOPT_SETUID, NULL) || 1031 vfs_optionisset_nolock(mntopts, MNTOPT_DEVICES, NULL)) { 1032 err = EINVAL; 1033 goto out; 1034 } 1035 1036 ldi_id = ldi_ident_from_anon(); 1037 li = kmem_zalloc(sizeof (*li), KM_SLEEP); 1038 (void) strlcpy(li->li_filename, pn.pn_path, MAXPATHLEN + 1); 1039 1040 /* 1041 * The lofi control node is currently exclusive-open. We'd like 1042 * to improve this, but in the meantime, we'll loop waiting for 1043 * access. 1044 */ 1045 for (;;) { 1046 err = ldi_open_by_name("/dev/lofictl", FREAD | FWRITE | FEXCL, 1047 kcred, &ldi_hdl, ldi_id); 1048 1049 if (err != EBUSY) 1050 break; 1051 1052 if ((err = delay_sig(hz / 8)) == EINTR) 1053 break; 1054 } 1055 1056 if (err) 1057 goto out2; 1058 1059 err = ldi_ioctl(ldi_hdl, LOFI_MAP_FILE, (intptr_t)li, 1060 FREAD | FWRITE | FEXCL | FKIOCTL, kcred, &minor); 1061 1062 (void) ldi_close(ldi_hdl, FREAD | FWRITE | FEXCL, kcred); 1063 1064 if (!err) 1065 vfsp->vfs_lofi_minor = minor; 1066 1067 out2: 1068 ldi_ident_release(ldi_id); 1069 out: 1070 if (li != NULL) 1071 kmem_free(li, sizeof (*li)); 1072 if (vp != NULL) 1073 VN_RELE(vp); 1074 pn_free(&pn); 1075 return (err); 1076 } 1077 1078 static void 1079 lofi_remove(struct vfs *vfsp) 1080 { 1081 struct lofi_ioctl *li = NULL; 1082 ldi_ident_t ldi_id; 1083 ldi_handle_t ldi_hdl; 1084 int err; 1085 1086 if (vfsp->vfs_lofi_minor == 0) 1087 return; 1088 1089 ldi_id = ldi_ident_from_anon(); 1090 1091 li = kmem_zalloc(sizeof (*li), KM_SLEEP); 1092 li->li_minor = vfsp->vfs_lofi_minor; 1093 li->li_cleanup = B_TRUE; 1094 1095 do { 1096 err = ldi_open_by_name("/dev/lofictl", FREAD | FWRITE | FEXCL, 1097 kcred, &ldi_hdl, ldi_id); 1098 } while (err == EBUSY); 1099 1100 if (err) 1101 goto out; 1102 1103 err = ldi_ioctl(ldi_hdl, LOFI_UNMAP_FILE_MINOR, (intptr_t)li, 1104 FREAD | FWRITE | FEXCL | FKIOCTL, kcred, NULL); 1105 1106 (void) ldi_close(ldi_hdl, FREAD | FWRITE | FEXCL, kcred); 1107 1108 if (!err) 1109 vfsp->vfs_lofi_minor = 0; 1110 1111 out: 1112 ldi_ident_release(ldi_id); 1113 if (li != NULL) 1114 kmem_free(li, sizeof (*li)); 1115 } 1116 1117 /* 1118 * Common mount code. Called from the system call entry point, from autofs, 1119 * nfsv4 trigger mounts, and from pxfs. 1120 * 1121 * Takes the effective file system type, mount arguments, the mount point 1122 * vnode, flags specifying whether the mount is a remount and whether it 1123 * should be entered into the vfs list, and credentials. Fills in its vfspp 1124 * parameter with the mounted file system instance's vfs. 1125 * 1126 * Note that the effective file system type is specified as a string. It may 1127 * be null, in which case it's determined from the mount arguments, and may 1128 * differ from the type specified in the mount arguments; this is a hook to 1129 * allow interposition when instantiating file system instances. 1130 * 1131 * The caller is responsible for releasing its own hold on the mount point 1132 * vp (this routine does its own hold when necessary). 1133 * Also note that for remounts, the mount point vp should be the vnode for 1134 * the root of the file system rather than the vnode that the file system 1135 * is mounted on top of. 1136 */ 1137 int 1138 domount(char *fsname, struct mounta *uap, vnode_t *vp, struct cred *credp, 1139 struct vfs **vfspp) 1140 { 1141 struct vfssw *vswp; 1142 vfsops_t *vfsops; 1143 struct vfs *vfsp; 1144 struct vnode *bvp; 1145 dev_t bdev = 0; 1146 mntopts_t mnt_mntopts; 1147 int error = 0; 1148 int copyout_error = 0; 1149 int ovflags; 1150 char *opts = uap->optptr; 1151 char *inargs = opts; 1152 int optlen = uap->optlen; 1153 int remount; 1154 int rdonly; 1155 int nbmand = 0; 1156 int delmip = 0; 1157 int addmip = 0; 1158 int splice = ((uap->flags & MS_NOSPLICE) == 0); 1159 int fromspace = (uap->flags & MS_SYSSPACE) ? 1160 UIO_SYSSPACE : UIO_USERSPACE; 1161 char *resource = NULL, *mountpt = NULL; 1162 refstr_t *oldresource, *oldmntpt; 1163 struct pathname pn, rpn; 1164 vsk_anchor_t *vskap; 1165 char fstname[FSTYPSZ]; 1166 1167 /* 1168 * The v_flag value for the mount point vp is permanently set 1169 * to VVFSLOCK so that no one bypasses the vn_vfs*locks routine 1170 * for mount point locking. 1171 */ 1172 mutex_enter(&vp->v_lock); 1173 vp->v_flag |= VVFSLOCK; 1174 mutex_exit(&vp->v_lock); 1175 1176 mnt_mntopts.mo_count = 0; 1177 /* 1178 * Find the ops vector to use to invoke the file system-specific mount 1179 * method. If the fsname argument is non-NULL, use it directly. 1180 * Otherwise, dig the file system type information out of the mount 1181 * arguments. 1182 * 1183 * A side effect is to hold the vfssw entry. 1184 * 1185 * Mount arguments can be specified in several ways, which are 1186 * distinguished by flag bit settings. The preferred way is to set 1187 * MS_OPTIONSTR, indicating an 8 argument mount with the file system 1188 * type supplied as a character string and the last two arguments 1189 * being a pointer to a character buffer and the size of the buffer. 1190 * On entry, the buffer holds a null terminated list of options; on 1191 * return, the string is the list of options the file system 1192 * recognized. If MS_DATA is set arguments five and six point to a 1193 * block of binary data which the file system interprets. 1194 * A further wrinkle is that some callers don't set MS_FSS and MS_DATA 1195 * consistently with these conventions. To handle them, we check to 1196 * see whether the pointer to the file system name has a numeric value 1197 * less than 256. If so, we treat it as an index. 1198 */ 1199 if (fsname != NULL) { 1200 if ((vswp = vfs_getvfssw(fsname)) == NULL) { 1201 return (EINVAL); 1202 } 1203 } else if (uap->flags & (MS_OPTIONSTR | MS_DATA | MS_FSS)) { 1204 size_t n; 1205 uint_t fstype; 1206 1207 fsname = fstname; 1208 1209 if ((fstype = (uintptr_t)uap->fstype) < 256) { 1210 RLOCK_VFSSW(); 1211 if (fstype == 0 || fstype >= nfstype || 1212 !ALLOCATED_VFSSW(&vfssw[fstype])) { 1213 RUNLOCK_VFSSW(); 1214 return (EINVAL); 1215 } 1216 (void) strcpy(fsname, vfssw[fstype].vsw_name); 1217 RUNLOCK_VFSSW(); 1218 if ((vswp = vfs_getvfssw(fsname)) == NULL) 1219 return (EINVAL); 1220 } else { 1221 /* 1222 * Handle either kernel or user address space. 1223 */ 1224 if (uap->flags & MS_SYSSPACE) { 1225 error = copystr(uap->fstype, fsname, 1226 FSTYPSZ, &n); 1227 } else { 1228 error = copyinstr(uap->fstype, fsname, 1229 FSTYPSZ, &n); 1230 } 1231 if (error) { 1232 if (error == ENAMETOOLONG) 1233 return (EINVAL); 1234 return (error); 1235 } 1236 if ((vswp = vfs_getvfssw(fsname)) == NULL) 1237 return (EINVAL); 1238 } 1239 } else { 1240 if ((vswp = vfs_getvfsswbyvfsops(vfs_getops(rootvfs))) == NULL) 1241 return (EINVAL); 1242 } 1243 if (!VFS_INSTALLED(vswp)) 1244 return (EINVAL); 1245 vfsops = &vswp->vsw_vfsops; 1246 1247 vfs_copyopttbl(&vswp->vsw_optproto, &mnt_mntopts); 1248 /* 1249 * Fetch mount options and parse them for generic vfs options 1250 */ 1251 if (uap->flags & MS_OPTIONSTR) { 1252 /* 1253 * Limit the buffer size 1254 */ 1255 if (optlen < 0 || optlen > MAX_MNTOPT_STR) { 1256 error = EINVAL; 1257 goto errout; 1258 } 1259 if ((uap->flags & MS_SYSSPACE) == 0) { 1260 inargs = kmem_alloc(MAX_MNTOPT_STR, KM_SLEEP); 1261 inargs[0] = '\0'; 1262 if (optlen) { 1263 error = copyinstr(opts, inargs, (size_t)optlen, 1264 NULL); 1265 if (error) { 1266 goto errout; 1267 } 1268 } 1269 } 1270 vfs_parsemntopts(&mnt_mntopts, inargs, 0); 1271 } 1272 /* 1273 * Flag bits override the options string. 1274 */ 1275 if (uap->flags & MS_REMOUNT) 1276 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_REMOUNT, NULL, 0, 0); 1277 if (uap->flags & MS_RDONLY) 1278 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_RO, NULL, 0, 0); 1279 if (uap->flags & MS_NOSUID) 1280 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL, 0, 0); 1281 1282 /* 1283 * Check if this is a remount; must be set in the option string and 1284 * the file system must support a remount option. 1285 */ 1286 if (remount = vfs_optionisset_nolock(&mnt_mntopts, 1287 MNTOPT_REMOUNT, NULL)) { 1288 if (!(vswp->vsw_flag & VSW_CANREMOUNT)) { 1289 error = ENOTSUP; 1290 goto errout; 1291 } 1292 uap->flags |= MS_REMOUNT; 1293 } 1294 1295 /* 1296 * uap->flags and vfs_optionisset() should agree. 1297 */ 1298 if (rdonly = vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_RO, NULL)) { 1299 uap->flags |= MS_RDONLY; 1300 } 1301 if (vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL)) { 1302 uap->flags |= MS_NOSUID; 1303 } 1304 nbmand = vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_NBMAND, NULL); 1305 ASSERT(splice || !remount); 1306 /* 1307 * If we are splicing the fs into the namespace, 1308 * perform mount point checks. 1309 * 1310 * We want to resolve the path for the mount point to eliminate 1311 * '.' and ".." and symlinks in mount points; we can't do the 1312 * same for the resource string, since it would turn 1313 * "/dev/dsk/c0t0d0s0" into "/devices/pci@...". We need to do 1314 * this before grabbing vn_vfswlock(), because otherwise we 1315 * would deadlock with lookuppn(). 1316 */ 1317 if (splice) { 1318 ASSERT(vp->v_count > 0); 1319 1320 /* 1321 * Pick up mount point and device from appropriate space. 1322 */ 1323 if (pn_get(uap->spec, fromspace, &pn) == 0) { 1324 resource = kmem_alloc(pn.pn_pathlen + 1, 1325 KM_SLEEP); 1326 (void) strcpy(resource, pn.pn_path); 1327 pn_free(&pn); 1328 } 1329 /* 1330 * Do a lookupname prior to taking the 1331 * writelock. Mark this as completed if 1332 * successful for later cleanup and addition to 1333 * the mount in progress table. 1334 */ 1335 if ((uap->flags & MS_GLOBAL) == 0 && 1336 lookupname(uap->spec, fromspace, 1337 FOLLOW, NULL, &bvp) == 0) { 1338 addmip = 1; 1339 } 1340 1341 if ((error = pn_get(uap->dir, fromspace, &pn)) == 0) { 1342 pathname_t *pnp; 1343 1344 if (*pn.pn_path != '/') { 1345 error = EINVAL; 1346 pn_free(&pn); 1347 goto errout; 1348 } 1349 pn_alloc(&rpn); 1350 /* 1351 * Kludge to prevent autofs from deadlocking with 1352 * itself when it calls domount(). 1353 * 1354 * If autofs is calling, it is because it is doing 1355 * (autofs) mounts in the process of an NFS mount. A 1356 * lookuppn() here would cause us to block waiting for 1357 * said NFS mount to complete, which can't since this 1358 * is the thread that was supposed to doing it. 1359 */ 1360 if (fromspace == UIO_USERSPACE) { 1361 if ((error = lookuppn(&pn, &rpn, FOLLOW, NULL, 1362 NULL)) == 0) { 1363 pnp = &rpn; 1364 } else { 1365 /* 1366 * The file disappeared or otherwise 1367 * became inaccessible since we opened 1368 * it; might as well fail the mount 1369 * since the mount point is no longer 1370 * accessible. 1371 */ 1372 pn_free(&rpn); 1373 pn_free(&pn); 1374 goto errout; 1375 } 1376 } else { 1377 pnp = &pn; 1378 } 1379 mountpt = kmem_alloc(pnp->pn_pathlen + 1, KM_SLEEP); 1380 (void) strcpy(mountpt, pnp->pn_path); 1381 1382 /* 1383 * If the addition of the zone's rootpath 1384 * would push us over a total path length 1385 * of MAXPATHLEN, we fail the mount with 1386 * ENAMETOOLONG, which is what we would have 1387 * gotten if we were trying to perform the same 1388 * mount in the global zone. 1389 * 1390 * strlen() doesn't count the trailing 1391 * '\0', but zone_rootpathlen counts both a 1392 * trailing '/' and the terminating '\0'. 1393 */ 1394 if ((curproc->p_zone->zone_rootpathlen - 1 + 1395 strlen(mountpt)) > MAXPATHLEN || 1396 (resource != NULL && 1397 (curproc->p_zone->zone_rootpathlen - 1 + 1398 strlen(resource)) > MAXPATHLEN)) { 1399 error = ENAMETOOLONG; 1400 } 1401 1402 pn_free(&rpn); 1403 pn_free(&pn); 1404 } 1405 1406 if (error) 1407 goto errout; 1408 1409 /* 1410 * Prevent path name resolution from proceeding past 1411 * the mount point. 1412 */ 1413 if (vn_vfswlock(vp) != 0) { 1414 error = EBUSY; 1415 goto errout; 1416 } 1417 1418 /* 1419 * Verify that it's legitimate to establish a mount on 1420 * the prospective mount point. 1421 */ 1422 if (vn_mountedvfs(vp) != NULL) { 1423 /* 1424 * The mount point lock was obtained after some 1425 * other thread raced through and established a mount. 1426 */ 1427 vn_vfsunlock(vp); 1428 error = EBUSY; 1429 goto errout; 1430 } 1431 if (vp->v_flag & VNOMOUNT) { 1432 vn_vfsunlock(vp); 1433 error = EINVAL; 1434 goto errout; 1435 } 1436 } 1437 if ((uap->flags & (MS_DATA | MS_OPTIONSTR)) == 0) { 1438 uap->dataptr = NULL; 1439 uap->datalen = 0; 1440 } 1441 1442 /* 1443 * If this is a remount, we don't want to create a new VFS. 1444 * Instead, we pass the existing one with a remount flag. 1445 */ 1446 if (remount) { 1447 /* 1448 * Confirm that the mount point is the root vnode of the 1449 * file system that is being remounted. 1450 * This can happen if the user specifies a different 1451 * mount point directory pathname in the (re)mount command. 1452 * 1453 * Code below can only be reached if splice is true, so it's 1454 * safe to do vn_vfsunlock() here. 1455 */ 1456 if ((vp->v_flag & VROOT) == 0) { 1457 vn_vfsunlock(vp); 1458 error = ENOENT; 1459 goto errout; 1460 } 1461 /* 1462 * Disallow making file systems read-only unless file system 1463 * explicitly allows it in its vfssw. Ignore other flags. 1464 */ 1465 if (rdonly && vn_is_readonly(vp) == 0 && 1466 (vswp->vsw_flag & VSW_CANRWRO) == 0) { 1467 vn_vfsunlock(vp); 1468 error = EINVAL; 1469 goto errout; 1470 } 1471 /* 1472 * Disallow changing the NBMAND disposition of the file 1473 * system on remounts. 1474 */ 1475 if ((nbmand && ((vp->v_vfsp->vfs_flag & VFS_NBMAND) == 0)) || 1476 (!nbmand && (vp->v_vfsp->vfs_flag & VFS_NBMAND))) { 1477 vn_vfsunlock(vp); 1478 error = EINVAL; 1479 goto errout; 1480 } 1481 vfsp = vp->v_vfsp; 1482 ovflags = vfsp->vfs_flag; 1483 vfsp->vfs_flag |= VFS_REMOUNT; 1484 vfsp->vfs_flag &= ~VFS_RDONLY; 1485 } else { 1486 vfsp = vfs_alloc(KM_SLEEP); 1487 VFS_INIT(vfsp, vfsops, NULL); 1488 } 1489 1490 VFS_HOLD(vfsp); 1491 1492 if ((error = lofi_add(fsname, vfsp, &mnt_mntopts, uap)) != 0) { 1493 if (!remount) { 1494 if (splice) 1495 vn_vfsunlock(vp); 1496 vfs_free(vfsp); 1497 } else { 1498 vn_vfsunlock(vp); 1499 VFS_RELE(vfsp); 1500 } 1501 goto errout; 1502 } 1503 1504 /* 1505 * PRIV_SYS_MOUNT doesn't mean you can become root. 1506 */ 1507 if (vfsp->vfs_lofi_minor != 0) { 1508 uap->flags |= MS_NOSUID; 1509 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL, 0, 0); 1510 } 1511 1512 /* 1513 * The vfs_reflock is not used anymore the code below explicitly 1514 * holds it preventing others accesing it directly. 1515 */ 1516 if ((sema_tryp(&vfsp->vfs_reflock) == 0) && 1517 !(vfsp->vfs_flag & VFS_REMOUNT)) 1518 cmn_err(CE_WARN, 1519 "mount type %s couldn't get vfs_reflock", vswp->vsw_name); 1520 1521 /* 1522 * Lock the vfs. If this is a remount we want to avoid spurious umount 1523 * failures that happen as a side-effect of fsflush() and other mount 1524 * and unmount operations that might be going on simultaneously and 1525 * may have locked the vfs currently. To not return EBUSY immediately 1526 * here we use vfs_lock_wait() instead vfs_lock() for the remount case. 1527 */ 1528 if (!remount) { 1529 if (error = vfs_lock(vfsp)) { 1530 vfsp->vfs_flag = ovflags; 1531 1532 lofi_remove(vfsp); 1533 1534 if (splice) 1535 vn_vfsunlock(vp); 1536 vfs_free(vfsp); 1537 goto errout; 1538 } 1539 } else { 1540 vfs_lock_wait(vfsp); 1541 } 1542 1543 /* 1544 * Add device to mount in progress table, global mounts require special 1545 * handling. It is possible that we have already done the lookupname 1546 * on a spliced, non-global fs. If so, we don't want to do it again 1547 * since we cannot do a lookupname after taking the 1548 * wlock above. This case is for a non-spliced, non-global filesystem. 1549 */ 1550 if (!addmip) { 1551 if ((uap->flags & MS_GLOBAL) == 0 && 1552 lookupname(uap->spec, fromspace, FOLLOW, NULL, &bvp) == 0) { 1553 addmip = 1; 1554 } 1555 } 1556 1557 if (addmip) { 1558 vnode_t *lvp = NULL; 1559 1560 error = vfs_get_lofi(vfsp, &lvp); 1561 if (error > 0) { 1562 lofi_remove(vfsp); 1563 1564 if (splice) 1565 vn_vfsunlock(vp); 1566 vfs_unlock(vfsp); 1567 1568 if (remount) { 1569 VFS_RELE(vfsp); 1570 } else { 1571 vfs_free(vfsp); 1572 } 1573 1574 goto errout; 1575 } else if (error == -1) { 1576 bdev = bvp->v_rdev; 1577 VN_RELE(bvp); 1578 } else { 1579 bdev = lvp->v_rdev; 1580 VN_RELE(lvp); 1581 VN_RELE(bvp); 1582 } 1583 1584 vfs_addmip(bdev, vfsp); 1585 addmip = 0; 1586 delmip = 1; 1587 } 1588 /* 1589 * Invalidate cached entry for the mount point. 1590 */ 1591 if (splice) 1592 dnlc_purge_vp(vp); 1593 1594 /* 1595 * If have an option string but the filesystem doesn't supply a 1596 * prototype options table, create a table with the global 1597 * options and sufficient room to accept all the options in the 1598 * string. Then parse the passed in option string 1599 * accepting all the options in the string. This gives us an 1600 * option table with all the proper cancel properties for the 1601 * global options. 1602 * 1603 * Filesystems that supply a prototype options table are handled 1604 * earlier in this function. 1605 */ 1606 if (uap->flags & MS_OPTIONSTR) { 1607 if (!(vswp->vsw_flag & VSW_HASPROTO)) { 1608 mntopts_t tmp_mntopts; 1609 1610 tmp_mntopts.mo_count = 0; 1611 vfs_createopttbl_extend(&tmp_mntopts, inargs, 1612 &mnt_mntopts); 1613 vfs_parsemntopts(&tmp_mntopts, inargs, 1); 1614 vfs_swapopttbl_nolock(&mnt_mntopts, &tmp_mntopts); 1615 vfs_freeopttbl(&tmp_mntopts); 1616 } 1617 } 1618 1619 /* 1620 * Serialize with zone creations. 1621 */ 1622 mount_in_progress(); 1623 /* 1624 * Instantiate (or reinstantiate) the file system. If appropriate, 1625 * splice it into the file system name space. 1626 * 1627 * We want VFS_MOUNT() to be able to override the vfs_resource 1628 * string if necessary (ie, mntfs), and also for a remount to 1629 * change the same (necessary when remounting '/' during boot). 1630 * So we set up vfs_mntpt and vfs_resource to what we think they 1631 * should be, then hand off control to VFS_MOUNT() which can 1632 * override this. 1633 * 1634 * For safety's sake, when changing vfs_resource or vfs_mntpt of 1635 * a vfs which is on the vfs list (i.e. during a remount), we must 1636 * never set those fields to NULL. Several bits of code make 1637 * assumptions that the fields are always valid. 1638 */ 1639 vfs_swapopttbl(&mnt_mntopts, &vfsp->vfs_mntopts); 1640 if (remount) { 1641 if ((oldresource = vfsp->vfs_resource) != NULL) 1642 refstr_hold(oldresource); 1643 if ((oldmntpt = vfsp->vfs_mntpt) != NULL) 1644 refstr_hold(oldmntpt); 1645 } 1646 vfs_setresource(vfsp, resource); 1647 vfs_setmntpoint(vfsp, mountpt); 1648 1649 /* 1650 * going to mount on this vnode, so notify. 1651 */ 1652 vnevent_mountedover(vp, NULL); 1653 error = VFS_MOUNT(vfsp, vp, uap, credp); 1654 1655 if (uap->flags & MS_RDONLY) 1656 vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0); 1657 if (uap->flags & MS_NOSUID) 1658 vfs_setmntopt(vfsp, MNTOPT_NOSUID, NULL, 0); 1659 if (uap->flags & MS_GLOBAL) 1660 vfs_setmntopt(vfsp, MNTOPT_GLOBAL, NULL, 0); 1661 1662 if (error) { 1663 lofi_remove(vfsp); 1664 1665 if (remount) { 1666 /* put back pre-remount options */ 1667 vfs_swapopttbl(&mnt_mntopts, &vfsp->vfs_mntopts); 1668 vfs_setmntpoint(vfsp, (stripzonepath( 1669 refstr_value(oldmntpt)))); 1670 if (oldmntpt) 1671 refstr_rele(oldmntpt); 1672 vfs_setresource(vfsp, (stripzonepath( 1673 refstr_value(oldresource)))); 1674 if (oldresource) 1675 refstr_rele(oldresource); 1676 vfsp->vfs_flag = ovflags; 1677 vfs_unlock(vfsp); 1678 VFS_RELE(vfsp); 1679 } else { 1680 vfs_unlock(vfsp); 1681 vfs_freemnttab(vfsp); 1682 vfs_free(vfsp); 1683 } 1684 } else { 1685 /* 1686 * Set the mount time to now 1687 */ 1688 vfsp->vfs_mtime = ddi_get_time(); 1689 if (remount) { 1690 vfsp->vfs_flag &= ~VFS_REMOUNT; 1691 if (oldresource) 1692 refstr_rele(oldresource); 1693 if (oldmntpt) 1694 refstr_rele(oldmntpt); 1695 } else if (splice) { 1696 /* 1697 * Link vfsp into the name space at the mount 1698 * point. Vfs_add() is responsible for 1699 * holding the mount point which will be 1700 * released when vfs_remove() is called. 1701 */ 1702 vfs_add(vp, vfsp, uap->flags); 1703 } else { 1704 /* 1705 * Hold the reference to file system which is 1706 * not linked into the name space. 1707 */ 1708 vfsp->vfs_zone = NULL; 1709 VFS_HOLD(vfsp); 1710 vfsp->vfs_vnodecovered = NULL; 1711 } 1712 /* 1713 * Set flags for global options encountered 1714 */ 1715 if (vfs_optionisset(vfsp, MNTOPT_RO, NULL)) 1716 vfsp->vfs_flag |= VFS_RDONLY; 1717 else 1718 vfsp->vfs_flag &= ~VFS_RDONLY; 1719 if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) { 1720 vfsp->vfs_flag |= (VFS_NOSETUID|VFS_NODEVICES); 1721 } else { 1722 if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) 1723 vfsp->vfs_flag |= VFS_NODEVICES; 1724 else 1725 vfsp->vfs_flag &= ~VFS_NODEVICES; 1726 if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) 1727 vfsp->vfs_flag |= VFS_NOSETUID; 1728 else 1729 vfsp->vfs_flag &= ~VFS_NOSETUID; 1730 } 1731 if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) 1732 vfsp->vfs_flag |= VFS_NBMAND; 1733 else 1734 vfsp->vfs_flag &= ~VFS_NBMAND; 1735 1736 if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) 1737 vfsp->vfs_flag |= VFS_XATTR; 1738 else 1739 vfsp->vfs_flag &= ~VFS_XATTR; 1740 1741 if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) 1742 vfsp->vfs_flag |= VFS_NOEXEC; 1743 else 1744 vfsp->vfs_flag &= ~VFS_NOEXEC; 1745 1746 /* 1747 * Now construct the output option string of options 1748 * we recognized. 1749 */ 1750 if (uap->flags & MS_OPTIONSTR) { 1751 vfs_list_read_lock(); 1752 copyout_error = vfs_buildoptionstr( 1753 &vfsp->vfs_mntopts, inargs, optlen); 1754 vfs_list_unlock(); 1755 if (copyout_error == 0 && 1756 (uap->flags & MS_SYSSPACE) == 0) { 1757 copyout_error = copyoutstr(inargs, opts, 1758 optlen, NULL); 1759 } 1760 } 1761 1762 /* 1763 * If this isn't a remount, set up the vopstats before 1764 * anyone can touch this. We only allow spliced file 1765 * systems (file systems which are in the namespace) to 1766 * have the VFS_STATS flag set. 1767 * NOTE: PxFS mounts the underlying file system with 1768 * MS_NOSPLICE set and copies those vfs_flags to its private 1769 * vfs structure. As a result, PxFS should never have 1770 * the VFS_STATS flag or else we might access the vfs 1771 * statistics-related fields prior to them being 1772 * properly initialized. 1773 */ 1774 if (!remount && (vswp->vsw_flag & VSW_STATS) && splice) { 1775 initialize_vopstats(&vfsp->vfs_vopstats); 1776 /* 1777 * We need to set vfs_vskap to NULL because there's 1778 * a chance it won't be set below. This is checked 1779 * in teardown_vopstats() so we can't have garbage. 1780 */ 1781 vfsp->vfs_vskap = NULL; 1782 vfsp->vfs_flag |= VFS_STATS; 1783 vfsp->vfs_fstypevsp = get_fstype_vopstats(vfsp, vswp); 1784 } 1785 1786 if (vswp->vsw_flag & VSW_XID) 1787 vfsp->vfs_flag |= VFS_XID; 1788 1789 vfs_unlock(vfsp); 1790 } 1791 mount_completed(); 1792 if (splice) 1793 vn_vfsunlock(vp); 1794 1795 if ((error == 0) && (copyout_error == 0)) { 1796 if (!remount) { 1797 /* 1798 * Don't call get_vskstat_anchor() while holding 1799 * locks since it allocates memory and calls 1800 * VFS_STATVFS(). For NFS, the latter can generate 1801 * an over-the-wire call. 1802 */ 1803 vskap = get_vskstat_anchor(vfsp); 1804 /* Only take the lock if we have something to do */ 1805 if (vskap != NULL) { 1806 vfs_lock_wait(vfsp); 1807 if (vfsp->vfs_flag & VFS_STATS) { 1808 vfsp->vfs_vskap = vskap; 1809 } 1810 vfs_unlock(vfsp); 1811 } 1812 } 1813 /* Return vfsp to caller. */ 1814 *vfspp = vfsp; 1815 } 1816 errout: 1817 vfs_freeopttbl(&mnt_mntopts); 1818 if (resource != NULL) 1819 kmem_free(resource, strlen(resource) + 1); 1820 if (mountpt != NULL) 1821 kmem_free(mountpt, strlen(mountpt) + 1); 1822 /* 1823 * It is possible we errored prior to adding to mount in progress 1824 * table. Must free vnode we acquired with successful lookupname. 1825 */ 1826 if (addmip) 1827 VN_RELE(bvp); 1828 if (delmip) 1829 vfs_delmip(vfsp); 1830 ASSERT(vswp != NULL); 1831 vfs_unrefvfssw(vswp); 1832 if (inargs != opts) 1833 kmem_free(inargs, MAX_MNTOPT_STR); 1834 if (copyout_error) { 1835 lofi_remove(vfsp); 1836 VFS_RELE(vfsp); 1837 error = copyout_error; 1838 } 1839 return (error); 1840 } 1841 1842 static void 1843 vfs_setpath(struct vfs *vfsp, refstr_t **refp, const char *newpath) 1844 { 1845 size_t len; 1846 refstr_t *ref; 1847 zone_t *zone = curproc->p_zone; 1848 char *sp; 1849 int have_list_lock = 0; 1850 1851 ASSERT(!VFS_ON_LIST(vfsp) || vfs_lock_held(vfsp)); 1852 1853 /* 1854 * New path must be less than MAXPATHLEN because mntfs 1855 * will only display up to MAXPATHLEN bytes. This is currently 1856 * safe, because domount() uses pn_get(), and other callers 1857 * similarly cap the size to fewer than MAXPATHLEN bytes. 1858 */ 1859 1860 ASSERT(strlen(newpath) < MAXPATHLEN); 1861 1862 /* mntfs requires consistency while vfs list lock is held */ 1863 1864 if (VFS_ON_LIST(vfsp)) { 1865 have_list_lock = 1; 1866 vfs_list_lock(); 1867 } 1868 1869 if (*refp != NULL) 1870 refstr_rele(*refp); 1871 1872 /* Do we need to modify the path? */ 1873 1874 if (zone == global_zone || *newpath != '/') { 1875 ref = refstr_alloc(newpath); 1876 goto out; 1877 } 1878 1879 /* 1880 * Truncate the trailing '/' in the zoneroot, and merge 1881 * in the zone's rootpath with the "newpath" (resource 1882 * or mountpoint) passed in. 1883 * 1884 * The size of the required buffer is thus the size of 1885 * the buffer required for the passed-in newpath 1886 * (strlen(newpath) + 1), plus the size of the buffer 1887 * required to hold zone_rootpath (zone_rootpathlen) 1888 * minus one for one of the now-superfluous NUL 1889 * terminations, minus one for the trailing '/'. 1890 * 1891 * That gives us: 1892 * 1893 * (strlen(newpath) + 1) + zone_rootpathlen - 1 - 1 1894 * 1895 * Which is what we have below. 1896 */ 1897 1898 len = strlen(newpath) + zone->zone_rootpathlen - 1; 1899 sp = kmem_alloc(len, KM_SLEEP); 1900 1901 /* 1902 * Copy everything including the trailing slash, which 1903 * we then overwrite with the NUL character. 1904 */ 1905 1906 (void) strcpy(sp, zone->zone_rootpath); 1907 sp[zone->zone_rootpathlen - 2] = '\0'; 1908 (void) strcat(sp, newpath); 1909 1910 ref = refstr_alloc(sp); 1911 kmem_free(sp, len); 1912 out: 1913 *refp = ref; 1914 1915 if (have_list_lock) { 1916 vfs_mnttab_modtimeupd(); 1917 vfs_list_unlock(); 1918 } 1919 } 1920 1921 /* 1922 * Record a mounted resource name in a vfs structure. 1923 * If vfsp is already mounted, caller must hold the vfs lock. 1924 */ 1925 void 1926 vfs_setresource(struct vfs *vfsp, const char *resource) 1927 { 1928 if (resource == NULL || resource[0] == '\0') 1929 resource = VFS_NORESOURCE; 1930 vfs_setpath(vfsp, &vfsp->vfs_resource, resource); 1931 } 1932 1933 /* 1934 * Record a mount point name in a vfs structure. 1935 * If vfsp is already mounted, caller must hold the vfs lock. 1936 */ 1937 void 1938 vfs_setmntpoint(struct vfs *vfsp, const char *mntpt) 1939 { 1940 if (mntpt == NULL || mntpt[0] == '\0') 1941 mntpt = VFS_NOMNTPT; 1942 vfs_setpath(vfsp, &vfsp->vfs_mntpt, mntpt); 1943 } 1944 1945 /* Returns the vfs_resource. Caller must call refstr_rele() when finished. */ 1946 1947 refstr_t * 1948 vfs_getresource(const struct vfs *vfsp) 1949 { 1950 refstr_t *resource; 1951 1952 vfs_list_read_lock(); 1953 resource = vfsp->vfs_resource; 1954 refstr_hold(resource); 1955 vfs_list_unlock(); 1956 1957 return (resource); 1958 } 1959 1960 /* Returns the vfs_mntpt. Caller must call refstr_rele() when finished. */ 1961 1962 refstr_t * 1963 vfs_getmntpoint(const struct vfs *vfsp) 1964 { 1965 refstr_t *mntpt; 1966 1967 vfs_list_read_lock(); 1968 mntpt = vfsp->vfs_mntpt; 1969 refstr_hold(mntpt); 1970 vfs_list_unlock(); 1971 1972 return (mntpt); 1973 } 1974 1975 /* 1976 * Create an empty options table with enough empty slots to hold all 1977 * The options in the options string passed as an argument. 1978 * Potentially prepend another options table. 1979 * 1980 * Note: caller is responsible for locking the vfs list, if needed, 1981 * to protect mops. 1982 */ 1983 static void 1984 vfs_createopttbl_extend(mntopts_t *mops, const char *opts, 1985 const mntopts_t *mtmpl) 1986 { 1987 const char *s = opts; 1988 uint_t count; 1989 1990 if (opts == NULL || *opts == '\0') { 1991 count = 0; 1992 } else { 1993 count = 1; 1994 1995 /* 1996 * Count number of options in the string 1997 */ 1998 for (s = strchr(s, ','); s != NULL; s = strchr(s, ',')) { 1999 count++; 2000 s++; 2001 } 2002 } 2003 vfs_copyopttbl_extend(mtmpl, mops, count); 2004 } 2005 2006 /* 2007 * Create an empty options table with enough empty slots to hold all 2008 * The options in the options string passed as an argument. 2009 * 2010 * This function is *not* for general use by filesystems. 2011 * 2012 * Note: caller is responsible for locking the vfs list, if needed, 2013 * to protect mops. 2014 */ 2015 void 2016 vfs_createopttbl(mntopts_t *mops, const char *opts) 2017 { 2018 vfs_createopttbl_extend(mops, opts, NULL); 2019 } 2020 2021 2022 /* 2023 * Swap two mount options tables 2024 */ 2025 static void 2026 vfs_swapopttbl_nolock(mntopts_t *optbl1, mntopts_t *optbl2) 2027 { 2028 uint_t tmpcnt; 2029 mntopt_t *tmplist; 2030 2031 tmpcnt = optbl2->mo_count; 2032 tmplist = optbl2->mo_list; 2033 optbl2->mo_count = optbl1->mo_count; 2034 optbl2->mo_list = optbl1->mo_list; 2035 optbl1->mo_count = tmpcnt; 2036 optbl1->mo_list = tmplist; 2037 } 2038 2039 static void 2040 vfs_swapopttbl(mntopts_t *optbl1, mntopts_t *optbl2) 2041 { 2042 vfs_list_lock(); 2043 vfs_swapopttbl_nolock(optbl1, optbl2); 2044 vfs_mnttab_modtimeupd(); 2045 vfs_list_unlock(); 2046 } 2047 2048 static char ** 2049 vfs_copycancelopt_extend(char **const moc, int extend) 2050 { 2051 int i = 0; 2052 int j; 2053 char **result; 2054 2055 if (moc != NULL) { 2056 for (; moc[i] != NULL; i++) 2057 /* count number of options to cancel */; 2058 } 2059 2060 if (i + extend == 0) 2061 return (NULL); 2062 2063 result = kmem_alloc((i + extend + 1) * sizeof (char *), KM_SLEEP); 2064 2065 for (j = 0; j < i; j++) { 2066 result[j] = kmem_alloc(strlen(moc[j]) + 1, KM_SLEEP); 2067 (void) strcpy(result[j], moc[j]); 2068 } 2069 for (; j <= i + extend; j++) 2070 result[j] = NULL; 2071 2072 return (result); 2073 } 2074 2075 static void 2076 vfs_copyopt(const mntopt_t *s, mntopt_t *d) 2077 { 2078 char *sp, *dp; 2079 2080 d->mo_flags = s->mo_flags; 2081 d->mo_data = s->mo_data; 2082 sp = s->mo_name; 2083 if (sp != NULL) { 2084 dp = kmem_alloc(strlen(sp) + 1, KM_SLEEP); 2085 (void) strcpy(dp, sp); 2086 d->mo_name = dp; 2087 } else { 2088 d->mo_name = NULL; /* should never happen */ 2089 } 2090 2091 d->mo_cancel = vfs_copycancelopt_extend(s->mo_cancel, 0); 2092 2093 sp = s->mo_arg; 2094 if (sp != NULL) { 2095 dp = kmem_alloc(strlen(sp) + 1, KM_SLEEP); 2096 (void) strcpy(dp, sp); 2097 d->mo_arg = dp; 2098 } else { 2099 d->mo_arg = NULL; 2100 } 2101 } 2102 2103 /* 2104 * Copy a mount options table, possibly allocating some spare 2105 * slots at the end. It is permissible to copy_extend the NULL table. 2106 */ 2107 static void 2108 vfs_copyopttbl_extend(const mntopts_t *smo, mntopts_t *dmo, int extra) 2109 { 2110 uint_t i, count; 2111 mntopt_t *motbl; 2112 2113 /* 2114 * Clear out any existing stuff in the options table being initialized 2115 */ 2116 vfs_freeopttbl(dmo); 2117 count = (smo == NULL) ? 0 : smo->mo_count; 2118 if ((count + extra) == 0) /* nothing to do */ 2119 return; 2120 dmo->mo_count = count + extra; 2121 motbl = kmem_zalloc((count + extra) * sizeof (mntopt_t), KM_SLEEP); 2122 dmo->mo_list = motbl; 2123 for (i = 0; i < count; i++) { 2124 vfs_copyopt(&smo->mo_list[i], &motbl[i]); 2125 } 2126 for (i = count; i < count + extra; i++) { 2127 motbl[i].mo_flags = MO_EMPTY; 2128 } 2129 } 2130 2131 /* 2132 * Copy a mount options table. 2133 * 2134 * This function is *not* for general use by filesystems. 2135 * 2136 * Note: caller is responsible for locking the vfs list, if needed, 2137 * to protect smo and dmo. 2138 */ 2139 void 2140 vfs_copyopttbl(const mntopts_t *smo, mntopts_t *dmo) 2141 { 2142 vfs_copyopttbl_extend(smo, dmo, 0); 2143 } 2144 2145 static char ** 2146 vfs_mergecancelopts(const mntopt_t *mop1, const mntopt_t *mop2) 2147 { 2148 int c1 = 0; 2149 int c2 = 0; 2150 char **result; 2151 char **sp1, **sp2, **dp; 2152 2153 /* 2154 * First we count both lists of cancel options. 2155 * If either is NULL or has no elements, we return a copy of 2156 * the other. 2157 */ 2158 if (mop1->mo_cancel != NULL) { 2159 for (; mop1->mo_cancel[c1] != NULL; c1++) 2160 /* count cancel options in mop1 */; 2161 } 2162 2163 if (c1 == 0) 2164 return (vfs_copycancelopt_extend(mop2->mo_cancel, 0)); 2165 2166 if (mop2->mo_cancel != NULL) { 2167 for (; mop2->mo_cancel[c2] != NULL; c2++) 2168 /* count cancel options in mop2 */; 2169 } 2170 2171 result = vfs_copycancelopt_extend(mop1->mo_cancel, c2); 2172 2173 if (c2 == 0) 2174 return (result); 2175 2176 /* 2177 * When we get here, we've got two sets of cancel options; 2178 * we need to merge the two sets. We know that the result 2179 * array has "c1+c2+1" entries and in the end we might shrink 2180 * it. 2181 * Result now has a copy of the c1 entries from mop1; we'll 2182 * now lookup all the entries of mop2 in mop1 and copy it if 2183 * it is unique. 2184 * This operation is O(n^2) but it's only called once per 2185 * filesystem per duplicate option. This is a situation 2186 * which doesn't arise with the filesystems in ON and 2187 * n is generally 1. 2188 */ 2189 2190 dp = &result[c1]; 2191 for (sp2 = mop2->mo_cancel; *sp2 != NULL; sp2++) { 2192 for (sp1 = mop1->mo_cancel; *sp1 != NULL; sp1++) { 2193 if (strcmp(*sp1, *sp2) == 0) 2194 break; 2195 } 2196 if (*sp1 == NULL) { 2197 /* 2198 * Option *sp2 not found in mop1, so copy it. 2199 * The calls to vfs_copycancelopt_extend() 2200 * guarantee that there's enough room. 2201 */ 2202 *dp = kmem_alloc(strlen(*sp2) + 1, KM_SLEEP); 2203 (void) strcpy(*dp++, *sp2); 2204 } 2205 } 2206 if (dp != &result[c1+c2]) { 2207 size_t bytes = (dp - result + 1) * sizeof (char *); 2208 char **nres = kmem_alloc(bytes, KM_SLEEP); 2209 2210 bcopy(result, nres, bytes); 2211 kmem_free(result, (c1 + c2 + 1) * sizeof (char *)); 2212 result = nres; 2213 } 2214 return (result); 2215 } 2216 2217 /* 2218 * Merge two mount option tables (outer and inner) into one. This is very 2219 * similar to "merging" global variables and automatic variables in C. 2220 * 2221 * This isn't (and doesn't have to be) fast. 2222 * 2223 * This function is *not* for general use by filesystems. 2224 * 2225 * Note: caller is responsible for locking the vfs list, if needed, 2226 * to protect omo, imo & dmo. 2227 */ 2228 void 2229 vfs_mergeopttbl(const mntopts_t *omo, const mntopts_t *imo, mntopts_t *dmo) 2230 { 2231 uint_t i, count; 2232 mntopt_t *mop, *motbl; 2233 uint_t freeidx; 2234 2235 /* 2236 * First determine how much space we need to allocate. 2237 */ 2238 count = omo->mo_count; 2239 for (i = 0; i < imo->mo_count; i++) { 2240 if (imo->mo_list[i].mo_flags & MO_EMPTY) 2241 continue; 2242 if (vfs_hasopt(omo, imo->mo_list[i].mo_name) == NULL) 2243 count++; 2244 } 2245 ASSERT(count >= omo->mo_count && 2246 count <= omo->mo_count + imo->mo_count); 2247 motbl = kmem_alloc(count * sizeof (mntopt_t), KM_SLEEP); 2248 for (i = 0; i < omo->mo_count; i++) 2249 vfs_copyopt(&omo->mo_list[i], &motbl[i]); 2250 freeidx = omo->mo_count; 2251 for (i = 0; i < imo->mo_count; i++) { 2252 if (imo->mo_list[i].mo_flags & MO_EMPTY) 2253 continue; 2254 if ((mop = vfs_hasopt(omo, imo->mo_list[i].mo_name)) != NULL) { 2255 char **newcanp; 2256 uint_t index = mop - omo->mo_list; 2257 2258 newcanp = vfs_mergecancelopts(mop, &motbl[index]); 2259 2260 vfs_freeopt(&motbl[index]); 2261 vfs_copyopt(&imo->mo_list[i], &motbl[index]); 2262 2263 vfs_freecancelopt(motbl[index].mo_cancel); 2264 motbl[index].mo_cancel = newcanp; 2265 } else { 2266 /* 2267 * If it's a new option, just copy it over to the first 2268 * free location. 2269 */ 2270 vfs_copyopt(&imo->mo_list[i], &motbl[freeidx++]); 2271 } 2272 } 2273 dmo->mo_count = count; 2274 dmo->mo_list = motbl; 2275 } 2276 2277 /* 2278 * Functions to set and clear mount options in a mount options table. 2279 */ 2280 2281 /* 2282 * Clear a mount option, if it exists. 2283 * 2284 * The update_mnttab arg indicates whether mops is part of a vfs that is on 2285 * the vfs list. 2286 */ 2287 static void 2288 vfs_clearmntopt_nolock(mntopts_t *mops, const char *opt, int update_mnttab) 2289 { 2290 struct mntopt *mop; 2291 uint_t i, count; 2292 2293 ASSERT(!update_mnttab || RW_WRITE_HELD(&vfslist)); 2294 2295 count = mops->mo_count; 2296 for (i = 0; i < count; i++) { 2297 mop = &mops->mo_list[i]; 2298 2299 if (mop->mo_flags & MO_EMPTY) 2300 continue; 2301 if (strcmp(opt, mop->mo_name)) 2302 continue; 2303 mop->mo_flags &= ~MO_SET; 2304 if (mop->mo_arg != NULL) { 2305 kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1); 2306 } 2307 mop->mo_arg = NULL; 2308 if (update_mnttab) 2309 vfs_mnttab_modtimeupd(); 2310 break; 2311 } 2312 } 2313 2314 void 2315 vfs_clearmntopt(struct vfs *vfsp, const char *opt) 2316 { 2317 int gotlock = 0; 2318 2319 if (VFS_ON_LIST(vfsp)) { 2320 gotlock = 1; 2321 vfs_list_lock(); 2322 } 2323 vfs_clearmntopt_nolock(&vfsp->vfs_mntopts, opt, gotlock); 2324 if (gotlock) 2325 vfs_list_unlock(); 2326 } 2327 2328 2329 /* 2330 * Set a mount option on. If it's not found in the table, it's silently 2331 * ignored. If the option has MO_IGNORE set, it is still set unless the 2332 * VFS_NOFORCEOPT bit is set in the flags. Also, VFS_DISPLAY/VFS_NODISPLAY flag 2333 * bits can be used to toggle the MO_NODISPLAY bit for the option. 2334 * If the VFS_CREATEOPT flag bit is set then the first option slot with 2335 * MO_EMPTY set is created as the option passed in. 2336 * 2337 * The update_mnttab arg indicates whether mops is part of a vfs that is on 2338 * the vfs list. 2339 */ 2340 static void 2341 vfs_setmntopt_nolock(mntopts_t *mops, const char *opt, 2342 const char *arg, int flags, int update_mnttab) 2343 { 2344 mntopt_t *mop; 2345 uint_t i, count; 2346 char *sp; 2347 2348 ASSERT(!update_mnttab || RW_WRITE_HELD(&vfslist)); 2349 2350 if (flags & VFS_CREATEOPT) { 2351 if (vfs_hasopt(mops, opt) != NULL) { 2352 flags &= ~VFS_CREATEOPT; 2353 } 2354 } 2355 count = mops->mo_count; 2356 for (i = 0; i < count; i++) { 2357 mop = &mops->mo_list[i]; 2358 2359 if (mop->mo_flags & MO_EMPTY) { 2360 if ((flags & VFS_CREATEOPT) == 0) 2361 continue; 2362 sp = kmem_alloc(strlen(opt) + 1, KM_SLEEP); 2363 (void) strcpy(sp, opt); 2364 mop->mo_name = sp; 2365 if (arg != NULL) 2366 mop->mo_flags = MO_HASVALUE; 2367 else 2368 mop->mo_flags = 0; 2369 } else if (strcmp(opt, mop->mo_name)) { 2370 continue; 2371 } 2372 if ((mop->mo_flags & MO_IGNORE) && (flags & VFS_NOFORCEOPT)) 2373 break; 2374 if (arg != NULL && (mop->mo_flags & MO_HASVALUE) != 0) { 2375 sp = kmem_alloc(strlen(arg) + 1, KM_SLEEP); 2376 (void) strcpy(sp, arg); 2377 } else { 2378 sp = NULL; 2379 } 2380 if (mop->mo_arg != NULL) 2381 kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1); 2382 mop->mo_arg = sp; 2383 if (flags & VFS_DISPLAY) 2384 mop->mo_flags &= ~MO_NODISPLAY; 2385 if (flags & VFS_NODISPLAY) 2386 mop->mo_flags |= MO_NODISPLAY; 2387 mop->mo_flags |= MO_SET; 2388 if (mop->mo_cancel != NULL) { 2389 char **cp; 2390 2391 for (cp = mop->mo_cancel; *cp != NULL; cp++) 2392 vfs_clearmntopt_nolock(mops, *cp, 0); 2393 } 2394 if (update_mnttab) 2395 vfs_mnttab_modtimeupd(); 2396 break; 2397 } 2398 } 2399 2400 void 2401 vfs_setmntopt(struct vfs *vfsp, const char *opt, const char *arg, int flags) 2402 { 2403 int gotlock = 0; 2404 2405 if (VFS_ON_LIST(vfsp)) { 2406 gotlock = 1; 2407 vfs_list_lock(); 2408 } 2409 vfs_setmntopt_nolock(&vfsp->vfs_mntopts, opt, arg, flags, gotlock); 2410 if (gotlock) 2411 vfs_list_unlock(); 2412 } 2413 2414 2415 /* 2416 * Add a "tag" option to a mounted file system's options list. 2417 * 2418 * Note: caller is responsible for locking the vfs list, if needed, 2419 * to protect mops. 2420 */ 2421 static mntopt_t * 2422 vfs_addtag(mntopts_t *mops, const char *tag) 2423 { 2424 uint_t count; 2425 mntopt_t *mop, *motbl; 2426 2427 count = mops->mo_count + 1; 2428 motbl = kmem_zalloc(count * sizeof (mntopt_t), KM_SLEEP); 2429 if (mops->mo_count) { 2430 size_t len = (count - 1) * sizeof (mntopt_t); 2431 2432 bcopy(mops->mo_list, motbl, len); 2433 kmem_free(mops->mo_list, len); 2434 } 2435 mops->mo_count = count; 2436 mops->mo_list = motbl; 2437 mop = &motbl[count - 1]; 2438 mop->mo_flags = MO_TAG; 2439 mop->mo_name = kmem_alloc(strlen(tag) + 1, KM_SLEEP); 2440 (void) strcpy(mop->mo_name, tag); 2441 return (mop); 2442 } 2443 2444 /* 2445 * Allow users to set arbitrary "tags" in a vfs's mount options. 2446 * Broader use within the kernel is discouraged. 2447 */ 2448 int 2449 vfs_settag(uint_t major, uint_t minor, const char *mntpt, const char *tag, 2450 cred_t *cr) 2451 { 2452 vfs_t *vfsp; 2453 mntopts_t *mops; 2454 mntopt_t *mop; 2455 int found = 0; 2456 dev_t dev = makedevice(major, minor); 2457 int err = 0; 2458 char *buf = kmem_alloc(MAX_MNTOPT_STR, KM_SLEEP); 2459 2460 /* 2461 * Find the desired mounted file system 2462 */ 2463 vfs_list_lock(); 2464 vfsp = rootvfs; 2465 do { 2466 if (vfsp->vfs_dev == dev && 2467 strcmp(mntpt, refstr_value(vfsp->vfs_mntpt)) == 0) { 2468 found = 1; 2469 break; 2470 } 2471 vfsp = vfsp->vfs_next; 2472 } while (vfsp != rootvfs); 2473 2474 if (!found) { 2475 err = EINVAL; 2476 goto out; 2477 } 2478 err = secpolicy_fs_config(cr, vfsp); 2479 if (err != 0) 2480 goto out; 2481 2482 mops = &vfsp->vfs_mntopts; 2483 /* 2484 * Add tag if it doesn't already exist 2485 */ 2486 if ((mop = vfs_hasopt(mops, tag)) == NULL) { 2487 int len; 2488 2489 (void) vfs_buildoptionstr(mops, buf, MAX_MNTOPT_STR); 2490 len = strlen(buf); 2491 if (len + strlen(tag) + 2 > MAX_MNTOPT_STR) { 2492 err = ENAMETOOLONG; 2493 goto out; 2494 } 2495 mop = vfs_addtag(mops, tag); 2496 } 2497 if ((mop->mo_flags & MO_TAG) == 0) { 2498 err = EINVAL; 2499 goto out; 2500 } 2501 vfs_setmntopt_nolock(mops, tag, NULL, 0, 1); 2502 out: 2503 vfs_list_unlock(); 2504 kmem_free(buf, MAX_MNTOPT_STR); 2505 return (err); 2506 } 2507 2508 /* 2509 * Allow users to remove arbitrary "tags" in a vfs's mount options. 2510 * Broader use within the kernel is discouraged. 2511 */ 2512 int 2513 vfs_clrtag(uint_t major, uint_t minor, const char *mntpt, const char *tag, 2514 cred_t *cr) 2515 { 2516 vfs_t *vfsp; 2517 mntopt_t *mop; 2518 int found = 0; 2519 dev_t dev = makedevice(major, minor); 2520 int err = 0; 2521 2522 /* 2523 * Find the desired mounted file system 2524 */ 2525 vfs_list_lock(); 2526 vfsp = rootvfs; 2527 do { 2528 if (vfsp->vfs_dev == dev && 2529 strcmp(mntpt, refstr_value(vfsp->vfs_mntpt)) == 0) { 2530 found = 1; 2531 break; 2532 } 2533 vfsp = vfsp->vfs_next; 2534 } while (vfsp != rootvfs); 2535 2536 if (!found) { 2537 err = EINVAL; 2538 goto out; 2539 } 2540 err = secpolicy_fs_config(cr, vfsp); 2541 if (err != 0) 2542 goto out; 2543 2544 if ((mop = vfs_hasopt(&vfsp->vfs_mntopts, tag)) == NULL) { 2545 err = EINVAL; 2546 goto out; 2547 } 2548 if ((mop->mo_flags & MO_TAG) == 0) { 2549 err = EINVAL; 2550 goto out; 2551 } 2552 vfs_clearmntopt_nolock(&vfsp->vfs_mntopts, tag, 1); 2553 out: 2554 vfs_list_unlock(); 2555 return (err); 2556 } 2557 2558 /* 2559 * Function to parse an option string and fill in a mount options table. 2560 * Unknown options are silently ignored. The input option string is modified 2561 * by replacing separators with nulls. If the create flag is set, options 2562 * not found in the table are just added on the fly. The table must have 2563 * an option slot marked MO_EMPTY to add an option on the fly. 2564 * 2565 * This function is *not* for general use by filesystems. 2566 * 2567 * Note: caller is responsible for locking the vfs list, if needed, 2568 * to protect mops.. 2569 */ 2570 void 2571 vfs_parsemntopts(mntopts_t *mops, char *osp, int create) 2572 { 2573 char *s = osp, *p, *nextop, *valp, *cp, *ep; 2574 int setflg = VFS_NOFORCEOPT; 2575 2576 if (osp == NULL) 2577 return; 2578 while (*s != '\0') { 2579 p = strchr(s, ','); /* find next option */ 2580 if (p == NULL) { 2581 cp = NULL; 2582 p = s + strlen(s); 2583 } else { 2584 cp = p; /* save location of comma */ 2585 *p++ = '\0'; /* mark end and point to next option */ 2586 } 2587 nextop = p; 2588 p = strchr(s, '='); /* look for value */ 2589 if (p == NULL) { 2590 valp = NULL; /* no value supplied */ 2591 } else { 2592 ep = p; /* save location of equals */ 2593 *p++ = '\0'; /* end option and point to value */ 2594 valp = p; 2595 } 2596 /* 2597 * set option into options table 2598 */ 2599 if (create) 2600 setflg |= VFS_CREATEOPT; 2601 vfs_setmntopt_nolock(mops, s, valp, setflg, 0); 2602 if (cp != NULL) 2603 *cp = ','; /* restore the comma */ 2604 if (valp != NULL) 2605 *ep = '='; /* restore the equals */ 2606 s = nextop; 2607 } 2608 } 2609 2610 /* 2611 * Function to inquire if an option exists in a mount options table. 2612 * Returns a pointer to the option if it exists, else NULL. 2613 * 2614 * This function is *not* for general use by filesystems. 2615 * 2616 * Note: caller is responsible for locking the vfs list, if needed, 2617 * to protect mops. 2618 */ 2619 struct mntopt * 2620 vfs_hasopt(const mntopts_t *mops, const char *opt) 2621 { 2622 struct mntopt *mop; 2623 uint_t i, count; 2624 2625 count = mops->mo_count; 2626 for (i = 0; i < count; i++) { 2627 mop = &mops->mo_list[i]; 2628 2629 if (mop->mo_flags & MO_EMPTY) 2630 continue; 2631 if (strcmp(opt, mop->mo_name) == 0) 2632 return (mop); 2633 } 2634 return (NULL); 2635 } 2636 2637 /* 2638 * Function to inquire if an option is set in a mount options table. 2639 * Returns non-zero if set and fills in the arg pointer with a pointer to 2640 * the argument string or NULL if there is no argument string. 2641 */ 2642 static int 2643 vfs_optionisset_nolock(const mntopts_t *mops, const char *opt, char **argp) 2644 { 2645 struct mntopt *mop; 2646 uint_t i, count; 2647 2648 count = mops->mo_count; 2649 for (i = 0; i < count; i++) { 2650 mop = &mops->mo_list[i]; 2651 2652 if (mop->mo_flags & MO_EMPTY) 2653 continue; 2654 if (strcmp(opt, mop->mo_name)) 2655 continue; 2656 if ((mop->mo_flags & MO_SET) == 0) 2657 return (0); 2658 if (argp != NULL && (mop->mo_flags & MO_HASVALUE) != 0) 2659 *argp = mop->mo_arg; 2660 return (1); 2661 } 2662 return (0); 2663 } 2664 2665 2666 int 2667 vfs_optionisset(const struct vfs *vfsp, const char *opt, char **argp) 2668 { 2669 int ret; 2670 2671 vfs_list_read_lock(); 2672 ret = vfs_optionisset_nolock(&vfsp->vfs_mntopts, opt, argp); 2673 vfs_list_unlock(); 2674 return (ret); 2675 } 2676 2677 2678 /* 2679 * Construct a comma separated string of the options set in the given 2680 * mount table, return the string in the given buffer. Return non-zero if 2681 * the buffer would overflow. 2682 * 2683 * This function is *not* for general use by filesystems. 2684 * 2685 * Note: caller is responsible for locking the vfs list, if needed, 2686 * to protect mp. 2687 */ 2688 int 2689 vfs_buildoptionstr(const mntopts_t *mp, char *buf, int len) 2690 { 2691 char *cp; 2692 uint_t i; 2693 2694 buf[0] = '\0'; 2695 cp = buf; 2696 for (i = 0; i < mp->mo_count; i++) { 2697 struct mntopt *mop; 2698 2699 mop = &mp->mo_list[i]; 2700 if (mop->mo_flags & MO_SET) { 2701 int optlen, comma = 0; 2702 2703 if (buf[0] != '\0') 2704 comma = 1; 2705 optlen = strlen(mop->mo_name); 2706 if (strlen(buf) + comma + optlen + 1 > len) 2707 goto err; 2708 if (comma) 2709 *cp++ = ','; 2710 (void) strcpy(cp, mop->mo_name); 2711 cp += optlen; 2712 /* 2713 * Append option value if there is one 2714 */ 2715 if (mop->mo_arg != NULL) { 2716 int arglen; 2717 2718 arglen = strlen(mop->mo_arg); 2719 if (strlen(buf) + arglen + 2 > len) 2720 goto err; 2721 *cp++ = '='; 2722 (void) strcpy(cp, mop->mo_arg); 2723 cp += arglen; 2724 } 2725 } 2726 } 2727 return (0); 2728 err: 2729 return (EOVERFLOW); 2730 } 2731 2732 static void 2733 vfs_freecancelopt(char **moc) 2734 { 2735 if (moc != NULL) { 2736 int ccnt = 0; 2737 char **cp; 2738 2739 for (cp = moc; *cp != NULL; cp++) { 2740 kmem_free(*cp, strlen(*cp) + 1); 2741 ccnt++; 2742 } 2743 kmem_free(moc, (ccnt + 1) * sizeof (char *)); 2744 } 2745 } 2746 2747 static void 2748 vfs_freeopt(mntopt_t *mop) 2749 { 2750 if (mop->mo_name != NULL) 2751 kmem_free(mop->mo_name, strlen(mop->mo_name) + 1); 2752 2753 vfs_freecancelopt(mop->mo_cancel); 2754 2755 if (mop->mo_arg != NULL) 2756 kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1); 2757 } 2758 2759 /* 2760 * Free a mount options table 2761 * 2762 * This function is *not* for general use by filesystems. 2763 * 2764 * Note: caller is responsible for locking the vfs list, if needed, 2765 * to protect mp. 2766 */ 2767 void 2768 vfs_freeopttbl(mntopts_t *mp) 2769 { 2770 uint_t i, count; 2771 2772 count = mp->mo_count; 2773 for (i = 0; i < count; i++) { 2774 vfs_freeopt(&mp->mo_list[i]); 2775 } 2776 if (count) { 2777 kmem_free(mp->mo_list, sizeof (mntopt_t) * count); 2778 mp->mo_count = 0; 2779 mp->mo_list = NULL; 2780 } 2781 } 2782 2783 2784 /* ARGSUSED */ 2785 static int 2786 vfs_mntdummyread(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cred, 2787 caller_context_t *ct) 2788 { 2789 return (0); 2790 } 2791 2792 /* ARGSUSED */ 2793 static int 2794 vfs_mntdummywrite(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cred, 2795 caller_context_t *ct) 2796 { 2797 return (0); 2798 } 2799 2800 /* 2801 * The dummy vnode is currently used only by file events notification 2802 * module which is just interested in the timestamps. 2803 */ 2804 /* ARGSUSED */ 2805 static int 2806 vfs_mntdummygetattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2807 caller_context_t *ct) 2808 { 2809 bzero(vap, sizeof (vattr_t)); 2810 vap->va_type = VREG; 2811 vap->va_nlink = 1; 2812 vap->va_ctime = vfs_mnttab_ctime; 2813 /* 2814 * it is ok to just copy mtime as the time will be monotonically 2815 * increasing. 2816 */ 2817 vap->va_mtime = vfs_mnttab_mtime; 2818 vap->va_atime = vap->va_mtime; 2819 return (0); 2820 } 2821 2822 static void 2823 vfs_mnttabvp_setup(void) 2824 { 2825 vnode_t *tvp; 2826 vnodeops_t *vfs_mntdummyvnops; 2827 const fs_operation_def_t mnt_dummyvnodeops_template[] = { 2828 VOPNAME_READ, { .vop_read = vfs_mntdummyread }, 2829 VOPNAME_WRITE, { .vop_write = vfs_mntdummywrite }, 2830 VOPNAME_GETATTR, { .vop_getattr = vfs_mntdummygetattr }, 2831 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 2832 NULL, NULL 2833 }; 2834 2835 if (vn_make_ops("mnttab", mnt_dummyvnodeops_template, 2836 &vfs_mntdummyvnops) != 0) { 2837 cmn_err(CE_WARN, "vfs_mnttabvp_setup: vn_make_ops failed"); 2838 /* Shouldn't happen, but not bad enough to panic */ 2839 return; 2840 } 2841 2842 /* 2843 * A global dummy vnode is allocated to represent mntfs files. 2844 * The mntfs file (/etc/mnttab) can be monitored for file events 2845 * and receive an event when mnttab changes. Dummy VOP calls 2846 * will be made on this vnode. The file events notification module 2847 * intercepts this vnode and delivers relevant events. 2848 */ 2849 tvp = vn_alloc(KM_SLEEP); 2850 tvp->v_flag = VNOMOUNT|VNOMAP|VNOSWAP|VNOCACHE; 2851 vn_setops(tvp, vfs_mntdummyvnops); 2852 tvp->v_type = VREG; 2853 /* 2854 * The mnt dummy ops do not reference v_data. 2855 * No other module intercepting this vnode should either. 2856 * Just set it to point to itself. 2857 */ 2858 tvp->v_data = (caddr_t)tvp; 2859 tvp->v_vfsp = rootvfs; 2860 vfs_mntdummyvp = tvp; 2861 } 2862 2863 /* 2864 * performs fake read/write ops 2865 */ 2866 static void 2867 vfs_mnttab_rwop(int rw) 2868 { 2869 struct uio uio; 2870 struct iovec iov; 2871 char buf[1]; 2872 2873 if (vfs_mntdummyvp == NULL) 2874 return; 2875 2876 bzero(&uio, sizeof (uio)); 2877 bzero(&iov, sizeof (iov)); 2878 iov.iov_base = buf; 2879 iov.iov_len = 0; 2880 uio.uio_iov = &iov; 2881 uio.uio_iovcnt = 1; 2882 uio.uio_loffset = 0; 2883 uio.uio_segflg = UIO_SYSSPACE; 2884 uio.uio_resid = 0; 2885 if (rw) { 2886 (void) VOP_WRITE(vfs_mntdummyvp, &uio, 0, kcred, NULL); 2887 } else { 2888 (void) VOP_READ(vfs_mntdummyvp, &uio, 0, kcred, NULL); 2889 } 2890 } 2891 2892 /* 2893 * Generate a write operation. 2894 */ 2895 void 2896 vfs_mnttab_writeop(void) 2897 { 2898 vfs_mnttab_rwop(1); 2899 } 2900 2901 /* 2902 * Generate a read operation. 2903 */ 2904 void 2905 vfs_mnttab_readop(void) 2906 { 2907 vfs_mnttab_rwop(0); 2908 } 2909 2910 /* 2911 * Free any mnttab information recorded in the vfs struct. 2912 * The vfs must not be on the vfs list. 2913 */ 2914 static void 2915 vfs_freemnttab(struct vfs *vfsp) 2916 { 2917 ASSERT(!VFS_ON_LIST(vfsp)); 2918 2919 /* 2920 * Free device and mount point information 2921 */ 2922 if (vfsp->vfs_mntpt != NULL) { 2923 refstr_rele(vfsp->vfs_mntpt); 2924 vfsp->vfs_mntpt = NULL; 2925 } 2926 if (vfsp->vfs_resource != NULL) { 2927 refstr_rele(vfsp->vfs_resource); 2928 vfsp->vfs_resource = NULL; 2929 } 2930 /* 2931 * Now free mount options information 2932 */ 2933 vfs_freeopttbl(&vfsp->vfs_mntopts); 2934 } 2935 2936 /* 2937 * Return the last mnttab modification time 2938 */ 2939 void 2940 vfs_mnttab_modtime(timespec_t *ts) 2941 { 2942 ASSERT(RW_LOCK_HELD(&vfslist)); 2943 *ts = vfs_mnttab_mtime; 2944 } 2945 2946 /* 2947 * See if mnttab is changed 2948 */ 2949 void 2950 vfs_mnttab_poll(timespec_t *old, struct pollhead **phpp) 2951 { 2952 int changed; 2953 2954 *phpp = (struct pollhead *)NULL; 2955 2956 /* 2957 * Note: don't grab vfs list lock before accessing vfs_mnttab_mtime. 2958 * Can lead to deadlock against vfs_mnttab_modtimeupd(). It is safe 2959 * to not grab the vfs list lock because tv_sec is monotonically 2960 * increasing. 2961 */ 2962 2963 changed = (old->tv_nsec != vfs_mnttab_mtime.tv_nsec) || 2964 (old->tv_sec != vfs_mnttab_mtime.tv_sec); 2965 if (!changed) { 2966 *phpp = &vfs_pollhd; 2967 } 2968 } 2969 2970 /* 2971 * Update the mnttab modification time and wake up any waiters for 2972 * mnttab changes 2973 */ 2974 void 2975 vfs_mnttab_modtimeupd() 2976 { 2977 hrtime_t oldhrt, newhrt; 2978 2979 ASSERT(RW_WRITE_HELD(&vfslist)); 2980 oldhrt = ts2hrt(&vfs_mnttab_mtime); 2981 gethrestime(&vfs_mnttab_mtime); 2982 newhrt = ts2hrt(&vfs_mnttab_mtime); 2983 if (oldhrt == (hrtime_t)0) 2984 vfs_mnttab_ctime = vfs_mnttab_mtime; 2985 /* 2986 * Attempt to provide unique mtime (like uniqtime but not). 2987 */ 2988 if (newhrt == oldhrt) { 2989 newhrt++; 2990 hrt2ts(newhrt, &vfs_mnttab_mtime); 2991 } 2992 pollwakeup(&vfs_pollhd, (short)POLLRDBAND); 2993 vfs_mnttab_writeop(); 2994 } 2995 2996 int 2997 dounmount(struct vfs *vfsp, int flag, cred_t *cr) 2998 { 2999 vnode_t *coveredvp; 3000 int error; 3001 extern void teardown_vopstats(vfs_t *); 3002 3003 /* 3004 * Get covered vnode. This will be NULL if the vfs is not linked 3005 * into the file system name space (i.e., domount() with MNT_NOSPICE). 3006 */ 3007 coveredvp = vfsp->vfs_vnodecovered; 3008 ASSERT(coveredvp == NULL || vn_vfswlock_held(coveredvp)); 3009 3010 /* 3011 * Purge all dnlc entries for this vfs. 3012 */ 3013 (void) dnlc_purge_vfsp(vfsp, 0); 3014 3015 /* For forcible umount, skip VFS_SYNC() since it may hang */ 3016 if ((flag & MS_FORCE) == 0) 3017 (void) VFS_SYNC(vfsp, 0, cr); 3018 3019 /* 3020 * Lock the vfs to maintain fs status quo during unmount. This 3021 * has to be done after the sync because ufs_update tries to acquire 3022 * the vfs_reflock. 3023 */ 3024 vfs_lock_wait(vfsp); 3025 3026 if (error = VFS_UNMOUNT(vfsp, flag, cr)) { 3027 vfs_unlock(vfsp); 3028 if (coveredvp != NULL) 3029 vn_vfsunlock(coveredvp); 3030 } else if (coveredvp != NULL) { 3031 teardown_vopstats(vfsp); 3032 /* 3033 * vfs_remove() will do a VN_RELE(vfsp->vfs_vnodecovered) 3034 * when it frees vfsp so we do a VN_HOLD() so we can 3035 * continue to use coveredvp afterwards. 3036 */ 3037 VN_HOLD(coveredvp); 3038 vfs_remove(vfsp); 3039 vn_vfsunlock(coveredvp); 3040 VN_RELE(coveredvp); 3041 } else { 3042 teardown_vopstats(vfsp); 3043 /* 3044 * Release the reference to vfs that is not linked 3045 * into the name space. 3046 */ 3047 vfs_unlock(vfsp); 3048 VFS_RELE(vfsp); 3049 } 3050 return (error); 3051 } 3052 3053 3054 /* 3055 * Vfs_unmountall() is called by uadmin() to unmount all 3056 * mounted file systems (except the root file system) during shutdown. 3057 * It follows the existing locking protocol when traversing the vfs list 3058 * to sync and unmount vfses. Even though there should be no 3059 * other thread running while the system is shutting down, it is prudent 3060 * to still follow the locking protocol. 3061 */ 3062 void 3063 vfs_unmountall(void) 3064 { 3065 struct vfs *vfsp; 3066 struct vfs *prev_vfsp = NULL; 3067 int error; 3068 3069 /* 3070 * Toss all dnlc entries now so that the per-vfs sync 3071 * and unmount operations don't have to slog through 3072 * a bunch of uninteresting vnodes over and over again. 3073 */ 3074 dnlc_purge(); 3075 3076 vfs_list_lock(); 3077 for (vfsp = rootvfs->vfs_prev; vfsp != rootvfs; vfsp = prev_vfsp) { 3078 prev_vfsp = vfsp->vfs_prev; 3079 3080 if (vfs_lock(vfsp) != 0) 3081 continue; 3082 error = vn_vfswlock(vfsp->vfs_vnodecovered); 3083 vfs_unlock(vfsp); 3084 if (error) 3085 continue; 3086 3087 vfs_list_unlock(); 3088 3089 (void) VFS_SYNC(vfsp, SYNC_CLOSE, CRED()); 3090 (void) dounmount(vfsp, 0, CRED()); 3091 3092 /* 3093 * Since we dropped the vfslist lock above we must 3094 * verify that next_vfsp still exists, else start over. 3095 */ 3096 vfs_list_lock(); 3097 for (vfsp = rootvfs->vfs_prev; 3098 vfsp != rootvfs; vfsp = vfsp->vfs_prev) 3099 if (vfsp == prev_vfsp) 3100 break; 3101 if (vfsp == rootvfs && prev_vfsp != rootvfs) 3102 prev_vfsp = rootvfs->vfs_prev; 3103 } 3104 vfs_list_unlock(); 3105 } 3106 3107 /* 3108 * Called to add an entry to the end of the vfs mount in progress list 3109 */ 3110 void 3111 vfs_addmip(dev_t dev, struct vfs *vfsp) 3112 { 3113 struct ipmnt *mipp; 3114 3115 mipp = (struct ipmnt *)kmem_alloc(sizeof (struct ipmnt), KM_SLEEP); 3116 mipp->mip_next = NULL; 3117 mipp->mip_dev = dev; 3118 mipp->mip_vfsp = vfsp; 3119 mutex_enter(&vfs_miplist_mutex); 3120 if (vfs_miplist_end != NULL) 3121 vfs_miplist_end->mip_next = mipp; 3122 else 3123 vfs_miplist = mipp; 3124 vfs_miplist_end = mipp; 3125 mutex_exit(&vfs_miplist_mutex); 3126 } 3127 3128 /* 3129 * Called to remove an entry from the mount in progress list 3130 * Either because the mount completed or it failed. 3131 */ 3132 void 3133 vfs_delmip(struct vfs *vfsp) 3134 { 3135 struct ipmnt *mipp, *mipprev; 3136 3137 mutex_enter(&vfs_miplist_mutex); 3138 mipprev = NULL; 3139 for (mipp = vfs_miplist; 3140 mipp && mipp->mip_vfsp != vfsp; mipp = mipp->mip_next) { 3141 mipprev = mipp; 3142 } 3143 if (mipp == NULL) 3144 return; /* shouldn't happen */ 3145 if (mipp == vfs_miplist_end) 3146 vfs_miplist_end = mipprev; 3147 if (mipprev == NULL) 3148 vfs_miplist = mipp->mip_next; 3149 else 3150 mipprev->mip_next = mipp->mip_next; 3151 mutex_exit(&vfs_miplist_mutex); 3152 kmem_free(mipp, sizeof (struct ipmnt)); 3153 } 3154 3155 /* 3156 * vfs_add is called by a specific filesystem's mount routine to add 3157 * the new vfs into the vfs list/hash and to cover the mounted-on vnode. 3158 * The vfs should already have been locked by the caller. 3159 * 3160 * coveredvp is NULL if this is the root. 3161 */ 3162 void 3163 vfs_add(vnode_t *coveredvp, struct vfs *vfsp, int mflag) 3164 { 3165 int newflag; 3166 3167 ASSERT(vfs_lock_held(vfsp)); 3168 VFS_HOLD(vfsp); 3169 newflag = vfsp->vfs_flag; 3170 if (mflag & MS_RDONLY) 3171 newflag |= VFS_RDONLY; 3172 else 3173 newflag &= ~VFS_RDONLY; 3174 if (mflag & MS_NOSUID) 3175 newflag |= (VFS_NOSETUID|VFS_NODEVICES); 3176 else 3177 newflag &= ~(VFS_NOSETUID|VFS_NODEVICES); 3178 if (mflag & MS_NOMNTTAB) 3179 newflag |= VFS_NOMNTTAB; 3180 else 3181 newflag &= ~VFS_NOMNTTAB; 3182 3183 if (coveredvp != NULL) { 3184 ASSERT(vn_vfswlock_held(coveredvp)); 3185 coveredvp->v_vfsmountedhere = vfsp; 3186 VN_HOLD(coveredvp); 3187 } 3188 vfsp->vfs_vnodecovered = coveredvp; 3189 vfsp->vfs_flag = newflag; 3190 3191 vfs_list_add(vfsp); 3192 } 3193 3194 /* 3195 * Remove a vfs from the vfs list, null out the pointer from the 3196 * covered vnode to the vfs (v_vfsmountedhere), and null out the pointer 3197 * from the vfs to the covered vnode (vfs_vnodecovered). Release the 3198 * reference to the vfs and to the covered vnode. 3199 * 3200 * Called from dounmount after it's confirmed with the file system 3201 * that the unmount is legal. 3202 */ 3203 void 3204 vfs_remove(struct vfs *vfsp) 3205 { 3206 vnode_t *vp; 3207 3208 ASSERT(vfs_lock_held(vfsp)); 3209 3210 /* 3211 * Can't unmount root. Should never happen because fs will 3212 * be busy. 3213 */ 3214 if (vfsp == rootvfs) 3215 panic("vfs_remove: unmounting root"); 3216 3217 vfs_list_remove(vfsp); 3218 3219 /* 3220 * Unhook from the file system name space. 3221 */ 3222 vp = vfsp->vfs_vnodecovered; 3223 ASSERT(vn_vfswlock_held(vp)); 3224 vp->v_vfsmountedhere = NULL; 3225 vfsp->vfs_vnodecovered = NULL; 3226 VN_RELE(vp); 3227 3228 /* 3229 * Release lock and wakeup anybody waiting. 3230 */ 3231 vfs_unlock(vfsp); 3232 VFS_RELE(vfsp); 3233 } 3234 3235 /* 3236 * Lock a filesystem to prevent access to it while mounting, 3237 * unmounting and syncing. Return EBUSY immediately if lock 3238 * can't be acquired. 3239 */ 3240 int 3241 vfs_lock(vfs_t *vfsp) 3242 { 3243 vn_vfslocks_entry_t *vpvfsentry; 3244 3245 vpvfsentry = vn_vfslocks_getlock(vfsp); 3246 if (rwst_tryenter(&vpvfsentry->ve_lock, RW_WRITER)) 3247 return (0); 3248 3249 vn_vfslocks_rele(vpvfsentry); 3250 return (EBUSY); 3251 } 3252 3253 int 3254 vfs_rlock(vfs_t *vfsp) 3255 { 3256 vn_vfslocks_entry_t *vpvfsentry; 3257 3258 vpvfsentry = vn_vfslocks_getlock(vfsp); 3259 3260 if (rwst_tryenter(&vpvfsentry->ve_lock, RW_READER)) 3261 return (0); 3262 3263 vn_vfslocks_rele(vpvfsentry); 3264 return (EBUSY); 3265 } 3266 3267 void 3268 vfs_lock_wait(vfs_t *vfsp) 3269 { 3270 vn_vfslocks_entry_t *vpvfsentry; 3271 3272 vpvfsentry = vn_vfslocks_getlock(vfsp); 3273 rwst_enter(&vpvfsentry->ve_lock, RW_WRITER); 3274 } 3275 3276 void 3277 vfs_rlock_wait(vfs_t *vfsp) 3278 { 3279 vn_vfslocks_entry_t *vpvfsentry; 3280 3281 vpvfsentry = vn_vfslocks_getlock(vfsp); 3282 rwst_enter(&vpvfsentry->ve_lock, RW_READER); 3283 } 3284 3285 /* 3286 * Unlock a locked filesystem. 3287 */ 3288 void 3289 vfs_unlock(vfs_t *vfsp) 3290 { 3291 vn_vfslocks_entry_t *vpvfsentry; 3292 3293 /* 3294 * vfs_unlock will mimic sema_v behaviour to fix 4748018. 3295 * And these changes should remain for the patch changes as it is. 3296 */ 3297 if (panicstr) 3298 return; 3299 3300 /* 3301 * ve_refcount needs to be dropped twice here. 3302 * 1. To release refernce after a call to vfs_locks_getlock() 3303 * 2. To release the reference from the locking routines like 3304 * vfs_rlock_wait/vfs_wlock_wait/vfs_wlock etc,. 3305 */ 3306 3307 vpvfsentry = vn_vfslocks_getlock(vfsp); 3308 vn_vfslocks_rele(vpvfsentry); 3309 3310 rwst_exit(&vpvfsentry->ve_lock); 3311 vn_vfslocks_rele(vpvfsentry); 3312 } 3313 3314 /* 3315 * Utility routine that allows a filesystem to construct its 3316 * fsid in "the usual way" - by munging some underlying dev_t and 3317 * the filesystem type number into the 64-bit fsid. Note that 3318 * this implicitly relies on dev_t persistence to make filesystem 3319 * id's persistent. 3320 * 3321 * There's nothing to prevent an individual fs from constructing its 3322 * fsid in a different way, and indeed they should. 3323 * 3324 * Since we want fsids to be 32-bit quantities (so that they can be 3325 * exported identically by either 32-bit or 64-bit APIs, as well as 3326 * the fact that fsid's are "known" to NFS), we compress the device 3327 * number given down to 32-bits, and panic if that isn't possible. 3328 */ 3329 void 3330 vfs_make_fsid(fsid_t *fsi, dev_t dev, int val) 3331 { 3332 if (!cmpldev((dev32_t *)&fsi->val[0], dev)) 3333 panic("device number too big for fsid!"); 3334 fsi->val[1] = val; 3335 } 3336 3337 int 3338 vfs_lock_held(vfs_t *vfsp) 3339 { 3340 int held; 3341 vn_vfslocks_entry_t *vpvfsentry; 3342 3343 /* 3344 * vfs_lock_held will mimic sema_held behaviour 3345 * if panicstr is set. And these changes should remain 3346 * for the patch changes as it is. 3347 */ 3348 if (panicstr) 3349 return (1); 3350 3351 vpvfsentry = vn_vfslocks_getlock(vfsp); 3352 held = rwst_lock_held(&vpvfsentry->ve_lock, RW_WRITER); 3353 3354 vn_vfslocks_rele(vpvfsentry); 3355 return (held); 3356 } 3357 3358 struct _kthread * 3359 vfs_lock_owner(vfs_t *vfsp) 3360 { 3361 struct _kthread *owner; 3362 vn_vfslocks_entry_t *vpvfsentry; 3363 3364 /* 3365 * vfs_wlock_held will mimic sema_held behaviour 3366 * if panicstr is set. And these changes should remain 3367 * for the patch changes as it is. 3368 */ 3369 if (panicstr) 3370 return (NULL); 3371 3372 vpvfsentry = vn_vfslocks_getlock(vfsp); 3373 owner = rwst_owner(&vpvfsentry->ve_lock); 3374 3375 vn_vfslocks_rele(vpvfsentry); 3376 return (owner); 3377 } 3378 3379 /* 3380 * vfs list locking. 3381 * 3382 * Rather than manipulate the vfslist lock directly, we abstract into lock 3383 * and unlock routines to allow the locking implementation to be changed for 3384 * clustering. 3385 * 3386 * Whenever the vfs list is modified through its hash links, the overall list 3387 * lock must be obtained before locking the relevant hash bucket. But to see 3388 * whether a given vfs is on the list, it suffices to obtain the lock for the 3389 * hash bucket without getting the overall list lock. (See getvfs() below.) 3390 */ 3391 3392 void 3393 vfs_list_lock() 3394 { 3395 rw_enter(&vfslist, RW_WRITER); 3396 } 3397 3398 void 3399 vfs_list_read_lock() 3400 { 3401 rw_enter(&vfslist, RW_READER); 3402 } 3403 3404 void 3405 vfs_list_unlock() 3406 { 3407 rw_exit(&vfslist); 3408 } 3409 3410 /* 3411 * Low level worker routines for adding entries to and removing entries from 3412 * the vfs list. 3413 */ 3414 3415 static void 3416 vfs_hash_add(struct vfs *vfsp, int insert_at_head) 3417 { 3418 int vhno; 3419 struct vfs **hp; 3420 dev_t dev; 3421 3422 ASSERT(RW_WRITE_HELD(&vfslist)); 3423 3424 dev = expldev(vfsp->vfs_fsid.val[0]); 3425 vhno = VFSHASH(getmajor(dev), getminor(dev)); 3426 3427 mutex_enter(&rvfs_list[vhno].rvfs_lock); 3428 3429 /* 3430 * Link into the hash table, inserting it at the end, so that LOFS 3431 * with the same fsid as UFS (or other) file systems will not hide the 3432 * UFS. 3433 */ 3434 if (insert_at_head) { 3435 vfsp->vfs_hash = rvfs_list[vhno].rvfs_head; 3436 rvfs_list[vhno].rvfs_head = vfsp; 3437 } else { 3438 for (hp = &rvfs_list[vhno].rvfs_head; *hp != NULL; 3439 hp = &(*hp)->vfs_hash) 3440 continue; 3441 /* 3442 * hp now contains the address of the pointer to update 3443 * to effect the insertion. 3444 */ 3445 vfsp->vfs_hash = NULL; 3446 *hp = vfsp; 3447 } 3448 3449 rvfs_list[vhno].rvfs_len++; 3450 mutex_exit(&rvfs_list[vhno].rvfs_lock); 3451 } 3452 3453 3454 static void 3455 vfs_hash_remove(struct vfs *vfsp) 3456 { 3457 int vhno; 3458 struct vfs *tvfsp; 3459 dev_t dev; 3460 3461 ASSERT(RW_WRITE_HELD(&vfslist)); 3462 3463 dev = expldev(vfsp->vfs_fsid.val[0]); 3464 vhno = VFSHASH(getmajor(dev), getminor(dev)); 3465 3466 mutex_enter(&rvfs_list[vhno].rvfs_lock); 3467 3468 /* 3469 * Remove from hash. 3470 */ 3471 if (rvfs_list[vhno].rvfs_head == vfsp) { 3472 rvfs_list[vhno].rvfs_head = vfsp->vfs_hash; 3473 rvfs_list[vhno].rvfs_len--; 3474 goto foundit; 3475 } 3476 for (tvfsp = rvfs_list[vhno].rvfs_head; tvfsp != NULL; 3477 tvfsp = tvfsp->vfs_hash) { 3478 if (tvfsp->vfs_hash == vfsp) { 3479 tvfsp->vfs_hash = vfsp->vfs_hash; 3480 rvfs_list[vhno].rvfs_len--; 3481 goto foundit; 3482 } 3483 } 3484 cmn_err(CE_WARN, "vfs_list_remove: vfs not found in hash"); 3485 3486 foundit: 3487 3488 mutex_exit(&rvfs_list[vhno].rvfs_lock); 3489 } 3490 3491 3492 void 3493 vfs_list_add(struct vfs *vfsp) 3494 { 3495 zone_t *zone; 3496 3497 /* 3498 * The zone that owns the mount is the one that performed the mount. 3499 * Note that this isn't necessarily the same as the zone mounted into. 3500 * The corresponding zone_rele() will be done when the vfs_t is 3501 * being free'd. 3502 */ 3503 vfsp->vfs_zone = curproc->p_zone; 3504 zone_hold(vfsp->vfs_zone); 3505 3506 /* 3507 * Find the zone mounted into, and put this mount on its vfs list. 3508 */ 3509 zone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt)); 3510 ASSERT(zone != NULL); 3511 /* 3512 * Special casing for the root vfs. This structure is allocated 3513 * statically and hooked onto rootvfs at link time. During the 3514 * vfs_mountroot call at system startup time, the root file system's 3515 * VFS_MOUNTROOT routine will call vfs_add with this root vfs struct 3516 * as argument. The code below must detect and handle this special 3517 * case. The only apparent justification for this special casing is 3518 * to ensure that the root file system appears at the head of the 3519 * list. 3520 * 3521 * XXX: I'm assuming that it's ok to do normal list locking when 3522 * adding the entry for the root file system (this used to be 3523 * done with no locks held). 3524 */ 3525 vfs_list_lock(); 3526 /* 3527 * Link into the vfs list proper. 3528 */ 3529 if (vfsp == &root) { 3530 /* 3531 * Assert: This vfs is already on the list as its first entry. 3532 * Thus, there's nothing to do. 3533 */ 3534 ASSERT(rootvfs == vfsp); 3535 /* 3536 * Add it to the head of the global zone's vfslist. 3537 */ 3538 ASSERT(zone == global_zone); 3539 ASSERT(zone->zone_vfslist == NULL); 3540 zone->zone_vfslist = vfsp; 3541 } else { 3542 /* 3543 * Link to end of list using vfs_prev (as rootvfs is now a 3544 * doubly linked circular list) so list is in mount order for 3545 * mnttab use. 3546 */ 3547 rootvfs->vfs_prev->vfs_next = vfsp; 3548 vfsp->vfs_prev = rootvfs->vfs_prev; 3549 rootvfs->vfs_prev = vfsp; 3550 vfsp->vfs_next = rootvfs; 3551 3552 /* 3553 * Do it again for the zone-private list (which may be NULL). 3554 */ 3555 if (zone->zone_vfslist == NULL) { 3556 ASSERT(zone != global_zone); 3557 zone->zone_vfslist = vfsp; 3558 } else { 3559 zone->zone_vfslist->vfs_zone_prev->vfs_zone_next = vfsp; 3560 vfsp->vfs_zone_prev = zone->zone_vfslist->vfs_zone_prev; 3561 zone->zone_vfslist->vfs_zone_prev = vfsp; 3562 vfsp->vfs_zone_next = zone->zone_vfslist; 3563 } 3564 } 3565 3566 /* 3567 * Link into the hash table, inserting it at the end, so that LOFS 3568 * with the same fsid as UFS (or other) file systems will not hide 3569 * the UFS. 3570 */ 3571 vfs_hash_add(vfsp, 0); 3572 3573 /* 3574 * update the mnttab modification time 3575 */ 3576 vfs_mnttab_modtimeupd(); 3577 vfs_list_unlock(); 3578 zone_rele(zone); 3579 } 3580 3581 void 3582 vfs_list_remove(struct vfs *vfsp) 3583 { 3584 zone_t *zone; 3585 3586 zone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt)); 3587 ASSERT(zone != NULL); 3588 /* 3589 * Callers are responsible for preventing attempts to unmount the 3590 * root. 3591 */ 3592 ASSERT(vfsp != rootvfs); 3593 3594 vfs_list_lock(); 3595 3596 /* 3597 * Remove from hash. 3598 */ 3599 vfs_hash_remove(vfsp); 3600 3601 /* 3602 * Remove from vfs list. 3603 */ 3604 vfsp->vfs_prev->vfs_next = vfsp->vfs_next; 3605 vfsp->vfs_next->vfs_prev = vfsp->vfs_prev; 3606 vfsp->vfs_next = vfsp->vfs_prev = NULL; 3607 3608 /* 3609 * Remove from zone-specific vfs list. 3610 */ 3611 if (zone->zone_vfslist == vfsp) 3612 zone->zone_vfslist = vfsp->vfs_zone_next; 3613 3614 if (vfsp->vfs_zone_next == vfsp) { 3615 ASSERT(vfsp->vfs_zone_prev == vfsp); 3616 ASSERT(zone->zone_vfslist == vfsp); 3617 zone->zone_vfslist = NULL; 3618 } 3619 3620 vfsp->vfs_zone_prev->vfs_zone_next = vfsp->vfs_zone_next; 3621 vfsp->vfs_zone_next->vfs_zone_prev = vfsp->vfs_zone_prev; 3622 vfsp->vfs_zone_next = vfsp->vfs_zone_prev = NULL; 3623 3624 /* 3625 * update the mnttab modification time 3626 */ 3627 vfs_mnttab_modtimeupd(); 3628 vfs_list_unlock(); 3629 zone_rele(zone); 3630 } 3631 3632 struct vfs * 3633 getvfs(fsid_t *fsid) 3634 { 3635 struct vfs *vfsp; 3636 int val0 = fsid->val[0]; 3637 int val1 = fsid->val[1]; 3638 dev_t dev = expldev(val0); 3639 int vhno = VFSHASH(getmajor(dev), getminor(dev)); 3640 kmutex_t *hmp = &rvfs_list[vhno].rvfs_lock; 3641 3642 mutex_enter(hmp); 3643 for (vfsp = rvfs_list[vhno].rvfs_head; vfsp; vfsp = vfsp->vfs_hash) { 3644 if (vfsp->vfs_fsid.val[0] == val0 && 3645 vfsp->vfs_fsid.val[1] == val1) { 3646 VFS_HOLD(vfsp); 3647 mutex_exit(hmp); 3648 return (vfsp); 3649 } 3650 } 3651 mutex_exit(hmp); 3652 return (NULL); 3653 } 3654 3655 /* 3656 * Search the vfs mount in progress list for a specified device/vfs entry. 3657 * Returns 0 if the first entry in the list that the device matches has the 3658 * given vfs pointer as well. If the device matches but a different vfs 3659 * pointer is encountered in the list before the given vfs pointer then 3660 * a 1 is returned. 3661 */ 3662 3663 int 3664 vfs_devmounting(dev_t dev, struct vfs *vfsp) 3665 { 3666 int retval = 0; 3667 struct ipmnt *mipp; 3668 3669 mutex_enter(&vfs_miplist_mutex); 3670 for (mipp = vfs_miplist; mipp != NULL; mipp = mipp->mip_next) { 3671 if (mipp->mip_dev == dev) { 3672 if (mipp->mip_vfsp != vfsp) 3673 retval = 1; 3674 break; 3675 } 3676 } 3677 mutex_exit(&vfs_miplist_mutex); 3678 return (retval); 3679 } 3680 3681 /* 3682 * Search the vfs list for a specified device. Returns 1, if entry is found 3683 * or 0 if no suitable entry is found. 3684 */ 3685 3686 int 3687 vfs_devismounted(dev_t dev) 3688 { 3689 struct vfs *vfsp; 3690 int found; 3691 3692 vfs_list_read_lock(); 3693 vfsp = rootvfs; 3694 found = 0; 3695 do { 3696 if (vfsp->vfs_dev == dev) { 3697 found = 1; 3698 break; 3699 } 3700 vfsp = vfsp->vfs_next; 3701 } while (vfsp != rootvfs); 3702 3703 vfs_list_unlock(); 3704 return (found); 3705 } 3706 3707 /* 3708 * Search the vfs list for a specified device. Returns a pointer to it 3709 * or NULL if no suitable entry is found. The caller of this routine 3710 * is responsible for releasing the returned vfs pointer. 3711 */ 3712 struct vfs * 3713 vfs_dev2vfsp(dev_t dev) 3714 { 3715 struct vfs *vfsp; 3716 int found; 3717 3718 vfs_list_read_lock(); 3719 vfsp = rootvfs; 3720 found = 0; 3721 do { 3722 /* 3723 * The following could be made more efficient by making 3724 * the entire loop use vfs_zone_next if the call is from 3725 * a zone. The only callers, however, ustat(2) and 3726 * umount2(2), don't seem to justify the added 3727 * complexity at present. 3728 */ 3729 if (vfsp->vfs_dev == dev && 3730 ZONE_PATH_VISIBLE(refstr_value(vfsp->vfs_mntpt), 3731 curproc->p_zone)) { 3732 VFS_HOLD(vfsp); 3733 found = 1; 3734 break; 3735 } 3736 vfsp = vfsp->vfs_next; 3737 } while (vfsp != rootvfs); 3738 vfs_list_unlock(); 3739 return (found ? vfsp: NULL); 3740 } 3741 3742 /* 3743 * Search the vfs list for a specified mntpoint. Returns a pointer to it 3744 * or NULL if no suitable entry is found. The caller of this routine 3745 * is responsible for releasing the returned vfs pointer. 3746 * 3747 * Note that if multiple mntpoints match, the last one matching is 3748 * returned in an attempt to return the "top" mount when overlay 3749 * mounts are covering the same mount point. This is accomplished by starting 3750 * at the end of the list and working our way backwards, stopping at the first 3751 * matching mount. 3752 */ 3753 struct vfs * 3754 vfs_mntpoint2vfsp(const char *mp) 3755 { 3756 struct vfs *vfsp; 3757 struct vfs *retvfsp = NULL; 3758 zone_t *zone = curproc->p_zone; 3759 struct vfs *list; 3760 3761 vfs_list_read_lock(); 3762 if (getzoneid() == GLOBAL_ZONEID) { 3763 /* 3764 * The global zone may see filesystems in any zone. 3765 */ 3766 vfsp = rootvfs->vfs_prev; 3767 do { 3768 if (strcmp(refstr_value(vfsp->vfs_mntpt), mp) == 0) { 3769 retvfsp = vfsp; 3770 break; 3771 } 3772 vfsp = vfsp->vfs_prev; 3773 } while (vfsp != rootvfs->vfs_prev); 3774 } else if ((list = zone->zone_vfslist) != NULL) { 3775 const char *mntpt; 3776 3777 vfsp = list->vfs_zone_prev; 3778 do { 3779 mntpt = refstr_value(vfsp->vfs_mntpt); 3780 mntpt = ZONE_PATH_TRANSLATE(mntpt, zone); 3781 if (strcmp(mntpt, mp) == 0) { 3782 retvfsp = vfsp; 3783 break; 3784 } 3785 vfsp = vfsp->vfs_zone_prev; 3786 } while (vfsp != list->vfs_zone_prev); 3787 } 3788 if (retvfsp) 3789 VFS_HOLD(retvfsp); 3790 vfs_list_unlock(); 3791 return (retvfsp); 3792 } 3793 3794 /* 3795 * Search the vfs list for a specified vfsops. 3796 * if vfs entry is found then return 1, else 0. 3797 */ 3798 int 3799 vfs_opsinuse(vfsops_t *ops) 3800 { 3801 struct vfs *vfsp; 3802 int found; 3803 3804 vfs_list_read_lock(); 3805 vfsp = rootvfs; 3806 found = 0; 3807 do { 3808 if (vfs_getops(vfsp) == ops) { 3809 found = 1; 3810 break; 3811 } 3812 vfsp = vfsp->vfs_next; 3813 } while (vfsp != rootvfs); 3814 vfs_list_unlock(); 3815 return (found); 3816 } 3817 3818 /* 3819 * Allocate an entry in vfssw for a file system type 3820 */ 3821 struct vfssw * 3822 allocate_vfssw(const char *type) 3823 { 3824 struct vfssw *vswp; 3825 3826 if (type[0] == '\0' || strlen(type) + 1 > _ST_FSTYPSZ) { 3827 /* 3828 * The vfssw table uses the empty string to identify an 3829 * available entry; we cannot add any type which has 3830 * a leading NUL. The string length is limited to 3831 * the size of the st_fstype array in struct stat. 3832 */ 3833 return (NULL); 3834 } 3835 3836 ASSERT(VFSSW_WRITE_LOCKED()); 3837 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) 3838 if (!ALLOCATED_VFSSW(vswp)) { 3839 vswp->vsw_name = kmem_alloc(strlen(type) + 1, KM_SLEEP); 3840 (void) strcpy(vswp->vsw_name, type); 3841 ASSERT(vswp->vsw_count == 0); 3842 vswp->vsw_count = 1; 3843 mutex_init(&vswp->vsw_lock, NULL, MUTEX_DEFAULT, NULL); 3844 return (vswp); 3845 } 3846 return (NULL); 3847 } 3848 3849 /* 3850 * Impose additional layer of translation between vfstype names 3851 * and module names in the filesystem. 3852 */ 3853 static const char * 3854 vfs_to_modname(const char *vfstype) 3855 { 3856 if (strcmp(vfstype, "proc") == 0) { 3857 vfstype = "procfs"; 3858 } else if (strcmp(vfstype, "fd") == 0) { 3859 vfstype = "fdfs"; 3860 } else if (strncmp(vfstype, "nfs", 3) == 0) { 3861 vfstype = "nfs"; 3862 } 3863 3864 return (vfstype); 3865 } 3866 3867 /* 3868 * Find a vfssw entry given a file system type name. 3869 * Try to autoload the filesystem if it's not found. 3870 * If it's installed, return the vfssw locked to prevent unloading. 3871 */ 3872 struct vfssw * 3873 vfs_getvfssw(const char *type) 3874 { 3875 struct vfssw *vswp; 3876 const char *modname; 3877 3878 RLOCK_VFSSW(); 3879 vswp = vfs_getvfsswbyname(type); 3880 modname = vfs_to_modname(type); 3881 3882 if (rootdir == NULL) { 3883 /* 3884 * If we haven't yet loaded the root file system, then our 3885 * _init won't be called until later. Allocate vfssw entry, 3886 * because mod_installfs won't be called. 3887 */ 3888 if (vswp == NULL) { 3889 RUNLOCK_VFSSW(); 3890 WLOCK_VFSSW(); 3891 if ((vswp = vfs_getvfsswbyname(type)) == NULL) { 3892 if ((vswp = allocate_vfssw(type)) == NULL) { 3893 WUNLOCK_VFSSW(); 3894 return (NULL); 3895 } 3896 } 3897 WUNLOCK_VFSSW(); 3898 RLOCK_VFSSW(); 3899 } 3900 if (!VFS_INSTALLED(vswp)) { 3901 RUNLOCK_VFSSW(); 3902 (void) modloadonly("fs", modname); 3903 } else 3904 RUNLOCK_VFSSW(); 3905 return (vswp); 3906 } 3907 3908 /* 3909 * Try to load the filesystem. Before calling modload(), we drop 3910 * our lock on the VFS switch table, and pick it up after the 3911 * module is loaded. However, there is a potential race: the 3912 * module could be unloaded after the call to modload() completes 3913 * but before we pick up the lock and drive on. Therefore, 3914 * we keep reloading the module until we've loaded the module 3915 * _and_ we have the lock on the VFS switch table. 3916 */ 3917 while (vswp == NULL || !VFS_INSTALLED(vswp)) { 3918 RUNLOCK_VFSSW(); 3919 if (modload("fs", modname) == -1) 3920 return (NULL); 3921 RLOCK_VFSSW(); 3922 if (vswp == NULL) 3923 if ((vswp = vfs_getvfsswbyname(type)) == NULL) 3924 break; 3925 } 3926 RUNLOCK_VFSSW(); 3927 3928 return (vswp); 3929 } 3930 3931 /* 3932 * Find a vfssw entry given a file system type name. 3933 */ 3934 struct vfssw * 3935 vfs_getvfsswbyname(const char *type) 3936 { 3937 struct vfssw *vswp; 3938 3939 ASSERT(VFSSW_LOCKED()); 3940 if (type == NULL || *type == '\0') 3941 return (NULL); 3942 3943 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) { 3944 if (strcmp(type, vswp->vsw_name) == 0) { 3945 vfs_refvfssw(vswp); 3946 return (vswp); 3947 } 3948 } 3949 3950 return (NULL); 3951 } 3952 3953 /* 3954 * Find a vfssw entry given a set of vfsops. 3955 */ 3956 struct vfssw * 3957 vfs_getvfsswbyvfsops(vfsops_t *vfsops) 3958 { 3959 struct vfssw *vswp; 3960 3961 RLOCK_VFSSW(); 3962 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) { 3963 if (ALLOCATED_VFSSW(vswp) && &vswp->vsw_vfsops == vfsops) { 3964 vfs_refvfssw(vswp); 3965 RUNLOCK_VFSSW(); 3966 return (vswp); 3967 } 3968 } 3969 RUNLOCK_VFSSW(); 3970 3971 return (NULL); 3972 } 3973 3974 /* 3975 * Reference a vfssw entry. 3976 */ 3977 void 3978 vfs_refvfssw(struct vfssw *vswp) 3979 { 3980 3981 mutex_enter(&vswp->vsw_lock); 3982 vswp->vsw_count++; 3983 mutex_exit(&vswp->vsw_lock); 3984 } 3985 3986 /* 3987 * Unreference a vfssw entry. 3988 */ 3989 void 3990 vfs_unrefvfssw(struct vfssw *vswp) 3991 { 3992 3993 mutex_enter(&vswp->vsw_lock); 3994 vswp->vsw_count--; 3995 mutex_exit(&vswp->vsw_lock); 3996 } 3997 3998 int sync_timeout = 30; /* timeout for syncing a page during panic */ 3999 int sync_timeleft; /* portion of sync_timeout remaining */ 4000 4001 static int sync_retries = 20; /* number of retries when not making progress */ 4002 static int sync_triesleft; /* portion of sync_retries remaining */ 4003 4004 static pgcnt_t old_pgcnt, new_pgcnt; 4005 static int new_bufcnt, old_bufcnt; 4006 4007 /* 4008 * Sync all of the mounted filesystems, and then wait for the actual i/o to 4009 * complete. We wait by counting the number of dirty pages and buffers, 4010 * pushing them out using bio_busy() and page_busy(), and then counting again. 4011 * This routine is used during both the uadmin A_SHUTDOWN code as well as 4012 * the SYNC phase of the panic code (see comments in panic.c). It should only 4013 * be used after some higher-level mechanism has quiesced the system so that 4014 * new writes are not being initiated while we are waiting for completion. 4015 * 4016 * To ensure finite running time, our algorithm uses two timeout mechanisms: 4017 * sync_timeleft (a timer implemented by the omnipresent deadman() cyclic), and 4018 * sync_triesleft (a progress counter used by the vfs_syncall() loop below). 4019 * Together these ensure that syncing completes if our i/o paths are stuck. 4020 * The counters are declared above so they can be found easily in the debugger. 4021 * 4022 * The sync_timeleft counter is reset by bio_busy() and page_busy() using the 4023 * vfs_syncprogress() subroutine whenever we make progress through the lists of 4024 * pages and buffers. It is decremented and expired by the deadman() cyclic. 4025 * When vfs_syncall() decides it is done, we disable the deadman() counter by 4026 * setting sync_timeleft to zero. This timer guards against vfs_syncall() 4027 * deadlocking or hanging inside of a broken filesystem or driver routine. 4028 * 4029 * The sync_triesleft counter is updated by vfs_syncall() itself. If we make 4030 * sync_retries consecutive calls to bio_busy() and page_busy() without 4031 * decreasing either the number of dirty buffers or dirty pages below the 4032 * lowest count we have seen so far, we give up and return from vfs_syncall(). 4033 * 4034 * Each loop iteration ends with a call to delay() one second to allow time for 4035 * i/o completion and to permit the user time to read our progress messages. 4036 */ 4037 void 4038 vfs_syncall(void) 4039 { 4040 if (rootdir == NULL && !modrootloaded) 4041 return; /* panic during boot - no filesystems yet */ 4042 4043 printf("syncing file systems..."); 4044 vfs_syncprogress(); 4045 sync(); 4046 4047 vfs_syncprogress(); 4048 sync_triesleft = sync_retries; 4049 4050 old_bufcnt = new_bufcnt = INT_MAX; 4051 old_pgcnt = new_pgcnt = ULONG_MAX; 4052 4053 while (sync_triesleft > 0) { 4054 old_bufcnt = MIN(old_bufcnt, new_bufcnt); 4055 old_pgcnt = MIN(old_pgcnt, new_pgcnt); 4056 4057 new_bufcnt = bio_busy(B_TRUE); 4058 new_pgcnt = page_busy(B_TRUE); 4059 vfs_syncprogress(); 4060 4061 if (new_bufcnt == 0 && new_pgcnt == 0) 4062 break; 4063 4064 if (new_bufcnt < old_bufcnt || new_pgcnt < old_pgcnt) 4065 sync_triesleft = sync_retries; 4066 else 4067 sync_triesleft--; 4068 4069 if (new_bufcnt) 4070 printf(" [%d]", new_bufcnt); 4071 if (new_pgcnt) 4072 printf(" %lu", new_pgcnt); 4073 4074 delay(hz); 4075 } 4076 4077 if (new_bufcnt != 0 || new_pgcnt != 0) 4078 printf(" done (not all i/o completed)\n"); 4079 else 4080 printf(" done\n"); 4081 4082 sync_timeleft = 0; 4083 delay(hz); 4084 } 4085 4086 /* 4087 * If we are in the middle of the sync phase of panic, reset sync_timeleft to 4088 * sync_timeout to indicate that we are making progress and the deadman() 4089 * omnipresent cyclic should not yet time us out. Note that it is safe to 4090 * store to sync_timeleft here since the deadman() is firing at high-level 4091 * on top of us. If we are racing with the deadman(), either the deadman() 4092 * will decrement the old value and then we will reset it, or we will 4093 * reset it and then the deadman() will immediately decrement it. In either 4094 * case, correct behavior results. 4095 */ 4096 void 4097 vfs_syncprogress(void) 4098 { 4099 if (panicstr) 4100 sync_timeleft = sync_timeout; 4101 } 4102 4103 /* 4104 * Map VFS flags to statvfs flags. These shouldn't really be separate 4105 * flags at all. 4106 */ 4107 uint_t 4108 vf_to_stf(uint_t vf) 4109 { 4110 uint_t stf = 0; 4111 4112 if (vf & VFS_RDONLY) 4113 stf |= ST_RDONLY; 4114 if (vf & VFS_NOSETUID) 4115 stf |= ST_NOSUID; 4116 if (vf & VFS_NOTRUNC) 4117 stf |= ST_NOTRUNC; 4118 4119 return (stf); 4120 } 4121 4122 /* 4123 * Entries for (illegal) fstype 0. 4124 */ 4125 /* ARGSUSED */ 4126 int 4127 vfsstray_sync(struct vfs *vfsp, short arg, struct cred *cr) 4128 { 4129 cmn_err(CE_PANIC, "stray vfs operation"); 4130 return (0); 4131 } 4132 4133 /* 4134 * Entries for (illegal) fstype 0. 4135 */ 4136 int 4137 vfsstray(void) 4138 { 4139 cmn_err(CE_PANIC, "stray vfs operation"); 4140 return (0); 4141 } 4142 4143 /* 4144 * Support for dealing with forced UFS unmount and its interaction with 4145 * LOFS. Could be used by any filesystem. 4146 * See bug 1203132. 4147 */ 4148 int 4149 vfs_EIO(void) 4150 { 4151 return (EIO); 4152 } 4153 4154 /* 4155 * We've gotta define the op for sync separately, since the compiler gets 4156 * confused if we mix and match ANSI and normal style prototypes when 4157 * a "short" argument is present and spits out a warning. 4158 */ 4159 /*ARGSUSED*/ 4160 int 4161 vfs_EIO_sync(struct vfs *vfsp, short arg, struct cred *cr) 4162 { 4163 return (EIO); 4164 } 4165 4166 vfs_t EIO_vfs; 4167 vfsops_t *EIO_vfsops; 4168 4169 /* 4170 * Called from startup() to initialize all loaded vfs's 4171 */ 4172 void 4173 vfsinit(void) 4174 { 4175 struct vfssw *vswp; 4176 int error; 4177 extern int vopstats_enabled; 4178 extern void vopstats_startup(); 4179 4180 static const fs_operation_def_t EIO_vfsops_template[] = { 4181 VFSNAME_MOUNT, { .error = vfs_EIO }, 4182 VFSNAME_UNMOUNT, { .error = vfs_EIO }, 4183 VFSNAME_ROOT, { .error = vfs_EIO }, 4184 VFSNAME_STATVFS, { .error = vfs_EIO }, 4185 VFSNAME_SYNC, { .vfs_sync = vfs_EIO_sync }, 4186 VFSNAME_VGET, { .error = vfs_EIO }, 4187 VFSNAME_MOUNTROOT, { .error = vfs_EIO }, 4188 VFSNAME_FREEVFS, { .error = vfs_EIO }, 4189 VFSNAME_VNSTATE, { .error = vfs_EIO }, 4190 NULL, NULL 4191 }; 4192 4193 static const fs_operation_def_t stray_vfsops_template[] = { 4194 VFSNAME_MOUNT, { .error = vfsstray }, 4195 VFSNAME_UNMOUNT, { .error = vfsstray }, 4196 VFSNAME_ROOT, { .error = vfsstray }, 4197 VFSNAME_STATVFS, { .error = vfsstray }, 4198 VFSNAME_SYNC, { .vfs_sync = vfsstray_sync }, 4199 VFSNAME_VGET, { .error = vfsstray }, 4200 VFSNAME_MOUNTROOT, { .error = vfsstray }, 4201 VFSNAME_FREEVFS, { .error = vfsstray }, 4202 VFSNAME_VNSTATE, { .error = vfsstray }, 4203 NULL, NULL 4204 }; 4205 4206 /* Create vfs cache */ 4207 vfs_cache = kmem_cache_create("vfs_cache", sizeof (struct vfs), 4208 sizeof (uintptr_t), NULL, NULL, NULL, NULL, NULL, 0); 4209 4210 /* Initialize the vnode cache (file systems may use it during init). */ 4211 vn_create_cache(); 4212 4213 /* Setup event monitor framework */ 4214 fem_init(); 4215 4216 /* Initialize the dummy stray file system type. */ 4217 error = vfs_setfsops(0, stray_vfsops_template, NULL); 4218 4219 /* Initialize the dummy EIO file system. */ 4220 error = vfs_makefsops(EIO_vfsops_template, &EIO_vfsops); 4221 if (error != 0) { 4222 cmn_err(CE_WARN, "vfsinit: bad EIO vfs ops template"); 4223 /* Shouldn't happen, but not bad enough to panic */ 4224 } 4225 4226 VFS_INIT(&EIO_vfs, EIO_vfsops, (caddr_t)NULL); 4227 4228 /* 4229 * Default EIO_vfs.vfs_flag to VFS_UNMOUNTED so a lookup 4230 * on this vfs can immediately notice it's invalid. 4231 */ 4232 EIO_vfs.vfs_flag |= VFS_UNMOUNTED; 4233 4234 /* 4235 * Call the init routines of non-loadable filesystems only. 4236 * Filesystems which are loaded as separate modules will be 4237 * initialized by the module loading code instead. 4238 */ 4239 4240 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) { 4241 RLOCK_VFSSW(); 4242 if (vswp->vsw_init != NULL) 4243 (*vswp->vsw_init)(vswp - vfssw, vswp->vsw_name); 4244 RUNLOCK_VFSSW(); 4245 } 4246 4247 vopstats_startup(); 4248 4249 if (vopstats_enabled) { 4250 /* EIO_vfs can collect stats, but we don't retrieve them */ 4251 initialize_vopstats(&EIO_vfs.vfs_vopstats); 4252 EIO_vfs.vfs_fstypevsp = NULL; 4253 EIO_vfs.vfs_vskap = NULL; 4254 EIO_vfs.vfs_flag |= VFS_STATS; 4255 } 4256 4257 xattr_init(); 4258 } 4259 4260 vfs_t * 4261 vfs_alloc(int kmflag) 4262 { 4263 vfs_t *vfsp; 4264 4265 vfsp = kmem_cache_alloc(vfs_cache, kmflag); 4266 4267 /* 4268 * Do the simplest initialization here. 4269 * Everything else gets done in vfs_init() 4270 */ 4271 bzero(vfsp, sizeof (vfs_t)); 4272 return (vfsp); 4273 } 4274 4275 void 4276 vfs_free(vfs_t *vfsp) 4277 { 4278 /* 4279 * One would be tempted to assert that "vfsp->vfs_count == 0". 4280 * The problem is that this gets called out of domount() with 4281 * a partially initialized vfs and a vfs_count of 1. This is 4282 * also called from vfs_rele() with a vfs_count of 0. We can't 4283 * call VFS_RELE() from domount() if VFS_MOUNT() hasn't successfully 4284 * returned. This is because VFS_MOUNT() fully initializes the 4285 * vfs structure and its associated data. VFS_RELE() will call 4286 * VFS_FREEVFS() which may panic the system if the data structures 4287 * aren't fully initialized from a successful VFS_MOUNT()). 4288 */ 4289 4290 /* If FEM was in use, make sure everything gets cleaned up */ 4291 if (vfsp->vfs_femhead) { 4292 ASSERT(vfsp->vfs_femhead->femh_list == NULL); 4293 mutex_destroy(&vfsp->vfs_femhead->femh_lock); 4294 kmem_free(vfsp->vfs_femhead, sizeof (*(vfsp->vfs_femhead))); 4295 vfsp->vfs_femhead = NULL; 4296 } 4297 4298 if (vfsp->vfs_implp) 4299 vfsimpl_teardown(vfsp); 4300 sema_destroy(&vfsp->vfs_reflock); 4301 kmem_cache_free(vfs_cache, vfsp); 4302 } 4303 4304 /* 4305 * Increments the vfs reference count by one atomically. 4306 */ 4307 void 4308 vfs_hold(vfs_t *vfsp) 4309 { 4310 atomic_add_32(&vfsp->vfs_count, 1); 4311 ASSERT(vfsp->vfs_count != 0); 4312 } 4313 4314 /* 4315 * Decrements the vfs reference count by one atomically. When 4316 * vfs reference count becomes zero, it calls the file system 4317 * specific vfs_freevfs() to free up the resources. 4318 */ 4319 void 4320 vfs_rele(vfs_t *vfsp) 4321 { 4322 ASSERT(vfsp->vfs_count != 0); 4323 if (atomic_add_32_nv(&vfsp->vfs_count, -1) == 0) { 4324 VFS_FREEVFS(vfsp); 4325 lofi_remove(vfsp); 4326 if (vfsp->vfs_zone) 4327 zone_rele(vfsp->vfs_zone); 4328 vfs_freemnttab(vfsp); 4329 vfs_free(vfsp); 4330 } 4331 } 4332 4333 /* 4334 * Generic operations vector support. 4335 * 4336 * This is used to build operations vectors for both the vfs and vnode. 4337 * It's normally called only when a file system is loaded. 4338 * 4339 * There are many possible algorithms for this, including the following: 4340 * 4341 * (1) scan the list of known operations; for each, see if the file system 4342 * includes an entry for it, and fill it in as appropriate. 4343 * 4344 * (2) set up defaults for all known operations. scan the list of ops 4345 * supplied by the file system; for each which is both supplied and 4346 * known, fill it in. 4347 * 4348 * (3) sort the lists of known ops & supplied ops; scan the list, filling 4349 * in entries as we go. 4350 * 4351 * we choose (1) for simplicity, and because performance isn't critical here. 4352 * note that (2) could be sped up using a precomputed hash table on known ops. 4353 * (3) could be faster than either, but only if the lists were very large or 4354 * supplied in sorted order. 4355 * 4356 */ 4357 4358 int 4359 fs_build_vector(void *vector, int *unused_ops, 4360 const fs_operation_trans_def_t *translation, 4361 const fs_operation_def_t *operations) 4362 { 4363 int i, num_trans, num_ops, used; 4364 4365 /* 4366 * Count the number of translations and the number of supplied 4367 * operations. 4368 */ 4369 4370 { 4371 const fs_operation_trans_def_t *p; 4372 4373 for (num_trans = 0, p = translation; 4374 p->name != NULL; 4375 num_trans++, p++) 4376 ; 4377 } 4378 4379 { 4380 const fs_operation_def_t *p; 4381 4382 for (num_ops = 0, p = operations; 4383 p->name != NULL; 4384 num_ops++, p++) 4385 ; 4386 } 4387 4388 /* Walk through each operation known to our caller. There will be */ 4389 /* one entry in the supplied "translation table" for each. */ 4390 4391 used = 0; 4392 4393 for (i = 0; i < num_trans; i++) { 4394 int j, found; 4395 char *curname; 4396 fs_generic_func_p result; 4397 fs_generic_func_p *location; 4398 4399 curname = translation[i].name; 4400 4401 /* Look for a matching operation in the list supplied by the */ 4402 /* file system. */ 4403 4404 found = 0; 4405 4406 for (j = 0; j < num_ops; j++) { 4407 if (strcmp(operations[j].name, curname) == 0) { 4408 used++; 4409 found = 1; 4410 break; 4411 } 4412 } 4413 4414 /* 4415 * If the file system is using a "placeholder" for default 4416 * or error functions, grab the appropriate function out of 4417 * the translation table. If the file system didn't supply 4418 * this operation at all, use the default function. 4419 */ 4420 4421 if (found) { 4422 result = operations[j].func.fs_generic; 4423 if (result == fs_default) { 4424 result = translation[i].defaultFunc; 4425 } else if (result == fs_error) { 4426 result = translation[i].errorFunc; 4427 } else if (result == NULL) { 4428 /* Null values are PROHIBITED */ 4429 return (EINVAL); 4430 } 4431 } else { 4432 result = translation[i].defaultFunc; 4433 } 4434 4435 /* Now store the function into the operations vector. */ 4436 4437 location = (fs_generic_func_p *) 4438 (((char *)vector) + translation[i].offset); 4439 4440 *location = result; 4441 } 4442 4443 *unused_ops = num_ops - used; 4444 4445 return (0); 4446 } 4447 4448 /* Placeholder functions, should never be called. */ 4449 4450 int 4451 fs_error(void) 4452 { 4453 cmn_err(CE_PANIC, "fs_error called"); 4454 return (0); 4455 } 4456 4457 int 4458 fs_default(void) 4459 { 4460 cmn_err(CE_PANIC, "fs_default called"); 4461 return (0); 4462 } 4463 4464 #ifdef __sparc 4465 4466 /* 4467 * Part of the implementation of booting off a mirrored root 4468 * involves a change of dev_t for the root device. To 4469 * accomplish this, first remove the existing hash table 4470 * entry for the root device, convert to the new dev_t, 4471 * then re-insert in the hash table at the head of the list. 4472 */ 4473 void 4474 vfs_root_redev(vfs_t *vfsp, dev_t ndev, int fstype) 4475 { 4476 vfs_list_lock(); 4477 4478 vfs_hash_remove(vfsp); 4479 4480 vfsp->vfs_dev = ndev; 4481 vfs_make_fsid(&vfsp->vfs_fsid, ndev, fstype); 4482 4483 vfs_hash_add(vfsp, 1); 4484 4485 vfs_list_unlock(); 4486 } 4487 4488 #else /* x86 NEWBOOT */ 4489 4490 #if defined(__x86) 4491 extern int hvmboot_rootconf(); 4492 #endif /* __x86 */ 4493 4494 int 4495 rootconf() 4496 { 4497 int error; 4498 struct vfssw *vsw; 4499 extern void pm_init(); 4500 char *fstyp, *fsmod; 4501 4502 getrootfs(&fstyp, &fsmod); 4503 4504 #if defined(__x86) 4505 /* 4506 * hvmboot_rootconf() is defined in the hvm_bootstrap misc module, 4507 * which lives in /platform/i86hvm, and hence is only available when 4508 * booted in an x86 hvm environment. If the hvm_bootstrap misc module 4509 * is not available then the modstub for this function will return 0. 4510 * If the hvm_bootstrap misc module is available it will be loaded 4511 * and hvmboot_rootconf() will be invoked. 4512 */ 4513 if (error = hvmboot_rootconf()) 4514 return (error); 4515 #endif /* __x86 */ 4516 4517 if (error = clboot_rootconf()) 4518 return (error); 4519 4520 if (modload("fs", fsmod) == -1) 4521 panic("Cannot _init %s module", fsmod); 4522 4523 RLOCK_VFSSW(); 4524 vsw = vfs_getvfsswbyname(fstyp); 4525 RUNLOCK_VFSSW(); 4526 VFS_INIT(rootvfs, &vsw->vsw_vfsops, 0); 4527 VFS_HOLD(rootvfs); 4528 4529 /* always mount readonly first */ 4530 rootvfs->vfs_flag |= VFS_RDONLY; 4531 4532 pm_init(); 4533 4534 if (netboot) 4535 (void) strplumb(); 4536 4537 error = VFS_MOUNTROOT(rootvfs, ROOT_INIT); 4538 vfs_unrefvfssw(vsw); 4539 rootdev = rootvfs->vfs_dev; 4540 4541 if (error) 4542 panic("cannot mount root path %s", rootfs.bo_name); 4543 return (error); 4544 } 4545 4546 /* 4547 * XXX this is called by nfs only and should probably be removed 4548 * If booted with ASKNAME, prompt on the console for a filesystem 4549 * name and return it. 4550 */ 4551 void 4552 getfsname(char *askfor, char *name, size_t namelen) 4553 { 4554 if (boothowto & RB_ASKNAME) { 4555 printf("%s name: ", askfor); 4556 console_gets(name, namelen); 4557 } 4558 } 4559 4560 /* 4561 * If server_path exists, then we are booting a diskless 4562 * client. Otherwise, we default to ufs. Zfs should perhaps be 4563 * another property. 4564 */ 4565 static void 4566 getrootfs(char **fstypp, char **fsmodp) 4567 { 4568 extern char *strplumb_get_netdev_path(void); 4569 char *propstr = NULL; 4570 4571 /* check fstype property; it should be nfsdyn for diskless */ 4572 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(), 4573 DDI_PROP_DONTPASS, "fstype", &propstr) 4574 == DDI_SUCCESS) { 4575 (void) strncpy(rootfs.bo_fstype, propstr, BO_MAXFSNAME); 4576 ddi_prop_free(propstr); 4577 4578 /* 4579 * if the boot property 'fstype' is not set, but 'zfs-bootfs' is set, 4580 * assume the type of this root filesystem is 'zfs'. 4581 */ 4582 } else if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(), 4583 DDI_PROP_DONTPASS, "zfs-bootfs", &propstr) 4584 == DDI_SUCCESS) { 4585 (void) strncpy(rootfs.bo_fstype, "zfs", BO_MAXFSNAME); 4586 ddi_prop_free(propstr); 4587 } 4588 4589 if (strncmp(rootfs.bo_fstype, "nfs", 3) != 0) { 4590 *fstypp = *fsmodp = rootfs.bo_fstype; 4591 return; 4592 } 4593 4594 ++netboot; 4595 /* 4596 * check if path to network interface is specified in bootpath 4597 * or by a hypervisor domain configuration file. 4598 * XXPV - enable strlumb_get_netdev_path() 4599 */ 4600 if (ddi_prop_exists(DDI_DEV_T_ANY, ddi_root_node(), DDI_PROP_DONTPASS, 4601 "xpv-nfsroot")) { 4602 (void) strcpy(rootfs.bo_name, "/xpvd/xnf@0"); 4603 } else if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(), 4604 DDI_PROP_DONTPASS, "bootpath", &propstr) 4605 == DDI_SUCCESS) { 4606 (void) strncpy(rootfs.bo_name, propstr, BO_MAXOBJNAME); 4607 ddi_prop_free(propstr); 4608 } else { 4609 /* attempt to determine netdev_path via boot_mac address */ 4610 netdev_path = strplumb_get_netdev_path(); 4611 if (netdev_path == NULL) 4612 panic("cannot find boot network interface"); 4613 (void) strncpy(rootfs.bo_name, netdev_path, BO_MAXOBJNAME); 4614 } 4615 *fstypp = rootfs.bo_fstype; 4616 *fsmodp = "nfs"; 4617 } 4618 #endif 4619 4620 /* 4621 * VFS feature routines 4622 */ 4623 4624 #define VFTINDEX(feature) (((feature) >> 32) & 0xFFFFFFFF) 4625 #define VFTBITS(feature) ((feature) & 0xFFFFFFFFLL) 4626 4627 /* Register a feature in the vfs */ 4628 void 4629 vfs_set_feature(vfs_t *vfsp, vfs_feature_t feature) 4630 { 4631 /* Note that vfs_featureset[] is found in *vfsp->vfs_implp */ 4632 if (vfsp->vfs_implp == NULL) 4633 return; 4634 4635 vfsp->vfs_featureset[VFTINDEX(feature)] |= VFTBITS(feature); 4636 } 4637 4638 /* 4639 * Query a vfs for a feature. 4640 * Returns 1 if feature is present, 0 if not 4641 */ 4642 int 4643 vfs_has_feature(vfs_t *vfsp, vfs_feature_t feature) 4644 { 4645 int ret = 0; 4646 4647 /* Note that vfs_featureset[] is found in *vfsp->vfs_implp */ 4648 if (vfsp->vfs_implp == NULL) 4649 return (ret); 4650 4651 if (vfsp->vfs_featureset[VFTINDEX(feature)] & VFTBITS(feature)) 4652 ret = 1; 4653 4654 return (ret); 4655 } 4656 4657 /* 4658 * Propagate feature set from one vfs to another 4659 */ 4660 void 4661 vfs_propagate_features(vfs_t *from, vfs_t *to) 4662 { 4663 int i; 4664 4665 if (to->vfs_implp == NULL || from->vfs_implp == NULL) 4666 return; 4667 4668 for (i = 1; i <= to->vfs_featureset[0]; i++) { 4669 to->vfs_featureset[i] = from->vfs_featureset[i]; 4670 } 4671 } 4672 4673 #define LOFICTL_PATH "/devices/pseudo/lofi@0:%d" 4674 4675 /* 4676 * Return the vnode for the lofi node if there's a lofi mount in place. 4677 * Returns -1 when there's no lofi node, 0 on success, and > 0 on 4678 * failure. 4679 */ 4680 int 4681 vfs_get_lofi(vfs_t *vfsp, vnode_t **vpp) 4682 { 4683 char *path = NULL; 4684 int strsize; 4685 int err; 4686 4687 if (vfsp->vfs_lofi_minor == 0) { 4688 *vpp = NULL; 4689 return (-1); 4690 } 4691 4692 strsize = snprintf(NULL, 0, LOFICTL_PATH, vfsp->vfs_lofi_minor); 4693 path = kmem_alloc(strsize + 1, KM_SLEEP); 4694 (void) snprintf(path, strsize + 1, LOFICTL_PATH, vfsp->vfs_lofi_minor); 4695 4696 err = lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, vpp); 4697 4698 if (err) 4699 *vpp = NULL; 4700 4701 kmem_free(path, strsize + 1); 4702 return (err); 4703 } 4704