xref: /titanic_51/usr/src/uts/common/fs/vfs.c (revision f06271be56df67ca3faa4ca4bc51457dad15c3b5)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*	Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T	*/
27 /*	  All Rights Reserved  	*/
28 
29 /*
30  * University Copyright- Copyright (c) 1982, 1986, 1988
31  * The Regents of the University of California
32  * All Rights Reserved
33  *
34  * University Acknowledgment- Portions of this document are derived from
35  * software developed by the University of California, Berkeley, and its
36  * contributors.
37  */
38 
39 #include <sys/types.h>
40 #include <sys/t_lock.h>
41 #include <sys/param.h>
42 #include <sys/errno.h>
43 #include <sys/user.h>
44 #include <sys/fstyp.h>
45 #include <sys/kmem.h>
46 #include <sys/systm.h>
47 #include <sys/proc.h>
48 #include <sys/mount.h>
49 #include <sys/vfs.h>
50 #include <sys/vfs_opreg.h>
51 #include <sys/fem.h>
52 #include <sys/mntent.h>
53 #include <sys/stat.h>
54 #include <sys/statvfs.h>
55 #include <sys/statfs.h>
56 #include <sys/cred.h>
57 #include <sys/vnode.h>
58 #include <sys/rwstlock.h>
59 #include <sys/dnlc.h>
60 #include <sys/file.h>
61 #include <sys/time.h>
62 #include <sys/atomic.h>
63 #include <sys/cmn_err.h>
64 #include <sys/buf.h>
65 #include <sys/swap.h>
66 #include <sys/debug.h>
67 #include <sys/vnode.h>
68 #include <sys/modctl.h>
69 #include <sys/ddi.h>
70 #include <sys/pathname.h>
71 #include <sys/bootconf.h>
72 #include <sys/dumphdr.h>
73 #include <sys/dc_ki.h>
74 #include <sys/poll.h>
75 #include <sys/sunddi.h>
76 #include <sys/sysmacros.h>
77 #include <sys/zone.h>
78 #include <sys/policy.h>
79 #include <sys/ctfs.h>
80 #include <sys/objfs.h>
81 #include <sys/console.h>
82 #include <sys/reboot.h>
83 #include <sys/attr.h>
84 #include <sys/spa.h>
85 #include <sys/lofi.h>
86 #include <sys/bootprops.h>
87 
88 #include <vm/page.h>
89 
90 #include <fs/fs_subr.h>
91 /* Private interfaces to create vopstats-related data structures */
92 extern void		initialize_vopstats(vopstats_t *);
93 extern vopstats_t	*get_fstype_vopstats(struct vfs *, struct vfssw *);
94 extern vsk_anchor_t	*get_vskstat_anchor(struct vfs *);
95 
96 static void vfs_clearmntopt_nolock(mntopts_t *, const char *, int);
97 static void vfs_setmntopt_nolock(mntopts_t *, const char *,
98     const char *, int, int);
99 static int  vfs_optionisset_nolock(const mntopts_t *, const char *, char **);
100 static void vfs_freemnttab(struct vfs *);
101 static void vfs_freeopt(mntopt_t *);
102 static void vfs_swapopttbl_nolock(mntopts_t *, mntopts_t *);
103 static void vfs_swapopttbl(mntopts_t *, mntopts_t *);
104 static void vfs_copyopttbl_extend(const mntopts_t *, mntopts_t *, int);
105 static void vfs_createopttbl_extend(mntopts_t *, const char *,
106     const mntopts_t *);
107 static char **vfs_copycancelopt_extend(char **const, int);
108 static void vfs_freecancelopt(char **);
109 static void getrootfs(char **, char **);
110 static int getmacpath(dev_info_t *, void *);
111 static void vfs_mnttabvp_setup(void);
112 
113 struct ipmnt {
114 	struct ipmnt	*mip_next;
115 	dev_t		mip_dev;
116 	struct vfs	*mip_vfsp;
117 };
118 
119 static kmutex_t		vfs_miplist_mutex;
120 static struct ipmnt	*vfs_miplist = NULL;
121 static struct ipmnt	*vfs_miplist_end = NULL;
122 
123 static kmem_cache_t *vfs_cache;	/* Pointer to VFS kmem cache */
124 
125 /*
126  * VFS global data.
127  */
128 vnode_t *rootdir;		/* pointer to root inode vnode. */
129 vnode_t *devicesdir;		/* pointer to inode of devices root */
130 vnode_t	*devdir;		/* pointer to inode of dev root */
131 
132 char *server_rootpath;		/* root path for diskless clients */
133 char *server_hostname;		/* hostname of diskless server */
134 
135 static struct vfs root;
136 static struct vfs devices;
137 static struct vfs dev;
138 struct vfs *rootvfs = &root;	/* pointer to root vfs; head of VFS list. */
139 rvfs_t *rvfs_list;		/* array of vfs ptrs for vfs hash list */
140 int vfshsz = 512;		/* # of heads/locks in vfs hash arrays */
141 				/* must be power of 2!	*/
142 timespec_t vfs_mnttab_ctime;	/* mnttab created time */
143 timespec_t vfs_mnttab_mtime;	/* mnttab last modified time */
144 char *vfs_dummyfstype = "\0";
145 struct pollhead vfs_pollhd;	/* for mnttab pollers */
146 struct vnode *vfs_mntdummyvp;	/* to fake mnttab read/write for file events */
147 int	mntfstype;		/* will be set once mnt fs is mounted */
148 
149 /*
150  * Table for generic options recognized in the VFS layer and acted
151  * on at this level before parsing file system specific options.
152  * The nosuid option is stronger than any of the devices and setuid
153  * options, so those are canceled when nosuid is seen.
154  *
155  * All options which are added here need to be added to the
156  * list of standard options in usr/src/cmd/fs.d/fslib.c as well.
157  */
158 /*
159  * VFS Mount options table
160  */
161 static char *ro_cancel[] = { MNTOPT_RW, NULL };
162 static char *rw_cancel[] = { MNTOPT_RO, NULL };
163 static char *suid_cancel[] = { MNTOPT_NOSUID, NULL };
164 static char *nosuid_cancel[] = { MNTOPT_SUID, MNTOPT_DEVICES, MNTOPT_NODEVICES,
165     MNTOPT_NOSETUID, MNTOPT_SETUID, NULL };
166 static char *devices_cancel[] = { MNTOPT_NODEVICES, NULL };
167 static char *nodevices_cancel[] = { MNTOPT_DEVICES, NULL };
168 static char *setuid_cancel[] = { MNTOPT_NOSETUID, NULL };
169 static char *nosetuid_cancel[] = { MNTOPT_SETUID, NULL };
170 static char *nbmand_cancel[] = { MNTOPT_NONBMAND, NULL };
171 static char *nonbmand_cancel[] = { MNTOPT_NBMAND, NULL };
172 static char *exec_cancel[] = { MNTOPT_NOEXEC, NULL };
173 static char *noexec_cancel[] = { MNTOPT_EXEC, NULL };
174 
175 static const mntopt_t mntopts[] = {
176 /*
177  *	option name		cancel options		default arg	flags
178  */
179 	{ MNTOPT_REMOUNT,	NULL,			NULL,
180 		MO_NODISPLAY, (void *)0 },
181 	{ MNTOPT_RO,		ro_cancel,		NULL,		0,
182 		(void *)0 },
183 	{ MNTOPT_RW,		rw_cancel,		NULL,		0,
184 		(void *)0 },
185 	{ MNTOPT_SUID,		suid_cancel,		NULL,		0,
186 		(void *)0 },
187 	{ MNTOPT_NOSUID,	nosuid_cancel,		NULL,		0,
188 		(void *)0 },
189 	{ MNTOPT_DEVICES,	devices_cancel,		NULL,		0,
190 		(void *)0 },
191 	{ MNTOPT_NODEVICES,	nodevices_cancel,	NULL,		0,
192 		(void *)0 },
193 	{ MNTOPT_SETUID,	setuid_cancel,		NULL,		0,
194 		(void *)0 },
195 	{ MNTOPT_NOSETUID,	nosetuid_cancel,	NULL,		0,
196 		(void *)0 },
197 	{ MNTOPT_NBMAND,	nbmand_cancel,		NULL,		0,
198 		(void *)0 },
199 	{ MNTOPT_NONBMAND,	nonbmand_cancel,	NULL,		0,
200 		(void *)0 },
201 	{ MNTOPT_EXEC,		exec_cancel,		NULL,		0,
202 		(void *)0 },
203 	{ MNTOPT_NOEXEC,	noexec_cancel,		NULL,		0,
204 		(void *)0 },
205 };
206 
207 const mntopts_t vfs_mntopts = {
208 	sizeof (mntopts) / sizeof (mntopt_t),
209 	(mntopt_t *)&mntopts[0]
210 };
211 
212 /*
213  * File system operation dispatch functions.
214  */
215 
216 int
217 fsop_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr)
218 {
219 	return (*(vfsp)->vfs_op->vfs_mount)(vfsp, mvp, uap, cr);
220 }
221 
222 int
223 fsop_unmount(vfs_t *vfsp, int flag, cred_t *cr)
224 {
225 	return (*(vfsp)->vfs_op->vfs_unmount)(vfsp, flag, cr);
226 }
227 
228 int
229 fsop_root(vfs_t *vfsp, vnode_t **vpp)
230 {
231 	refstr_t *mntpt;
232 	int ret = (*(vfsp)->vfs_op->vfs_root)(vfsp, vpp);
233 	/*
234 	 * Make sure this root has a path.  With lofs, it is possible to have
235 	 * a NULL mountpoint.
236 	 */
237 	if (ret == 0 && vfsp->vfs_mntpt != NULL && (*vpp)->v_path == NULL) {
238 		mntpt = vfs_getmntpoint(vfsp);
239 		vn_setpath_str(*vpp, refstr_value(mntpt),
240 		    strlen(refstr_value(mntpt)));
241 		refstr_rele(mntpt);
242 	}
243 
244 	return (ret);
245 }
246 
247 int
248 fsop_statfs(vfs_t *vfsp, statvfs64_t *sp)
249 {
250 	return (*(vfsp)->vfs_op->vfs_statvfs)(vfsp, sp);
251 }
252 
253 int
254 fsop_sync(vfs_t *vfsp, short flag, cred_t *cr)
255 {
256 	return (*(vfsp)->vfs_op->vfs_sync)(vfsp, flag, cr);
257 }
258 
259 int
260 fsop_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp)
261 {
262 	/*
263 	 * In order to handle system attribute fids in a manner
264 	 * transparent to the underlying fs, we embed the fid for
265 	 * the sysattr parent object in the sysattr fid and tack on
266 	 * some extra bytes that only the sysattr layer knows about.
267 	 *
268 	 * This guarantees that sysattr fids are larger than other fids
269 	 * for this vfs. If the vfs supports the sysattr view interface
270 	 * (as indicated by VFSFT_SYSATTR_VIEWS), we cannot have a size
271 	 * collision with XATTR_FIDSZ.
272 	 */
273 	if (vfs_has_feature(vfsp, VFSFT_SYSATTR_VIEWS) &&
274 	    fidp->fid_len == XATTR_FIDSZ)
275 		return (xattr_dir_vget(vfsp, vpp, fidp));
276 
277 	return (*(vfsp)->vfs_op->vfs_vget)(vfsp, vpp, fidp);
278 }
279 
280 int
281 fsop_mountroot(vfs_t *vfsp, enum whymountroot reason)
282 {
283 	return (*(vfsp)->vfs_op->vfs_mountroot)(vfsp, reason);
284 }
285 
286 void
287 fsop_freefs(vfs_t *vfsp)
288 {
289 	(*(vfsp)->vfs_op->vfs_freevfs)(vfsp);
290 }
291 
292 int
293 fsop_vnstate(vfs_t *vfsp, vnode_t *vp, vntrans_t nstate)
294 {
295 	return ((*(vfsp)->vfs_op->vfs_vnstate)(vfsp, vp, nstate));
296 }
297 
298 int
299 fsop_sync_by_kind(int fstype, short flag, cred_t *cr)
300 {
301 	ASSERT((fstype >= 0) && (fstype < nfstype));
302 
303 	if (ALLOCATED_VFSSW(&vfssw[fstype]) && VFS_INSTALLED(&vfssw[fstype]))
304 		return (*vfssw[fstype].vsw_vfsops.vfs_sync) (NULL, flag, cr);
305 	else
306 		return (ENOTSUP);
307 }
308 
309 /*
310  * File system initialization.  vfs_setfsops() must be called from a file
311  * system's init routine.
312  */
313 
314 static int
315 fs_copyfsops(const fs_operation_def_t *template, vfsops_t *actual,
316     int *unused_ops)
317 {
318 	static const fs_operation_trans_def_t vfs_ops_table[] = {
319 		VFSNAME_MOUNT, offsetof(vfsops_t, vfs_mount),
320 			fs_nosys, fs_nosys,
321 
322 		VFSNAME_UNMOUNT, offsetof(vfsops_t, vfs_unmount),
323 			fs_nosys, fs_nosys,
324 
325 		VFSNAME_ROOT, offsetof(vfsops_t, vfs_root),
326 			fs_nosys, fs_nosys,
327 
328 		VFSNAME_STATVFS, offsetof(vfsops_t, vfs_statvfs),
329 			fs_nosys, fs_nosys,
330 
331 		VFSNAME_SYNC, offsetof(vfsops_t, vfs_sync),
332 			(fs_generic_func_p) fs_sync,
333 			(fs_generic_func_p) fs_sync,	/* No errors allowed */
334 
335 		VFSNAME_VGET, offsetof(vfsops_t, vfs_vget),
336 			fs_nosys, fs_nosys,
337 
338 		VFSNAME_MOUNTROOT, offsetof(vfsops_t, vfs_mountroot),
339 			fs_nosys, fs_nosys,
340 
341 		VFSNAME_FREEVFS, offsetof(vfsops_t, vfs_freevfs),
342 			(fs_generic_func_p)fs_freevfs,
343 			(fs_generic_func_p)fs_freevfs,	/* Shouldn't fail */
344 
345 		VFSNAME_VNSTATE, offsetof(vfsops_t, vfs_vnstate),
346 			(fs_generic_func_p)fs_nosys,
347 			(fs_generic_func_p)fs_nosys,
348 
349 		NULL, 0, NULL, NULL
350 	};
351 
352 	return (fs_build_vector(actual, unused_ops, vfs_ops_table, template));
353 }
354 
355 void
356 zfs_boot_init() {
357 
358 	if (strcmp(rootfs.bo_fstype, MNTTYPE_ZFS) == 0)
359 		spa_boot_init();
360 }
361 
362 int
363 vfs_setfsops(int fstype, const fs_operation_def_t *template, vfsops_t **actual)
364 {
365 	int error;
366 	int unused_ops;
367 
368 	/*
369 	 * Verify that fstype refers to a valid fs.  Note that
370 	 * 0 is valid since it's used to set "stray" ops.
371 	 */
372 	if ((fstype < 0) || (fstype >= nfstype))
373 		return (EINVAL);
374 
375 	if (!ALLOCATED_VFSSW(&vfssw[fstype]))
376 		return (EINVAL);
377 
378 	/* Set up the operations vector. */
379 
380 	error = fs_copyfsops(template, &vfssw[fstype].vsw_vfsops, &unused_ops);
381 
382 	if (error != 0)
383 		return (error);
384 
385 	vfssw[fstype].vsw_flag |= VSW_INSTALLED;
386 
387 	if (actual != NULL)
388 		*actual = &vfssw[fstype].vsw_vfsops;
389 
390 #if DEBUG
391 	if (unused_ops != 0)
392 		cmn_err(CE_WARN, "vfs_setfsops: %s: %d operations supplied "
393 		    "but not used", vfssw[fstype].vsw_name, unused_ops);
394 #endif
395 
396 	return (0);
397 }
398 
399 int
400 vfs_makefsops(const fs_operation_def_t *template, vfsops_t **actual)
401 {
402 	int error;
403 	int unused_ops;
404 
405 	*actual = (vfsops_t *)kmem_alloc(sizeof (vfsops_t), KM_SLEEP);
406 
407 	error = fs_copyfsops(template, *actual, &unused_ops);
408 	if (error != 0) {
409 		kmem_free(*actual, sizeof (vfsops_t));
410 		*actual = NULL;
411 		return (error);
412 	}
413 
414 	return (0);
415 }
416 
417 /*
418  * Free a vfsops structure created as a result of vfs_makefsops().
419  * NOTE: For a vfsops structure initialized by vfs_setfsops(), use
420  * vfs_freevfsops_by_type().
421  */
422 void
423 vfs_freevfsops(vfsops_t *vfsops)
424 {
425 	kmem_free(vfsops, sizeof (vfsops_t));
426 }
427 
428 /*
429  * Since the vfsops structure is part of the vfssw table and wasn't
430  * really allocated, we're not really freeing anything.  We keep
431  * the name for consistency with vfs_freevfsops().  We do, however,
432  * need to take care of a little bookkeeping.
433  * NOTE: For a vfsops structure created by vfs_setfsops(), use
434  * vfs_freevfsops_by_type().
435  */
436 int
437 vfs_freevfsops_by_type(int fstype)
438 {
439 
440 	/* Verify that fstype refers to a loaded fs (and not fsid 0). */
441 	if ((fstype <= 0) || (fstype >= nfstype))
442 		return (EINVAL);
443 
444 	WLOCK_VFSSW();
445 	if ((vfssw[fstype].vsw_flag & VSW_INSTALLED) == 0) {
446 		WUNLOCK_VFSSW();
447 		return (EINVAL);
448 	}
449 
450 	vfssw[fstype].vsw_flag &= ~VSW_INSTALLED;
451 	WUNLOCK_VFSSW();
452 
453 	return (0);
454 }
455 
456 /* Support routines used to reference vfs_op */
457 
458 /* Set the operations vector for a vfs */
459 void
460 vfs_setops(vfs_t *vfsp, vfsops_t *vfsops)
461 {
462 	vfsops_t	*op;
463 
464 	ASSERT(vfsp != NULL);
465 	ASSERT(vfsops != NULL);
466 
467 	op = vfsp->vfs_op;
468 	membar_consumer();
469 	if (vfsp->vfs_femhead == NULL &&
470 	    casptr(&vfsp->vfs_op, op, vfsops) == op) {
471 		return;
472 	}
473 	fsem_setvfsops(vfsp, vfsops);
474 }
475 
476 /* Retrieve the operations vector for a vfs */
477 vfsops_t *
478 vfs_getops(vfs_t *vfsp)
479 {
480 	vfsops_t	*op;
481 
482 	ASSERT(vfsp != NULL);
483 
484 	op = vfsp->vfs_op;
485 	membar_consumer();
486 	if (vfsp->vfs_femhead == NULL && op == vfsp->vfs_op) {
487 		return (op);
488 	} else {
489 		return (fsem_getvfsops(vfsp));
490 	}
491 }
492 
493 /*
494  * Returns non-zero (1) if the vfsops matches that of the vfs.
495  * Returns zero (0) if not.
496  */
497 int
498 vfs_matchops(vfs_t *vfsp, vfsops_t *vfsops)
499 {
500 	return (vfs_getops(vfsp) == vfsops);
501 }
502 
503 /*
504  * Returns non-zero (1) if the file system has installed a non-default,
505  * non-error vfs_sync routine.  Returns zero (0) otherwise.
506  */
507 int
508 vfs_can_sync(vfs_t *vfsp)
509 {
510 	/* vfs_sync() routine is not the default/error function */
511 	return (vfs_getops(vfsp)->vfs_sync != fs_sync);
512 }
513 
514 /*
515  * Initialize a vfs structure.
516  */
517 void
518 vfs_init(vfs_t *vfsp, vfsops_t *op, void *data)
519 {
520 	/* Other initialization has been moved to vfs_alloc() */
521 	vfsp->vfs_count = 0;
522 	vfsp->vfs_next = vfsp;
523 	vfsp->vfs_prev = vfsp;
524 	vfsp->vfs_zone_next = vfsp;
525 	vfsp->vfs_zone_prev = vfsp;
526 	vfsp->vfs_lofi_minor = 0;
527 	sema_init(&vfsp->vfs_reflock, 1, NULL, SEMA_DEFAULT, NULL);
528 	vfsimpl_setup(vfsp);
529 	vfsp->vfs_data = (data);
530 	vfs_setops((vfsp), (op));
531 }
532 
533 /*
534  * Allocate and initialize the vfs implementation private data
535  * structure, vfs_impl_t.
536  */
537 void
538 vfsimpl_setup(vfs_t *vfsp)
539 {
540 	int i;
541 
542 	if (vfsp->vfs_implp != NULL) {
543 		return;
544 	}
545 
546 	vfsp->vfs_implp = kmem_alloc(sizeof (vfs_impl_t), KM_SLEEP);
547 	/* Note that these are #define'd in vfs.h */
548 	vfsp->vfs_vskap = NULL;
549 	vfsp->vfs_fstypevsp = NULL;
550 
551 	/* Set size of counted array, then zero the array */
552 	vfsp->vfs_featureset[0] = VFS_FEATURE_MAXSZ - 1;
553 	for (i = 1; i <  VFS_FEATURE_MAXSZ; i++) {
554 		vfsp->vfs_featureset[i] = 0;
555 	}
556 }
557 
558 /*
559  * Release the vfs_impl_t structure, if it exists. Some unbundled
560  * filesystems may not use the newer version of vfs and thus
561  * would not contain this implementation private data structure.
562  */
563 void
564 vfsimpl_teardown(vfs_t *vfsp)
565 {
566 	vfs_impl_t	*vip = vfsp->vfs_implp;
567 
568 	if (vip == NULL)
569 		return;
570 
571 	kmem_free(vfsp->vfs_implp, sizeof (vfs_impl_t));
572 	vfsp->vfs_implp = NULL;
573 }
574 
575 /*
576  * VFS system calls: mount, umount, syssync, statfs, fstatfs, statvfs,
577  * fstatvfs, and sysfs moved to common/syscall.
578  */
579 
580 /*
581  * Update every mounted file system.  We call the vfs_sync operation of
582  * each file system type, passing it a NULL vfsp to indicate that all
583  * mounted file systems of that type should be updated.
584  */
585 void
586 vfs_sync(int flag)
587 {
588 	struct vfssw *vswp;
589 	RLOCK_VFSSW();
590 	for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) {
591 		if (ALLOCATED_VFSSW(vswp) && VFS_INSTALLED(vswp)) {
592 			vfs_refvfssw(vswp);
593 			RUNLOCK_VFSSW();
594 			(void) (*vswp->vsw_vfsops.vfs_sync)(NULL, flag,
595 			    CRED());
596 			vfs_unrefvfssw(vswp);
597 			RLOCK_VFSSW();
598 		}
599 	}
600 	RUNLOCK_VFSSW();
601 }
602 
603 void
604 sync(void)
605 {
606 	vfs_sync(0);
607 }
608 
609 /*
610  * External routines.
611  */
612 
613 krwlock_t vfssw_lock;	/* lock accesses to vfssw */
614 
615 /*
616  * Lock for accessing the vfs linked list.  Initialized in vfs_mountroot(),
617  * but otherwise should be accessed only via vfs_list_lock() and
618  * vfs_list_unlock().  Also used to protect the timestamp for mods to the list.
619  */
620 static krwlock_t vfslist;
621 
622 /*
623  * Mount devfs on /devices. This is done right after root is mounted
624  * to provide device access support for the system
625  */
626 static void
627 vfs_mountdevices(void)
628 {
629 	struct vfssw *vsw;
630 	struct vnode *mvp;
631 	struct mounta mounta = {	/* fake mounta for devfs_mount() */
632 		NULL,
633 		NULL,
634 		MS_SYSSPACE,
635 		NULL,
636 		NULL,
637 		0,
638 		NULL,
639 		0
640 	};
641 
642 	/*
643 	 * _init devfs module to fill in the vfssw
644 	 */
645 	if (modload("fs", "devfs") == -1)
646 		panic("Cannot _init devfs module");
647 
648 	/*
649 	 * Hold vfs
650 	 */
651 	RLOCK_VFSSW();
652 	vsw = vfs_getvfsswbyname("devfs");
653 	VFS_INIT(&devices, &vsw->vsw_vfsops, NULL);
654 	VFS_HOLD(&devices);
655 
656 	/*
657 	 * Locate mount point
658 	 */
659 	if (lookupname("/devices", UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp))
660 		panic("Cannot find /devices");
661 
662 	/*
663 	 * Perform the mount of /devices
664 	 */
665 	if (VFS_MOUNT(&devices, mvp, &mounta, CRED()))
666 		panic("Cannot mount /devices");
667 
668 	RUNLOCK_VFSSW();
669 
670 	/*
671 	 * Set appropriate members and add to vfs list for mnttab display
672 	 */
673 	vfs_setresource(&devices, "/devices");
674 	vfs_setmntpoint(&devices, "/devices");
675 
676 	/*
677 	 * Hold the root of /devices so it won't go away
678 	 */
679 	if (VFS_ROOT(&devices, &devicesdir))
680 		panic("vfs_mountdevices: not devices root");
681 
682 	if (vfs_lock(&devices) != 0) {
683 		VN_RELE(devicesdir);
684 		cmn_err(CE_NOTE, "Cannot acquire vfs_lock of /devices");
685 		return;
686 	}
687 
688 	if (vn_vfswlock(mvp) != 0) {
689 		vfs_unlock(&devices);
690 		VN_RELE(devicesdir);
691 		cmn_err(CE_NOTE, "Cannot acquire vfswlock of /devices");
692 		return;
693 	}
694 
695 	vfs_add(mvp, &devices, 0);
696 	vn_vfsunlock(mvp);
697 	vfs_unlock(&devices);
698 	VN_RELE(devicesdir);
699 }
700 
701 /*
702  * mount the first instance of /dev  to root and remain mounted
703  */
704 static void
705 vfs_mountdev1(void)
706 {
707 	struct vfssw *vsw;
708 	struct vnode *mvp;
709 	struct mounta mounta = {	/* fake mounta for sdev_mount() */
710 		NULL,
711 		NULL,
712 		MS_SYSSPACE | MS_OVERLAY,
713 		NULL,
714 		NULL,
715 		0,
716 		NULL,
717 		0
718 	};
719 
720 	/*
721 	 * _init dev module to fill in the vfssw
722 	 */
723 	if (modload("fs", "dev") == -1)
724 		cmn_err(CE_PANIC, "Cannot _init dev module\n");
725 
726 	/*
727 	 * Hold vfs
728 	 */
729 	RLOCK_VFSSW();
730 	vsw = vfs_getvfsswbyname("dev");
731 	VFS_INIT(&dev, &vsw->vsw_vfsops, NULL);
732 	VFS_HOLD(&dev);
733 
734 	/*
735 	 * Locate mount point
736 	 */
737 	if (lookupname("/dev", UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp))
738 		cmn_err(CE_PANIC, "Cannot find /dev\n");
739 
740 	/*
741 	 * Perform the mount of /dev
742 	 */
743 	if (VFS_MOUNT(&dev, mvp, &mounta, CRED()))
744 		cmn_err(CE_PANIC, "Cannot mount /dev 1\n");
745 
746 	RUNLOCK_VFSSW();
747 
748 	/*
749 	 * Set appropriate members and add to vfs list for mnttab display
750 	 */
751 	vfs_setresource(&dev, "/dev");
752 	vfs_setmntpoint(&dev, "/dev");
753 
754 	/*
755 	 * Hold the root of /dev so it won't go away
756 	 */
757 	if (VFS_ROOT(&dev, &devdir))
758 		cmn_err(CE_PANIC, "vfs_mountdev1: not dev root");
759 
760 	if (vfs_lock(&dev) != 0) {
761 		VN_RELE(devdir);
762 		cmn_err(CE_NOTE, "Cannot acquire vfs_lock of /dev");
763 		return;
764 	}
765 
766 	if (vn_vfswlock(mvp) != 0) {
767 		vfs_unlock(&dev);
768 		VN_RELE(devdir);
769 		cmn_err(CE_NOTE, "Cannot acquire vfswlock of /dev");
770 		return;
771 	}
772 
773 	vfs_add(mvp, &dev, 0);
774 	vn_vfsunlock(mvp);
775 	vfs_unlock(&dev);
776 	VN_RELE(devdir);
777 }
778 
779 /*
780  * Mount required filesystem. This is done right after root is mounted.
781  */
782 static void
783 vfs_mountfs(char *module, char *spec, char *path)
784 {
785 	struct vnode *mvp;
786 	struct mounta mounta;
787 	vfs_t *vfsp;
788 
789 	mounta.flags = MS_SYSSPACE | MS_DATA;
790 	mounta.fstype = module;
791 	mounta.spec = spec;
792 	mounta.dir = path;
793 	if (lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp)) {
794 		cmn_err(CE_WARN, "Cannot find %s", path);
795 		return;
796 	}
797 	if (domount(NULL, &mounta, mvp, CRED(), &vfsp))
798 		cmn_err(CE_WARN, "Cannot mount %s", path);
799 	else
800 		VFS_RELE(vfsp);
801 	VN_RELE(mvp);
802 }
803 
804 /*
805  * vfs_mountroot is called by main() to mount the root filesystem.
806  */
807 void
808 vfs_mountroot(void)
809 {
810 	struct vnode	*rvp = NULL;
811 	char		*path;
812 	size_t		plen;
813 	struct vfssw	*vswp;
814 
815 	rw_init(&vfssw_lock, NULL, RW_DEFAULT, NULL);
816 	rw_init(&vfslist, NULL, RW_DEFAULT, NULL);
817 
818 	/*
819 	 * Alloc the vfs hash bucket array and locks
820 	 */
821 	rvfs_list = kmem_zalloc(vfshsz * sizeof (rvfs_t), KM_SLEEP);
822 
823 	/*
824 	 * Call machine-dependent routine "rootconf" to choose a root
825 	 * file system type.
826 	 */
827 	if (rootconf())
828 		panic("vfs_mountroot: cannot mount root");
829 	/*
830 	 * Get vnode for '/'.  Set up rootdir, u.u_rdir and u.u_cdir
831 	 * to point to it.  These are used by lookuppn() so that it
832 	 * knows where to start from ('/' or '.').
833 	 */
834 	vfs_setmntpoint(rootvfs, "/");
835 	if (VFS_ROOT(rootvfs, &rootdir))
836 		panic("vfs_mountroot: no root vnode");
837 	PTOU(curproc)->u_cdir = rootdir;
838 	VN_HOLD(PTOU(curproc)->u_cdir);
839 	PTOU(curproc)->u_rdir = NULL;
840 
841 	/*
842 	 * Setup the global zone's rootvp, now that it exists.
843 	 */
844 	global_zone->zone_rootvp = rootdir;
845 	VN_HOLD(global_zone->zone_rootvp);
846 
847 	/*
848 	 * Notify the module code that it can begin using the
849 	 * root filesystem instead of the boot program's services.
850 	 */
851 	modrootloaded = 1;
852 
853 	/*
854 	 * Special handling for a ZFS root file system.
855 	 */
856 	zfs_boot_init();
857 
858 	/*
859 	 * Set up mnttab information for root
860 	 */
861 	vfs_setresource(rootvfs, rootfs.bo_name);
862 
863 	/*
864 	 * Notify cluster software that the root filesystem is available.
865 	 */
866 	clboot_mountroot();
867 
868 	/* Now that we're all done with the root FS, set up its vopstats */
869 	if ((vswp = vfs_getvfsswbyvfsops(vfs_getops(rootvfs))) != NULL) {
870 		/* Set flag for statistics collection */
871 		if (vswp->vsw_flag & VSW_STATS) {
872 			initialize_vopstats(&rootvfs->vfs_vopstats);
873 			rootvfs->vfs_flag |= VFS_STATS;
874 			rootvfs->vfs_fstypevsp =
875 			    get_fstype_vopstats(rootvfs, vswp);
876 			rootvfs->vfs_vskap = get_vskstat_anchor(rootvfs);
877 		}
878 		vfs_unrefvfssw(vswp);
879 	}
880 
881 	/*
882 	 * Mount /devices, /dev instance 1, /system/contract, /etc/mnttab,
883 	 * /etc/svc/volatile, /etc/dfs/sharetab, /system/object, and /proc.
884 	 */
885 	vfs_mountdevices();
886 	vfs_mountdev1();
887 
888 	vfs_mountfs("ctfs", "ctfs", CTFS_ROOT);
889 	vfs_mountfs("proc", "/proc", "/proc");
890 	vfs_mountfs("mntfs", "/etc/mnttab", "/etc/mnttab");
891 	vfs_mountfs("tmpfs", "/etc/svc/volatile", "/etc/svc/volatile");
892 	vfs_mountfs("objfs", "objfs", OBJFS_ROOT);
893 
894 	if (getzoneid() == GLOBAL_ZONEID) {
895 		vfs_mountfs("sharefs", "sharefs", "/etc/dfs/sharetab");
896 	}
897 
898 #ifdef __sparc
899 	/*
900 	 * This bit of magic can go away when we convert sparc to
901 	 * the new boot architecture based on ramdisk.
902 	 *
903 	 * Booting off a mirrored root volume:
904 	 * At this point, we have booted and mounted root on a
905 	 * single component of the mirror.  Complete the boot
906 	 * by configuring SVM and converting the root to the
907 	 * dev_t of the mirrored root device.  This dev_t conversion
908 	 * only works because the underlying device doesn't change.
909 	 */
910 	if (root_is_svm) {
911 		if (svm_rootconf()) {
912 			panic("vfs_mountroot: cannot remount root");
913 		}
914 
915 		/*
916 		 * mnttab should reflect the new root device
917 		 */
918 		vfs_lock_wait(rootvfs);
919 		vfs_setresource(rootvfs, rootfs.bo_name);
920 		vfs_unlock(rootvfs);
921 	}
922 #endif /* __sparc */
923 
924 	/*
925 	 * Look up the root device via devfs so that a dv_node is
926 	 * created for it. The vnode is never VN_RELE()ed.
927 	 * We allocate more than MAXPATHLEN so that the
928 	 * buffer passed to i_ddi_prompath_to_devfspath() is
929 	 * exactly MAXPATHLEN (the function expects a buffer
930 	 * of that length).
931 	 */
932 	plen = strlen("/devices");
933 	path = kmem_alloc(plen + MAXPATHLEN, KM_SLEEP);
934 	(void) strcpy(path, "/devices");
935 
936 	if (i_ddi_prompath_to_devfspath(rootfs.bo_name, path + plen)
937 	    != DDI_SUCCESS ||
938 	    lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &rvp)) {
939 
940 		/* NUL terminate in case "path" has garbage */
941 		path[plen + MAXPATHLEN - 1] = '\0';
942 #ifdef	DEBUG
943 		cmn_err(CE_WARN, "!Cannot lookup root device: %s", path);
944 #endif
945 	}
946 	kmem_free(path, plen + MAXPATHLEN);
947 	vfs_mnttabvp_setup();
948 }
949 
950 /*
951  * If remount failed and we're in a zone we need to check for the zone
952  * root path and strip it before the call to vfs_setpath().
953  *
954  * If strpath doesn't begin with the zone_rootpath the original
955  * strpath is returned unchanged.
956  */
957 static const char *
958 stripzonepath(const char *strpath)
959 {
960 	char *str1, *str2;
961 	int i;
962 	zone_t *zonep = curproc->p_zone;
963 
964 	if (zonep->zone_rootpath == NULL || strpath == NULL) {
965 		return (NULL);
966 	}
967 
968 	/*
969 	 * we check for the end of the string at one past the
970 	 * current position because the zone_rootpath always
971 	 * ends with "/" but we don't want to strip that off.
972 	 */
973 	str1 = zonep->zone_rootpath;
974 	str2 = (char *)strpath;
975 	ASSERT(str1[0] != '\0');
976 	for (i = 0; str1[i + 1] != '\0'; i++) {
977 		if (str1[i] != str2[i])
978 			return ((char *)strpath);
979 	}
980 	return (&str2[i]);
981 }
982 
983 /*
984  * Check to see if our "block device" is actually a file.  If so,
985  * automatically add a lofi device, and keep track of this fact.
986  */
987 static int
988 lofi_add(const char *fsname, struct vfs *vfsp,
989     mntopts_t *mntopts, struct mounta *uap)
990 {
991 	int fromspace = (uap->flags & MS_SYSSPACE) ?
992 	    UIO_SYSSPACE : UIO_USERSPACE;
993 	struct lofi_ioctl *li = NULL;
994 	struct vnode *vp = NULL;
995 	struct pathname	pn = { NULL };
996 	ldi_ident_t ldi_id;
997 	ldi_handle_t ldi_hdl;
998 	vfssw_t *vfssw;
999 	int minor;
1000 	int err = 0;
1001 
1002 	if (fsname == NULL ||
1003 	    (vfssw = vfs_getvfssw(fsname)) == NULL)
1004 		return (0);
1005 
1006 	if (!(vfssw->vsw_flag & VSW_CANLOFI)) {
1007 		vfs_unrefvfssw(vfssw);
1008 		return (0);
1009 	}
1010 
1011 	vfs_unrefvfssw(vfssw);
1012 	vfssw = NULL;
1013 
1014 	if (pn_get(uap->spec, fromspace, &pn) != 0)
1015 		return (0);
1016 
1017 	if (lookupname(uap->spec, fromspace, FOLLOW, NULL, &vp) != 0)
1018 		goto out;
1019 
1020 	if (vp->v_type != VREG)
1021 		goto out;
1022 
1023 	/* OK, this is a lofi mount. */
1024 
1025 	if ((uap->flags & (MS_REMOUNT|MS_GLOBAL)) ||
1026 	    vfs_optionisset_nolock(mntopts, MNTOPT_SUID, NULL) ||
1027 	    vfs_optionisset_nolock(mntopts, MNTOPT_SETUID, NULL) ||
1028 	    vfs_optionisset_nolock(mntopts, MNTOPT_DEVICES, NULL)) {
1029 		err = EINVAL;
1030 		goto out;
1031 	}
1032 
1033 	ldi_id = ldi_ident_from_anon();
1034 	li = kmem_zalloc(sizeof (*li), KM_SLEEP);
1035 	(void) strlcpy(li->li_filename, pn.pn_path, MAXPATHLEN);
1036 
1037 	/*
1038 	 * The lofi control node is currently exclusive-open.  We'd like
1039 	 * to improve this, but in the meantime, we'll loop waiting for
1040 	 * access.
1041 	 */
1042 	for (;;) {
1043 		err = ldi_open_by_name("/dev/lofictl", FREAD | FWRITE | FEXCL,
1044 		    kcred, &ldi_hdl, ldi_id);
1045 
1046 		if (err != EBUSY)
1047 			break;
1048 
1049 		if ((err = delay_sig(hz / 8)) == EINTR)
1050 			break;
1051 	}
1052 
1053 	if (err)
1054 		goto out2;
1055 
1056 	err = ldi_ioctl(ldi_hdl, LOFI_MAP_FILE, (intptr_t)li,
1057 	    FREAD | FWRITE | FEXCL | FKIOCTL, kcred, &minor);
1058 
1059 	(void) ldi_close(ldi_hdl, FREAD | FWRITE | FEXCL, kcred);
1060 
1061 	if (!err)
1062 		vfsp->vfs_lofi_minor = minor;
1063 
1064 out2:
1065 	ldi_ident_release(ldi_id);
1066 out:
1067 	if (li != NULL)
1068 		kmem_free(li, sizeof (*li));
1069 	if (vp != NULL)
1070 		VN_RELE(vp);
1071 	pn_free(&pn);
1072 	return (err);
1073 }
1074 
1075 static void
1076 lofi_remove(struct vfs *vfsp)
1077 {
1078 	struct lofi_ioctl *li = NULL;
1079 	ldi_ident_t ldi_id;
1080 	ldi_handle_t ldi_hdl;
1081 	int err;
1082 
1083 	if (vfsp->vfs_lofi_minor == 0)
1084 		return;
1085 
1086 	ldi_id = ldi_ident_from_anon();
1087 
1088 	li = kmem_zalloc(sizeof (*li), KM_SLEEP);
1089 	li->li_minor = vfsp->vfs_lofi_minor;
1090 	li->li_cleanup = B_TRUE;
1091 
1092 	do {
1093 		err = ldi_open_by_name("/dev/lofictl", FREAD | FWRITE | FEXCL,
1094 		    kcred, &ldi_hdl, ldi_id);
1095 	} while (err == EBUSY);
1096 
1097 	if (err)
1098 		goto out;
1099 
1100 	err = ldi_ioctl(ldi_hdl, LOFI_UNMAP_FILE_MINOR, (intptr_t)li,
1101 	    FREAD | FWRITE | FEXCL | FKIOCTL, kcred, NULL);
1102 
1103 	(void) ldi_close(ldi_hdl, FREAD | FWRITE | FEXCL, kcred);
1104 
1105 	if (!err)
1106 		vfsp->vfs_lofi_minor = 0;
1107 
1108 out:
1109 	ldi_ident_release(ldi_id);
1110 	if (li != NULL)
1111 		kmem_free(li, sizeof (*li));
1112 }
1113 
1114 /*
1115  * Common mount code.  Called from the system call entry point, from autofs,
1116  * nfsv4 trigger mounts, and from pxfs.
1117  *
1118  * Takes the effective file system type, mount arguments, the mount point
1119  * vnode, flags specifying whether the mount is a remount and whether it
1120  * should be entered into the vfs list, and credentials.  Fills in its vfspp
1121  * parameter with the mounted file system instance's vfs.
1122  *
1123  * Note that the effective file system type is specified as a string.  It may
1124  * be null, in which case it's determined from the mount arguments, and may
1125  * differ from the type specified in the mount arguments; this is a hook to
1126  * allow interposition when instantiating file system instances.
1127  *
1128  * The caller is responsible for releasing its own hold on the mount point
1129  * vp (this routine does its own hold when necessary).
1130  * Also note that for remounts, the mount point vp should be the vnode for
1131  * the root of the file system rather than the vnode that the file system
1132  * is mounted on top of.
1133  */
1134 int
1135 domount(char *fsname, struct mounta *uap, vnode_t *vp, struct cred *credp,
1136 	struct vfs **vfspp)
1137 {
1138 	struct vfssw	*vswp;
1139 	vfsops_t	*vfsops;
1140 	struct vfs	*vfsp;
1141 	struct vnode	*bvp;
1142 	dev_t		bdev = 0;
1143 	mntopts_t	mnt_mntopts;
1144 	int		error = 0;
1145 	int		copyout_error = 0;
1146 	int		ovflags;
1147 	char		*opts = uap->optptr;
1148 	char		*inargs = opts;
1149 	int		optlen = uap->optlen;
1150 	int		remount;
1151 	int		rdonly;
1152 	int		nbmand = 0;
1153 	int		delmip = 0;
1154 	int		addmip = 0;
1155 	int		splice = ((uap->flags & MS_NOSPLICE) == 0);
1156 	int		fromspace = (uap->flags & MS_SYSSPACE) ?
1157 	    UIO_SYSSPACE : UIO_USERSPACE;
1158 	char		*resource = NULL, *mountpt = NULL;
1159 	refstr_t	*oldresource, *oldmntpt;
1160 	struct pathname	pn, rpn;
1161 	vsk_anchor_t	*vskap;
1162 	char fstname[FSTYPSZ];
1163 
1164 	/*
1165 	 * The v_flag value for the mount point vp is permanently set
1166 	 * to VVFSLOCK so that no one bypasses the vn_vfs*locks routine
1167 	 * for mount point locking.
1168 	 */
1169 	mutex_enter(&vp->v_lock);
1170 	vp->v_flag |= VVFSLOCK;
1171 	mutex_exit(&vp->v_lock);
1172 
1173 	mnt_mntopts.mo_count = 0;
1174 	/*
1175 	 * Find the ops vector to use to invoke the file system-specific mount
1176 	 * method.  If the fsname argument is non-NULL, use it directly.
1177 	 * Otherwise, dig the file system type information out of the mount
1178 	 * arguments.
1179 	 *
1180 	 * A side effect is to hold the vfssw entry.
1181 	 *
1182 	 * Mount arguments can be specified in several ways, which are
1183 	 * distinguished by flag bit settings.  The preferred way is to set
1184 	 * MS_OPTIONSTR, indicating an 8 argument mount with the file system
1185 	 * type supplied as a character string and the last two arguments
1186 	 * being a pointer to a character buffer and the size of the buffer.
1187 	 * On entry, the buffer holds a null terminated list of options; on
1188 	 * return, the string is the list of options the file system
1189 	 * recognized. If MS_DATA is set arguments five and six point to a
1190 	 * block of binary data which the file system interprets.
1191 	 * A further wrinkle is that some callers don't set MS_FSS and MS_DATA
1192 	 * consistently with these conventions.  To handle them, we check to
1193 	 * see whether the pointer to the file system name has a numeric value
1194 	 * less than 256.  If so, we treat it as an index.
1195 	 */
1196 	if (fsname != NULL) {
1197 		if ((vswp = vfs_getvfssw(fsname)) == NULL) {
1198 			return (EINVAL);
1199 		}
1200 	} else if (uap->flags & (MS_OPTIONSTR | MS_DATA | MS_FSS)) {
1201 		size_t n;
1202 		uint_t fstype;
1203 
1204 		fsname = fstname;
1205 
1206 		if ((fstype = (uintptr_t)uap->fstype) < 256) {
1207 			RLOCK_VFSSW();
1208 			if (fstype == 0 || fstype >= nfstype ||
1209 			    !ALLOCATED_VFSSW(&vfssw[fstype])) {
1210 				RUNLOCK_VFSSW();
1211 				return (EINVAL);
1212 			}
1213 			(void) strcpy(fsname, vfssw[fstype].vsw_name);
1214 			RUNLOCK_VFSSW();
1215 			if ((vswp = vfs_getvfssw(fsname)) == NULL)
1216 				return (EINVAL);
1217 		} else {
1218 			/*
1219 			 * Handle either kernel or user address space.
1220 			 */
1221 			if (uap->flags & MS_SYSSPACE) {
1222 				error = copystr(uap->fstype, fsname,
1223 				    FSTYPSZ, &n);
1224 			} else {
1225 				error = copyinstr(uap->fstype, fsname,
1226 				    FSTYPSZ, &n);
1227 			}
1228 			if (error) {
1229 				if (error == ENAMETOOLONG)
1230 					return (EINVAL);
1231 				return (error);
1232 			}
1233 			if ((vswp = vfs_getvfssw(fsname)) == NULL)
1234 				return (EINVAL);
1235 		}
1236 	} else {
1237 		if ((vswp = vfs_getvfsswbyvfsops(vfs_getops(rootvfs))) == NULL)
1238 			return (EINVAL);
1239 	}
1240 	if (!VFS_INSTALLED(vswp))
1241 		return (EINVAL);
1242 	vfsops = &vswp->vsw_vfsops;
1243 
1244 	vfs_copyopttbl(&vswp->vsw_optproto, &mnt_mntopts);
1245 	/*
1246 	 * Fetch mount options and parse them for generic vfs options
1247 	 */
1248 	if (uap->flags & MS_OPTIONSTR) {
1249 		/*
1250 		 * Limit the buffer size
1251 		 */
1252 		if (optlen < 0 || optlen > MAX_MNTOPT_STR) {
1253 			error = EINVAL;
1254 			goto errout;
1255 		}
1256 		if ((uap->flags & MS_SYSSPACE) == 0) {
1257 			inargs = kmem_alloc(MAX_MNTOPT_STR, KM_SLEEP);
1258 			inargs[0] = '\0';
1259 			if (optlen) {
1260 				error = copyinstr(opts, inargs, (size_t)optlen,
1261 				    NULL);
1262 				if (error) {
1263 					goto errout;
1264 				}
1265 			}
1266 		}
1267 		vfs_parsemntopts(&mnt_mntopts, inargs, 0);
1268 	}
1269 	/*
1270 	 * Flag bits override the options string.
1271 	 */
1272 	if (uap->flags & MS_REMOUNT)
1273 		vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_REMOUNT, NULL, 0, 0);
1274 	if (uap->flags & MS_RDONLY)
1275 		vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_RO, NULL, 0, 0);
1276 	if (uap->flags & MS_NOSUID)
1277 		vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL, 0, 0);
1278 
1279 	/*
1280 	 * Check if this is a remount; must be set in the option string and
1281 	 * the file system must support a remount option.
1282 	 */
1283 	if (remount = vfs_optionisset_nolock(&mnt_mntopts,
1284 	    MNTOPT_REMOUNT, NULL)) {
1285 		if (!(vswp->vsw_flag & VSW_CANREMOUNT)) {
1286 			error = ENOTSUP;
1287 			goto errout;
1288 		}
1289 		uap->flags |= MS_REMOUNT;
1290 	}
1291 
1292 	/*
1293 	 * uap->flags and vfs_optionisset() should agree.
1294 	 */
1295 	if (rdonly = vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_RO, NULL)) {
1296 		uap->flags |= MS_RDONLY;
1297 	}
1298 	if (vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL)) {
1299 		uap->flags |= MS_NOSUID;
1300 	}
1301 	nbmand = vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_NBMAND, NULL);
1302 	ASSERT(splice || !remount);
1303 	/*
1304 	 * If we are splicing the fs into the namespace,
1305 	 * perform mount point checks.
1306 	 *
1307 	 * We want to resolve the path for the mount point to eliminate
1308 	 * '.' and ".." and symlinks in mount points; we can't do the
1309 	 * same for the resource string, since it would turn
1310 	 * "/dev/dsk/c0t0d0s0" into "/devices/pci@...".  We need to do
1311 	 * this before grabbing vn_vfswlock(), because otherwise we
1312 	 * would deadlock with lookuppn().
1313 	 */
1314 	if (splice) {
1315 		ASSERT(vp->v_count > 0);
1316 
1317 		/*
1318 		 * Pick up mount point and device from appropriate space.
1319 		 */
1320 		if (pn_get(uap->spec, fromspace, &pn) == 0) {
1321 			resource = kmem_alloc(pn.pn_pathlen + 1,
1322 			    KM_SLEEP);
1323 			(void) strcpy(resource, pn.pn_path);
1324 			pn_free(&pn);
1325 		}
1326 		/*
1327 		 * Do a lookupname prior to taking the
1328 		 * writelock. Mark this as completed if
1329 		 * successful for later cleanup and addition to
1330 		 * the mount in progress table.
1331 		 */
1332 		if ((uap->flags & MS_GLOBAL) == 0 &&
1333 		    lookupname(uap->spec, fromspace,
1334 		    FOLLOW, NULL, &bvp) == 0) {
1335 			addmip = 1;
1336 		}
1337 
1338 		if ((error = pn_get(uap->dir, fromspace, &pn)) == 0) {
1339 			pathname_t *pnp;
1340 
1341 			if (*pn.pn_path != '/') {
1342 				error = EINVAL;
1343 				pn_free(&pn);
1344 				goto errout;
1345 			}
1346 			pn_alloc(&rpn);
1347 			/*
1348 			 * Kludge to prevent autofs from deadlocking with
1349 			 * itself when it calls domount().
1350 			 *
1351 			 * If autofs is calling, it is because it is doing
1352 			 * (autofs) mounts in the process of an NFS mount.  A
1353 			 * lookuppn() here would cause us to block waiting for
1354 			 * said NFS mount to complete, which can't since this
1355 			 * is the thread that was supposed to doing it.
1356 			 */
1357 			if (fromspace == UIO_USERSPACE) {
1358 				if ((error = lookuppn(&pn, &rpn, FOLLOW, NULL,
1359 				    NULL)) == 0) {
1360 					pnp = &rpn;
1361 				} else {
1362 					/*
1363 					 * The file disappeared or otherwise
1364 					 * became inaccessible since we opened
1365 					 * it; might as well fail the mount
1366 					 * since the mount point is no longer
1367 					 * accessible.
1368 					 */
1369 					pn_free(&rpn);
1370 					pn_free(&pn);
1371 					goto errout;
1372 				}
1373 			} else {
1374 				pnp = &pn;
1375 			}
1376 			mountpt = kmem_alloc(pnp->pn_pathlen + 1, KM_SLEEP);
1377 			(void) strcpy(mountpt, pnp->pn_path);
1378 
1379 			/*
1380 			 * If the addition of the zone's rootpath
1381 			 * would push us over a total path length
1382 			 * of MAXPATHLEN, we fail the mount with
1383 			 * ENAMETOOLONG, which is what we would have
1384 			 * gotten if we were trying to perform the same
1385 			 * mount in the global zone.
1386 			 *
1387 			 * strlen() doesn't count the trailing
1388 			 * '\0', but zone_rootpathlen counts both a
1389 			 * trailing '/' and the terminating '\0'.
1390 			 */
1391 			if ((curproc->p_zone->zone_rootpathlen - 1 +
1392 			    strlen(mountpt)) > MAXPATHLEN ||
1393 			    (resource != NULL &&
1394 			    (curproc->p_zone->zone_rootpathlen - 1 +
1395 			    strlen(resource)) > MAXPATHLEN)) {
1396 				error = ENAMETOOLONG;
1397 			}
1398 
1399 			pn_free(&rpn);
1400 			pn_free(&pn);
1401 		}
1402 
1403 		if (error)
1404 			goto errout;
1405 
1406 		/*
1407 		 * Prevent path name resolution from proceeding past
1408 		 * the mount point.
1409 		 */
1410 		if (vn_vfswlock(vp) != 0) {
1411 			error = EBUSY;
1412 			goto errout;
1413 		}
1414 
1415 		/*
1416 		 * Verify that it's legitimate to establish a mount on
1417 		 * the prospective mount point.
1418 		 */
1419 		if (vn_mountedvfs(vp) != NULL) {
1420 			/*
1421 			 * The mount point lock was obtained after some
1422 			 * other thread raced through and established a mount.
1423 			 */
1424 			vn_vfsunlock(vp);
1425 			error = EBUSY;
1426 			goto errout;
1427 		}
1428 		if (vp->v_flag & VNOMOUNT) {
1429 			vn_vfsunlock(vp);
1430 			error = EINVAL;
1431 			goto errout;
1432 		}
1433 	}
1434 	if ((uap->flags & (MS_DATA | MS_OPTIONSTR)) == 0) {
1435 		uap->dataptr = NULL;
1436 		uap->datalen = 0;
1437 	}
1438 
1439 	/*
1440 	 * If this is a remount, we don't want to create a new VFS.
1441 	 * Instead, we pass the existing one with a remount flag.
1442 	 */
1443 	if (remount) {
1444 		/*
1445 		 * Confirm that the mount point is the root vnode of the
1446 		 * file system that is being remounted.
1447 		 * This can happen if the user specifies a different
1448 		 * mount point directory pathname in the (re)mount command.
1449 		 *
1450 		 * Code below can only be reached if splice is true, so it's
1451 		 * safe to do vn_vfsunlock() here.
1452 		 */
1453 		if ((vp->v_flag & VROOT) == 0) {
1454 			vn_vfsunlock(vp);
1455 			error = ENOENT;
1456 			goto errout;
1457 		}
1458 		/*
1459 		 * Disallow making file systems read-only unless file system
1460 		 * explicitly allows it in its vfssw.  Ignore other flags.
1461 		 */
1462 		if (rdonly && vn_is_readonly(vp) == 0 &&
1463 		    (vswp->vsw_flag & VSW_CANRWRO) == 0) {
1464 			vn_vfsunlock(vp);
1465 			error = EINVAL;
1466 			goto errout;
1467 		}
1468 		/*
1469 		 * Disallow changing the NBMAND disposition of the file
1470 		 * system on remounts.
1471 		 */
1472 		if ((nbmand && ((vp->v_vfsp->vfs_flag & VFS_NBMAND) == 0)) ||
1473 		    (!nbmand && (vp->v_vfsp->vfs_flag & VFS_NBMAND))) {
1474 			vn_vfsunlock(vp);
1475 			error = EINVAL;
1476 			goto errout;
1477 		}
1478 		vfsp = vp->v_vfsp;
1479 		ovflags = vfsp->vfs_flag;
1480 		vfsp->vfs_flag |= VFS_REMOUNT;
1481 		vfsp->vfs_flag &= ~VFS_RDONLY;
1482 	} else {
1483 		vfsp = vfs_alloc(KM_SLEEP);
1484 		VFS_INIT(vfsp, vfsops, NULL);
1485 	}
1486 
1487 	VFS_HOLD(vfsp);
1488 
1489 	if ((error = lofi_add(fsname, vfsp, &mnt_mntopts, uap)) != 0) {
1490 		if (!remount) {
1491 			if (splice)
1492 				vn_vfsunlock(vp);
1493 			vfs_free(vfsp);
1494 		} else {
1495 			vn_vfsunlock(vp);
1496 			VFS_RELE(vfsp);
1497 		}
1498 		goto errout;
1499 	}
1500 
1501 	/*
1502 	 * PRIV_SYS_MOUNT doesn't mean you can become root.
1503 	 */
1504 	if (vfsp->vfs_lofi_minor != 0) {
1505 		uap->flags |= MS_NOSUID;
1506 		vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL, 0, 0);
1507 	}
1508 
1509 	/*
1510 	 * The vfs_reflock is not used anymore the code below explicitly
1511 	 * holds it preventing others accesing it directly.
1512 	 */
1513 	if ((sema_tryp(&vfsp->vfs_reflock) == 0) &&
1514 	    !(vfsp->vfs_flag & VFS_REMOUNT))
1515 		cmn_err(CE_WARN,
1516 		    "mount type %s couldn't get vfs_reflock", vswp->vsw_name);
1517 
1518 	/*
1519 	 * Lock the vfs. If this is a remount we want to avoid spurious umount
1520 	 * failures that happen as a side-effect of fsflush() and other mount
1521 	 * and unmount operations that might be going on simultaneously and
1522 	 * may have locked the vfs currently. To not return EBUSY immediately
1523 	 * here we use vfs_lock_wait() instead vfs_lock() for the remount case.
1524 	 */
1525 	if (!remount) {
1526 		if (error = vfs_lock(vfsp)) {
1527 			vfsp->vfs_flag = ovflags;
1528 
1529 			lofi_remove(vfsp);
1530 
1531 			if (splice)
1532 				vn_vfsunlock(vp);
1533 			vfs_free(vfsp);
1534 			goto errout;
1535 		}
1536 	} else {
1537 		vfs_lock_wait(vfsp);
1538 	}
1539 
1540 	/*
1541 	 * Add device to mount in progress table, global mounts require special
1542 	 * handling. It is possible that we have already done the lookupname
1543 	 * on a spliced, non-global fs. If so, we don't want to do it again
1544 	 * since we cannot do a lookupname after taking the
1545 	 * wlock above. This case is for a non-spliced, non-global filesystem.
1546 	 */
1547 	if (!addmip) {
1548 		if ((uap->flags & MS_GLOBAL) == 0 &&
1549 		    lookupname(uap->spec, fromspace, FOLLOW, NULL, &bvp) == 0) {
1550 			addmip = 1;
1551 		}
1552 	}
1553 
1554 	if (addmip) {
1555 		vnode_t *lvp = NULL;
1556 
1557 		error = vfs_get_lofi(vfsp, &lvp);
1558 		if (error > 0) {
1559 			lofi_remove(vfsp);
1560 
1561 			if (splice)
1562 				vn_vfsunlock(vp);
1563 			vfs_unlock(vfsp);
1564 
1565 			if (remount) {
1566 				VFS_RELE(vfsp);
1567 			} else {
1568 				vfs_free(vfsp);
1569 			}
1570 
1571 			goto errout;
1572 		} else if (error == -1) {
1573 			bdev = bvp->v_rdev;
1574 			VN_RELE(bvp);
1575 		} else {
1576 			bdev = lvp->v_rdev;
1577 			VN_RELE(lvp);
1578 			VN_RELE(bvp);
1579 		}
1580 
1581 		vfs_addmip(bdev, vfsp);
1582 		addmip = 0;
1583 		delmip = 1;
1584 	}
1585 	/*
1586 	 * Invalidate cached entry for the mount point.
1587 	 */
1588 	if (splice)
1589 		dnlc_purge_vp(vp);
1590 
1591 	/*
1592 	 * If have an option string but the filesystem doesn't supply a
1593 	 * prototype options table, create a table with the global
1594 	 * options and sufficient room to accept all the options in the
1595 	 * string.  Then parse the passed in option string
1596 	 * accepting all the options in the string.  This gives us an
1597 	 * option table with all the proper cancel properties for the
1598 	 * global options.
1599 	 *
1600 	 * Filesystems that supply a prototype options table are handled
1601 	 * earlier in this function.
1602 	 */
1603 	if (uap->flags & MS_OPTIONSTR) {
1604 		if (!(vswp->vsw_flag & VSW_HASPROTO)) {
1605 			mntopts_t tmp_mntopts;
1606 
1607 			tmp_mntopts.mo_count = 0;
1608 			vfs_createopttbl_extend(&tmp_mntopts, inargs,
1609 			    &mnt_mntopts);
1610 			vfs_parsemntopts(&tmp_mntopts, inargs, 1);
1611 			vfs_swapopttbl_nolock(&mnt_mntopts, &tmp_mntopts);
1612 			vfs_freeopttbl(&tmp_mntopts);
1613 		}
1614 	}
1615 
1616 	/*
1617 	 * Serialize with zone creations.
1618 	 */
1619 	mount_in_progress();
1620 	/*
1621 	 * Instantiate (or reinstantiate) the file system.  If appropriate,
1622 	 * splice it into the file system name space.
1623 	 *
1624 	 * We want VFS_MOUNT() to be able to override the vfs_resource
1625 	 * string if necessary (ie, mntfs), and also for a remount to
1626 	 * change the same (necessary when remounting '/' during boot).
1627 	 * So we set up vfs_mntpt and vfs_resource to what we think they
1628 	 * should be, then hand off control to VFS_MOUNT() which can
1629 	 * override this.
1630 	 *
1631 	 * For safety's sake, when changing vfs_resource or vfs_mntpt of
1632 	 * a vfs which is on the vfs list (i.e. during a remount), we must
1633 	 * never set those fields to NULL. Several bits of code make
1634 	 * assumptions that the fields are always valid.
1635 	 */
1636 	vfs_swapopttbl(&mnt_mntopts, &vfsp->vfs_mntopts);
1637 	if (remount) {
1638 		if ((oldresource = vfsp->vfs_resource) != NULL)
1639 			refstr_hold(oldresource);
1640 		if ((oldmntpt = vfsp->vfs_mntpt) != NULL)
1641 			refstr_hold(oldmntpt);
1642 	}
1643 	vfs_setresource(vfsp, resource);
1644 	vfs_setmntpoint(vfsp, mountpt);
1645 
1646 	/*
1647 	 * going to mount on this vnode, so notify.
1648 	 */
1649 	vnevent_mountedover(vp, NULL);
1650 	error = VFS_MOUNT(vfsp, vp, uap, credp);
1651 
1652 	if (uap->flags & MS_RDONLY)
1653 		vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0);
1654 	if (uap->flags & MS_NOSUID)
1655 		vfs_setmntopt(vfsp, MNTOPT_NOSUID, NULL, 0);
1656 	if (uap->flags & MS_GLOBAL)
1657 		vfs_setmntopt(vfsp, MNTOPT_GLOBAL, NULL, 0);
1658 
1659 	if (error) {
1660 		lofi_remove(vfsp);
1661 
1662 		if (remount) {
1663 			/* put back pre-remount options */
1664 			vfs_swapopttbl(&mnt_mntopts, &vfsp->vfs_mntopts);
1665 			vfs_setmntpoint(vfsp, (stripzonepath(
1666 			    refstr_value(oldmntpt))));
1667 			if (oldmntpt)
1668 				refstr_rele(oldmntpt);
1669 			vfs_setresource(vfsp, (stripzonepath(
1670 			    refstr_value(oldresource))));
1671 			if (oldresource)
1672 				refstr_rele(oldresource);
1673 			vfsp->vfs_flag = ovflags;
1674 			vfs_unlock(vfsp);
1675 			VFS_RELE(vfsp);
1676 		} else {
1677 			vfs_unlock(vfsp);
1678 			vfs_freemnttab(vfsp);
1679 			vfs_free(vfsp);
1680 		}
1681 	} else {
1682 		/*
1683 		 * Set the mount time to now
1684 		 */
1685 		vfsp->vfs_mtime = ddi_get_time();
1686 		if (remount) {
1687 			vfsp->vfs_flag &= ~VFS_REMOUNT;
1688 			if (oldresource)
1689 				refstr_rele(oldresource);
1690 			if (oldmntpt)
1691 				refstr_rele(oldmntpt);
1692 		} else if (splice) {
1693 			/*
1694 			 * Link vfsp into the name space at the mount
1695 			 * point. Vfs_add() is responsible for
1696 			 * holding the mount point which will be
1697 			 * released when vfs_remove() is called.
1698 			 */
1699 			vfs_add(vp, vfsp, uap->flags);
1700 		} else {
1701 			/*
1702 			 * Hold the reference to file system which is
1703 			 * not linked into the name space.
1704 			 */
1705 			vfsp->vfs_zone = NULL;
1706 			VFS_HOLD(vfsp);
1707 			vfsp->vfs_vnodecovered = NULL;
1708 		}
1709 		/*
1710 		 * Set flags for global options encountered
1711 		 */
1712 		if (vfs_optionisset(vfsp, MNTOPT_RO, NULL))
1713 			vfsp->vfs_flag |= VFS_RDONLY;
1714 		else
1715 			vfsp->vfs_flag &= ~VFS_RDONLY;
1716 		if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) {
1717 			vfsp->vfs_flag |= (VFS_NOSETUID|VFS_NODEVICES);
1718 		} else {
1719 			if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL))
1720 				vfsp->vfs_flag |= VFS_NODEVICES;
1721 			else
1722 				vfsp->vfs_flag &= ~VFS_NODEVICES;
1723 			if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL))
1724 				vfsp->vfs_flag |= VFS_NOSETUID;
1725 			else
1726 				vfsp->vfs_flag &= ~VFS_NOSETUID;
1727 		}
1728 		if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL))
1729 			vfsp->vfs_flag |= VFS_NBMAND;
1730 		else
1731 			vfsp->vfs_flag &= ~VFS_NBMAND;
1732 
1733 		if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL))
1734 			vfsp->vfs_flag |= VFS_XATTR;
1735 		else
1736 			vfsp->vfs_flag &= ~VFS_XATTR;
1737 
1738 		if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL))
1739 			vfsp->vfs_flag |= VFS_NOEXEC;
1740 		else
1741 			vfsp->vfs_flag &= ~VFS_NOEXEC;
1742 
1743 		/*
1744 		 * Now construct the output option string of options
1745 		 * we recognized.
1746 		 */
1747 		if (uap->flags & MS_OPTIONSTR) {
1748 			vfs_list_read_lock();
1749 			copyout_error = vfs_buildoptionstr(
1750 			    &vfsp->vfs_mntopts, inargs, optlen);
1751 			vfs_list_unlock();
1752 			if (copyout_error == 0 &&
1753 			    (uap->flags & MS_SYSSPACE) == 0) {
1754 				copyout_error = copyoutstr(inargs, opts,
1755 				    optlen, NULL);
1756 			}
1757 		}
1758 
1759 		/*
1760 		 * If this isn't a remount, set up the vopstats before
1761 		 * anyone can touch this. We only allow spliced file
1762 		 * systems (file systems which are in the namespace) to
1763 		 * have the VFS_STATS flag set.
1764 		 * NOTE: PxFS mounts the underlying file system with
1765 		 * MS_NOSPLICE set and copies those vfs_flags to its private
1766 		 * vfs structure. As a result, PxFS should never have
1767 		 * the VFS_STATS flag or else we might access the vfs
1768 		 * statistics-related fields prior to them being
1769 		 * properly initialized.
1770 		 */
1771 		if (!remount && (vswp->vsw_flag & VSW_STATS) && splice) {
1772 			initialize_vopstats(&vfsp->vfs_vopstats);
1773 			/*
1774 			 * We need to set vfs_vskap to NULL because there's
1775 			 * a chance it won't be set below.  This is checked
1776 			 * in teardown_vopstats() so we can't have garbage.
1777 			 */
1778 			vfsp->vfs_vskap = NULL;
1779 			vfsp->vfs_flag |= VFS_STATS;
1780 			vfsp->vfs_fstypevsp = get_fstype_vopstats(vfsp, vswp);
1781 		}
1782 
1783 		if (vswp->vsw_flag & VSW_XID)
1784 			vfsp->vfs_flag |= VFS_XID;
1785 
1786 		vfs_unlock(vfsp);
1787 	}
1788 	mount_completed();
1789 	if (splice)
1790 		vn_vfsunlock(vp);
1791 
1792 	if ((error == 0) && (copyout_error == 0)) {
1793 		if (!remount) {
1794 			/*
1795 			 * Don't call get_vskstat_anchor() while holding
1796 			 * locks since it allocates memory and calls
1797 			 * VFS_STATVFS().  For NFS, the latter can generate
1798 			 * an over-the-wire call.
1799 			 */
1800 			vskap = get_vskstat_anchor(vfsp);
1801 			/* Only take the lock if we have something to do */
1802 			if (vskap != NULL) {
1803 				vfs_lock_wait(vfsp);
1804 				if (vfsp->vfs_flag & VFS_STATS) {
1805 					vfsp->vfs_vskap = vskap;
1806 				}
1807 				vfs_unlock(vfsp);
1808 			}
1809 		}
1810 		/* Return vfsp to caller. */
1811 		*vfspp = vfsp;
1812 	}
1813 errout:
1814 	vfs_freeopttbl(&mnt_mntopts);
1815 	if (resource != NULL)
1816 		kmem_free(resource, strlen(resource) + 1);
1817 	if (mountpt != NULL)
1818 		kmem_free(mountpt, strlen(mountpt) + 1);
1819 	/*
1820 	 * It is possible we errored prior to adding to mount in progress
1821 	 * table. Must free vnode we acquired with successful lookupname.
1822 	 */
1823 	if (addmip)
1824 		VN_RELE(bvp);
1825 	if (delmip)
1826 		vfs_delmip(vfsp);
1827 	ASSERT(vswp != NULL);
1828 	vfs_unrefvfssw(vswp);
1829 	if (inargs != opts)
1830 		kmem_free(inargs, MAX_MNTOPT_STR);
1831 	if (copyout_error) {
1832 		lofi_remove(vfsp);
1833 		VFS_RELE(vfsp);
1834 		error = copyout_error;
1835 	}
1836 	return (error);
1837 }
1838 
1839 static void
1840 vfs_setpath(struct vfs *vfsp, refstr_t **refp, const char *newpath)
1841 {
1842 	size_t len;
1843 	refstr_t *ref;
1844 	zone_t *zone = curproc->p_zone;
1845 	char *sp;
1846 	int have_list_lock = 0;
1847 
1848 	ASSERT(!VFS_ON_LIST(vfsp) || vfs_lock_held(vfsp));
1849 
1850 	/*
1851 	 * New path must be less than MAXPATHLEN because mntfs
1852 	 * will only display up to MAXPATHLEN bytes. This is currently
1853 	 * safe, because domount() uses pn_get(), and other callers
1854 	 * similarly cap the size to fewer than MAXPATHLEN bytes.
1855 	 */
1856 
1857 	ASSERT(strlen(newpath) < MAXPATHLEN);
1858 
1859 	/* mntfs requires consistency while vfs list lock is held */
1860 
1861 	if (VFS_ON_LIST(vfsp)) {
1862 		have_list_lock = 1;
1863 		vfs_list_lock();
1864 	}
1865 
1866 	if (*refp != NULL)
1867 		refstr_rele(*refp);
1868 
1869 	/* Do we need to modify the path? */
1870 
1871 	if (zone == global_zone || *newpath != '/') {
1872 		ref = refstr_alloc(newpath);
1873 		goto out;
1874 	}
1875 
1876 	/*
1877 	 * Truncate the trailing '/' in the zoneroot, and merge
1878 	 * in the zone's rootpath with the "newpath" (resource
1879 	 * or mountpoint) passed in.
1880 	 *
1881 	 * The size of the required buffer is thus the size of
1882 	 * the buffer required for the passed-in newpath
1883 	 * (strlen(newpath) + 1), plus the size of the buffer
1884 	 * required to hold zone_rootpath (zone_rootpathlen)
1885 	 * minus one for one of the now-superfluous NUL
1886 	 * terminations, minus one for the trailing '/'.
1887 	 *
1888 	 * That gives us:
1889 	 *
1890 	 * (strlen(newpath) + 1) + zone_rootpathlen - 1 - 1
1891 	 *
1892 	 * Which is what we have below.
1893 	 */
1894 
1895 	len = strlen(newpath) + zone->zone_rootpathlen - 1;
1896 	sp = kmem_alloc(len, KM_SLEEP);
1897 
1898 	/*
1899 	 * Copy everything including the trailing slash, which
1900 	 * we then overwrite with the NUL character.
1901 	 */
1902 
1903 	(void) strcpy(sp, zone->zone_rootpath);
1904 	sp[zone->zone_rootpathlen - 2] = '\0';
1905 	(void) strcat(sp, newpath);
1906 
1907 	ref = refstr_alloc(sp);
1908 	kmem_free(sp, len);
1909 out:
1910 	*refp = ref;
1911 
1912 	if (have_list_lock) {
1913 		vfs_mnttab_modtimeupd();
1914 		vfs_list_unlock();
1915 	}
1916 }
1917 
1918 /*
1919  * Record a mounted resource name in a vfs structure.
1920  * If vfsp is already mounted, caller must hold the vfs lock.
1921  */
1922 void
1923 vfs_setresource(struct vfs *vfsp, const char *resource)
1924 {
1925 	if (resource == NULL || resource[0] == '\0')
1926 		resource = VFS_NORESOURCE;
1927 	vfs_setpath(vfsp, &vfsp->vfs_resource, resource);
1928 }
1929 
1930 /*
1931  * Record a mount point name in a vfs structure.
1932  * If vfsp is already mounted, caller must hold the vfs lock.
1933  */
1934 void
1935 vfs_setmntpoint(struct vfs *vfsp, const char *mntpt)
1936 {
1937 	if (mntpt == NULL || mntpt[0] == '\0')
1938 		mntpt = VFS_NOMNTPT;
1939 	vfs_setpath(vfsp, &vfsp->vfs_mntpt, mntpt);
1940 }
1941 
1942 /* Returns the vfs_resource. Caller must call refstr_rele() when finished. */
1943 
1944 refstr_t *
1945 vfs_getresource(const struct vfs *vfsp)
1946 {
1947 	refstr_t *resource;
1948 
1949 	vfs_list_read_lock();
1950 	resource = vfsp->vfs_resource;
1951 	refstr_hold(resource);
1952 	vfs_list_unlock();
1953 
1954 	return (resource);
1955 }
1956 
1957 /* Returns the vfs_mntpt. Caller must call refstr_rele() when finished. */
1958 
1959 refstr_t *
1960 vfs_getmntpoint(const struct vfs *vfsp)
1961 {
1962 	refstr_t *mntpt;
1963 
1964 	vfs_list_read_lock();
1965 	mntpt = vfsp->vfs_mntpt;
1966 	refstr_hold(mntpt);
1967 	vfs_list_unlock();
1968 
1969 	return (mntpt);
1970 }
1971 
1972 /*
1973  * Create an empty options table with enough empty slots to hold all
1974  * The options in the options string passed as an argument.
1975  * Potentially prepend another options table.
1976  *
1977  * Note: caller is responsible for locking the vfs list, if needed,
1978  *       to protect mops.
1979  */
1980 static void
1981 vfs_createopttbl_extend(mntopts_t *mops, const char *opts,
1982     const mntopts_t *mtmpl)
1983 {
1984 	const char *s = opts;
1985 	uint_t count;
1986 
1987 	if (opts == NULL || *opts == '\0') {
1988 		count = 0;
1989 	} else {
1990 		count = 1;
1991 
1992 		/*
1993 		 * Count number of options in the string
1994 		 */
1995 		for (s = strchr(s, ','); s != NULL; s = strchr(s, ',')) {
1996 			count++;
1997 			s++;
1998 		}
1999 	}
2000 	vfs_copyopttbl_extend(mtmpl, mops, count);
2001 }
2002 
2003 /*
2004  * Create an empty options table with enough empty slots to hold all
2005  * The options in the options string passed as an argument.
2006  *
2007  * This function is *not* for general use by filesystems.
2008  *
2009  * Note: caller is responsible for locking the vfs list, if needed,
2010  *       to protect mops.
2011  */
2012 void
2013 vfs_createopttbl(mntopts_t *mops, const char *opts)
2014 {
2015 	vfs_createopttbl_extend(mops, opts, NULL);
2016 }
2017 
2018 
2019 /*
2020  * Swap two mount options tables
2021  */
2022 static void
2023 vfs_swapopttbl_nolock(mntopts_t *optbl1, mntopts_t *optbl2)
2024 {
2025 	uint_t tmpcnt;
2026 	mntopt_t *tmplist;
2027 
2028 	tmpcnt = optbl2->mo_count;
2029 	tmplist = optbl2->mo_list;
2030 	optbl2->mo_count = optbl1->mo_count;
2031 	optbl2->mo_list = optbl1->mo_list;
2032 	optbl1->mo_count = tmpcnt;
2033 	optbl1->mo_list = tmplist;
2034 }
2035 
2036 static void
2037 vfs_swapopttbl(mntopts_t *optbl1, mntopts_t *optbl2)
2038 {
2039 	vfs_list_lock();
2040 	vfs_swapopttbl_nolock(optbl1, optbl2);
2041 	vfs_mnttab_modtimeupd();
2042 	vfs_list_unlock();
2043 }
2044 
2045 static char **
2046 vfs_copycancelopt_extend(char **const moc, int extend)
2047 {
2048 	int i = 0;
2049 	int j;
2050 	char **result;
2051 
2052 	if (moc != NULL) {
2053 		for (; moc[i] != NULL; i++)
2054 			/* count number of options to cancel */;
2055 	}
2056 
2057 	if (i + extend == 0)
2058 		return (NULL);
2059 
2060 	result = kmem_alloc((i + extend + 1) * sizeof (char *), KM_SLEEP);
2061 
2062 	for (j = 0; j < i; j++) {
2063 		result[j] = kmem_alloc(strlen(moc[j]) + 1, KM_SLEEP);
2064 		(void) strcpy(result[j], moc[j]);
2065 	}
2066 	for (; j <= i + extend; j++)
2067 		result[j] = NULL;
2068 
2069 	return (result);
2070 }
2071 
2072 static void
2073 vfs_copyopt(const mntopt_t *s, mntopt_t *d)
2074 {
2075 	char *sp, *dp;
2076 
2077 	d->mo_flags = s->mo_flags;
2078 	d->mo_data = s->mo_data;
2079 	sp = s->mo_name;
2080 	if (sp != NULL) {
2081 		dp = kmem_alloc(strlen(sp) + 1, KM_SLEEP);
2082 		(void) strcpy(dp, sp);
2083 		d->mo_name = dp;
2084 	} else {
2085 		d->mo_name = NULL; /* should never happen */
2086 	}
2087 
2088 	d->mo_cancel = vfs_copycancelopt_extend(s->mo_cancel, 0);
2089 
2090 	sp = s->mo_arg;
2091 	if (sp != NULL) {
2092 		dp = kmem_alloc(strlen(sp) + 1, KM_SLEEP);
2093 		(void) strcpy(dp, sp);
2094 		d->mo_arg = dp;
2095 	} else {
2096 		d->mo_arg = NULL;
2097 	}
2098 }
2099 
2100 /*
2101  * Copy a mount options table, possibly allocating some spare
2102  * slots at the end.  It is permissible to copy_extend the NULL table.
2103  */
2104 static void
2105 vfs_copyopttbl_extend(const mntopts_t *smo, mntopts_t *dmo, int extra)
2106 {
2107 	uint_t i, count;
2108 	mntopt_t *motbl;
2109 
2110 	/*
2111 	 * Clear out any existing stuff in the options table being initialized
2112 	 */
2113 	vfs_freeopttbl(dmo);
2114 	count = (smo == NULL) ? 0 : smo->mo_count;
2115 	if ((count + extra) == 0)	/* nothing to do */
2116 		return;
2117 	dmo->mo_count = count + extra;
2118 	motbl = kmem_zalloc((count + extra) * sizeof (mntopt_t), KM_SLEEP);
2119 	dmo->mo_list = motbl;
2120 	for (i = 0; i < count; i++) {
2121 		vfs_copyopt(&smo->mo_list[i], &motbl[i]);
2122 	}
2123 	for (i = count; i < count + extra; i++) {
2124 		motbl[i].mo_flags = MO_EMPTY;
2125 	}
2126 }
2127 
2128 /*
2129  * Copy a mount options table.
2130  *
2131  * This function is *not* for general use by filesystems.
2132  *
2133  * Note: caller is responsible for locking the vfs list, if needed,
2134  *       to protect smo and dmo.
2135  */
2136 void
2137 vfs_copyopttbl(const mntopts_t *smo, mntopts_t *dmo)
2138 {
2139 	vfs_copyopttbl_extend(smo, dmo, 0);
2140 }
2141 
2142 static char **
2143 vfs_mergecancelopts(const mntopt_t *mop1, const mntopt_t *mop2)
2144 {
2145 	int c1 = 0;
2146 	int c2 = 0;
2147 	char **result;
2148 	char **sp1, **sp2, **dp;
2149 
2150 	/*
2151 	 * First we count both lists of cancel options.
2152 	 * If either is NULL or has no elements, we return a copy of
2153 	 * the other.
2154 	 */
2155 	if (mop1->mo_cancel != NULL) {
2156 		for (; mop1->mo_cancel[c1] != NULL; c1++)
2157 			/* count cancel options in mop1 */;
2158 	}
2159 
2160 	if (c1 == 0)
2161 		return (vfs_copycancelopt_extend(mop2->mo_cancel, 0));
2162 
2163 	if (mop2->mo_cancel != NULL) {
2164 		for (; mop2->mo_cancel[c2] != NULL; c2++)
2165 			/* count cancel options in mop2 */;
2166 	}
2167 
2168 	result = vfs_copycancelopt_extend(mop1->mo_cancel, c2);
2169 
2170 	if (c2 == 0)
2171 		return (result);
2172 
2173 	/*
2174 	 * When we get here, we've got two sets of cancel options;
2175 	 * we need to merge the two sets.  We know that the result
2176 	 * array has "c1+c2+1" entries and in the end we might shrink
2177 	 * it.
2178 	 * Result now has a copy of the c1 entries from mop1; we'll
2179 	 * now lookup all the entries of mop2 in mop1 and copy it if
2180 	 * it is unique.
2181 	 * This operation is O(n^2) but it's only called once per
2182 	 * filesystem per duplicate option.  This is a situation
2183 	 * which doesn't arise with the filesystems in ON and
2184 	 * n is generally 1.
2185 	 */
2186 
2187 	dp = &result[c1];
2188 	for (sp2 = mop2->mo_cancel; *sp2 != NULL; sp2++) {
2189 		for (sp1 = mop1->mo_cancel; *sp1 != NULL; sp1++) {
2190 			if (strcmp(*sp1, *sp2) == 0)
2191 				break;
2192 		}
2193 		if (*sp1 == NULL) {
2194 			/*
2195 			 * Option *sp2 not found in mop1, so copy it.
2196 			 * The calls to vfs_copycancelopt_extend()
2197 			 * guarantee that there's enough room.
2198 			 */
2199 			*dp = kmem_alloc(strlen(*sp2) + 1, KM_SLEEP);
2200 			(void) strcpy(*dp++, *sp2);
2201 		}
2202 	}
2203 	if (dp != &result[c1+c2]) {
2204 		size_t bytes = (dp - result + 1) * sizeof (char *);
2205 		char **nres = kmem_alloc(bytes, KM_SLEEP);
2206 
2207 		bcopy(result, nres, bytes);
2208 		kmem_free(result, (c1 + c2 + 1) * sizeof (char *));
2209 		result = nres;
2210 	}
2211 	return (result);
2212 }
2213 
2214 /*
2215  * Merge two mount option tables (outer and inner) into one.  This is very
2216  * similar to "merging" global variables and automatic variables in C.
2217  *
2218  * This isn't (and doesn't have to be) fast.
2219  *
2220  * This function is *not* for general use by filesystems.
2221  *
2222  * Note: caller is responsible for locking the vfs list, if needed,
2223  *       to protect omo, imo & dmo.
2224  */
2225 void
2226 vfs_mergeopttbl(const mntopts_t *omo, const mntopts_t *imo, mntopts_t *dmo)
2227 {
2228 	uint_t i, count;
2229 	mntopt_t *mop, *motbl;
2230 	uint_t freeidx;
2231 
2232 	/*
2233 	 * First determine how much space we need to allocate.
2234 	 */
2235 	count = omo->mo_count;
2236 	for (i = 0; i < imo->mo_count; i++) {
2237 		if (imo->mo_list[i].mo_flags & MO_EMPTY)
2238 			continue;
2239 		if (vfs_hasopt(omo, imo->mo_list[i].mo_name) == NULL)
2240 			count++;
2241 	}
2242 	ASSERT(count >= omo->mo_count &&
2243 	    count <= omo->mo_count + imo->mo_count);
2244 	motbl = kmem_alloc(count * sizeof (mntopt_t), KM_SLEEP);
2245 	for (i = 0; i < omo->mo_count; i++)
2246 		vfs_copyopt(&omo->mo_list[i], &motbl[i]);
2247 	freeidx = omo->mo_count;
2248 	for (i = 0; i < imo->mo_count; i++) {
2249 		if (imo->mo_list[i].mo_flags & MO_EMPTY)
2250 			continue;
2251 		if ((mop = vfs_hasopt(omo, imo->mo_list[i].mo_name)) != NULL) {
2252 			char **newcanp;
2253 			uint_t index = mop - omo->mo_list;
2254 
2255 			newcanp = vfs_mergecancelopts(mop, &motbl[index]);
2256 
2257 			vfs_freeopt(&motbl[index]);
2258 			vfs_copyopt(&imo->mo_list[i], &motbl[index]);
2259 
2260 			vfs_freecancelopt(motbl[index].mo_cancel);
2261 			motbl[index].mo_cancel = newcanp;
2262 		} else {
2263 			/*
2264 			 * If it's a new option, just copy it over to the first
2265 			 * free location.
2266 			 */
2267 			vfs_copyopt(&imo->mo_list[i], &motbl[freeidx++]);
2268 		}
2269 	}
2270 	dmo->mo_count = count;
2271 	dmo->mo_list = motbl;
2272 }
2273 
2274 /*
2275  * Functions to set and clear mount options in a mount options table.
2276  */
2277 
2278 /*
2279  * Clear a mount option, if it exists.
2280  *
2281  * The update_mnttab arg indicates whether mops is part of a vfs that is on
2282  * the vfs list.
2283  */
2284 static void
2285 vfs_clearmntopt_nolock(mntopts_t *mops, const char *opt, int update_mnttab)
2286 {
2287 	struct mntopt *mop;
2288 	uint_t i, count;
2289 
2290 	ASSERT(!update_mnttab || RW_WRITE_HELD(&vfslist));
2291 
2292 	count = mops->mo_count;
2293 	for (i = 0; i < count; i++) {
2294 		mop = &mops->mo_list[i];
2295 
2296 		if (mop->mo_flags & MO_EMPTY)
2297 			continue;
2298 		if (strcmp(opt, mop->mo_name))
2299 			continue;
2300 		mop->mo_flags &= ~MO_SET;
2301 		if (mop->mo_arg != NULL) {
2302 			kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1);
2303 		}
2304 		mop->mo_arg = NULL;
2305 		if (update_mnttab)
2306 			vfs_mnttab_modtimeupd();
2307 		break;
2308 	}
2309 }
2310 
2311 void
2312 vfs_clearmntopt(struct vfs *vfsp, const char *opt)
2313 {
2314 	int gotlock = 0;
2315 
2316 	if (VFS_ON_LIST(vfsp)) {
2317 		gotlock = 1;
2318 		vfs_list_lock();
2319 	}
2320 	vfs_clearmntopt_nolock(&vfsp->vfs_mntopts, opt, gotlock);
2321 	if (gotlock)
2322 		vfs_list_unlock();
2323 }
2324 
2325 
2326 /*
2327  * Set a mount option on.  If it's not found in the table, it's silently
2328  * ignored.  If the option has MO_IGNORE set, it is still set unless the
2329  * VFS_NOFORCEOPT bit is set in the flags.  Also, VFS_DISPLAY/VFS_NODISPLAY flag
2330  * bits can be used to toggle the MO_NODISPLAY bit for the option.
2331  * If the VFS_CREATEOPT flag bit is set then the first option slot with
2332  * MO_EMPTY set is created as the option passed in.
2333  *
2334  * The update_mnttab arg indicates whether mops is part of a vfs that is on
2335  * the vfs list.
2336  */
2337 static void
2338 vfs_setmntopt_nolock(mntopts_t *mops, const char *opt,
2339     const char *arg, int flags, int update_mnttab)
2340 {
2341 	mntopt_t *mop;
2342 	uint_t i, count;
2343 	char *sp;
2344 
2345 	ASSERT(!update_mnttab || RW_WRITE_HELD(&vfslist));
2346 
2347 	if (flags & VFS_CREATEOPT) {
2348 		if (vfs_hasopt(mops, opt) != NULL) {
2349 			flags &= ~VFS_CREATEOPT;
2350 		}
2351 	}
2352 	count = mops->mo_count;
2353 	for (i = 0; i < count; i++) {
2354 		mop = &mops->mo_list[i];
2355 
2356 		if (mop->mo_flags & MO_EMPTY) {
2357 			if ((flags & VFS_CREATEOPT) == 0)
2358 				continue;
2359 			sp = kmem_alloc(strlen(opt) + 1, KM_SLEEP);
2360 			(void) strcpy(sp, opt);
2361 			mop->mo_name = sp;
2362 			if (arg != NULL)
2363 				mop->mo_flags = MO_HASVALUE;
2364 			else
2365 				mop->mo_flags = 0;
2366 		} else if (strcmp(opt, mop->mo_name)) {
2367 			continue;
2368 		}
2369 		if ((mop->mo_flags & MO_IGNORE) && (flags & VFS_NOFORCEOPT))
2370 			break;
2371 		if (arg != NULL && (mop->mo_flags & MO_HASVALUE) != 0) {
2372 			sp = kmem_alloc(strlen(arg) + 1, KM_SLEEP);
2373 			(void) strcpy(sp, arg);
2374 		} else {
2375 			sp = NULL;
2376 		}
2377 		if (mop->mo_arg != NULL)
2378 			kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1);
2379 		mop->mo_arg = sp;
2380 		if (flags & VFS_DISPLAY)
2381 			mop->mo_flags &= ~MO_NODISPLAY;
2382 		if (flags & VFS_NODISPLAY)
2383 			mop->mo_flags |= MO_NODISPLAY;
2384 		mop->mo_flags |= MO_SET;
2385 		if (mop->mo_cancel != NULL) {
2386 			char **cp;
2387 
2388 			for (cp = mop->mo_cancel; *cp != NULL; cp++)
2389 				vfs_clearmntopt_nolock(mops, *cp, 0);
2390 		}
2391 		if (update_mnttab)
2392 			vfs_mnttab_modtimeupd();
2393 		break;
2394 	}
2395 }
2396 
2397 void
2398 vfs_setmntopt(struct vfs *vfsp, const char *opt, const char *arg, int flags)
2399 {
2400 	int gotlock = 0;
2401 
2402 	if (VFS_ON_LIST(vfsp)) {
2403 		gotlock = 1;
2404 		vfs_list_lock();
2405 	}
2406 	vfs_setmntopt_nolock(&vfsp->vfs_mntopts, opt, arg, flags, gotlock);
2407 	if (gotlock)
2408 		vfs_list_unlock();
2409 }
2410 
2411 
2412 /*
2413  * Add a "tag" option to a mounted file system's options list.
2414  *
2415  * Note: caller is responsible for locking the vfs list, if needed,
2416  *       to protect mops.
2417  */
2418 static mntopt_t *
2419 vfs_addtag(mntopts_t *mops, const char *tag)
2420 {
2421 	uint_t count;
2422 	mntopt_t *mop, *motbl;
2423 
2424 	count = mops->mo_count + 1;
2425 	motbl = kmem_zalloc(count * sizeof (mntopt_t), KM_SLEEP);
2426 	if (mops->mo_count) {
2427 		size_t len = (count - 1) * sizeof (mntopt_t);
2428 
2429 		bcopy(mops->mo_list, motbl, len);
2430 		kmem_free(mops->mo_list, len);
2431 	}
2432 	mops->mo_count = count;
2433 	mops->mo_list = motbl;
2434 	mop = &motbl[count - 1];
2435 	mop->mo_flags = MO_TAG;
2436 	mop->mo_name = kmem_alloc(strlen(tag) + 1, KM_SLEEP);
2437 	(void) strcpy(mop->mo_name, tag);
2438 	return (mop);
2439 }
2440 
2441 /*
2442  * Allow users to set arbitrary "tags" in a vfs's mount options.
2443  * Broader use within the kernel is discouraged.
2444  */
2445 int
2446 vfs_settag(uint_t major, uint_t minor, const char *mntpt, const char *tag,
2447     cred_t *cr)
2448 {
2449 	vfs_t *vfsp;
2450 	mntopts_t *mops;
2451 	mntopt_t *mop;
2452 	int found = 0;
2453 	dev_t dev = makedevice(major, minor);
2454 	int err = 0;
2455 	char *buf = kmem_alloc(MAX_MNTOPT_STR, KM_SLEEP);
2456 
2457 	/*
2458 	 * Find the desired mounted file system
2459 	 */
2460 	vfs_list_lock();
2461 	vfsp = rootvfs;
2462 	do {
2463 		if (vfsp->vfs_dev == dev &&
2464 		    strcmp(mntpt, refstr_value(vfsp->vfs_mntpt)) == 0) {
2465 			found = 1;
2466 			break;
2467 		}
2468 		vfsp = vfsp->vfs_next;
2469 	} while (vfsp != rootvfs);
2470 
2471 	if (!found) {
2472 		err = EINVAL;
2473 		goto out;
2474 	}
2475 	err = secpolicy_fs_config(cr, vfsp);
2476 	if (err != 0)
2477 		goto out;
2478 
2479 	mops = &vfsp->vfs_mntopts;
2480 	/*
2481 	 * Add tag if it doesn't already exist
2482 	 */
2483 	if ((mop = vfs_hasopt(mops, tag)) == NULL) {
2484 		int len;
2485 
2486 		(void) vfs_buildoptionstr(mops, buf, MAX_MNTOPT_STR);
2487 		len = strlen(buf);
2488 		if (len + strlen(tag) + 2 > MAX_MNTOPT_STR) {
2489 			err = ENAMETOOLONG;
2490 			goto out;
2491 		}
2492 		mop = vfs_addtag(mops, tag);
2493 	}
2494 	if ((mop->mo_flags & MO_TAG) == 0) {
2495 		err = EINVAL;
2496 		goto out;
2497 	}
2498 	vfs_setmntopt_nolock(mops, tag, NULL, 0, 1);
2499 out:
2500 	vfs_list_unlock();
2501 	kmem_free(buf, MAX_MNTOPT_STR);
2502 	return (err);
2503 }
2504 
2505 /*
2506  * Allow users to remove arbitrary "tags" in a vfs's mount options.
2507  * Broader use within the kernel is discouraged.
2508  */
2509 int
2510 vfs_clrtag(uint_t major, uint_t minor, const char *mntpt, const char *tag,
2511     cred_t *cr)
2512 {
2513 	vfs_t *vfsp;
2514 	mntopt_t *mop;
2515 	int found = 0;
2516 	dev_t dev = makedevice(major, minor);
2517 	int err = 0;
2518 
2519 	/*
2520 	 * Find the desired mounted file system
2521 	 */
2522 	vfs_list_lock();
2523 	vfsp = rootvfs;
2524 	do {
2525 		if (vfsp->vfs_dev == dev &&
2526 		    strcmp(mntpt, refstr_value(vfsp->vfs_mntpt)) == 0) {
2527 			found = 1;
2528 			break;
2529 		}
2530 		vfsp = vfsp->vfs_next;
2531 	} while (vfsp != rootvfs);
2532 
2533 	if (!found) {
2534 		err = EINVAL;
2535 		goto out;
2536 	}
2537 	err = secpolicy_fs_config(cr, vfsp);
2538 	if (err != 0)
2539 		goto out;
2540 
2541 	if ((mop = vfs_hasopt(&vfsp->vfs_mntopts, tag)) == NULL) {
2542 		err = EINVAL;
2543 		goto out;
2544 	}
2545 	if ((mop->mo_flags & MO_TAG) == 0) {
2546 		err = EINVAL;
2547 		goto out;
2548 	}
2549 	vfs_clearmntopt_nolock(&vfsp->vfs_mntopts, tag, 1);
2550 out:
2551 	vfs_list_unlock();
2552 	return (err);
2553 }
2554 
2555 /*
2556  * Function to parse an option string and fill in a mount options table.
2557  * Unknown options are silently ignored.  The input option string is modified
2558  * by replacing separators with nulls.  If the create flag is set, options
2559  * not found in the table are just added on the fly.  The table must have
2560  * an option slot marked MO_EMPTY to add an option on the fly.
2561  *
2562  * This function is *not* for general use by filesystems.
2563  *
2564  * Note: caller is responsible for locking the vfs list, if needed,
2565  *       to protect mops..
2566  */
2567 void
2568 vfs_parsemntopts(mntopts_t *mops, char *osp, int create)
2569 {
2570 	char *s = osp, *p, *nextop, *valp, *cp, *ep;
2571 	int setflg = VFS_NOFORCEOPT;
2572 
2573 	if (osp == NULL)
2574 		return;
2575 	while (*s != '\0') {
2576 		p = strchr(s, ',');	/* find next option */
2577 		if (p == NULL) {
2578 			cp = NULL;
2579 			p = s + strlen(s);
2580 		} else {
2581 			cp = p;		/* save location of comma */
2582 			*p++ = '\0';	/* mark end and point to next option */
2583 		}
2584 		nextop = p;
2585 		p = strchr(s, '=');	/* look for value */
2586 		if (p == NULL) {
2587 			valp = NULL;	/* no value supplied */
2588 		} else {
2589 			ep = p;		/* save location of equals */
2590 			*p++ = '\0';	/* end option and point to value */
2591 			valp = p;
2592 		}
2593 		/*
2594 		 * set option into options table
2595 		 */
2596 		if (create)
2597 			setflg |= VFS_CREATEOPT;
2598 		vfs_setmntopt_nolock(mops, s, valp, setflg, 0);
2599 		if (cp != NULL)
2600 			*cp = ',';	/* restore the comma */
2601 		if (valp != NULL)
2602 			*ep = '=';	/* restore the equals */
2603 		s = nextop;
2604 	}
2605 }
2606 
2607 /*
2608  * Function to inquire if an option exists in a mount options table.
2609  * Returns a pointer to the option if it exists, else NULL.
2610  *
2611  * This function is *not* for general use by filesystems.
2612  *
2613  * Note: caller is responsible for locking the vfs list, if needed,
2614  *       to protect mops.
2615  */
2616 struct mntopt *
2617 vfs_hasopt(const mntopts_t *mops, const char *opt)
2618 {
2619 	struct mntopt *mop;
2620 	uint_t i, count;
2621 
2622 	count = mops->mo_count;
2623 	for (i = 0; i < count; i++) {
2624 		mop = &mops->mo_list[i];
2625 
2626 		if (mop->mo_flags & MO_EMPTY)
2627 			continue;
2628 		if (strcmp(opt, mop->mo_name) == 0)
2629 			return (mop);
2630 	}
2631 	return (NULL);
2632 }
2633 
2634 /*
2635  * Function to inquire if an option is set in a mount options table.
2636  * Returns non-zero if set and fills in the arg pointer with a pointer to
2637  * the argument string or NULL if there is no argument string.
2638  */
2639 static int
2640 vfs_optionisset_nolock(const mntopts_t *mops, const char *opt, char **argp)
2641 {
2642 	struct mntopt *mop;
2643 	uint_t i, count;
2644 
2645 	count = mops->mo_count;
2646 	for (i = 0; i < count; i++) {
2647 		mop = &mops->mo_list[i];
2648 
2649 		if (mop->mo_flags & MO_EMPTY)
2650 			continue;
2651 		if (strcmp(opt, mop->mo_name))
2652 			continue;
2653 		if ((mop->mo_flags & MO_SET) == 0)
2654 			return (0);
2655 		if (argp != NULL && (mop->mo_flags & MO_HASVALUE) != 0)
2656 			*argp = mop->mo_arg;
2657 		return (1);
2658 	}
2659 	return (0);
2660 }
2661 
2662 
2663 int
2664 vfs_optionisset(const struct vfs *vfsp, const char *opt, char **argp)
2665 {
2666 	int ret;
2667 
2668 	vfs_list_read_lock();
2669 	ret = vfs_optionisset_nolock(&vfsp->vfs_mntopts, opt, argp);
2670 	vfs_list_unlock();
2671 	return (ret);
2672 }
2673 
2674 
2675 /*
2676  * Construct a comma separated string of the options set in the given
2677  * mount table, return the string in the given buffer.  Return non-zero if
2678  * the buffer would overflow.
2679  *
2680  * This function is *not* for general use by filesystems.
2681  *
2682  * Note: caller is responsible for locking the vfs list, if needed,
2683  *       to protect mp.
2684  */
2685 int
2686 vfs_buildoptionstr(const mntopts_t *mp, char *buf, int len)
2687 {
2688 	char *cp;
2689 	uint_t i;
2690 
2691 	buf[0] = '\0';
2692 	cp = buf;
2693 	for (i = 0; i < mp->mo_count; i++) {
2694 		struct mntopt *mop;
2695 
2696 		mop = &mp->mo_list[i];
2697 		if (mop->mo_flags & MO_SET) {
2698 			int optlen, comma = 0;
2699 
2700 			if (buf[0] != '\0')
2701 				comma = 1;
2702 			optlen = strlen(mop->mo_name);
2703 			if (strlen(buf) + comma + optlen + 1 > len)
2704 				goto err;
2705 			if (comma)
2706 				*cp++ = ',';
2707 			(void) strcpy(cp, mop->mo_name);
2708 			cp += optlen;
2709 			/*
2710 			 * Append option value if there is one
2711 			 */
2712 			if (mop->mo_arg != NULL) {
2713 				int arglen;
2714 
2715 				arglen = strlen(mop->mo_arg);
2716 				if (strlen(buf) + arglen + 2 > len)
2717 					goto err;
2718 				*cp++ = '=';
2719 				(void) strcpy(cp, mop->mo_arg);
2720 				cp += arglen;
2721 			}
2722 		}
2723 	}
2724 	return (0);
2725 err:
2726 	return (EOVERFLOW);
2727 }
2728 
2729 static void
2730 vfs_freecancelopt(char **moc)
2731 {
2732 	if (moc != NULL) {
2733 		int ccnt = 0;
2734 		char **cp;
2735 
2736 		for (cp = moc; *cp != NULL; cp++) {
2737 			kmem_free(*cp, strlen(*cp) + 1);
2738 			ccnt++;
2739 		}
2740 		kmem_free(moc, (ccnt + 1) * sizeof (char *));
2741 	}
2742 }
2743 
2744 static void
2745 vfs_freeopt(mntopt_t *mop)
2746 {
2747 	if (mop->mo_name != NULL)
2748 		kmem_free(mop->mo_name, strlen(mop->mo_name) + 1);
2749 
2750 	vfs_freecancelopt(mop->mo_cancel);
2751 
2752 	if (mop->mo_arg != NULL)
2753 		kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1);
2754 }
2755 
2756 /*
2757  * Free a mount options table
2758  *
2759  * This function is *not* for general use by filesystems.
2760  *
2761  * Note: caller is responsible for locking the vfs list, if needed,
2762  *       to protect mp.
2763  */
2764 void
2765 vfs_freeopttbl(mntopts_t *mp)
2766 {
2767 	uint_t i, count;
2768 
2769 	count = mp->mo_count;
2770 	for (i = 0; i < count; i++) {
2771 		vfs_freeopt(&mp->mo_list[i]);
2772 	}
2773 	if (count) {
2774 		kmem_free(mp->mo_list, sizeof (mntopt_t) * count);
2775 		mp->mo_count = 0;
2776 		mp->mo_list = NULL;
2777 	}
2778 }
2779 
2780 
2781 /* ARGSUSED */
2782 static int
2783 vfs_mntdummyread(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cred,
2784 	caller_context_t *ct)
2785 {
2786 	return (0);
2787 }
2788 
2789 /* ARGSUSED */
2790 static int
2791 vfs_mntdummywrite(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cred,
2792 	caller_context_t *ct)
2793 {
2794 	return (0);
2795 }
2796 
2797 /*
2798  * The dummy vnode is currently used only by file events notification
2799  * module which is just interested in the timestamps.
2800  */
2801 /* ARGSUSED */
2802 static int
2803 vfs_mntdummygetattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2804     caller_context_t *ct)
2805 {
2806 	bzero(vap, sizeof (vattr_t));
2807 	vap->va_type = VREG;
2808 	vap->va_nlink = 1;
2809 	vap->va_ctime = vfs_mnttab_ctime;
2810 	/*
2811 	 * it is ok to just copy mtime as the time will be monotonically
2812 	 * increasing.
2813 	 */
2814 	vap->va_mtime = vfs_mnttab_mtime;
2815 	vap->va_atime = vap->va_mtime;
2816 	return (0);
2817 }
2818 
2819 static void
2820 vfs_mnttabvp_setup(void)
2821 {
2822 	vnode_t *tvp;
2823 	vnodeops_t *vfs_mntdummyvnops;
2824 	const fs_operation_def_t mnt_dummyvnodeops_template[] = {
2825 		VOPNAME_READ, 		{ .vop_read = vfs_mntdummyread },
2826 		VOPNAME_WRITE, 		{ .vop_write = vfs_mntdummywrite },
2827 		VOPNAME_GETATTR,	{ .vop_getattr = vfs_mntdummygetattr },
2828 		VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
2829 		NULL,			NULL
2830 	};
2831 
2832 	if (vn_make_ops("mnttab", mnt_dummyvnodeops_template,
2833 	    &vfs_mntdummyvnops) != 0) {
2834 		cmn_err(CE_WARN, "vfs_mnttabvp_setup: vn_make_ops failed");
2835 		/* Shouldn't happen, but not bad enough to panic */
2836 		return;
2837 	}
2838 
2839 	/*
2840 	 * A global dummy vnode is allocated to represent mntfs files.
2841 	 * The mntfs file (/etc/mnttab) can be monitored for file events
2842 	 * and receive an event when mnttab changes. Dummy VOP calls
2843 	 * will be made on this vnode. The file events notification module
2844 	 * intercepts this vnode and delivers relevant events.
2845 	 */
2846 	tvp = vn_alloc(KM_SLEEP);
2847 	tvp->v_flag = VNOMOUNT|VNOMAP|VNOSWAP|VNOCACHE;
2848 	vn_setops(tvp, vfs_mntdummyvnops);
2849 	tvp->v_type = VREG;
2850 	/*
2851 	 * The mnt dummy ops do not reference v_data.
2852 	 * No other module intercepting this vnode should either.
2853 	 * Just set it to point to itself.
2854 	 */
2855 	tvp->v_data = (caddr_t)tvp;
2856 	tvp->v_vfsp = rootvfs;
2857 	vfs_mntdummyvp = tvp;
2858 }
2859 
2860 /*
2861  * performs fake read/write ops
2862  */
2863 static void
2864 vfs_mnttab_rwop(int rw)
2865 {
2866 	struct uio	uio;
2867 	struct iovec	iov;
2868 	char	buf[1];
2869 
2870 	if (vfs_mntdummyvp == NULL)
2871 		return;
2872 
2873 	bzero(&uio, sizeof (uio));
2874 	bzero(&iov, sizeof (iov));
2875 	iov.iov_base = buf;
2876 	iov.iov_len = 0;
2877 	uio.uio_iov = &iov;
2878 	uio.uio_iovcnt = 1;
2879 	uio.uio_loffset = 0;
2880 	uio.uio_segflg = UIO_SYSSPACE;
2881 	uio.uio_resid = 0;
2882 	if (rw) {
2883 		(void) VOP_WRITE(vfs_mntdummyvp, &uio, 0, kcred, NULL);
2884 	} else {
2885 		(void) VOP_READ(vfs_mntdummyvp, &uio, 0, kcred, NULL);
2886 	}
2887 }
2888 
2889 /*
2890  * Generate a write operation.
2891  */
2892 void
2893 vfs_mnttab_writeop(void)
2894 {
2895 	vfs_mnttab_rwop(1);
2896 }
2897 
2898 /*
2899  * Generate a read operation.
2900  */
2901 void
2902 vfs_mnttab_readop(void)
2903 {
2904 	vfs_mnttab_rwop(0);
2905 }
2906 
2907 /*
2908  * Free any mnttab information recorded in the vfs struct.
2909  * The vfs must not be on the vfs list.
2910  */
2911 static void
2912 vfs_freemnttab(struct vfs *vfsp)
2913 {
2914 	ASSERT(!VFS_ON_LIST(vfsp));
2915 
2916 	/*
2917 	 * Free device and mount point information
2918 	 */
2919 	if (vfsp->vfs_mntpt != NULL) {
2920 		refstr_rele(vfsp->vfs_mntpt);
2921 		vfsp->vfs_mntpt = NULL;
2922 	}
2923 	if (vfsp->vfs_resource != NULL) {
2924 		refstr_rele(vfsp->vfs_resource);
2925 		vfsp->vfs_resource = NULL;
2926 	}
2927 	/*
2928 	 * Now free mount options information
2929 	 */
2930 	vfs_freeopttbl(&vfsp->vfs_mntopts);
2931 }
2932 
2933 /*
2934  * Return the last mnttab modification time
2935  */
2936 void
2937 vfs_mnttab_modtime(timespec_t *ts)
2938 {
2939 	ASSERT(RW_LOCK_HELD(&vfslist));
2940 	*ts = vfs_mnttab_mtime;
2941 }
2942 
2943 /*
2944  * See if mnttab is changed
2945  */
2946 void
2947 vfs_mnttab_poll(timespec_t *old, struct pollhead **phpp)
2948 {
2949 	int changed;
2950 
2951 	*phpp = (struct pollhead *)NULL;
2952 
2953 	/*
2954 	 * Note: don't grab vfs list lock before accessing vfs_mnttab_mtime.
2955 	 * Can lead to deadlock against vfs_mnttab_modtimeupd(). It is safe
2956 	 * to not grab the vfs list lock because tv_sec is monotonically
2957 	 * increasing.
2958 	 */
2959 
2960 	changed = (old->tv_nsec != vfs_mnttab_mtime.tv_nsec) ||
2961 	    (old->tv_sec != vfs_mnttab_mtime.tv_sec);
2962 	if (!changed) {
2963 		*phpp = &vfs_pollhd;
2964 	}
2965 }
2966 
2967 /*
2968  * Update the mnttab modification time and wake up any waiters for
2969  * mnttab changes
2970  */
2971 void
2972 vfs_mnttab_modtimeupd()
2973 {
2974 	hrtime_t oldhrt, newhrt;
2975 
2976 	ASSERT(RW_WRITE_HELD(&vfslist));
2977 	oldhrt = ts2hrt(&vfs_mnttab_mtime);
2978 	gethrestime(&vfs_mnttab_mtime);
2979 	newhrt = ts2hrt(&vfs_mnttab_mtime);
2980 	if (oldhrt == (hrtime_t)0)
2981 		vfs_mnttab_ctime = vfs_mnttab_mtime;
2982 	/*
2983 	 * Attempt to provide unique mtime (like uniqtime but not).
2984 	 */
2985 	if (newhrt == oldhrt) {
2986 		newhrt++;
2987 		hrt2ts(newhrt, &vfs_mnttab_mtime);
2988 	}
2989 	pollwakeup(&vfs_pollhd, (short)POLLRDBAND);
2990 	vfs_mnttab_writeop();
2991 }
2992 
2993 int
2994 dounmount(struct vfs *vfsp, int flag, cred_t *cr)
2995 {
2996 	vnode_t *coveredvp;
2997 	int error;
2998 	extern void teardown_vopstats(vfs_t *);
2999 
3000 	/*
3001 	 * Get covered vnode. This will be NULL if the vfs is not linked
3002 	 * into the file system name space (i.e., domount() with MNT_NOSPICE).
3003 	 */
3004 	coveredvp = vfsp->vfs_vnodecovered;
3005 	ASSERT(coveredvp == NULL || vn_vfswlock_held(coveredvp));
3006 
3007 	/*
3008 	 * Purge all dnlc entries for this vfs.
3009 	 */
3010 	(void) dnlc_purge_vfsp(vfsp, 0);
3011 
3012 	/* For forcible umount, skip VFS_SYNC() since it may hang */
3013 	if ((flag & MS_FORCE) == 0)
3014 		(void) VFS_SYNC(vfsp, 0, cr);
3015 
3016 	/*
3017 	 * Lock the vfs to maintain fs status quo during unmount.  This
3018 	 * has to be done after the sync because ufs_update tries to acquire
3019 	 * the vfs_reflock.
3020 	 */
3021 	vfs_lock_wait(vfsp);
3022 
3023 	if (error = VFS_UNMOUNT(vfsp, flag, cr)) {
3024 		vfs_unlock(vfsp);
3025 		if (coveredvp != NULL)
3026 			vn_vfsunlock(coveredvp);
3027 	} else if (coveredvp != NULL) {
3028 		teardown_vopstats(vfsp);
3029 		/*
3030 		 * vfs_remove() will do a VN_RELE(vfsp->vfs_vnodecovered)
3031 		 * when it frees vfsp so we do a VN_HOLD() so we can
3032 		 * continue to use coveredvp afterwards.
3033 		 */
3034 		VN_HOLD(coveredvp);
3035 		vfs_remove(vfsp);
3036 		vn_vfsunlock(coveredvp);
3037 		VN_RELE(coveredvp);
3038 	} else {
3039 		teardown_vopstats(vfsp);
3040 		/*
3041 		 * Release the reference to vfs that is not linked
3042 		 * into the name space.
3043 		 */
3044 		vfs_unlock(vfsp);
3045 		VFS_RELE(vfsp);
3046 	}
3047 	return (error);
3048 }
3049 
3050 
3051 /*
3052  * Vfs_unmountall() is called by uadmin() to unmount all
3053  * mounted file systems (except the root file system) during shutdown.
3054  * It follows the existing locking protocol when traversing the vfs list
3055  * to sync and unmount vfses. Even though there should be no
3056  * other thread running while the system is shutting down, it is prudent
3057  * to still follow the locking protocol.
3058  */
3059 void
3060 vfs_unmountall(void)
3061 {
3062 	struct vfs *vfsp;
3063 	struct vfs *prev_vfsp = NULL;
3064 	int error;
3065 
3066 	/*
3067 	 * Toss all dnlc entries now so that the per-vfs sync
3068 	 * and unmount operations don't have to slog through
3069 	 * a bunch of uninteresting vnodes over and over again.
3070 	 */
3071 	dnlc_purge();
3072 
3073 	vfs_list_lock();
3074 	for (vfsp = rootvfs->vfs_prev; vfsp != rootvfs; vfsp = prev_vfsp) {
3075 		prev_vfsp = vfsp->vfs_prev;
3076 
3077 		if (vfs_lock(vfsp) != 0)
3078 			continue;
3079 		error = vn_vfswlock(vfsp->vfs_vnodecovered);
3080 		vfs_unlock(vfsp);
3081 		if (error)
3082 			continue;
3083 
3084 		vfs_list_unlock();
3085 
3086 		(void) VFS_SYNC(vfsp, SYNC_CLOSE, CRED());
3087 		(void) dounmount(vfsp, 0, CRED());
3088 
3089 		/*
3090 		 * Since we dropped the vfslist lock above we must
3091 		 * verify that next_vfsp still exists, else start over.
3092 		 */
3093 		vfs_list_lock();
3094 		for (vfsp = rootvfs->vfs_prev;
3095 		    vfsp != rootvfs; vfsp = vfsp->vfs_prev)
3096 			if (vfsp == prev_vfsp)
3097 				break;
3098 		if (vfsp == rootvfs && prev_vfsp != rootvfs)
3099 			prev_vfsp = rootvfs->vfs_prev;
3100 	}
3101 	vfs_list_unlock();
3102 }
3103 
3104 /*
3105  * Called to add an entry to the end of the vfs mount in progress list
3106  */
3107 void
3108 vfs_addmip(dev_t dev, struct vfs *vfsp)
3109 {
3110 	struct ipmnt *mipp;
3111 
3112 	mipp = (struct ipmnt *)kmem_alloc(sizeof (struct ipmnt), KM_SLEEP);
3113 	mipp->mip_next = NULL;
3114 	mipp->mip_dev = dev;
3115 	mipp->mip_vfsp = vfsp;
3116 	mutex_enter(&vfs_miplist_mutex);
3117 	if (vfs_miplist_end != NULL)
3118 		vfs_miplist_end->mip_next = mipp;
3119 	else
3120 		vfs_miplist = mipp;
3121 	vfs_miplist_end = mipp;
3122 	mutex_exit(&vfs_miplist_mutex);
3123 }
3124 
3125 /*
3126  * Called to remove an entry from the mount in progress list
3127  * Either because the mount completed or it failed.
3128  */
3129 void
3130 vfs_delmip(struct vfs *vfsp)
3131 {
3132 	struct ipmnt *mipp, *mipprev;
3133 
3134 	mutex_enter(&vfs_miplist_mutex);
3135 	mipprev = NULL;
3136 	for (mipp = vfs_miplist;
3137 	    mipp && mipp->mip_vfsp != vfsp; mipp = mipp->mip_next) {
3138 		mipprev = mipp;
3139 	}
3140 	if (mipp == NULL)
3141 		return; /* shouldn't happen */
3142 	if (mipp == vfs_miplist_end)
3143 		vfs_miplist_end = mipprev;
3144 	if (mipprev == NULL)
3145 		vfs_miplist = mipp->mip_next;
3146 	else
3147 		mipprev->mip_next = mipp->mip_next;
3148 	mutex_exit(&vfs_miplist_mutex);
3149 	kmem_free(mipp, sizeof (struct ipmnt));
3150 }
3151 
3152 /*
3153  * vfs_add is called by a specific filesystem's mount routine to add
3154  * the new vfs into the vfs list/hash and to cover the mounted-on vnode.
3155  * The vfs should already have been locked by the caller.
3156  *
3157  * coveredvp is NULL if this is the root.
3158  */
3159 void
3160 vfs_add(vnode_t *coveredvp, struct vfs *vfsp, int mflag)
3161 {
3162 	int newflag;
3163 
3164 	ASSERT(vfs_lock_held(vfsp));
3165 	VFS_HOLD(vfsp);
3166 	newflag = vfsp->vfs_flag;
3167 	if (mflag & MS_RDONLY)
3168 		newflag |= VFS_RDONLY;
3169 	else
3170 		newflag &= ~VFS_RDONLY;
3171 	if (mflag & MS_NOSUID)
3172 		newflag |= (VFS_NOSETUID|VFS_NODEVICES);
3173 	else
3174 		newflag &= ~(VFS_NOSETUID|VFS_NODEVICES);
3175 	if (mflag & MS_NOMNTTAB)
3176 		newflag |= VFS_NOMNTTAB;
3177 	else
3178 		newflag &= ~VFS_NOMNTTAB;
3179 
3180 	if (coveredvp != NULL) {
3181 		ASSERT(vn_vfswlock_held(coveredvp));
3182 		coveredvp->v_vfsmountedhere = vfsp;
3183 		VN_HOLD(coveredvp);
3184 	}
3185 	vfsp->vfs_vnodecovered = coveredvp;
3186 	vfsp->vfs_flag = newflag;
3187 
3188 	vfs_list_add(vfsp);
3189 }
3190 
3191 /*
3192  * Remove a vfs from the vfs list, null out the pointer from the
3193  * covered vnode to the vfs (v_vfsmountedhere), and null out the pointer
3194  * from the vfs to the covered vnode (vfs_vnodecovered). Release the
3195  * reference to the vfs and to the covered vnode.
3196  *
3197  * Called from dounmount after it's confirmed with the file system
3198  * that the unmount is legal.
3199  */
3200 void
3201 vfs_remove(struct vfs *vfsp)
3202 {
3203 	vnode_t *vp;
3204 
3205 	ASSERT(vfs_lock_held(vfsp));
3206 
3207 	/*
3208 	 * Can't unmount root.  Should never happen because fs will
3209 	 * be busy.
3210 	 */
3211 	if (vfsp == rootvfs)
3212 		panic("vfs_remove: unmounting root");
3213 
3214 	vfs_list_remove(vfsp);
3215 
3216 	/*
3217 	 * Unhook from the file system name space.
3218 	 */
3219 	vp = vfsp->vfs_vnodecovered;
3220 	ASSERT(vn_vfswlock_held(vp));
3221 	vp->v_vfsmountedhere = NULL;
3222 	vfsp->vfs_vnodecovered = NULL;
3223 	VN_RELE(vp);
3224 
3225 	/*
3226 	 * Release lock and wakeup anybody waiting.
3227 	 */
3228 	vfs_unlock(vfsp);
3229 	VFS_RELE(vfsp);
3230 }
3231 
3232 /*
3233  * Lock a filesystem to prevent access to it while mounting,
3234  * unmounting and syncing.  Return EBUSY immediately if lock
3235  * can't be acquired.
3236  */
3237 int
3238 vfs_lock(vfs_t *vfsp)
3239 {
3240 	vn_vfslocks_entry_t *vpvfsentry;
3241 
3242 	vpvfsentry = vn_vfslocks_getlock(vfsp);
3243 	if (rwst_tryenter(&vpvfsentry->ve_lock, RW_WRITER))
3244 		return (0);
3245 
3246 	vn_vfslocks_rele(vpvfsentry);
3247 	return (EBUSY);
3248 }
3249 
3250 int
3251 vfs_rlock(vfs_t *vfsp)
3252 {
3253 	vn_vfslocks_entry_t *vpvfsentry;
3254 
3255 	vpvfsentry = vn_vfslocks_getlock(vfsp);
3256 
3257 	if (rwst_tryenter(&vpvfsentry->ve_lock, RW_READER))
3258 		return (0);
3259 
3260 	vn_vfslocks_rele(vpvfsentry);
3261 	return (EBUSY);
3262 }
3263 
3264 void
3265 vfs_lock_wait(vfs_t *vfsp)
3266 {
3267 	vn_vfslocks_entry_t *vpvfsentry;
3268 
3269 	vpvfsentry = vn_vfslocks_getlock(vfsp);
3270 	rwst_enter(&vpvfsentry->ve_lock, RW_WRITER);
3271 }
3272 
3273 void
3274 vfs_rlock_wait(vfs_t *vfsp)
3275 {
3276 	vn_vfslocks_entry_t *vpvfsentry;
3277 
3278 	vpvfsentry = vn_vfslocks_getlock(vfsp);
3279 	rwst_enter(&vpvfsentry->ve_lock, RW_READER);
3280 }
3281 
3282 /*
3283  * Unlock a locked filesystem.
3284  */
3285 void
3286 vfs_unlock(vfs_t *vfsp)
3287 {
3288 	vn_vfslocks_entry_t *vpvfsentry;
3289 
3290 	/*
3291 	 * vfs_unlock will mimic sema_v behaviour to fix 4748018.
3292 	 * And these changes should remain for the patch changes as it is.
3293 	 */
3294 	if (panicstr)
3295 		return;
3296 
3297 	/*
3298 	 * ve_refcount needs to be dropped twice here.
3299 	 * 1. To release refernce after a call to vfs_locks_getlock()
3300 	 * 2. To release the reference from the locking routines like
3301 	 *    vfs_rlock_wait/vfs_wlock_wait/vfs_wlock etc,.
3302 	 */
3303 
3304 	vpvfsentry = vn_vfslocks_getlock(vfsp);
3305 	vn_vfslocks_rele(vpvfsentry);
3306 
3307 	rwst_exit(&vpvfsentry->ve_lock);
3308 	vn_vfslocks_rele(vpvfsentry);
3309 }
3310 
3311 /*
3312  * Utility routine that allows a filesystem to construct its
3313  * fsid in "the usual way" - by munging some underlying dev_t and
3314  * the filesystem type number into the 64-bit fsid.  Note that
3315  * this implicitly relies on dev_t persistence to make filesystem
3316  * id's persistent.
3317  *
3318  * There's nothing to prevent an individual fs from constructing its
3319  * fsid in a different way, and indeed they should.
3320  *
3321  * Since we want fsids to be 32-bit quantities (so that they can be
3322  * exported identically by either 32-bit or 64-bit APIs, as well as
3323  * the fact that fsid's are "known" to NFS), we compress the device
3324  * number given down to 32-bits, and panic if that isn't possible.
3325  */
3326 void
3327 vfs_make_fsid(fsid_t *fsi, dev_t dev, int val)
3328 {
3329 	if (!cmpldev((dev32_t *)&fsi->val[0], dev))
3330 		panic("device number too big for fsid!");
3331 	fsi->val[1] = val;
3332 }
3333 
3334 int
3335 vfs_lock_held(vfs_t *vfsp)
3336 {
3337 	int held;
3338 	vn_vfslocks_entry_t *vpvfsentry;
3339 
3340 	/*
3341 	 * vfs_lock_held will mimic sema_held behaviour
3342 	 * if panicstr is set. And these changes should remain
3343 	 * for the patch changes as it is.
3344 	 */
3345 	if (panicstr)
3346 		return (1);
3347 
3348 	vpvfsentry = vn_vfslocks_getlock(vfsp);
3349 	held = rwst_lock_held(&vpvfsentry->ve_lock, RW_WRITER);
3350 
3351 	vn_vfslocks_rele(vpvfsentry);
3352 	return (held);
3353 }
3354 
3355 struct _kthread *
3356 vfs_lock_owner(vfs_t *vfsp)
3357 {
3358 	struct _kthread *owner;
3359 	vn_vfslocks_entry_t *vpvfsentry;
3360 
3361 	/*
3362 	 * vfs_wlock_held will mimic sema_held behaviour
3363 	 * if panicstr is set. And these changes should remain
3364 	 * for the patch changes as it is.
3365 	 */
3366 	if (panicstr)
3367 		return (NULL);
3368 
3369 	vpvfsentry = vn_vfslocks_getlock(vfsp);
3370 	owner = rwst_owner(&vpvfsentry->ve_lock);
3371 
3372 	vn_vfslocks_rele(vpvfsentry);
3373 	return (owner);
3374 }
3375 
3376 /*
3377  * vfs list locking.
3378  *
3379  * Rather than manipulate the vfslist lock directly, we abstract into lock
3380  * and unlock routines to allow the locking implementation to be changed for
3381  * clustering.
3382  *
3383  * Whenever the vfs list is modified through its hash links, the overall list
3384  * lock must be obtained before locking the relevant hash bucket.  But to see
3385  * whether a given vfs is on the list, it suffices to obtain the lock for the
3386  * hash bucket without getting the overall list lock.  (See getvfs() below.)
3387  */
3388 
3389 void
3390 vfs_list_lock()
3391 {
3392 	rw_enter(&vfslist, RW_WRITER);
3393 }
3394 
3395 void
3396 vfs_list_read_lock()
3397 {
3398 	rw_enter(&vfslist, RW_READER);
3399 }
3400 
3401 void
3402 vfs_list_unlock()
3403 {
3404 	rw_exit(&vfslist);
3405 }
3406 
3407 /*
3408  * Low level worker routines for adding entries to and removing entries from
3409  * the vfs list.
3410  */
3411 
3412 static void
3413 vfs_hash_add(struct vfs *vfsp, int insert_at_head)
3414 {
3415 	int vhno;
3416 	struct vfs **hp;
3417 	dev_t dev;
3418 
3419 	ASSERT(RW_WRITE_HELD(&vfslist));
3420 
3421 	dev = expldev(vfsp->vfs_fsid.val[0]);
3422 	vhno = VFSHASH(getmajor(dev), getminor(dev));
3423 
3424 	mutex_enter(&rvfs_list[vhno].rvfs_lock);
3425 
3426 	/*
3427 	 * Link into the hash table, inserting it at the end, so that LOFS
3428 	 * with the same fsid as UFS (or other) file systems will not hide the
3429 	 * UFS.
3430 	 */
3431 	if (insert_at_head) {
3432 		vfsp->vfs_hash = rvfs_list[vhno].rvfs_head;
3433 		rvfs_list[vhno].rvfs_head = vfsp;
3434 	} else {
3435 		for (hp = &rvfs_list[vhno].rvfs_head; *hp != NULL;
3436 		    hp = &(*hp)->vfs_hash)
3437 			continue;
3438 		/*
3439 		 * hp now contains the address of the pointer to update
3440 		 * to effect the insertion.
3441 		 */
3442 		vfsp->vfs_hash = NULL;
3443 		*hp = vfsp;
3444 	}
3445 
3446 	rvfs_list[vhno].rvfs_len++;
3447 	mutex_exit(&rvfs_list[vhno].rvfs_lock);
3448 }
3449 
3450 
3451 static void
3452 vfs_hash_remove(struct vfs *vfsp)
3453 {
3454 	int vhno;
3455 	struct vfs *tvfsp;
3456 	dev_t dev;
3457 
3458 	ASSERT(RW_WRITE_HELD(&vfslist));
3459 
3460 	dev = expldev(vfsp->vfs_fsid.val[0]);
3461 	vhno = VFSHASH(getmajor(dev), getminor(dev));
3462 
3463 	mutex_enter(&rvfs_list[vhno].rvfs_lock);
3464 
3465 	/*
3466 	 * Remove from hash.
3467 	 */
3468 	if (rvfs_list[vhno].rvfs_head == vfsp) {
3469 		rvfs_list[vhno].rvfs_head = vfsp->vfs_hash;
3470 		rvfs_list[vhno].rvfs_len--;
3471 		goto foundit;
3472 	}
3473 	for (tvfsp = rvfs_list[vhno].rvfs_head; tvfsp != NULL;
3474 	    tvfsp = tvfsp->vfs_hash) {
3475 		if (tvfsp->vfs_hash == vfsp) {
3476 			tvfsp->vfs_hash = vfsp->vfs_hash;
3477 			rvfs_list[vhno].rvfs_len--;
3478 			goto foundit;
3479 		}
3480 	}
3481 	cmn_err(CE_WARN, "vfs_list_remove: vfs not found in hash");
3482 
3483 foundit:
3484 
3485 	mutex_exit(&rvfs_list[vhno].rvfs_lock);
3486 }
3487 
3488 
3489 void
3490 vfs_list_add(struct vfs *vfsp)
3491 {
3492 	zone_t *zone;
3493 
3494 	/*
3495 	 * The zone that owns the mount is the one that performed the mount.
3496 	 * Note that this isn't necessarily the same as the zone mounted into.
3497 	 * The corresponding zone_rele() will be done when the vfs_t is
3498 	 * being free'd.
3499 	 */
3500 	vfsp->vfs_zone = curproc->p_zone;
3501 	zone_hold(vfsp->vfs_zone);
3502 
3503 	/*
3504 	 * Find the zone mounted into, and put this mount on its vfs list.
3505 	 */
3506 	zone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt));
3507 	ASSERT(zone != NULL);
3508 	/*
3509 	 * Special casing for the root vfs.  This structure is allocated
3510 	 * statically and hooked onto rootvfs at link time.  During the
3511 	 * vfs_mountroot call at system startup time, the root file system's
3512 	 * VFS_MOUNTROOT routine will call vfs_add with this root vfs struct
3513 	 * as argument.  The code below must detect and handle this special
3514 	 * case.  The only apparent justification for this special casing is
3515 	 * to ensure that the root file system appears at the head of the
3516 	 * list.
3517 	 *
3518 	 * XXX:	I'm assuming that it's ok to do normal list locking when
3519 	 *	adding the entry for the root file system (this used to be
3520 	 *	done with no locks held).
3521 	 */
3522 	vfs_list_lock();
3523 	/*
3524 	 * Link into the vfs list proper.
3525 	 */
3526 	if (vfsp == &root) {
3527 		/*
3528 		 * Assert: This vfs is already on the list as its first entry.
3529 		 * Thus, there's nothing to do.
3530 		 */
3531 		ASSERT(rootvfs == vfsp);
3532 		/*
3533 		 * Add it to the head of the global zone's vfslist.
3534 		 */
3535 		ASSERT(zone == global_zone);
3536 		ASSERT(zone->zone_vfslist == NULL);
3537 		zone->zone_vfslist = vfsp;
3538 	} else {
3539 		/*
3540 		 * Link to end of list using vfs_prev (as rootvfs is now a
3541 		 * doubly linked circular list) so list is in mount order for
3542 		 * mnttab use.
3543 		 */
3544 		rootvfs->vfs_prev->vfs_next = vfsp;
3545 		vfsp->vfs_prev = rootvfs->vfs_prev;
3546 		rootvfs->vfs_prev = vfsp;
3547 		vfsp->vfs_next = rootvfs;
3548 
3549 		/*
3550 		 * Do it again for the zone-private list (which may be NULL).
3551 		 */
3552 		if (zone->zone_vfslist == NULL) {
3553 			ASSERT(zone != global_zone);
3554 			zone->zone_vfslist = vfsp;
3555 		} else {
3556 			zone->zone_vfslist->vfs_zone_prev->vfs_zone_next = vfsp;
3557 			vfsp->vfs_zone_prev = zone->zone_vfslist->vfs_zone_prev;
3558 			zone->zone_vfslist->vfs_zone_prev = vfsp;
3559 			vfsp->vfs_zone_next = zone->zone_vfslist;
3560 		}
3561 	}
3562 
3563 	/*
3564 	 * Link into the hash table, inserting it at the end, so that LOFS
3565 	 * with the same fsid as UFS (or other) file systems will not hide
3566 	 * the UFS.
3567 	 */
3568 	vfs_hash_add(vfsp, 0);
3569 
3570 	/*
3571 	 * update the mnttab modification time
3572 	 */
3573 	vfs_mnttab_modtimeupd();
3574 	vfs_list_unlock();
3575 	zone_rele(zone);
3576 }
3577 
3578 void
3579 vfs_list_remove(struct vfs *vfsp)
3580 {
3581 	zone_t *zone;
3582 
3583 	zone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt));
3584 	ASSERT(zone != NULL);
3585 	/*
3586 	 * Callers are responsible for preventing attempts to unmount the
3587 	 * root.
3588 	 */
3589 	ASSERT(vfsp != rootvfs);
3590 
3591 	vfs_list_lock();
3592 
3593 	/*
3594 	 * Remove from hash.
3595 	 */
3596 	vfs_hash_remove(vfsp);
3597 
3598 	/*
3599 	 * Remove from vfs list.
3600 	 */
3601 	vfsp->vfs_prev->vfs_next = vfsp->vfs_next;
3602 	vfsp->vfs_next->vfs_prev = vfsp->vfs_prev;
3603 	vfsp->vfs_next = vfsp->vfs_prev = NULL;
3604 
3605 	/*
3606 	 * Remove from zone-specific vfs list.
3607 	 */
3608 	if (zone->zone_vfslist == vfsp)
3609 		zone->zone_vfslist = vfsp->vfs_zone_next;
3610 
3611 	if (vfsp->vfs_zone_next == vfsp) {
3612 		ASSERT(vfsp->vfs_zone_prev == vfsp);
3613 		ASSERT(zone->zone_vfslist == vfsp);
3614 		zone->zone_vfslist = NULL;
3615 	}
3616 
3617 	vfsp->vfs_zone_prev->vfs_zone_next = vfsp->vfs_zone_next;
3618 	vfsp->vfs_zone_next->vfs_zone_prev = vfsp->vfs_zone_prev;
3619 	vfsp->vfs_zone_next = vfsp->vfs_zone_prev = NULL;
3620 
3621 	/*
3622 	 * update the mnttab modification time
3623 	 */
3624 	vfs_mnttab_modtimeupd();
3625 	vfs_list_unlock();
3626 	zone_rele(zone);
3627 }
3628 
3629 struct vfs *
3630 getvfs(fsid_t *fsid)
3631 {
3632 	struct vfs *vfsp;
3633 	int val0 = fsid->val[0];
3634 	int val1 = fsid->val[1];
3635 	dev_t dev = expldev(val0);
3636 	int vhno = VFSHASH(getmajor(dev), getminor(dev));
3637 	kmutex_t *hmp = &rvfs_list[vhno].rvfs_lock;
3638 
3639 	mutex_enter(hmp);
3640 	for (vfsp = rvfs_list[vhno].rvfs_head; vfsp; vfsp = vfsp->vfs_hash) {
3641 		if (vfsp->vfs_fsid.val[0] == val0 &&
3642 		    vfsp->vfs_fsid.val[1] == val1) {
3643 			VFS_HOLD(vfsp);
3644 			mutex_exit(hmp);
3645 			return (vfsp);
3646 		}
3647 	}
3648 	mutex_exit(hmp);
3649 	return (NULL);
3650 }
3651 
3652 /*
3653  * Search the vfs mount in progress list for a specified device/vfs entry.
3654  * Returns 0 if the first entry in the list that the device matches has the
3655  * given vfs pointer as well.  If the device matches but a different vfs
3656  * pointer is encountered in the list before the given vfs pointer then
3657  * a 1 is returned.
3658  */
3659 
3660 int
3661 vfs_devmounting(dev_t dev, struct vfs *vfsp)
3662 {
3663 	int retval = 0;
3664 	struct ipmnt *mipp;
3665 
3666 	mutex_enter(&vfs_miplist_mutex);
3667 	for (mipp = vfs_miplist; mipp != NULL; mipp = mipp->mip_next) {
3668 		if (mipp->mip_dev == dev) {
3669 			if (mipp->mip_vfsp != vfsp)
3670 				retval = 1;
3671 			break;
3672 		}
3673 	}
3674 	mutex_exit(&vfs_miplist_mutex);
3675 	return (retval);
3676 }
3677 
3678 /*
3679  * Search the vfs list for a specified device.  Returns 1, if entry is found
3680  * or 0 if no suitable entry is found.
3681  */
3682 
3683 int
3684 vfs_devismounted(dev_t dev)
3685 {
3686 	struct vfs *vfsp;
3687 	int found;
3688 
3689 	vfs_list_read_lock();
3690 	vfsp = rootvfs;
3691 	found = 0;
3692 	do {
3693 		if (vfsp->vfs_dev == dev) {
3694 			found = 1;
3695 			break;
3696 		}
3697 		vfsp = vfsp->vfs_next;
3698 	} while (vfsp != rootvfs);
3699 
3700 	vfs_list_unlock();
3701 	return (found);
3702 }
3703 
3704 /*
3705  * Search the vfs list for a specified device.  Returns a pointer to it
3706  * or NULL if no suitable entry is found. The caller of this routine
3707  * is responsible for releasing the returned vfs pointer.
3708  */
3709 struct vfs *
3710 vfs_dev2vfsp(dev_t dev)
3711 {
3712 	struct vfs *vfsp;
3713 	int found;
3714 
3715 	vfs_list_read_lock();
3716 	vfsp = rootvfs;
3717 	found = 0;
3718 	do {
3719 		/*
3720 		 * The following could be made more efficient by making
3721 		 * the entire loop use vfs_zone_next if the call is from
3722 		 * a zone.  The only callers, however, ustat(2) and
3723 		 * umount2(2), don't seem to justify the added
3724 		 * complexity at present.
3725 		 */
3726 		if (vfsp->vfs_dev == dev &&
3727 		    ZONE_PATH_VISIBLE(refstr_value(vfsp->vfs_mntpt),
3728 		    curproc->p_zone)) {
3729 			VFS_HOLD(vfsp);
3730 			found = 1;
3731 			break;
3732 		}
3733 		vfsp = vfsp->vfs_next;
3734 	} while (vfsp != rootvfs);
3735 	vfs_list_unlock();
3736 	return (found ? vfsp: NULL);
3737 }
3738 
3739 /*
3740  * Search the vfs list for a specified mntpoint.  Returns a pointer to it
3741  * or NULL if no suitable entry is found. The caller of this routine
3742  * is responsible for releasing the returned vfs pointer.
3743  *
3744  * Note that if multiple mntpoints match, the last one matching is
3745  * returned in an attempt to return the "top" mount when overlay
3746  * mounts are covering the same mount point.  This is accomplished by starting
3747  * at the end of the list and working our way backwards, stopping at the first
3748  * matching mount.
3749  */
3750 struct vfs *
3751 vfs_mntpoint2vfsp(const char *mp)
3752 {
3753 	struct vfs *vfsp;
3754 	struct vfs *retvfsp = NULL;
3755 	zone_t *zone = curproc->p_zone;
3756 	struct vfs *list;
3757 
3758 	vfs_list_read_lock();
3759 	if (getzoneid() == GLOBAL_ZONEID) {
3760 		/*
3761 		 * The global zone may see filesystems in any zone.
3762 		 */
3763 		vfsp = rootvfs->vfs_prev;
3764 		do {
3765 			if (strcmp(refstr_value(vfsp->vfs_mntpt), mp) == 0) {
3766 				retvfsp = vfsp;
3767 				break;
3768 			}
3769 			vfsp = vfsp->vfs_prev;
3770 		} while (vfsp != rootvfs->vfs_prev);
3771 	} else if ((list = zone->zone_vfslist) != NULL) {
3772 		const char *mntpt;
3773 
3774 		vfsp = list->vfs_zone_prev;
3775 		do {
3776 			mntpt = refstr_value(vfsp->vfs_mntpt);
3777 			mntpt = ZONE_PATH_TRANSLATE(mntpt, zone);
3778 			if (strcmp(mntpt, mp) == 0) {
3779 				retvfsp = vfsp;
3780 				break;
3781 			}
3782 			vfsp = vfsp->vfs_zone_prev;
3783 		} while (vfsp != list->vfs_zone_prev);
3784 	}
3785 	if (retvfsp)
3786 		VFS_HOLD(retvfsp);
3787 	vfs_list_unlock();
3788 	return (retvfsp);
3789 }
3790 
3791 /*
3792  * Search the vfs list for a specified vfsops.
3793  * if vfs entry is found then return 1, else 0.
3794  */
3795 int
3796 vfs_opsinuse(vfsops_t *ops)
3797 {
3798 	struct vfs *vfsp;
3799 	int found;
3800 
3801 	vfs_list_read_lock();
3802 	vfsp = rootvfs;
3803 	found = 0;
3804 	do {
3805 		if (vfs_getops(vfsp) == ops) {
3806 			found = 1;
3807 			break;
3808 		}
3809 		vfsp = vfsp->vfs_next;
3810 	} while (vfsp != rootvfs);
3811 	vfs_list_unlock();
3812 	return (found);
3813 }
3814 
3815 /*
3816  * Allocate an entry in vfssw for a file system type
3817  */
3818 struct vfssw *
3819 allocate_vfssw(const char *type)
3820 {
3821 	struct vfssw *vswp;
3822 
3823 	if (type[0] == '\0' || strlen(type) + 1 > _ST_FSTYPSZ) {
3824 		/*
3825 		 * The vfssw table uses the empty string to identify an
3826 		 * available entry; we cannot add any type which has
3827 		 * a leading NUL. The string length is limited to
3828 		 * the size of the st_fstype array in struct stat.
3829 		 */
3830 		return (NULL);
3831 	}
3832 
3833 	ASSERT(VFSSW_WRITE_LOCKED());
3834 	for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++)
3835 		if (!ALLOCATED_VFSSW(vswp)) {
3836 			vswp->vsw_name = kmem_alloc(strlen(type) + 1, KM_SLEEP);
3837 			(void) strcpy(vswp->vsw_name, type);
3838 			ASSERT(vswp->vsw_count == 0);
3839 			vswp->vsw_count = 1;
3840 			mutex_init(&vswp->vsw_lock, NULL, MUTEX_DEFAULT, NULL);
3841 			return (vswp);
3842 		}
3843 	return (NULL);
3844 }
3845 
3846 /*
3847  * Impose additional layer of translation between vfstype names
3848  * and module names in the filesystem.
3849  */
3850 static const char *
3851 vfs_to_modname(const char *vfstype)
3852 {
3853 	if (strcmp(vfstype, "proc") == 0) {
3854 		vfstype = "procfs";
3855 	} else if (strcmp(vfstype, "fd") == 0) {
3856 		vfstype = "fdfs";
3857 	} else if (strncmp(vfstype, "nfs", 3) == 0) {
3858 		vfstype = "nfs";
3859 	}
3860 
3861 	return (vfstype);
3862 }
3863 
3864 /*
3865  * Find a vfssw entry given a file system type name.
3866  * Try to autoload the filesystem if it's not found.
3867  * If it's installed, return the vfssw locked to prevent unloading.
3868  */
3869 struct vfssw *
3870 vfs_getvfssw(const char *type)
3871 {
3872 	struct vfssw *vswp;
3873 	const char *modname;
3874 
3875 	RLOCK_VFSSW();
3876 	vswp = vfs_getvfsswbyname(type);
3877 	modname = vfs_to_modname(type);
3878 
3879 	if (rootdir == NULL) {
3880 		/*
3881 		 * If we haven't yet loaded the root file system, then our
3882 		 * _init won't be called until later. Allocate vfssw entry,
3883 		 * because mod_installfs won't be called.
3884 		 */
3885 		if (vswp == NULL) {
3886 			RUNLOCK_VFSSW();
3887 			WLOCK_VFSSW();
3888 			if ((vswp = vfs_getvfsswbyname(type)) == NULL) {
3889 				if ((vswp = allocate_vfssw(type)) == NULL) {
3890 					WUNLOCK_VFSSW();
3891 					return (NULL);
3892 				}
3893 			}
3894 			WUNLOCK_VFSSW();
3895 			RLOCK_VFSSW();
3896 		}
3897 		if (!VFS_INSTALLED(vswp)) {
3898 			RUNLOCK_VFSSW();
3899 			(void) modloadonly("fs", modname);
3900 		} else
3901 			RUNLOCK_VFSSW();
3902 		return (vswp);
3903 	}
3904 
3905 	/*
3906 	 * Try to load the filesystem.  Before calling modload(), we drop
3907 	 * our lock on the VFS switch table, and pick it up after the
3908 	 * module is loaded.  However, there is a potential race:  the
3909 	 * module could be unloaded after the call to modload() completes
3910 	 * but before we pick up the lock and drive on.  Therefore,
3911 	 * we keep reloading the module until we've loaded the module
3912 	 * _and_ we have the lock on the VFS switch table.
3913 	 */
3914 	while (vswp == NULL || !VFS_INSTALLED(vswp)) {
3915 		RUNLOCK_VFSSW();
3916 		if (modload("fs", modname) == -1)
3917 			return (NULL);
3918 		RLOCK_VFSSW();
3919 		if (vswp == NULL)
3920 			if ((vswp = vfs_getvfsswbyname(type)) == NULL)
3921 				break;
3922 	}
3923 	RUNLOCK_VFSSW();
3924 
3925 	return (vswp);
3926 }
3927 
3928 /*
3929  * Find a vfssw entry given a file system type name.
3930  */
3931 struct vfssw *
3932 vfs_getvfsswbyname(const char *type)
3933 {
3934 	struct vfssw *vswp;
3935 
3936 	ASSERT(VFSSW_LOCKED());
3937 	if (type == NULL || *type == '\0')
3938 		return (NULL);
3939 
3940 	for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) {
3941 		if (strcmp(type, vswp->vsw_name) == 0) {
3942 			vfs_refvfssw(vswp);
3943 			return (vswp);
3944 		}
3945 	}
3946 
3947 	return (NULL);
3948 }
3949 
3950 /*
3951  * Find a vfssw entry given a set of vfsops.
3952  */
3953 struct vfssw *
3954 vfs_getvfsswbyvfsops(vfsops_t *vfsops)
3955 {
3956 	struct vfssw *vswp;
3957 
3958 	RLOCK_VFSSW();
3959 	for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) {
3960 		if (ALLOCATED_VFSSW(vswp) && &vswp->vsw_vfsops == vfsops) {
3961 			vfs_refvfssw(vswp);
3962 			RUNLOCK_VFSSW();
3963 			return (vswp);
3964 		}
3965 	}
3966 	RUNLOCK_VFSSW();
3967 
3968 	return (NULL);
3969 }
3970 
3971 /*
3972  * Reference a vfssw entry.
3973  */
3974 void
3975 vfs_refvfssw(struct vfssw *vswp)
3976 {
3977 
3978 	mutex_enter(&vswp->vsw_lock);
3979 	vswp->vsw_count++;
3980 	mutex_exit(&vswp->vsw_lock);
3981 }
3982 
3983 /*
3984  * Unreference a vfssw entry.
3985  */
3986 void
3987 vfs_unrefvfssw(struct vfssw *vswp)
3988 {
3989 
3990 	mutex_enter(&vswp->vsw_lock);
3991 	vswp->vsw_count--;
3992 	mutex_exit(&vswp->vsw_lock);
3993 }
3994 
3995 int sync_timeout = 30;		/* timeout for syncing a page during panic */
3996 int sync_timeleft;		/* portion of sync_timeout remaining */
3997 
3998 static int sync_retries = 20;	/* number of retries when not making progress */
3999 static int sync_triesleft;	/* portion of sync_retries remaining */
4000 
4001 static pgcnt_t old_pgcnt, new_pgcnt;
4002 static int new_bufcnt, old_bufcnt;
4003 
4004 /*
4005  * Sync all of the mounted filesystems, and then wait for the actual i/o to
4006  * complete.  We wait by counting the number of dirty pages and buffers,
4007  * pushing them out using bio_busy() and page_busy(), and then counting again.
4008  * This routine is used during both the uadmin A_SHUTDOWN code as well as
4009  * the SYNC phase of the panic code (see comments in panic.c).  It should only
4010  * be used after some higher-level mechanism has quiesced the system so that
4011  * new writes are not being initiated while we are waiting for completion.
4012  *
4013  * To ensure finite running time, our algorithm uses two timeout mechanisms:
4014  * sync_timeleft (a timer implemented by the omnipresent deadman() cyclic), and
4015  * sync_triesleft (a progress counter used by the vfs_syncall() loop below).
4016  * Together these ensure that syncing completes if our i/o paths are stuck.
4017  * The counters are declared above so they can be found easily in the debugger.
4018  *
4019  * The sync_timeleft counter is reset by bio_busy() and page_busy() using the
4020  * vfs_syncprogress() subroutine whenever we make progress through the lists of
4021  * pages and buffers.  It is decremented and expired by the deadman() cyclic.
4022  * When vfs_syncall() decides it is done, we disable the deadman() counter by
4023  * setting sync_timeleft to zero.  This timer guards against vfs_syncall()
4024  * deadlocking or hanging inside of a broken filesystem or driver routine.
4025  *
4026  * The sync_triesleft counter is updated by vfs_syncall() itself.  If we make
4027  * sync_retries consecutive calls to bio_busy() and page_busy() without
4028  * decreasing either the number of dirty buffers or dirty pages below the
4029  * lowest count we have seen so far, we give up and return from vfs_syncall().
4030  *
4031  * Each loop iteration ends with a call to delay() one second to allow time for
4032  * i/o completion and to permit the user time to read our progress messages.
4033  */
4034 void
4035 vfs_syncall(void)
4036 {
4037 	if (rootdir == NULL && !modrootloaded)
4038 		return; /* panic during boot - no filesystems yet */
4039 
4040 	printf("syncing file systems...");
4041 	vfs_syncprogress();
4042 	sync();
4043 
4044 	vfs_syncprogress();
4045 	sync_triesleft = sync_retries;
4046 
4047 	old_bufcnt = new_bufcnt = INT_MAX;
4048 	old_pgcnt = new_pgcnt = ULONG_MAX;
4049 
4050 	while (sync_triesleft > 0) {
4051 		old_bufcnt = MIN(old_bufcnt, new_bufcnt);
4052 		old_pgcnt = MIN(old_pgcnt, new_pgcnt);
4053 
4054 		new_bufcnt = bio_busy(B_TRUE);
4055 		new_pgcnt = page_busy(B_TRUE);
4056 		vfs_syncprogress();
4057 
4058 		if (new_bufcnt == 0 && new_pgcnt == 0)
4059 			break;
4060 
4061 		if (new_bufcnt < old_bufcnt || new_pgcnt < old_pgcnt)
4062 			sync_triesleft = sync_retries;
4063 		else
4064 			sync_triesleft--;
4065 
4066 		if (new_bufcnt)
4067 			printf(" [%d]", new_bufcnt);
4068 		if (new_pgcnt)
4069 			printf(" %lu", new_pgcnt);
4070 
4071 		delay(hz);
4072 	}
4073 
4074 	if (new_bufcnt != 0 || new_pgcnt != 0)
4075 		printf(" done (not all i/o completed)\n");
4076 	else
4077 		printf(" done\n");
4078 
4079 	sync_timeleft = 0;
4080 	delay(hz);
4081 }
4082 
4083 /*
4084  * If we are in the middle of the sync phase of panic, reset sync_timeleft to
4085  * sync_timeout to indicate that we are making progress and the deadman()
4086  * omnipresent cyclic should not yet time us out.  Note that it is safe to
4087  * store to sync_timeleft here since the deadman() is firing at high-level
4088  * on top of us.  If we are racing with the deadman(), either the deadman()
4089  * will decrement the old value and then we will reset it, or we will
4090  * reset it and then the deadman() will immediately decrement it.  In either
4091  * case, correct behavior results.
4092  */
4093 void
4094 vfs_syncprogress(void)
4095 {
4096 	if (panicstr)
4097 		sync_timeleft = sync_timeout;
4098 }
4099 
4100 /*
4101  * Map VFS flags to statvfs flags.  These shouldn't really be separate
4102  * flags at all.
4103  */
4104 uint_t
4105 vf_to_stf(uint_t vf)
4106 {
4107 	uint_t stf = 0;
4108 
4109 	if (vf & VFS_RDONLY)
4110 		stf |= ST_RDONLY;
4111 	if (vf & VFS_NOSETUID)
4112 		stf |= ST_NOSUID;
4113 	if (vf & VFS_NOTRUNC)
4114 		stf |= ST_NOTRUNC;
4115 
4116 	return (stf);
4117 }
4118 
4119 /*
4120  * Entries for (illegal) fstype 0.
4121  */
4122 /* ARGSUSED */
4123 int
4124 vfsstray_sync(struct vfs *vfsp, short arg, struct cred *cr)
4125 {
4126 	cmn_err(CE_PANIC, "stray vfs operation");
4127 	return (0);
4128 }
4129 
4130 /*
4131  * Entries for (illegal) fstype 0.
4132  */
4133 int
4134 vfsstray(void)
4135 {
4136 	cmn_err(CE_PANIC, "stray vfs operation");
4137 	return (0);
4138 }
4139 
4140 /*
4141  * Support for dealing with forced UFS unmount and its interaction with
4142  * LOFS. Could be used by any filesystem.
4143  * See bug 1203132.
4144  */
4145 int
4146 vfs_EIO(void)
4147 {
4148 	return (EIO);
4149 }
4150 
4151 /*
4152  * We've gotta define the op for sync separately, since the compiler gets
4153  * confused if we mix and match ANSI and normal style prototypes when
4154  * a "short" argument is present and spits out a warning.
4155  */
4156 /*ARGSUSED*/
4157 int
4158 vfs_EIO_sync(struct vfs *vfsp, short arg, struct cred *cr)
4159 {
4160 	return (EIO);
4161 }
4162 
4163 vfs_t EIO_vfs;
4164 vfsops_t *EIO_vfsops;
4165 
4166 /*
4167  * Called from startup() to initialize all loaded vfs's
4168  */
4169 void
4170 vfsinit(void)
4171 {
4172 	struct vfssw *vswp;
4173 	int error;
4174 	extern int vopstats_enabled;
4175 	extern void vopstats_startup();
4176 
4177 	static const fs_operation_def_t EIO_vfsops_template[] = {
4178 		VFSNAME_MOUNT,		{ .error = vfs_EIO },
4179 		VFSNAME_UNMOUNT,	{ .error = vfs_EIO },
4180 		VFSNAME_ROOT,		{ .error = vfs_EIO },
4181 		VFSNAME_STATVFS,	{ .error = vfs_EIO },
4182 		VFSNAME_SYNC, 		{ .vfs_sync = vfs_EIO_sync },
4183 		VFSNAME_VGET,		{ .error = vfs_EIO },
4184 		VFSNAME_MOUNTROOT,	{ .error = vfs_EIO },
4185 		VFSNAME_FREEVFS,	{ .error = vfs_EIO },
4186 		VFSNAME_VNSTATE,	{ .error = vfs_EIO },
4187 		NULL, NULL
4188 	};
4189 
4190 	static const fs_operation_def_t stray_vfsops_template[] = {
4191 		VFSNAME_MOUNT,		{ .error = vfsstray },
4192 		VFSNAME_UNMOUNT,	{ .error = vfsstray },
4193 		VFSNAME_ROOT,		{ .error = vfsstray },
4194 		VFSNAME_STATVFS,	{ .error = vfsstray },
4195 		VFSNAME_SYNC, 		{ .vfs_sync = vfsstray_sync },
4196 		VFSNAME_VGET,		{ .error = vfsstray },
4197 		VFSNAME_MOUNTROOT,	{ .error = vfsstray },
4198 		VFSNAME_FREEVFS,	{ .error = vfsstray },
4199 		VFSNAME_VNSTATE,	{ .error = vfsstray },
4200 		NULL, NULL
4201 	};
4202 
4203 	/* Create vfs cache */
4204 	vfs_cache = kmem_cache_create("vfs_cache", sizeof (struct vfs),
4205 	    sizeof (uintptr_t), NULL, NULL, NULL, NULL, NULL, 0);
4206 
4207 	/* Initialize the vnode cache (file systems may use it during init). */
4208 	vn_create_cache();
4209 
4210 	/* Setup event monitor framework */
4211 	fem_init();
4212 
4213 	/* Initialize the dummy stray file system type. */
4214 	error = vfs_setfsops(0, stray_vfsops_template, NULL);
4215 
4216 	/* Initialize the dummy EIO file system. */
4217 	error = vfs_makefsops(EIO_vfsops_template, &EIO_vfsops);
4218 	if (error != 0) {
4219 		cmn_err(CE_WARN, "vfsinit: bad EIO vfs ops template");
4220 		/* Shouldn't happen, but not bad enough to panic */
4221 	}
4222 
4223 	VFS_INIT(&EIO_vfs, EIO_vfsops, (caddr_t)NULL);
4224 
4225 	/*
4226 	 * Default EIO_vfs.vfs_flag to VFS_UNMOUNTED so a lookup
4227 	 * on this vfs can immediately notice it's invalid.
4228 	 */
4229 	EIO_vfs.vfs_flag |= VFS_UNMOUNTED;
4230 
4231 	/*
4232 	 * Call the init routines of non-loadable filesystems only.
4233 	 * Filesystems which are loaded as separate modules will be
4234 	 * initialized by the module loading code instead.
4235 	 */
4236 
4237 	for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) {
4238 		RLOCK_VFSSW();
4239 		if (vswp->vsw_init != NULL)
4240 			(*vswp->vsw_init)(vswp - vfssw, vswp->vsw_name);
4241 		RUNLOCK_VFSSW();
4242 	}
4243 
4244 	vopstats_startup();
4245 
4246 	if (vopstats_enabled) {
4247 		/* EIO_vfs can collect stats, but we don't retrieve them */
4248 		initialize_vopstats(&EIO_vfs.vfs_vopstats);
4249 		EIO_vfs.vfs_fstypevsp = NULL;
4250 		EIO_vfs.vfs_vskap = NULL;
4251 		EIO_vfs.vfs_flag |= VFS_STATS;
4252 	}
4253 
4254 	xattr_init();
4255 }
4256 
4257 vfs_t *
4258 vfs_alloc(int kmflag)
4259 {
4260 	vfs_t *vfsp;
4261 
4262 	vfsp = kmem_cache_alloc(vfs_cache, kmflag);
4263 
4264 	/*
4265 	 * Do the simplest initialization here.
4266 	 * Everything else gets done in vfs_init()
4267 	 */
4268 	bzero(vfsp, sizeof (vfs_t));
4269 	return (vfsp);
4270 }
4271 
4272 void
4273 vfs_free(vfs_t *vfsp)
4274 {
4275 	/*
4276 	 * One would be tempted to assert that "vfsp->vfs_count == 0".
4277 	 * The problem is that this gets called out of domount() with
4278 	 * a partially initialized vfs and a vfs_count of 1.  This is
4279 	 * also called from vfs_rele() with a vfs_count of 0.  We can't
4280 	 * call VFS_RELE() from domount() if VFS_MOUNT() hasn't successfully
4281 	 * returned.  This is because VFS_MOUNT() fully initializes the
4282 	 * vfs structure and its associated data.  VFS_RELE() will call
4283 	 * VFS_FREEVFS() which may panic the system if the data structures
4284 	 * aren't fully initialized from a successful VFS_MOUNT()).
4285 	 */
4286 
4287 	/* If FEM was in use, make sure everything gets cleaned up */
4288 	if (vfsp->vfs_femhead) {
4289 		ASSERT(vfsp->vfs_femhead->femh_list == NULL);
4290 		mutex_destroy(&vfsp->vfs_femhead->femh_lock);
4291 		kmem_free(vfsp->vfs_femhead, sizeof (*(vfsp->vfs_femhead)));
4292 		vfsp->vfs_femhead = NULL;
4293 	}
4294 
4295 	if (vfsp->vfs_implp)
4296 		vfsimpl_teardown(vfsp);
4297 	sema_destroy(&vfsp->vfs_reflock);
4298 	kmem_cache_free(vfs_cache, vfsp);
4299 }
4300 
4301 /*
4302  * Increments the vfs reference count by one atomically.
4303  */
4304 void
4305 vfs_hold(vfs_t *vfsp)
4306 {
4307 	atomic_add_32(&vfsp->vfs_count, 1);
4308 	ASSERT(vfsp->vfs_count != 0);
4309 }
4310 
4311 /*
4312  * Decrements the vfs reference count by one atomically. When
4313  * vfs reference count becomes zero, it calls the file system
4314  * specific vfs_freevfs() to free up the resources.
4315  */
4316 void
4317 vfs_rele(vfs_t *vfsp)
4318 {
4319 	ASSERT(vfsp->vfs_count != 0);
4320 	if (atomic_add_32_nv(&vfsp->vfs_count, -1) == 0) {
4321 		VFS_FREEVFS(vfsp);
4322 		lofi_remove(vfsp);
4323 		if (vfsp->vfs_zone)
4324 			zone_rele(vfsp->vfs_zone);
4325 		vfs_freemnttab(vfsp);
4326 		vfs_free(vfsp);
4327 	}
4328 }
4329 
4330 /*
4331  * Generic operations vector support.
4332  *
4333  * This is used to build operations vectors for both the vfs and vnode.
4334  * It's normally called only when a file system is loaded.
4335  *
4336  * There are many possible algorithms for this, including the following:
4337  *
4338  *   (1) scan the list of known operations; for each, see if the file system
4339  *       includes an entry for it, and fill it in as appropriate.
4340  *
4341  *   (2) set up defaults for all known operations.  scan the list of ops
4342  *       supplied by the file system; for each which is both supplied and
4343  *       known, fill it in.
4344  *
4345  *   (3) sort the lists of known ops & supplied ops; scan the list, filling
4346  *       in entries as we go.
4347  *
4348  * we choose (1) for simplicity, and because performance isn't critical here.
4349  * note that (2) could be sped up using a precomputed hash table on known ops.
4350  * (3) could be faster than either, but only if the lists were very large or
4351  * supplied in sorted order.
4352  *
4353  */
4354 
4355 int
4356 fs_build_vector(void *vector, int *unused_ops,
4357     const fs_operation_trans_def_t *translation,
4358     const fs_operation_def_t *operations)
4359 {
4360 	int i, num_trans, num_ops, used;
4361 
4362 	/*
4363 	 * Count the number of translations and the number of supplied
4364 	 * operations.
4365 	 */
4366 
4367 	{
4368 		const fs_operation_trans_def_t *p;
4369 
4370 		for (num_trans = 0, p = translation;
4371 		    p->name != NULL;
4372 		    num_trans++, p++)
4373 			;
4374 	}
4375 
4376 	{
4377 		const fs_operation_def_t *p;
4378 
4379 		for (num_ops = 0, p = operations;
4380 		    p->name != NULL;
4381 		    num_ops++, p++)
4382 			;
4383 	}
4384 
4385 	/* Walk through each operation known to our caller.  There will be */
4386 	/* one entry in the supplied "translation table" for each. */
4387 
4388 	used = 0;
4389 
4390 	for (i = 0; i < num_trans; i++) {
4391 		int j, found;
4392 		char *curname;
4393 		fs_generic_func_p result;
4394 		fs_generic_func_p *location;
4395 
4396 		curname = translation[i].name;
4397 
4398 		/* Look for a matching operation in the list supplied by the */
4399 		/* file system. */
4400 
4401 		found = 0;
4402 
4403 		for (j = 0; j < num_ops; j++) {
4404 			if (strcmp(operations[j].name, curname) == 0) {
4405 				used++;
4406 				found = 1;
4407 				break;
4408 			}
4409 		}
4410 
4411 		/*
4412 		 * If the file system is using a "placeholder" for default
4413 		 * or error functions, grab the appropriate function out of
4414 		 * the translation table.  If the file system didn't supply
4415 		 * this operation at all, use the default function.
4416 		 */
4417 
4418 		if (found) {
4419 			result = operations[j].func.fs_generic;
4420 			if (result == fs_default) {
4421 				result = translation[i].defaultFunc;
4422 			} else if (result == fs_error) {
4423 				result = translation[i].errorFunc;
4424 			} else if (result == NULL) {
4425 				/* Null values are PROHIBITED */
4426 				return (EINVAL);
4427 			}
4428 		} else {
4429 			result = translation[i].defaultFunc;
4430 		}
4431 
4432 		/* Now store the function into the operations vector. */
4433 
4434 		location = (fs_generic_func_p *)
4435 		    (((char *)vector) + translation[i].offset);
4436 
4437 		*location = result;
4438 	}
4439 
4440 	*unused_ops = num_ops - used;
4441 
4442 	return (0);
4443 }
4444 
4445 /* Placeholder functions, should never be called. */
4446 
4447 int
4448 fs_error(void)
4449 {
4450 	cmn_err(CE_PANIC, "fs_error called");
4451 	return (0);
4452 }
4453 
4454 int
4455 fs_default(void)
4456 {
4457 	cmn_err(CE_PANIC, "fs_default called");
4458 	return (0);
4459 }
4460 
4461 #ifdef __sparc
4462 
4463 /*
4464  * Part of the implementation of booting off a mirrored root
4465  * involves a change of dev_t for the root device.  To
4466  * accomplish this, first remove the existing hash table
4467  * entry for the root device, convert to the new dev_t,
4468  * then re-insert in the hash table at the head of the list.
4469  */
4470 void
4471 vfs_root_redev(vfs_t *vfsp, dev_t ndev, int fstype)
4472 {
4473 	vfs_list_lock();
4474 
4475 	vfs_hash_remove(vfsp);
4476 
4477 	vfsp->vfs_dev = ndev;
4478 	vfs_make_fsid(&vfsp->vfs_fsid, ndev, fstype);
4479 
4480 	vfs_hash_add(vfsp, 1);
4481 
4482 	vfs_list_unlock();
4483 }
4484 
4485 #else /* x86 NEWBOOT */
4486 
4487 #if defined(__x86)
4488 extern int hvmboot_rootconf();
4489 #endif /* __x86 */
4490 
4491 extern ib_boot_prop_t *iscsiboot_prop;
4492 extern void iscsi_boot_prop_free();
4493 
4494 int
4495 rootconf()
4496 {
4497 	int error;
4498 	struct vfssw *vsw;
4499 	extern void pm_init();
4500 	char *fstyp, *fsmod;
4501 	int ret = -1;
4502 
4503 	getrootfs(&fstyp, &fsmod);
4504 
4505 #if defined(__x86)
4506 	/*
4507 	 * hvmboot_rootconf() is defined in the hvm_bootstrap misc module,
4508 	 * which lives in /platform/i86hvm, and hence is only available when
4509 	 * booted in an x86 hvm environment.  If the hvm_bootstrap misc module
4510 	 * is not available then the modstub for this function will return 0.
4511 	 * If the hvm_bootstrap misc module is available it will be loaded
4512 	 * and hvmboot_rootconf() will be invoked.
4513 	 */
4514 	if (error = hvmboot_rootconf())
4515 		return (error);
4516 #endif /* __x86 */
4517 
4518 	if (error = clboot_rootconf())
4519 		return (error);
4520 
4521 	if (modload("fs", fsmod) == -1)
4522 		panic("Cannot _init %s module", fsmod);
4523 
4524 	RLOCK_VFSSW();
4525 	vsw = vfs_getvfsswbyname(fstyp);
4526 	RUNLOCK_VFSSW();
4527 	if (vsw == NULL) {
4528 		cmn_err(CE_CONT, "Cannot find %s filesystem\n", fstyp);
4529 		return (ENXIO);
4530 	}
4531 	VFS_INIT(rootvfs, &vsw->vsw_vfsops, 0);
4532 	VFS_HOLD(rootvfs);
4533 
4534 	/* always mount readonly first */
4535 	rootvfs->vfs_flag |= VFS_RDONLY;
4536 
4537 	pm_init();
4538 
4539 	if (netboot && iscsiboot_prop) {
4540 		cmn_err(CE_WARN, "NFS boot and iSCSI boot"
4541 		    " shouldn't happen in the same time");
4542 		return (EINVAL);
4543 	}
4544 
4545 	if (netboot || iscsiboot_prop)
4546 		ret = strplumb();
4547 
4548 	if ((ret == 0) && iscsiboot_prop) {
4549 		ret = modload("drv", "iscsi");
4550 		/* -1 indicates fail */
4551 		if (ret == -1) {
4552 			cmn_err(CE_WARN, "Failed to load iscsi module");
4553 			iscsi_boot_prop_free();
4554 			return (EINVAL);
4555 		} else {
4556 			if (!i_ddi_attach_pseudo_node("iscsi")) {
4557 				cmn_err(CE_WARN,
4558 				    "Failed to attach iscsi driver");
4559 				iscsi_boot_prop_free();
4560 				return (ENODEV);
4561 			}
4562 		}
4563 	}
4564 
4565 	error = VFS_MOUNTROOT(rootvfs, ROOT_INIT);
4566 	vfs_unrefvfssw(vsw);
4567 	rootdev = rootvfs->vfs_dev;
4568 
4569 	if (error)
4570 		cmn_err(CE_CONT, "Cannot mount root on %s fstype %s\n",
4571 		    rootfs.bo_name, fstyp);
4572 	else
4573 		cmn_err(CE_CONT, "?root on %s fstype %s\n",
4574 		    rootfs.bo_name, fstyp);
4575 	return (error);
4576 }
4577 
4578 /*
4579  * XXX this is called by nfs only and should probably be removed
4580  * If booted with ASKNAME, prompt on the console for a filesystem
4581  * name and return it.
4582  */
4583 void
4584 getfsname(char *askfor, char *name, size_t namelen)
4585 {
4586 	if (boothowto & RB_ASKNAME) {
4587 		printf("%s name: ", askfor);
4588 		console_gets(name, namelen);
4589 	}
4590 }
4591 
4592 /*
4593  * Init the root filesystem type (rootfs.bo_fstype) from the "fstype"
4594  * property.
4595  *
4596  * Filesystem types starting with the prefix "nfs" are diskless clients;
4597  * init the root filename name (rootfs.bo_name), too.
4598  *
4599  * If we are booting via NFS we currently have these options:
4600  *	nfs -	dynamically choose NFS V2, V3, or V4 (default)
4601  *	nfs2 -	force NFS V2
4602  *	nfs3 -	force NFS V3
4603  *	nfs4 -	force NFS V4
4604  * Because we need to maintain backward compatibility with the naming
4605  * convention that the NFS V2 filesystem name is "nfs" (see vfs_conf.c)
4606  * we need to map "nfs" => "nfsdyn" and "nfs2" => "nfs".  The dynamic
4607  * nfs module will map the type back to either "nfs", "nfs3", or "nfs4".
4608  * This is only for root filesystems, all other uses such as cachefs
4609  * will expect that "nfs" == NFS V2.
4610  */
4611 static void
4612 getrootfs(char **fstypp, char **fsmodp)
4613 {
4614 	extern char *strplumb_get_netdev_path(void);
4615 	char *propstr = NULL;
4616 
4617 	/*
4618 	 * Check fstype property; for diskless it should be one of "nfs",
4619 	 * "nfs2", "nfs3" or "nfs4".
4620 	 */
4621 	if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(),
4622 	    DDI_PROP_DONTPASS, "fstype", &propstr)
4623 	    == DDI_SUCCESS) {
4624 		(void) strncpy(rootfs.bo_fstype, propstr, BO_MAXFSNAME);
4625 		ddi_prop_free(propstr);
4626 
4627 	/*
4628 	 * if the boot property 'fstype' is not set, but 'zfs-bootfs' is set,
4629 	 * assume the type of this root filesystem is 'zfs'.
4630 	 */
4631 	} else if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(),
4632 	    DDI_PROP_DONTPASS, "zfs-bootfs", &propstr)
4633 	    == DDI_SUCCESS) {
4634 		(void) strncpy(rootfs.bo_fstype, "zfs", BO_MAXFSNAME);
4635 		ddi_prop_free(propstr);
4636 	}
4637 
4638 	if (strncmp(rootfs.bo_fstype, "nfs", 3) != 0) {
4639 		*fstypp = *fsmodp = rootfs.bo_fstype;
4640 		return;
4641 	}
4642 
4643 	++netboot;
4644 
4645 	if (strcmp(rootfs.bo_fstype, "nfs2") == 0)
4646 		(void) strcpy(rootfs.bo_fstype, "nfs");
4647 	else if (strcmp(rootfs.bo_fstype, "nfs") == 0)
4648 		(void) strcpy(rootfs.bo_fstype, "nfsdyn");
4649 
4650 	/*
4651 	 * check if path to network interface is specified in bootpath
4652 	 * or by a hypervisor domain configuration file.
4653 	 * XXPV - enable strlumb_get_netdev_path()
4654 	 */
4655 	if (ddi_prop_exists(DDI_DEV_T_ANY, ddi_root_node(), DDI_PROP_DONTPASS,
4656 	    "xpv-nfsroot")) {
4657 		(void) strcpy(rootfs.bo_name, "/xpvd/xnf@0");
4658 	} else if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(),
4659 	    DDI_PROP_DONTPASS, "bootpath", &propstr)
4660 	    == DDI_SUCCESS) {
4661 		(void) strncpy(rootfs.bo_name, propstr, BO_MAXOBJNAME);
4662 		ddi_prop_free(propstr);
4663 	} else {
4664 		/* attempt to determine netdev_path via boot_mac address */
4665 		netdev_path = strplumb_get_netdev_path();
4666 		if (netdev_path == NULL)
4667 			panic("cannot find boot network interface");
4668 		(void) strncpy(rootfs.bo_name, netdev_path, BO_MAXOBJNAME);
4669 	}
4670 	*fstypp = rootfs.bo_fstype;
4671 	*fsmodp = "nfs";
4672 }
4673 #endif
4674 
4675 /*
4676  * VFS feature routines
4677  */
4678 
4679 #define	VFTINDEX(feature)	(((feature) >> 32) & 0xFFFFFFFF)
4680 #define	VFTBITS(feature)	((feature) & 0xFFFFFFFFLL)
4681 
4682 /* Register a feature in the vfs */
4683 void
4684 vfs_set_feature(vfs_t *vfsp, vfs_feature_t feature)
4685 {
4686 	/* Note that vfs_featureset[] is found in *vfsp->vfs_implp */
4687 	if (vfsp->vfs_implp == NULL)
4688 		return;
4689 
4690 	vfsp->vfs_featureset[VFTINDEX(feature)] |= VFTBITS(feature);
4691 }
4692 
4693 /*
4694  * Query a vfs for a feature.
4695  * Returns 1 if feature is present, 0 if not
4696  */
4697 int
4698 vfs_has_feature(vfs_t *vfsp, vfs_feature_t feature)
4699 {
4700 	int	ret = 0;
4701 
4702 	/* Note that vfs_featureset[] is found in *vfsp->vfs_implp */
4703 	if (vfsp->vfs_implp == NULL)
4704 		return (ret);
4705 
4706 	if (vfsp->vfs_featureset[VFTINDEX(feature)] & VFTBITS(feature))
4707 		ret = 1;
4708 
4709 	return (ret);
4710 }
4711 
4712 /*
4713  * Propagate feature set from one vfs to another
4714  */
4715 void
4716 vfs_propagate_features(vfs_t *from, vfs_t *to)
4717 {
4718 	int i;
4719 
4720 	if (to->vfs_implp == NULL || from->vfs_implp == NULL)
4721 		return;
4722 
4723 	for (i = 1; i <= to->vfs_featureset[0]; i++) {
4724 		to->vfs_featureset[i] = from->vfs_featureset[i];
4725 	}
4726 }
4727 
4728 #define	LOFICTL_PATH "/devices/pseudo/lofi@0:%d"
4729 
4730 /*
4731  * Return the vnode for the lofi node if there's a lofi mount in place.
4732  * Returns -1 when there's no lofi node, 0 on success, and > 0 on
4733  * failure.
4734  */
4735 int
4736 vfs_get_lofi(vfs_t *vfsp, vnode_t **vpp)
4737 {
4738 	char *path = NULL;
4739 	int strsize;
4740 	int err;
4741 
4742 	if (vfsp->vfs_lofi_minor == 0) {
4743 		*vpp = NULL;
4744 		return (-1);
4745 	}
4746 
4747 	strsize = snprintf(NULL, 0, LOFICTL_PATH, vfsp->vfs_lofi_minor);
4748 	path = kmem_alloc(strsize + 1, KM_SLEEP);
4749 	(void) snprintf(path, strsize + 1, LOFICTL_PATH, vfsp->vfs_lofi_minor);
4750 
4751 	err = lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, vpp);
4752 
4753 	if (err)
4754 		*vpp = NULL;
4755 
4756 	kmem_free(path, strsize + 1);
4757 	return (err);
4758 }
4759