1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */ 27 /* All Rights Reserved */ 28 29 /* 30 * University Copyright- Copyright (c) 1982, 1986, 1988 31 * The Regents of the University of California 32 * All Rights Reserved 33 * 34 * University Acknowledgment- Portions of this document are derived from 35 * software developed by the University of California, Berkeley, and its 36 * contributors. 37 */ 38 39 40 #pragma ident "%Z%%M% %I% %E% SMI" 41 42 #include <sys/types.h> 43 #include <sys/t_lock.h> 44 #include <sys/param.h> 45 #include <sys/errno.h> 46 #include <sys/user.h> 47 #include <sys/fstyp.h> 48 #include <sys/kmem.h> 49 #include <sys/systm.h> 50 #include <sys/proc.h> 51 #include <sys/mount.h> 52 #include <sys/vfs.h> 53 #include <sys/vfs_opreg.h> 54 #include <sys/fem.h> 55 #include <sys/mntent.h> 56 #include <sys/stat.h> 57 #include <sys/statvfs.h> 58 #include <sys/statfs.h> 59 #include <sys/cred.h> 60 #include <sys/vnode.h> 61 #include <sys/rwstlock.h> 62 #include <sys/dnlc.h> 63 #include <sys/file.h> 64 #include <sys/time.h> 65 #include <sys/atomic.h> 66 #include <sys/cmn_err.h> 67 #include <sys/buf.h> 68 #include <sys/swap.h> 69 #include <sys/debug.h> 70 #include <sys/vnode.h> 71 #include <sys/modctl.h> 72 #include <sys/ddi.h> 73 #include <sys/pathname.h> 74 #include <sys/bootconf.h> 75 #include <sys/dumphdr.h> 76 #include <sys/dc_ki.h> 77 #include <sys/poll.h> 78 #include <sys/sunddi.h> 79 #include <sys/sysmacros.h> 80 #include <sys/zone.h> 81 #include <sys/policy.h> 82 #include <sys/ctfs.h> 83 #include <sys/objfs.h> 84 #include <sys/console.h> 85 #include <sys/reboot.h> 86 #include <sys/attr.h> 87 #include <sys/spa.h> 88 #include <sys/lofi.h> 89 90 #include <vm/page.h> 91 92 #include <fs/fs_subr.h> 93 94 /* Private interfaces to create vopstats-related data structures */ 95 extern void initialize_vopstats(vopstats_t *); 96 extern vopstats_t *get_fstype_vopstats(struct vfs *, struct vfssw *); 97 extern vsk_anchor_t *get_vskstat_anchor(struct vfs *); 98 99 static void vfs_clearmntopt_nolock(mntopts_t *, const char *, int); 100 static void vfs_setmntopt_nolock(mntopts_t *, const char *, 101 const char *, int, int); 102 static int vfs_optionisset_nolock(const mntopts_t *, const char *, char **); 103 static void vfs_freemnttab(struct vfs *); 104 static void vfs_freeopt(mntopt_t *); 105 static void vfs_swapopttbl_nolock(mntopts_t *, mntopts_t *); 106 static void vfs_swapopttbl(mntopts_t *, mntopts_t *); 107 static void vfs_copyopttbl_extend(const mntopts_t *, mntopts_t *, int); 108 static void vfs_createopttbl_extend(mntopts_t *, const char *, 109 const mntopts_t *); 110 static char **vfs_copycancelopt_extend(char **const, int); 111 static void vfs_freecancelopt(char **); 112 static void getrootfs(char **, char **); 113 static int getmacpath(dev_info_t *, void *); 114 static void vfs_mnttabvp_setup(void); 115 116 struct ipmnt { 117 struct ipmnt *mip_next; 118 dev_t mip_dev; 119 struct vfs *mip_vfsp; 120 }; 121 122 static kmutex_t vfs_miplist_mutex; 123 static struct ipmnt *vfs_miplist = NULL; 124 static struct ipmnt *vfs_miplist_end = NULL; 125 126 static kmem_cache_t *vfs_cache; /* Pointer to VFS kmem cache */ 127 128 /* 129 * VFS global data. 130 */ 131 vnode_t *rootdir; /* pointer to root inode vnode. */ 132 vnode_t *devicesdir; /* pointer to inode of devices root */ 133 vnode_t *devdir; /* pointer to inode of dev root */ 134 135 char *server_rootpath; /* root path for diskless clients */ 136 char *server_hostname; /* hostname of diskless server */ 137 138 static struct vfs root; 139 static struct vfs devices; 140 static struct vfs dev; 141 struct vfs *rootvfs = &root; /* pointer to root vfs; head of VFS list. */ 142 rvfs_t *rvfs_list; /* array of vfs ptrs for vfs hash list */ 143 int vfshsz = 512; /* # of heads/locks in vfs hash arrays */ 144 /* must be power of 2! */ 145 timespec_t vfs_mnttab_ctime; /* mnttab created time */ 146 timespec_t vfs_mnttab_mtime; /* mnttab last modified time */ 147 char *vfs_dummyfstype = "\0"; 148 struct pollhead vfs_pollhd; /* for mnttab pollers */ 149 struct vnode *vfs_mntdummyvp; /* to fake mnttab read/write for file events */ 150 int mntfstype; /* will be set once mnt fs is mounted */ 151 152 /* 153 * Table for generic options recognized in the VFS layer and acted 154 * on at this level before parsing file system specific options. 155 * The nosuid option is stronger than any of the devices and setuid 156 * options, so those are canceled when nosuid is seen. 157 * 158 * All options which are added here need to be added to the 159 * list of standard options in usr/src/cmd/fs.d/fslib.c as well. 160 */ 161 /* 162 * VFS Mount options table 163 */ 164 static char *ro_cancel[] = { MNTOPT_RW, NULL }; 165 static char *rw_cancel[] = { MNTOPT_RO, NULL }; 166 static char *suid_cancel[] = { MNTOPT_NOSUID, NULL }; 167 static char *nosuid_cancel[] = { MNTOPT_SUID, MNTOPT_DEVICES, MNTOPT_NODEVICES, 168 MNTOPT_NOSETUID, MNTOPT_SETUID, NULL }; 169 static char *devices_cancel[] = { MNTOPT_NODEVICES, NULL }; 170 static char *nodevices_cancel[] = { MNTOPT_DEVICES, NULL }; 171 static char *setuid_cancel[] = { MNTOPT_NOSETUID, NULL }; 172 static char *nosetuid_cancel[] = { MNTOPT_SETUID, NULL }; 173 static char *nbmand_cancel[] = { MNTOPT_NONBMAND, NULL }; 174 static char *nonbmand_cancel[] = { MNTOPT_NBMAND, NULL }; 175 static char *exec_cancel[] = { MNTOPT_NOEXEC, NULL }; 176 static char *noexec_cancel[] = { MNTOPT_EXEC, NULL }; 177 178 static const mntopt_t mntopts[] = { 179 /* 180 * option name cancel options default arg flags 181 */ 182 { MNTOPT_REMOUNT, NULL, NULL, 183 MO_NODISPLAY, (void *)0 }, 184 { MNTOPT_RO, ro_cancel, NULL, 0, 185 (void *)0 }, 186 { MNTOPT_RW, rw_cancel, NULL, 0, 187 (void *)0 }, 188 { MNTOPT_SUID, suid_cancel, NULL, 0, 189 (void *)0 }, 190 { MNTOPT_NOSUID, nosuid_cancel, NULL, 0, 191 (void *)0 }, 192 { MNTOPT_DEVICES, devices_cancel, NULL, 0, 193 (void *)0 }, 194 { MNTOPT_NODEVICES, nodevices_cancel, NULL, 0, 195 (void *)0 }, 196 { MNTOPT_SETUID, setuid_cancel, NULL, 0, 197 (void *)0 }, 198 { MNTOPT_NOSETUID, nosetuid_cancel, NULL, 0, 199 (void *)0 }, 200 { MNTOPT_NBMAND, nbmand_cancel, NULL, 0, 201 (void *)0 }, 202 { MNTOPT_NONBMAND, nonbmand_cancel, NULL, 0, 203 (void *)0 }, 204 { MNTOPT_EXEC, exec_cancel, NULL, 0, 205 (void *)0 }, 206 { MNTOPT_NOEXEC, noexec_cancel, NULL, 0, 207 (void *)0 }, 208 }; 209 210 const mntopts_t vfs_mntopts = { 211 sizeof (mntopts) / sizeof (mntopt_t), 212 (mntopt_t *)&mntopts[0] 213 }; 214 215 /* 216 * File system operation dispatch functions. 217 */ 218 219 int 220 fsop_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr) 221 { 222 return (*(vfsp)->vfs_op->vfs_mount)(vfsp, mvp, uap, cr); 223 } 224 225 int 226 fsop_unmount(vfs_t *vfsp, int flag, cred_t *cr) 227 { 228 return (*(vfsp)->vfs_op->vfs_unmount)(vfsp, flag, cr); 229 } 230 231 int 232 fsop_root(vfs_t *vfsp, vnode_t **vpp) 233 { 234 refstr_t *mntpt; 235 int ret = (*(vfsp)->vfs_op->vfs_root)(vfsp, vpp); 236 /* 237 * Make sure this root has a path. With lofs, it is possible to have 238 * a NULL mountpoint. 239 */ 240 if (ret == 0 && vfsp->vfs_mntpt != NULL && (*vpp)->v_path == NULL) { 241 mntpt = vfs_getmntpoint(vfsp); 242 vn_setpath_str(*vpp, refstr_value(mntpt), 243 strlen(refstr_value(mntpt))); 244 refstr_rele(mntpt); 245 } 246 247 return (ret); 248 } 249 250 int 251 fsop_statfs(vfs_t *vfsp, statvfs64_t *sp) 252 { 253 return (*(vfsp)->vfs_op->vfs_statvfs)(vfsp, sp); 254 } 255 256 int 257 fsop_sync(vfs_t *vfsp, short flag, cred_t *cr) 258 { 259 return (*(vfsp)->vfs_op->vfs_sync)(vfsp, flag, cr); 260 } 261 262 int 263 fsop_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp) 264 { 265 /* 266 * In order to handle system attribute fids in a manner 267 * transparent to the underlying fs, we embed the fid for 268 * the sysattr parent object in the sysattr fid and tack on 269 * some extra bytes that only the sysattr layer knows about. 270 * 271 * This guarantees that sysattr fids are larger than other fids 272 * for this vfs. If the vfs supports sysattrs (implied 273 * by VFSFT_XVATTR support), we cannot have a size collision 274 * with XATTR_FIDSZ. 275 */ 276 if (vfs_has_feature(vfsp, VFSFT_XVATTR) && 277 fidp->fid_len == XATTR_FIDSZ) 278 return (xattr_dir_vget(vfsp, vpp, fidp)); 279 280 return (*(vfsp)->vfs_op->vfs_vget)(vfsp, vpp, fidp); 281 } 282 283 int 284 fsop_mountroot(vfs_t *vfsp, enum whymountroot reason) 285 { 286 return (*(vfsp)->vfs_op->vfs_mountroot)(vfsp, reason); 287 } 288 289 void 290 fsop_freefs(vfs_t *vfsp) 291 { 292 (*(vfsp)->vfs_op->vfs_freevfs)(vfsp); 293 } 294 295 int 296 fsop_vnstate(vfs_t *vfsp, vnode_t *vp, vntrans_t nstate) 297 { 298 return ((*(vfsp)->vfs_op->vfs_vnstate)(vfsp, vp, nstate)); 299 } 300 301 int 302 fsop_sync_by_kind(int fstype, short flag, cred_t *cr) 303 { 304 ASSERT((fstype >= 0) && (fstype < nfstype)); 305 306 if (ALLOCATED_VFSSW(&vfssw[fstype]) && VFS_INSTALLED(&vfssw[fstype])) 307 return (*vfssw[fstype].vsw_vfsops.vfs_sync) (NULL, flag, cr); 308 else 309 return (ENOTSUP); 310 } 311 312 /* 313 * File system initialization. vfs_setfsops() must be called from a file 314 * system's init routine. 315 */ 316 317 static int 318 fs_copyfsops(const fs_operation_def_t *template, vfsops_t *actual, 319 int *unused_ops) 320 { 321 static const fs_operation_trans_def_t vfs_ops_table[] = { 322 VFSNAME_MOUNT, offsetof(vfsops_t, vfs_mount), 323 fs_nosys, fs_nosys, 324 325 VFSNAME_UNMOUNT, offsetof(vfsops_t, vfs_unmount), 326 fs_nosys, fs_nosys, 327 328 VFSNAME_ROOT, offsetof(vfsops_t, vfs_root), 329 fs_nosys, fs_nosys, 330 331 VFSNAME_STATVFS, offsetof(vfsops_t, vfs_statvfs), 332 fs_nosys, fs_nosys, 333 334 VFSNAME_SYNC, offsetof(vfsops_t, vfs_sync), 335 (fs_generic_func_p) fs_sync, 336 (fs_generic_func_p) fs_sync, /* No errors allowed */ 337 338 VFSNAME_VGET, offsetof(vfsops_t, vfs_vget), 339 fs_nosys, fs_nosys, 340 341 VFSNAME_MOUNTROOT, offsetof(vfsops_t, vfs_mountroot), 342 fs_nosys, fs_nosys, 343 344 VFSNAME_FREEVFS, offsetof(vfsops_t, vfs_freevfs), 345 (fs_generic_func_p)fs_freevfs, 346 (fs_generic_func_p)fs_freevfs, /* Shouldn't fail */ 347 348 VFSNAME_VNSTATE, offsetof(vfsops_t, vfs_vnstate), 349 (fs_generic_func_p)fs_nosys, 350 (fs_generic_func_p)fs_nosys, 351 352 NULL, 0, NULL, NULL 353 }; 354 355 return (fs_build_vector(actual, unused_ops, vfs_ops_table, template)); 356 } 357 358 void 359 zfs_boot_init() { 360 361 if (strcmp(rootfs.bo_fstype, MNTTYPE_ZFS) == 0) 362 spa_boot_init(); 363 } 364 365 int 366 vfs_setfsops(int fstype, const fs_operation_def_t *template, vfsops_t **actual) 367 { 368 int error; 369 int unused_ops; 370 371 /* 372 * Verify that fstype refers to a valid fs. Note that 373 * 0 is valid since it's used to set "stray" ops. 374 */ 375 if ((fstype < 0) || (fstype >= nfstype)) 376 return (EINVAL); 377 378 if (!ALLOCATED_VFSSW(&vfssw[fstype])) 379 return (EINVAL); 380 381 /* Set up the operations vector. */ 382 383 error = fs_copyfsops(template, &vfssw[fstype].vsw_vfsops, &unused_ops); 384 385 if (error != 0) 386 return (error); 387 388 vfssw[fstype].vsw_flag |= VSW_INSTALLED; 389 390 if (actual != NULL) 391 *actual = &vfssw[fstype].vsw_vfsops; 392 393 #if DEBUG 394 if (unused_ops != 0) 395 cmn_err(CE_WARN, "vfs_setfsops: %s: %d operations supplied " 396 "but not used", vfssw[fstype].vsw_name, unused_ops); 397 #endif 398 399 return (0); 400 } 401 402 int 403 vfs_makefsops(const fs_operation_def_t *template, vfsops_t **actual) 404 { 405 int error; 406 int unused_ops; 407 408 *actual = (vfsops_t *)kmem_alloc(sizeof (vfsops_t), KM_SLEEP); 409 410 error = fs_copyfsops(template, *actual, &unused_ops); 411 if (error != 0) { 412 kmem_free(*actual, sizeof (vfsops_t)); 413 *actual = NULL; 414 return (error); 415 } 416 417 return (0); 418 } 419 420 /* 421 * Free a vfsops structure created as a result of vfs_makefsops(). 422 * NOTE: For a vfsops structure initialized by vfs_setfsops(), use 423 * vfs_freevfsops_by_type(). 424 */ 425 void 426 vfs_freevfsops(vfsops_t *vfsops) 427 { 428 kmem_free(vfsops, sizeof (vfsops_t)); 429 } 430 431 /* 432 * Since the vfsops structure is part of the vfssw table and wasn't 433 * really allocated, we're not really freeing anything. We keep 434 * the name for consistency with vfs_freevfsops(). We do, however, 435 * need to take care of a little bookkeeping. 436 * NOTE: For a vfsops structure created by vfs_setfsops(), use 437 * vfs_freevfsops_by_type(). 438 */ 439 int 440 vfs_freevfsops_by_type(int fstype) 441 { 442 443 /* Verify that fstype refers to a loaded fs (and not fsid 0). */ 444 if ((fstype <= 0) || (fstype >= nfstype)) 445 return (EINVAL); 446 447 WLOCK_VFSSW(); 448 if ((vfssw[fstype].vsw_flag & VSW_INSTALLED) == 0) { 449 WUNLOCK_VFSSW(); 450 return (EINVAL); 451 } 452 453 vfssw[fstype].vsw_flag &= ~VSW_INSTALLED; 454 WUNLOCK_VFSSW(); 455 456 return (0); 457 } 458 459 /* Support routines used to reference vfs_op */ 460 461 /* Set the operations vector for a vfs */ 462 void 463 vfs_setops(vfs_t *vfsp, vfsops_t *vfsops) 464 { 465 vfsops_t *op; 466 467 ASSERT(vfsp != NULL); 468 ASSERT(vfsops != NULL); 469 470 op = vfsp->vfs_op; 471 membar_consumer(); 472 if (vfsp->vfs_femhead == NULL && 473 casptr(&vfsp->vfs_op, op, vfsops) == op) { 474 return; 475 } 476 fsem_setvfsops(vfsp, vfsops); 477 } 478 479 /* Retrieve the operations vector for a vfs */ 480 vfsops_t * 481 vfs_getops(vfs_t *vfsp) 482 { 483 vfsops_t *op; 484 485 ASSERT(vfsp != NULL); 486 487 op = vfsp->vfs_op; 488 membar_consumer(); 489 if (vfsp->vfs_femhead == NULL && op == vfsp->vfs_op) { 490 return (op); 491 } else { 492 return (fsem_getvfsops(vfsp)); 493 } 494 } 495 496 /* 497 * Returns non-zero (1) if the vfsops matches that of the vfs. 498 * Returns zero (0) if not. 499 */ 500 int 501 vfs_matchops(vfs_t *vfsp, vfsops_t *vfsops) 502 { 503 return (vfs_getops(vfsp) == vfsops); 504 } 505 506 /* 507 * Returns non-zero (1) if the file system has installed a non-default, 508 * non-error vfs_sync routine. Returns zero (0) otherwise. 509 */ 510 int 511 vfs_can_sync(vfs_t *vfsp) 512 { 513 /* vfs_sync() routine is not the default/error function */ 514 return (vfs_getops(vfsp)->vfs_sync != fs_sync); 515 } 516 517 /* 518 * Initialize a vfs structure. 519 */ 520 void 521 vfs_init(vfs_t *vfsp, vfsops_t *op, void *data) 522 { 523 /* Other initialization has been moved to vfs_alloc() */ 524 vfsp->vfs_count = 0; 525 vfsp->vfs_next = vfsp; 526 vfsp->vfs_prev = vfsp; 527 vfsp->vfs_zone_next = vfsp; 528 vfsp->vfs_zone_prev = vfsp; 529 vfsp->vfs_lofi_minor = 0; 530 sema_init(&vfsp->vfs_reflock, 1, NULL, SEMA_DEFAULT, NULL); 531 vfsimpl_setup(vfsp); 532 vfsp->vfs_data = (data); 533 vfs_setops((vfsp), (op)); 534 } 535 536 /* 537 * Allocate and initialize the vfs implementation private data 538 * structure, vfs_impl_t. 539 */ 540 void 541 vfsimpl_setup(vfs_t *vfsp) 542 { 543 int i; 544 545 if (vfsp->vfs_implp != NULL) { 546 return; 547 } 548 549 vfsp->vfs_implp = kmem_alloc(sizeof (vfs_impl_t), KM_SLEEP); 550 /* Note that these are #define'd in vfs.h */ 551 vfsp->vfs_vskap = NULL; 552 vfsp->vfs_fstypevsp = NULL; 553 554 /* Set size of counted array, then zero the array */ 555 vfsp->vfs_featureset[0] = VFS_FEATURE_MAXSZ - 1; 556 for (i = 1; i < VFS_FEATURE_MAXSZ; i++) { 557 vfsp->vfs_featureset[i] = 0; 558 } 559 } 560 561 /* 562 * Release the vfs_impl_t structure, if it exists. Some unbundled 563 * filesystems may not use the newer version of vfs and thus 564 * would not contain this implementation private data structure. 565 */ 566 void 567 vfsimpl_teardown(vfs_t *vfsp) 568 { 569 vfs_impl_t *vip = vfsp->vfs_implp; 570 571 if (vip == NULL) 572 return; 573 574 kmem_free(vfsp->vfs_implp, sizeof (vfs_impl_t)); 575 vfsp->vfs_implp = NULL; 576 } 577 578 /* 579 * VFS system calls: mount, umount, syssync, statfs, fstatfs, statvfs, 580 * fstatvfs, and sysfs moved to common/syscall. 581 */ 582 583 /* 584 * Update every mounted file system. We call the vfs_sync operation of 585 * each file system type, passing it a NULL vfsp to indicate that all 586 * mounted file systems of that type should be updated. 587 */ 588 void 589 vfs_sync(int flag) 590 { 591 struct vfssw *vswp; 592 RLOCK_VFSSW(); 593 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) { 594 if (ALLOCATED_VFSSW(vswp) && VFS_INSTALLED(vswp)) { 595 vfs_refvfssw(vswp); 596 RUNLOCK_VFSSW(); 597 (void) (*vswp->vsw_vfsops.vfs_sync)(NULL, flag, 598 CRED()); 599 vfs_unrefvfssw(vswp); 600 RLOCK_VFSSW(); 601 } 602 } 603 RUNLOCK_VFSSW(); 604 } 605 606 void 607 sync(void) 608 { 609 vfs_sync(0); 610 } 611 612 /* 613 * External routines. 614 */ 615 616 krwlock_t vfssw_lock; /* lock accesses to vfssw */ 617 618 /* 619 * Lock for accessing the vfs linked list. Initialized in vfs_mountroot(), 620 * but otherwise should be accessed only via vfs_list_lock() and 621 * vfs_list_unlock(). Also used to protect the timestamp for mods to the list. 622 */ 623 static krwlock_t vfslist; 624 625 /* 626 * Mount devfs on /devices. This is done right after root is mounted 627 * to provide device access support for the system 628 */ 629 static void 630 vfs_mountdevices(void) 631 { 632 struct vfssw *vsw; 633 struct vnode *mvp; 634 struct mounta mounta = { /* fake mounta for devfs_mount() */ 635 NULL, 636 NULL, 637 MS_SYSSPACE, 638 NULL, 639 NULL, 640 0, 641 NULL, 642 0 643 }; 644 645 /* 646 * _init devfs module to fill in the vfssw 647 */ 648 if (modload("fs", "devfs") == -1) 649 panic("Cannot _init devfs module"); 650 651 /* 652 * Hold vfs 653 */ 654 RLOCK_VFSSW(); 655 vsw = vfs_getvfsswbyname("devfs"); 656 VFS_INIT(&devices, &vsw->vsw_vfsops, NULL); 657 VFS_HOLD(&devices); 658 659 /* 660 * Locate mount point 661 */ 662 if (lookupname("/devices", UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp)) 663 panic("Cannot find /devices"); 664 665 /* 666 * Perform the mount of /devices 667 */ 668 if (VFS_MOUNT(&devices, mvp, &mounta, CRED())) 669 panic("Cannot mount /devices"); 670 671 RUNLOCK_VFSSW(); 672 673 /* 674 * Set appropriate members and add to vfs list for mnttab display 675 */ 676 vfs_setresource(&devices, "/devices"); 677 vfs_setmntpoint(&devices, "/devices"); 678 679 /* 680 * Hold the root of /devices so it won't go away 681 */ 682 if (VFS_ROOT(&devices, &devicesdir)) 683 panic("vfs_mountdevices: not devices root"); 684 685 if (vfs_lock(&devices) != 0) { 686 VN_RELE(devicesdir); 687 cmn_err(CE_NOTE, "Cannot acquire vfs_lock of /devices"); 688 return; 689 } 690 691 if (vn_vfswlock(mvp) != 0) { 692 vfs_unlock(&devices); 693 VN_RELE(devicesdir); 694 cmn_err(CE_NOTE, "Cannot acquire vfswlock of /devices"); 695 return; 696 } 697 698 vfs_add(mvp, &devices, 0); 699 vn_vfsunlock(mvp); 700 vfs_unlock(&devices); 701 VN_RELE(devicesdir); 702 } 703 704 /* 705 * mount the first instance of /dev to root and remain mounted 706 */ 707 static void 708 vfs_mountdev1(void) 709 { 710 struct vfssw *vsw; 711 struct vnode *mvp; 712 struct mounta mounta = { /* fake mounta for sdev_mount() */ 713 NULL, 714 NULL, 715 MS_SYSSPACE | MS_OVERLAY, 716 NULL, 717 NULL, 718 0, 719 NULL, 720 0 721 }; 722 723 /* 724 * _init dev module to fill in the vfssw 725 */ 726 if (modload("fs", "dev") == -1) 727 cmn_err(CE_PANIC, "Cannot _init dev module\n"); 728 729 /* 730 * Hold vfs 731 */ 732 RLOCK_VFSSW(); 733 vsw = vfs_getvfsswbyname("dev"); 734 VFS_INIT(&dev, &vsw->vsw_vfsops, NULL); 735 VFS_HOLD(&dev); 736 737 /* 738 * Locate mount point 739 */ 740 if (lookupname("/dev", UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp)) 741 cmn_err(CE_PANIC, "Cannot find /dev\n"); 742 743 /* 744 * Perform the mount of /dev 745 */ 746 if (VFS_MOUNT(&dev, mvp, &mounta, CRED())) 747 cmn_err(CE_PANIC, "Cannot mount /dev 1\n"); 748 749 RUNLOCK_VFSSW(); 750 751 /* 752 * Set appropriate members and add to vfs list for mnttab display 753 */ 754 vfs_setresource(&dev, "/dev"); 755 vfs_setmntpoint(&dev, "/dev"); 756 757 /* 758 * Hold the root of /dev so it won't go away 759 */ 760 if (VFS_ROOT(&dev, &devdir)) 761 cmn_err(CE_PANIC, "vfs_mountdev1: not dev root"); 762 763 if (vfs_lock(&dev) != 0) { 764 VN_RELE(devdir); 765 cmn_err(CE_NOTE, "Cannot acquire vfs_lock of /dev"); 766 return; 767 } 768 769 if (vn_vfswlock(mvp) != 0) { 770 vfs_unlock(&dev); 771 VN_RELE(devdir); 772 cmn_err(CE_NOTE, "Cannot acquire vfswlock of /dev"); 773 return; 774 } 775 776 vfs_add(mvp, &dev, 0); 777 vn_vfsunlock(mvp); 778 vfs_unlock(&dev); 779 VN_RELE(devdir); 780 } 781 782 /* 783 * Mount required filesystem. This is done right after root is mounted. 784 */ 785 static void 786 vfs_mountfs(char *module, char *spec, char *path) 787 { 788 struct vnode *mvp; 789 struct mounta mounta; 790 vfs_t *vfsp; 791 792 mounta.flags = MS_SYSSPACE | MS_DATA; 793 mounta.fstype = module; 794 mounta.spec = spec; 795 mounta.dir = path; 796 if (lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp)) { 797 cmn_err(CE_WARN, "Cannot find %s", path); 798 return; 799 } 800 if (domount(NULL, &mounta, mvp, CRED(), &vfsp)) 801 cmn_err(CE_WARN, "Cannot mount %s", path); 802 else 803 VFS_RELE(vfsp); 804 VN_RELE(mvp); 805 } 806 807 /* 808 * vfs_mountroot is called by main() to mount the root filesystem. 809 */ 810 void 811 vfs_mountroot(void) 812 { 813 struct vnode *rvp = NULL; 814 char *path; 815 size_t plen; 816 struct vfssw *vswp; 817 818 rw_init(&vfssw_lock, NULL, RW_DEFAULT, NULL); 819 rw_init(&vfslist, NULL, RW_DEFAULT, NULL); 820 821 /* 822 * Alloc the vfs hash bucket array and locks 823 */ 824 rvfs_list = kmem_zalloc(vfshsz * sizeof (rvfs_t), KM_SLEEP); 825 826 /* 827 * Call machine-dependent routine "rootconf" to choose a root 828 * file system type. 829 */ 830 if (rootconf()) 831 panic("vfs_mountroot: cannot mount root"); 832 /* 833 * Get vnode for '/'. Set up rootdir, u.u_rdir and u.u_cdir 834 * to point to it. These are used by lookuppn() so that it 835 * knows where to start from ('/' or '.'). 836 */ 837 vfs_setmntpoint(rootvfs, "/"); 838 if (VFS_ROOT(rootvfs, &rootdir)) 839 panic("vfs_mountroot: no root vnode"); 840 PTOU(curproc)->u_cdir = rootdir; 841 VN_HOLD(PTOU(curproc)->u_cdir); 842 PTOU(curproc)->u_rdir = NULL; 843 844 /* 845 * Setup the global zone's rootvp, now that it exists. 846 */ 847 global_zone->zone_rootvp = rootdir; 848 VN_HOLD(global_zone->zone_rootvp); 849 850 /* 851 * Notify the module code that it can begin using the 852 * root filesystem instead of the boot program's services. 853 */ 854 modrootloaded = 1; 855 856 /* 857 * Special handling for a ZFS root file system. 858 */ 859 zfs_boot_init(); 860 861 /* 862 * Set up mnttab information for root 863 */ 864 vfs_setresource(rootvfs, rootfs.bo_name); 865 866 /* 867 * Notify cluster software that the root filesystem is available. 868 */ 869 clboot_mountroot(); 870 871 /* Now that we're all done with the root FS, set up its vopstats */ 872 if ((vswp = vfs_getvfsswbyvfsops(vfs_getops(rootvfs))) != NULL) { 873 /* Set flag for statistics collection */ 874 if (vswp->vsw_flag & VSW_STATS) { 875 initialize_vopstats(&rootvfs->vfs_vopstats); 876 rootvfs->vfs_flag |= VFS_STATS; 877 rootvfs->vfs_fstypevsp = 878 get_fstype_vopstats(rootvfs, vswp); 879 rootvfs->vfs_vskap = get_vskstat_anchor(rootvfs); 880 } 881 vfs_unrefvfssw(vswp); 882 } 883 884 /* 885 * Mount /devices, /dev instance 1, /system/contract, /etc/mnttab, 886 * /etc/svc/volatile, /etc/dfs/sharetab, /system/object, and /proc. 887 */ 888 vfs_mountdevices(); 889 vfs_mountdev1(); 890 891 vfs_mountfs("ctfs", "ctfs", CTFS_ROOT); 892 vfs_mountfs("proc", "/proc", "/proc"); 893 vfs_mountfs("mntfs", "/etc/mnttab", "/etc/mnttab"); 894 vfs_mountfs("tmpfs", "/etc/svc/volatile", "/etc/svc/volatile"); 895 vfs_mountfs("objfs", "objfs", OBJFS_ROOT); 896 897 if (getzoneid() == GLOBAL_ZONEID) { 898 vfs_mountfs("sharefs", "sharefs", "/etc/dfs/sharetab"); 899 } 900 901 #ifdef __sparc 902 /* 903 * This bit of magic can go away when we convert sparc to 904 * the new boot architecture based on ramdisk. 905 * 906 * Booting off a mirrored root volume: 907 * At this point, we have booted and mounted root on a 908 * single component of the mirror. Complete the boot 909 * by configuring SVM and converting the root to the 910 * dev_t of the mirrored root device. This dev_t conversion 911 * only works because the underlying device doesn't change. 912 */ 913 if (root_is_svm) { 914 if (svm_rootconf()) { 915 panic("vfs_mountroot: cannot remount root"); 916 } 917 918 /* 919 * mnttab should reflect the new root device 920 */ 921 vfs_lock_wait(rootvfs); 922 vfs_setresource(rootvfs, rootfs.bo_name); 923 vfs_unlock(rootvfs); 924 } 925 #endif /* __sparc */ 926 927 /* 928 * Look up the root device via devfs so that a dv_node is 929 * created for it. The vnode is never VN_RELE()ed. 930 * We allocate more than MAXPATHLEN so that the 931 * buffer passed to i_ddi_prompath_to_devfspath() is 932 * exactly MAXPATHLEN (the function expects a buffer 933 * of that length). 934 */ 935 plen = strlen("/devices"); 936 path = kmem_alloc(plen + MAXPATHLEN, KM_SLEEP); 937 (void) strcpy(path, "/devices"); 938 939 if (i_ddi_prompath_to_devfspath(rootfs.bo_name, path + plen) 940 != DDI_SUCCESS || 941 lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &rvp)) { 942 943 /* NUL terminate in case "path" has garbage */ 944 path[plen + MAXPATHLEN - 1] = '\0'; 945 #ifdef DEBUG 946 cmn_err(CE_WARN, "!Cannot lookup root device: %s", path); 947 #endif 948 } 949 kmem_free(path, plen + MAXPATHLEN); 950 vfs_mnttabvp_setup(); 951 } 952 953 /* 954 * If remount failed and we're in a zone we need to check for the zone 955 * root path and strip it before the call to vfs_setpath(). 956 * 957 * If strpath doesn't begin with the zone_rootpath the original 958 * strpath is returned unchanged. 959 */ 960 static const char * 961 stripzonepath(const char *strpath) 962 { 963 char *str1, *str2; 964 int i; 965 zone_t *zonep = curproc->p_zone; 966 967 if (zonep->zone_rootpath == NULL || strpath == NULL) { 968 return (NULL); 969 } 970 971 /* 972 * we check for the end of the string at one past the 973 * current position because the zone_rootpath always 974 * ends with "/" but we don't want to strip that off. 975 */ 976 str1 = zonep->zone_rootpath; 977 str2 = (char *)strpath; 978 ASSERT(str1[0] != '\0'); 979 for (i = 0; str1[i + 1] != '\0'; i++) { 980 if (str1[i] != str2[i]) 981 return ((char *)strpath); 982 } 983 return (&str2[i]); 984 } 985 986 /* 987 * Check to see if our "block device" is actually a file. If so, 988 * automatically add a lofi device, and keep track of this fact. 989 */ 990 static int 991 lofi_add(const char *fsname, struct vfs *vfsp, 992 mntopts_t *mntopts, struct mounta *uap) 993 { 994 int fromspace = (uap->flags & MS_SYSSPACE) ? 995 UIO_SYSSPACE : UIO_USERSPACE; 996 struct lofi_ioctl *li = NULL; 997 struct vnode *vp = NULL; 998 struct pathname pn = { NULL }; 999 ldi_ident_t ldi_id; 1000 ldi_handle_t ldi_hdl; 1001 int minor; 1002 int err = 0; 1003 1004 if (fsname == NULL) 1005 return (0); 1006 if (strcmp(fsname, "mntfs") == 0 || strcmp(fsname, "lofs") == 0) 1007 return (0); 1008 1009 if (pn_get(uap->spec, fromspace, &pn) != 0) 1010 return (0); 1011 1012 if (lookupname(uap->spec, fromspace, FOLLOW, NULL, &vp) != 0) 1013 goto out; 1014 1015 if (vp->v_type != VREG) 1016 goto out; 1017 1018 /* OK, this is a lofi mount. */ 1019 1020 if ((uap->flags & (MS_REMOUNT|MS_GLOBAL)) || 1021 vfs_optionisset_nolock(mntopts, MNTOPT_SUID, NULL) || 1022 vfs_optionisset_nolock(mntopts, MNTOPT_SETUID, NULL) || 1023 vfs_optionisset_nolock(mntopts, MNTOPT_DEVICES, NULL)) { 1024 err = EINVAL; 1025 goto out; 1026 } 1027 1028 ldi_id = ldi_ident_from_anon(); 1029 li = kmem_zalloc(sizeof (*li), KM_SLEEP); 1030 (void) strlcpy(li->li_filename, pn.pn_path, MAXPATHLEN + 1); 1031 1032 /* 1033 * The lofi control node is currently exclusive-open. We'd like 1034 * to improve this, but in the meantime, we'll loop waiting for 1035 * access. 1036 */ 1037 for (;;) { 1038 err = ldi_open_by_name("/dev/lofictl", FREAD | FWRITE | FEXCL, 1039 kcred, &ldi_hdl, ldi_id); 1040 1041 if (err != EBUSY) 1042 break; 1043 1044 if ((err = delay_sig(hz / 8)) == EINTR) 1045 break; 1046 } 1047 1048 if (err) 1049 goto out2; 1050 1051 err = ldi_ioctl(ldi_hdl, LOFI_MAP_FILE, (intptr_t)li, 1052 FREAD | FWRITE | FEXCL | FKIOCTL, kcred, &minor); 1053 1054 (void) ldi_close(ldi_hdl, FREAD | FWRITE | FEXCL, kcred); 1055 1056 if (!err) 1057 vfsp->vfs_lofi_minor = minor; 1058 1059 out2: 1060 ldi_ident_release(ldi_id); 1061 out: 1062 if (li != NULL) 1063 kmem_free(li, sizeof (*li)); 1064 if (vp != NULL) 1065 VN_RELE(vp); 1066 pn_free(&pn); 1067 return (err); 1068 } 1069 1070 static void 1071 lofi_remove(struct vfs *vfsp) 1072 { 1073 struct lofi_ioctl *li = NULL; 1074 ldi_ident_t ldi_id; 1075 ldi_handle_t ldi_hdl; 1076 int err; 1077 1078 if (vfsp->vfs_lofi_minor == 0) 1079 return; 1080 1081 ldi_id = ldi_ident_from_anon(); 1082 1083 li = kmem_zalloc(sizeof (*li), KM_SLEEP); 1084 li->li_minor = vfsp->vfs_lofi_minor; 1085 li->li_cleanup = B_TRUE; 1086 1087 do { 1088 err = ldi_open_by_name("/dev/lofictl", FREAD | FWRITE | FEXCL, 1089 kcred, &ldi_hdl, ldi_id); 1090 } while (err == EBUSY); 1091 1092 if (err) 1093 goto out; 1094 1095 err = ldi_ioctl(ldi_hdl, LOFI_UNMAP_FILE_MINOR, (intptr_t)li, 1096 FREAD | FWRITE | FEXCL | FKIOCTL, kcred, NULL); 1097 1098 (void) ldi_close(ldi_hdl, FREAD | FWRITE | FEXCL, kcred); 1099 1100 if (!err) 1101 vfsp->vfs_lofi_minor = 0; 1102 1103 out: 1104 ldi_ident_release(ldi_id); 1105 if (li != NULL) 1106 kmem_free(li, sizeof (*li)); 1107 } 1108 1109 /* 1110 * Common mount code. Called from the system call entry point, from autofs, 1111 * nfsv4 trigger mounts, and from pxfs. 1112 * 1113 * Takes the effective file system type, mount arguments, the mount point 1114 * vnode, flags specifying whether the mount is a remount and whether it 1115 * should be entered into the vfs list, and credentials. Fills in its vfspp 1116 * parameter with the mounted file system instance's vfs. 1117 * 1118 * Note that the effective file system type is specified as a string. It may 1119 * be null, in which case it's determined from the mount arguments, and may 1120 * differ from the type specified in the mount arguments; this is a hook to 1121 * allow interposition when instantiating file system instances. 1122 * 1123 * The caller is responsible for releasing its own hold on the mount point 1124 * vp (this routine does its own hold when necessary). 1125 * Also note that for remounts, the mount point vp should be the vnode for 1126 * the root of the file system rather than the vnode that the file system 1127 * is mounted on top of. 1128 */ 1129 int 1130 domount(char *fsname, struct mounta *uap, vnode_t *vp, struct cred *credp, 1131 struct vfs **vfspp) 1132 { 1133 struct vfssw *vswp; 1134 vfsops_t *vfsops; 1135 struct vfs *vfsp; 1136 struct vnode *bvp; 1137 dev_t bdev = 0; 1138 mntopts_t mnt_mntopts; 1139 int error = 0; 1140 int copyout_error = 0; 1141 int ovflags; 1142 char *opts = uap->optptr; 1143 char *inargs = opts; 1144 int optlen = uap->optlen; 1145 int remount; 1146 int rdonly; 1147 int nbmand = 0; 1148 int delmip = 0; 1149 int addmip = 0; 1150 int splice = ((uap->flags & MS_NOSPLICE) == 0); 1151 int fromspace = (uap->flags & MS_SYSSPACE) ? 1152 UIO_SYSSPACE : UIO_USERSPACE; 1153 char *resource = NULL, *mountpt = NULL; 1154 refstr_t *oldresource, *oldmntpt; 1155 struct pathname pn, rpn; 1156 vsk_anchor_t *vskap; 1157 char fstname[FSTYPSZ]; 1158 1159 /* 1160 * The v_flag value for the mount point vp is permanently set 1161 * to VVFSLOCK so that no one bypasses the vn_vfs*locks routine 1162 * for mount point locking. 1163 */ 1164 mutex_enter(&vp->v_lock); 1165 vp->v_flag |= VVFSLOCK; 1166 mutex_exit(&vp->v_lock); 1167 1168 mnt_mntopts.mo_count = 0; 1169 /* 1170 * Find the ops vector to use to invoke the file system-specific mount 1171 * method. If the fsname argument is non-NULL, use it directly. 1172 * Otherwise, dig the file system type information out of the mount 1173 * arguments. 1174 * 1175 * A side effect is to hold the vfssw entry. 1176 * 1177 * Mount arguments can be specified in several ways, which are 1178 * distinguished by flag bit settings. The preferred way is to set 1179 * MS_OPTIONSTR, indicating an 8 argument mount with the file system 1180 * type supplied as a character string and the last two arguments 1181 * being a pointer to a character buffer and the size of the buffer. 1182 * On entry, the buffer holds a null terminated list of options; on 1183 * return, the string is the list of options the file system 1184 * recognized. If MS_DATA is set arguments five and six point to a 1185 * block of binary data which the file system interprets. 1186 * A further wrinkle is that some callers don't set MS_FSS and MS_DATA 1187 * consistently with these conventions. To handle them, we check to 1188 * see whether the pointer to the file system name has a numeric value 1189 * less than 256. If so, we treat it as an index. 1190 */ 1191 if (fsname != NULL) { 1192 if ((vswp = vfs_getvfssw(fsname)) == NULL) { 1193 return (EINVAL); 1194 } 1195 } else if (uap->flags & (MS_OPTIONSTR | MS_DATA | MS_FSS)) { 1196 size_t n; 1197 uint_t fstype; 1198 1199 fsname = fstname; 1200 1201 if ((fstype = (uintptr_t)uap->fstype) < 256) { 1202 RLOCK_VFSSW(); 1203 if (fstype == 0 || fstype >= nfstype || 1204 !ALLOCATED_VFSSW(&vfssw[fstype])) { 1205 RUNLOCK_VFSSW(); 1206 return (EINVAL); 1207 } 1208 (void) strcpy(fsname, vfssw[fstype].vsw_name); 1209 RUNLOCK_VFSSW(); 1210 if ((vswp = vfs_getvfssw(fsname)) == NULL) 1211 return (EINVAL); 1212 } else { 1213 /* 1214 * Handle either kernel or user address space. 1215 */ 1216 if (uap->flags & MS_SYSSPACE) { 1217 error = copystr(uap->fstype, fsname, 1218 FSTYPSZ, &n); 1219 } else { 1220 error = copyinstr(uap->fstype, fsname, 1221 FSTYPSZ, &n); 1222 } 1223 if (error) { 1224 if (error == ENAMETOOLONG) 1225 return (EINVAL); 1226 return (error); 1227 } 1228 if ((vswp = vfs_getvfssw(fsname)) == NULL) 1229 return (EINVAL); 1230 } 1231 } else { 1232 if ((vswp = vfs_getvfsswbyvfsops(vfs_getops(rootvfs))) == NULL) 1233 return (EINVAL); 1234 } 1235 if (!VFS_INSTALLED(vswp)) 1236 return (EINVAL); 1237 vfsops = &vswp->vsw_vfsops; 1238 1239 vfs_copyopttbl(&vswp->vsw_optproto, &mnt_mntopts); 1240 /* 1241 * Fetch mount options and parse them for generic vfs options 1242 */ 1243 if (uap->flags & MS_OPTIONSTR) { 1244 /* 1245 * Limit the buffer size 1246 */ 1247 if (optlen < 0 || optlen > MAX_MNTOPT_STR) { 1248 error = EINVAL; 1249 goto errout; 1250 } 1251 if ((uap->flags & MS_SYSSPACE) == 0) { 1252 inargs = kmem_alloc(MAX_MNTOPT_STR, KM_SLEEP); 1253 inargs[0] = '\0'; 1254 if (optlen) { 1255 error = copyinstr(opts, inargs, (size_t)optlen, 1256 NULL); 1257 if (error) { 1258 goto errout; 1259 } 1260 } 1261 } 1262 vfs_parsemntopts(&mnt_mntopts, inargs, 0); 1263 } 1264 /* 1265 * Flag bits override the options string. 1266 */ 1267 if (uap->flags & MS_REMOUNT) 1268 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_REMOUNT, NULL, 0, 0); 1269 if (uap->flags & MS_RDONLY) 1270 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_RO, NULL, 0, 0); 1271 if (uap->flags & MS_NOSUID) 1272 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL, 0, 0); 1273 1274 /* 1275 * Check if this is a remount; must be set in the option string and 1276 * the file system must support a remount option. 1277 */ 1278 if (remount = vfs_optionisset_nolock(&mnt_mntopts, 1279 MNTOPT_REMOUNT, NULL)) { 1280 if (!(vswp->vsw_flag & VSW_CANREMOUNT)) { 1281 error = ENOTSUP; 1282 goto errout; 1283 } 1284 uap->flags |= MS_REMOUNT; 1285 } 1286 1287 /* 1288 * uap->flags and vfs_optionisset() should agree. 1289 */ 1290 if (rdonly = vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_RO, NULL)) { 1291 uap->flags |= MS_RDONLY; 1292 } 1293 if (vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL)) { 1294 uap->flags |= MS_NOSUID; 1295 } 1296 nbmand = vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_NBMAND, NULL); 1297 ASSERT(splice || !remount); 1298 /* 1299 * If we are splicing the fs into the namespace, 1300 * perform mount point checks. 1301 * 1302 * We want to resolve the path for the mount point to eliminate 1303 * '.' and ".." and symlinks in mount points; we can't do the 1304 * same for the resource string, since it would turn 1305 * "/dev/dsk/c0t0d0s0" into "/devices/pci@...". We need to do 1306 * this before grabbing vn_vfswlock(), because otherwise we 1307 * would deadlock with lookuppn(). 1308 */ 1309 if (splice) { 1310 ASSERT(vp->v_count > 0); 1311 1312 /* 1313 * Pick up mount point and device from appropriate space. 1314 */ 1315 if (pn_get(uap->spec, fromspace, &pn) == 0) { 1316 resource = kmem_alloc(pn.pn_pathlen + 1, 1317 KM_SLEEP); 1318 (void) strcpy(resource, pn.pn_path); 1319 pn_free(&pn); 1320 } 1321 /* 1322 * Do a lookupname prior to taking the 1323 * writelock. Mark this as completed if 1324 * successful for later cleanup and addition to 1325 * the mount in progress table. 1326 */ 1327 if ((uap->flags & MS_GLOBAL) == 0 && 1328 lookupname(uap->spec, fromspace, 1329 FOLLOW, NULL, &bvp) == 0) { 1330 addmip = 1; 1331 } 1332 1333 if ((error = pn_get(uap->dir, fromspace, &pn)) == 0) { 1334 pathname_t *pnp; 1335 1336 if (*pn.pn_path != '/') { 1337 error = EINVAL; 1338 pn_free(&pn); 1339 goto errout; 1340 } 1341 pn_alloc(&rpn); 1342 /* 1343 * Kludge to prevent autofs from deadlocking with 1344 * itself when it calls domount(). 1345 * 1346 * If autofs is calling, it is because it is doing 1347 * (autofs) mounts in the process of an NFS mount. A 1348 * lookuppn() here would cause us to block waiting for 1349 * said NFS mount to complete, which can't since this 1350 * is the thread that was supposed to doing it. 1351 */ 1352 if (fromspace == UIO_USERSPACE) { 1353 if ((error = lookuppn(&pn, &rpn, FOLLOW, NULL, 1354 NULL)) == 0) { 1355 pnp = &rpn; 1356 } else { 1357 /* 1358 * The file disappeared or otherwise 1359 * became inaccessible since we opened 1360 * it; might as well fail the mount 1361 * since the mount point is no longer 1362 * accessible. 1363 */ 1364 pn_free(&rpn); 1365 pn_free(&pn); 1366 goto errout; 1367 } 1368 } else { 1369 pnp = &pn; 1370 } 1371 mountpt = kmem_alloc(pnp->pn_pathlen + 1, KM_SLEEP); 1372 (void) strcpy(mountpt, pnp->pn_path); 1373 1374 /* 1375 * If the addition of the zone's rootpath 1376 * would push us over a total path length 1377 * of MAXPATHLEN, we fail the mount with 1378 * ENAMETOOLONG, which is what we would have 1379 * gotten if we were trying to perform the same 1380 * mount in the global zone. 1381 * 1382 * strlen() doesn't count the trailing 1383 * '\0', but zone_rootpathlen counts both a 1384 * trailing '/' and the terminating '\0'. 1385 */ 1386 if ((curproc->p_zone->zone_rootpathlen - 1 + 1387 strlen(mountpt)) > MAXPATHLEN || 1388 (resource != NULL && 1389 (curproc->p_zone->zone_rootpathlen - 1 + 1390 strlen(resource)) > MAXPATHLEN)) { 1391 error = ENAMETOOLONG; 1392 } 1393 1394 pn_free(&rpn); 1395 pn_free(&pn); 1396 } 1397 1398 if (error) 1399 goto errout; 1400 1401 /* 1402 * Prevent path name resolution from proceeding past 1403 * the mount point. 1404 */ 1405 if (vn_vfswlock(vp) != 0) { 1406 error = EBUSY; 1407 goto errout; 1408 } 1409 1410 /* 1411 * Verify that it's legitimate to establish a mount on 1412 * the prospective mount point. 1413 */ 1414 if (vn_mountedvfs(vp) != NULL) { 1415 /* 1416 * The mount point lock was obtained after some 1417 * other thread raced through and established a mount. 1418 */ 1419 vn_vfsunlock(vp); 1420 error = EBUSY; 1421 goto errout; 1422 } 1423 if (vp->v_flag & VNOMOUNT) { 1424 vn_vfsunlock(vp); 1425 error = EINVAL; 1426 goto errout; 1427 } 1428 } 1429 if ((uap->flags & (MS_DATA | MS_OPTIONSTR)) == 0) { 1430 uap->dataptr = NULL; 1431 uap->datalen = 0; 1432 } 1433 1434 /* 1435 * If this is a remount, we don't want to create a new VFS. 1436 * Instead, we pass the existing one with a remount flag. 1437 */ 1438 if (remount) { 1439 /* 1440 * Confirm that the mount point is the root vnode of the 1441 * file system that is being remounted. 1442 * This can happen if the user specifies a different 1443 * mount point directory pathname in the (re)mount command. 1444 * 1445 * Code below can only be reached if splice is true, so it's 1446 * safe to do vn_vfsunlock() here. 1447 */ 1448 if ((vp->v_flag & VROOT) == 0) { 1449 vn_vfsunlock(vp); 1450 error = ENOENT; 1451 goto errout; 1452 } 1453 /* 1454 * Disallow making file systems read-only unless file system 1455 * explicitly allows it in its vfssw. Ignore other flags. 1456 */ 1457 if (rdonly && vn_is_readonly(vp) == 0 && 1458 (vswp->vsw_flag & VSW_CANRWRO) == 0) { 1459 vn_vfsunlock(vp); 1460 error = EINVAL; 1461 goto errout; 1462 } 1463 /* 1464 * Disallow changing the NBMAND disposition of the file 1465 * system on remounts. 1466 */ 1467 if ((nbmand && ((vp->v_vfsp->vfs_flag & VFS_NBMAND) == 0)) || 1468 (!nbmand && (vp->v_vfsp->vfs_flag & VFS_NBMAND))) { 1469 vn_vfsunlock(vp); 1470 error = EINVAL; 1471 goto errout; 1472 } 1473 vfsp = vp->v_vfsp; 1474 ovflags = vfsp->vfs_flag; 1475 vfsp->vfs_flag |= VFS_REMOUNT; 1476 vfsp->vfs_flag &= ~VFS_RDONLY; 1477 } else { 1478 vfsp = vfs_alloc(KM_SLEEP); 1479 VFS_INIT(vfsp, vfsops, NULL); 1480 } 1481 1482 VFS_HOLD(vfsp); 1483 1484 if ((error = lofi_add(fsname, vfsp, &mnt_mntopts, uap)) != 0) { 1485 if (!remount) { 1486 if (splice) 1487 vn_vfsunlock(vp); 1488 vfs_free(vfsp); 1489 } else { 1490 vn_vfsunlock(vp); 1491 VFS_RELE(vfsp); 1492 } 1493 goto errout; 1494 } 1495 1496 /* 1497 * PRIV_SYS_MOUNT doesn't mean you can become root. 1498 */ 1499 if (vfsp->vfs_lofi_minor != 0) { 1500 uap->flags |= MS_NOSUID; 1501 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL, 0, 0); 1502 } 1503 1504 /* 1505 * The vfs_reflock is not used anymore the code below explicitly 1506 * holds it preventing others accesing it directly. 1507 */ 1508 if ((sema_tryp(&vfsp->vfs_reflock) == 0) && 1509 !(vfsp->vfs_flag & VFS_REMOUNT)) 1510 cmn_err(CE_WARN, 1511 "mount type %s couldn't get vfs_reflock", vswp->vsw_name); 1512 1513 /* 1514 * Lock the vfs. If this is a remount we want to avoid spurious umount 1515 * failures that happen as a side-effect of fsflush() and other mount 1516 * and unmount operations that might be going on simultaneously and 1517 * may have locked the vfs currently. To not return EBUSY immediately 1518 * here we use vfs_lock_wait() instead vfs_lock() for the remount case. 1519 */ 1520 if (!remount) { 1521 if (error = vfs_lock(vfsp)) { 1522 vfsp->vfs_flag = ovflags; 1523 1524 lofi_remove(vfsp); 1525 1526 if (splice) 1527 vn_vfsunlock(vp); 1528 vfs_free(vfsp); 1529 goto errout; 1530 } 1531 } else { 1532 vfs_lock_wait(vfsp); 1533 } 1534 1535 /* 1536 * Add device to mount in progress table, global mounts require special 1537 * handling. It is possible that we have already done the lookupname 1538 * on a spliced, non-global fs. If so, we don't want to do it again 1539 * since we cannot do a lookupname after taking the 1540 * wlock above. This case is for a non-spliced, non-global filesystem. 1541 */ 1542 if (!addmip) { 1543 if ((uap->flags & MS_GLOBAL) == 0 && 1544 lookupname(uap->spec, fromspace, FOLLOW, NULL, &bvp) == 0) { 1545 addmip = 1; 1546 } 1547 } 1548 1549 if (addmip) { 1550 vnode_t *lvp = NULL; 1551 1552 error = vfs_get_lofi(vfsp, &lvp); 1553 if (error > 0) { 1554 lofi_remove(vfsp); 1555 1556 if (splice) 1557 vn_vfsunlock(vp); 1558 vfs_unlock(vfsp); 1559 1560 if (remount) { 1561 VFS_RELE(vfsp); 1562 } else { 1563 vfs_free(vfsp); 1564 } 1565 1566 goto errout; 1567 } else if (error == -1) { 1568 bdev = bvp->v_rdev; 1569 VN_RELE(bvp); 1570 } else { 1571 bdev = lvp->v_rdev; 1572 VN_RELE(lvp); 1573 VN_RELE(bvp); 1574 } 1575 1576 vfs_addmip(bdev, vfsp); 1577 addmip = 0; 1578 delmip = 1; 1579 } 1580 /* 1581 * Invalidate cached entry for the mount point. 1582 */ 1583 if (splice) 1584 dnlc_purge_vp(vp); 1585 1586 /* 1587 * If have an option string but the filesystem doesn't supply a 1588 * prototype options table, create a table with the global 1589 * options and sufficient room to accept all the options in the 1590 * string. Then parse the passed in option string 1591 * accepting all the options in the string. This gives us an 1592 * option table with all the proper cancel properties for the 1593 * global options. 1594 * 1595 * Filesystems that supply a prototype options table are handled 1596 * earlier in this function. 1597 */ 1598 if (uap->flags & MS_OPTIONSTR) { 1599 if (!(vswp->vsw_flag & VSW_HASPROTO)) { 1600 mntopts_t tmp_mntopts; 1601 1602 tmp_mntopts.mo_count = 0; 1603 vfs_createopttbl_extend(&tmp_mntopts, inargs, 1604 &mnt_mntopts); 1605 vfs_parsemntopts(&tmp_mntopts, inargs, 1); 1606 vfs_swapopttbl_nolock(&mnt_mntopts, &tmp_mntopts); 1607 vfs_freeopttbl(&tmp_mntopts); 1608 } 1609 } 1610 1611 /* 1612 * Serialize with zone creations. 1613 */ 1614 mount_in_progress(); 1615 /* 1616 * Instantiate (or reinstantiate) the file system. If appropriate, 1617 * splice it into the file system name space. 1618 * 1619 * We want VFS_MOUNT() to be able to override the vfs_resource 1620 * string if necessary (ie, mntfs), and also for a remount to 1621 * change the same (necessary when remounting '/' during boot). 1622 * So we set up vfs_mntpt and vfs_resource to what we think they 1623 * should be, then hand off control to VFS_MOUNT() which can 1624 * override this. 1625 * 1626 * For safety's sake, when changing vfs_resource or vfs_mntpt of 1627 * a vfs which is on the vfs list (i.e. during a remount), we must 1628 * never set those fields to NULL. Several bits of code make 1629 * assumptions that the fields are always valid. 1630 */ 1631 vfs_swapopttbl(&mnt_mntopts, &vfsp->vfs_mntopts); 1632 if (remount) { 1633 if ((oldresource = vfsp->vfs_resource) != NULL) 1634 refstr_hold(oldresource); 1635 if ((oldmntpt = vfsp->vfs_mntpt) != NULL) 1636 refstr_hold(oldmntpt); 1637 } 1638 vfs_setresource(vfsp, resource); 1639 vfs_setmntpoint(vfsp, mountpt); 1640 1641 /* 1642 * going to mount on this vnode, so notify. 1643 */ 1644 vnevent_mountedover(vp, NULL); 1645 error = VFS_MOUNT(vfsp, vp, uap, credp); 1646 1647 if (uap->flags & MS_RDONLY) 1648 vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0); 1649 if (uap->flags & MS_NOSUID) 1650 vfs_setmntopt(vfsp, MNTOPT_NOSUID, NULL, 0); 1651 if (uap->flags & MS_GLOBAL) 1652 vfs_setmntopt(vfsp, MNTOPT_GLOBAL, NULL, 0); 1653 1654 if (error) { 1655 lofi_remove(vfsp); 1656 1657 if (remount) { 1658 /* put back pre-remount options */ 1659 vfs_swapopttbl(&mnt_mntopts, &vfsp->vfs_mntopts); 1660 vfs_setmntpoint(vfsp, (stripzonepath( 1661 refstr_value(oldmntpt)))); 1662 if (oldmntpt) 1663 refstr_rele(oldmntpt); 1664 vfs_setresource(vfsp, (stripzonepath( 1665 refstr_value(oldresource)))); 1666 if (oldresource) 1667 refstr_rele(oldresource); 1668 vfsp->vfs_flag = ovflags; 1669 vfs_unlock(vfsp); 1670 VFS_RELE(vfsp); 1671 } else { 1672 vfs_unlock(vfsp); 1673 vfs_freemnttab(vfsp); 1674 vfs_free(vfsp); 1675 } 1676 } else { 1677 /* 1678 * Set the mount time to now 1679 */ 1680 vfsp->vfs_mtime = ddi_get_time(); 1681 if (remount) { 1682 vfsp->vfs_flag &= ~VFS_REMOUNT; 1683 if (oldresource) 1684 refstr_rele(oldresource); 1685 if (oldmntpt) 1686 refstr_rele(oldmntpt); 1687 } else if (splice) { 1688 /* 1689 * Link vfsp into the name space at the mount 1690 * point. Vfs_add() is responsible for 1691 * holding the mount point which will be 1692 * released when vfs_remove() is called. 1693 */ 1694 vfs_add(vp, vfsp, uap->flags); 1695 } else { 1696 /* 1697 * Hold the reference to file system which is 1698 * not linked into the name space. 1699 */ 1700 vfsp->vfs_zone = NULL; 1701 VFS_HOLD(vfsp); 1702 vfsp->vfs_vnodecovered = NULL; 1703 } 1704 /* 1705 * Set flags for global options encountered 1706 */ 1707 if (vfs_optionisset(vfsp, MNTOPT_RO, NULL)) 1708 vfsp->vfs_flag |= VFS_RDONLY; 1709 else 1710 vfsp->vfs_flag &= ~VFS_RDONLY; 1711 if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) { 1712 vfsp->vfs_flag |= (VFS_NOSETUID|VFS_NODEVICES); 1713 } else { 1714 if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) 1715 vfsp->vfs_flag |= VFS_NODEVICES; 1716 else 1717 vfsp->vfs_flag &= ~VFS_NODEVICES; 1718 if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) 1719 vfsp->vfs_flag |= VFS_NOSETUID; 1720 else 1721 vfsp->vfs_flag &= ~VFS_NOSETUID; 1722 } 1723 if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) 1724 vfsp->vfs_flag |= VFS_NBMAND; 1725 else 1726 vfsp->vfs_flag &= ~VFS_NBMAND; 1727 1728 if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) 1729 vfsp->vfs_flag |= VFS_XATTR; 1730 else 1731 vfsp->vfs_flag &= ~VFS_XATTR; 1732 1733 if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) 1734 vfsp->vfs_flag |= VFS_NOEXEC; 1735 else 1736 vfsp->vfs_flag &= ~VFS_NOEXEC; 1737 1738 /* 1739 * Now construct the output option string of options 1740 * we recognized. 1741 */ 1742 if (uap->flags & MS_OPTIONSTR) { 1743 vfs_list_read_lock(); 1744 copyout_error = vfs_buildoptionstr( 1745 &vfsp->vfs_mntopts, inargs, optlen); 1746 vfs_list_unlock(); 1747 if (copyout_error == 0 && 1748 (uap->flags & MS_SYSSPACE) == 0) { 1749 copyout_error = copyoutstr(inargs, opts, 1750 optlen, NULL); 1751 } 1752 } 1753 1754 /* 1755 * If this isn't a remount, set up the vopstats before 1756 * anyone can touch this. We only allow spliced file 1757 * systems (file systems which are in the namespace) to 1758 * have the VFS_STATS flag set. 1759 * NOTE: PxFS mounts the underlying file system with 1760 * MS_NOSPLICE set and copies those vfs_flags to its private 1761 * vfs structure. As a result, PxFS should never have 1762 * the VFS_STATS flag or else we might access the vfs 1763 * statistics-related fields prior to them being 1764 * properly initialized. 1765 */ 1766 if (!remount && (vswp->vsw_flag & VSW_STATS) && splice) { 1767 initialize_vopstats(&vfsp->vfs_vopstats); 1768 /* 1769 * We need to set vfs_vskap to NULL because there's 1770 * a chance it won't be set below. This is checked 1771 * in teardown_vopstats() so we can't have garbage. 1772 */ 1773 vfsp->vfs_vskap = NULL; 1774 vfsp->vfs_flag |= VFS_STATS; 1775 vfsp->vfs_fstypevsp = get_fstype_vopstats(vfsp, vswp); 1776 } 1777 1778 if (vswp->vsw_flag & VSW_XID) 1779 vfsp->vfs_flag |= VFS_XID; 1780 1781 vfs_unlock(vfsp); 1782 } 1783 mount_completed(); 1784 if (splice) 1785 vn_vfsunlock(vp); 1786 1787 if ((error == 0) && (copyout_error == 0)) { 1788 if (!remount) { 1789 /* 1790 * Don't call get_vskstat_anchor() while holding 1791 * locks since it allocates memory and calls 1792 * VFS_STATVFS(). For NFS, the latter can generate 1793 * an over-the-wire call. 1794 */ 1795 vskap = get_vskstat_anchor(vfsp); 1796 /* Only take the lock if we have something to do */ 1797 if (vskap != NULL) { 1798 vfs_lock_wait(vfsp); 1799 if (vfsp->vfs_flag & VFS_STATS) { 1800 vfsp->vfs_vskap = vskap; 1801 } 1802 vfs_unlock(vfsp); 1803 } 1804 } 1805 /* Return vfsp to caller. */ 1806 *vfspp = vfsp; 1807 } 1808 errout: 1809 vfs_freeopttbl(&mnt_mntopts); 1810 if (resource != NULL) 1811 kmem_free(resource, strlen(resource) + 1); 1812 if (mountpt != NULL) 1813 kmem_free(mountpt, strlen(mountpt) + 1); 1814 /* 1815 * It is possible we errored prior to adding to mount in progress 1816 * table. Must free vnode we acquired with successful lookupname. 1817 */ 1818 if (addmip) 1819 VN_RELE(bvp); 1820 if (delmip) 1821 vfs_delmip(vfsp); 1822 ASSERT(vswp != NULL); 1823 vfs_unrefvfssw(vswp); 1824 if (inargs != opts) 1825 kmem_free(inargs, MAX_MNTOPT_STR); 1826 if (copyout_error) { 1827 lofi_remove(vfsp); 1828 VFS_RELE(vfsp); 1829 error = copyout_error; 1830 } 1831 return (error); 1832 } 1833 1834 static void 1835 vfs_setpath(struct vfs *vfsp, refstr_t **refp, const char *newpath) 1836 { 1837 size_t len; 1838 refstr_t *ref; 1839 zone_t *zone = curproc->p_zone; 1840 char *sp; 1841 int have_list_lock = 0; 1842 1843 ASSERT(!VFS_ON_LIST(vfsp) || vfs_lock_held(vfsp)); 1844 1845 /* 1846 * New path must be less than MAXPATHLEN because mntfs 1847 * will only display up to MAXPATHLEN bytes. This is currently 1848 * safe, because domount() uses pn_get(), and other callers 1849 * similarly cap the size to fewer than MAXPATHLEN bytes. 1850 */ 1851 1852 ASSERT(strlen(newpath) < MAXPATHLEN); 1853 1854 /* mntfs requires consistency while vfs list lock is held */ 1855 1856 if (VFS_ON_LIST(vfsp)) { 1857 have_list_lock = 1; 1858 vfs_list_lock(); 1859 } 1860 1861 if (*refp != NULL) 1862 refstr_rele(*refp); 1863 1864 /* Do we need to modify the path? */ 1865 1866 if (zone == global_zone || *newpath != '/') { 1867 ref = refstr_alloc(newpath); 1868 goto out; 1869 } 1870 1871 /* 1872 * Truncate the trailing '/' in the zoneroot, and merge 1873 * in the zone's rootpath with the "newpath" (resource 1874 * or mountpoint) passed in. 1875 * 1876 * The size of the required buffer is thus the size of 1877 * the buffer required for the passed-in newpath 1878 * (strlen(newpath) + 1), plus the size of the buffer 1879 * required to hold zone_rootpath (zone_rootpathlen) 1880 * minus one for one of the now-superfluous NUL 1881 * terminations, minus one for the trailing '/'. 1882 * 1883 * That gives us: 1884 * 1885 * (strlen(newpath) + 1) + zone_rootpathlen - 1 - 1 1886 * 1887 * Which is what we have below. 1888 */ 1889 1890 len = strlen(newpath) + zone->zone_rootpathlen - 1; 1891 sp = kmem_alloc(len, KM_SLEEP); 1892 1893 /* 1894 * Copy everything including the trailing slash, which 1895 * we then overwrite with the NUL character. 1896 */ 1897 1898 (void) strcpy(sp, zone->zone_rootpath); 1899 sp[zone->zone_rootpathlen - 2] = '\0'; 1900 (void) strcat(sp, newpath); 1901 1902 ref = refstr_alloc(sp); 1903 kmem_free(sp, len); 1904 out: 1905 *refp = ref; 1906 1907 if (have_list_lock) { 1908 vfs_mnttab_modtimeupd(); 1909 vfs_list_unlock(); 1910 } 1911 } 1912 1913 /* 1914 * Record a mounted resource name in a vfs structure. 1915 * If vfsp is already mounted, caller must hold the vfs lock. 1916 */ 1917 void 1918 vfs_setresource(struct vfs *vfsp, const char *resource) 1919 { 1920 if (resource == NULL || resource[0] == '\0') 1921 resource = VFS_NORESOURCE; 1922 vfs_setpath(vfsp, &vfsp->vfs_resource, resource); 1923 } 1924 1925 /* 1926 * Record a mount point name in a vfs structure. 1927 * If vfsp is already mounted, caller must hold the vfs lock. 1928 */ 1929 void 1930 vfs_setmntpoint(struct vfs *vfsp, const char *mntpt) 1931 { 1932 if (mntpt == NULL || mntpt[0] == '\0') 1933 mntpt = VFS_NOMNTPT; 1934 vfs_setpath(vfsp, &vfsp->vfs_mntpt, mntpt); 1935 } 1936 1937 /* Returns the vfs_resource. Caller must call refstr_rele() when finished. */ 1938 1939 refstr_t * 1940 vfs_getresource(const struct vfs *vfsp) 1941 { 1942 refstr_t *resource; 1943 1944 vfs_list_read_lock(); 1945 resource = vfsp->vfs_resource; 1946 refstr_hold(resource); 1947 vfs_list_unlock(); 1948 1949 return (resource); 1950 } 1951 1952 /* Returns the vfs_mntpt. Caller must call refstr_rele() when finished. */ 1953 1954 refstr_t * 1955 vfs_getmntpoint(const struct vfs *vfsp) 1956 { 1957 refstr_t *mntpt; 1958 1959 vfs_list_read_lock(); 1960 mntpt = vfsp->vfs_mntpt; 1961 refstr_hold(mntpt); 1962 vfs_list_unlock(); 1963 1964 return (mntpt); 1965 } 1966 1967 /* 1968 * Create an empty options table with enough empty slots to hold all 1969 * The options in the options string passed as an argument. 1970 * Potentially prepend another options table. 1971 * 1972 * Note: caller is responsible for locking the vfs list, if needed, 1973 * to protect mops. 1974 */ 1975 static void 1976 vfs_createopttbl_extend(mntopts_t *mops, const char *opts, 1977 const mntopts_t *mtmpl) 1978 { 1979 const char *s = opts; 1980 uint_t count; 1981 1982 if (opts == NULL || *opts == '\0') { 1983 count = 0; 1984 } else { 1985 count = 1; 1986 1987 /* 1988 * Count number of options in the string 1989 */ 1990 for (s = strchr(s, ','); s != NULL; s = strchr(s, ',')) { 1991 count++; 1992 s++; 1993 } 1994 } 1995 vfs_copyopttbl_extend(mtmpl, mops, count); 1996 } 1997 1998 /* 1999 * Create an empty options table with enough empty slots to hold all 2000 * The options in the options string passed as an argument. 2001 * 2002 * This function is *not* for general use by filesystems. 2003 * 2004 * Note: caller is responsible for locking the vfs list, if needed, 2005 * to protect mops. 2006 */ 2007 void 2008 vfs_createopttbl(mntopts_t *mops, const char *opts) 2009 { 2010 vfs_createopttbl_extend(mops, opts, NULL); 2011 } 2012 2013 2014 /* 2015 * Swap two mount options tables 2016 */ 2017 static void 2018 vfs_swapopttbl_nolock(mntopts_t *optbl1, mntopts_t *optbl2) 2019 { 2020 uint_t tmpcnt; 2021 mntopt_t *tmplist; 2022 2023 tmpcnt = optbl2->mo_count; 2024 tmplist = optbl2->mo_list; 2025 optbl2->mo_count = optbl1->mo_count; 2026 optbl2->mo_list = optbl1->mo_list; 2027 optbl1->mo_count = tmpcnt; 2028 optbl1->mo_list = tmplist; 2029 } 2030 2031 static void 2032 vfs_swapopttbl(mntopts_t *optbl1, mntopts_t *optbl2) 2033 { 2034 vfs_list_lock(); 2035 vfs_swapopttbl_nolock(optbl1, optbl2); 2036 vfs_mnttab_modtimeupd(); 2037 vfs_list_unlock(); 2038 } 2039 2040 static char ** 2041 vfs_copycancelopt_extend(char **const moc, int extend) 2042 { 2043 int i = 0; 2044 int j; 2045 char **result; 2046 2047 if (moc != NULL) { 2048 for (; moc[i] != NULL; i++) 2049 /* count number of options to cancel */; 2050 } 2051 2052 if (i + extend == 0) 2053 return (NULL); 2054 2055 result = kmem_alloc((i + extend + 1) * sizeof (char *), KM_SLEEP); 2056 2057 for (j = 0; j < i; j++) { 2058 result[j] = kmem_alloc(strlen(moc[j]) + 1, KM_SLEEP); 2059 (void) strcpy(result[j], moc[j]); 2060 } 2061 for (; j <= i + extend; j++) 2062 result[j] = NULL; 2063 2064 return (result); 2065 } 2066 2067 static void 2068 vfs_copyopt(const mntopt_t *s, mntopt_t *d) 2069 { 2070 char *sp, *dp; 2071 2072 d->mo_flags = s->mo_flags; 2073 d->mo_data = s->mo_data; 2074 sp = s->mo_name; 2075 if (sp != NULL) { 2076 dp = kmem_alloc(strlen(sp) + 1, KM_SLEEP); 2077 (void) strcpy(dp, sp); 2078 d->mo_name = dp; 2079 } else { 2080 d->mo_name = NULL; /* should never happen */ 2081 } 2082 2083 d->mo_cancel = vfs_copycancelopt_extend(s->mo_cancel, 0); 2084 2085 sp = s->mo_arg; 2086 if (sp != NULL) { 2087 dp = kmem_alloc(strlen(sp) + 1, KM_SLEEP); 2088 (void) strcpy(dp, sp); 2089 d->mo_arg = dp; 2090 } else { 2091 d->mo_arg = NULL; 2092 } 2093 } 2094 2095 /* 2096 * Copy a mount options table, possibly allocating some spare 2097 * slots at the end. It is permissible to copy_extend the NULL table. 2098 */ 2099 static void 2100 vfs_copyopttbl_extend(const mntopts_t *smo, mntopts_t *dmo, int extra) 2101 { 2102 uint_t i, count; 2103 mntopt_t *motbl; 2104 2105 /* 2106 * Clear out any existing stuff in the options table being initialized 2107 */ 2108 vfs_freeopttbl(dmo); 2109 count = (smo == NULL) ? 0 : smo->mo_count; 2110 if ((count + extra) == 0) /* nothing to do */ 2111 return; 2112 dmo->mo_count = count + extra; 2113 motbl = kmem_zalloc((count + extra) * sizeof (mntopt_t), KM_SLEEP); 2114 dmo->mo_list = motbl; 2115 for (i = 0; i < count; i++) { 2116 vfs_copyopt(&smo->mo_list[i], &motbl[i]); 2117 } 2118 for (i = count; i < count + extra; i++) { 2119 motbl[i].mo_flags = MO_EMPTY; 2120 } 2121 } 2122 2123 /* 2124 * Copy a mount options table. 2125 * 2126 * This function is *not* for general use by filesystems. 2127 * 2128 * Note: caller is responsible for locking the vfs list, if needed, 2129 * to protect smo and dmo. 2130 */ 2131 void 2132 vfs_copyopttbl(const mntopts_t *smo, mntopts_t *dmo) 2133 { 2134 vfs_copyopttbl_extend(smo, dmo, 0); 2135 } 2136 2137 static char ** 2138 vfs_mergecancelopts(const mntopt_t *mop1, const mntopt_t *mop2) 2139 { 2140 int c1 = 0; 2141 int c2 = 0; 2142 char **result; 2143 char **sp1, **sp2, **dp; 2144 2145 /* 2146 * First we count both lists of cancel options. 2147 * If either is NULL or has no elements, we return a copy of 2148 * the other. 2149 */ 2150 if (mop1->mo_cancel != NULL) { 2151 for (; mop1->mo_cancel[c1] != NULL; c1++) 2152 /* count cancel options in mop1 */; 2153 } 2154 2155 if (c1 == 0) 2156 return (vfs_copycancelopt_extend(mop2->mo_cancel, 0)); 2157 2158 if (mop2->mo_cancel != NULL) { 2159 for (; mop2->mo_cancel[c2] != NULL; c2++) 2160 /* count cancel options in mop2 */; 2161 } 2162 2163 result = vfs_copycancelopt_extend(mop1->mo_cancel, c2); 2164 2165 if (c2 == 0) 2166 return (result); 2167 2168 /* 2169 * When we get here, we've got two sets of cancel options; 2170 * we need to merge the two sets. We know that the result 2171 * array has "c1+c2+1" entries and in the end we might shrink 2172 * it. 2173 * Result now has a copy of the c1 entries from mop1; we'll 2174 * now lookup all the entries of mop2 in mop1 and copy it if 2175 * it is unique. 2176 * This operation is O(n^2) but it's only called once per 2177 * filesystem per duplicate option. This is a situation 2178 * which doesn't arise with the filesystems in ON and 2179 * n is generally 1. 2180 */ 2181 2182 dp = &result[c1]; 2183 for (sp2 = mop2->mo_cancel; *sp2 != NULL; sp2++) { 2184 for (sp1 = mop1->mo_cancel; *sp1 != NULL; sp1++) { 2185 if (strcmp(*sp1, *sp2) == 0) 2186 break; 2187 } 2188 if (*sp1 == NULL) { 2189 /* 2190 * Option *sp2 not found in mop1, so copy it. 2191 * The calls to vfs_copycancelopt_extend() 2192 * guarantee that there's enough room. 2193 */ 2194 *dp = kmem_alloc(strlen(*sp2) + 1, KM_SLEEP); 2195 (void) strcpy(*dp++, *sp2); 2196 } 2197 } 2198 if (dp != &result[c1+c2]) { 2199 size_t bytes = (dp - result + 1) * sizeof (char *); 2200 char **nres = kmem_alloc(bytes, KM_SLEEP); 2201 2202 bcopy(result, nres, bytes); 2203 kmem_free(result, (c1 + c2 + 1) * sizeof (char *)); 2204 result = nres; 2205 } 2206 return (result); 2207 } 2208 2209 /* 2210 * Merge two mount option tables (outer and inner) into one. This is very 2211 * similar to "merging" global variables and automatic variables in C. 2212 * 2213 * This isn't (and doesn't have to be) fast. 2214 * 2215 * This function is *not* for general use by filesystems. 2216 * 2217 * Note: caller is responsible for locking the vfs list, if needed, 2218 * to protect omo, imo & dmo. 2219 */ 2220 void 2221 vfs_mergeopttbl(const mntopts_t *omo, const mntopts_t *imo, mntopts_t *dmo) 2222 { 2223 uint_t i, count; 2224 mntopt_t *mop, *motbl; 2225 uint_t freeidx; 2226 2227 /* 2228 * First determine how much space we need to allocate. 2229 */ 2230 count = omo->mo_count; 2231 for (i = 0; i < imo->mo_count; i++) { 2232 if (imo->mo_list[i].mo_flags & MO_EMPTY) 2233 continue; 2234 if (vfs_hasopt(omo, imo->mo_list[i].mo_name) == NULL) 2235 count++; 2236 } 2237 ASSERT(count >= omo->mo_count && 2238 count <= omo->mo_count + imo->mo_count); 2239 motbl = kmem_alloc(count * sizeof (mntopt_t), KM_SLEEP); 2240 for (i = 0; i < omo->mo_count; i++) 2241 vfs_copyopt(&omo->mo_list[i], &motbl[i]); 2242 freeidx = omo->mo_count; 2243 for (i = 0; i < imo->mo_count; i++) { 2244 if (imo->mo_list[i].mo_flags & MO_EMPTY) 2245 continue; 2246 if ((mop = vfs_hasopt(omo, imo->mo_list[i].mo_name)) != NULL) { 2247 char **newcanp; 2248 uint_t index = mop - omo->mo_list; 2249 2250 newcanp = vfs_mergecancelopts(mop, &motbl[index]); 2251 2252 vfs_freeopt(&motbl[index]); 2253 vfs_copyopt(&imo->mo_list[i], &motbl[index]); 2254 2255 vfs_freecancelopt(motbl[index].mo_cancel); 2256 motbl[index].mo_cancel = newcanp; 2257 } else { 2258 /* 2259 * If it's a new option, just copy it over to the first 2260 * free location. 2261 */ 2262 vfs_copyopt(&imo->mo_list[i], &motbl[freeidx++]); 2263 } 2264 } 2265 dmo->mo_count = count; 2266 dmo->mo_list = motbl; 2267 } 2268 2269 /* 2270 * Functions to set and clear mount options in a mount options table. 2271 */ 2272 2273 /* 2274 * Clear a mount option, if it exists. 2275 * 2276 * The update_mnttab arg indicates whether mops is part of a vfs that is on 2277 * the vfs list. 2278 */ 2279 static void 2280 vfs_clearmntopt_nolock(mntopts_t *mops, const char *opt, int update_mnttab) 2281 { 2282 struct mntopt *mop; 2283 uint_t i, count; 2284 2285 ASSERT(!update_mnttab || RW_WRITE_HELD(&vfslist)); 2286 2287 count = mops->mo_count; 2288 for (i = 0; i < count; i++) { 2289 mop = &mops->mo_list[i]; 2290 2291 if (mop->mo_flags & MO_EMPTY) 2292 continue; 2293 if (strcmp(opt, mop->mo_name)) 2294 continue; 2295 mop->mo_flags &= ~MO_SET; 2296 if (mop->mo_arg != NULL) { 2297 kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1); 2298 } 2299 mop->mo_arg = NULL; 2300 if (update_mnttab) 2301 vfs_mnttab_modtimeupd(); 2302 break; 2303 } 2304 } 2305 2306 void 2307 vfs_clearmntopt(struct vfs *vfsp, const char *opt) 2308 { 2309 int gotlock = 0; 2310 2311 if (VFS_ON_LIST(vfsp)) { 2312 gotlock = 1; 2313 vfs_list_lock(); 2314 } 2315 vfs_clearmntopt_nolock(&vfsp->vfs_mntopts, opt, gotlock); 2316 if (gotlock) 2317 vfs_list_unlock(); 2318 } 2319 2320 2321 /* 2322 * Set a mount option on. If it's not found in the table, it's silently 2323 * ignored. If the option has MO_IGNORE set, it is still set unless the 2324 * VFS_NOFORCEOPT bit is set in the flags. Also, VFS_DISPLAY/VFS_NODISPLAY flag 2325 * bits can be used to toggle the MO_NODISPLAY bit for the option. 2326 * If the VFS_CREATEOPT flag bit is set then the first option slot with 2327 * MO_EMPTY set is created as the option passed in. 2328 * 2329 * The update_mnttab arg indicates whether mops is part of a vfs that is on 2330 * the vfs list. 2331 */ 2332 static void 2333 vfs_setmntopt_nolock(mntopts_t *mops, const char *opt, 2334 const char *arg, int flags, int update_mnttab) 2335 { 2336 mntopt_t *mop; 2337 uint_t i, count; 2338 char *sp; 2339 2340 ASSERT(!update_mnttab || RW_WRITE_HELD(&vfslist)); 2341 2342 if (flags & VFS_CREATEOPT) { 2343 if (vfs_hasopt(mops, opt) != NULL) { 2344 flags &= ~VFS_CREATEOPT; 2345 } 2346 } 2347 count = mops->mo_count; 2348 for (i = 0; i < count; i++) { 2349 mop = &mops->mo_list[i]; 2350 2351 if (mop->mo_flags & MO_EMPTY) { 2352 if ((flags & VFS_CREATEOPT) == 0) 2353 continue; 2354 sp = kmem_alloc(strlen(opt) + 1, KM_SLEEP); 2355 (void) strcpy(sp, opt); 2356 mop->mo_name = sp; 2357 if (arg != NULL) 2358 mop->mo_flags = MO_HASVALUE; 2359 else 2360 mop->mo_flags = 0; 2361 } else if (strcmp(opt, mop->mo_name)) { 2362 continue; 2363 } 2364 if ((mop->mo_flags & MO_IGNORE) && (flags & VFS_NOFORCEOPT)) 2365 break; 2366 if (arg != NULL && (mop->mo_flags & MO_HASVALUE) != 0) { 2367 sp = kmem_alloc(strlen(arg) + 1, KM_SLEEP); 2368 (void) strcpy(sp, arg); 2369 } else { 2370 sp = NULL; 2371 } 2372 if (mop->mo_arg != NULL) 2373 kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1); 2374 mop->mo_arg = sp; 2375 if (flags & VFS_DISPLAY) 2376 mop->mo_flags &= ~MO_NODISPLAY; 2377 if (flags & VFS_NODISPLAY) 2378 mop->mo_flags |= MO_NODISPLAY; 2379 mop->mo_flags |= MO_SET; 2380 if (mop->mo_cancel != NULL) { 2381 char **cp; 2382 2383 for (cp = mop->mo_cancel; *cp != NULL; cp++) 2384 vfs_clearmntopt_nolock(mops, *cp, 0); 2385 } 2386 if (update_mnttab) 2387 vfs_mnttab_modtimeupd(); 2388 break; 2389 } 2390 } 2391 2392 void 2393 vfs_setmntopt(struct vfs *vfsp, const char *opt, const char *arg, int flags) 2394 { 2395 int gotlock = 0; 2396 2397 if (VFS_ON_LIST(vfsp)) { 2398 gotlock = 1; 2399 vfs_list_lock(); 2400 } 2401 vfs_setmntopt_nolock(&vfsp->vfs_mntopts, opt, arg, flags, gotlock); 2402 if (gotlock) 2403 vfs_list_unlock(); 2404 } 2405 2406 2407 /* 2408 * Add a "tag" option to a mounted file system's options list. 2409 * 2410 * Note: caller is responsible for locking the vfs list, if needed, 2411 * to protect mops. 2412 */ 2413 static mntopt_t * 2414 vfs_addtag(mntopts_t *mops, const char *tag) 2415 { 2416 uint_t count; 2417 mntopt_t *mop, *motbl; 2418 2419 count = mops->mo_count + 1; 2420 motbl = kmem_zalloc(count * sizeof (mntopt_t), KM_SLEEP); 2421 if (mops->mo_count) { 2422 size_t len = (count - 1) * sizeof (mntopt_t); 2423 2424 bcopy(mops->mo_list, motbl, len); 2425 kmem_free(mops->mo_list, len); 2426 } 2427 mops->mo_count = count; 2428 mops->mo_list = motbl; 2429 mop = &motbl[count - 1]; 2430 mop->mo_flags = MO_TAG; 2431 mop->mo_name = kmem_alloc(strlen(tag) + 1, KM_SLEEP); 2432 (void) strcpy(mop->mo_name, tag); 2433 return (mop); 2434 } 2435 2436 /* 2437 * Allow users to set arbitrary "tags" in a vfs's mount options. 2438 * Broader use within the kernel is discouraged. 2439 */ 2440 int 2441 vfs_settag(uint_t major, uint_t minor, const char *mntpt, const char *tag, 2442 cred_t *cr) 2443 { 2444 vfs_t *vfsp; 2445 mntopts_t *mops; 2446 mntopt_t *mop; 2447 int found = 0; 2448 dev_t dev = makedevice(major, minor); 2449 int err = 0; 2450 char *buf = kmem_alloc(MAX_MNTOPT_STR, KM_SLEEP); 2451 2452 /* 2453 * Find the desired mounted file system 2454 */ 2455 vfs_list_lock(); 2456 vfsp = rootvfs; 2457 do { 2458 if (vfsp->vfs_dev == dev && 2459 strcmp(mntpt, refstr_value(vfsp->vfs_mntpt)) == 0) { 2460 found = 1; 2461 break; 2462 } 2463 vfsp = vfsp->vfs_next; 2464 } while (vfsp != rootvfs); 2465 2466 if (!found) { 2467 err = EINVAL; 2468 goto out; 2469 } 2470 err = secpolicy_fs_config(cr, vfsp); 2471 if (err != 0) 2472 goto out; 2473 2474 mops = &vfsp->vfs_mntopts; 2475 /* 2476 * Add tag if it doesn't already exist 2477 */ 2478 if ((mop = vfs_hasopt(mops, tag)) == NULL) { 2479 int len; 2480 2481 (void) vfs_buildoptionstr(mops, buf, MAX_MNTOPT_STR); 2482 len = strlen(buf); 2483 if (len + strlen(tag) + 2 > MAX_MNTOPT_STR) { 2484 err = ENAMETOOLONG; 2485 goto out; 2486 } 2487 mop = vfs_addtag(mops, tag); 2488 } 2489 if ((mop->mo_flags & MO_TAG) == 0) { 2490 err = EINVAL; 2491 goto out; 2492 } 2493 vfs_setmntopt_nolock(mops, tag, NULL, 0, 1); 2494 out: 2495 vfs_list_unlock(); 2496 kmem_free(buf, MAX_MNTOPT_STR); 2497 return (err); 2498 } 2499 2500 /* 2501 * Allow users to remove arbitrary "tags" in a vfs's mount options. 2502 * Broader use within the kernel is discouraged. 2503 */ 2504 int 2505 vfs_clrtag(uint_t major, uint_t minor, const char *mntpt, const char *tag, 2506 cred_t *cr) 2507 { 2508 vfs_t *vfsp; 2509 mntopt_t *mop; 2510 int found = 0; 2511 dev_t dev = makedevice(major, minor); 2512 int err = 0; 2513 2514 /* 2515 * Find the desired mounted file system 2516 */ 2517 vfs_list_lock(); 2518 vfsp = rootvfs; 2519 do { 2520 if (vfsp->vfs_dev == dev && 2521 strcmp(mntpt, refstr_value(vfsp->vfs_mntpt)) == 0) { 2522 found = 1; 2523 break; 2524 } 2525 vfsp = vfsp->vfs_next; 2526 } while (vfsp != rootvfs); 2527 2528 if (!found) { 2529 err = EINVAL; 2530 goto out; 2531 } 2532 err = secpolicy_fs_config(cr, vfsp); 2533 if (err != 0) 2534 goto out; 2535 2536 if ((mop = vfs_hasopt(&vfsp->vfs_mntopts, tag)) == NULL) { 2537 err = EINVAL; 2538 goto out; 2539 } 2540 if ((mop->mo_flags & MO_TAG) == 0) { 2541 err = EINVAL; 2542 goto out; 2543 } 2544 vfs_clearmntopt_nolock(&vfsp->vfs_mntopts, tag, 1); 2545 out: 2546 vfs_list_unlock(); 2547 return (err); 2548 } 2549 2550 /* 2551 * Function to parse an option string and fill in a mount options table. 2552 * Unknown options are silently ignored. The input option string is modified 2553 * by replacing separators with nulls. If the create flag is set, options 2554 * not found in the table are just added on the fly. The table must have 2555 * an option slot marked MO_EMPTY to add an option on the fly. 2556 * 2557 * This function is *not* for general use by filesystems. 2558 * 2559 * Note: caller is responsible for locking the vfs list, if needed, 2560 * to protect mops.. 2561 */ 2562 void 2563 vfs_parsemntopts(mntopts_t *mops, char *osp, int create) 2564 { 2565 char *s = osp, *p, *nextop, *valp, *cp, *ep; 2566 int setflg = VFS_NOFORCEOPT; 2567 2568 if (osp == NULL) 2569 return; 2570 while (*s != '\0') { 2571 p = strchr(s, ','); /* find next option */ 2572 if (p == NULL) { 2573 cp = NULL; 2574 p = s + strlen(s); 2575 } else { 2576 cp = p; /* save location of comma */ 2577 *p++ = '\0'; /* mark end and point to next option */ 2578 } 2579 nextop = p; 2580 p = strchr(s, '='); /* look for value */ 2581 if (p == NULL) { 2582 valp = NULL; /* no value supplied */ 2583 } else { 2584 ep = p; /* save location of equals */ 2585 *p++ = '\0'; /* end option and point to value */ 2586 valp = p; 2587 } 2588 /* 2589 * set option into options table 2590 */ 2591 if (create) 2592 setflg |= VFS_CREATEOPT; 2593 vfs_setmntopt_nolock(mops, s, valp, setflg, 0); 2594 if (cp != NULL) 2595 *cp = ','; /* restore the comma */ 2596 if (valp != NULL) 2597 *ep = '='; /* restore the equals */ 2598 s = nextop; 2599 } 2600 } 2601 2602 /* 2603 * Function to inquire if an option exists in a mount options table. 2604 * Returns a pointer to the option if it exists, else NULL. 2605 * 2606 * This function is *not* for general use by filesystems. 2607 * 2608 * Note: caller is responsible for locking the vfs list, if needed, 2609 * to protect mops. 2610 */ 2611 struct mntopt * 2612 vfs_hasopt(const mntopts_t *mops, const char *opt) 2613 { 2614 struct mntopt *mop; 2615 uint_t i, count; 2616 2617 count = mops->mo_count; 2618 for (i = 0; i < count; i++) { 2619 mop = &mops->mo_list[i]; 2620 2621 if (mop->mo_flags & MO_EMPTY) 2622 continue; 2623 if (strcmp(opt, mop->mo_name) == 0) 2624 return (mop); 2625 } 2626 return (NULL); 2627 } 2628 2629 /* 2630 * Function to inquire if an option is set in a mount options table. 2631 * Returns non-zero if set and fills in the arg pointer with a pointer to 2632 * the argument string or NULL if there is no argument string. 2633 */ 2634 static int 2635 vfs_optionisset_nolock(const mntopts_t *mops, const char *opt, char **argp) 2636 { 2637 struct mntopt *mop; 2638 uint_t i, count; 2639 2640 count = mops->mo_count; 2641 for (i = 0; i < count; i++) { 2642 mop = &mops->mo_list[i]; 2643 2644 if (mop->mo_flags & MO_EMPTY) 2645 continue; 2646 if (strcmp(opt, mop->mo_name)) 2647 continue; 2648 if ((mop->mo_flags & MO_SET) == 0) 2649 return (0); 2650 if (argp != NULL && (mop->mo_flags & MO_HASVALUE) != 0) 2651 *argp = mop->mo_arg; 2652 return (1); 2653 } 2654 return (0); 2655 } 2656 2657 2658 int 2659 vfs_optionisset(const struct vfs *vfsp, const char *opt, char **argp) 2660 { 2661 int ret; 2662 2663 vfs_list_read_lock(); 2664 ret = vfs_optionisset_nolock(&vfsp->vfs_mntopts, opt, argp); 2665 vfs_list_unlock(); 2666 return (ret); 2667 } 2668 2669 2670 /* 2671 * Construct a comma separated string of the options set in the given 2672 * mount table, return the string in the given buffer. Return non-zero if 2673 * the buffer would overflow. 2674 * 2675 * This function is *not* for general use by filesystems. 2676 * 2677 * Note: caller is responsible for locking the vfs list, if needed, 2678 * to protect mp. 2679 */ 2680 int 2681 vfs_buildoptionstr(const mntopts_t *mp, char *buf, int len) 2682 { 2683 char *cp; 2684 uint_t i; 2685 2686 buf[0] = '\0'; 2687 cp = buf; 2688 for (i = 0; i < mp->mo_count; i++) { 2689 struct mntopt *mop; 2690 2691 mop = &mp->mo_list[i]; 2692 if (mop->mo_flags & MO_SET) { 2693 int optlen, comma = 0; 2694 2695 if (buf[0] != '\0') 2696 comma = 1; 2697 optlen = strlen(mop->mo_name); 2698 if (strlen(buf) + comma + optlen + 1 > len) 2699 goto err; 2700 if (comma) 2701 *cp++ = ','; 2702 (void) strcpy(cp, mop->mo_name); 2703 cp += optlen; 2704 /* 2705 * Append option value if there is one 2706 */ 2707 if (mop->mo_arg != NULL) { 2708 int arglen; 2709 2710 arglen = strlen(mop->mo_arg); 2711 if (strlen(buf) + arglen + 2 > len) 2712 goto err; 2713 *cp++ = '='; 2714 (void) strcpy(cp, mop->mo_arg); 2715 cp += arglen; 2716 } 2717 } 2718 } 2719 return (0); 2720 err: 2721 return (EOVERFLOW); 2722 } 2723 2724 static void 2725 vfs_freecancelopt(char **moc) 2726 { 2727 if (moc != NULL) { 2728 int ccnt = 0; 2729 char **cp; 2730 2731 for (cp = moc; *cp != NULL; cp++) { 2732 kmem_free(*cp, strlen(*cp) + 1); 2733 ccnt++; 2734 } 2735 kmem_free(moc, (ccnt + 1) * sizeof (char *)); 2736 } 2737 } 2738 2739 static void 2740 vfs_freeopt(mntopt_t *mop) 2741 { 2742 if (mop->mo_name != NULL) 2743 kmem_free(mop->mo_name, strlen(mop->mo_name) + 1); 2744 2745 vfs_freecancelopt(mop->mo_cancel); 2746 2747 if (mop->mo_arg != NULL) 2748 kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1); 2749 } 2750 2751 /* 2752 * Free a mount options table 2753 * 2754 * This function is *not* for general use by filesystems. 2755 * 2756 * Note: caller is responsible for locking the vfs list, if needed, 2757 * to protect mp. 2758 */ 2759 void 2760 vfs_freeopttbl(mntopts_t *mp) 2761 { 2762 uint_t i, count; 2763 2764 count = mp->mo_count; 2765 for (i = 0; i < count; i++) { 2766 vfs_freeopt(&mp->mo_list[i]); 2767 } 2768 if (count) { 2769 kmem_free(mp->mo_list, sizeof (mntopt_t) * count); 2770 mp->mo_count = 0; 2771 mp->mo_list = NULL; 2772 } 2773 } 2774 2775 2776 /* ARGSUSED */ 2777 static int 2778 vfs_mntdummyread(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cred, 2779 caller_context_t *ct) 2780 { 2781 return (0); 2782 } 2783 2784 /* ARGSUSED */ 2785 static int 2786 vfs_mntdummywrite(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cred, 2787 caller_context_t *ct) 2788 { 2789 return (0); 2790 } 2791 2792 /* 2793 * The dummy vnode is currently used only by file events notification 2794 * module which is just interested in the timestamps. 2795 */ 2796 /* ARGSUSED */ 2797 static int 2798 vfs_mntdummygetattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2799 caller_context_t *ct) 2800 { 2801 bzero(vap, sizeof (vattr_t)); 2802 vap->va_type = VREG; 2803 vap->va_nlink = 1; 2804 vap->va_ctime = vfs_mnttab_ctime; 2805 /* 2806 * it is ok to just copy mtime as the time will be monotonically 2807 * increasing. 2808 */ 2809 vap->va_mtime = vfs_mnttab_mtime; 2810 vap->va_atime = vap->va_mtime; 2811 return (0); 2812 } 2813 2814 static void 2815 vfs_mnttabvp_setup(void) 2816 { 2817 vnode_t *tvp; 2818 vnodeops_t *vfs_mntdummyvnops; 2819 const fs_operation_def_t mnt_dummyvnodeops_template[] = { 2820 VOPNAME_READ, { .vop_read = vfs_mntdummyread }, 2821 VOPNAME_WRITE, { .vop_write = vfs_mntdummywrite }, 2822 VOPNAME_GETATTR, { .vop_getattr = vfs_mntdummygetattr }, 2823 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 2824 NULL, NULL 2825 }; 2826 2827 if (vn_make_ops("mnttab", mnt_dummyvnodeops_template, 2828 &vfs_mntdummyvnops) != 0) { 2829 cmn_err(CE_WARN, "vfs_mnttabvp_setup: vn_make_ops failed"); 2830 /* Shouldn't happen, but not bad enough to panic */ 2831 return; 2832 } 2833 2834 /* 2835 * A global dummy vnode is allocated to represent mntfs files. 2836 * The mntfs file (/etc/mnttab) can be monitored for file events 2837 * and receive an event when mnttab changes. Dummy VOP calls 2838 * will be made on this vnode. The file events notification module 2839 * intercepts this vnode and delivers relevant events. 2840 */ 2841 tvp = vn_alloc(KM_SLEEP); 2842 tvp->v_flag = VNOMOUNT|VNOMAP|VNOSWAP|VNOCACHE; 2843 vn_setops(tvp, vfs_mntdummyvnops); 2844 tvp->v_type = VREG; 2845 /* 2846 * The mnt dummy ops do not reference v_data. 2847 * No other module intercepting this vnode should either. 2848 * Just set it to point to itself. 2849 */ 2850 tvp->v_data = (caddr_t)tvp; 2851 tvp->v_vfsp = rootvfs; 2852 vfs_mntdummyvp = tvp; 2853 } 2854 2855 /* 2856 * performs fake read/write ops 2857 */ 2858 static void 2859 vfs_mnttab_rwop(int rw) 2860 { 2861 struct uio uio; 2862 struct iovec iov; 2863 char buf[1]; 2864 2865 if (vfs_mntdummyvp == NULL) 2866 return; 2867 2868 bzero(&uio, sizeof (uio)); 2869 bzero(&iov, sizeof (iov)); 2870 iov.iov_base = buf; 2871 iov.iov_len = 0; 2872 uio.uio_iov = &iov; 2873 uio.uio_iovcnt = 1; 2874 uio.uio_loffset = 0; 2875 uio.uio_segflg = UIO_SYSSPACE; 2876 uio.uio_resid = 0; 2877 if (rw) { 2878 (void) VOP_WRITE(vfs_mntdummyvp, &uio, 0, kcred, NULL); 2879 } else { 2880 (void) VOP_READ(vfs_mntdummyvp, &uio, 0, kcred, NULL); 2881 } 2882 } 2883 2884 /* 2885 * Generate a write operation. 2886 */ 2887 void 2888 vfs_mnttab_writeop(void) 2889 { 2890 vfs_mnttab_rwop(1); 2891 } 2892 2893 /* 2894 * Generate a read operation. 2895 */ 2896 void 2897 vfs_mnttab_readop(void) 2898 { 2899 vfs_mnttab_rwop(0); 2900 } 2901 2902 /* 2903 * Free any mnttab information recorded in the vfs struct. 2904 * The vfs must not be on the vfs list. 2905 */ 2906 static void 2907 vfs_freemnttab(struct vfs *vfsp) 2908 { 2909 ASSERT(!VFS_ON_LIST(vfsp)); 2910 2911 /* 2912 * Free device and mount point information 2913 */ 2914 if (vfsp->vfs_mntpt != NULL) { 2915 refstr_rele(vfsp->vfs_mntpt); 2916 vfsp->vfs_mntpt = NULL; 2917 } 2918 if (vfsp->vfs_resource != NULL) { 2919 refstr_rele(vfsp->vfs_resource); 2920 vfsp->vfs_resource = NULL; 2921 } 2922 /* 2923 * Now free mount options information 2924 */ 2925 vfs_freeopttbl(&vfsp->vfs_mntopts); 2926 } 2927 2928 /* 2929 * Return the last mnttab modification time 2930 */ 2931 void 2932 vfs_mnttab_modtime(timespec_t *ts) 2933 { 2934 ASSERT(RW_LOCK_HELD(&vfslist)); 2935 *ts = vfs_mnttab_mtime; 2936 } 2937 2938 /* 2939 * See if mnttab is changed 2940 */ 2941 void 2942 vfs_mnttab_poll(timespec_t *old, struct pollhead **phpp) 2943 { 2944 int changed; 2945 2946 *phpp = (struct pollhead *)NULL; 2947 2948 /* 2949 * Note: don't grab vfs list lock before accessing vfs_mnttab_mtime. 2950 * Can lead to deadlock against vfs_mnttab_modtimeupd(). It is safe 2951 * to not grab the vfs list lock because tv_sec is monotonically 2952 * increasing. 2953 */ 2954 2955 changed = (old->tv_nsec != vfs_mnttab_mtime.tv_nsec) || 2956 (old->tv_sec != vfs_mnttab_mtime.tv_sec); 2957 if (!changed) { 2958 *phpp = &vfs_pollhd; 2959 } 2960 } 2961 2962 /* 2963 * Update the mnttab modification time and wake up any waiters for 2964 * mnttab changes 2965 */ 2966 void 2967 vfs_mnttab_modtimeupd() 2968 { 2969 hrtime_t oldhrt, newhrt; 2970 2971 ASSERT(RW_WRITE_HELD(&vfslist)); 2972 oldhrt = ts2hrt(&vfs_mnttab_mtime); 2973 gethrestime(&vfs_mnttab_mtime); 2974 newhrt = ts2hrt(&vfs_mnttab_mtime); 2975 if (oldhrt == (hrtime_t)0) 2976 vfs_mnttab_ctime = vfs_mnttab_mtime; 2977 /* 2978 * Attempt to provide unique mtime (like uniqtime but not). 2979 */ 2980 if (newhrt == oldhrt) { 2981 newhrt++; 2982 hrt2ts(newhrt, &vfs_mnttab_mtime); 2983 } 2984 pollwakeup(&vfs_pollhd, (short)POLLRDBAND); 2985 vfs_mnttab_writeop(); 2986 } 2987 2988 int 2989 dounmount(struct vfs *vfsp, int flag, cred_t *cr) 2990 { 2991 vnode_t *coveredvp; 2992 int error; 2993 extern void teardown_vopstats(vfs_t *); 2994 2995 /* 2996 * Get covered vnode. This will be NULL if the vfs is not linked 2997 * into the file system name space (i.e., domount() with MNT_NOSPICE). 2998 */ 2999 coveredvp = vfsp->vfs_vnodecovered; 3000 ASSERT(coveredvp == NULL || vn_vfswlock_held(coveredvp)); 3001 3002 /* 3003 * Purge all dnlc entries for this vfs. 3004 */ 3005 (void) dnlc_purge_vfsp(vfsp, 0); 3006 3007 /* For forcible umount, skip VFS_SYNC() since it may hang */ 3008 if ((flag & MS_FORCE) == 0) 3009 (void) VFS_SYNC(vfsp, 0, cr); 3010 3011 /* 3012 * Lock the vfs to maintain fs status quo during unmount. This 3013 * has to be done after the sync because ufs_update tries to acquire 3014 * the vfs_reflock. 3015 */ 3016 vfs_lock_wait(vfsp); 3017 3018 if (error = VFS_UNMOUNT(vfsp, flag, cr)) { 3019 vfs_unlock(vfsp); 3020 if (coveredvp != NULL) 3021 vn_vfsunlock(coveredvp); 3022 } else if (coveredvp != NULL) { 3023 teardown_vopstats(vfsp); 3024 /* 3025 * vfs_remove() will do a VN_RELE(vfsp->vfs_vnodecovered) 3026 * when it frees vfsp so we do a VN_HOLD() so we can 3027 * continue to use coveredvp afterwards. 3028 */ 3029 VN_HOLD(coveredvp); 3030 vfs_remove(vfsp); 3031 vn_vfsunlock(coveredvp); 3032 VN_RELE(coveredvp); 3033 } else { 3034 teardown_vopstats(vfsp); 3035 /* 3036 * Release the reference to vfs that is not linked 3037 * into the name space. 3038 */ 3039 vfs_unlock(vfsp); 3040 VFS_RELE(vfsp); 3041 } 3042 return (error); 3043 } 3044 3045 3046 /* 3047 * Vfs_unmountall() is called by uadmin() to unmount all 3048 * mounted file systems (except the root file system) during shutdown. 3049 * It follows the existing locking protocol when traversing the vfs list 3050 * to sync and unmount vfses. Even though there should be no 3051 * other thread running while the system is shutting down, it is prudent 3052 * to still follow the locking protocol. 3053 */ 3054 void 3055 vfs_unmountall(void) 3056 { 3057 struct vfs *vfsp; 3058 struct vfs *prev_vfsp = NULL; 3059 int error; 3060 3061 /* 3062 * Toss all dnlc entries now so that the per-vfs sync 3063 * and unmount operations don't have to slog through 3064 * a bunch of uninteresting vnodes over and over again. 3065 */ 3066 dnlc_purge(); 3067 3068 vfs_list_lock(); 3069 for (vfsp = rootvfs->vfs_prev; vfsp != rootvfs; vfsp = prev_vfsp) { 3070 prev_vfsp = vfsp->vfs_prev; 3071 3072 if (vfs_lock(vfsp) != 0) 3073 continue; 3074 error = vn_vfswlock(vfsp->vfs_vnodecovered); 3075 vfs_unlock(vfsp); 3076 if (error) 3077 continue; 3078 3079 vfs_list_unlock(); 3080 3081 (void) VFS_SYNC(vfsp, SYNC_CLOSE, CRED()); 3082 (void) dounmount(vfsp, 0, CRED()); 3083 3084 /* 3085 * Since we dropped the vfslist lock above we must 3086 * verify that next_vfsp still exists, else start over. 3087 */ 3088 vfs_list_lock(); 3089 for (vfsp = rootvfs->vfs_prev; 3090 vfsp != rootvfs; vfsp = vfsp->vfs_prev) 3091 if (vfsp == prev_vfsp) 3092 break; 3093 if (vfsp == rootvfs && prev_vfsp != rootvfs) 3094 prev_vfsp = rootvfs->vfs_prev; 3095 } 3096 vfs_list_unlock(); 3097 } 3098 3099 /* 3100 * Called to add an entry to the end of the vfs mount in progress list 3101 */ 3102 void 3103 vfs_addmip(dev_t dev, struct vfs *vfsp) 3104 { 3105 struct ipmnt *mipp; 3106 3107 mipp = (struct ipmnt *)kmem_alloc(sizeof (struct ipmnt), KM_SLEEP); 3108 mipp->mip_next = NULL; 3109 mipp->mip_dev = dev; 3110 mipp->mip_vfsp = vfsp; 3111 mutex_enter(&vfs_miplist_mutex); 3112 if (vfs_miplist_end != NULL) 3113 vfs_miplist_end->mip_next = mipp; 3114 else 3115 vfs_miplist = mipp; 3116 vfs_miplist_end = mipp; 3117 mutex_exit(&vfs_miplist_mutex); 3118 } 3119 3120 /* 3121 * Called to remove an entry from the mount in progress list 3122 * Either because the mount completed or it failed. 3123 */ 3124 void 3125 vfs_delmip(struct vfs *vfsp) 3126 { 3127 struct ipmnt *mipp, *mipprev; 3128 3129 mutex_enter(&vfs_miplist_mutex); 3130 mipprev = NULL; 3131 for (mipp = vfs_miplist; 3132 mipp && mipp->mip_vfsp != vfsp; mipp = mipp->mip_next) { 3133 mipprev = mipp; 3134 } 3135 if (mipp == NULL) 3136 return; /* shouldn't happen */ 3137 if (mipp == vfs_miplist_end) 3138 vfs_miplist_end = mipprev; 3139 if (mipprev == NULL) 3140 vfs_miplist = mipp->mip_next; 3141 else 3142 mipprev->mip_next = mipp->mip_next; 3143 mutex_exit(&vfs_miplist_mutex); 3144 kmem_free(mipp, sizeof (struct ipmnt)); 3145 } 3146 3147 /* 3148 * vfs_add is called by a specific filesystem's mount routine to add 3149 * the new vfs into the vfs list/hash and to cover the mounted-on vnode. 3150 * The vfs should already have been locked by the caller. 3151 * 3152 * coveredvp is NULL if this is the root. 3153 */ 3154 void 3155 vfs_add(vnode_t *coveredvp, struct vfs *vfsp, int mflag) 3156 { 3157 int newflag; 3158 3159 ASSERT(vfs_lock_held(vfsp)); 3160 VFS_HOLD(vfsp); 3161 newflag = vfsp->vfs_flag; 3162 if (mflag & MS_RDONLY) 3163 newflag |= VFS_RDONLY; 3164 else 3165 newflag &= ~VFS_RDONLY; 3166 if (mflag & MS_NOSUID) 3167 newflag |= (VFS_NOSETUID|VFS_NODEVICES); 3168 else 3169 newflag &= ~(VFS_NOSETUID|VFS_NODEVICES); 3170 if (mflag & MS_NOMNTTAB) 3171 newflag |= VFS_NOMNTTAB; 3172 else 3173 newflag &= ~VFS_NOMNTTAB; 3174 3175 if (coveredvp != NULL) { 3176 ASSERT(vn_vfswlock_held(coveredvp)); 3177 coveredvp->v_vfsmountedhere = vfsp; 3178 VN_HOLD(coveredvp); 3179 } 3180 vfsp->vfs_vnodecovered = coveredvp; 3181 vfsp->vfs_flag = newflag; 3182 3183 vfs_list_add(vfsp); 3184 } 3185 3186 /* 3187 * Remove a vfs from the vfs list, null out the pointer from the 3188 * covered vnode to the vfs (v_vfsmountedhere), and null out the pointer 3189 * from the vfs to the covered vnode (vfs_vnodecovered). Release the 3190 * reference to the vfs and to the covered vnode. 3191 * 3192 * Called from dounmount after it's confirmed with the file system 3193 * that the unmount is legal. 3194 */ 3195 void 3196 vfs_remove(struct vfs *vfsp) 3197 { 3198 vnode_t *vp; 3199 3200 ASSERT(vfs_lock_held(vfsp)); 3201 3202 /* 3203 * Can't unmount root. Should never happen because fs will 3204 * be busy. 3205 */ 3206 if (vfsp == rootvfs) 3207 panic("vfs_remove: unmounting root"); 3208 3209 vfs_list_remove(vfsp); 3210 3211 /* 3212 * Unhook from the file system name space. 3213 */ 3214 vp = vfsp->vfs_vnodecovered; 3215 ASSERT(vn_vfswlock_held(vp)); 3216 vp->v_vfsmountedhere = NULL; 3217 vfsp->vfs_vnodecovered = NULL; 3218 VN_RELE(vp); 3219 3220 /* 3221 * Release lock and wakeup anybody waiting. 3222 */ 3223 vfs_unlock(vfsp); 3224 VFS_RELE(vfsp); 3225 } 3226 3227 /* 3228 * Lock a filesystem to prevent access to it while mounting, 3229 * unmounting and syncing. Return EBUSY immediately if lock 3230 * can't be acquired. 3231 */ 3232 int 3233 vfs_lock(vfs_t *vfsp) 3234 { 3235 vn_vfslocks_entry_t *vpvfsentry; 3236 3237 vpvfsentry = vn_vfslocks_getlock(vfsp); 3238 if (rwst_tryenter(&vpvfsentry->ve_lock, RW_WRITER)) 3239 return (0); 3240 3241 vn_vfslocks_rele(vpvfsentry); 3242 return (EBUSY); 3243 } 3244 3245 int 3246 vfs_rlock(vfs_t *vfsp) 3247 { 3248 vn_vfslocks_entry_t *vpvfsentry; 3249 3250 vpvfsentry = vn_vfslocks_getlock(vfsp); 3251 3252 if (rwst_tryenter(&vpvfsentry->ve_lock, RW_READER)) 3253 return (0); 3254 3255 vn_vfslocks_rele(vpvfsentry); 3256 return (EBUSY); 3257 } 3258 3259 void 3260 vfs_lock_wait(vfs_t *vfsp) 3261 { 3262 vn_vfslocks_entry_t *vpvfsentry; 3263 3264 vpvfsentry = vn_vfslocks_getlock(vfsp); 3265 rwst_enter(&vpvfsentry->ve_lock, RW_WRITER); 3266 } 3267 3268 void 3269 vfs_rlock_wait(vfs_t *vfsp) 3270 { 3271 vn_vfslocks_entry_t *vpvfsentry; 3272 3273 vpvfsentry = vn_vfslocks_getlock(vfsp); 3274 rwst_enter(&vpvfsentry->ve_lock, RW_READER); 3275 } 3276 3277 /* 3278 * Unlock a locked filesystem. 3279 */ 3280 void 3281 vfs_unlock(vfs_t *vfsp) 3282 { 3283 vn_vfslocks_entry_t *vpvfsentry; 3284 3285 /* 3286 * vfs_unlock will mimic sema_v behaviour to fix 4748018. 3287 * And these changes should remain for the patch changes as it is. 3288 */ 3289 if (panicstr) 3290 return; 3291 3292 /* 3293 * ve_refcount needs to be dropped twice here. 3294 * 1. To release refernce after a call to vfs_locks_getlock() 3295 * 2. To release the reference from the locking routines like 3296 * vfs_rlock_wait/vfs_wlock_wait/vfs_wlock etc,. 3297 */ 3298 3299 vpvfsentry = vn_vfslocks_getlock(vfsp); 3300 vn_vfslocks_rele(vpvfsentry); 3301 3302 rwst_exit(&vpvfsentry->ve_lock); 3303 vn_vfslocks_rele(vpvfsentry); 3304 } 3305 3306 /* 3307 * Utility routine that allows a filesystem to construct its 3308 * fsid in "the usual way" - by munging some underlying dev_t and 3309 * the filesystem type number into the 64-bit fsid. Note that 3310 * this implicitly relies on dev_t persistence to make filesystem 3311 * id's persistent. 3312 * 3313 * There's nothing to prevent an individual fs from constructing its 3314 * fsid in a different way, and indeed they should. 3315 * 3316 * Since we want fsids to be 32-bit quantities (so that they can be 3317 * exported identically by either 32-bit or 64-bit APIs, as well as 3318 * the fact that fsid's are "known" to NFS), we compress the device 3319 * number given down to 32-bits, and panic if that isn't possible. 3320 */ 3321 void 3322 vfs_make_fsid(fsid_t *fsi, dev_t dev, int val) 3323 { 3324 if (!cmpldev((dev32_t *)&fsi->val[0], dev)) 3325 panic("device number too big for fsid!"); 3326 fsi->val[1] = val; 3327 } 3328 3329 int 3330 vfs_lock_held(vfs_t *vfsp) 3331 { 3332 int held; 3333 vn_vfslocks_entry_t *vpvfsentry; 3334 3335 /* 3336 * vfs_lock_held will mimic sema_held behaviour 3337 * if panicstr is set. And these changes should remain 3338 * for the patch changes as it is. 3339 */ 3340 if (panicstr) 3341 return (1); 3342 3343 vpvfsentry = vn_vfslocks_getlock(vfsp); 3344 held = rwst_lock_held(&vpvfsentry->ve_lock, RW_WRITER); 3345 3346 vn_vfslocks_rele(vpvfsentry); 3347 return (held); 3348 } 3349 3350 struct _kthread * 3351 vfs_lock_owner(vfs_t *vfsp) 3352 { 3353 struct _kthread *owner; 3354 vn_vfslocks_entry_t *vpvfsentry; 3355 3356 /* 3357 * vfs_wlock_held will mimic sema_held behaviour 3358 * if panicstr is set. And these changes should remain 3359 * for the patch changes as it is. 3360 */ 3361 if (panicstr) 3362 return (NULL); 3363 3364 vpvfsentry = vn_vfslocks_getlock(vfsp); 3365 owner = rwst_owner(&vpvfsentry->ve_lock); 3366 3367 vn_vfslocks_rele(vpvfsentry); 3368 return (owner); 3369 } 3370 3371 /* 3372 * vfs list locking. 3373 * 3374 * Rather than manipulate the vfslist lock directly, we abstract into lock 3375 * and unlock routines to allow the locking implementation to be changed for 3376 * clustering. 3377 * 3378 * Whenever the vfs list is modified through its hash links, the overall list 3379 * lock must be obtained before locking the relevant hash bucket. But to see 3380 * whether a given vfs is on the list, it suffices to obtain the lock for the 3381 * hash bucket without getting the overall list lock. (See getvfs() below.) 3382 */ 3383 3384 void 3385 vfs_list_lock() 3386 { 3387 rw_enter(&vfslist, RW_WRITER); 3388 } 3389 3390 void 3391 vfs_list_read_lock() 3392 { 3393 rw_enter(&vfslist, RW_READER); 3394 } 3395 3396 void 3397 vfs_list_unlock() 3398 { 3399 rw_exit(&vfslist); 3400 } 3401 3402 /* 3403 * Low level worker routines for adding entries to and removing entries from 3404 * the vfs list. 3405 */ 3406 3407 static void 3408 vfs_hash_add(struct vfs *vfsp, int insert_at_head) 3409 { 3410 int vhno; 3411 struct vfs **hp; 3412 dev_t dev; 3413 3414 ASSERT(RW_WRITE_HELD(&vfslist)); 3415 3416 dev = expldev(vfsp->vfs_fsid.val[0]); 3417 vhno = VFSHASH(getmajor(dev), getminor(dev)); 3418 3419 mutex_enter(&rvfs_list[vhno].rvfs_lock); 3420 3421 /* 3422 * Link into the hash table, inserting it at the end, so that LOFS 3423 * with the same fsid as UFS (or other) file systems will not hide the 3424 * UFS. 3425 */ 3426 if (insert_at_head) { 3427 vfsp->vfs_hash = rvfs_list[vhno].rvfs_head; 3428 rvfs_list[vhno].rvfs_head = vfsp; 3429 } else { 3430 for (hp = &rvfs_list[vhno].rvfs_head; *hp != NULL; 3431 hp = &(*hp)->vfs_hash) 3432 continue; 3433 /* 3434 * hp now contains the address of the pointer to update 3435 * to effect the insertion. 3436 */ 3437 vfsp->vfs_hash = NULL; 3438 *hp = vfsp; 3439 } 3440 3441 rvfs_list[vhno].rvfs_len++; 3442 mutex_exit(&rvfs_list[vhno].rvfs_lock); 3443 } 3444 3445 3446 static void 3447 vfs_hash_remove(struct vfs *vfsp) 3448 { 3449 int vhno; 3450 struct vfs *tvfsp; 3451 dev_t dev; 3452 3453 ASSERT(RW_WRITE_HELD(&vfslist)); 3454 3455 dev = expldev(vfsp->vfs_fsid.val[0]); 3456 vhno = VFSHASH(getmajor(dev), getminor(dev)); 3457 3458 mutex_enter(&rvfs_list[vhno].rvfs_lock); 3459 3460 /* 3461 * Remove from hash. 3462 */ 3463 if (rvfs_list[vhno].rvfs_head == vfsp) { 3464 rvfs_list[vhno].rvfs_head = vfsp->vfs_hash; 3465 rvfs_list[vhno].rvfs_len--; 3466 goto foundit; 3467 } 3468 for (tvfsp = rvfs_list[vhno].rvfs_head; tvfsp != NULL; 3469 tvfsp = tvfsp->vfs_hash) { 3470 if (tvfsp->vfs_hash == vfsp) { 3471 tvfsp->vfs_hash = vfsp->vfs_hash; 3472 rvfs_list[vhno].rvfs_len--; 3473 goto foundit; 3474 } 3475 } 3476 cmn_err(CE_WARN, "vfs_list_remove: vfs not found in hash"); 3477 3478 foundit: 3479 3480 mutex_exit(&rvfs_list[vhno].rvfs_lock); 3481 } 3482 3483 3484 void 3485 vfs_list_add(struct vfs *vfsp) 3486 { 3487 zone_t *zone; 3488 3489 /* 3490 * The zone that owns the mount is the one that performed the mount. 3491 * Note that this isn't necessarily the same as the zone mounted into. 3492 * The corresponding zone_rele() will be done when the vfs_t is 3493 * being free'd. 3494 */ 3495 vfsp->vfs_zone = curproc->p_zone; 3496 zone_hold(vfsp->vfs_zone); 3497 3498 /* 3499 * Find the zone mounted into, and put this mount on its vfs list. 3500 */ 3501 zone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt)); 3502 ASSERT(zone != NULL); 3503 /* 3504 * Special casing for the root vfs. This structure is allocated 3505 * statically and hooked onto rootvfs at link time. During the 3506 * vfs_mountroot call at system startup time, the root file system's 3507 * VFS_MOUNTROOT routine will call vfs_add with this root vfs struct 3508 * as argument. The code below must detect and handle this special 3509 * case. The only apparent justification for this special casing is 3510 * to ensure that the root file system appears at the head of the 3511 * list. 3512 * 3513 * XXX: I'm assuming that it's ok to do normal list locking when 3514 * adding the entry for the root file system (this used to be 3515 * done with no locks held). 3516 */ 3517 vfs_list_lock(); 3518 /* 3519 * Link into the vfs list proper. 3520 */ 3521 if (vfsp == &root) { 3522 /* 3523 * Assert: This vfs is already on the list as its first entry. 3524 * Thus, there's nothing to do. 3525 */ 3526 ASSERT(rootvfs == vfsp); 3527 /* 3528 * Add it to the head of the global zone's vfslist. 3529 */ 3530 ASSERT(zone == global_zone); 3531 ASSERT(zone->zone_vfslist == NULL); 3532 zone->zone_vfslist = vfsp; 3533 } else { 3534 /* 3535 * Link to end of list using vfs_prev (as rootvfs is now a 3536 * doubly linked circular list) so list is in mount order for 3537 * mnttab use. 3538 */ 3539 rootvfs->vfs_prev->vfs_next = vfsp; 3540 vfsp->vfs_prev = rootvfs->vfs_prev; 3541 rootvfs->vfs_prev = vfsp; 3542 vfsp->vfs_next = rootvfs; 3543 3544 /* 3545 * Do it again for the zone-private list (which may be NULL). 3546 */ 3547 if (zone->zone_vfslist == NULL) { 3548 ASSERT(zone != global_zone); 3549 zone->zone_vfslist = vfsp; 3550 } else { 3551 zone->zone_vfslist->vfs_zone_prev->vfs_zone_next = vfsp; 3552 vfsp->vfs_zone_prev = zone->zone_vfslist->vfs_zone_prev; 3553 zone->zone_vfslist->vfs_zone_prev = vfsp; 3554 vfsp->vfs_zone_next = zone->zone_vfslist; 3555 } 3556 } 3557 3558 /* 3559 * Link into the hash table, inserting it at the end, so that LOFS 3560 * with the same fsid as UFS (or other) file systems will not hide 3561 * the UFS. 3562 */ 3563 vfs_hash_add(vfsp, 0); 3564 3565 /* 3566 * update the mnttab modification time 3567 */ 3568 vfs_mnttab_modtimeupd(); 3569 vfs_list_unlock(); 3570 zone_rele(zone); 3571 } 3572 3573 void 3574 vfs_list_remove(struct vfs *vfsp) 3575 { 3576 zone_t *zone; 3577 3578 zone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt)); 3579 ASSERT(zone != NULL); 3580 /* 3581 * Callers are responsible for preventing attempts to unmount the 3582 * root. 3583 */ 3584 ASSERT(vfsp != rootvfs); 3585 3586 vfs_list_lock(); 3587 3588 /* 3589 * Remove from hash. 3590 */ 3591 vfs_hash_remove(vfsp); 3592 3593 /* 3594 * Remove from vfs list. 3595 */ 3596 vfsp->vfs_prev->vfs_next = vfsp->vfs_next; 3597 vfsp->vfs_next->vfs_prev = vfsp->vfs_prev; 3598 vfsp->vfs_next = vfsp->vfs_prev = NULL; 3599 3600 /* 3601 * Remove from zone-specific vfs list. 3602 */ 3603 if (zone->zone_vfslist == vfsp) 3604 zone->zone_vfslist = vfsp->vfs_zone_next; 3605 3606 if (vfsp->vfs_zone_next == vfsp) { 3607 ASSERT(vfsp->vfs_zone_prev == vfsp); 3608 ASSERT(zone->zone_vfslist == vfsp); 3609 zone->zone_vfslist = NULL; 3610 } 3611 3612 vfsp->vfs_zone_prev->vfs_zone_next = vfsp->vfs_zone_next; 3613 vfsp->vfs_zone_next->vfs_zone_prev = vfsp->vfs_zone_prev; 3614 vfsp->vfs_zone_next = vfsp->vfs_zone_prev = NULL; 3615 3616 /* 3617 * update the mnttab modification time 3618 */ 3619 vfs_mnttab_modtimeupd(); 3620 vfs_list_unlock(); 3621 zone_rele(zone); 3622 } 3623 3624 struct vfs * 3625 getvfs(fsid_t *fsid) 3626 { 3627 struct vfs *vfsp; 3628 int val0 = fsid->val[0]; 3629 int val1 = fsid->val[1]; 3630 dev_t dev = expldev(val0); 3631 int vhno = VFSHASH(getmajor(dev), getminor(dev)); 3632 kmutex_t *hmp = &rvfs_list[vhno].rvfs_lock; 3633 3634 mutex_enter(hmp); 3635 for (vfsp = rvfs_list[vhno].rvfs_head; vfsp; vfsp = vfsp->vfs_hash) { 3636 if (vfsp->vfs_fsid.val[0] == val0 && 3637 vfsp->vfs_fsid.val[1] == val1) { 3638 VFS_HOLD(vfsp); 3639 mutex_exit(hmp); 3640 return (vfsp); 3641 } 3642 } 3643 mutex_exit(hmp); 3644 return (NULL); 3645 } 3646 3647 /* 3648 * Search the vfs mount in progress list for a specified device/vfs entry. 3649 * Returns 0 if the first entry in the list that the device matches has the 3650 * given vfs pointer as well. If the device matches but a different vfs 3651 * pointer is encountered in the list before the given vfs pointer then 3652 * a 1 is returned. 3653 */ 3654 3655 int 3656 vfs_devmounting(dev_t dev, struct vfs *vfsp) 3657 { 3658 int retval = 0; 3659 struct ipmnt *mipp; 3660 3661 mutex_enter(&vfs_miplist_mutex); 3662 for (mipp = vfs_miplist; mipp != NULL; mipp = mipp->mip_next) { 3663 if (mipp->mip_dev == dev) { 3664 if (mipp->mip_vfsp != vfsp) 3665 retval = 1; 3666 break; 3667 } 3668 } 3669 mutex_exit(&vfs_miplist_mutex); 3670 return (retval); 3671 } 3672 3673 /* 3674 * Search the vfs list for a specified device. Returns 1, if entry is found 3675 * or 0 if no suitable entry is found. 3676 */ 3677 3678 int 3679 vfs_devismounted(dev_t dev) 3680 { 3681 struct vfs *vfsp; 3682 int found; 3683 3684 vfs_list_read_lock(); 3685 vfsp = rootvfs; 3686 found = 0; 3687 do { 3688 if (vfsp->vfs_dev == dev) { 3689 found = 1; 3690 break; 3691 } 3692 vfsp = vfsp->vfs_next; 3693 } while (vfsp != rootvfs); 3694 3695 vfs_list_unlock(); 3696 return (found); 3697 } 3698 3699 /* 3700 * Search the vfs list for a specified device. Returns a pointer to it 3701 * or NULL if no suitable entry is found. The caller of this routine 3702 * is responsible for releasing the returned vfs pointer. 3703 */ 3704 struct vfs * 3705 vfs_dev2vfsp(dev_t dev) 3706 { 3707 struct vfs *vfsp; 3708 int found; 3709 3710 vfs_list_read_lock(); 3711 vfsp = rootvfs; 3712 found = 0; 3713 do { 3714 /* 3715 * The following could be made more efficient by making 3716 * the entire loop use vfs_zone_next if the call is from 3717 * a zone. The only callers, however, ustat(2) and 3718 * umount2(2), don't seem to justify the added 3719 * complexity at present. 3720 */ 3721 if (vfsp->vfs_dev == dev && 3722 ZONE_PATH_VISIBLE(refstr_value(vfsp->vfs_mntpt), 3723 curproc->p_zone)) { 3724 VFS_HOLD(vfsp); 3725 found = 1; 3726 break; 3727 } 3728 vfsp = vfsp->vfs_next; 3729 } while (vfsp != rootvfs); 3730 vfs_list_unlock(); 3731 return (found ? vfsp: NULL); 3732 } 3733 3734 /* 3735 * Search the vfs list for a specified mntpoint. Returns a pointer to it 3736 * or NULL if no suitable entry is found. The caller of this routine 3737 * is responsible for releasing the returned vfs pointer. 3738 * 3739 * Note that if multiple mntpoints match, the last one matching is 3740 * returned in an attempt to return the "top" mount when overlay 3741 * mounts are covering the same mount point. This is accomplished by starting 3742 * at the end of the list and working our way backwards, stopping at the first 3743 * matching mount. 3744 */ 3745 struct vfs * 3746 vfs_mntpoint2vfsp(const char *mp) 3747 { 3748 struct vfs *vfsp; 3749 struct vfs *retvfsp = NULL; 3750 zone_t *zone = curproc->p_zone; 3751 struct vfs *list; 3752 3753 vfs_list_read_lock(); 3754 if (getzoneid() == GLOBAL_ZONEID) { 3755 /* 3756 * The global zone may see filesystems in any zone. 3757 */ 3758 vfsp = rootvfs->vfs_prev; 3759 do { 3760 if (strcmp(refstr_value(vfsp->vfs_mntpt), mp) == 0) { 3761 retvfsp = vfsp; 3762 break; 3763 } 3764 vfsp = vfsp->vfs_prev; 3765 } while (vfsp != rootvfs->vfs_prev); 3766 } else if ((list = zone->zone_vfslist) != NULL) { 3767 const char *mntpt; 3768 3769 vfsp = list->vfs_zone_prev; 3770 do { 3771 mntpt = refstr_value(vfsp->vfs_mntpt); 3772 mntpt = ZONE_PATH_TRANSLATE(mntpt, zone); 3773 if (strcmp(mntpt, mp) == 0) { 3774 retvfsp = vfsp; 3775 break; 3776 } 3777 vfsp = vfsp->vfs_zone_prev; 3778 } while (vfsp != list->vfs_zone_prev); 3779 } 3780 if (retvfsp) 3781 VFS_HOLD(retvfsp); 3782 vfs_list_unlock(); 3783 return (retvfsp); 3784 } 3785 3786 /* 3787 * Search the vfs list for a specified vfsops. 3788 * if vfs entry is found then return 1, else 0. 3789 */ 3790 int 3791 vfs_opsinuse(vfsops_t *ops) 3792 { 3793 struct vfs *vfsp; 3794 int found; 3795 3796 vfs_list_read_lock(); 3797 vfsp = rootvfs; 3798 found = 0; 3799 do { 3800 if (vfs_getops(vfsp) == ops) { 3801 found = 1; 3802 break; 3803 } 3804 vfsp = vfsp->vfs_next; 3805 } while (vfsp != rootvfs); 3806 vfs_list_unlock(); 3807 return (found); 3808 } 3809 3810 /* 3811 * Allocate an entry in vfssw for a file system type 3812 */ 3813 struct vfssw * 3814 allocate_vfssw(char *type) 3815 { 3816 struct vfssw *vswp; 3817 3818 if (type[0] == '\0' || strlen(type) + 1 > _ST_FSTYPSZ) { 3819 /* 3820 * The vfssw table uses the empty string to identify an 3821 * available entry; we cannot add any type which has 3822 * a leading NUL. The string length is limited to 3823 * the size of the st_fstype array in struct stat. 3824 */ 3825 return (NULL); 3826 } 3827 3828 ASSERT(VFSSW_WRITE_LOCKED()); 3829 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) 3830 if (!ALLOCATED_VFSSW(vswp)) { 3831 vswp->vsw_name = kmem_alloc(strlen(type) + 1, KM_SLEEP); 3832 (void) strcpy(vswp->vsw_name, type); 3833 ASSERT(vswp->vsw_count == 0); 3834 vswp->vsw_count = 1; 3835 mutex_init(&vswp->vsw_lock, NULL, MUTEX_DEFAULT, NULL); 3836 return (vswp); 3837 } 3838 return (NULL); 3839 } 3840 3841 /* 3842 * Impose additional layer of translation between vfstype names 3843 * and module names in the filesystem. 3844 */ 3845 static char * 3846 vfs_to_modname(char *vfstype) 3847 { 3848 if (strcmp(vfstype, "proc") == 0) { 3849 vfstype = "procfs"; 3850 } else if (strcmp(vfstype, "fd") == 0) { 3851 vfstype = "fdfs"; 3852 } else if (strncmp(vfstype, "nfs", 3) == 0) { 3853 vfstype = "nfs"; 3854 } 3855 3856 return (vfstype); 3857 } 3858 3859 /* 3860 * Find a vfssw entry given a file system type name. 3861 * Try to autoload the filesystem if it's not found. 3862 * If it's installed, return the vfssw locked to prevent unloading. 3863 */ 3864 struct vfssw * 3865 vfs_getvfssw(char *type) 3866 { 3867 struct vfssw *vswp; 3868 char *modname; 3869 3870 RLOCK_VFSSW(); 3871 vswp = vfs_getvfsswbyname(type); 3872 modname = vfs_to_modname(type); 3873 3874 if (rootdir == NULL) { 3875 /* 3876 * If we haven't yet loaded the root file system, then our 3877 * _init won't be called until later. Allocate vfssw entry, 3878 * because mod_installfs won't be called. 3879 */ 3880 if (vswp == NULL) { 3881 RUNLOCK_VFSSW(); 3882 WLOCK_VFSSW(); 3883 if ((vswp = vfs_getvfsswbyname(type)) == NULL) { 3884 if ((vswp = allocate_vfssw(type)) == NULL) { 3885 WUNLOCK_VFSSW(); 3886 return (NULL); 3887 } 3888 } 3889 WUNLOCK_VFSSW(); 3890 RLOCK_VFSSW(); 3891 } 3892 if (!VFS_INSTALLED(vswp)) { 3893 RUNLOCK_VFSSW(); 3894 (void) modloadonly("fs", modname); 3895 } else 3896 RUNLOCK_VFSSW(); 3897 return (vswp); 3898 } 3899 3900 /* 3901 * Try to load the filesystem. Before calling modload(), we drop 3902 * our lock on the VFS switch table, and pick it up after the 3903 * module is loaded. However, there is a potential race: the 3904 * module could be unloaded after the call to modload() completes 3905 * but before we pick up the lock and drive on. Therefore, 3906 * we keep reloading the module until we've loaded the module 3907 * _and_ we have the lock on the VFS switch table. 3908 */ 3909 while (vswp == NULL || !VFS_INSTALLED(vswp)) { 3910 RUNLOCK_VFSSW(); 3911 if (modload("fs", modname) == -1) 3912 return (NULL); 3913 RLOCK_VFSSW(); 3914 if (vswp == NULL) 3915 if ((vswp = vfs_getvfsswbyname(type)) == NULL) 3916 break; 3917 } 3918 RUNLOCK_VFSSW(); 3919 3920 return (vswp); 3921 } 3922 3923 /* 3924 * Find a vfssw entry given a file system type name. 3925 */ 3926 struct vfssw * 3927 vfs_getvfsswbyname(char *type) 3928 { 3929 struct vfssw *vswp; 3930 3931 ASSERT(VFSSW_LOCKED()); 3932 if (type == NULL || *type == '\0') 3933 return (NULL); 3934 3935 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) { 3936 if (strcmp(type, vswp->vsw_name) == 0) { 3937 vfs_refvfssw(vswp); 3938 return (vswp); 3939 } 3940 } 3941 3942 return (NULL); 3943 } 3944 3945 /* 3946 * Find a vfssw entry given a set of vfsops. 3947 */ 3948 struct vfssw * 3949 vfs_getvfsswbyvfsops(vfsops_t *vfsops) 3950 { 3951 struct vfssw *vswp; 3952 3953 RLOCK_VFSSW(); 3954 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) { 3955 if (ALLOCATED_VFSSW(vswp) && &vswp->vsw_vfsops == vfsops) { 3956 vfs_refvfssw(vswp); 3957 RUNLOCK_VFSSW(); 3958 return (vswp); 3959 } 3960 } 3961 RUNLOCK_VFSSW(); 3962 3963 return (NULL); 3964 } 3965 3966 /* 3967 * Reference a vfssw entry. 3968 */ 3969 void 3970 vfs_refvfssw(struct vfssw *vswp) 3971 { 3972 3973 mutex_enter(&vswp->vsw_lock); 3974 vswp->vsw_count++; 3975 mutex_exit(&vswp->vsw_lock); 3976 } 3977 3978 /* 3979 * Unreference a vfssw entry. 3980 */ 3981 void 3982 vfs_unrefvfssw(struct vfssw *vswp) 3983 { 3984 3985 mutex_enter(&vswp->vsw_lock); 3986 vswp->vsw_count--; 3987 mutex_exit(&vswp->vsw_lock); 3988 } 3989 3990 int sync_timeout = 30; /* timeout for syncing a page during panic */ 3991 int sync_timeleft; /* portion of sync_timeout remaining */ 3992 3993 static int sync_retries = 20; /* number of retries when not making progress */ 3994 static int sync_triesleft; /* portion of sync_retries remaining */ 3995 3996 static pgcnt_t old_pgcnt, new_pgcnt; 3997 static int new_bufcnt, old_bufcnt; 3998 3999 /* 4000 * Sync all of the mounted filesystems, and then wait for the actual i/o to 4001 * complete. We wait by counting the number of dirty pages and buffers, 4002 * pushing them out using bio_busy() and page_busy(), and then counting again. 4003 * This routine is used during both the uadmin A_SHUTDOWN code as well as 4004 * the SYNC phase of the panic code (see comments in panic.c). It should only 4005 * be used after some higher-level mechanism has quiesced the system so that 4006 * new writes are not being initiated while we are waiting for completion. 4007 * 4008 * To ensure finite running time, our algorithm uses two timeout mechanisms: 4009 * sync_timeleft (a timer implemented by the omnipresent deadman() cyclic), and 4010 * sync_triesleft (a progress counter used by the vfs_syncall() loop below). 4011 * Together these ensure that syncing completes if our i/o paths are stuck. 4012 * The counters are declared above so they can be found easily in the debugger. 4013 * 4014 * The sync_timeleft counter is reset by bio_busy() and page_busy() using the 4015 * vfs_syncprogress() subroutine whenever we make progress through the lists of 4016 * pages and buffers. It is decremented and expired by the deadman() cyclic. 4017 * When vfs_syncall() decides it is done, we disable the deadman() counter by 4018 * setting sync_timeleft to zero. This timer guards against vfs_syncall() 4019 * deadlocking or hanging inside of a broken filesystem or driver routine. 4020 * 4021 * The sync_triesleft counter is updated by vfs_syncall() itself. If we make 4022 * sync_retries consecutive calls to bio_busy() and page_busy() without 4023 * decreasing either the number of dirty buffers or dirty pages below the 4024 * lowest count we have seen so far, we give up and return from vfs_syncall(). 4025 * 4026 * Each loop iteration ends with a call to delay() one second to allow time for 4027 * i/o completion and to permit the user time to read our progress messages. 4028 */ 4029 void 4030 vfs_syncall(void) 4031 { 4032 if (rootdir == NULL && !modrootloaded) 4033 return; /* panic during boot - no filesystems yet */ 4034 4035 printf("syncing file systems..."); 4036 vfs_syncprogress(); 4037 sync(); 4038 4039 vfs_syncprogress(); 4040 sync_triesleft = sync_retries; 4041 4042 old_bufcnt = new_bufcnt = INT_MAX; 4043 old_pgcnt = new_pgcnt = ULONG_MAX; 4044 4045 while (sync_triesleft > 0) { 4046 old_bufcnt = MIN(old_bufcnt, new_bufcnt); 4047 old_pgcnt = MIN(old_pgcnt, new_pgcnt); 4048 4049 new_bufcnt = bio_busy(B_TRUE); 4050 new_pgcnt = page_busy(B_TRUE); 4051 vfs_syncprogress(); 4052 4053 if (new_bufcnt == 0 && new_pgcnt == 0) 4054 break; 4055 4056 if (new_bufcnt < old_bufcnt || new_pgcnt < old_pgcnt) 4057 sync_triesleft = sync_retries; 4058 else 4059 sync_triesleft--; 4060 4061 if (new_bufcnt) 4062 printf(" [%d]", new_bufcnt); 4063 if (new_pgcnt) 4064 printf(" %lu", new_pgcnt); 4065 4066 delay(hz); 4067 } 4068 4069 if (new_bufcnt != 0 || new_pgcnt != 0) 4070 printf(" done (not all i/o completed)\n"); 4071 else 4072 printf(" done\n"); 4073 4074 sync_timeleft = 0; 4075 delay(hz); 4076 } 4077 4078 /* 4079 * If we are in the middle of the sync phase of panic, reset sync_timeleft to 4080 * sync_timeout to indicate that we are making progress and the deadman() 4081 * omnipresent cyclic should not yet time us out. Note that it is safe to 4082 * store to sync_timeleft here since the deadman() is firing at high-level 4083 * on top of us. If we are racing with the deadman(), either the deadman() 4084 * will decrement the old value and then we will reset it, or we will 4085 * reset it and then the deadman() will immediately decrement it. In either 4086 * case, correct behavior results. 4087 */ 4088 void 4089 vfs_syncprogress(void) 4090 { 4091 if (panicstr) 4092 sync_timeleft = sync_timeout; 4093 } 4094 4095 /* 4096 * Map VFS flags to statvfs flags. These shouldn't really be separate 4097 * flags at all. 4098 */ 4099 uint_t 4100 vf_to_stf(uint_t vf) 4101 { 4102 uint_t stf = 0; 4103 4104 if (vf & VFS_RDONLY) 4105 stf |= ST_RDONLY; 4106 if (vf & VFS_NOSETUID) 4107 stf |= ST_NOSUID; 4108 if (vf & VFS_NOTRUNC) 4109 stf |= ST_NOTRUNC; 4110 4111 return (stf); 4112 } 4113 4114 /* 4115 * Entries for (illegal) fstype 0. 4116 */ 4117 /* ARGSUSED */ 4118 int 4119 vfsstray_sync(struct vfs *vfsp, short arg, struct cred *cr) 4120 { 4121 cmn_err(CE_PANIC, "stray vfs operation"); 4122 return (0); 4123 } 4124 4125 /* 4126 * Entries for (illegal) fstype 0. 4127 */ 4128 int 4129 vfsstray(void) 4130 { 4131 cmn_err(CE_PANIC, "stray vfs operation"); 4132 return (0); 4133 } 4134 4135 /* 4136 * Support for dealing with forced UFS unmount and its interaction with 4137 * LOFS. Could be used by any filesystem. 4138 * See bug 1203132. 4139 */ 4140 int 4141 vfs_EIO(void) 4142 { 4143 return (EIO); 4144 } 4145 4146 /* 4147 * We've gotta define the op for sync separately, since the compiler gets 4148 * confused if we mix and match ANSI and normal style prototypes when 4149 * a "short" argument is present and spits out a warning. 4150 */ 4151 /*ARGSUSED*/ 4152 int 4153 vfs_EIO_sync(struct vfs *vfsp, short arg, struct cred *cr) 4154 { 4155 return (EIO); 4156 } 4157 4158 vfs_t EIO_vfs; 4159 vfsops_t *EIO_vfsops; 4160 4161 /* 4162 * Called from startup() to initialize all loaded vfs's 4163 */ 4164 void 4165 vfsinit(void) 4166 { 4167 struct vfssw *vswp; 4168 int error; 4169 extern int vopstats_enabled; 4170 extern void vopstats_startup(); 4171 4172 static const fs_operation_def_t EIO_vfsops_template[] = { 4173 VFSNAME_MOUNT, { .error = vfs_EIO }, 4174 VFSNAME_UNMOUNT, { .error = vfs_EIO }, 4175 VFSNAME_ROOT, { .error = vfs_EIO }, 4176 VFSNAME_STATVFS, { .error = vfs_EIO }, 4177 VFSNAME_SYNC, { .vfs_sync = vfs_EIO_sync }, 4178 VFSNAME_VGET, { .error = vfs_EIO }, 4179 VFSNAME_MOUNTROOT, { .error = vfs_EIO }, 4180 VFSNAME_FREEVFS, { .error = vfs_EIO }, 4181 VFSNAME_VNSTATE, { .error = vfs_EIO }, 4182 NULL, NULL 4183 }; 4184 4185 static const fs_operation_def_t stray_vfsops_template[] = { 4186 VFSNAME_MOUNT, { .error = vfsstray }, 4187 VFSNAME_UNMOUNT, { .error = vfsstray }, 4188 VFSNAME_ROOT, { .error = vfsstray }, 4189 VFSNAME_STATVFS, { .error = vfsstray }, 4190 VFSNAME_SYNC, { .vfs_sync = vfsstray_sync }, 4191 VFSNAME_VGET, { .error = vfsstray }, 4192 VFSNAME_MOUNTROOT, { .error = vfsstray }, 4193 VFSNAME_FREEVFS, { .error = vfsstray }, 4194 VFSNAME_VNSTATE, { .error = vfsstray }, 4195 NULL, NULL 4196 }; 4197 4198 /* Create vfs cache */ 4199 vfs_cache = kmem_cache_create("vfs_cache", sizeof (struct vfs), 4200 sizeof (uintptr_t), NULL, NULL, NULL, NULL, NULL, 0); 4201 4202 /* Initialize the vnode cache (file systems may use it during init). */ 4203 vn_create_cache(); 4204 4205 /* Setup event monitor framework */ 4206 fem_init(); 4207 4208 /* Initialize the dummy stray file system type. */ 4209 error = vfs_setfsops(0, stray_vfsops_template, NULL); 4210 4211 /* Initialize the dummy EIO file system. */ 4212 error = vfs_makefsops(EIO_vfsops_template, &EIO_vfsops); 4213 if (error != 0) { 4214 cmn_err(CE_WARN, "vfsinit: bad EIO vfs ops template"); 4215 /* Shouldn't happen, but not bad enough to panic */ 4216 } 4217 4218 VFS_INIT(&EIO_vfs, EIO_vfsops, (caddr_t)NULL); 4219 4220 /* 4221 * Default EIO_vfs.vfs_flag to VFS_UNMOUNTED so a lookup 4222 * on this vfs can immediately notice it's invalid. 4223 */ 4224 EIO_vfs.vfs_flag |= VFS_UNMOUNTED; 4225 4226 /* 4227 * Call the init routines of non-loadable filesystems only. 4228 * Filesystems which are loaded as separate modules will be 4229 * initialized by the module loading code instead. 4230 */ 4231 4232 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) { 4233 RLOCK_VFSSW(); 4234 if (vswp->vsw_init != NULL) 4235 (*vswp->vsw_init)(vswp - vfssw, vswp->vsw_name); 4236 RUNLOCK_VFSSW(); 4237 } 4238 4239 vopstats_startup(); 4240 4241 if (vopstats_enabled) { 4242 /* EIO_vfs can collect stats, but we don't retrieve them */ 4243 initialize_vopstats(&EIO_vfs.vfs_vopstats); 4244 EIO_vfs.vfs_fstypevsp = NULL; 4245 EIO_vfs.vfs_vskap = NULL; 4246 EIO_vfs.vfs_flag |= VFS_STATS; 4247 } 4248 4249 xattr_init(); 4250 } 4251 4252 vfs_t * 4253 vfs_alloc(int kmflag) 4254 { 4255 vfs_t *vfsp; 4256 4257 vfsp = kmem_cache_alloc(vfs_cache, kmflag); 4258 4259 /* 4260 * Do the simplest initialization here. 4261 * Everything else gets done in vfs_init() 4262 */ 4263 bzero(vfsp, sizeof (vfs_t)); 4264 return (vfsp); 4265 } 4266 4267 void 4268 vfs_free(vfs_t *vfsp) 4269 { 4270 /* 4271 * One would be tempted to assert that "vfsp->vfs_count == 0". 4272 * The problem is that this gets called out of domount() with 4273 * a partially initialized vfs and a vfs_count of 1. This is 4274 * also called from vfs_rele() with a vfs_count of 0. We can't 4275 * call VFS_RELE() from domount() if VFS_MOUNT() hasn't successfully 4276 * returned. This is because VFS_MOUNT() fully initializes the 4277 * vfs structure and its associated data. VFS_RELE() will call 4278 * VFS_FREEVFS() which may panic the system if the data structures 4279 * aren't fully initialized from a successful VFS_MOUNT()). 4280 */ 4281 4282 /* If FEM was in use, make sure everything gets cleaned up */ 4283 if (vfsp->vfs_femhead) { 4284 ASSERT(vfsp->vfs_femhead->femh_list == NULL); 4285 mutex_destroy(&vfsp->vfs_femhead->femh_lock); 4286 kmem_free(vfsp->vfs_femhead, sizeof (*(vfsp->vfs_femhead))); 4287 vfsp->vfs_femhead = NULL; 4288 } 4289 4290 if (vfsp->vfs_implp) 4291 vfsimpl_teardown(vfsp); 4292 sema_destroy(&vfsp->vfs_reflock); 4293 kmem_cache_free(vfs_cache, vfsp); 4294 } 4295 4296 /* 4297 * Increments the vfs reference count by one atomically. 4298 */ 4299 void 4300 vfs_hold(vfs_t *vfsp) 4301 { 4302 atomic_add_32(&vfsp->vfs_count, 1); 4303 ASSERT(vfsp->vfs_count != 0); 4304 } 4305 4306 /* 4307 * Decrements the vfs reference count by one atomically. When 4308 * vfs reference count becomes zero, it calls the file system 4309 * specific vfs_freevfs() to free up the resources. 4310 */ 4311 void 4312 vfs_rele(vfs_t *vfsp) 4313 { 4314 ASSERT(vfsp->vfs_count != 0); 4315 if (atomic_add_32_nv(&vfsp->vfs_count, -1) == 0) { 4316 VFS_FREEVFS(vfsp); 4317 lofi_remove(vfsp); 4318 if (vfsp->vfs_zone) 4319 zone_rele(vfsp->vfs_zone); 4320 vfs_freemnttab(vfsp); 4321 vfs_free(vfsp); 4322 } 4323 } 4324 4325 /* 4326 * Generic operations vector support. 4327 * 4328 * This is used to build operations vectors for both the vfs and vnode. 4329 * It's normally called only when a file system is loaded. 4330 * 4331 * There are many possible algorithms for this, including the following: 4332 * 4333 * (1) scan the list of known operations; for each, see if the file system 4334 * includes an entry for it, and fill it in as appropriate. 4335 * 4336 * (2) set up defaults for all known operations. scan the list of ops 4337 * supplied by the file system; for each which is both supplied and 4338 * known, fill it in. 4339 * 4340 * (3) sort the lists of known ops & supplied ops; scan the list, filling 4341 * in entries as we go. 4342 * 4343 * we choose (1) for simplicity, and because performance isn't critical here. 4344 * note that (2) could be sped up using a precomputed hash table on known ops. 4345 * (3) could be faster than either, but only if the lists were very large or 4346 * supplied in sorted order. 4347 * 4348 */ 4349 4350 int 4351 fs_build_vector(void *vector, int *unused_ops, 4352 const fs_operation_trans_def_t *translation, 4353 const fs_operation_def_t *operations) 4354 { 4355 int i, num_trans, num_ops, used; 4356 4357 /* 4358 * Count the number of translations and the number of supplied 4359 * operations. 4360 */ 4361 4362 { 4363 const fs_operation_trans_def_t *p; 4364 4365 for (num_trans = 0, p = translation; 4366 p->name != NULL; 4367 num_trans++, p++) 4368 ; 4369 } 4370 4371 { 4372 const fs_operation_def_t *p; 4373 4374 for (num_ops = 0, p = operations; 4375 p->name != NULL; 4376 num_ops++, p++) 4377 ; 4378 } 4379 4380 /* Walk through each operation known to our caller. There will be */ 4381 /* one entry in the supplied "translation table" for each. */ 4382 4383 used = 0; 4384 4385 for (i = 0; i < num_trans; i++) { 4386 int j, found; 4387 char *curname; 4388 fs_generic_func_p result; 4389 fs_generic_func_p *location; 4390 4391 curname = translation[i].name; 4392 4393 /* Look for a matching operation in the list supplied by the */ 4394 /* file system. */ 4395 4396 found = 0; 4397 4398 for (j = 0; j < num_ops; j++) { 4399 if (strcmp(operations[j].name, curname) == 0) { 4400 used++; 4401 found = 1; 4402 break; 4403 } 4404 } 4405 4406 /* 4407 * If the file system is using a "placeholder" for default 4408 * or error functions, grab the appropriate function out of 4409 * the translation table. If the file system didn't supply 4410 * this operation at all, use the default function. 4411 */ 4412 4413 if (found) { 4414 result = operations[j].func.fs_generic; 4415 if (result == fs_default) { 4416 result = translation[i].defaultFunc; 4417 } else if (result == fs_error) { 4418 result = translation[i].errorFunc; 4419 } else if (result == NULL) { 4420 /* Null values are PROHIBITED */ 4421 return (EINVAL); 4422 } 4423 } else { 4424 result = translation[i].defaultFunc; 4425 } 4426 4427 /* Now store the function into the operations vector. */ 4428 4429 location = (fs_generic_func_p *) 4430 (((char *)vector) + translation[i].offset); 4431 4432 *location = result; 4433 } 4434 4435 *unused_ops = num_ops - used; 4436 4437 return (0); 4438 } 4439 4440 /* Placeholder functions, should never be called. */ 4441 4442 int 4443 fs_error(void) 4444 { 4445 cmn_err(CE_PANIC, "fs_error called"); 4446 return (0); 4447 } 4448 4449 int 4450 fs_default(void) 4451 { 4452 cmn_err(CE_PANIC, "fs_default called"); 4453 return (0); 4454 } 4455 4456 #ifdef __sparc 4457 4458 /* 4459 * Part of the implementation of booting off a mirrored root 4460 * involves a change of dev_t for the root device. To 4461 * accomplish this, first remove the existing hash table 4462 * entry for the root device, convert to the new dev_t, 4463 * then re-insert in the hash table at the head of the list. 4464 */ 4465 void 4466 vfs_root_redev(vfs_t *vfsp, dev_t ndev, int fstype) 4467 { 4468 vfs_list_lock(); 4469 4470 vfs_hash_remove(vfsp); 4471 4472 vfsp->vfs_dev = ndev; 4473 vfs_make_fsid(&vfsp->vfs_fsid, ndev, fstype); 4474 4475 vfs_hash_add(vfsp, 1); 4476 4477 vfs_list_unlock(); 4478 } 4479 4480 #else /* x86 NEWBOOT */ 4481 4482 #if defined(__x86) 4483 extern int hvmboot_rootconf(); 4484 #endif /* __x86 */ 4485 4486 int 4487 rootconf() 4488 { 4489 int error; 4490 struct vfssw *vsw; 4491 extern void pm_init(); 4492 char *fstyp, *fsmod; 4493 4494 getrootfs(&fstyp, &fsmod); 4495 4496 #if defined(__x86) 4497 /* 4498 * hvmboot_rootconf() is defined in the hvm_bootstrap misc module, 4499 * which lives in /platform/i86hvm, and hence is only available when 4500 * booted in an x86 hvm environment. If the hvm_bootstrap misc module 4501 * is not available then the modstub for this function will return 0. 4502 * If the hvm_bootstrap misc module is available it will be loaded 4503 * and hvmboot_rootconf() will be invoked. 4504 */ 4505 if (error = hvmboot_rootconf()) 4506 return (error); 4507 #endif /* __x86 */ 4508 4509 if (error = clboot_rootconf()) 4510 return (error); 4511 4512 if (modload("fs", fsmod) == -1) 4513 panic("Cannot _init %s module", fsmod); 4514 4515 RLOCK_VFSSW(); 4516 vsw = vfs_getvfsswbyname(fstyp); 4517 RUNLOCK_VFSSW(); 4518 VFS_INIT(rootvfs, &vsw->vsw_vfsops, 0); 4519 VFS_HOLD(rootvfs); 4520 4521 /* always mount readonly first */ 4522 rootvfs->vfs_flag |= VFS_RDONLY; 4523 4524 pm_init(); 4525 4526 if (netboot) 4527 (void) strplumb(); 4528 4529 error = VFS_MOUNTROOT(rootvfs, ROOT_INIT); 4530 vfs_unrefvfssw(vsw); 4531 rootdev = rootvfs->vfs_dev; 4532 4533 if (error) 4534 panic("cannot mount root path %s", rootfs.bo_name); 4535 return (error); 4536 } 4537 4538 /* 4539 * XXX this is called by nfs only and should probably be removed 4540 * If booted with ASKNAME, prompt on the console for a filesystem 4541 * name and return it. 4542 */ 4543 void 4544 getfsname(char *askfor, char *name, size_t namelen) 4545 { 4546 if (boothowto & RB_ASKNAME) { 4547 printf("%s name: ", askfor); 4548 console_gets(name, namelen); 4549 } 4550 } 4551 4552 /* 4553 * If server_path exists, then we are booting a diskless 4554 * client. Otherwise, we default to ufs. Zfs should perhaps be 4555 * another property. 4556 */ 4557 static void 4558 getrootfs(char **fstypp, char **fsmodp) 4559 { 4560 extern char *strplumb_get_netdev_path(void); 4561 char *propstr = NULL; 4562 4563 /* check fstype property; it should be nfsdyn for diskless */ 4564 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(), 4565 DDI_PROP_DONTPASS, "fstype", &propstr) 4566 == DDI_SUCCESS) { 4567 (void) strncpy(rootfs.bo_fstype, propstr, BO_MAXFSNAME); 4568 ddi_prop_free(propstr); 4569 4570 /* 4571 * if the boot property 'fstype' is not set, but 'zfs-bootfs' is set, 4572 * assume the type of this root filesystem is 'zfs'. 4573 */ 4574 } else if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(), 4575 DDI_PROP_DONTPASS, "zfs-bootfs", &propstr) 4576 == DDI_SUCCESS) { 4577 (void) strncpy(rootfs.bo_fstype, "zfs", BO_MAXFSNAME); 4578 ddi_prop_free(propstr); 4579 } 4580 4581 if (strncmp(rootfs.bo_fstype, "nfs", 3) != 0) { 4582 *fstypp = *fsmodp = rootfs.bo_fstype; 4583 return; 4584 } 4585 4586 ++netboot; 4587 /* 4588 * check if path to network interface is specified in bootpath 4589 * or by a hypervisor domain configuration file. 4590 * XXPV - enable strlumb_get_netdev_path() 4591 */ 4592 if (ddi_prop_exists(DDI_DEV_T_ANY, ddi_root_node(), DDI_PROP_DONTPASS, 4593 "xpv-nfsroot")) { 4594 (void) strcpy(rootfs.bo_name, "/xpvd/xnf@0"); 4595 } else if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(), 4596 DDI_PROP_DONTPASS, "bootpath", &propstr) 4597 == DDI_SUCCESS) { 4598 (void) strncpy(rootfs.bo_name, propstr, BO_MAXOBJNAME); 4599 ddi_prop_free(propstr); 4600 } else { 4601 /* attempt to determine netdev_path via boot_mac address */ 4602 netdev_path = strplumb_get_netdev_path(); 4603 if (netdev_path == NULL) 4604 panic("cannot find boot network interface"); 4605 (void) strncpy(rootfs.bo_name, netdev_path, BO_MAXOBJNAME); 4606 } 4607 *fstypp = rootfs.bo_fstype; 4608 *fsmodp = "nfs"; 4609 } 4610 #endif 4611 4612 /* 4613 * VFS feature routines 4614 */ 4615 4616 #define VFTINDEX(feature) (((feature) >> 32) & 0xFFFFFFFF) 4617 #define VFTBITS(feature) ((feature) & 0xFFFFFFFFLL) 4618 4619 /* Register a feature in the vfs */ 4620 void 4621 vfs_set_feature(vfs_t *vfsp, vfs_feature_t feature) 4622 { 4623 /* Note that vfs_featureset[] is found in *vfsp->vfs_implp */ 4624 if (vfsp->vfs_implp == NULL) 4625 return; 4626 4627 vfsp->vfs_featureset[VFTINDEX(feature)] |= VFTBITS(feature); 4628 } 4629 4630 /* 4631 * Query a vfs for a feature. 4632 * Returns 1 if feature is present, 0 if not 4633 */ 4634 int 4635 vfs_has_feature(vfs_t *vfsp, vfs_feature_t feature) 4636 { 4637 int ret = 0; 4638 4639 /* Note that vfs_featureset[] is found in *vfsp->vfs_implp */ 4640 if (vfsp->vfs_implp == NULL) 4641 return (ret); 4642 4643 if (vfsp->vfs_featureset[VFTINDEX(feature)] & VFTBITS(feature)) 4644 ret = 1; 4645 4646 return (ret); 4647 } 4648 4649 /* 4650 * Propagate feature set from one vfs to another 4651 */ 4652 void 4653 vfs_propagate_features(vfs_t *from, vfs_t *to) 4654 { 4655 int i; 4656 4657 if (to->vfs_implp == NULL || from->vfs_implp == NULL) 4658 return; 4659 4660 for (i = 1; i <= to->vfs_featureset[0]; i++) { 4661 to->vfs_featureset[i] = from->vfs_featureset[i]; 4662 } 4663 } 4664 4665 #define LOFICTL_PATH "/devices/pseudo/lofi@0:%d" 4666 4667 /* 4668 * Return the vnode for the lofi node if there's a lofi mount in place. 4669 * Returns -1 when there's no lofi node, 0 on success, and > 0 on 4670 * failure. 4671 */ 4672 int 4673 vfs_get_lofi(vfs_t *vfsp, vnode_t **vpp) 4674 { 4675 char *path = NULL; 4676 int strsize; 4677 int err; 4678 4679 if (vfsp->vfs_lofi_minor == 0) { 4680 *vpp = NULL; 4681 return (-1); 4682 } 4683 4684 strsize = snprintf(NULL, 0, LOFICTL_PATH, vfsp->vfs_lofi_minor); 4685 path = kmem_alloc(strsize + 1, KM_SLEEP); 4686 (void) snprintf(path, strsize + 1, LOFICTL_PATH, vfsp->vfs_lofi_minor); 4687 4688 err = lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, vpp); 4689 4690 if (err) 4691 *vpp = NULL; 4692 4693 kmem_free(path, strsize + 1); 4694 return (err); 4695 } 4696